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ABSTRACT 
PKCα AND CPI-17 EXPRESSION AND SPATIAL-TEMPORAL DISTRIBUTION 

WITH ACTIVATION IN PIG STOMACH ANTRUM AND FUNDUS 
 

Yu Zhang, B.S. 
 

Marquette University, 2010 
 

 
Smooth muscle contraction is a complicated process coordinated by 

contractile, regulatory and cytoskeletal proteins. The force generation depends on the 

phosphorylation of Myosin Regulatory Light Chain (MLC20). Myosin Light Chain 

Kinase (MLCK) and Myosin Light Chain Phosphatase (MLCP) are the two main 

regulators of the MLC20 phosphorylation level. MLCP is further controlled by two 

known pathways including the G protein coupled receptors (GPCRs)/ phospholipase 

C (PLC)/ diacylglycerol (DAG)/ protein kinase C (PKC)/ PKC-potentiated inhibitory 

protein for heterotrimeric myosin light chain phosphatase of 17 kDa (CPI-17) 

pathway. While messengers involved in this pathway have been proposed, studies on 

the details of the pathway are still controversial.  

 

This study explored the spatial-temporal regulation and distribution of PKCα 

and CPI-17 in intact animal tissues. Immunohistochemical results show that the 

distribution of PKCα in the longitudinal and circular layers of the fundus and antrum 

under relaxed conditions was predominantly localized at or near the periphery of the 

smooth muscle cell. Stimulation of the tissues with 1µM phorbol 12,13-dibutyrate 

(PDBu) for 10 or 30 minutes or 1µM carbachol (CCh) for 3 minutes does not alter the 

distribution pattern of PKCα. Different from PKCα, CPI-17 appeared to be 

“uniformly” distributed throughout the smooth muscle cells under relaxed conditions. 



 

Stimulation of the tissues with 1µM PDBu or 1µM CCh for 30 minutes led to a 

significant distribution shift of CPI-17 from throughout the cytosol to primarily at the 

cell periphery. Results from double labeling of PKCα and vinculin/talin under relaxed 

condition or CPI-17 and vinculin/talin under stimulated condition suggested that 

PKCα and CPI-17 were not associated with the adherens junction. It is likely that 

PKCα and CPI-17 are localized at the caveolae on the plasma membrane. This study 

also revealed that the force generated in tonic fundus smooth muscle is much greater 

than that in phasic antrum tissue upon PDBu stimulation. Immunoblot analyses 

demonstrated that this difference was not caused by a difference in the expression of 

PKCα or CPI-17 between these two tissues.  
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CHAPTER I 

 
Introduction 

 
 

Possible mechanisms underlying phasic and tonic smooth muscle contraction 
 

Smooth muscle cells display heterogeneous expression and function of 

contractile, regulatory and cytoskeletal proteins. Various smooth muscle tissues 

express different proteins (or protein isoforms), which can modulate their contractile 

function. Based on their physiological responses, smooth muscles can be divided into 

tonic and phasic types (Somlyo, 1968). Tonic smooth muscles generate a slow steady 

isometric contraction that is maintained, while phasic smooth muscles develop a 

relatively fast transient isometric contraction. In general, visceral organs display 

primarily phasic contractions, while the vascular system generates predominantly 

tonic contractions. The tonic vascular smooth muscles such as aorta, femoral, and 

carotid arteries exhibit a graded force development followed by a well maintained 

contraction. In contrast to tonic smooth muscles, phasic muscles, such as stomach 

antrum, bladder, and ileum respond to agonist and generate a very fast but transient 

contraction. There are exceptions such as the phasic portal vein and vas deferens 

(both vascular) and the tonic fundus (visceral) smooth muscle. Studies by Himpens et 

al showed that the time course of [Ca2+]i is similar in both phasic and tonic muscle 

types - an initial transient increase to a peak value followed by a drop to 

approximately 70%  of its peak concentration upon high K+ treatment in tonic  

smooth muscles and to 60% in phasic smooth muscles (Himpens et al., 1988). Thus, 

the diversity of contraction pattern between tonic and phasic smooth muscle might 
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involve factors other than Ca2+ modulation. Several hypotheses have been proposed 

to explain the mechanism(s) responsible for tonic and phasic smooth muscle 

contractions. These include: 1) myosin heavy chain (MHC) isoforms SMA/B and 

myosin light chain (MLC) isoforms that are spatially distributed and temporally 

regulated in smooth muscle tissues. In addition, it has been widely reported that 

MLC17 and MLC20 isoforms are differentially expressed in smooth muscles  

(Cavaillé et al., 1986). It also has been shown that MHC SMA/B isoforms have 

unique expression pattern in tissues. SMB MHC primarily exists in phasic tissues like 

stomach antrum and bladder, whereas the SMA MHC isoform is predominantly 

expressed in tonic smooth muscle tissues, such as stomach fundus, and elastic arteries 

(Eddiger & Meer, 2007). 2) Smooth muscle cross-bridges called latch bridges could 

also contribute to the tonic force maintenance. It has been reported that the MgADP 

has a higher affinity to cross-bridges in tonic smooth muscle than in phasic smooth 

muscle slowing relaxation. Thus, the MgADP could uniquely affect smooth muscle 

contractile characters between these two muscle types, especially at low [Ca2+]i 

(Khromov et al.,1998; Dillon et al., 1981). 3) Proteins such as caldesmon or calponin, 

which may play an important role in forming actin-to-myosin cross links are also 

proposed to affect and regulate force generation (Sutherland & Walsh, 1989). 4) 

Regulation of actin polymerization/depolymerization has also been reported to be 

responsible for controlling the force development. Chen et al (Chen et al., 2008) 

reported that binding of myosin to actin can trigger actin polymerization and enhance 

the force development in arterial smooth muscle. 5) With the discovery of multiple G-

protein coupled receptors (GCPRs) and their downstream regulatory pathways in 
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smooth muscle contraction (Kitazawa & Somlyo, 1991b; Kubota et al., 1992), these 

pathways have been reported as additional important regulators of the different 

contractile responses in smooth muscle tissues (Khalil et al., 1992; Krymsky et al., 

2001; Woodsome et al., 2001). 

 

Regulation of Smooth muscle contraction pathways 

 Regulation of MLCK 

It is well accepted that the phosphorylation of MLC20 is a critical step leading 

to smooth muscle contraction (Murthy, 2006). While the steps following MLC20 

phosphorylation are thought to be the same for smooth muscle contraction under 

different conditions, two opposing mechanisms are proposed for regulating the 

phosphorylation level of MLC20 (Gong et al.,1992; Ito et al., 2003). A Ca2+ related 

process was reported to be responsible for phosphorylating MLC20 in smooth muscle 

activation. Identification of the Ca2+ binding protein calmodulin (CaM) and multiple 

other factors showed that the signal transduction is regulated by an interconnected 

intracellular pathway. The binding of Ca2+ /CaM on the catalytic domain of myosin 

light chain kinase (MLCK) activates its kinase activity and this activity was shown to 

be responsible for phosphorylating serine 19 on MLC20 to cause contraction 

(Kitazawa et al., 2000). A second pathway for controlling the degree of MLC20 

phosphorylation is Ca2+- independent and G-protein coupled. The key regulator in 

this pathway is myosin light chain phosphatase (MLCP) which is responsible for 

dephosphorylating MLC20. For decades, the importance of MLCP was 

underestimated because it was assumed that this enzyme is constitutively active. 
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However, recent work showed that MLCP is regulated in smooth muscle cells and its 

activity varies under different conditions (Gallagher et al., 1991; Ito et al., 2004). It 

has been reported that without affecting MLCK, inhibition of MLCP increases MLC20 

phosphorylation and in turn enhances force production at any given level of Ca2+  

(Hartshorne et al., 1998). The ratio of activity of MLCK to MLCP is believed to be 

the critical factor for MLC20 phosphorylation and force produced in smooth muscle 

contraction. The greater the ratio, the greater the force that can be generated. 

 

 Regulation of MLCP----RhoA/ROCK pathway 

Different from the MLCK regulation mechanism, the pathways controlling 

MLCP activity may be Ca2+-independent (Fig.1.1). MLCP is a protein with three 

subunits: a 38-kDa catalytic subunit of type 1 phosphatase (PP1cδ), a 110-kD 

noncatalytic myosin phosphatase-targeting subunit (MYPT1) and a 20-kDa 

noncatalytic subunit (M20) of unknown function. Second messengers interacting with 

different subunits of MLCP are proposed to be a major regulatory mechanism (Hori 

et al., 1993). Two major signal transduction pathways have been proposed to have the 

ability of regulating MLCP activity. One pathway is mediated by RhoA activated Rho 

kinase (ROCK) and this kinase is able to inhibit MLCP through phosphorylation of 

MYPT1 at Thr696 (Somlyo AP & Somlyo AV, 2003; Wang et al., 2009). 

Phosphorylated MYPT1 appears to have a reduced affinity for myosin and this 

decreases the catalytic activity of PP1cδ, which leads to the inhibition of MLCP to 

dephosphorylate MLC20. 
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Figure 1.1.  Mechanism of smooth muscle contraction. Two major pathways 
(PKC/CPI-17 pathway and RhoA/ROCK pathway) are involved in regulating the 
activity of MLCP. 
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Regulation of MLCP ---- PKC/CPI-17 pathway   

Another pathway proposed to be involved in controlling MLCP activity is the 

Protein Kinase C (PKC)–mediated PKC-potentiated inhibitory protein for  

heterotrimeric myosin light chain phosphatase of 17 kDa (CPI-17) pathway. CPI-17 is 

the first PP1cδ inhibitory protein identified in smooth muscle (Velasco et al., 2002).  

It has been reported that phosphorylation of CPI-17 on Thr-38 increases the 

phosphatase inhibitory potency more than 1000-fold (Eto et al.,1995). Although 

several kinases such as RhoA, ROCK and P21-activated protein kinase (PAK) have 

been shown to have the potential to phosphorylate CPI-17, PKC is believed to be the 

primary CPI-17 regulating kinase in smooth muscle in vivo (Eto et al., 1997; 

Kitazawa et al., 2003; Koyama et al., 2000). 

 

Studies show that PKC dependent pathways are initiated by agonist binding 

and a conformation change of G protein coupled receptors (GPCRs) (Somlyo AP & 

Somlyo AV, 1994). After binding with agonists, altered GPCR have the ability to 

activate G proteins. G proteins can significantly boost the activity of phospholipase C 

(PLC), which is in turn utilized by the cell to breakdown phosphatidylinositol 4,5-

bisphosphate (PIP2) into inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). 

As a small soluble protein, IP3 can move to the sarcoplasmic reticulum (SR) and 

activate the IP3 receptors (IP3R) to release calcium. The released calcium partially 

contributes to the Ca2+- dependent pathway phosphorylating MLC20. At the same 

time, DAG remains in the cell membrane. PKC is activated through binding to DAG.  
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Figure 1.2.  PKC/CPI-17 pathway in smooth muscle contraction. With agonists 
stimulation, GPCR have the ability to activate G proteins. G proteins can significantly 
boost PLC activity, which are able to breakdown PIP2 into inostitol IP3 and DAG. IP3 
can move to sarcoplasmic reticulum and activate the IP3 receptor (IP3R) to open 
calcium channels. The released calcium partially contributes to the Ca2+-dependent 
pathway phosphorylating MLC20. At the same time, DAG remains in the cell 
membrane. PKC is activated through binding to DAG. Activated PKC binds to and 
phosphorylates CPI-17. Phosphorylated CPI-17 inhibits the function of MLCP and 
enhances smooth muscle contraction. 
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Upon phosphorylation by PKC, CPI-17 inhibits the function of MLCP, and enhances 

smooth muscle contraction (Fig. 1.2). 

 

It is believed that PKC is regulated by its activation status via binding to DAG 

and spatial distribution within the cell. There are at least 10 PKC isoforms and they 

can be divided into 3 classes based on their homology: 1) classical PKCs subfamily 

(cPKCs) including PKCα, βII, and θ, whose activation is Ca2+, phospholipid,  and 

DAG dependent. 2) Novel PKCs (nPKCs) subfamily including PKCδ, ε, η, which 

require phospholipids and DAG but do not require calcium for activation. 3) Atypical 

PKC (aPKCs) subfamily including PKCλ, ζ and τ, which do not require DAG or 

calcium for activation (Reyland, 2009). It is also reported that both the inactive and 

active PKC isozymes are localized to specific sites because of the finding of several 

specific anchoring molecules named RICK (receptors for inactivated C-kinase) and 

RACK (receptors for activated C-kinase) (Mochly-Rosen, 1995; Mochly-Rosen & 

Gordon, 1998; Mochly-Rosen et al.,1991). In addition, it has been reported that the 

activation of persistent Ca2+ sparklets depend on the PKC binding (Navedo et al., 

2006; Navedo et al., 2005). Ca2+ sparklets result from activation of small clusters of 

L-type Ca2+ channels (LTCC) to create a continual Ca2+ influx. This suggests the 

particular localization of PKC might be near the membrane where LTCC are located. 

However, many studies suggest that PKC is diffusely distributed in the cytosol in 

relaxed conditions and upon stimulation translocates to the membrane (Secrest et al., 

1991; Li et al., 2002; Nakamura & Nishizuka, 1994). There are reasons to question 

these studies of spatial distribution and relative movement of these proteins. No 
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mechanism has been proposed of how the signal is transferred from the membrane 

embedded DAG to MLC20 which can be located throughout the cytosol. Besides PKC, 

CPI-17 and MLCP have also been reported to translocate from the cytosol to the 

membrane upon stimulation (Shin et al., 2002; Sakai et al., 2005). These two 

molecules are believed to be downstream factors of PKC in this pathway. However, 

close observation of experiments supporting the translocation of PKC, CPI-17 and 

MLCP reveals that most of these studies either employed indirect strategies or were 

done in isolated/cultured cell systems. Isolated cells may not be a reliable system to 

reflect the in vivo physiological situation. It has been reported that in vivo, the smooth 

muscle cells express a contractile phenotype, while isolated/cultured smooth muscle 

cells differentiate into a synthetic phenotype leading to a loss of contractile capability 

(Owens, 1995). Because it is well accepted that PKC is activated by newly generated 

DAG, which is a membrane bound phospholipid, and is a fairly large molecule 

(~77KD; Reyland, 2009), it might be more reasonable for PKC to stay near the 

membrane while other smaller messenger molecules translocate to and from the 

membrane. If this is the case, there must be at least one downstream factor working as 

a moving messenger to carry the signal from the membrane to the cytosol where 

MLC20 is located. So far, no molecule has been shown to perform this function. 

 

The aims and rationales of this study 

To avoid the potential limitations of isolated/cultured cell studies, this study 

was designed to observe the distribution of PKC and CPI-17 directly in intact tissues 

in relaxed and agonist stimulated conditions. Pig stomach tissue was selected to be 
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the model system. Because of its similarities to human, pigs have served as a research 

model to study physiology and signal transduction for decades. It has been shown that 

the pig genome and human genome have a high homology in sequence and 

chromosome structure (Lunney, 2007). Pigs are also a good source for organ 

transplantation to human (Dekel et al., 2003). Another advantage of using the pig 

stomach is that it is easily handled due to the relative large size, includes both tonic 

and phasic SM, and has relatively large smooth muscle cells, allowing for increased 

resolution with immunostaining. 

 

In this study, phorbol 12, 13-dibutyrate (PDBu) and carbachol (CCh) were 

used to activate the PKC pathway (Shimamoto et al.,1993). The advantage of using 

PDBu, an analog of DAG, is that it has the ability to directly initiate the PKC 

dependent pathway. PDBu can insert into the cell membrane and activate PKCα by 

binding to its N-terminal region (Kraft & Anderson, 1983). Although PDBu can 

efficiently activate the PKC pathway, it is not a physiological agonist. Therefore, 

CCh, a cholinergic agonist, which can stimulate both muscarinic and nicotinic 

receptors was also used in this study. The purpose of this study was to determine the 

protein expression levels and distribution of PKCα and CPI-17 under relaxed and 

stimulated conditions in intact phasic and tonic SM tissues. Li et al. (2002) reported 

that stimulating cultured smooth muscle cells with PDBu leads to a slow but robust 

translocation of PKCa from the cytosolic to the plasma membrane by observing with 

confocal microscopy. These results suggested that the translocation process starts 8 

min after PDBu treatment. Sakai reported that CPI-17 begins to translocate to the 



                                                                                                                                            11 

membrane fraction after 2 min stimulation with Acetylcholine (Sakai et al., 2005). 

Based on these studies, the distribution of PKCα and CPI-17 were observed at 

multiple time points in this study to enhance the likelihood of observing translocation.  

 

Force measurement experiments previously done in our lab show that force 

generated in rabbit antrum after PDBu treatment is insignificant compared with the 

response of fundus.  This difference suggests diversity in the PKC pathway in the 

different stomach regions. If PKCα traslocates in a similar pattern in both of these 

stomach regions, the difference in their force generation is likely to be caused by 

other steps within this pathway or by other mechanisms. The expression level of CPI-

17 is not the same in different types (phasic vs. tonic) of smooth muscle tissue from 

rabbit, and tonic smooth muscle has more CPI-17 content than phasic smooth muscle. 

(Woodsome et al., 2001). Thus, this study measured PKC and CPI-17 protein 

expression in antrum and fundus to determine their potential impact on this pathway 

and on force generation. Surprisingly, no significant difference in the protein 

expression level of PKCα and CPI-17 was detected between the fundus and antrum. 

 

Summary 

In summary, this study was designed to determine the protein expression and 

spatial-temporal distribution of PKCα and CPI-17 in phasic stomach antrum and tonic 

stomach fundus under relaxed and activated conditions at multiple time points. Our 

results indicate that there is no significant difference in the level of protein expression 

of PKCα and CPI-17 between pig antrum and fundus. There is also no observable 
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translocation of PKCα in either relaxed or stimulated conditions in either tissue. 

PKCα is always located near the cell periphery. On the other hand, CPI-17 was 

observed to translocate from the cytosol to the plasma membrane upon stimulation 

(both PDBu and CCh). This translocation is very slow, requiring more than three 

minutes, and is not observed to return to basal conditions by 30 min of stimulation. 

Further studies need to be done to determine if and how the CPI-17 that is activated at 

the plasma membrane can regulate MLCP that is present in the cytosol. 
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CHAPTER II 
 

Materials and Methods 
 
 

Organ and tissue handling 

Swine tissues (stomachs) were obtained from Hansen Meat Service (Franksville, 

WI) and put in cold physiological salt solution (PSS (in mM): 140.1 NaCl, 4.7 KCl, 

1.2 Na2HPO4, 2.0 MOPS (pH 7.4), 0.02 Na2EDTA, 1.2 MgSO4, 1.6 CaCl2, and 5.6 

glucose). Stomachs were cleaned of blood, loose connective tissue, and in some cases, 

the mucosa, and frozen in isopentane cooled in liquid nitrogen or stored in PSS in the 

refrigerator for 0-2 days. Some organs were fresh frozen as soon as possible 

following post-mortem (60-90 minutes). Some organs were incubated in PSS or 

stimulated with 1.0 µM CCh or PDBu (Sigma) for different time points prior to rapid 

freezing. Variable incubation times and agonist concentrations were also tested. All 

tissue was stored frozen until sectioned and immunoreacted. Five to ten µm sections 

of the frozen tissues were cut on a Leica CM1900 cryostat, picked up on glass slides 

and stored frozen (0-1 days).  

 

Immunoreactions 

Reagents. The antibodies used were obtained from the following sources: PKCα 

(H-7 and C-20), CPI-17(H-60) from Santa Cruz Biotech, Santa Cruz CA; Vinculin 

and Talin from Sigma, Saint Louis, Missouri; Cy2 and Cy3 Donkey anti-mouse or 

rabbit secondary antibodies from Jackson ImmunoResearch, West Grove, PA; Alexa 

Fluor 594-phalloidin and DAPI from Molecular Probes, Eugene, OR.  
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Frozen tissue sections picked up on glass slides were fixed with 2% 

paraformaldehyde for 10 minutes, permeabilized in 0.5% Triton X-100 for 10 

minutes and blocked with 5mg/ml BSA for 1 hour prior to incubating with the 

primary antibody overnight and then the appropriate secondary antibody for one hour 

at room temperature. After the secondary antibody, the tissues were incubated with 

DAPI (0.5 µM), phalloidin (10-50 nM) or DAPI/phalloidin as appropriate for staining 

nuclei and/or filamentous actin. Three washes were used following the primary and 

secondary incubations, and the counterstaining. Cover glasses were mounted using 

buffered 75% glycerol with 0.2% n-propyl gallate to minimize fading. All 

immunoreacting solutions were made in PBS-Tween [(in g/liter: NaCl 8.0, KH2PO4 

0.2, Na2HPO4 1.15, KCl 0.2,), 1% tween-20, pH 7.4] with 0.1% BSA. Negative 

controls included 0.1%BSA leaving out the primary antibody. 

 

Microscopy. Sections were observed using an Olympus IX70 microscope with 

epifluorescence illumination. Digital images were taken with a 16bit Princeton 

Instruments (Princeton, NJ) CCD camera, controlled through a PCI board via IPLab 

for Windows on a PC (Ver. 3.6, Scanalytics; Fairfax, VA).  Images using a 100x (1.3 

NA) objective were taken. Emission filters used were 405, 490 and 570 nm. Sections 

were also viewed using a Nikon confocal microscope (Nikon A1 confocal eclipse ti). 

The objectives used were 100X(1.4NA) oil lens at 425,488 and 561 nm.  Similar 

results were observed in immunofluorescence distributions using these two different 

systems.  
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Image Analysis of protein distribution of single cells in tissues 

Profiles of fluorescence intensity were taken for individual cells in transverse 

tissue sections. Sections were observed at low magnification (10-20x) to avoid areas 

of apparent artifacts (tissue folding, freeze damage, etc). In an artifact free area the 

magnification was increased to 40-100x, and pictures were taken at 100x. Three 

different areas within one section were chosen to take pictures. Z-stack series were 

taken individually for each of the three color channels used. 1µm thick Z sections 

were taken, and 10-15 Z sections were taken for each tissue section. Each Z stack 

series was examined for each section to identify the center z image, and this image 

was converted to a .bmp file, which was imported to NIS-Elements AR 3.0 (Nikon) 

on a PC to analyze the data.   

 

Image Analysis of distribution of PKC/CPI-17 of individual Cells in tissues.   

Profiles of PKCα and Phalloidin fluorescence intensity were obtained for 

individual cells in transverse tissue sections. A line was drawn across the center of the 

image. Ten cells crossed by the line were selected for measurements. Based on our 

previous protocols (25), the first five pixels (~0.7µm) on either side of the cell where 

the phalloidin intensity increased sharply from baseline were defined as the periphery 

of the cell. For cytosolic measurements, a line was placed at least 2 µm away from 

the cell periphery. Intensity measurements were made using a region of interest (ROI) 

roughly at the center of the cell (for cytosolic measurements), or along the cell’s 

membrane (for peripheral measurements). For consistency, the ROI is kept constant 

for the peripheral and cytosolic measurements.  Cells in the section with very small 
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diameters (not able to measure cytosolic ROI at least 2 µm from the periphery) or 

with nuclei present (visible DAPI staining; spatial limitations and perinuclear 

organelles could confound the distribution) were excluded from analysis. For PKCα, 

the ratio of the average intensity of PKCα at the periphery over the total PKCα 

intensity (sum of PKCα intensity from ROI at periphery and ROI in cytosol) was used. 

Ten cells per field and three different fields were subjected to measurement for data 

analysis for each tissue region, i.e. thirty cells were counted and averaged for each 

sample (n = 1). The final sample size is n=5.The same procedures were applied to 

measure the intensity of CPI-17, except that only one field of 10 cells were used for 

each sample (n = 1), with a final sample size of n=3.  

 

Mechanical measurements 

Immediately before use, tissue strips were cut and clamped on each end, with the 

clamps secured between hooks on a stationary metal rod and an isometric force 

transducer (Harvard Apparatus, Holliston, MA), in PSS bubbled with 95% O2/5% 

CO2 in water-jacketed muscle chambers (Radnoti Glass Technology, Monrovia, CA) 

at 37oC. The length of each strip was varied by repositioning of the stationary metal 

rod. 

 

Smooth muscle tissue strips (stomach antrum and fundus) were equilibrated for 

1 h and stretched to a passive tension approximating Lo using an abbreviated length-

tension curve. To contract tissues, PSS was replaced with K+-PSS (109 mM KCl and 

70 mM NaCl substituted for 140 mM NaCl). The muscle strip was activated 
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repeatedly with stretching of the tissue between each activation, until peak force no 

longer showed a significant increase over the previous contraction. Chambers were 

flushed three times with PSS following each tissue activation. At least two successive 

K+-PSS contractions were used to get a standard force trace with a 10 minute rest 

between each contraction before starting the experiment. The tissues were then 

activated with 1 µM carbachol and relaxed again as for the K+-PSS contractions. 

Subsequent contractions all included 1 µM phentolamine and propranolol to block α 

and β adrenergic receptors, respectively.  Following the final 1 µM CCh contraction 

and wash, the tissues were activated with 1µM PDBu to record their mechanical 

response. 

 

Analysis of Force Data.  Voltage signals from force transducers were digitized 

by PowerLab 400 or 4SP hardware (ADInstruments, Castle Hill, Australia) visualized 

on a computer screen (Chart v3.6 or 4.0, ADInstruments) as force (g) at 10 Hz and 

stored by software command to a hard disk for later analyses. Analyses were 

performed using the chart software and figures were made with the spreadsheet 

program Excel 2000 (Microsoft, Redmond, WA).  

 

Gel Electrophoresis and western blotting 

Protein expression was analyzed as described previously (Han et al., 2006). 

Tissues were homogenized in 0.125 M Tris, 2% sodium dodecylsulfate (wt/vol), 20% 

glycerol, 0.1% bromophenol blue (wt/vol) and 20 mM dithiothreitol. Proteins were 

resolved on low cross-linking sodium dodecylsulfate gels (Giulian et al., 1983) and 
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immunoblotting was performed as previously described (Eddinger & Wolf, 1993). 

Western immunoblots were performed as reported previously (Gaylinn et al., 1989). 

 

Statistics 

 Statistical comparisons were carried out using MINITAB (Minitab Inc. State 

College, PA).  A one sample t-test was used to test the distribution of PKCα/CPI-17 

(peripheral ROI content vs. total ROI content = 0.5 indicating a “uniform” 

distribution in the SMCs) in antrum and fundus under resting condition. One way 

ANOVA was performed to test for PKC/CPI-17 distribution differences for the two 

tissues with different stimulating parameters. Two sample t-tests were used to test the 

significance of difference for expression level of PKC or CPI-17 in Antrum and 

Fundus. A value of P< 0.05 was considered significant. 
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CHAPTER III 
 

Results 
 
 
 

Swine stomach fundus is a tonic smooth muscle tissue that responds to 

stimulation with a sustained contraction while the antrum is a phasic smooth muscle 

tissue that responds to stimulation with a transient contraction (Fig. 3.1). In tissues, 

these responses are a result of direct stimulation of the smooth muscle tissue as 

addition of 1 µM propranolol (β agonist blocker) and phentolamine (α agonist 

blocker), which prohibit neuronal activation via these pathways. Stimulation of 

smooth muscle with PDBu is used routinely to stimulate PKC and cause smooth 

muscle contraction via PKC activation. 1 µM PDBU causes a small slow contraction 

in stomach fundus strips (~40% of K+ stimulation response) while the antrum shows 

essentially no response (<5% K+ stimulation) (Fig. 3.1). The difference between the 

responses of these two tissues to PDBu stimulation could be due to expression and/or 

spatial-temporal distribution of the downstream second messengers (PKCα and CPI-

17) that are purported to be responsible for MLCP inhibition with PDBu stimulation. 

To examine this we measured the expression levels and determined the spatial-

temporal distribution of PKCα and CPI-17 protein in these tissues.  

 

Figure 3.2 shows western blot results of the expression of CPI-17 and PKCα 

in the stomach antrum and fundus. Tissues were processed to control for 

concentration, and the results were calculated based on the intensity of the signal and 

by normalizing to actin protein expression levels. Both methods indicate that neither 
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the expression of CPI-17 nor that of PKCα is significantly different between these 

two smooth muscle tissues. Controls were done using a range of loadings in both 

antrum and fundus tissues to confirm the range of linearity of loading and that 

samples used for quantitation were within this range (Fig. 3.3). Because there are no 

differences in the expression for these two proteins between these two tissues, we 

proceeded to determine if differences in their spatial-temporal distribution could 

explain the difference in their responses to agonist stimulation. 

 

Figures 3.4 and 3.5 show immuohistochemical results for the distribution of 

PKCα in the longitudinal and circular layers of the fundus (Fig. 3.4) and antrum     

(Fig. 3.5). Under resting conditions in relaxing solution when there is no force 

generation by the tissue, the PKCα appears to be uniquely distributed near the 

periphery of the smooth muscle cells (Fig. 3.4 & 3.5 – PSS). Stimulation of the 

tissues with 1 µM PDBu (10 and 30 minutes) or 1µM CCh (3 minutes) does not alter 

this primarily peripheral distribution of PKCα. The ratio of the distribution of the 

PKCα near the plasma membrane relative to that in total was used to quantify 

possible changes in the distribution of this protein under these different conditions. 

Figure 3.6 shows the results as the ratio of the PKCα at the cells periphery relative to 

the total PKCα  present in the cell (periperhal/ (peripheral + cytosol), see methods). A 

ratio of 0.5 would indicate a “uniform” distribution of the protein throughout the cell. 

The PKCα ratio (peripheral/total) ranged from 0.64 – 0.68 in all the conditions 

examined. These values are significantly greater than 0.5, indicating that PKC is 

located primarily at the cells periphery (it is not “uniformly” distributed in the cell) 
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and that their distribution does not change between the relaxed or stimulated 

conditions.  

 

Because PKCα is proposed to activate CPI-17, we proceeded to determine the 

spatial-temporal distribution of CPI-17 in these tissues under these same conditions. 

Figures 3.7 & 3.8 show immuohistochemical results for the distribution of CPI-17 in 

the longitudinal and circular layers of the fundus (Fig. 3.7) and antrum (Fig. 3.8). 

Under resting conditions in relaxing solution when there is no force generation by the 

tissue, CPI-17 appears to be “uniformly” distributed throughout the smooth muscle 

cells (Fig. 3.7 & 3.8 – PSS). Stimulation of the tissues with 1 µM PDBu (30 minutes) 

or 1µM CCh (30 minutes) results in a significant change in this distribution such that 

the CPI-17 now appears to be primarily at the periphery of the cell in a distribution 

similar to that observed for PKCα. The ratio of the distribution of the CPI-17 near the 

plasma membrane relative to total CPI-17 (peripheral + cytosolic) was used to 

quantify possible changes in the distribution of this protein under these different 

conditions. Figure 3.9 shows the results as the ratio of the CPI-17 at the cells 

periphery as a ratio of the CPI-17 total protein.  The CPI-17 ratio (peripheral/total) 

ranged from 0.49– 0.67 in all tissues and conditions examined. The ratio of CPI-17 

peripheral/total in relaxed conditions is not significantly different than 0.5 (means 

0.49 – 0.5; P > 0.19) indicating that the CPI-17 is “uniformly” distributed throughout 

the smooth muscle cells under this condition. This does not change following 3 

minutes of 1 µM CCh stimulation as there is still no significant difference from the 

relaxed conditions (means = 0.53 – 0.55; P > 0.05) with the exception of the fundus 
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tissues where the CPI-17 peripheral/total ratio is significantly greater (p < 0.05) at 3 

minutes. With 30 minutes of either 1 µM CCh or 1 µM PDBu stimulation, the CPI-17 

distribution becomes significantly greater than 0.5 for  all tissue and layers, (means = 

0.62 – 0.67, P < 0.01), indicating that CPI-17  is now located primarily at the cells 

periphery (it is no longer “uniformly” distributed in the cell), similar to the 

distribution of PKCα (Fig. 3.4 & 3.5).  

 

The primarily peripheral distribution of PKCα (under both relaxed and 

stimulated conditions) and CPI-17 (following 30 minutes stimulation with CCh or 

PDBu) is not uniform at the cell periphery, but punctuate in distribution (Fig. 3.10). 

There is also a punctuate distribution of the anatomically and functionally distinct 

adherens junctions and caveolae at the smooth muscle cell plasmalemma (Eddinger et 

al., 2007). In order to determine if the punctuate distribution of the PKCα and CPI-17 

at the membrane corresponds with the punctuate pattern of the adherens junctions, we 

did double labeling with two adherens junction associated proteins, vinculin and talin. 

The double labeling of PKCα with talin/vinculin in relaxed condition and CPI-17 

with talin/vinculin under stimulated condition was performed. The results show that 

PKCα and CPI -17 do not co-localize with either vinculin or talin, suggesting that 

PKCα and CPI-17 do not associate with the adherens junction complex with the 

relaxed or activated conditions we examined.  
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Figure 3.1.  Force (normalized to peak force from KPSS stimulation) 
generated by stimulating with KPSS, CCh, or PDBu in fundus (grey) and 
antrum (black). Antrum contractile response is not maintained during the 
stimulation while that in the fundus is. PDBu generated a slow contraction in 
the fundus that is ~ 40% of its peak KPSS force, but caused little to no 
contraction in the antrum. Deflections in the traces at the start of each wash are 
from changing the solution in the chambers.  
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Figure 3.2.  Protein expression of CPI-17 and PKCα in fundus and antrum. 
A: western blot results of CPI-17 (left) and PKC (right) expression in fundus and 
antrum with actin (coomassie blue stain) expression for each sample shown below. 
B: Quantitative data of western blot results. Protein expression level of CPI-17 
(left) and PKCα in fundus and antrum normalized to actin expression. The 
expression level of PKCα and CPI-17 were not significantly different between the 
fundus and antrum. 
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Figure 3.3.  Quantitation of PKC and CPI-17 in antrum (A,C) and in fundus (B,D). A and 
B, loading series from 4µl to 20 µl of swine antrum and fundus extract (50mg tissue:1ml 
buffer) was subjected to SDS-PAGE. Total Actin was detected by coomassie blue and 
PKC and CPI-17 were detected by Western blotting. C and D, signal intensity plotted 
against amount of extract loaded for PKC and CPI-17 Western blots, and Coomassie 
Blue-stained actin, showing the linear relationship between the amount of sample loaded 
and the detected signal intensity. (n=3) 
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   Figure 3.4.  Confocal images of PKCα distribution in transverse sections of the 
longitudinal (left) and circular layer (right) of pig stomach fundus under relaxed (PSS) 
or stimulated (3 min CCh or 10min & 30 min PDBu) treatments. Tissues were 
immunoreacted for PKCα (green) and counterstained for phalloidin (red) and DAPI 
(blue). In all conditions, PKCα is located predominantly at the cell periphery near the 
plasma membrane. Scale bar - 10µm. 
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Figure 3.5.  Confocal images of PKCα distribution in transverse sections of the 
longitudinal (left) and circular layer (right) of pig stomach antrum under relaxed 
(PSS) or stimulated (3min CCh  or 10min & 30min PDBu) treatments. Tissues 
were immunoreacted for PKCα (green) and counterstained for phalloidin (red) 
and DAPI (blue). In all conditions, PKCα is located predominantly at the cell 
periphery near the plasma membrane. Scale bar - 10µm. 
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Figure 3.6.  Quantitative results of the ratio of the PKCα at the cells periphery 
to the total PKCα (peripheral + cytosolic) in the circular and longitudinal 
layers of the antrum and fundus. The ratio in relaxed condition (PSS) in both 
layers of antrum and fundus is significantly greater than 0.5, indicating a 
preferential distribution of PKCα near the plasma membrane in the relaxed 
condition. This ratio does not change significantly with different stimulation 
treatments, suggesting that PKCα maintains a primarily peripheral distribution 
in the cell at all times. (n=5) 
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Figure 3.7.  Confocal images of CPI-17 distribution in transverse sections of the 
longitudinal (left) and circular layer (right) of pig stomach fundus under relaxed 
conditions (PSS) or stimulated (CCh 30min or PDBu 30min) treatments. Tissues were 
immunoreacted for PKC (green) and DAPI (blue). In relaxed condition (PSS), CPI-17 
appears “uniformly” distributed in the cell, but with either CCh or PDBu stimulation, 
CPI-17 appears predominantly located at the periphery near the plasma membrane. 
Scale bar - 10µm. 
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Figure 3.8.  Confocal images of CPI-17 distribution in transverse sections of the 
longitudinal (left) and circular layer (right) of pig stomach antrum under relaxed 
conditions (PSS) or stimulated (CCh 30min of PDBu 30min) treatments. Tissues 
were immunoreacted for PKC (green) and DAPI (blue). In relaxed condition 
(PSS), CPI-17 appears “uniformly” distributed in the cell, but with either CCh or 
PDBu stimulation, CPI-17 appears predominantly located at the periphery near 
the plasma membrane. Scale bar - 10µm. 
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Figure 3.9.  Quantitative results of the ratio of the CPI-17 at the cells periphery 
to the total CPI-17 (peripheral + cytosolic) in the circular and longitudinal layer 
of the antrum and fundus. The ratio in the relaxed condition (PSS) in both layers 
of antrum and fundus is not significantly different than 0.5, indicating a uniform 
distribution of CPI-17 throughout the cells. Three minutes of CCh stimulation 
does not change the ratio of CPI-17 except in the fundus circular layer. Both 
CCh (30min) and PDBu (30min) treatments cause a significantly redistribution 
of CPI-17 to the cell periphery near the plasma membrane (ratios are 
significantly greater than 0.5). * p<0.05, **p<0.01 (n=3) 
 
 



                                                                                                                                            36 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

     PKC and Vinculin PKC and Talin 

CPI-17 and Vinculin 

  

     CPI-17 and Talin 

Figure 3.10.  Confocal images of pig Fundus in relaxed condition (top) and 
with PDBu (30min) stimulation (bottom). Double labeling for PKCα (green) 
with vinculin (red, upper left) or talin (red, upper right) or CPI-17 (green) 
with vinculin (red, lower left) or talin (red, lower right). Vinculin and talin 
are adherens junction associated proteins that appear to have an alternating 
distribution with PKC and CPI-17, suggesting that these proteins are not 
localized to the same domains near the plasma membrane. Note that not all 
of the PKCα or CPI-17 is located near the plasma membrane.   
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CHAPTER IV 

Discussion 

Smooth muscle contraction is a complex activity, which involves multiple 

factors including contractile, cytoskeletal and regulatory proteins. Many questions 

regarding the molecular pathways participating in the contraction mechanism are still 

unclear. So far, several regulatory pathways have been reported to control smooth 

muscle contraction. In all of these pathways, Ca2+ is considered to be a primary factor, 

and elevating [Ca2+]i will enhance force generation through the activation of MLCK. 

As a “suppressor”, MLCP also plays a significant role in controlling the smooth 

muscle contraction. Several pathways can regulate MLCP and this regulation plays a 

key role in determining contractile force in smooth muscle (Ito et al., 2004; 

Hartshorne et al., 1998; Somlyo AP & Somlyo AV, 2003; Pfitzer G, 2001). In fact, 

the inhibition of MLCP activity is important for controlling Ca2+ sensitization 

(Kitazawa & Somlyo, 1991b; Somlyo AP & Somlyo AV, 2003). 

 

Studies on PKC distribution 

One of the proposed pathways to regulate MLCP is PKC dependent and 

messengers within the process include GPCR, PLC, DAG, PKC and CPI-17. 

Numerous publications have reported on the role of this pathway in regulating force 

production in smooth muscle. However, studies on the spatial distribution and relative 

movement of PKC and CPI-17 remain controversial. The debate focuses on how the 

signal is transferred from DAG, which is located primarily at the cell membrane, to 

myosin (MLC20) which can be detected throughout the cytosol (Parisi & Eddinger, 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Somlyo%20AP%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Somlyo%20AV%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVAbstract
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2002). To explain the signal transduction process, many hypotheses have been 

developed. One hypothesis suggests that PKC works as a moving messenger to relay 

the signal from the membrane to the cytosol. PKC, a member of a large family of 

serine/threonine kinases, was first identified in 1977 by Nishizuka’s group (Inoue et 

al., 1977; Takai et al., 1977). The first study on PKC localization by Kraft suggested 

that in EL4 mouse thymoma cells, the high level of PKC concentration within the 

cytosol could be reduced after phorbol ester stimulation (Kraft & Anderson, 1983). 

Following this study, numerous research groups reported translocation of PKC 

isoforms during certain cell activities using different techniques. The ability of PKC 

to move within a cell was further studied in the following three decades (Miyamoto et 

al., 1995; Nakamura & Nishizuka, 1994; Secrest et al., 1991). 

 

Biochemical analysis of PKC translocation 

Much of the evidence supporting the translocation of PKC during smooth 

muscle cell activation was obtained using biochemical studies. By using cellular 

fractionation on smooth muscle tissue, Diamond’s group explored PKC distribution 

within the bovine tracheae. They tested the enzymatic activity of generic PKC from 

membrane and cytosolic fractions to infer the distribution of the protein (Langlands & 

Diamond, 1992; Langlands & Diamond, 1994).  Their results suggest that PKC 

activity is higher in the cytosolic fraction than the membrane fraction under relaxed 

conditions while after methacholine stimulation, the situation was reversed. This 

activity shift was used as evidence for PKC translocation in their study. However, a 

change of PKC enzymatic activity is not a direct way to determine the distribution 
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shift of PKC and the two are not necessarily consistent with each other. Agonists 

could simply increase PKC enzymatic activity in a specific region of the cell without 

transferring additional PKC molecules from one location to another. To further 

explore this issue and elucidate possible PKC movement within cells, western 

blotting was used to study the PKC protein distribution in the bovine tracheae. It has 

been shown that in relaxed conditions, the concentration of PKCα and PKCβ in the 

pellet (membrane) fraction is the same as in the supernatant (cytosolic) fraction (the 

ratio of pellet to supernatant is ~1), while upon stimulation with PDBu, the ratio 

increased to ~3. This result suggests that administration of PDBu leads to the 

translocation of PKCα/β from the cytosol to the membrane (Hai & Kim, 2005). In 

addition, PKC translocates from the cytosol to the membrane in Rat Stomach Fundus 

upon PDBu treatment with similar methods (Secrest et al., 1991).  However, it is 

possible that the homogenization process used might alter the protein distribution 

between these fractions, and may not distinguish between membrane fractions 

(plasmalemmal, nuclear, mitochondrial, SR). Direct observation of the PKC 

distribution in cells using immunohistiochemical reactions allows direct visualization 

of protein location and distribution. 

 

Analysis of PKC tanslocation in isolated smooth muscle cells 

Immunofluorescence microscopy provides a chance to observe potential PKC 

movement within cells directly. Freshly isolated smooth muscle cells were used as a 

model to study translocation of PKC using immunocytochemistry. To obtain isolated 

single cells, collagenase and elastase were used to digest rat uterine smooth muscle 



                                                                                                                                            40 

(Taggart et al., 1999). Isolated single cells were subjected to fixation and 

immunostaining and then observed with confocal microscopy to determine if the PKC 

distribution shifts upon different agonist stimulation. The results from this study 

showed that PKCα underwent a process of relocation from the cytosol to the plasma 

membrane after either CCh or phorbolester12-deoxyphorbol13-isobutyrate20-acetate 

(DPBA) incubation. The average ratio of PKC between peripheral to cytosolic was 

1.05 with relaxed conditions but increased to 2.09 following CCh stimulation. DPBA 

activation produced an even bigger shift of PKC distribution and the ratio was 2.77. It 

also has been reported that in relaxed rat arterial smooth muscle single cells PKCα 

was uniformly distributed throughout the cytosol, but after incubation with uridine 

triphosphate (UTP), PKCα moved towards and accumulated adjacent to the plasma 

membrane (Nelson et al., 2008). Similar changes in isolated rat colon smooth muscle 

cells after ceramide stimulation have also been shown (Ibitayo et al., 1999). Cultured 

cells were also used to determine the distribution of PKC with cell activation. 

Translocation of PKC from the cytosol to cell membrane in response to PDBu in 

cultured smooth muscle cells has been suggested (Li et al., 2002). At the same time, 

by using western blotting in isolated single cells, a concentration change of PKC in 

the particulate fraction of digested rabbit rectosigmoid smooth muscle cells before 

and after ceramide activation has also been observed (Bitar et al., 2002). However, 

while their results were statistically significant, the total ratio change was less than 

5%. The relevance of such a small shift causes one to question the importance of such 

a translocation of PKCα with a physiological function. On the other hand, there is 

also evidence to support a movement of PKC in the opposite direction. Fay’s group 
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reported that in isolated toad stomach single cells, a pool of activated PKC was 

identified adjacent to the plasma membrane. Upon stimulation with CCh, activated 

generic PKC was released from the pool and redistributed throughout the cytosol. 

Further study showed that PKC became associated with contractile filaments after the 

treatment (Meininger et al., 1999).   

 

Since freshly isolated or cultured smooth muscle cells are easy to obtain and 

handle, this experimental model is very popular and widely used. However, studies 

suggest that the phenotype of isolated or cultured smooth muscle cells are not 

necessarily the same as smooth muscle cells within tissues or organs. When smooth 

muscle cells are extracted from intact tissue, structure and functionality can be altered 

compared with that of cells in vivo (Owens, 1995). Cultured cells can also develop 

properties different from when they are associated in their in vivo condition. While 

smooth muscle cells in vivo show a contractile phenotype, isolated and cultured 

smooth muscle cells change with time to a synthetic phenotype. Results obtained 

from experiments of isolated single cells might be a consequence of alterations of cell 

structure and protein expression from the cell isolation procedure and/or from 

culturing. To eliminate potential changes that can occur in isolated cells compared 

with multicellular preparations, intact tissues were used in this study to determine 

PKC distribution in smooth muscle cells during relaxation and contraction. 

Surprisingly, the PKC distribution was not “uniform” throughout the cell in resting 

conditions and was not changed upon stimulation in intact tissues. PKC was primarily 

distributed adjacent to membrane, before and after PDBu or CCh treatment (Fig. 3.4 
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& 3.5). The pattern of PKC distribution was measured at multiple time points and it 

was always primarily at the cell periphery. Since PKC is a fairly large protein, it 

seems logical and efficient for the cell to keep it restricted to one place rather than to 

have it moving within the cell as a means of regulation. 

 

PKC binding proteins in relaxed condition 

It is easy to understand the attachment of PKC to cell membrane under 

stimulation since DAG is generated during the process. Newly produced DAG is 

membrane bound and it could work as a bridge to link PKC to the cell membrane 

after PKC is activated. However the accumulation of PKCα at the cell periphery 

under resting condition observed in this study raises a question about the primarily 

peripheral distribution of PKCα when DAG is absent. Since there is no evidence to 

support PKC as a membrane embedded protein, it is reasonable to speculate other 

membrane associated proteins binding to PKC under resting conditions and 

preventing it from randomly diffusing throughout the cell. Several proteins have been 

proposed to have the ability to hold PKC adjacent to cell membrane. The first two 

candidates, talin and vinculin were identified in the focal contact domain in 

nonstimulated fibroblasts and in cultured renal cells. It was reported that in cultured 

cells, PKCα could also be detected in focal contact structures and might bind to talin 

or vinculin (Dong et al., 1993). In this study, immunohistochemical methods were 

used to determine the relationship between PKCα and these two candidate proteins 

under more physiological conditions. Double labeling of PKC with talin or vinculin 

in intact swine stomach tissues (this study) shows a lack of association between PKC 
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and talin or vinculin suggesting that PKCα is not associated with the adherens 

junction. The PKCα appears near the plasmamembrane in an alternate punctuate 

pattern with either vinculin or talin (Fig. 3.10). Previous studies in our lab and others 

show that talin and vinculin are distributed alternately with caveolae at the plasma 

membrane (Eddinger et al., 2007; North et al., 1993; Tanaka et al., 2001). Thus it is 

possible that PKCα is associated with caveolae as it does not colocalize with talin and 

vinculin at the adherens junction. It is also possible that it moves from one of these 

domains to the other during cell activation. 

 

Several other studies suggest PKC could be a resident protein in a membrane 

structure called caveolae (Smart et al., 1994; Smart et al., 1995). Studies have 

identified multiple caveolae associated proteins as having the potential to bind to 

PKC. For instance, a 68kD PKCα binding protein termed serum deprivation response 

(sdr) was localized in caveolae (Mineo et al., 1998). Taggart et al also reported that 

PKCa has a particular amino acid sequence (522WAYGVLLY528) in the catalytic 

domain which has the potential of interacting with the scaffolding domain of 

Caveolin-1, a resident protein in caveolae (Taggart et al., 2000). The results from in 

vitro assays suggested caveolin-1 has an inhibitory effect on PKC. Sucrose gradient 

centrifugation also showed Caveolin-1 and PKC were accumulated in the same 

fraction, which could indicate an interaction between the two proteins (Oka et al., 

1997).  
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Membrane receptors termed RICKs and RACKs were also proposed to be 

able to interact with inactivated or activated PKC. (Mochly-Rosen, 1995; Mochly-

Rosen & Gordon, 1998; Mochly-Rosen et al., 1991). Their function is expected to 

maintain PKC in distinct locations on or near the cell membrane. One of these 

scaffolding proteins, AKAP150, has been reported to be able to target PKC to unique 

plasmalemmal domains where L-type Ca2+ channels are located. The contact between 

PKC and Ca2+ channels was suggested to be required for generating constitutive Ca2+ 

influx (Santana & Navedo, 2009). This is consistent with the observation that a 

population of L-type Ca2+ channels is localized to caveolae in ventricular myocytes 

since PKC was also expected to reside in the same location (Balijepalli et al., 2006). 

It seems logical to propose that PKC is anchored by caveolae associated protein to the 

cell membrane where it can be activated by DAG. Our data showing that PKCα does 

not co-localize with vinculin or talin is consistent with this idea. 

 

Studies on CPI-17 distribution 

While many membrane bound proteins were proposed to be able to hold PKC 

to the cell periphery, no candidate protein has been reported to bind CPI-17, the 

immediate downstream effecter of PKC, at the plasma membrane under resting 

conditions. Since PKC is supposed to interact with CPI-17 only when it is activated, 

CPI-17 is expected to be uniformly distributed throughout the cell in the absence of 

stimulation. Result from this study confirmed a “uniform” distribution pattern of CPI-

17 in stomach SMCs under relaxed condition. Unlike PKC, CPI-17 is only 17 KD and 

should easily move throughout the cell due to its fairly small size. Thus, it is 
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reasonable to propose a translocation of CPI-17 from the cytosol to the membrane 

upon stimulation. Activated PKC could act to sequester free CPI-17 from the cytosol 

and thus causes a passive translocation of CPI-17 from the cytosol to the membrane.  

The spatial-temporal regulation on CPI-17 in bronchial smooth muscle of rats under 

acetylcholine (ACh) stimulation using biochemical methods has been examined 

(Sakai et al., 2005). Immunoblotting experiments revealed a time-dependent shift of 

CPI-17 from the cytosol to the membrane upon stimulation. The movement started 

after 2 minutes of incubation with ACh and lasted for at least 18 minutes. To further 

study the possible translocation of CPI-17 and eliminate potential concerns 

introduced by cellular fractionation, this study examined CPI-17 movement in 

stomach antrum and fundus in intact tissue using Immunofluorescence microscopy. 

The results suggest that after stimulation with CCh or PDBu, the “uniform” 

distribution of CPI-17 was altered and the protein moved towards the membrane in a 

time dependent manner. This is consistent with the observation reported by Sakai et al 

(Sakai et al., 2005). Our study also revealed a punctuate distribution of CPI-17 at the 

membrane after stimulation. This suggests CPI-17 specifically accumulates to a 

particular membrane location. Considering CPI-17 is activated by PKC on the 

membrane, and PKCα appears to localize with caveolae, it is logical to propose that 

CPI-17 migrates specifically to caveolae upon stimulation. To eliminate the 

possibility that CPI-17 was associated with the adherens junction, co-localization 

between CPI-17 and talin/vinculin was also examined in this study. Double labeling 

was performed on CPI-17 and talin/vinculin which are resident proteins at the 

adherens junction. The results show an alternating punctuate distribution between 
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CPI-17 and talin/vinculin. Based on this observation, it is likely that CPI-17 and PKC 

colocalize at the caveolae on the cell membrane. While CPI-17 has been observed to 

translocate from the cytosol to the membrane upon stimulation (Fig. 3.7 & 3.8), there 

is still 40% CPI-17 remaining in the cytosol (Fig. 3.9). The distribution of CPI-17 

was parallel with actin in human pulmonary artery endothelial cell suggesting a co-

localization of CPI-17 and actin (Kolosova et al., 2004). Thus it is possible that when 

CPI-17 is in the cytosol, it associates with actin filaments. Moreover, a certain 

amount of CPI-17 has been located adjacent to the nucleus. This is consistent with the 

observation that PKCα can translocate to the perinuclear region and into the nucleus 

in vascular smooth muscle cells under stimulation (Haller et al., 1998). 

 

Signal transduction between CPI-17 and MLCP 

As one of the major regulatory mechanisms of Ca2+ sensitization, the  

PKC/CPI-17 pathway is only effective when it is able to block the downstream 

MLCP, which in turn lessens the response of the smooth muscle cell to Ca2+. MLCP 

is reported to be diffusely distributed throughout the cytosol (Shin et al., 2002).  If 

PKC is activated and localized at the membrane and CPI-17 translocates to the 

membrane to be activated by PKC, then a link between the peripheral CPI-17 and 

diffusely distributed MLCP needs to be identified. Several possible ways can be 

proposed to explain the signal transduction between CPI-17 and MLCP. One of them 

is that CPI-17 is translocated back from membrane to the cytosol after activation and 

interacts with MLCP in the cytosol. If this is the case, it is a slow process, since  
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CPI-17 was localized primarily at the cell membrane for at least 30 minutes after 

CCh/PDBu stimulation (Fig. 3.7& 3.8). A second possible explanation would be that 

there is another protein involved in this pathway, working as a bridge between CPI-17 

and MLCP. However, studies have shown that CPI-17 has the ability to directly 

inhibit MLCP, suggesting that it is unlikely for an additional messenger molecule to 

exist (Eto et al., 2004). A third possibility is that MLCP translocates upon stimulation 

from the cytosol to CPI-17 at the membrane and gets inactivated or is simply kept 

away from its substrate, MLC20 (Shin et al., 2002; Ogut & Brozovich, 2003). 

However, the fact that permeabilized smooth muscle cells do not seem to lose MLCP, 

suggests that MLCP is not a freely diffusing molecule in the cytosol. Other soluble 

proteins such as CPI-17 tend to diffuse out of cells when they are permeabilized (Eto 

et al., 1995; Eto et al., 1997). Thus, it seems unlikely for MLCP, if it is a bound 

protein in the cytosol, to diffuse freely towards the cell membrane. A more likely 

possibility would be that CPI-17 stays at the membrane after activation and inhibits 

only the MLCP localized near the cell periphery. This is consistent with the 

observation that [Ca2+]i is often elevated near the cell membrane region (Jonas & 

Zelck, 1974; Chen et al, 1991; Poburko et al, 2004). Since the main function of the 

PKC/CPI-17 pathway is to control Ca2+ sensitization of smooth muscle cells, it would  

be more effective for the regulation to be applied where [Ca2+]i
  is high. 

 

Differences between tonic and phasic smooth muscle 

This study revealed that the PKC/CPI-17 pathway might not be equally 

significant for different types of smooth muscle in regulating contraction activity. 
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While PDBu caused a slow contraction in the fundus which is ~40% of the KPSS 

induced peak force, little contraction was generated in the antrum with PDBu 

stimulation. Since fundus and antrum represent two basic types of smooth muscle, 

tonic and phasic respectively, it seems logical to ascribe the difference in force 

generation to alternate distinct properties of phasic and tonic muscle. The expression 

level of CPI-17 in tonic smooth muscle is higher than that in phasic subtypes 

(Woodsome et al., 2001). This could be used to explain the different ability of tonic 

muscles to maintain force (CPI-17 inhibits MLCP allowing MLC20 phosphorylation 

to stay high and force to be maintained), but their study was limited to rabbit vascular 

muscle. This study examined CPI-17 expression in the visceral swine stomach. 

Surprisingly, no significant difference in the protein expression level of CPI-17 was 

detected between the fundus and antrum (Fig. 3.2). This result indicates that the 

difference between tonic and phasic smooth muscle in responding to PDBu treatment 

cannot be explained by CPI-17 level in all types of smooth muscle tissues. 

Measurement of PKC expression level with western blotting performed in this study 

also revealed no significant difference between tonic and phasic smooth muscle (Fig. 

3.2). Immunostaining confirmed the similarity between the two muscle types for CPI-

17 and PKC expression. Thus, alternative explanations are required. One possibility is 

that the different responses to PDBu were caused by differences in basal Ca2+ level 

between tonic and phasic smooth muscle. It was shown that tonic tissues have a 

higher level of [Ca2+]i than phasic tissues under relaxed conditions (Himpens et al., 

1988). It is possible that although PDBu administration could boost Ca2+ sensitization 

in phasic smooth muscle to a similar level as in tonic tissues, the low basal level of 
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[Ca2+]i might still not be able to maintain a strong contraction in phasic tissues. The 

differences of SR distribution in the two types of tissues may be responsible for 

differences in the [Ca2+]i in  basal conditions (Nixon et al., 1994). A second 

possibility would be that expression patterns of MLCP are different between tonic 

and phasic smooth muscle and this difference leads to differences in contraction to 

PDBu stimulation. This is supported by the observation that phasic smooth muscle 

contains more MLCP than tonic tissues (Woodsome et al., 2001). The above 

explanations are not necessarily exclusive to each other and the cause for differences 

in force generation may be the combination of the two.  

 

Conclusion 

As a tissue responsible for the contractility of all hollow organs, smooth muscle 

is under intensive study since it is important for maintenance of the normal function 

of many vital systems in organisms. In addition, many diseases are related to defects 

in the regulation of smooth muscle contraction. Elucidation of the regulatory 

mechanism for smooth muscle contraction under physiologically relevant conditions 

is therefore very important. As a major regulatory pathway in smooth muscle 

contraction, the PKC/CPI-17 signal transduction cascade requires thorough 

examination in physiologically relevant conditions. This study is the first to directly 

assess the expression and spatial- temporal regulation of the PKC/CPI-17 pathway in 

intact animal tissues. Immunostaining was used to determine the distribution patterns 

of PKC and CPI-17. In contrast with earlier studies, which were performed with 

isolated/cultured SMCs, this study reports that with or without smooth muscle cell 
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activation, PKCα is always preferentially localized near the plasma membrane, where 

it does not co-localize with vinculin or talin and thus is most likely associated with 

the caveolae (Fig. 4.1). Upon cell excitation, it is likely that the activated PKC 

acquires the ability to sequester free CPI-17 from the cytosol to the plasma membrane 

and therefore induce a shift of CPI-17 from the cytosol to the cell membrane. Based 

on the lack of co-localization of CPI-17 with vinculin/talin, I propose that CPI-17 

migrates and attaches to PKCα at the caveolae with stimulation. Membrane 

associated CPI-17 is reported to be activated by PKC and blocks the activity of 

MLCP. We were unable to observe CP-17 shift back to the cytosol in a 

physiologically relevant time frame, and thus propose that it only inhibits MLCP 

located in close proximity to the cell periphery (Fig. 4.2). This inhibition would lead 

to an increased Ca2+ sensitization and increased force generation in tonic smooth 

muscle. However, PDBu has little effect on phasic smooth muscle, which is not 

caused by expression variances of PKC and CPI-17. Differences in response to PDBu 

between the two tissues may be caused by differences of MLCP expression and/or 

basal [Ca2+]i levels.  
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Figure 4.1.  A model for PKC/CPI-17 localization under relaxed condition. Without 
agonist sitmulation, PKCα binds to one or more caveolae resident proteins. In this 
figure, “A” is used to represent one of such proteins. CPI-17 and MLCP are diffusely 
distributed in the cytosol under these conditions. 
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Figure 4.2.  A model for the spatial distribution of PKCα and CPI-17 under stimulated 
condition. With agonist stimulation, GPCR have the ability to activate G proteins. G proteins 
can significantly boost PLC activity, which hydrolyses PIP2 into inostitol IP3 and DAG. DAG 
remains in the cell membrane. PKCα is activated through binding to DAG (A). Activated PKC 
acquires the ability to sequester free CPI-17 from the cytosol and therefore induces a movement 
of CPI-17 from the cytosol to the cell membrane (B). PKC bounded CPI-17 gets activated by 
PKCα and further blocks the activity of MLCP located adjacent to cell periphery and enhances 
smooth muscle contraction by decreasing the cytosolic free MLCP (C). 
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