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ABSTRACT 

Mitral cell dendritic development in the mouse main olfactory bulb. 

Masha Rand Diede and Charles A. Greer. Department of Neurosurgery, Yale University, School of 

Medicine, New Haven, CT. 

  Correct targeting and differentiation of the mitral cell (MC) dendrites in the olfactory bulb (OB) is 

clearly essential for development of functional neuronal circuits. MCs, the primary OB projection neurons, 

receive odor information from OSN axons via axodendritic synapses on their apical dendrite; the signal is 

further processed via dendrodendritic synapses on MC lateral dendrites. In the adult, each MC cell apical 

dendrite targets a single glomerulus, ending in a characteristic glomerular tuft and receiving input from 

molecularly defined subsets of OSNs. MC lateral dendrites segregate deep to the glomerular layer, in a 

sublamina of the external plexiform layer.  MC dendrites are initially undifferentiated and often 

supernumerary; the adult form of one apical and several lateral dendrites emerges postnatally. We sought to 

define more clearly the emergence of MC apical versus lateral dendrites using DiI fills. We also used a 

dendritic growth cone specific antibody, CDA 1 to assess spatiotemporal patterns of development in the 

OB. 

 MCs progressed through a broad spectrum of transitional morphologies – from a broadly spread 

arbor of supernumerary dendrites in the embryo to the single apical dendrite and lateral dendrites 

characteristic of the adult. At P0, MCs exhibit the immature dendritic morphology with a broadly spread 

arbor of a large number of relatively uniform dendrites. By P1, this arbor appears to have narrowed and one 

dendrite appears thicker than the others, probably on its way to differentiating into an apical dendrite. At 

P4, two clearly distinguishable subpopulations of neurons have clearly emerged, but some cells exhibit two 

apical dendrites. By P8, MCs appear to have an adult dendritic morphology. 

Quantitative analysis of CDA 1 expression patterns in the OB at postnatal day 0, 2, 4, 8, suggests 

intra- and interlaminar patterns of dendritic development. Preliminary data further suggest distinct temporal 

windows of MC dendritic development along the rostrocaudal axis.  CDA 1 expression in all laminae 

decreases significantly by postnatal day 8 and appears indistinguishable from background in the adult. 

Thus, both lines of data show evidence of significant postnatal dendritic remodeling.   
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INTRODUCTION 

THE OLFACTORY SYSTEM 

Humans are said to be able to recognize up to 10,000 distinct smells and 

perfumers claim to be able to discriminate as many as 5,000 different odorants (odor 

components).  Furthermore, olfactory acuity and sensitivity are widely considered to be 

weaker in humans than other animals, although this position is currently being 

reconsidered in light of a number of new studies (for review see Shepherd, 2004).  

Whatever the verdict, smell is an indispensable mode of gauging and interacting with the 

environment for many species, essential for distinguishing friend from foe or delicious 

from deadly.  Testimony to the importance of the olfactory system is the fact that 

approximately 2% of the human genome and an impressive 6% of the mouse genome are 

dedicated to encoding up to 1,000 olfactory receptors, i.e., the receptors responsible for 

actual odorant detection (Mombaerts, 2001).  In other words, about one in 30 genes are 

dedicated to smell.  Furthermore, however large the number of olfactory receptors, it is 

estimated that the ratio of odorants to olfactory receptors is ten to one, i.e., that 

approximately 10 different odorants or ligands may bind to any single olfactory receptor, 

though the specificity or efficacy of binding may differ across odorants.  How does the 

central nervous system accomplish the gargantuan task of recognizing and processing this 

enormous array of stimuli? 

The olfactory system is the component of the nervous system designed to sense, 

interpret and prepare a response to chemical stimuli in the environment.  For terrestrial 

animals volatile molecules in the air constitute their odor environment, water soluble 

molecules are the chemical stimuli for aquatic organisms while those that divide their 
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time between land and sea have developed strategies for adapting their particular 

olfactory apparatus to both environments (Catania, 2006).  It stands to reason that 

olfaction is ubiquitous in the animal kingdom and its organizational principles 

remarkably similar across species, especially among vertebrates (Ache & Young, 2005).  

The primary model systems in the study of olfaction have been rodents and fruit flies, 

though research has also been conducted in a large number of other species as well.  

Although there are fundamental similarities between the vertebrate and invertebrate 

olfactory systems, they are also different enough that I will focus my attention primarily 

on mammalian olfaction, most notably murine. 

 

HISTORY OF OLFACTORY SYSTEM STUDIES 

The physician and histologist Santiago Ramon y Cajal, along with other turn of the 20th 

century histologists, including Camillo Golgi and M.G. Retzius, helped lay the 

foundation for modern 

neuroscience in general 

and the study of the 

olfactory system more 

specifically with his 

detailed 

neuroanatomical 

descriptions of the 

olfactory bulb in his ground-breaking work Histologie du Système Nerveux de l’Homme 

et de Vertébrés (Cajal, 1911).  In fact, he and Golgi were jointly awarded the Nobel Prize 

Figure 1. Reconstruction of the OB 
based on Golgi stain by S. Ramon y 
Cajal, 19th century. The classic 
lamination olfactory bulb and 
stereotypic cellular morphologies 
are shown.   



 

 

3

in Medicine and Physiology in 1906 for their work on establishing the neuron doctrine, 

based heavily on their interpretations of organization in the olfactory system. 

Seminal work in contemporary olfactory studies was done by Linda Buck and Richard 

Axel (Buck & Axel, 1991).  Their work radically transformed our understanding of 

olfaction and earned them the Nobel Prize in Medicine and Physiology in 2004 (Axel, 

2005; Buck, 2005). Buck, working at the time as a postdoctoral fellow in the Axel lab, 

initially discovered the aforementioned family of genes in the mouse encoding ≥1,000 

olfactory receptors (ORs), i.e. the receptors that recognize odorants.  This set the stage for 

taking a new approach to the olfactory code, including applying molecular and genetic 

techniques to the study of the receptors themselves and allowed us to begin elucidating 

details of the mechanism whereby the nervous system processes the thousands of 

different odorants with which it is presented. 

 

BASIC OLFACTORY CIRCUIT  

The olfactory pathway is a single relay circuit (figure 2).  Peripheral, sensory 

neurons pick up and pass along odor signals to central output neurons located in the main 

olfactory bulb (OB), which convey the information higher processing centers in the brain. 

In addition to input and output components, there are intrinsic neurons within the OB 

involved in refining the odor signal.  (For detailed reviews of the basic olfactory circuit 

see Shepherd et al., 2004; Firestein, 2001; Buck 2005; Axel 2005).  

The peripheral sensory neurons, olfactory sensory neurons (OSNs), are located in 

specialized olfactory epithelium (OE) in the nasal cavity (Zhang and Firestein, 2002).  
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The axons of the OSNs 

coalesce to form the 

olfactory nerve (ON, 

cranial nerve I), which 

penetrates the cribiform 

 plate of the ethmoid bone 

as it exits the OE and fuses 

on the outermost surface 

of the OB.  Upon reaching 

the OB, the OSN axons 

exit the nerve layer and 

enter spherical areas of 

neuropil, glomeruli, where 

they establish excitatory 

axodendritic synapses with 

second-order projection 

neurons, mitral (MCs) and tufted (TCs) cells, as well as local interneurons, 

periglomerular cells (PGs).  The projection neurons convey the information to the higher 

cortical regions, olfactory cortex (OC), including piriform cortex, entorhinal cortex, the 

olfactory tubercle, anterior olfactory nucleus (aON), as well as to the thalamus and limbic 

system, including several nuclei in the amygdala.  MCs and TCs are also involved, along 

with intrinsic neurons, in modulating and refining odor-invoked activity within the bulb 

via feedback- and lateral-inhibition, demarcating given odor input (Shipley and Ennis, 

 
Figure 2. Olfactory Circuit. Odor ligands are transduced by 
olfactory sensory neurons (OSN) and conveyed via the OSN axons 
to the olfactory bulb where they synapse with the main 2nd order 
projection neurons, mitral cells (M) and tufted cells (T) within 
glomeruli (GL). Periglomerular cells (PG) and granule cells (GR) 
are intrinsic neurons involved in signal refinement via modulation 
of M and T cell activity. M and T cells project to the olfactory 
cortex, which then conveys odor related information throughout the 
neuraxis. 
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1996).  As olfactory input proceeds through the highest cortical regions, further 

processing occurs as well as integration with input from other sensory systems including 

taste and with affective quality. 

The olfactory system is also under widespread central control from the brain 

(Shepherd et al., 2004; Buck, 2005).  In addition to afferent projections, the OB receives 

efferent or centrifugal input.  This central input comes from numerous areas in the brain 

including, the locus coeruleus and raphe nucleus in the brainstem, the nucleus of the 

horizontal limb of the diagonal band in the basal forebrain, the aON, and olfactory cortex. 

 

OLFACTORY BULB 

The OB, the first step in odor signal processing and refinement, is an outgrowth of 

the forebrain.  It is organized into six sharply demarcated laminae, each of which consists 

of a distinct cell population (figure 3).  From outer to inner, these are: the ONL, the 

glomerular layer (GL), the external plexiform layer (EPL), the mitral cell layer (MCL), 

the internal plexiform layer (IPL) and the granule cell layer (GCL). As mentioned above, 

the ONL is composed of incoming OSN axons.  The GL is where OSNs synapse with 

MCs, TCs, and PGs in anatomical and functional modules called glomeruli.  Following is 

the EPL, which is primarily composed of MC and TC dendrites, TC cell bodies and 

several less well-characterized interneuron populations.  The EPL is the site of significant 

odor signal refinement.  Deep to the EPL, the MCL in the adult is composed of a 

monolayer of MC somata and deep to that is the IPL, containing MC and TC axon 

collaterals.  Finally, the GCL contains granule cells another population of interneurons 

called short-axon cells somata and dendrites as well as also containing axon collaterals 
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from MCs and TCs.  (For a thorough summary of the structure of the OB, see Shepherd 

et al., 2004). 

 In addition to laminar organization, there is extensive evidence of sublaminar 

organization.  For example, Au et al. (2002) provide evidence of an outer and inner ONL 

and suggest that these may reflect functional division of axonal sorting and axonal 

targeting activity.  The EPL exhibits sublaminar distribution of CCK immunoreactivity 

(Seroogy et al., 1985), which appears to represent, in part, a restricted subpopulation of 

TCs that use CCK as a neurotransmitter (Liu and Shipley, 1994).  The GCL has been 

shown to exhibit sublaminar organization in the guinea pig using neuropeptide Y 

immunoreactivity (Matsutani et al., 1989).  Finally, our research has yielded observations 

of sublaminar organization within the EPL. 

 

M
C

GC

GC

OSN
s

PGC TC

to
olfactory
cortex

adapted from Nagayama S, et al., 2004

Figure 3.  Laminar organization of  OB.  Side by side schematic and histological cross-sectional view 
of the OB illustrating the six OB lamina: the ONL, the glomerular layer (GL), the external plexiform 
layer (EPL), the mitral cell layer (MCL), the internal plexiform layer (IPL) and the granule cell layer 
(GCL). The ONL is composed of incoming OSN axons. OSNs synapse with MCs, TCs, and PGs in the 
GL within glomeruli. The EPL, which is primarily composed of MC and TC dendrites, TC cell bodies 
and several less well-characterized interneuron populations. Deep to the EPL, the MCL in the adult is 
composed of a monolayer of MC somata and deep to that is the IPL, containing MC and TC axon 
collaterals. The GCL contains granule cells another population of interneurons called short-axon cells 
somata and dendrites as well as also containing axon collaterals from MCs and TCs. 
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OLFACTORY SENSORY NEURONS 

There are several million OSNs located in the OE at any one time.  The OE is an 

area of several square centimeters of specialized neuroepithelium located in the dorsal 

aspect of the nasal cavity (Mombaerts, 2001). 

In addition, the OE contains two other major cell populations: sustenacular cells, 

and basal cells (figure 4).  Sustenacular cells are interspersed among the OSNs and 

provide structural support. Basal cells are located deep to OSNs and constitute a pool of 

stem cells from which OSNs are regenerated approximately every few weeks (Graziadei 

and Monti-Graziadei, 1979).  Interestingly, OSNs are one of only three currently known 

populations of CNS neurons that 

exhibit continuous regeneration 

throughout adulthood (others include 

granule cells in the OB as well as in 

the hippocampus (for review see 

Lledo et al., 2006).  This makes the 

OB an attractive area for inquiry into 

stem cell function and nerve 

regeneration among other things. 

OSNs are a morphologically 

homogenous population of bipolar 

neurons.  They have a short non-

branching dendrite that extends 

towards the surface of the OE.  The 

 
 
Figure 4. Cross section of olfactory epithelium. OSNs 
are located within the OE along with supporting (or 
sustenacular) cells and basal cells.  Basal cells give rise 
through asymmetric division to new OSNs.  Turnover of 
OSNs occurs throughout the lifespan of the organism.  
From the tip of their apical dendritic knob, OSNs extend 
numerous cilia into the mucous covering the OE within 
the nasal cavity, where they encounter odorants.  At the 
proximal end, OSNs extend axons that travel to the OB. 
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dendrite terminates in a rounded structure called a dendritic knob on the surface of which 

there are up to ten cilia.  These cilia express ORs at their surface and extend into the 

mucus lining the surface of the nasal epithelium.  Odorants dissolved in the mucus or, in 

the case of non-water soluble odorants, bound with odorant binding proteins bind to the 

ORs thus initiating odorant signal transduction. 

From the basal pole of the OSN, a long, thin, unbranched axon passes through 

perforations in the bony cribiform plate at the base of the skull.  OSNs enter the OB, 

forming its outermost layer, the olfactory nerve layer (ONL).  They then pass into a layer 

called the glomerular layer (GL), made up of discrete tangles of neuropil called 

glomeruli.  Each OSN targets one glomerulus wherein it branches (Hálasz and Greer, 

1993; Klenoff and Greer, 1998), synapsing with both central output and interneurons. 

As already mentioned, OSNs appear to be predominantly morphologically 

homogenous.  However, they exhibit dramatic molecular heterogeneity, most notably due 

to the fact that each OSN is thought to express only one of the 1,000 ORs encoded in the 

genome (for discussion see Mombaerts, 2004).  Furthermore, each OSN expresses only 

one of the two (maternal and paternal) alleles of a given OR, thus resulting in 

approximately 2000 subpopulations of OSNs (Mombaerts, 2006).  The mechanisms that 

regulate gene choice in the OSNs are not presently known, but the OSN nevertheless 

offers an attractive model for studying the molecular biology of gene expression/choice. 

 

OLFACTORY GLOMERULUS 

OSNs expressing different ORs appear to be randomly distributed throughout multiple 

overlapping bands in the OE (Iwema et al., 2004, Miyamichi et al., 2005).  On the other 
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hand, it is generally accepted that all OSNs targeting a given glomerulus express the 

same OR (Treloar et al., 2002), although heterogeneously innervated glomeruli do appear 

transiently in the developing OB (Zou et al., 2004).  This is a remarkable feat of 

reorganization, given that OSN axons are originally arranged in fascicles reflecting their 

point of origin in the OE. The sorting of axons containing the same OR occurs within the 

ONL (Treloar et al., 2002). 

The mechanisms whereby OSN axons expressing one OR converge on a specific 

glomerulus have not yet been fully elucidated (for a thorough review, see Mombaerts, 

2006).  It is clear, that ORs themselves participate in the glomerular specificity of 

targeting (Mombaerts et al., 1996), though they alone are not sufficient for correct OSN 

targeting (Wang et al., 1998).  In addition, multiple other molecules such as OCAM 

(Treloar et al., 2003) or cell surface carbohydrates (Lipscomb et al., 2003; for review see 

Treloar et al., 2002) as well as functional activity (Lin et al., 2000; Zheng et al., 2000) 

likely play a role. 

The glomerulus is an anatomically defined processing module, analogous in some 

respects to the anatomical organization of visual input seen with ocular dominance 

columns in the visual cortex.  It is an ovoid or circular structure encircled by glial cells as 

well as a variety of intrinsic neurons such as PG, juxtaglomerular and short-axon cells 

(Shepherd et al., 2004).  In rodents glomeruli range in size from 30-50µm in the mouse to 

around 100µm in the rat, although microglomeruli have been described (Lipscomb et al., 

2002). 

Each glomerulus is innervated by several thousand OSNs (Allison, 1953) and 

there are a total of approximately 1600-1800 glomeruli in the mouse OB (Royet, 1988).  
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As discussed above, each glomerulus is molecularly homogenous insofar as it receives 

input representing a single OR.  Furthermore, OSNs expressing a given OR appear to 

innervate two glomeruli per bulb, one medial and one lateral, resulting in a total of four 

glomeruli per animal registering a given OR signal.  Based on work in the hamster, 

Schoenfeld and his colleagues (1985) identified an intrabulbar association network that 

links the medial and lateral glomeruli receiving input from the same subpopulation of 

OSNs via TC axon collaterals. 

This organization allows for spatial coding of the identity and concentration of an 

odorant.   Numerous studies have shown stereotyped glomerular array activation in 

response to a given odor stimulus using 2-deoxyglucose mapping (Stewart et al., 1979; 

Jourdan et al., 1980; Greer et al., 1982), using c-fos (Guthrie et al., 1993) and fMRI 

(Yang et al., 1998).  Recent work has also begun to elucidate a temporal glomerular code 

component (for a complete review of odor information coding at the glomerular level see 

Wachowiak and Shipley, 2006; Leon and Johnson, 2003). 

A finer level of organization has also been described within individual glomeruli, 

further complicating the emerging picture of the spatial component of odor encoding.  

Features of compartmental organization that have been identified include non-random 

ramification of OSN axon termini within glomeruli (Hálasz and Greer, 1993), segregation 

of OSN axons from MC dendrites (Kasowski et al., 1999; Kim and Greer, 2000) and 

heterogeneous distribution of synapses (Johnson et al., 1996).  Walz and his colleagues 

(Walz et al., 2006) have shown that while OSN targeting to individual glomeruli is 

maintained, glomerular compartmental organization is disrupted in knockout mice 

lacking the olfactory cellular adhesion molecule, OCAM. 
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MITRAL CELLS 

Mitral cells are the principal projection neuron in the OB.  In the adult, MCs are 

known to exhibit a highly stereotyped morphology.  The somata, from which MCs draw 

their name due to their resemblance to a cardinal’s mitre hat in cross section, are 15-

30µm in diameter.  

The cell body gives 

off a single apical or 

primary dendrite that 

can be 200µm to 

800µm long.  The 

primary dendrite 

extends towards the 

surface of the OB 

and terminates in a 

glomerulus in a 

profuse dendritic tuft 

known as a dendritic or glomerular tuft.  The glomerular tuft has a diameter of 15-30µm 

(Shepherd et al., 2004).  This tuft is the site of axodendritic connections with afferent 

OSNs as well as dendrodendritic (bi-directional) synapses with PGs. 

In addition, the adult MC exhibits lateral or secondary dendrites that run parallel 

to the surface of the OB through the EPL for anywhere from 500µm to over 1000µm 

(Greer, 1987; Mori et al., 1983; Shepherd et al., 2004).  A hallmark of the OB circuitry 

occurs in the external plexiform layer where the MC secondary/lateral dendrites establish 

lateral dendrites

glomerular tuft

apical dendrite

axon to LOT

soma

GL

MCL

EPL

Figure 5. Mature MC morphology. DiI labeled MC from P10 mouse and 
schematic drawing of an adult MC, demonstrating the stereotypic adult 
morphology including (from distal to proximal): the glomerular tuft at the 
end of a single, apical dendrite, several lateral dendrites, the mitre-shaped 
soma and an axon. 
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reciprocal dendrodendritic synapses with granule cells (interestingly, these were the first 

dendrodendritic synapses identified in the nervous system).  These are thought to provide 

for both feedback- as well as lateral-inhibition (Chen et al., 1997; Isaacson and 

Strowbridge, 1998; Schoppa et al., 1998). 

At the basal pole the MC extends a single axon, which runs deep and caudally to 

the posterolateral OB where it fasciculates with other axons to form the lateral olfactory 

tract (LOT).  MC axons also give off recurrent collaterals, as previously touched upon, 

within the IPL and the GCL as well as numerous collaterals in the LOT. 

Approximately 25 MCs are thought to innervate one glomerulus (Shepherd et al., 

2004).  Given that several thousand OSNs innervate a single glomerulus, this represents a 

convergence ratio on the order of 1:1000.  Evidence suggests that MCs innervating the 

same glomerulus are neighbors within the MCL (Bounviso et al., 1991; Zou et al., 2001).  

There have been numerous attempts to elucidate a functional organization to the MC 

layer, but so far these have been inconclusive.  For instance, Buonviso and Chaput (1990) 

recorded individual MCs with micropipettes placed no more than 40µm apart and found 

that 95% of cell pairs exhibited similar response patterns to given odor stimuli.  However, 

more recent studies (e.g., Nagayama et al., 2004) have observed differing responses to 

odorants in MCs located in the same cluster. 

It is important to note that the present research focuses its attention on MCs.  

Although there is a second population of projection neurons, the TCs, limiting our 

inquiry was necessary to allow thorough examination of the subject.  Furthermore, MCs 

and TCs are sufficiently distinct as to make the limitation in scope justified. 
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DENDRITIC DEVELOPMENT 

Our understanding of mechanisms that influence dendritic development and 

targeting in the central nervous system lags significantly behind our understanding of the 

mechanisms that influence axonal targeting.  Indeed, it is only the past few years that 

have seen any attention given to the question of dendritic targeting in the nervous system 

(for review see Keith and Wilson, 2001).  Historically, based largely on studies of the 

visual system, it has been thought that dendrites tended to innervate broadly and diffusely 

and that specificity of connections emerged only with coordinated functional/axonal 

input.  More recently, it has been recognized that even during early development, 

dendrites begin to exhibit the targeting specificity that will be their phenotypic hallmark 

following maturation (e.g. Gao et al., 1999). Furthermore, it appears that many of the 

same molecular cues involved in axonal and dendritic guidance and targeting (for review 

see Kim and Chiba, 2004) 

 The precision with which dendrites arborize and innervate specific laminae in the 

adult brain is striking.  For example, pyramidal neurons in the hippocampus and 

throughout cortex extend apical and basal dendrites that organize into highly stereotyped 

patterns that appear relatively invariant.  While the earliest appearance of these arbors 

lacks the extreme precision seen in the mature animal, at even the youngest ages 

specificity is recognized (Crowley and Katz, 2000).   

The emerging consensus is that while functional activity may contribute to the 

fine-tuning of cortical maps, molecular protomaps must initially define organization (for 

review see Cline, 2001).  Clear evidence of this is seen with the Ephs/Ephrins, which 

delineate regions of occipital cortex prior to the arrival of sensory axons from the 
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thalamus (Sestan et al., 2001).  Further support comes from the recent finding that 

Semaphorin 3A, in conjunction with its receptor Neuropilin-1, can act as a tropic agent 

directing the growth of cortical pyramidal neurons toward the pial surface (Polleux et al., 

2000).  Other candidate ligand–receptor pairs whose roles in dendritic guidance have 

been explored in the invertebrate system are Netrin–Frazzled (Furrer et al., 2003) and 

Slit– Robo (Whitford et al., 2002). 

 

MITRAL CELL MATURATION AND DENDRITIC DIFFERENTIATION  

The mechanisms that underlie the differentiation, maturation and targeting of MC 

apical dendrites for one versus another glomerulus have not yet been fully elucidated.  

MC genesis
begins MC genesis

complete

E11 E15 E17 P14E19/P0

animal born

???

Adam C. Puche

Figure 6. Characterizing spatiotemporal pattern of MC dendritic development. By E15 MC 
genesis is complete (Hinds & Ruffett, 1973). At E17 MCs exhibit multiple supernumerary dendrites in a 
broadly spread dendritic arbor. The animal is born on the 19th day of gestation. By the 14th postnatal 
day (P14) MCs have achieved the characteristic adult MC morphology including a singly apical 
dendrite that extends perpendicular to the surface of the OB, terminating in a glomerular tuft in the GL 
and several secondary dendrites extending parallel to the surface of the bulb within the EPL (our 
observation). The focus of the present research is characterizing the transitional stages between E15, 
when MCs have all been born and P14 the outermost day, when we can safely observe that MC have 
adopted their mature dendritic morphology. 



 

 

15

Malun and Brunjes (1996) showed in the opossum, and to a lesser extent in the rat, that 

mitral cells in the main OB initially have supernumerary processes that are broadly 

spread across the presumptive glomerular layer, extending up to approximately 100 µm at 

birth while in the adult the spread appears limited to about 50 µm within a single 

glomerulus.  However, mitral cell maturation and dendritic differentiation have not been 

definitively characterized in the mouse, the current model system of choice.  

López-Mascaraque and her colleagues (1998) observed the formation of an OB-

like structure with MC-like cells in homozygous Pax-6 mutant mice, in whom OE never 

develops and afferent activity does not reach the OB.   However, although OB- and MC-

like structures were present, the group showed that MC dendrites are not properly 

oriented towards the GL at the surface of the OB (López-Mascaraque et al., 2005). This 

evidence suggests that these events are not purely intrinsic or cell-independent and that 

input from the OSNs, or perhaps even centrifugal inputs, may modulate or contribute to 

the differentiation and targeting of dendrites. 

Although multiple factors are currently being explored as possible contributors to 

dendritic maturation and targeting, an important area of research has been the role of 

functional activity, based on its role in the dendritic development in other systems (for 

review see Wong and Ghosh, 2002).  There have been several studies suggesting 

significant interruption of MC development as a result of sensory deprivation.  For 

example, two separate studies, Meisami and Noushinfar (1986) via naris-occlusion and 

Couper Leo and Brunjes (2002) by means of focal denervation, show significant 

reductions in the size of both apical and secondary MC dendritic arbors following 

sensory deprivation.   Matsutani and Yamamoto (2000) observed delays in MC 
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maturation and perturbation of secondary dendrite development in the rat in response to 

neonatal naris-occlusion.  Furthermore, there is evidence of decreases in somatodendritic 

synapses between MCs and GCs in the absence of functional activity (Benson et al., 

1984).    

On the other hand, Lin et al. (2000) suggested that the trimming of supernumerary 

processes to only one apical dendrite arborizing in a single glomerulus is independent of 

functional activity.  They reported that apical dendritic trimming occurs in mice in which 

the alpha subunit of the cyclic nucleotide channel is knocked out, resulting in a loss of 

odor-induced activity in OSNs.  Because MC dendritic differentiation appeared to occur 

without aberrations, these data suggest that mechanisms other than functional afferent 

input may influence the targeting of glomeruli by mitral cell apical dendrites.  However, 

the Lin et al. (2000) study does not address the effects of spontaneous activity in the 

absence of odor induced activity or, the possibility of biochemical gradients induced by 

odorant binding to ORs.  Thus, the problem remains controversial. 

 Consistent with the notion that targeting of glomeruli may be under the control of 

mechanisms independent of functional activity is the organization of the accessory OB.  

In contrast to the main OB, the apical dendrites of mitral cells in the accessory OB 

innervate more than one glomerulus (Takami and Graziadei, 1991).  In parallel, the axons 

of the vomeronasal sensory neurons do not coalesce to terminate in only 2 or a few 

glomeruli as occurs in the main OB but rather, distribute broadly and in complex patterns 

in the glomerular layer of the accessory OB (Rodriguez et al., 1999).  A similar 

organization is found in the zebrafish OB where mitral cells have multiple apical 

dendrites that innervate multiple glomeruli (Yoshihara and Mori, 2001).  These 
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multiglomerular arborization patterns for both sensory axons and dendrites make it 

difficult to conceive of how coordinated functional activity could be a pivotal 

requirement for targeting in these systems. 

 

Statement of Purpose 

 It is clearly essential that for interpretable neuronal signaling to occur, the 

targeting and arborization of MC dendrites must be correct.  Not only is it necessary for 

the apical dendrites to correctly target a glomerulus but the secondary dendrites must also 

be appropriately distributed within the deeper sublamina of the external plexiform layer.  

To begin to assess the substrates of MC dendritic differentiation we have first sought to 

characterize the developmental stages in the mouse where future studies would benefit 

from the availability of molecular biological and genetic tools.  Secondly, we have 

introduced a new reagent, a MC dendritic growth cone specific marker that has enabled 

us to address more directly the maturational events occurring within the external 

plexiform layer and its constituent sublaminae.  We hypothesized that both lines of data 

will show evidence of significant postnatal dendritic remodeling.   
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METHODS 

MITRAL CELL DENDRITIC DEVELOPMENT 

Tissue preparation  

Embryonic age mice were obtained from timed-pregnant CD-1 mothers (Charles 

River, Wilmington, MA) by caesarian section and immediately decapitated.  Neonatal 

mice (Charles River Laboratories) were sacrificed by CO2 inhalation and decapitated.  

Embryos and neonatal mice were drop-fixed in 4% paraformaldehyde (PFA) in 0.1M 

phosphate buffered saline (PBS; 0.9% saline) and kept in 4% PFA at 40C until used.  

Postnatal (P) mice (P6 and older, Charles River) were anaesthetized with 1ml nembutal 

(Abbott Laboratories, North Chicago, IL), transcardially perfused, first with PBS and 

then with 4% PFA in PBS.  After the brain was dissected out, it was kept in 4% PFA in 

PBS at 40C until use.  

DiI Labeling  

MCs were retrogradely labeled with1,1'-dioctadecyl-3,3,3',3'- 

tetramethylindocarbocyanine perchlorate (DiI; Molecular Probes, Eugene, OR).  DiI is a 

lipophilic molecule that diffuses in plasma membranes in fixed or living tissue.  DiI was 

loaded into the lateral olfactory tract (LOT) using a minutien pin dipped in DiI crystals.  

The pin was inserted and immediately retracted, after which brains were replaced in 4% 

PFA in PBS and kept at room temperature (RT) for 4-14 days, in proportion to the age of 

the animal.  Brains were blocked in 2% agarose in PBS, sectioned at 100-150µm on a 

Pelco 101 vibratome, mounted on precleaned slides (Esco, Portsmouth, NH) and cover-

slipped (Fisherbrand Scientific, Pittsburgh, PA). Labeled MCs were imaged on an MRC-
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600 laser confocal microscope or on a Leica TCS SL confocal microscope; Z-series were 

collected throughout the thickness of the cell at 0.2-1µm intervals.   

 

SPATIOTEMPORAL PATTERN OF CDA 1 EXPRESSION IN THE OB 

Tissue preparation  

Brains were obtained as described above.  Embryonic and neonatal brains were 

immersion-fixed in 4% PFA in PBS for a minimum of two hours and maximum 

overnight at 40C.  Adult brains were also immersion-fixed for at least 2 hours or 

overnight at 40C after perfusion.   Brains were then rinsed in PBS for 2 hours or overnight 

at 40C.  They were immersed in 30% sucrose in PBS for cryo-protection until the tissue 

sank and then embedded in Tissue Teck O.C.T. compound (Sakura Finetek, Torrance, 

CA).  The tissue was kept at -800C until sectioning.  OB tissue was sectioned at 20µm 

using a cryostat (Reichert-Jung 2800 Frigocut E) and mounted on glass slides 

(Fisherbrand).  Slides were kept at -200C until use. 

Immunohistochemistry  

Sections were first allowed to come to room temperature (RT).  A border was 

painted onto the glass with silicone sealant (Permatex, Solon, OH).  Sections were pre-

incubated in 2% bovine serum albumin (BSA; Sigma) in Tris-buffered saline (TBS; 0.1M 

Tris buffer in 0.9% saline) with 0.3% Triton X-100 (TX; Sigma-Aldrich, Chemical Co., 

St. Louis, MO; TBST) for 30 minutes to block non-specific binding sites.  Sections were 

then incubated with primary antibodies including mouse anti-CDA 1 IgG antibody 

(undiluted ascites fluid, gift of Dr. Colin J. Barnstable, (Devoto and Barnstable, 1989)) 

and chicken anti-MAP-2 antibody (1:1000, Chemicon, Temcula, CA), washed 3 times in 
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TBST and then incubated with secondary antibodies. Secondary antibodies included 

Alex-488-conjugated goat-anti mouse IgG and Alexa-568-conjugated goat-anti chicken 

antibody (1:1000, Molecular Probes).  Sections were washed again in TBST 3 times, then 

rinsed with TBS once and cover-slipped with Gel/Mount mounting medium with 

anti0fading agents (Biomeda, Foster City, CA).  Sections were stored in the dark at 40C 

until use. 

Tissue Culture  

OB enriched neuronal cultures were prepared from PO pups.  At P0 the majority 

of cells are mitral or tufted cells, with few granule or interglomerular cells present 

(Hinds, 1972a,b).  Heads were harvested as described above and dropped in Hank’s 

balanced salt solution without calcium or magnesium (HBSS, Gibco BRL, Invitrogen 

Corp., Carlsbad, CA). After they were dissected out and the meninges removed, OBs 

were minced.  Treatment with 0.25% trypsin solution (Sigma) for 30 minutes was used to 

dissociate cells.  Dissociated cells were then treated with 0.02% trypsin inhibitor (Sigma), 

rinsed 3 times in HBSS with calcium and magnesium (HBSS+, Gibco BRL), triturated in 

Neurobasal medium supplemented with B27, 0.5mM L-glutamine, and 1% 

penicillin/streptomycin (all from Gibco BRL).  Cells were then plated on poly-D-lysine-

coated  (1µg/ml, 30-70 kDa, Sigma) cover glass (22mm2, VWR Scientific, Media, PA) at 

a cell density of 6x103 cells/cm2.  Cells were maintained in a humidified incubator at 

37oC and 5% C02 and fed with supplemented Neurobasal medium every 2-3 days for a 

minimum of 14 days.  This culturing technique has been applied previously in the Greer 

lab and is optimized to promote neuronal growth and to suppress glial growth.  The 

cultures were fixed in 4% PFA and 4% sucrose in PBS for 30 minutes, then rinsed with 
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PBS.  Cells were permeabalized with 0.3% Triton X-100 (Sigma) for 5 minutes, rinsed 

with PBS, the pre-incubated with 10% BSA in PBS for 20 minutes to block nonspecific 

binding sites.  Cells were incubated in primary antibodies: mouse anti-CDA 1 (undiluted 

ascites fluid), mouse anti-β tubulin III IgG2b (1:200, Sigma) and rabbit anti-glutamine 

(1:200, Sigma) for 1 hour, washed 3 times with PBS, then with secondary antibodies 

diluted in blocking solution for 30 minutes. Secondary antibodies included and Alex-568-

conjugated goat-anti mouse IgG antibody (1:1000; Molecular Probes) and an Alexa-488-

conjugated goat-anti rabbit antibody (1:1000, Molecular Probes).  Sections were washed 

in PBS 3 times and mounted in Prolong mounting medium (Molecular Probes), cover-

slipped, and imaged using the Bio-Rad MRC-600 laser scanning confocal microscope.   

Microscopy 

For quantitative data analysis, images were collected with an Olympus MagnaFire 

digital camera mounted on an Olympus BX51 upright microscope. For qualitative data, 

images were collected at 40X, and oil-immersion 60X using an MRC-600 laser confocal 

microscope or on a Leica TCS SL confocal microscope (P0, n=4; P4, n=5; P8, n=2).  

Figures were designed using CorelDraw 10 (Corel, Ontario, Canada). 

Data Analysis  

Image analyses for quantitative assessment of CDA 1 expression in vivo was 

accomplished using ImageJ (freeware, NIH).  Regions of interest (ROI) were outlined on 

merged images of CDA 1 and MAP-2 immunostaining, using MAP-2 staining to help 

delineate the lamina.  Images were split and the CDA 1 black and white image was 

thresholded to exclude all backround staining within the ONL and the total CDA 1 

positive area within the ROI was measured.  Comparisons were made using the ratio of 
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total CDA 1 positive are to total ROI area.  Statistical analyses were performed using 

GraphPad Prism, version 4 (GraphPad Software Inc., Sand Diego, CA). 

 

CONTRIBUTIONS 

 I performed all of the DiI injections, immunohistochemistry, tissue sectioning, 

imaging and data analysis.  I am indebted to Dr. Helen B. Treloar for providing me with 
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RESULTS 

MC DENDRITIC DEVELOPMENT USING DII FILLS 

The first goal of this project was to extend our understanding of the 

morphological patterns/stages of MC dendritic development in mice (Malun and Brunjes, 

1996; Matsutani and Yamamoto, 2000).  Using DiI injections into the lateral olfactory 

tract in order to retrogradely label MC bodies and dendrites, we examined the 

morphology of MC dendritic arborization in the mouse main OB at embryonic ages E15 

through E17 (figure 7) and postnatal ages from P0 to P10 (figure 8).   

MCs progressed through a wide spectrum of dendritic morphologies in this age 

range.  At E15, MCs exhibited a simple morphology consisting of a cell body with a 

leading dendritic process almost as wide as the cell body itself, which appears to be in a 

spectrum of orientation with respect to the surface of the OB from parallel to 

perpendicular.  By E16, most MCs appeared to exhibit more complex dendritic 

morphology with a diffuse dendritic arbor of approximately uniform dendritic processes.  

 
Figure 7. Embryonic MC dendritic development.  MC dendrites retrogradely labeled with DiI. At E15, 
the somata of MCs exhibit a leading dendritic process almost as wide as the cell body itself.  By E16, 
most MCs appear to exhibit more complex dendritic morphology with a diffuse dendritic arbor of 
approximately uniform dendritic processes.  By E17, MCs demonstrate a dendritic arbor with 
supernumerary dendrites. 
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By E17, all MCs acquired a dendritic arbor with supernumerary dendrites that appeared 

to be broader than at earlier ages. 

At P0 MCs continue to exhibit this immature morphology, projecting 

supernumerary, undifferentiated dendrites at various angles broadly throughout the EPL 

  
Figure 8. Postnatal MC dendritic development. Representative postnatal MCs retrogradely labeled with 
DiI at four ages, P0, P1, P4, P8, P10. At P0 MCs exhibit supernumerary, undifferentiated dendrites broadly 
projecting throughout the EPL.  There appears some variation in the morphologies at P0, with some cells 
exhibiting preferential thickening of some of their dendrites. At P1, the MC dendritic arbor narrows and one 
dendrite appears thicker than the others, likely the proto-apical dendrite. At P4, the MC dendritic arbor 
narrows further and consists of two subsets of dendrites: a primary, thicker dendrite projecting straight into 
the EPL perpendicular to the surface of the OB. In addition, at P4 MCs have a variable number of 
secondary, thinner dendrites, that project laterally within the EPL, parallel to the surface of the OB.  By P8, 
the mature adult dendritic morphology emerges, including one primary apical dendrite that projects radially 
into the EPL, ending in a glomerular tuft extending perpendicular and into the EPL as well as several thinner 
secondary dendrites extending parallel to and within the EPL.  This dendritic morphology persists at P10. 
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and toward the nerve layer of the OB.  However, by P0 there appears to be some 

variation in the morphologies as some cells did exhibit preferential thickening of some of 

their dendrites.  By P1, the MC dendritic arbor does not appear as broadly spread, 

perhaps reflecting pruning of some of the supernumerary dendrites, and one dendrite 

appears thicker than the others, perhaps the proto-apical dendrite, although at this age, the 

dendritic arbor continues to project broadly, at various angles with respect to the surface 

of the OB, throughout the EPL.  By P4, the MC dendritic arbor narrows further.  

Although supernumerary dendrites still occur, the dendritic arbor at P4 consists of two 

clearly apparent subsets of dendrites: a primary, thicker dendrite projecting radially into 

the EPL, perpendicular to the surface of the OB and a variable number of secondary, 

thinner dendrites, projecting laterally within the EPL, parallel to the surface of the OB.  

By P8, we observed the emergence of a mature adult MC dendritic morphology, as 

previously characterized in the opossum by Malun and Brunjes (1996), including one 

primary apical dendrite ending in a glomerular tuft extending perpendicular and radially 

into the EPL as well as several thinner secondary dendrites extending parallel to and 

within the EPL.  This mature adult MC dendritic morphology persists at P10 and indeed 

throughout adulthood.  Interestingly, there was greater variation in stages of maturation 

of MC dendritic morphology at any given age than we had hypothesized. 

 

CDA 1 EXPRESSION IN THE OB 

Our DiI analyses qualitatively characterized MC dendritic development in the 

mouse OB from an immature dendritic arbor consisting of broadly spread, uniform 

supernumerary dendrites to the mature MC dendritic morphology, including a single 
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apical dendrite ending in a glomerular tuft and several secondary dendrites extending 

laterally in the EPL.  However, we needed a quantitative approach that would provide a 

reliable index of dendritic remodeling within the EPL; further, we wanted to assess if 

spatiotemporal patterning occurred within the EPL during development.  To meet these 

needs we used CDA 1, a growth cone specific antibody, as a marker for time course and 

spatial distribution of developing dendrites.  Growth cones are found at the leading edges 

of growing axons and dendrites and their presence may thus be used as a relative index of 

neurite extension and active growth. 

CDA 1 is an epitope on an intracellular molecule that localizes to neuronal growth 

cones, first described by Devoto and Barnstable (1989) in the rat.  While the prior report  

focused on the cerebral hemispheres, they noted CDA 1 expression in the olfactory bulbs 

as well.  Taking advantage of this 

observation, we hypothesized that the 

patterns of expression exhibited by CDA 1 

could be used to identify dendritic 

developmental waves that can be described 

by laminar patterns.   

To verify the specificity of CDA 1 

labeling of MC dendritic growth cones, we 

first looked in vitro expression of CDA 1 by 

MCs in primary OB culture.  To identify 

MCs and determine co-localization with 

CDA 1, we triple labeled using anti-CDA 1 

Figure 9. CDA 1 is expressed in MC growth 
cones in vitro. Cultured MCs immunostained 
with β-tubulinIII, glutamate, and CDA 1. Mitral 
cells are identifiable by their characteristic 
mitre-shaped cell bodies. In addition, since 
MCs are glutamatergic, they are glutamate 
antibody immunoreactive. CDA 1 occurs most 
densly at the leading edges of MC neurites in a 
growth cone-like pattern. 
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antibody, anti-glutamate antibody and anti-β tubulin III antibody, a neuronal marker 

(figure 9).  Using a culture protocol previously designed and utilized in the Greer lab to 

enhance the presence of MCs relative to other OB cell types, MCs were easily identified 

morphologically, based on their distinct, large, mitre shaped somata.  Because MCs are 

glutamatergic neurons, immunoreactivity with anti-glutamate antibody further confirmed 

MC identity (Shepherd et al., 2004).  CDA 1 immunoreactivity appeared as ovoid 

staining at the tips of neurites.  We found that CDA 1 expression is restricted to 

undifferentiated neurites and nascent dendrites, exhibiting a characteristic growth cone-

like appearance at the tips of extending processes.   Labeling with CDA 1 was not found 

in the cell body or in the shafts of extending neuritis/processes.  Moreover, CDA 1 did 

not stain the nascent MC axon growth cone, providing further evidence for the dendritic 

growth cone specificity of the antibody. 

Having established CDA 1 specificity for developing MC neurites/dendrites in 

vitro, we proceeded to examine CDA 1 expression in whole olfactory bulb frozen 

sections.   In vivo, CDA 1 immunoreactivity appeared as scattered punctate staining, with 

each individual CDA 1 positive point ranging from 3-8µm along the long axis and 

approximately 3µm along the short axis (figure 9).  We observed CDA 1 expression in 

both the EPL and the GL, areas rich in developing dendrites.  We did not observe CDA 1 

staining in the ONL, which is clearly delineated as the outermost, MAP-2-free lamina, 

indicating the absence of dendrites.   Because the ONL is a region of robust and ongoing 

axon extension, with a commensurate high density of axonal growth cones, the absence 

of staining in the ONL is further support for our interpretation that CDA 1 is dendrite 

specific.   
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CDA 1 expression exhibits inter- and intralaminar patterns of development in the 

olfactory bulb (figure 10).  We focused our attention on the EPL and GL, where MC 

dendrites ultimately take up position.  In both the EPL and GL we observed an overall 

downward trend from P0 to P8.  By P21, CDA 1 expression has decreased to 

undetectable or insignificant levels (personal observations). 

Furthermore, as there seemed to be intralaminar differences in CDA 1 expression 

patterns in the EPL, we decided to divide the EPL into an inner (iEPL, deep 1/3) and 

outer (oEPL, superficial 1/3) layer for separate analyses of CDA 1 expression.  This 

subdivision yielded a significant difference between CDA 1 levels in iEPL vs. oEPL (P0, 

p<0.001, n=4; P2, p<0.001, n=4; P4, p<0.001, n=3; P8, p<0.05, n=3), corroborating the 

previous observation and justifying the decision of sub-diving the EPL into two 

sublaminae.   

In the iEPL, CDA 1 levels decrease significantly between P0 and P2 (n=4, 

P0vsP2, p<0.001; 1way ANOVA with Tukey’s Multiple Comparison post-Test).  In the 

oEPL, CDA 1 expression is relatively constant throughout PO to P4 (P0vsP2, p>0.05, 

P0vsP4, p>0.05, P2vsP4, p>0.05; 1way ANOVA with Tukey’s Multiple Comparison 

post-Test).  CDA 1 expression is then downregulated in the oEPL between P4 and P8 

Figure 10. CDA 1 is expressed with laminar and sublaminar specificity in vivo. Mouse OB cross sections 
immunostained with CDA 1 and MAP-2. CDA 1 is apparent as punctate green staining dispersed throughout the 
the EPL and the GL, areas rich in developing dendrites.  CDA 1 is not present in the ONL, clearly delineated as 
the outermost, MAP2-free lamina, indicating the absence of dendrites. 
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(P0vsP8, p<0.001, P2vsP8, p<0.01, P4vsP8, p<0.05; 1way ANOVA with Tukey’s 

Multiple Comparison post-Test).  Furthermore, we observed higher levels of CDA 1 

expression in the oEPL than in the iEPL throughout the ages we examined.  In the GL, 

there is a significant decrease in CDA 1 levels between P0 and P2 (P0 vs. P2, p<0.001, 

P0 vs. P4, p<0.001, P0 vs. P8, p<0.001, 1way ANOVA with Tukey’s Multiple 

Comparison post-Test), after which they appear stable through P8 (P2 vs. P4, p>0.05, P2 

vs. P8, p>0.05, P4 vs. P8, p>0.05 1way ANOVA with Tukey’s Multiple Comparison 

post-Test).  

 In addition, we have made preliminary observations suggesting that there is a 

pattern to the dendritic development along the rostrocaudal axis (figure 12).   Collapsing 

the data from the iEPL, oEPL, and GL for each of 3 ages, P0, P4, and P8, we noted that 

there appears to be a temporal wave of CDA 1 expression along the rostrocaudal axis.  It 

appears that CDA 1 expression is highest in the mid-OB at P0, highest in the rostral OB 

at P4 and in the caudal OB at P8.  In addition, we again noted the overall downwards 

trend of CDA 1 expression from P0 to P8.  This pattern suggests the possibility that 

Figure 11. CDA 1 expression in the OB exhibits laminar and sublaminar developmental patterns of 
expression. CDA 1 expression within OB laminae at P0, P2, P4, and P8. In the iEPL, CDA 1 levels 
decrease significantly between P0, P2 & P4 (P0vsP2, p<0.001). The oEPL exhibits no significant change 
in CDA 1 expression from P0 to P4 and then down regulates between P4 & P8 (P4vsP8, p<0.05). 
Furthermore, highest levels of CDA 1 are achieved in the oEPL.  In the GL, CDA 1 levels decrease 
significantly from P0 to P2 (P0vsP2, p<0.001) and then are stable through P8. 
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dendritic development occurs in a centripetal wave from the mid OB towards the rostral 

and caudal poles. 

 

 Figure 12. CDA 1 expression along rostrocaudal axis of OB. We have Our preliminary data suggests 
that CDA 1 expression may be variable along the rostro-caudal axis suggesting the possiblity of a rostro-
caudal spatiotemporal wave of dendritic development. Above we have combined the analyses from the 
iEPL, oEPL, and GL at each of 3 ages and compared CDA 1 expression levels between these ages.  The 
data suggests that CDA 1 expression is strongest in the mid-OB at P0, in the rostral OB at P4, and perhaps 
in the caudal OB at P8. In addition an overall decreasing trend in CDA 1 expression emerges, consistent 
with our previous results. Overall, this suggests a centripetal pattern of dendritic development. 
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DISCUSSION 

The process whereby an undifferentiated neuroblast takes on the polarized 

morphology, including axons and dendrites exhibited by most adult neurons, is a vitally 

important component of the overall process of CNS development and communication.  

The MC is one such population of neurons exhibiting a highly stereotyped adult form that 

is essential for its proper functioning and connectivity.  In the adult, it is known to consist 

of a pyramidal-shaped cell body, a long thin axon at the basal pole of the cell body and a 

single apical dendrite, which ends in a dendritic tuft in the glomerulus as well as several 

lateral dendrites extending through the EPL (Shepherd et al., 2004).  

In a series of early studies looking at early neuron development in the mouse OB, 

Hinds (1972, 1973) made the observation that embryonic MCs exhibit supernumerary 

dendrites rendering them morphologically far different from the classic adult MC first 

described by Ramon y Cajal (1911).  Subsequently, Malun and Brunjes (1996) used 

retrograde DiI labeling of MCs in the opossum and, on a more limited scale, in the rat to 

look at MC dendrogenesis.  However, in recent years the mouse has emerged as the 

dominant model system in the neurosciences, and specifically in the study of the 

molecular determinants of dendritic development and of the neural circuits involved in 

olfaction.  Thus, we undertook a precise characterization in the mouse of the highly 

stereotyped and complex dendritic morphology of MCs, the projection neurons of the 

OB.   

MCs genesis first begins as early as E11 and a defined MCL is first established at 

E15 (Hinds, 1972a,b; Hinds, 1973).  The aim of this study was to begin to characterize 
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the timeline and sequence of MC dendrogenesis.  We labeled MC dendrites in the mouse 

both embryonically, at E15 to E17, and postnatally from P0 to P10.  

Our data indicate significant embryonic and postnatal, morphological changes in 

MC dendritic arbors.  At E15, most MCs exhibit a leading, dendritic process that appears 

to be almost as thick as the soma, what Hinds (1973) termed a “perikaryon-dendrite.”  

This makes sense, considering that MCs are still migrating into the OB and have not yet 

taken up position in the MCL, which is only beginning to emerge at E15 (Hinds, 

1972a,b).  By E17, however, the dendritic arbor appears to have broadened, acquiring a 

morphology similar to that seen on many MCs at P0 and corresponding well with the 

emergence of protoglomeruli at this age (Treloar et al., 1999).   

At P0, when an animal is first exposed to air-borne odor stimuli, the dendritic 

arbor is broadly spread without the single glomerular specificity evident at later ages.  

Furthermore, variability is evident insofar as some cells appear to exhibit thickening of 

several of their dendrites while the dendrites are still of a relatively uniform thickness in 

others.  The dendritic arbor then proceeds through a spectrum of intermediate 

morphologies.  At P1, only one of the multiple, undifferentiated MC dendrites is 

thickened, presumably on its way to becoming an apical dendrite.  At P4, many MC 

dendrites have more than one apical dendrite with multiple lateral dendrites.  By P10, in a 

single MC one apical dendrite targets a single glomerulus while multiple lateral dendrites 

extend horizontally in the EPL. 

Of some significance, OSN axons that target a single glomerulus all express the 

same odor receptor in the adult (Vassar et al., 1994; Treloar et al., 2002).  In view of this, 

one can postulate that specific molecularly defined functional activity contributes to the 
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postnatal development of the apical dendritic arbor.  The role of functional activity is 

currently controversial, but there are several studies indicating significant perturbation of 

MC morphology as a result of sensory deprivation (e.g., Matsutani and Yamamoto, 2000) 

or in the absence of OSN innervation (López-Mascaraque et al., 2005).  Because there is 

some broad variability in the emergence of mature glomeruli (Treloar et al., 1999) one 

may further speculate that differences in the maturation of individual MC apical dendrites 

may reflect variability in the maturation and arrival of OSN axons at specific glomeruli.  

In particular, Zou et al. (2004), have shown in the mouse that a glomerulus may be 

innervated by OSNs expressing more than one OR occur early on in development but that 

these heterogeneous glomeruli disappear in the mature OB.  They further demonstrated 

that sensory deprivation may lead to persistence of heterogeneous glomeruli in the adult 

OB.  In view of this, we may speculate that functional activity could influence MC 

dendritic activity via interaction with a homogenous vs. heterogeneous population of 

OSNs.  Ultimately, how exposure to different odors, specific for subsets of OSNs, may 

influence the process at this level remains to be determined.  

Growth cones are specializations at leading edges of axons and dendrites as well 

as at sites of synaptogenesis.  Devoto and Barnstable (1989) developed a mouse antibody 

to CDA 1, a growth cone specific epitope that they identified in the cortex and the OB. 

Thus, labeling with CDA 1 allows us to track the development of neural circuits in the 

OB. 

We first confirmed that CDA 1 is present in mitral cells by immunohistochemical 

assay in primary OB cultures enriched for MCs.  Furthermore, CDA 1 enabled us to 
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focus on dendritic circuits after we made the observation that in vivo, there is no CDA 1 

expression in the ONL, thus suggesting that it is specific to dendritic growth cones.   

The patterns of CDA 1 expression that we saw suggest radially oriented 

progression of dendritic development outwards from the innermost layer in the OB. 

Glomeruli begin to emerge at P0 (Treloar et al., 1999) at which age most MC 

dendrites are still broadly spread; consistent with this is the observation that CDA 1 

levels in the GL are high at P0 and then decrease significantly between P0 and P2, 

suggesting ongoing dendritic remodeling.  Low, constant levels of CDA 1 expression at 

P2 and continuing through at least P8 reflect the fact that the glomeruli have formed and 

MC dendritic morphology has largely stabilized. 

The differential expression of CDA 1 in the EPL suggests spatiotemporal 

variation in the maturation of dendritic circuits in the outer versus the inner sublaminae.  

One possible interpretation for this variation is the IAS, a network formed by TCs whose 

lateral dendrites are restricted to the oEPL.  These TCs coordinate activity between 

isofunctional glomeruli in the medial and lateral aspects of each OB (Liu and Shipley, 

1994; Belluscio et al., 2002).  Perhaps the greater level of CDA 1 staining in the oEPL at 

postnatal ages (P0 and P8) indicates the delayed development of the TCs of the IAS. 

 In summary, mitral cell dendrogenesis progresses through a sequence from a 

broadly distributed arbor of uniform supernumerary dendrites to a single apical dendrite 

targeting a single glomerulus and limited numbers of lateral dendrites restricted to EPL 

(figure 13).   

A qualitative assessment of spatiotemporal patterns of dendritic development is 

possible with anti-CDA 1 antibody, which appears to be specific for growth cones in both 
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in vitro and in vivo assays.  Using this marker in the GL and EPL, we show that dendritic 

development occurs at different rates across layers.  CDA 1 expression attains highest 

levels in the EPL and the broadest time window of postnatal dendritic development 

occurs in the oEPL.  Dendritic development in the oEPL persists at a constant rate from 

P0 to P4 only decreasing significantly from initial postnatal levels by P8.  Dendritic 

development in the iEPL and GL decreases significantly after P0.  Dendritic development 

is more active in the oEPL at all ages as compared to the iEPL. 

Recent results suggest that CDA 1 expression may persist at similar levels at P10, 

therefore an important future direction would be to extend CDA 1 analysis to later ages.  

In addition, future experiments to extend both the qualitative assessment using DiI and 

the quantitative analysis with CDA 1 to embryonic ages seem crucial.  Finally, our 

preliminary results suggest temporal variation of CDA 1 expression along the 

P2P0 P8P4

 
Figure 13. Schematic diagram of MC dendritic development combining results from DiI and CDA 1 
experiments. At P0, the MC extends uniform supernumerary dendrites with growth cones at their leading 
edges dispersed throughout the GL and EPL.  At P2, some of there are fewer supernumerary dendrites and 
one of these has emerged as the primary dendrite.  Also at P2, CDA 1 expression has significantly 
decreased in the GL from P0, suggesting that the dendritic tuft is assuming the mature morphology.  
Furthermore, CDA 1 expression in the GL persists at this low level throughout the ages examined 
suggesting some degree of plasticity in the dendritic tuft.  In addition, CDA 1 expression decreases 
significantly from P0 to P2 in the iEPL, where MC lateral dendrites are found, suggesting that lateral 
dendrite development is moving towards completion.  At P4, we witness the emergence of the mature 
primary dendrite ending in a glomerular tuft and several lateral dendrites extending parallel to the surface 
of the OB in the iEPL.  CDA 1 expression in the iEPL at this age decreases significantly from P2, and 
continues at a low level through P8, suggesting stabilization with perhaps some degree of plasticity. 
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rostrocaudal axis.  As a result, CDA 1 could also be used to extend the analysis to include 

the rostrocaudal and dorsoventral axes and thus elucidate spatiotemporal patterns of 

dendritic development along these axes. 
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