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ABSTRACT 

 

DESIGN, SYNTHESIS AND STUDY OF REDOX AND OPTOELECTRONIC 

PROPERTIES OF AROMATIC OXIDANTS AND POLYCYCLIC AROMATIC 

HYDROCARBONS 

 

 

Mohammad Mosharraf Hossain, B.Sc., M.S. 

Marquette University, 2018 

 

 
Organic materials play a significant role for the next generation photovoltaic devices that 

convert solar energy into usable forms of energy. In this regard, polycyclic aromatic 

hydrocarbons (PAHs) are fundamental tools in the developing area of molecular electronics and 

photovoltaics as they show excellent optical/electronic properties and are well-suited for 

applications in such developing areas as flexible display devices, field effect transistors and solar 

cell panels. Design and synthesis of novel materials for photovoltaics applications would require 

the proper understanding the mechanism of charge transport and identification of the structural 

features necessary in a particular molecular wire or PAH.  

To understand the charge transport mechanism and the hole delocalization one needs to 

generate the cation radical of a given electron donor in solution by using robust aromatic 

oxidants. Among these oxidants, magic blue has been widely used as an aromatic oxidant for the 

one electron oxidation due to its commercial availability and a reasonable oxidizing power. 

However, a modest stability of the magic blue salt leads to a slow decomposition to produce 

unknown impurities, which have been named “blues brothers”. Importantly, these impurities 

produce a noticeable band in the near-IR region—that is the same region where one usually 

expects to see an intervalence band of the cation radical with extensive hole delocalization. In this 

work a rational approach to synthesis of novel analogue of the magic blue that does not undergo 

degradation has been demonstrated. 

Furthermore, in the course of the rational design of novel molecular wires with enhanced 

redox and optical properties, one usually considers various geometrical factors in order to control 

the mechanism of charge delocalization. For example, a relatively small interplanar dihedral 

angle between adjacent units in poly-p-phenylene wire leads to a significant interchromophoric 

electronic coupling and thereby to extensive hole delocalization. However, it remains unclear 

how change in the interplanar angle would impact the redox and optical properties of the wire as 

well the mechanism of the hole delocalization in its cation radical. Accordingly, in this work it 

has been described the syntheses and study of the electrochemical and optoelectronic properties 

of a number of different series of biaryls connected by different numbers of methylene group to 

vary the dihedral angle in order to probe the mechanism and extent of hole delocalization in 

biaryls. 

  Although significant progress has been made in understanding the charge transport 

mechanisms in various polycyclic aromatic hydrocarbons (PAHs), the usefulness of such 

materials in functional devices remains limited; hence design and synthesis of new PAHs to better 

understand the charge transport mechanisms remains an active area of research. An oxidative 

cyclodehydrogenation strategy was used for synthesizing a highly soluble, fluorene based larger 

derivative of hexa-peri-hexabenzocoronene (FHBC), where twelve carbon-carbon bonds are 

formed in a single step. Deployment of fluorenes at the periphery of the HBC core not only 

imparts solubility to the structure, but also allows the new PAHs to be functionalized further to 

make bigger PAHs to tune its desirable electronic properties.  
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GENERAL INTRODUCTION 

 

Availability of the readily functionalized polycyclic aromatic hydrocarbons 

(PAHs) plays a significant role in the developing area of molecular electronics and 

photovoltaics. These materials often display outstanding optical and electronic properties 

and are well-suited for applications in such emerging areas as flexible display devices, 

field effect transistors and solar cell panels.1-3 It is thus crucial to develop efficient 

organic synthesis techniques that could afford novel organic molecules with desired 

redox and optoelectronic properties.  

In the context of molecular electronics and photovoltaics, it is critical to develop 

an intuitive understanding of the mechanism of the charge transfer in electroactive 

organic molecules.  For example, in order to study the charge transfer across a long π-

conjugated molecular wire one usually considers a donor-wire-acceptor triad. It has been 

shown that depending on the interchromophoric electronic coupling and length of the 

wire, the charge mechanism across the donor-wire-acceptor triad can be either tunneling, 

where charge transfer from donor to acceptor occurs without involvement of the wire 

(Figure 1 A), or incoherent hopping, where charge transfer occurs by a sequential hop 

between the chromophores in the wire (Figure 1 B) or by a combination of these two 

mechanisms (Figure 1 C). 4-11  
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Figure 1 Schematic diagram showing the charge-transfer mechanisms in donor-bridge-

acceptor triads (hopping vs. tunneling). 

 

For photovoltaic applications, materials should have certain characteristics, such as high 

molar absorption coefficients, relatively broader absorption bands, customizable HOMO 

and LUMO energies for efficient charge transfer, molecular stability and self-assembling 

ability.  The color of the compounds determines the first two characteristic, which can be 

controlled by tuning the energy gap between the ground and excited state energy. For 

example, the energy gap for a given chromophore can be reduced by adopting various 

approaches, including via greater delocalization of the π systems, inclusion of donor-

acceptor substituents, and polymerization. 

The design and synthesis of novel functional materials for long-range charge 

transport necessitates the development of the fundamental understanding of the 

mechanisms of charge (i.e., electron or hole) transfer in a π-conjugated molecule. In fact, 

electron transfer (ET) process was first explained in 1940s by Rudolph A. Marcus with 

the aid of the transition state theory, that is an empirical concept for understanding the 

dependence of the ET rate constants on the electronic coupling (Hab) and structural 

reorganization (λ) parameters.12-14 Based on these ideas, Robin and Day first introduced a 

classification of mechanism of charge delocalization for the mixed valence species, i.e., 
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compounds that contain an element which is present in more than one oxidation state.15 

For example, well-known mixed valence compounds include the Creutz-Taube 

complex16, Prussian blue12 and Molybdenum blue17. Later, Allen and Hush modified 

Marcus theory in order to explain the electronic transitions that are unique to mixed 

valence species, i.e., the near-IR intervalence band often observed in their UV-vis 

spectra.18  

Following the Robin-Day classification and Marcus-Hush theory, there are three 

classes of the mixed valence species that give rise to different mechanism of charge 

delocalization and nature of the intervalence transitions (Figure 2). 12, 15, 19-20 In Class I, 

there is no electronic coupling between redox centers leading to the charge localization 

on a single redox center and absence of the intervalence band. In Class II, due to the 

sizable electronic coupling, the charge is delocalized over both redox centers with the 

maximum of the charge density at one of the redox centers. This results in the presence of 

two minima separated by the activation barrier and the charge is distributed via ‘dynamic 

hopping’ mechanism. In such scenario, the intervalence band corresponds to charge-

transfer transition and the excitation energy equals the structural reorganization parameter 

λ. In Class III, the charge is ‘statically’ delocalized over both redox centers due to the 

large electronic coupling and the excitation energy of the intervalence band is twice the 

electronic coupling (2Hab).  
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Figure 2  Potential curves for the three primary Robin–Day classes: class I (left), class II 

(middle) and class III (right)19. 

 

Because poly-p-phenylene-based materials can be easily functionalized, they have 

versatile applications in organic electronics. Their multi-dimensional structural features 

can be customized to produce materials with varied colors. This important property 

makes poly-p-phenylene wires very suitable for photovoltaic uses. 

Incorporation of the solubilizing groups into the poly-p-phenylene wires may 

increase the solubility, and also increase steric interaction between the individual polymer 

chain as opposed to the unsubstituted poly-p-phenylene spacers.21 Furthermore, it is also 

well known that the optical and electronic properties of these conjugated molecules are 

directly related to the  intramolecular delocalization of the -orbitals and extent of the 

orbital overlap, the torsional motion between phenylene.21-24 A further tuning of the 

desired properties in polyphenylene based materials is based on the frequency of bridging 

of adjacent moieties: a ladder type polyphenylene (LPPP)25 where all the individual 

phenyl units are linked by a methylene bridge or a step-ladder26 where the continuous 

array of phenyl units is interrupted resulting in either randomly distributed bridged and 

unbridged units or regular polymers like polyfluorene 21, poly(2,7-silafluorene)27, 
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polycarbazole28, poly(ladder type tetraphenylene and pentaphenylene), 

polyindenofluorenes etc 29-30(Chart 1). 

Chart 1. Different kinds of polyphenylenes  

 

 

 

It is to this effect that Rathore et. al21-24 have undertaken a systematic study to 

understand the structure-property relationship of such planar (Ladder) type polyfluorene 

oligomers by substituting solubilizing groups (hexyl) along the conjugated backbone. 

Also in this oligomeric series the first oxidation potentials decreases exponentially with 

the number of phenyl units. Same trend we saw in case of poly-p-phenylenes with 

isoalkyl end-capping groups. However, in case of planar polyfluorenes the first oxidation 

potentials were being less when compare with the poly-p-phenylenes with isoalkyl end-

capping groups which indicates better stabilization of the resulting hole on 
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electrochemical oxidation resulting from a planar π-system or a more extended effective 

conjugation length. 

Our interest in various polyphenylene based molecules arises from the fact that 

such materials have the potential to be used as functional molecular wires to transport 

energy or an electron (or hole) from a donor to an acceptor moiety acting as a bridging 

spacer.21-24 The most important criterion for designing such materials is a proper 

understanding as to how the charge is stabilized or transported through multiple aryl 

moieties that constitute the spacer. Towards this goal, we have already synthesized and 

studied a homologous series of p-phenylene oligomers with different end-capping groups 

and also studied the polyfluorenes, planar type polyfluorenes, the results of which have 

already been communicated. These studies of the distance dependent behavior of π-

conjugated polymers, are realized by establishing a structure-property relationship over a 

homologous series of oligomers as models for the related infinite chain. Since π-

conjugated polymers reach a convergence limit for certain physical properties such as 

redox and optical, this approach provides on extrapolation the value of the effective 

conjugation length (ECL) i.e. a measure of the size of the polymer that is required for 

size-independent physical properties. With these ideas now we undertake the systematic 

study of angular dependent polyfluorenes. 

Recently, Rathore group has shown that the experimental redox potentials (Eox) of 

poly-p-phenylene wires (RPPn: R = H, iA, iAO, and iA2N, where n is the number of 

phenylene units) and the optical properties (νmax) of the resulting cation radicals (i.e., 

RPPn •+ ) saturate with n ≤ 8.21-24 With the increasing electron-donor strength of 

endcapping group, the saturation point moves to smaller n; i.e., saturation occurs at n = 5 
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for iAOPPn and n = 3 for iA2NPPn. Density Functional Theory (DFT) calculations and 

theoretical modeling showed that migration of the hole toward one end of the molecule 

for continuous engagement of the end-capped p-phenylene unit in hole stabilization 

causes the saturation of the redox and optical properties.21-24 

Unlike the simple poly-p-phenylene wires (RPPn), in FPPn wires the dihedral 

angle between p-phenylenes within one fluorene (∼0.08 ± 0.05°) and adjacent fluorenes 

(∼37.15 ± 0.11°) are different, and therefore, the values of the coupling (β) will alternate 

for each pair of the adjacent p-phenylenes as depicted in Figure 3. 

 

 

 

Figure 3. (A) Structure of FPP4 with the highlighted alternation in the dihedral angles. 

(B) Isosurface (0.02 au) of “bisallylic” HOMO of benzene and its HOMO energies (α) 

used to model the monomeric units in FPPn. The alternating couplings between the 

monomeric units are shown as βin and βout. 24 
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Importantly, the generality of the Marcus-Hush theory makes it applicable not 

only to the mixed-valence systems, but also to the cation radicals of various PAHs, 

including molecular wires.  Extension of the two-state Marcus-Hush theory to treat 

multiple units in a molecular wire has shown that the mechanism of hole delocalization 

depends on interplay between the energetic gain from the delocalization and the 

concomitant energetic penalty from the structural reorganization. In case of poly-p-

phenylene wires, the interplay between these two factors leads to the hole delocalization 

up to 8 p-phenylene units.24 

In the course of the rational design of novel poly-p-phenylene-based wires with 

enhanced redox and optical properties, one usually considers various geometrical factors 

in order to control the mechanism of charge delocalization. For example, a relatively 

small (~30o) interplanar dihedral angle (φ) between adjacent units in poly-p-phenylene 

wire leads to a significant interchromophoric electronic coupling and thereby to extensive 

hole delocalization. However, it remains unclear how change in the interplanar angle 

would impact the redox and optical properties of the wire as well the mechanism of the 

hole delocalization in its cation radical.24 

In this respect, biaryl compounds represent the smallest building blocks for 

exploration of the fundamental properties of the charge transfer in pi-conjugated 

molecular wires. For example, the angular dependence of the charge transfer in biaryls 

has been probed by conductance measurements using break-junction techniques that 

showed that under the tunneling charge transfer mechanism the charge-transfer rates 

scale as the square of the electronic coupling in biaryl compounds.  Because the 

electronic coupling varies with the interplanar dihedral angle between the aryl groups, the 
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charge-transfer rates follow a squared cosine trend with φ.  On the other hand, in the case 

of non-coherent charge transfer mechanism it is not clear how the interplanar angle 

controls the mechanism of hole delocalization. In order to probe this effect, one has to 

design a set of the biaryls where the interplanar angle is varied with the aid of 

polymethylene chain or bulky groups and generate their cation radicals. Availability of 

the set of cation radicals with varied interplanar angle would allow probing the 

mechanism of their hole delocalization via electrochemical and electronic absorption 

(i.e., UV-vis) spectroscopy techniques.  

Poly-p-phenylene-based wires are prototypical systems for charge-transfer studies 

with potential applications in photovoltaic and molecular electronics devices.31-35 

Electronic coupling between a pair of phenylenes in a poly-p-phenylene-based wire is a 

crucial parameter that controls its redox and optical properties, as well as the rates of 

electron transfer in corresponding donor-wire-acceptor systems.36-39 For example, 

unsubstituted poly-p-phenylene wires are characterized by strong interchromophoric 

electronic coupling due to the favorable nodal arrangement of the HOMO lobes and 

relatively small interplanar dihedral angles, which promote effective orbital overlap 

between adjacent phenylenes.24, 40 This strong electronic coupling is reflected in the 

sensitivity of redox/optical properties to the wire length, as can be judged by large slopes 

in their 1/n or cos[π/(n+1)] dependences,23-24 where n is number of chromophoric units in 

a wire.  

In this context, an interesting question concerns how many phenylenes should be 

included in a single chromophore. For example, a poly-p-phenylene-based wire shown in 

Figure 4 can be either considered as a poly-fluorene (i.e., PFn) or poly-p-phenylene (i.e., 
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PPn). Irrespective of how the chromophore is defined, the absorption band of PFn or PPn 

shifts red with increasing wire length, indicating that interchromophoric electronic 

coupling is significant (Figure 4).24 But can the value of the electronic coupling depend 

on how one defines the chromophore?  

 

 

 

Figure 4. Depending on the choice of the monomeric unit, a molecular wire on the top 

can be either considered as poly-fluorene (PFn) or poly-phenylene (PPn). Left. 

Absorption spectra of PFn (or PPn). Right: Energies of maximum absorption plotted 

against cos[π/(n+1)], where n is number of phenylenes (blue) or fluorenes (red). 

 

According to the Hückel molecular orbital theory, the energy of the HOMO to 

LUMO transition scales linearly with cos[π/(n+1)] and the scaling factor depends on the 

electronic coupling.24,41 Remarkably, the slope of the linear ν-vs-cos[π/(n+1)]  plot is 

smaller by nearly a factor of two when n is number of fluorenes as compared to the plot 

where n is number of phenylenes (Figure 4  ), suggesting that the electronic coupling 

between fluorenes is by a factor of two smaller than between a pair of phenylenes for the 

same wire. 
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As the magnitude of the electronic coupling directly impacts the redox/optical 

properties of the wire and the extent of hole (i.e., polaron) delocalization in the 

corresponding cation radicals, a choice of the chromophore size either by length (e.g 

molecular wire) or two dimensionally extended π systems (e.g Polycylic Aromatic 

Hydrocarbons, PAHs) seems to be an important additional parameter. 

Polycyclic aromatic hydrocarbons (PAHs) consist of multiple aromatic ring 

having sp2 carbon centers, which together are considered as a graphitic core. PAHs with 

expanded graphitic core have received tremendous attention as potential candidates for 

their application in thin film electronic devices, field effect transistors, and photovoltaic 

applications.42-47 Most often, these PAHs show strong tendency to form π-stacked dimers 

in solution and form face-to-face contacts with some extent of face-to-edge 

configurations in the solid state. The enhanced charge mobility and attractive photo 

physical properties arising from the expanded graphitic core and strong inter-molecular 

π–π interactions make PAHs good candidates as charge-transfer materials for applications 

in opto-electronic devices.  

In the 1960s, Clar and coworkers 48 suggested that the “fully benzenoid” hexa-

peri-hexabenzocoronene (HBC) should possess exceptional thermal and photochemical 

stability, although its insolubility in most organic solvents has made it challenging to 

study.  



12 

 

 

 

 

 

Figure 5. Hexa-perihexabenzocoronene substituted with long alkyl chains 50 (left) and 

hexa-perihexabenzocoronene substituted with tert-butyl groups.51 

 

To address the solubility issue, Mȕllen and co-workers49 prepared a variety of 

soluble derivatives of hexa-perihexabenzocoronene (and its higher homologues) by 

substitution of its free para positions with either long alkyl chains 50 or with bulky tert-

butyl groups51 to prevent aggregation in solution. In the solid state the disc-shaped HBCs 

self-assemble into columnar stacks through strong intermolecular π–π interactions. 

Synthetic versatility also allows for a large variation in functional groups on the HBC 

molecule. This has led to potential applications as nano-structured materials in biology, 

energy storage, and organic electronics. By functionalizing the HBC molecule with 

different substituents, the properties of the molecule can be modulated dramatically to 

afford improved solubility, altered solid packing, liquid crystallinity and improved charge 

carrier mobility.52-55 
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The promising potential applications of HBC prompted Rathore and co-workers 

to seek a cost-effective and facile synthesis of a soluble derivative of hexa-peri-

hexabenzocoronene (HBC) from readily available hexaphenylbenzene (HPB). The design 

of a facile procedure in which the substitution of the free para positions of the propeller-

shaped hexaphenylbenzene with tert-butyl groups and the oxidative 

cyclodehydrogenation to planar HBC was achieved in a one-pot reaction using ferric 

chloride both as a Lewis acid catalyst and as an oxidant in excellent yields. 51,56-57 

Although PAH materials based on HBCs are promising for variety of photovoltaic 

applications, it is still required to develop a soluble, versatile HBC-based platform, which 

can be easily modified to include electro-active groups or groups that can arranged by 

self-assembly. However, a successful synthesis of such HBC-based hybrids with 

extended graphitic core that can resists aggregation, highly soluble and readily 

functionalizable at its vertices remains a great challenge.  

The requirements described above put forward a requirement on the stability of 

the oxidants used to generate the cation radical of a given electron donor in solution. 

Rathore and coworkers have shown that cation radicals of numerous PAHs, e.g. 

substituted benzenes, naphthalenes, anthracenes, pyrenes, poly-phenylenes, hexa-peri-

hexabenzocoronenes (HBCs) and many others,58-61 can be generated using stable 

aromatic cation radical salts (Chart 2)  such as NAP•+ SbCl6¯ (1,2,3,4,7,8,9,10-

octahydro-1,1,4,4,7,7,10,10-octamethylnaphtacene, Ered = 1.34 V vs. SCE, λmax = 673 

nm, log ε673 =  3.97 ),62  THE+•SbCl6¯ (1,2,3,4,5,6,7,8-octa-hydro-9,10-dime-thoxy-

1,4:5,8-dimethanoanthracene, Ered = 1.11 V vs. SCE, λmax = 518 nm, log ε518 =  3.86) 63 
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and MB•+SbCl6¯ (tris-4-bromophenylamminium or magic blue, Ered = 1.15 V vs. SCE,  

λmax = 728 nm, log ε728 = 4.45).62,64 

Chart 2. Cation-Radical salts as 1 -Electron Oxidants 

 

 

 

Among these oxidants, magic blue (MB+• SbCl6
− salt) has been widely used as an 

aromatic oxidant for the one electron oxidation of organic, inorganic, and organometallic 

donors due to its commercial availability and a reasonable oxidizing power.65-75 With an 

intense and uncluttered visible absorption (λmax = 728 nm, εmax = 28 200 cm−1 M−1) magic 

blue has also found extensive application for (quantitative) spectroscopic characterization 

of cation radicals and dications of organic electron donors and oxidized inorganic metal 

complexes and organometallic species.  

However, a modest stability of the MB+• SbCl6
 − salt leads to a slow 

decomposition to produce unknown impurities, which have been named “blues 

brothers”.76 Importantly, these impurities produce a noticeable band in the near-IR 

region—that is the same region where one usually expects to see an intervalence band of 

the cation radical with extensive hole delocalization  

(Figure 6).77 
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Figure 6 (A) Absorption spectrum of the aged MB+• SbCl6− salt at 22 °C in CH2Cl2; (B) 

spectrum obtained by the subtraction of aged MB+• (shown in panel A) and freshly 

prepared MB+•. 

 

Thus, presence of these impurities presents a significant issue in accurate 

characterization of the mechanism of hole delocalization in the cation radicals. While in 

practice in order to generate a cation radical of a PAH one can use other oxidants such as 

THE+• or NAP+•, a relatively low reduction potential of MB+• makes it especially useful 

when generation of the cation radicals of the PAH with low oxidation potentials is 

required. Examples of the PAH with low oxidation potential include long poly-p-

phenylene wires or PAHs with expanded graphitic core, e.g. HBC. Thus, a rational 

approach in the development of the MB analogues with similar optoelectronic properties 

and improved stability is of significant importance. 
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RESEARCH OBJECTIVES 

Given the diversity of the challenges that exists in the area of the design and 

synthesis of novel charge-transfer materials this research work aims to address the issue 

outlined above as follows: 

1. We will develop a fundamental understanding of the structure-function 

relationship of the poly-p-phenylene wires in the context of their application as 

charge-transfer medium. In particular, this work will address how the interplanar 

dihedral angle between two aryl groups impacts the redox/optoelectronic 

properties and hole delocalization of a biaryl cation radicals. With the aid of 

Marcus-Hush theory these results will allow to develop an intuitive understanding 

on how the interplay between electronic coupling and structural reorganization 

controls the hole delocalization. 

2. Motivated by the need to develop various robust aromatic oxidants we aim to 

investigate the content of the impurities that are generated during the aging of the 

magic blue oxidant. Based on these findings we will propose and synthesis a 

novel MB-analogue that could effectively resist degradation, while remaining or 

somewhat improving its redox and optoelectronic properties. 

3. As there remains the need for a soluble HBC-based platform, which can include 

electro-active groups or groups that can prompt self-assembly, we aim to 

synthesize a new HBC-fluorene hybrid (FHBC) with expanded graphitic core that 

is highly soluble, resists aggregation, and can be readily functionalized at its 

vertices. We will show that this new HBC platform can be tailored to incorporate 
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six electro-active groups at its vertices, as will be exemplified by a facile 

synthesis of a representative hexaaryl derivative of FHB 

4. During the course of the rational design of polychromophoric assemblies it is 

often unclear how the interchromophoric electronic coupling varies with 

chromophore size in linearly connected molecular wires. We will demonstrate 

that as the number of aromatic moieties in a single chromophore increases, the 

interchromophoric electronic coupling decreases and may reach negligible values 

if the chromophore is sufficiently large. 
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CHAPTER 1  

A search for blues brothers: X-ray crystallographic/ spectroscopic characterization 

of the tetraarylbenzidine cation radical as a product of aging of solid magic blue. 

 

  

 

Abstract: Magic blue (MB+• SbCl6
− ), i.e. tris-4-bromophenylamminium cation radical, is 

a routinely employed one-electron oxidant that slowly decomposes in the solid state upon 

storage to form so called ‘blues brothers’, which can complicate the quantitative analyses 

of the oxidation processes. Herein, we indentify the primary ‘blues brother’ as the cation 

radical and dication of tetrakis-(4-bromophenyl) benzidine (TAB), using a combined 

Density Functional Theory (DFT) and experimental approach, including isolation 

of TAB+• SbCl6
− and its characterization by X-ray crystallography. The formation 

of TAB in aged magic blue samples occurs by a Scholl-type coupling of a pair of MB, 

followed by the loss of molecular bromine. The recognition of this fact led us to the 

rational design and synthesis of tris(2-bromo-4-tert-butylphenyl)amine, referred to as 

‘blues cousin’ (C: Eox1 = 0.78 V vs. Fc/Fc+, λmax (BC+•) = 805 nm, εmax = 9930 cm−1 M−1), 

whose oxidative dimerization is significantly hampered by positioning the sterically 

demanding tert-butyl groups at the para-positions of the aryl rings. A ready two-step 

synthesis of BC from triphenylamine and the high stability of its cation radical (BC+•) 

promise that BC will serve as a ready replacement for MB and an oxidant of choice for 

mechanistic investigations of one-electron transfer processes in organic, inorganic, and 

organometallic transformations. 

 
Disclaimer: The results discussed in this chapters were further supplemented by DFT 

calculations and relevant computational works by my coworker Dr. Marat R Talipov.  

The presence of an impurity in Magic blue was first observed by my coworker Dr. Anitha 

Boddeda. My contribution to this chapter includes synthesis and spectroscopic studies. 

Blues Cousin was synthesized and studied by another coworker, Dr. Khushabu Thakur
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INTRODUCTION 

 
Magic blue (MB+• SbCl6

−), i.e. tris-4-bromophenylamminium cation radical,1 is 

widely utilized as an aromatic oxidant for the one electron (1e−) oxidation of organic, 

inorganic, and organometallic donors.2–10 The popularity of the magic blue cation radical 

as an oxidant in part arises due to its perceived high stability, commercial availability, 

and reasonable oxidizing power (Ered = 0.70 V vs. Fc/Fc+). With an intense and 

uncluttered visible absorption (λmax = 728 nm, εmax = 28 200 cm−1 M−1) magic blue has 

also found extensive application for (quantitative) spectroscopic characterization of 

cation radicals and dications of organic electron donors and oxidized inorganic metal 

complexes and organometallic species.11,12 Although MB+• SbCl6
 −  is reasonably stable, it 

has been long known that MB+• undergoes slow decomposition to produce impurities 

which have been dubbed ‘blues brothers’.2,13  During the course of our studies of organic 

cation radicals and dications, we observed that the presence of additional bands in the 

spectrum of MB+• not only interfered with spectroscopic characterization of oxidized 

species, but also prevented accurate quantification of redox processes.14  Here, we 

identify the major impurity responsible for the presence of additional absorption bands in 

the old samples of MB+• SbCl6
− salt as a tetraarylbenzidine cation radical/dication with 

the aid of electronic absorption spectroscopy, X-ray crystallography, and detailed 

computational studies.  
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Chart 1. 1. Structures and Naming schemes of various possible candidates of ‘blues 

brother’ 

 

 

 

 

Finding that the ‘blues brother’ in the aged MB+• sample is produced by a 

dimerization reaction led us to the rational synthesis of a new triarylamine derivative 

which prevents the dimerization reaction.  This triarylamine derivative forms a stable 

cation radical with similar spectral properties and somewhat improved oxidizing power, 

and it is referred to as blues cousin, which should serve as a ready replacement for MB as 

an oxidant of choice for mechanistic investigations of one-electron transfer processes in a 

variety of organic, inorganic, and organometallic transformations. 

RESULTS AND DISCUSSION 

The initial attempt to identify the species responsible for additional absorption 

bands in aged samples of MB+• was carried out by its reduction using zinc dust or 

ferrocene, followed by 1H NMR analysis of the resulting neutral residue. The 1H NMR 

analysis suggested that the sample largely contained MB0 together with a significant 

amount of a new, unidentified species, 
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Figure 1. 1 Comparison of the 1H NMR spectra of aged sample of MB+• reduced by Zn 

dust or ferrocene (bottom) and the authentic sample of neutral MB0 (top).  

 

 

 

 

Figure 1. 2 MALDI-TOF mass spectra of the aged sample of MB+•, reduced to MB0 

using ferrocene in dichloromethane [The NMR spectrum of the same sample is shown 

above in Figure 1.1] (A), and authentic samples of TAB0 (B) and MB0 (C). 
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and multiple other compounds in minor quantities (Figure 1.1). The new species was 

tentatively identified by MALDI mass spectrometry to be a dimer of MB, which had lost 

a molecule of bromine, and was hypothesized to be a tetrakis-(4 bromophenyl) benzidine 

(Figure 1.2). Unfortunately, full identification of this dimer and other minor species 

could not be achieved by chromatographic separation, despite several attempts.  In order 

to establish that additional absorption bands in the aged samples of MB+• (Figure 1. 3. A) 

arise from its decomposition, we obtained an authentic spectrum of MB+• via redox 

titration of neutral MB using a bicyclo[2.2.1]heptane-annulated hydroquinone ether 

cation radical THEO+• SbCl6
−
  (Ered1 = 0.67 V vs. Fc/Fc+, λmax = 518 nm, εmax = 7300 

cm−1 M−1)15–17 as an oxidant. The spectrum of MB+• obtained via redox titration 

according to Figure 1.3 was found to be identical to the spectrum of the freshly prepared 

sample of MB+• using MB0 and SbCl5 or NO+ SbCl6
 − as oxidants (Figure 1.3. B). A 

subtraction of the authentic spectrum of MB+• with that of the aged sample (∼14 months 

old, Aldrich Chemical Co.) produced a spectrum containing bands at 480, 805, and 1550 

nm (Figure 1.3 C).  Moreover, the intensities of these bands increase with aging of the 

sample. The fact that these absorption bands are not attributable to pure MB+• SbCl6 
− 

together with the presence of a low-energy transition at 1550 nm, suggested that the new 

absorption bands most likely arise from a cation radical and/or dication of a 

tetraarylbenzidine derivative.18  
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Figure 1. 3  (A) Absorption spectrum of the aged MB+• SbCl6− salt at 22 °C in CH2Cl2; 

(B) spectral changes observed upon the redox titration of 42 μM THEO+• SbCl6 − with 

an incremental addition of 3.2 mM MB0 in CH2Cl2 at 22 °C; (C) spectrum obtained by 

the subtraction of aged MB+• (shown in panel A) and freshly prepared MB+• (shown in 

panel B). 

 

Before undertaking the synthesis of authentic samples of tetrakis(4- 

bromophenyl)benzidine (TAB) and other products arising from bromination of either MB 

or TAB or by intramolecular oxidative cyclization of MB to carbazole derivatives (see 

Chart 1.1), we first carried out (TD)DFT calculations of all compounds in Chart 1.1 to 

obtain both redox potentials and electronic absorption spectra of their cation radicals.  For 

this purpose, we utilized the B1LYP-40 functional [i.e. B1LYP-40/6 

31G(d)+PCM(CH2Cl2)]19,20, because as recent careful benchmarking studies from our 

research group on a number of polyaromatic systems17,20–22 showed that this functional 

allows an accurate description of the spin/charge (hole) distribution in their cation 

radicals, and, in turn, the prediction of the corresponding redox/optical properties (Eox1, 

υD0→D1) in good agreement with experimental data. The excellent performance of the 

B1LYP-40 functional owes to the fact that 40% contribution of the exact (i.e. Hartree–
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Fock) exchange term alleviates the self-interaction error23,24 that causes artificial charge 

delocalization.  

The calculated equilibrium geometries of the neutral and cation radical forms of 

all compounds listed in Chart 1.1 produced their free energies of oxidation ΔGox1 by a 

simple subtraction of the free energies of cation radicals and the corresponding neutral 

molecules. A plot of the computed oxidation energies (ΔGox1) against electrochemical 

oxidation potentials (Eox1) of compounds MB, 1, 2, and 3, available from the literature25 

(see blue diamonds and correlation line in Figure 1.4.), showed an excellent linear 

correlation, instilling confidence in our use of the B1LYP-40 functional and allowed the 

prediction of the oxidation potentials of various compounds in Chart 1.1 which are yet to 

be synthesized, see Table 1.1. The additional bands in the MB+• spectrum are expected to 

arise from the oxidized (i.e. cation radical or dication) forms of the blues brothers, and 

thus the oxidation potentials of these molecules should be lower or comparable to that of 

MB0 (i.e. 0.70 V vs. Fc/Fc+). Accordingly, the predicted values of E′ox1 of various 

compounds in Chart 1.1 (Table 1.1) allow one to easily rule out the possibility of 

brominated MB analogues (i.e. 1–3) and carbazole derivatives 4 and 5 as blues brothers 

in the spectrum of aged MB+•. 
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Figure 1. 4 A plot of experimental Eox1 of compounds in Chart 1 against computed 

ΔGox1. Note that the correlation line was generated using only MB and 1–3 (shown by 

blue diamonds) for which the electrochemical oxidation potentials were available from 

the literature. The red squares represent the remaining compounds in Chart 1, while the 

green triangles are for ‘blues cousins’ 10 and BC discussed later in the text. 

 

In contrast, the E′ox1 values of TAB0 and its brominated analogues 6–9 were 

predicted to have lower or comparable oxidation potentials to that of MB0, and thus 

constitute plausible candidates for the blues brothers. In addition, TD-DFT calculations 

(Tables 1.1 and Figure 1.5) predict the existence of low-energy bands in the spectra of 

TAB+• and 6+•–9+•, which are absent in the cation radicals of brominated MB analogues 

1–3 and carbazole derivatives 4.25  
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Table 1. 1. Calculated [B1LYP-40/6–31G(d) + PCM(CH2Cl2)] free energies of oxidation 

(ΔGox1 and E’ox1 
a) and electrochemical (Eox1 and Eox2 vs. Fc/Fc+) oxidation potentials of 

various compounds in Chart 1.1, as well as the optical properties of their cation radicals 

(CRs) obtained by TD-DFT calculations (λD0→D1 and fosc) and by spectroscopic redox 

titration (λmax(CR) and εmax(CR)) 

 

 

 

a Eox1 = 0.8955 ΔGox1 - 4.06 (Fig. 1.4). b Obtained in this work by cyclic voltammetry. c 

See the experimental section. 

 

Based on the predictions from the (TD) DFT calculations we undertook the 

synthesis of TAB and its brominated derivatives 6–9 as well as carbazole derivatives 4 

and 5 using standard literature procedures,26–36 and all synthetic details are included in the 

experimental section. All compounds were characterized by 1H/13C NMR spectroscopy as 

well as by MALDI spectrometry. These compounds were then subjected to the cyclic 

voltammetric analysis at 22 °C in CH2Cl2 containing 0.2 M tetra-n-butylammonium 

hexafluorophosphate at a platinum electrode. The reversible voltammograms of TAB and 

6–9 showed two oxidation waves (Figure 1.5) corresponding to the formation of the  

Compound ΔGox1, 

eV 

Eox1 
a, 

V 

Eox1, V Eox2, 

V 

λDₒ→D1

, nm 

fosc λmax( CR), 

nm 

ε (CR), 

M-1cm-1 

MB 5.306 0.69 0.70 25,b ̶ 604 0.30 728 28200 

1 5.472 0.84 0.82 25 ̶ 686 0.35 757 25 ̶ 

2 5.612 0.97 0.96 25 ̶ 721 0.24 805 25 ̶ 

3 5.803 1.14 1.14 25 ̶ 823 0.14 880 25 ̶ 

4 5.682 1.03 1.080 25 ̶ 1291 0.03 820 25 ̶ 

5 5.651 1.00 1.030 b   ̶ 1526 0.27 854, 2500 ̶ 

TAB 5.044 0.46 0.436 b 0.636 b 1353 1.00 1490 38100 

6 5.191 0.59 0.576 b 0.760 b 1420 0.73 1735 24000 

7 5.220 0.61 0.600 b 0.780 b 1304 0.56 1750 24500 

8 5.442 0.81 0.768 b 0.856 b 1339 0.21 2150 15000 

9 5.366 0.75 0.720 b 0.823 b 1428 0.30 2128 15000 

10 c 4.853 0.29 0.290 b ̶ 575 0.23 681 31500 

BCc 5.404 0.78 0.780 b ̶ 785 0.09 805 9930 
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Figure 1. 5. Cyclic and square-wave voltammograms of TAB and 4-9 (Chart 1.1). Poor 

CV quality of 5 was due to its poor solubility in CH2Cl2. 

 

cation radical and dication. The electrochemical oxidation potentials of various molecules 

in Chart 1.1 are compiled in Table 1.1 (columns 4 and 5), and they were in excellent 

agreement with the predicted oxidation potentials using DFT calculations (Table 1.1, 

column 3). Having obtained the oxidation potentials of all compounds in Chart 1.1, they 
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were included in Figure 1. 4, and all the new points (shown as red squares) fell on the 

original correlation line. 

 

 

 

Figure 1. 6  Spectral changes attendant upon the reduction of TAB and 6-9 (A-E, as 

denoted) by THEO+• SbCl6
– and NAP+• SbCl6

– in CH2Cl2 at 22 ºC as well as the 

corresponding molar fraction plots against the number of added equivalents of neutral 

electron donor (i.e. TAB and 6-9). See also Table 1.2. 
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We next generated the cation radicals/dications of TAB and 6–9 using a hindered 

naphthalene (i.e. 1,2,3,4,7,8,9,10-octahydro-1,1,4,4,7,7,10,10-octamethylnaphtacene) 

cation radical (Ered = 0.94 V vs. Fc/Fc+, λmax = 672 nm, εmax = 9300 cm−1 M−1)37,38 via 

redox titration under careful exclusion of moisture; see, e.g. Figure 1. 6.  

Table 1. 2. Wavelengths and oscillator strengths corresponding to the lowest-energy 

transition in the cation radicals of compounds in Chart 1.1, obtained from the TD-DFT 

calculations [B1LYP-40/6-31G(d)+PCM(CH2Cl2)] (λD0→D1 and fosc) as well as the lowest-

energy transition of cation radicals (λmax(CR) and εmax(CR)) and dications (λmax(DC) and 

εmax(DC)) of these compounds obtained by spectroscopic redox titration 

 

 

 

 

The resulting absorption spectra of the cation radicals and dications of TAB and 

6–9 are compared in Figure 1.7. Interestingly, the bands contained in the absorption 

spectra of the cation radical and dication of TAB (i.e. TAB+•: λmax = 1490 nm, εmax = 38 

100 cm−1 M−1, and λmax = 489 nm, εmax = 35 000 cm−1 M−1; TAB2+: λmax = 807 nm, εmax = 

112 600 cm−1 M−1) closely matched the additional absorption bands in the spectrum of 
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the aged sample of MB+•, i.e. compare Figure 1.7 and Figure 1. 3 (C). In order to further 

confirm the presence of both TAB+• and TAB2+ in the spectrum of the aged MB+• sample, 

we carried out a redox titration by an incremental addition of sub-stoichiometric amounts 

of TAB0 to a solution of freshly prepared MB+• in CH2Cl2 at 22 °C (Figure 1.8).  

 

 

 

Figure 1. 7. Absorption spectra of cation radicals (left) and dications (right) of TAB, 6–9 

in CH2Cl2 at 22 °C obtained via spectroscopic redox titrations using THEO+• or NAP+• 

(see Figure 1.6 for the corresponding titration figures). 
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Interestingly, the spectrum obtained after addition of ∼0.15 equivalents of TAB0 

to a solution of MB+• produced a spectrum which closely resembled the spectrum of the 

aged MB+• sample (shown as thick blue line). The relative amounts of TAB+• and TAB2+ 

at various titration points in Figure 1.8 were evaluated by a deconvolution of the 

individual spectra using the clean absorption spectra of MB+•, TAB+•, and TAB2+, which 

resulted in the concentrations of each species for a given titration point. This spectral 

deconvolution procedure allowed accurate determination of the concentrations of MB+•, 

TAB+•, and TAB2+ at every titration point in Figure 1.8, and these are plotted as molar 

fractions against the added equivalents of TAB0 in Figure 1.8 (B).  

 

 

 

Figure 1. 8. (A) Spectral changes observed upon the incremental addition of 1.52 mM 

TAB to a freshly prepared solution of MB+• SbCl6
− (20 μM) in CH2Cl2 at 22 °C. Thick 

blue line shows the absorption spectrum of the aged sample of MB+• SbCl6
–. (B) Molar 

fractions of MB+• (red circles), TAB+• (black circles), TAB2+ (blue circles) plotted 

against the number of added equivalents of neutral TAB at each addition. The data points 

in panel B were fitted by accounting multiple equilibria amongst various oxidized and 

neutral species which showed that the second oxidation potential of TAB is somewhat 

higher (Eox2 = 0.71 V) as compared to the electrochemical potentials (0.64 V) owing to 

the fact that redox titrations are carried out in the absence of an electrolyte. 
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The molar fraction vs. the added TAB0 plot clearly shows that oxidation of TAB0 

by MB+•, up to the equimolar concentration of MB+• and TAB0, produces both the cation 

radical and dication of TAB. Indeed, this analysis confirmed the presence of ∼0.11 

equivalents of TAB+• and ∼0.04 equivalents of TAB2+, i.e. it amounts to the presence of 

∼0.15 equivalents of TAB in the sample of MB+• used in this study.  

The presence of TAB in the aged samples of MB+• was further validated by comparison 

of the 1H NMR spectrum of the reduced MB0 with the spectrum of authentic TAB0 

(Figure 1.1 and Figure 1.9).  

 

 

 

Figure 1. 9. Comparison of the 1H NMR spectra of the aged sample of MB+•, reduced to 

MB0 by using ferrocene (identical to that in Figure 1.1), and NMR spectra of authentic 

TAB and 6-9. 
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At the same time, the 1H NMR spectral analysis showed the absence of 6–9 in the 

aged (reduced) sample of MB0 (Figure 1.9). Beyond its role as an impurity in the aged 

sample of MB+•, TAB+• represents an interesting example of a mixed-valence compound, 

where the DFT calculations predict that the hole was largely (88%) localized on the 

benzidine fragment and spread only slightly onto the p-bromophenyl rings (i.e. 3% per 

aryl group), as shown by the spin/charge distribution in Figure 1.10 (see also Figure 

1.11) Importantly, the 1−e− oxidation induced bond length in TAB → TAB+• 

transformation were in accordance with the disposition of the bonding/antibonding lobes 

of HOMO, i.e. bonds with bonding HOMO lobes undergo elongations, whereas the bonds 

with antibonding lobes undergo contraction, see Table 1.3. 12,39–43  

 

 

 

Figure 1. 10. (A) Spin density (0.001 au) distribution plot of TAB+• [B1LYP-40/ 6–

31G(d) + PCM(CH2Cl2)] showing, with the aid of green ellipsoid, that 88% of 

spin/charge density (evaluated by the Natural Population Analysis) 44 is localized onto the 

benzidine fragment while the remaining 12% is evenly distributed over the four p-

bromophenyl groups. (B, C) Showing the spatial distribution of HOMO of TAB0 and the 
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distribution of the HOMO density [evaluated as qm = Σncmn 
2 where cmn is the coefficient 

of the atomic orbital χmn in HOMO (φHOMO = Σkckχk), m is the atomic index, and n is 

the index of the atomic orbital in atom m] calculated at the equilibrium geometry of 

neutral TAB0 (B) and at the equilibrium geometry of its cation radical, i.e. TAB+• (C). 

 

However, it is noted that HOMO density distribution in TAB0 is more delocalized 

as compared with the spin/charge distribution in TAB+• due to the oxidation-induced 

structural reorganization that involves planarization of the benzidine fragment (i.e. 

dihedral angle between central phenylene rings θ reduces from 35 to 19°).17 Indeed, the 

HOMO density of TAB0 at the TAB+• geometry is much closer to the spin/charge density 

distribution in TAB+• (i.e. 76% on the benzidine fragment and 6% per each aryl group)  

than the HOMO density at the neutral TAB geometry (i.e. 60% on the benzidine fragment 

and 10% per each aryl group), see Figure 1.10.  

 

 

 

Figure 1. 11. Difference between the spatial electron density distributions in the TAB 

and TAB+•, with the geometries corresponding to TAB+• [B1LYP-40/6 

31G(d)+PCM(CH2Cl2)]. 
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In order to confirm this DFT prediction, we obtained single crystals of TAB+• 

SbCl6
− for crystallographic analysis. In a typical experiment, a chilled (∼0 °C) Schlenk 

tube was charged with TAB (30 mg, 0.037 mmol), anhydrous CH2Cl2 (5 mL), and 

triethyloxonium hexachloroantimonate (Et3O
+ SbCl6

−)45 (32 mg, 0.074 mmol) under an 

argon atmosphere, and the resulting mixture was stirred for 30 minutes. The resulting 

dark-orange solution was carefully layered with dry toluene (10 mL) and placed in a 

refrigerator for 12 hours at −10 °C. After this time, a well-formed array of single crystals 

of TAB+•SbCl6
− was obtained and subsequently analysed by X-ray crystallography (see 

Figure 1.18 –1.20 and Tables 1.4-1.6 in the experimental part). The ORTEP diagrams 

of TAB and TAB+• as well as the crystal packing diagram of TAB+• are presented in 

Figure 1.12. The TAB+• and SbCl6
− counter ions form mixed layers along the ab plane, 

and within these layers, the SbCl6
− counter ions gravitate toward nitrogen atoms.  
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Figure 1. 12. The ORTEP diagrams (50% probability) of TAB0 (A) and TAB+• SbCl6
− 

(B) as well as the juxtaposition of TAB0 (grey color) and TAB+• (orange color) showing 

planarization of the benzidine fragment and enhanced propeller arrangement of the p- 

bromophenyl groups around the nitrogen atoms (C). The packing arrangement of 

TAB+•SbCl6
− showing the layers of TAB units with no close contact between the 

benzidine fragments, which are separated by the SbCl6
− counter anions (D). Note that the 

co crystallized CH2Cl2 molecules and hydrogens were omitted for clarity. Also see 

Figure 1.18 –1.20 and Tables 1.4-1.6 in the experimental part in the experimental part.  

 

 

The benzidine moieties are positioned in the clefts formed by the brominated aryl 

rings without any parallel overlap between the benzene rings, see Figure 1.12. D. An 

overlap of TAB and TAB+• structures clearly show that the benzidine fragment of TAB is 

significantly planarized (i.e., the value of θ decreased from 22° to 3°) while the p-

bromophenyl rings become much more propeller shaped (i.e. reduced conjugation with 

nitrogen lone pairs as judged by change in the average dihedral angle from ∼45° to ∼35°) 
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upon 1e− oxidation. The availability of precise X-ray structures of TAB+• SbCl6
− as well 

as of neutral TAB allowed a comparison of the bond length changes in the TAB → 

TAB+• transformation. Expectedly, the bond contractions and elongations were mostly 

confined to the benzidine fragment of TAB, which was significantly planarized (i.e., the 

value of θ decreased from 22° to 3°) upon 1e− oxidation, while the four p-bromophenyl 

rings did not undergo significant bond length changes (Figure 1.13). Moreover, a 

comparison of the bond length changes in TAB → TAB+• transformation by DFT 

calculations and X-ray structural analysis clearly shows a linear correspondence (Figure 

1.13), and thus confirming the validity of the usage of B1LYP-40 functional for DFT 

calculations. These results clearly suggest that spectral contamination in the aged sample 

of MB+• is largely due to the formation of TAB+• and TAB2+, which most likely are 

produced by the oxidative Scholl-type reaction,46 where an eventual loss of a molecular 

bromine produces TAB, which undergoes oxidation with MB+•.47  

 

 

 

Figure 1. 13. Comparison of the oxidation-induced bond length changes (in Å) in TAB 

obtained by X-ray crystallography (abscissa) and DFT calculations (ordinate). Note that 
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the bond length changes (i.e. b1–b10) depicted in the structure are based on the averages 

of equivalent bonds. See also Figure 1.21 and Table 1.3 

 

To prevent degradation of MB+•, we propose to substitute bromine atoms in the 

para-positions of MB by the sterically demanding tertiary-butyl groups, and place 

bromine atoms at ortho-positions of the aromatic ring (see Scheme 1.8 in experimental 

part). The synthesis of the proposed tris(2-bromo-4-tbutylphenyl) amine (BC) was easily 

accomplished from readily available triphenylamine by a facile t-butylation48 using t-

butanol and trifluoroacetic acid followed by bromination using NBS in DMF (see 

Scheme 1. 8 in the experimental part for details). Cyclic voltammetric analysis of tris(4-

tbutylphenyl) amine (10) and its brominated analogue BC (Figure 1.14.A and Figure 

1.16 in the experimental part) showed that they undergo reversible one-electron 

oxidation at varying scan rates (v = 50 to 300 mV s−1). Interestingly, a placement of 

bromine atoms at the ortho-positions in 10 increases its oxidation potential from 0.29 to 

0.78 V vs. Fc/ Fc+, which suggests that ‘blues cousin’ has slightly higher oxidizing power 

[i.e. Ered(BC+•) = 0.78 V] as compared to ‘magic blue’ [i.e. Ered(MB+•) = 0.70 V]. 
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Table 1. 3. Comparison of the bond lengths (in Å) of TAB0 (N) and TAB+• (CR), 

obtained by X-ray crystallography and by DFT calculations 

 

 

 

The cation radical of BC was first generated by the spectroscopic redox titration, 

where sub-stoichiometric amounts of BC0 were incrementally added to a solution of 

NAP+• (Figure 1.14). The absorption spectrum of BC+• showed a low-energy band at λmax 
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= 805 nm (εmax = 9930 cm−1 M−1) which is slightly redshifted as compared to the 

absorption band of MB+• (λmax = 728 nm, εmax = 28200 cm−1 M−1). Note that BC+• SbCl6
− 

can be prepared as a crystalline solid either by reaction with SbCl5 or NO+ SbCl6 
− similar 

to the preparation of MB+• SbCl6
 − (see Experimental part), and the spectrum of the 

resulting BC+• was identical to the spectrum presented in Figure 1.14. B. The high 

stability of BC+• SbCl6
 − will allow it to serve as a convenient replacement of MB+• SbCl6

 

−, and we believe that it will find widespread use for the spectroscopic characterization of 

various oxidized species and will become a useful chemical oxidant for various oxidative 

transformations. 

 

 

 

Figure 1. 14. (A) Cyclic voltammograms of 5 mM BC in CH2Cl2 (22 °C) containing 0.2 

M tetra-n-butylammonium hexafluorophosphate at different scan rates (as denoted). (B) 

Spectral changes attendant upon incremental addition of 3.0 mM BC0 to a solution of 

NAP+• SbCl6
− (0.15 mM) in CH2Cl2 at 22 °C (see also Figure 1.15 in the Experimental), 

and (C) plot of decrease of absorbance at 672 nm (due to the disappearance of NAP+•) 

and increase of absorbance at 805 nm (due to the formation of BC+•) against the 

equivalents of added neutral BC0. 
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CONCLUSION 

 

In summary, we have demonstrated that ‘magic blue’ (MB+•) undergoes slow 

decomposition in the solid state upon aging thus giving rise to the additional absorption 

bands at 480 nm, 805 nm, and 1550 nm. A combined DFT and experimental (NMR, 

electrochemistry, optical spectroscopy, and X-ray crystallography) study led to the 

identification of the main decomposition product, or blues brother, as tetrakis-(4 

bromophenyl)benzidine whose cation radical (λmax = 489, 1490 nm) and dication (807 

nm) are responsible for the additional absorption bands. This study allowed us to further 

demonstrate the excellent performance of the B1LYP-40 functional for accurately 

predicting the electrochemical oxidation potentials of a variety of triarylamine derivatives 

and the optical properties of their cation radicals by (TD-)DFT calculations which aided 

in identification of the blues brother. Moreover, the excellent performance of the B1LYP-

40 functional17,19–22 was further demonstrated by close correspondence of the calculated 

structures of TAB and TAB+• with those obtained by X-ray crystallography. 

The fact that TAB is formed by dimerization of MB led us to design and synthesize its 

close analogue tris(2-bromo-4-tertbutylphenyl) amine referred to as ‘blues cousin’ (BC: 

Eox1 = 0.78 V vs. Fc/Fc+, λmax (BC+•) = 805 nm, εmax = 9930 cm−1 M−1), in which 

oxidative dimerization is hampered by positioning the sterically demanding tert-butyl 

groups at the para-positions of the aryl rings. The ease of preparation of BC0 and high 

stability of its cation radical (BC+•) suggest that it will become a useful one-electron 

oxidant for widespread use in organic, organometallic, and inorganic chemistry. 
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GENERAL EXPERIMENTAL METHODS AND MATERIALS 

 

All reactions were performed under an argon atmosphere unless otherwise noted. 

All commercial reagents were used without further purification unless otherwise noted. 

Dichloromethane (Aldrich) was repeatedly stirred with fresh aliquots of concentrated 

sulfuric acid (~10 % by volume) until the acid layer remained colorless. After separation, 

the CH2Cl2 layer was washed successively with water, 5% aqueous sodium bicarbonate, 

water, and saturated aqueous sodium chloride and dried over anhydrous calcium chloride. 

The CH2Cl2 was distilled twice from P2O5 under an argon atmosphere and stored in a 

Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. Acetonitrile was 

stirred with molecular sieves overnight, filtered, and again stirred with CaCl2 overnight. 

After that it was filtered and distilled twice from P2O5 under an argon atmosphere and 

stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. The 

hexanes and toluene were distilled over P2O5 under an argon atmosphere and then 

refluxed over calcium hydride (~12 h). After distillation from CaH2, the solvents were 

stored in Schlenk flasks under an argon atmosphere. Tetrahydrofuran (THF) was dried 

initially by distilling over lithium aluminum hydride under an argon atmosphere and 

stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. NMR 

spectra were recorded on a Varian 400 MHz NMR spectrometer 
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Method of Cyclic Voltammetry of TAB and 4-9 

The CV cell was of an air-tight design with high vacuum Teflon valves and Viton 

O-ring seals to allow an inert atmosphere to be maintained without contamination by 

grease. The working electrode consisted of an adjustable platinum disk embedded in a 

glass seal to allow periodic polishing (with a fine emery cloth) without changing the 

surface area (~1 mm2) significantly. The reference SCE electrode (saturated calomel 

electrode) and its salt bridge were separated from the catholyte by a sintered glass frit. 

The counter electrode consisted of a platinum gauze that was separated from the working 

electrode by ~3 mm. The CV measurements were carried out in a solution of 0.1 M 

supporting electrolyte (tetra-n butylammonium hexafluorophosphate) and the substrate in 

dry CH2Cl2 under an argon atmosphere at 22 ºC.  All cyclic voltammograms were 

recorded at a sweep rate of 50 mV sec-1 and were IR compensated (Figure 1.5).  The 

oxidation potentials (Eox, calculated by taking the average of anodic and cathodic peaks) 

were referenced to the added (equimolar) ferrocene. 

 

 

 

Figure 1. 15. Spectral changes attendant upon the reduction of 3.03 mM BC by 0.15 mM 

NAP+•
 SbCl6

– in CH2Cl2 at 22 ºC as well as the corresponding molar fraction plot against 

the number of added equivalents of neutral BC. 
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Figure 1. 16. (Left) Cyclic and square-wave voltammograms of 5 mM 10 in CH2Cl2 (22 

ºC) containing 0.2 M tetra-n-butylammonium hexafluorophosphate at v = 200 mV s-1. 

(Right) The molar absorptivity spectrum of cation radical 10 in CH2Cl2 (22 ºC). 

 

 

Synthesis of compounds in Chart 1.1. 

 

Synthetic schemes for the preparation of compounds in Chart 1.1 are presented 

below in individual schemes S1-S8 together with the detailed experimental procedures 

for each step of synthesis and their characterization data (i.e. numerical spectroscopic 

data) as well as 1H/13C NMR spectra are given below. Note that identity of each molecule 

was further confirmed by MALDI mass spectrometry. 

Scheme 1. 1: Synthesis of 3, 6-dibromo-9-(4ʹ-bromophenyl)-9H-carbazole (S1-2 or 

4). 

 

 

Preparation of 9-(4-bromophenyl)-9H-carbazole (S1-1).49 A mixture of 

carbazole (1.0 g, 5.98 mmol), 4-bromoiodobenzene (1.86 g, 6.58 mmol), CuI (1.13 g, 
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5.98 mmol), 1,10 phenanthroline (1.05 g, 5.86 mmol) and KOH (1.50 g, 26.8 mmol) in p-

xylene (50 mL) was stirred at ~140 °C for 45 hours. The reaction mixture was cooled to 

room temperature and the resulting suspension was filtered and residue was washed with 

p xylene (3x 10mL).  To the resulting filtrate was added dichloromethane (160 mL) and 

water, and the mixture was dried over anhydrous MgSO4. After removal of the solvent in 

vacuo, the crude product was purified on a silica gel chromatography with hexanes as 

eluent to afford compound S1-1 as a solid. Yield: 1.26 g (65%). m.p. 146-147 ºC (lit.49 

m.p. 149-150 ºC). 1H NMR (400 MHz, CDCl3) δ ppm 7.3 (t, 2H, J = 7.24 Hz), 7.41 (m, 

6H), 7.73 (d, 2H, J = 7.70 Hz), 8.14 (d, 2H, J = 7.70 Hz); 13C NMR (400 MHz, CDCl3) δ 

ppm 109.71, 120.37, 120.56, 121.03, 123.62, 126.25, 128.88, 133.27, 136.95, 140.73. 

Preparation of 3,6-dibromo-9-(4-bromophenyl)-9H-carbazole (S1-2 or 4).50 

Compound S1-1 (1.0 g, 3.10 mmol) was dissolved in dichloromethane (17 mL) in a 

Schlenk flask wrapped with aluminum foil. NBS (1.36 g, 7.69 mmol) was added as solid 

at 0 °C in the dark and the reaction mixture was stirred overnight (~16 h), quenched with 

water and extracted with dichloromethane (3 x 40 mL). The combined organic extracts 

were dried over anhydrous MgSO4 and filtered. The organic layer was evaporated under 

reduced pressure. The residue was purified by silica gel chromatography with hexanes as 

the eluent to afford S1-2 (4) as a crystalline solid. Yield: 1.46 g (98%). m.p. 208-210 ºC. 

1H NMR (400 MHz, CDCl3) δ ppm 7.21 (d, 2H, J = 8.75 Hz), 7.38 (d, 2H, J = 8.76 Hz), 

7.50 (dd, 2H, J = 8.75 Hz, 1.9 Hz), 7.74 (d, 2H, J = 8.76 Hz), 8.18 (d, 2H, J = 1.9 Hz); 

13C NMR (400 MHz, CDCl3) δ ppm 111.46, 113.54, 121.90, 123.51, 124.21, 128.72, 

129.74, 133.57, 136.00, 139.77. 

 



46 

 

 

 

Scheme 1. 2: Synthesis of 4,4'-bis(3,6-dibromo-9H-carbazol-9-yl)-1,1'-biphenyl (S2-2 

or 5) 

 

 

 

Preparation of 3,6-dibromo-9H-carbazole (S2-1).51 Carbazole (0.5 g, 3.0 

mmol) was dissolved in CH2Cl2 (100 mL) and SiO2 (10 g, dried beforehand at 120 °C) 

and NBS (1.07 g, 6.0 mmol) was added slowly. The reaction mixture was stirred 

overnight (~16 h) at 22 °C in the dark under an argon atmosphere. The mixture was 

filtered and the silica gel was washed with CH2Cl2 (3 x 30 mL).  The combined organic 

layers were washed with brine (3 x 20 mL), dried over anhydrous MgSO4, filtered, and 

evaporated to give S2-1 as a greenish solid, which was further purified by crystallization 

from a mixture of ethanol and water (70:30). Yield: 0.724 g (74%). m.p. 203-205 ºC 

(lit.52 m.p. 204-206 ºC). 1H NMR (400 MHz, CDCl3) δ ppm 7.31 (d, 2H, J = 8.4 Hz), 

7.52 (dd, 2H, J = 8.59 Hz, 2.0 Hz), 8.09 (br s, 1H), 8.12 (d, 2H, J = 2.0 Hz); 13C NMR 

(400 MHz, CDCl3) δ ppm 112.43, 112.82, 123.45, 124.28, 129.50, 138.52. 

Preparation of 4,4'-bis(3,6-dibromo-9H-carbazol-9-yl)-1,1'-biphenyl (S2-2 or 

5)53 Compound S2-1 (0.59 g, 1.83 mmol), Cs2CO3 (0.59 g, 1.83 mmol), 4,4ʹ-

diiodobiphenyl (0.41 g, 1.01 mmol), CuI (0.035 g, 0.183 mmol), LiCl (0.077 g, 1.83 

mmol) and DMF (6 mL) were added in a sealed tube with screw cap and stirred in a ~150 

°C oil bath.  After 48 h, the reaction mixture was cooled to room temperature and diluted 
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with saturated aqueous ammonium chloride. The product was extracted, first with ethyl 

acetate and then with chloroform. The combined organic extracts were dried over 

anhydrous MgSO4, filtered and the solvent was evaporated under reduced pressure. The 

compound S2-2 (or 5) is partially soluble in most common organic solvents and therefore 

the accurate yield was determined. Measured m.p. > 400 ºC. 1H NMR (400 MHz, CDCl3) 

δ ppm 7.36 (d, 2H, J = 8.70 Hz), 7.55 (dd, 2H, J = 8.89 Hz, 1.88 Hz), 7.65 (d, 2H, J = 

8.33 Hz), 7.91 (d, 2H, J = 8.28 Hz), 8.23 (d, 2H, J = 1.88 Hz). 13C NMR was not taken 

due to poor solubility in CDCl3. 

Scheme 1. 3:Synthesis of tetrakis-(4-bromophenyl)benzidine (S3-2 or TAB). 

 

Preparation of 4-bromo-N-(4-bromophenyl)-N-phenylaniline (S3-1).54 In a 

dry Schlenk flask a mixture of aniline (1.1 g, 12 mmol), 1-bromo-4-iodobenzene (8.5 g, 

30 mmol), CuI (0.07 g, 0.36 mmol), 1,10-phenanthroline (0.065 g, 0.36 mmol), 

potassium hydroxide (5.2 g, 92 mmol) and toluene (60 mL) was stirred under an argon 

atmosphere at reflux overnight (~16 h). The resulting mixture was then cooled to room 

temperature and poured into distilled water. The products were extracted with 

dichloromethane (4 × 50 mL), and the organic layers were dried over anhydrous MgSO4. 

The solvent was evaporated under reduced pressure, and the resulting crude product was 

purified by silica gel column chromatography using hexanes as an eluent to obtain S1-1 

as a colorless viscous liquid. Yield: 2.14 g (44%). 1H NMR (400 MHz, CDCl3) δ ppm 
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6.94 (d, 4H, J = 8.9 Hz), 7.06 (m, 3H), 7.27 (m, 2H), 7.34 (d, 4H, J = 8.9 Hz); 13C NMR 

(400 MHz, CDCl3) δ ppm 115.60, 123.88, 124.74, 125.55, 129.70, 132.48, 146.66, 

147.04. 

Preparation of S3-2 (TAB).55,56 In a dry Schlenk flask compound S1-1 (0.32 g, 

0.79 mmol) was dissolved in dry dichloromethane (27 mL) and cooled to 0°C.  After 5 

minutes, methanesulfonic acid (3 mL) was added under an argon atmosphere.  Solid 

DDQ (2,3-dichloro 5,6-dicyanobenzoquinone) (0.27 g, 1.2 mmol) was added, and the 

resulting mixture was stirred for 30 minutes. The reaction was quenched with saturated 

aqueous NaHCO3 solution (50 mL) and extracted with dichloromethane (3 x 25 mL). The 

organic extracts were washed with water and dried over anhydrous MgSO4. Solvent was 

removed under reduced pressure and the resulting crude solid was crystallized from 

acetonitrile to afford TAB as a colorless crystalline solid in nearly quantitative yield. m.p. 

226-227 ºC. 1H NMR (400 MHz, CDCl3) δ ppm 6.97, (d, 4H, J = 8.93 Hz), 7.09 (d, 2H, J 

= 8.64 Hz), 7.36 (d, 4H, J = 8.93 Hz), 7.45 (d, 2H, J = 8.7 Hz); 13C NMR (400 MHz, 

CDCl3) δ ppm 115.88, 124.68, 125.78, 127.85, 132.60, 135.63, 146.16, 146.53. 
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Scheme 1. 4: Synthesis of 2-bromo-N4,N4,N4',N4'-tetrakis(4-bromophenyl)-[1,1'-

biphenyl]-4,4'-diamine (S4-4 or 6) 

 

 

Preparation of di-tert-butyl-1-phenylhydrazine-1,2-dicarboxylate (S4-1).57 A 

sealed tube was charged with iodobenzene (1.83 g , 8.97 mmol), di-tert-butylhydrazine-

1,2 dicarboxylate (2.5 g, 10.76 mmol), Pd(OAc)2 (0.1 g, 0.45 mmol), P(t-Bu)3·HBF4 

(0.26 g, 0.89 mmol), Cs2CO3 (4.09 g, 12.55 mmol) and dry toluene (20 mL) at room 

temperature. The reaction mixture was degassed, and tube was filled with argon, sealed 

with a screw cap and heated at 110 °C for 4h. The reaction mixture was then cooled to 

room temperature and filtered through a short pad of silica gel using ethyl acetate as the 

eluent. The organic solution was concentrated and purified by flash column 

chromatography on silica gel (hexanes: ethyl acetate = 10:1) to afford hydrazide S4-1 as a 

pale yellow solid. Yield = 0.75 g (23%). m.p. 78-80 ºC. 1H NMR (400 MHz, CDCl3) δ 

ppm 1.49 (s, 18H), 6.81/6.60 (rotamers, 2 x br s, 1H, NHBoc), 7.13 –7.17 (m, 1H), 7.33 – 

7.29 (m, 2H), 7.40 (m, 2H); 13C NMR (400 MHz, CDCl3) δ ppm 28.26, 28.31, 81.6, 82.3, 

123.8, 125.6, 128.5, 142.3, 153.7, 155.5. 
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Preparation of di-tert-butyl-1-(3-bromophenyl)-2-phenylhydrazine-1,2 

dicarboxylate (S4-2).58 A sealed tube was charged with 1-bromo-3-iodobenzene (0.41 g, 

1.46 mmol), S4-1 (0.41 g, 1.32 mmol), CuI (0.28 g, 1.46 mmol), 1,10-phenanthroline 

(0.26 g, 1.46 mmol), Cs2CO3 (0.47 g, 1.46 mmol) and DMF (3.0 mL) at room 

temperature. The reaction mixture was degassed, the tube was filled with argon, sealed 

with a screw cap and heated at 80 °C for 3 h.  The reaction mixture was then cooled to 

room temperature and filtered through a short pad of silica gel using ethyl acetate as the 

eluent. The organic solution was concentrated and purified by flash column 

chromatography on silica gel using hexanes as the eluent to afford compound S4-2. 

Yield: 0.54 g, 87%. 1H NMR (400 MHz, CDCl3) δ ppm 7.14-7.18 (t, 2H, J = 7.9 Hz), 

7.26-7.40 (m, 6H), 7.66 (bs, 1H); 13C NMR (400 MHz, CDCl3) δ ppm 28.26, 28.29, 83.3, 

83.5, 121.1 (bs), 122.7, 122.9 (bs), 126.4, 129.0, 129.3, 130.5, 135.0, 141.5, 143.1, 153.4, 

153.6. 

Preparation of 2-bromo-[1,1'-biphenyl]-4,4'-diamine (S4-3).58 A Schlenk flask 

was charged with S4-2 (0.47 g, 1.01 mmol), 10 mL of ethanol and 0.5 mL of conc. HCl at 

room temperature. The reaction mixture was heated to reflux for 1 h, then cooled to 0 °C, 

neutralized with aqueous NaHCO3, extracted with dichloromethane and dried over 

anhydrous MgSO4.  The resulting mixture was filtered and the solvent evaporated under 

reduced pressure. The crude product was purified by silica gel chromatography to afford 

S4-3, which was rather unstable and thus was used in the next step without further 

purification. Yield: ~77%. 1H NMR (400 MHz, CDCl3) δ ppm 3.71 (bs, 4H), 6.63 (dd, 

1H, J = 8.23 Hz, 2.4 Hz), 6.70 (d, 2H, J = 8.63 Hz), 6.97 (d, 1H, J = 2.38 Hz), 7.08 (d, 
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1H, J = 8.23 Hz), 7.18 (d, 2H, J = 8.63 Hz); 13C NMR (400 MHz, CDCl3) δ ppm 114.35, 

114.56, 119.07, 123.33, 130.65, 131.57, 131.86, 132.70, 145.51, 146.33. 

2-bromo-N4,N4,N4',N4'-tetrakis(4-bromophenyl)-[1,1'-biphenyl]-4,4'-

diamine (S4-4 or 6).54 In a dry Schlenk flask, a mixture of S4-3 (0.28 g, 1.06 mmol), 1-

bromo-4-iodobenzene (1.23 g, 4.36 mmol), CuI (0.08 g, 0.42 mmol), 1,10-phenanthroline 

(0.076 g, 0.42 mmol), potassium hydroxide (0.45 g, 8.15 mmol) and toluene (20 mL) was 

stirred and refluxed under argon atmosphere for 24h. The mixture was then cooled to 

room temperature and poured into distilled water. The products were extracted with 

dichloromethane (4 x 50 mL) and the organic layers were dried over anhydrous MgSO4, 

filtered and evaporated under reduced pressure. The resulting crude product was purified 

by silica gel column chromatography using hexanes as the eluent. The brown solid was 

further purified by multiple treatment with charcoal (20 mg) in dichloromethane (100 

mL). The resulting solid was crystallized from a mixture of acetonitrile and 

dichloromethane to afford S4-4 (or 6) as pale yellow solid. Yield: 0.14 g, (15%). m.p. 

244-246 ºC. 1H NMR (400 MHz, CDCl3) δ ppm 6.99 (m, 9H), 7.06 (d, 2H, J = 8.68 Hz), 

7.19 (d, 1H, J = 8.40 Hz), 7.30 (m, 3H), 7.38 (m, 8H); 13C NMR (400 MHz, CDCl3) δ 

ppm 116.03, 116.64, 122.54, 123.12, 123.17, 126.04, 126.16, 127.73, 130.68, 131.86, 

132.61, 132.79, 135.40, 136.53, 145.97, 146.30, 146.44, 147.09. 
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Scheme 1. 5: Synthesis of 3-bromo-N4,N4,N4',N4'-tetrakis(4-bromophenyl)-[1,1' 

biphenyl]-4,4'-diamine (S5-5 or 7). 

 

 

Preparation of (E)-1-(3-bromophenyl)-2-phenyldiazene (S5-1)59  To a solution 

of nitrosobenzene (5.25 g, 49.01 mmol) in glacial acetic acid (40 mL), 2-bromoaniline 

(10.11 g, 58.81 mmol) was added, resulting immediately in the formation of a green 

solution. The mixture was stirred overnight (~16 h) at 22oC, after which time it turned 

deep red.  This mixture was poured into 700 mL of water. Aqueous NaOH (50 g in 300 

mL water) was added slowly until the solution was almost neutralized (tested by pH 

paper). [Caution: Addition of alkali to this reaction mixture is highly exothermic!] 

The resulting solution was extracted with diethyl ether (3 x 100 mL) and the combined 

ether extracts were washed with aqueous Na2CO3 solution (2 x 100 mL). The ethereal 

solution was then treated with a mixture of diethyl ether and HCl (30 mL HCl in 50 mL 

diethyl ether). The precipitated 2-bromoaniline hydrochloride was filtered off, and the 
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filtrate evaporated to about 100 mL. The red solution containing bromoazobenzene S5-1 

was subjected to column chromatography on basic alumina using diethyl ether as the 

eluent. The resulting red oil from chromatographic separation solidified upon treating 

with ethanol-solid carbon dioxide (dry ice). The red solid mass was allowed to warm to 0 

°C and was filtered. Yield: 4.84 g (37%). m.p. 35-36 ºC (lit.52 m.p. 36 ºC). 1H NMR (400 

MHz, CDCl3) δ ppm 7.32 (td, 1H, J = 7.61 Hz, 1.67 Hz, 0.65 Hz), 7.40 (td, 1H, 7.7 Hz, 

1.67 Hz, 0.70 Hz), 7.53 (m, 3H), 7.68 (dd, 1H, J = 7.96 Hz, 1.75 Hz), 7.76 (dd, 1H, J = 

7.88 Hz, 1.33 Hz), 7.98 (m, 2H); 13C NMR (400 MHz, CDCl3) δ ppm 117.95, 123.58, 

125.89, 128.14, 129.33, 131.75, 132.04, 133.89, 149.76, 152.76. 

Preparation of 3-bromo-[1,1'-biphenyl]-4,4'-diamine (S5-2).59 To a solution of 

bromoazobenzene S5-1 (3.26 g) in ethanol (40 mL) zinc dust (1.70 g, 26.20 mmol) was 

added and the mixture was stirred. An aqueous ethanolic solution of NaOH (2 g NaOH 

dissolved in 5.0 mL water + 35 mL ethanol) was added to the above reaction mixture and 

it was refluxed until the red color disappeared (~2 h). It was then cooled to ambient 

temperature and filtered into an excess of concentrated hydrochloric acid. The solid Zn 

residue was washed with warm ethanol and the washings were added to the main filtrate. 

The resulting precipitate of 3-bromobenzidine hydrochloride was filtered and the 

precipitate was added to an aqueous NaOH solution (20 g NaOH in 300 mL H2O) and 

stirred for 20 min, and then extracted with dichloromethane (3 x 30 mL) and dried over 

anhydrous MgSO4. The solvent was removed under reduced pressure and crude product 

was crystallized from dilute aqueous HCl solution to afford pure S5-2. Yield: 2.08 g 

(63%). m.p. 79-81 ºC (lit.52 m.p. 81 ºC). 1H NMR (400 MHz, CDCl3) δ ppm 3.69 (bs, 

2H), 4.06 (bs, 2H), 6.72 (d, 2H, J = 8.71 Hz), 6.79 (d, 1H, J = 8.31 Hz), 7.31 (m, 3H), 
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7.60 (d, 1H, J = 2.17 Hz); 13C NMR (400 MHz, CDCl3) δ ppm 109.94, 115.55, 116.11, 

126.46, 127.41, 130.30, 130.39, 133.11, 142.57, 145.54. 

Preparation of 3-bromo-4,4'-diiodo-1,1'-biphenyl (S5-3).60 To a stirred solution 

of S5-2 (0.5 g, 1.90 mmol) in 48% HBr (3.0 mL) and water (10.0 mL) at 0 °C was added 

slowly an aqueous solution of NaNO2 (0.393 g, 5.70 mmol in 5 mL H2O). The resulting 

mixture was stirred vigorously for 1h at ~0 °C. A cold aqueous solution of KI (6.30 g, 38 

mmol in 10.0 mL H2O) was added in above reaction mixture dropwise and it was allowed 

to stir and warm to room temperature stir during the course of overnight (~16 h). The 

reaction mixture was then diluted with dichloromethane (100 mL) and washed with 10% 

aqueous NaOH solution (100 mL) and Na2S2O3 solution (100 mL) and dried over 

anhydrous MgSO4, filtered, and the solvent was removed under reduced pressure. The 

resulting crude product was purified through flash column chromatography using hexanes 

as the eluent to afford pure S5-3. Yield: 0.63 g (68%). m.p. 81-83 ºC. 1H NMR (400 

MHz, CDCl3) δ ppm 7.16 (dd, 1H, J = 8.23 Hz, 2.14 Hz), 7.26 (d, 2H, J = 8.04 Hz), 7.77 

(d, 2H, J = 8.60 Hz), 7.80 (d, 1H, J = 2.14 Hz), 7.90 (d, 1H, J = 8.23 Hz); 13C NMR (400 

MHz, CDCl3) δ ppm 94.37, 100.29, 126.99, 128.78, 130.55, 131.03, 138.28, 138.32, 

140.78, 141.85. 

Preparation of bis(4-bromophenyl)amine (S5-4).61 A solution of N-

bromosuccinimide (5.27 g, 29.6 mmol) in DMF (25 mL) was added dropwise during the 

course of 30 min to a stirred solution of diphenylamine (2.5 g, 14.8 mmol) in DMF (25 

mL) at ~0 °C. The resulting mixture was stirred at ~0 °C for 6 h. Water was added and 

the precipitate was filtered, washed with water and dried in vacuo to afford S5- 4 as a 

colorless solid. Yield: 4.83 g (~100%). m.p. 104-106 ºC (lit.32,33 m.p. 105-107 ºC). 1H 
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NMR (400 MHz, CDCl3) δ ppm 5.65 (bs, 1H), 6.91 (d, 4H, J = 8.75 Hz), 7.36 (d, 4H, J = 

8.75 Hz); 13C NMR (400 MHz, CDCl3) δ ppm 113.56, 119.65, 132.55, 141.86. 

Preparation of 3-bromo-N4,N4,N4',N4'-tetrakis(4-bromophenyl)-[1,1'-

biphenyl] 4,4'-diamine (S5-5 or 7).54 In a dry Schlenk flask, a mixture of S5-3 (0.40 g, 

0.82 mmol), bis(4-bromophenyl)amine (S5-4, 0.56 g, 1.73 mmol), CuI (0.033 g, 0.173 

mmol), 1,10 phenanthroline (0.031 g, 0.173 mmol), potassium hydroxide (0.77 g, 13.84 

mmol) and toluene (30 mL) was refluxed under an argon atmosphere for 5 d.  It was then 

cooled to room temperature, poured into distilled water and extracted with 

dichloromethane (4 x 20 mL). The organic layers were dried over anhydrous MgSO4, 

filtered, and the solvent evaporated under reduced pressure. The resulting crude product 

was purified by silica gel column chromatography using hexanes as the eluent to afford 

S5-5 (or 7). Yield: 0.18 g (24%). m.p. 213- 215 ºC. 1H NMR (400 MHz, CDCl3) δ ppm 

6.87 (d, 4H, J = 8.95 Hz), 6.98 (d, 4H, J = 8.95 Hz), 7.11 (d, 2H, J = 8.74 Hz) 7.23 (d, 

1H, J = 8.25 Hz), 7.34 (d, 4H, J = 8.95 Hz), 7.38 (d, 4H, J = 8.95 Hz), 7.44 (d, 2H, J = 

8.75 Hz), 7.49 (dd, 1H, J = 8.28 Hz, 2.17 Hz), 7.82 (d, 1H, J = 2.09 Hz); 13C NMR (400 

MHz, CDCl3) δ ppm 115.18, 116.27, 123.72, 123.81, 124.23, 126.03, 127.37, 128.14, 

131.46, 132.39, 132.69, 132.78, 133.64, 140.38, 143.35, 145.75, 146.31, 147.05. 
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Scheme 1. 6:Synthesis 3,3'-dibromo-N4,N4,N4',N4'-tetrakis(4-bromophenyl)-[1,1' 

biphenyl]-4,4'-diamine (S6-3 or 8). 

 

 

 

Preparation of 3,3'-dibromo-[1,1'-biphenyl]-4,4'-diamine (S6-1).62 A mixture 

of o–nitrobromobenzene (5.5 g) and 50% aqueous sodium hydroxide (1.5 mL) was stirred 

at 60 °C, and zinc dust was added intermittently in small portions such that the 

temperature did not exceed 70-80 °C.  After a total of 3.5 g of zinc had been added, the 

resulting sludge was diluted with water (12.5 mL) and 20% aqueous sodium hydroxide 

(7.5 mL). Another portion of zinc (5 g) was added all at once, and the mixture was stirred 

at 70-80 °C until it was nearly colorless. The mixture was then cooled to room 

temperature, poured slowly into 25% sulfuric acid (50 mL) cooled to ~10 °C and then 

filtered. The black-ash colored solid was triturated with diethyl ether (2 x 100 mL). 

Combined ether extracts were dried over anhydrous MgSO4, filtered, and evaporated 
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under reduced pressure. The crude solid was dissolved in 50 mL ether and slowly poured 

into a stirred concentrated HCl (20 mL) cooled in an ice bath (0 °C). After stirring for 1 

hour, the precipitated salt was filtered and washed with ether. The hydrochloride salt was 

suspended in excess 10% aqueous sodium hydroxide and heated on a steam bath for 1h. 

The free base was extracted from the cooled mixture with ether and the ether extracts 

were dried over anhydrous MgSO4 and evaporated. The crude product was crystallized 

from a mixture of ethanol and water to afford pure S6-1. Yield: 2.79 g (60%). m.p. 128-

129 ºC (lit.62 m.p. 127-129 ºC). 1H NMR (400 MHz, CDCl3) δ ppm 4.09 (bs, 4H), 6.79 

(d, 2H, J = 8.28 Hz), 7.25 (dd, 2H, J = 8.28 Hz, 2.10 Hz), 7.56 (d, 2H, J = 2.10 Hz); 13C 

NMR (400 MHz, CDCl3) δ ppm 109.90, 116.13, 126.54, 130.44, 131.71, 143.04. 

Preparation of 3,3'-dibromo-4,4'-diiodo-1,1'-biphenyl (S6-2).61 Using a 

slightly modified literature procedure, a stirred solution of S6-1 (0.5 g, 1.46 mmol) in a 

mixture of 48% HBr (3.0 mL) and water (10.0 mL) at ~0 ºC was added dropwise an 

aqueous solution of NaNO2 (0.302 g, 4.38 mmol in 5 mL H2O).  The reaction mixture 

was stirred vigorously for 1h at ~ -5 ºC. A cold aqueous solution of KI (4.84 g, 29.2 

mmol in 10 mL H2O) was slowly added to the reaction mixture, and it was stirred 

overnight (~16 h) and then allowed to warm to room temperature. The mixture was 

diluted with dichloromethane (100 mL) and washed with aqueous 10% NaOH solution 

(100 mL) and aqueous Na2S2O3 solution (100 mL). Combined organic extracts were 

dried over anhydrous MgSO4, filtered, and evaporated under reduced pressure. The crude 

product was purified by silica get column chromatography using hexanes as the eluent to 

afford pure S6-2. Yield: 0.76 g (92%). m.p. 179-181 ºC. 1H NMR (400 MHz, CDCl3) δ 

ppm 7.15 (dd, 2H, J = 8.27 Hz, 2.18 Hz), 7.78 (d, 2H, J = 2.18 Hz), 7.91 (d, 2H, J = 8.27 
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Hz); 13C NMR (400 MHz, CDCl3) δ ppm 101.14, 126.98, 130.73, 131.02, 140.53, 

140.93. 

Preparation of 3,3'-dibromo-N4,N4,N4',N4'-tetrakis(4-bromophenyl)-[1,1' 

biphenyl] 4,4'-diamine (S6-3 or 8).54 In a dry Schlenk flask, a mixture of compound S6-

2 (0.40 g, 0.71 mmol), bis(4- bromophenyl)amine S5-4 (0.48 g, 1.48 mmol), CuI (0.28 g, 

0.148 mmol), 1,10-phenanthroline (0.26 g, 0.148 mmol), potassium hydroxide (0.66 g, 

11.90 mmol) and toluene (30 mL) was refluxed under an argon atmosphere for 5 d. The 

mixture was then cooled to room temperature and poured into distilled water and 

extracted with dichloromethane (4 x 50 mL). The organic layer was dried over anhydrous 

MgSO4, filtered, evaporated. The crude product was purified by silica gel column 

chromatography using hexanes as the eluent to afford pure S6-3 (8). Yield: 0.27 g (39%). 

m.p. 228-230 ºC 1H NMR (400 MHz, CD2Cl2) δ ppm 6.87 (d, 8H, J = 8.95 Hz), 7.27 (d, 

2H, J = 8.25 Hz), 7.35 (d, 8H, J = 8.95 Hz), 7.55 (dd, 2H, J = 8.25 Hz, 2.20 Hz), 7.87 (d, 

2H, J = 2.20 Hz); 13C NMR (400 MHz, CD2Cl2) δ ppm 115.52, 124.13, 124.24, 128.16, 

132.00, 132.71, 133.50, 139.06, 144.68, 146.12. 
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Scheme 1. 7: Synthesis of 2,2'-dibromo-N4,N4,N4',N4'-tetrakis(4-bromophenyl)-

[1,1'-biphenyl]-4,4'-diamine (S7-2 or 9). 

 

  

 

Preparation of 2,2'-dibromo-[1,1'-biphenyl]-4,4'-diamine (S7-1).63 To a stirred 

solution of 3-bromonitrobenzene (5.5 g, 27.2 mmol) in ethanol (60 mL) were added in 

portions a solution of sodium hydroxide (2.5 g in 15 mL water) and zinc powder (10 g). 

The mixture was brought to 70 °C and after 15 minutes, more zinc (6 g) was added. After 

an additional 15 min, the mixture became pale yellow. It was then brought to a boil and 

filtered under an argon atmosphere. The zinc residue was washed with ethanol (2 x 10 

mL). The combined filtrate was mixed with water (50 mL), and cooled in an ice bath, 

which resulted in the formation of a pale yellow precipitate. The filtered precipitate was 

added to hydrochloric acid (6 M, 50 mL) and stirred at 60 °C for 15 minutes, then cooled 

rapidly. The solid benzidine hydrochloride was collected, washed with 6M hydrochloric 

acid and diethyl ether, and suspended in warm water containing excess sodium 
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hydroxide. This mixture was extracted with diethyl ether (3 x 50 mL) and the extracts 

were dried over anhydrous MgSO4, filtered, and evaporated. The crude benzidine S7-1 

was crystallized from an ethanol-water mixture. Yield: 0.85 g (18%). m.p. 150-152 ºC 

(lit.63 m.p. 151-153ºC). 1H NMR (400 MHz, CDCl3) δ ppm 3.74 (br s. 4 H for NH2), 6.64 

(dd, 2H, J = 8.18 Hz, 2.36 Hz), 6.97 (d, 2H, J = 2.33 Hz), 7.00 (d, 2H, J = 8.18 Hz); 13C 

NMR (400 MHz, CDCl3) δ 113.95, 118.44, 124.95, 132.17, 132.24, 146.99. 

Preparation of 2,2'-dibromo-N4,N4,N4',N4'-tetrakis(4-bromophenyl)-[1,1'-

biphenyl]-4,4' -diamine (S7-2 or 9).54 In a dry Schlenk flask, a mixture of S7-1 (0.4 g, 

1.17 mmol), 1-bromo-4-iodobenzene (1.35 g, 4.8 mmol), CuI (0.013 g, 0.07 mmol), 1,10-

phenanthroline (0.012 g, 0.07 mmol), potassium hydroxide (0.502 g, 8.96 mmol), and 

toluene (35 mL) was refluxed under an argon atmosphere for 24 h. The mixture was then 

cooled to room temperature and poured into distilled water. The crude product was 

extracted with dichloromethane (4 x 50 mL) and the combined organic layers were dried 

over anhydrous MgSO4, filtered, and evaporated. The crude product was purified by 

silica gel column chromatography using hexanes as the eluent to afford S7-2 (or 9) as a 

brown-colored solid. The colored impurities were removed by repeated treatments (3 

times) with charcoal (20 mg) in refluxing dichloromethane (25 mL) followed by 

crystallization from a mixture of acetonitrile and chloroform to afford shiny crystals of 

S7-2 (or 9). Yield: 0.67 g (60%). m.p. 278-280 ºC. 1H NMR (400 MHz, CDCl3) δ ppm 

7.00 (m, 10H), 7.11 (d, 2H, J = 8.32 Hz), 7.29 (d, 2H, J = 2.37 Hz), 7.40 (d, 8H, J = 8.80 

Hz); 13C NMR (400 MHz, CDCl3) δ ppm 116.89, 121.56, 124.53, 126.38, 126.45, 

131.95, 132.87, 135.93, 145.91, 147.67. 
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Scheme 1. 8: Synthesis of tris(2-bromo-4-(tert-butyl)phenyl)amine (S8-2 or BC) 

 

 

Preparation of tris(4-(tert-butyl)phenyl)amine (S8-1 or 10). A mixture of 

triphenylamine (1.23 g, 5 mmol), 2-methylpropane-2-ol (5 ml), and trifluoroacetic acid 

(20 mL) was stirred at 22oC for 5 days.  The formed precipitate was filtered, dried and 

recrystallized from a mixture of dichloromethane and hexanes to afford pure S8-1 (or 

10). Yield: 1.5 g (73%), m.p. 286-288 ºC (lit.64 m.p. 276-278 ºC). 1H NMR (CDCl3) δ 

ppm 1.30 (s, 27H), 7.01 (d, J = 8.3Hz, 6H), 7.23 (d, J = 8.3Hz, 6H); 13C NMR (CDCl3) δ 

ppm 31.37, 34.14, 123.42, 125.93, 145.09, 145.44.  

Preparation of tris(2-bromo-4-(tert-butylphenyl)amine (S8-2 or BC).   To a 

solution of 4-(tertbutylphenyl)amine (0.35 g, 0.85 mmol) in dichloromethane (15 mL) 

was added a solution of NBS (0.53 g, 2.96 mmol) in DMF (5 mL) dropwise under an 

argon atmosphere, and stirred overnight (~16 h) at 22 oC. The reaction mixture was 

quenched with water and extracted with dichloromethane (3 x 25 mL).  The combined 

organic extracts were dried over anhydrous MgSO4, filtered, and evaporated. The crude 

product was filtered through a short pad of silica gel using dichloromethane as the elutant 

followed by recrystallization from a mixture of dichloromethane and hexanes to afford 

pure S8-2 (or BC). Yield: 0.42 g (75%), m.p. 238-240 ºC. 1H NMR (CDCl3) δ 1.30 (s, 

27H), 6.74 (d, J = 8.36Hz, 3H), 7.19 (d, J = 8.36Hz, 2.23Hz, 3H), 7.56 (d, J = 2.23Hz, 
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3H); 13C NMR (CDCl3) δ ppm 31.48, 34.60, 121.23, 125.07, 126.70, 131.60, 143.51, 

148.87.  

General procedures for preparative isolation of cation-radical 

hexachloroantimonate salts.  

 

Preparation of MB+•SbCl6
- using NO+SbCl6

-.  To a 50-mL flask fitted with a 

Schlenk adaptor and charged with nitrosonium hexachloroantimonate (44 mg, 0.12 

mmol) was added a cold solution (~0 oC) of MBo (58 mg, 0.12 mmol) in anhydrous 

dichloromethane (5 mL) under an argon atmosphere at -10 oC.  The solution immediately 

turned blue and was stirred (while slowly bubbling argon through the solution to entrain 

gaseous NO) for 10 min to yield a solution of MB+•SbCl6
-. To this solution was then 

added dry ether (15 mL) to precipitate the dissolved MB+•SbCl6
- salt.  The 

microcrystalline precipitate was filtered using a medium-grade sintered-glass funnel 

under dry nitrogen and washed with dry diethyl ether (2 x 5 mL) using the apparatus 

described below. The resulting salt was dried in vacuo at room temperature to afford 

MB+•SbCl6
- in essentially quantitative yield (0.89 g, 91%).   

Preparation of MB+•SbCl6
- using SbCl5. A solution of MB0 (0.96 g, 2 mmol) in 

anhydrous dichloromethane (20 mL) was added to a flask equipped with a dropping 

funnel and argon inlet and outlet adapters.  The dropping funnel was charged with a 

solution of SbCl5 in dichloromethane (2 mL, 1 M) and the flask was cooled in a dry ice-

acetone bath (approximately –78 oC).  The SbCl5 solution was slowly added (3-5 min) 

under a flow of argon.  The reaction mixture immediately turned blue and a large amount 

of material precipitated. The resultant mixture was warmed to ~0 oC during 5-10 min, and 

anhydrous diethyl ether (30 mL) was added to precipitate the dissolved MB+•SbCl6
- salt.  
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The dark-blue microcrystalline precipitate was suction filtered using a medium-grade 

sintered-glass funnel under a blanket of dry argon and washed with dry diethyl ether (2 x 

20 mL) using the apparatus shown below. The resulting salt was dried in vacuo at room 

temperature to afford MB+•SbCl6
- (1.43 g, 88%).   

An apparatus for filtration of cation-radical salts under argon atmosphere.  

A large inverted funnel, connected to an argon outlet, positioned above the sintered glass 

funnel is generally sufficient for maintaining an inert atmosphere during filtration of the 

cation radical salt (see sketch of the apparatus below).   

 

 

 

Figure1. 17. A basic apparatus for filtration of cation-radical salts under argon 

atmosphere Similar procedures were used for preparative isolation of BC+•SbCl6
-. 

 

Preparation of TAB+•SbCl6
- salt. 

A 25 mL schlenk tube equipped with a magnetic stir bar was charged with a 

solution of the tetrakis (4bromophenyl) benzidine TAB (30 mg, 0.037 mmol) in 
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anhydrous dichloromethane (5 mL) under an argon atmosphere. Then triethyloxonium 

hexachloroantimonate Et3O+SbCl6
- (32 mg, 0.074 mmol) was added under an argon 

atmosphere at ∼0 °C and stirred for 30 minutes. The mixture immediately took on a 

yellowish-orange coloration which intensified with time. The mixture was layered with 

dry toluene (10 mL) and kept in a refrigerator overnight, which resulted in the formation 

of orange colored crystals of TAB+•SbCl6
-. 
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1H/13C NMR spectroscopy of Compounds 

1H NMR spectrum of S1-1 in CDCl3 

 

 

 

 

13C NMR spectrum of S1-1 in CDCl3 
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1H NMR spectrum of S1-2 (4) in CDCl3 

 

 

 

13C NMR spectrum of S1-2 (4) in CDCl3 

 

 

1H NMR spectrum of S2-1in CDCl3 
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13C NMR spectrum of S2-1 in CDCl3 

 

 

 

1H NMR spectrum of S2-2 (5) in CDCl3 
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1H NMR spectrum of compound S3-1 in CDCl3 

 

 

 

13C NMR spectrum of S3-1 in CDCl3 
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1H NMR spectrum of S3-2 (TAB) in CDCl3 

 

 

 

13C NMR spectrum of S3-2 (TAB) in CDCl3 
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1H NMR spectrum of S4-1 in CDCl3 

 

 

 

13C NMR spectrum of S4-1 in CDCl3 
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1H NMR spectrum of S4-2 in CDCl3 

 

 

13C NMR spectrum of S4-2 in CDCl3 
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1H NMR spectrum of S4-3 in CDCl3 

 

 

 

13C NMR spectrum of S4-3 in CDCl3 
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1H NMR spectrum of S4-4 (or 6) in CDCl3 

 

 

 

13C NMR spectrum of S4-4 (or 6) in CDCl3 
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1H NMR spectrum of S5-1 in in CDCl3 

 

13C NMR spectrum of S5-1 in CDCl3 
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1H NMR spectrum of S5-2 in in CDCl3 

 

 

13C NMR spectrum of S5-2 in CDCl3 

 

1H NMR spectrum of S5-3 in CDCl3 
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13C NMR spectrum S5-3 in CDCl3 

 

 

 

1H NMR spectrum of S5-4 in CDCl3 

 

 

13C NMR spectrum of S5-4 in CDCl3 
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1H NMR spectrum of S5-5 (or 7) in CDCl3 

 

 

13C NMR spectrum of S5-5 (or 7) in CDCl3 

 

 

 

 

 

 



78 

 

 

 

1H NMR spectrum of S6-1 in CDCl3 

 

 

13C NMR spectrum of S6-1 in CDCl3 
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1H NMR spectrum of S6-2 in CDCl3 

 

 

13C NMR spectrum of S6-2 in CDCl3 
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1H NMR spectrum of S6-3 (8) in CD2Cl2 

 

 

13C NMR spectrum of S6-3 (8) in CD2Cl2 

 

 

1H NMR spectrum of S7-1 in CDCl3 
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13C NMR spectrum of S7-1 in CDCl3 

 

 

1H NMR spectrum of S7-2 (or 9) in CDCl3 
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13C NMR spectrum of S7-2 (or 9) in CDCl3 

 

1H NMR spectrum of S8-1 (or 10) in CDCl3 

 

 

13C NMR spectrum of S8-1 (or 10) in CDCl3 
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1H NMR spectrum of S8-2 (or BC) in CDCl3 

 

 

13C NMR spectrum of S8-2 (or BC) in CDCl3 

 

 

 

Crystal data and structure refinement: 

 

 

 

Figure1. 18. ORTEP diagram of TAB. 
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Table1. 4. Crystal data and structure refinement for TAB 

 

 

 

 

 

 

Figure1. 19. ORTEP diagram of TAB+•. 



85 

 

 

 

Table1. 5. Crystal data and structure refinement for TAB+• 
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Figure1. 20. ORTEP diagram of 9. 

 

Table1. 6. Crystal data and structure refinement for 9 
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Figure1. 21. Comparison of the oxidation-induced bond length changes (in Å) in TAB 

obtained by means of X-ray crystallography (abscissa) and DFT calculations (ordinate
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CHAPTER 2 

Dihedral Angle-Controlled Crossover from Static Hole Delocalization to Dynamic 

Hopping in Biaryl Cation Radicals 

 

 
 

 

 

 

Abstract: Biaryls have been extensively used to understand fundamental properties of 

charge transfer in multichromophoric systems. It is known that in cases of coherent 

charge-transfer mechanism in biaryls, the rates follow a squared cosine trend with 

varying dihedral angle. Herein we demonstrate with a well-designed series of biaryl 

cation radicals with varying dihedral angles that the hole stabilization shows two different 

regimes where the mechanism of the hole stabilization switches over from (static) 

delocalization over both aryl rings to (dynamic) hopping between rings. The experimental 

data and DFT calculations unequivocally support that a crossover from delocalization to 

hopping occurs at a unique dihedral angle where the reorganization energy is exactly one 

half of the electronic coupling, i.e. Hab = λ/2. The implication of this finding for non-

coherent charge transfer rates is being investigated. 

 

Disclaimer: The results discussed in this chapters were further supplemented by DFT 

calculations and relevant computational works by my coworkers Drs. Marat R Talipov 

and Maxim V. Ivanov. My contribution to this chapter is limited to synthesis of various 

molecules and spectroscopic studies of all molecules, with my coworkers Drs. Tushar S 

Navale and Ruchi Shukla.  
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INTRODUCTION 

 

Biaryls represent the smallest building blocks for exploration of the fundamental 

properties of the charge transfer in π-conjugated molecular wires, and have thus been 

extensively studied.  For example, the angular dependence of the charge transfer in 

biaryls has been probed by conductance measurements using break junction techniques.1-

4 These measurements have shown that under a coherent transport mechanism the charge-

transfer rates scale as the square of the electronic coupling in biaryls, and since the 

electronic coupling varies with the interplanar dihedral angle (φ) between the aryl groups, 

the charge transfer rates are expected to follow a squared cosine trend with varying φ 

(from 0º to ~90º).5-9  Importantly, it is noted that charge transfer using break junction 

techniques involves static molecules,1,3 i.e. the residence time for the charge onto biaryls 

is negligible.  

Unlike the break junction technique, the charge transfer in a biaryl linkage under 

non-coherent conditions would involve a finite residence time onto the biaryl, and would 

depend on the interplay between the electronic coupling and the structural reorganization. 

In such a charge transfer scenario, it is unclear how the interplanar dihedral angle 

between aryl groups controls the mechanism of charge stabilization.  In order to address 

this question, we undertake synthesis and study of a series of biaryls where φ was varied 

through a polymethylene chain or tert-butyl groups linked at the 2 and 2’ positions  

(Chart 2.1).  
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Chart 2. 1. The structures and naming scheme for biaryls 

 

 

RESULTS AND DISCUSSION 

Electrochemical analysis, followed by the generation of stable cation radicals of 

1-7 and their electronic spectroscopy together with X-ray crystallography and DFT 

calculations allow us to demonstrate for the first time that the stabilization of cationic 

charge (or hole) in biaryls follow a linear cos φ trend only for small angles (φ = 0º - 45º).   

At larger angles (φ > 45º) the breakdown of the linear trend is observed, due to a 

crossover of the hole stabilization mechanism from (static) delocalization to (dynamic) 

hopping. We will demonstrate that the crossover occurs due to the interplay between 

electronic coupling, which varies with φ, and the structural/solvent reorganization.  

Biaryls 1-6 and t Bu-7 (7) were synthesized by adopting literature procedures,10-12 and the 

experimental details including X-ray crystal structure data of 1-4 are compiled in the 

experimental section below. The X-ray structures of 1-4 were accurately reproduced by 

DFT calculations [B1LYP-40/631G(d)+ PCM(CH2Cl2)]13-17 (Figure 2.1). However, a 

thorough conformational search revealed multiple possible conformers for higher 

homologues 4-6 (Tables 2.1, 2.2). In order to establish the actual identity of the 

conformations of 2-7 in solution, we resorted to 1H NMR spectroscopy.   
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Figure 2. 1. Juxtaposition of the structures of 1-4 obtained by X-ray crystallography 

(green color) vs DFT calculations (yellow color). 

 

It has been shown that 1H NMR chemical shifts of aromatic protons are highly 

sensitive to the dihedral angle φ between aryl moieties.18 The chemical shieldings of the 

2,2’-aryl protons for all possible conformations of 1-7 were determined using a gauche-

independent atomic orbital (GIAO) approach (see the experimental section for details). 

The linear relationship between computed chemical shieldings of 2,2’-protons of the 

lowest-energy conformer against the experimental chemical shifts (Figure 2.2.A) 

establishes the conformational identity of 1-7 in solution, as depicted in Figure 2.2.B.  
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Figure 2. 2. (A) 1H NMR chemical shift of 2,2’-protons of 1-7 plotted against the 

calculated/scaled (top/bottom axis) chemical shifts. The lowest energy conformers of 4-6 

are shown by empty triangles, while higher energy conformers are depicted with filled 

circles. (B) Superposition of the structures of 2-6 showing the variation in dihedral angles 

with increasing number of methylenes. Note that the methoxy groups on one of aryl rings 

are omitted for clarity.  

 

Fully reversible cyclic voltammograms in CH2Cl2 at 22 ºC (Figure 2.3.A) provided the 

oxidation potentials (Eox1) of 1-7 (Table 2.3), which showed an increase of ~0.5 V going 

from a planarized biaryl (i.e. φ = 0º in 1) to a nearly perpendicularly oriented (i.e. φ ~ 90º 

in 6 and 7) biaryl. Interestingly, the Eox1 of biaryls with largest φ of ~90º (6: 0.83 V, 7: 

0.87 V) were found to be similar to the Eox1 of corresponding model arenes, i.e. 3,4-

dimethoxytoluene (Eox1 = 0.87 V)12 or 3,4-dimethoxy-1-tertbutylbenzene (Eox1 = 0.90 V), 

respectively.19  
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Table 2. 1. Compilation of the dihedral angles around the C–C bonds in the 

polymethylene linker in neutral 1-7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name Conformer # 1 2 3 4 5 6 7 

1 1 0 0 - - - - 
 

2 1 36 -53 36 - - - 
 

3 1 71 -42 -42 71 - - 
 

4 1 -92 83 -54 83 -92 - - 

4 2 19 65 -63 -45 87 - - 

5 1 114 -52 -58 94 -98 96 - 

5 2 56 43 -120 69 -71 97 - 

5 3 -48 -52 61 61 -52 -48 - 

6 1 110 -57 -66 145 -66 -57 110 

6 2 96 -68 87 -150 87 -68 96 

6 3 127 -53 -80 57 59 -144 106 

6 4 -93 84 -107 62 77 -58 -61 

6 5 118 -148 84 -63 84 -148 118 

6 6 58 56 -112 77 -112 56 58 

6 7 -120 32 74 -68 85 -146 48 

6 8 12 -79 -15 65 57 -54 -57 
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Table 2. 2.  Compilation of the computed properties of neutral 1-7 and their cation 

radicals. 

 

 

 

 

Table 2. 3. Redox and optical properties of biaryls 1-7 in CH2Cl2. 

 

 

 

The high electrochemical reversibility of 1-7 allowed the generation of their 

cation radicals via quantitative redox titrations using well-characterized aromatic 

Name 
Confor
mer # 

∆E(N), 
kcal/mol 

∆E(CR), 
kcal/mol 

, º CR, º max(CR), nm fosc(CR) ∆Gox, eV Class 

1 1 0.0 0.0 0 0 909 0.232 4.813 III 

2 1 0.0 0.0 20 16 972 0.242 4.899 III 

3 1 0.0 0.0 46 36 1366 0.195 5.062 III 

4 1 0.0 0.0 59 45 1696 0.171 5.175 III 

4 2 4.1 3.3 77 43 1457 0.176 - II-III 

5 1 0.1 0.0 72 53 1521 0.117 5.234 II 

5 2 1.6 2.6 86 85 1341 0.000 - I 

5 3 3.9 4.3 84 73 1415 0.029 - I-II 

6 1 0.0 0.0 91 106 1417 0.047 5.307 I-II 

6 2 2.7 1.1 105 117 1550 0.121 - II 

6 3 2.9 0.0 66 48 1622 0.179 - II-III 

6 4 4.1 3.7 101 110 1492 0.060 - II 

6 5 5.2 1.8 55 44 1518 0.192 - III 

6 6 6.7 6.4 105 111 1452 0.045 - I-II 

6 7 10.4 7.4 53 43 1568 0.174 - II-III 

6 8 13.8 13.4 81 79 1310 0.005 - I 

tBu-7 - 0.0 0.0 91 88 1321 0.000 5.351 I 

 

Name Eox1, Va Eox2, Va λmax(CR), nm εmax(CR), M-1cm-1 

1 0.40 0.87 1098 11 100 

2 0.49 0.85 1153 8 200 

3 0.67 1.06 1580 7 700 

4 0.76 1.07 1850 4 000 

5 0.78 1.03 1777 1 600 

6 0.83 1.06 1850 1 200 

7 0.87 1.13 2050 900 
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oxidants, i.e. THE+•SbCl6
– (THE = 1,2,3,4,5,6,7,8-octahydro-9,10-dimethoxy-1,4,5,8-

dimethanoanthracene, Ered1 = 0.67 V, λ max = 518 nm, εmax = 7300 cm-1 M-1)20 and 

NAP+•SbCl6
– (NAP =  1,2,3,4,7,8,9,10-octahydro-1,1,4,4,7,7,10,10-

octamethylnaphtacene, Ered = 0.94 V vs Fc/Fc+, λ max = 672 nm, εmax = 9300 cm-1 M-1).21,22 

The redox titrations were performed by an incremental addition of the neutral biaryl to a 

solution of THE+• (or NAP+•) in CH2Cl2 at 22 ºC under argon atmosphere, and the 

resulting absorption spectra were quantitatively analyzed (see Generation of cation 

radicals of 1-7 in Experimental section) to obtain reproducible absorption spectra of 1+•-

7+• (Figure 2.3.B). The spectra of 1+•-4+• showed a red shift of the characteristic near-IR 

band from 1098 to 1850 nm, while 5+•-7+• showed little variance in the position of the 

low-energy band, but rather a dramatically reduced molar absorptivity for the near 

infrared band decreasing from 4+• to 7+• (Figure 2.3.B).  
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Figure 2. 3. (A) Cyclic voltammograms (CVs) of 2 mM 1-7 in CH2Cl2 (0.1 M n-

Bu4NPF6) at a scan rate of 200 mV s-1 and 22 ºC. The value of Eox1 is indicated in each 

CV. (B) Compilation of the absorption spectra of 1+•-7+• in CH2Cl2 at 22 ºC. The position 

of lowest-energy band (in nm) and molar absorptivity (in parenthesis, in M-1cm-1) are 

shown on each spectrum.   

 

The X-ray crystallographic analysis of representative cation-radical salts 

(1+•SbCl6
– and 3+•SbCl6

–) shows considerable oxidation-induced bond length changes in 

the biaryl moieties, especially in the central aryl-aryl C–C bond (contracted by 0.036 Å 

and 0.022 Å, respectively), see the Experimental section for detailed analysis of the X-ray 

structures and ORTEP diagrams. It is noted that dihedral angle between aryl moieties in 

3+• (φCR = 36º) showed an oxidation-induced decrease of ~10º. Unfortunately, repeated 
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attempts to obtain the X-ray quality single crystals of other biaryl cation radicals have 

thus far been unsuccessful.  

Our DFT calculations [B1LYP-40/6-31G(d)+PCM(CH2Cl2)] accurately 

reproduced the available X-ray structures and dihedral angles for neutral (i.e. φ) and 

cation radical (i.e. φ CR) of biaryls (Tables 2.4, 2.5 and Figures 2.4, 2.5). The (TD-)DFT 

calculations of the structures of neutrals and cation radicals of 1-7 reproduced the 

experimental Eox1 values and the excitation energies for the lowest-energy transition in 

1+•-7+• (Figure 2.6). The calculated dihedral angles between the aryl moieties in biaryl 

cation radicals show an oxidation-induced decrease of 4º-19º (Table 2.2), and the most 

pronounced changes in the dihedral angle were observed with 4+•- 6+• owing to the 

flexibility of the polymethylene linker (Figure 2.2).  

A comparison of the structures of neutral 1-7 and their cation radicals shows that 

the central arylaryl C–C bond in 1+•-7+• experiences the most notable shortening and 

variation with the dihedral angle φCR (i.e. 2+•: 16º, 3+•: 36º, 4+•: 45º, 5+•: 53º, 6+•: 74º, 7+•: 

88º) as depicted in Figure 2.7.   
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Table 2. 4.The experimental (X-ray) and calculated [B1LYP-40/6 

31G(d)+PCM(CH2Cl2)] bond lengths of the neutral and cation radicals of 1 (in Å).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 4. Comparison of the oxidation-induced bond length changes (in Å) of 1/1+•, 

obtained by X-ray crystallography and DFT calculations. 

 

 

 ∆R > 0  ∆R < 0

 
 X-ray crystallography  DFT calculations 

bonda  1 1+• ∆  1 1+• ∆ 

b1  1.464 1.428 -0.036  1.465 1.423 -0.042 

b2  1.394 1.411 0.017  1.391 1.419 0.028 

b3  1.395 1.367 -0.028  1.39 1.376 -0.014 

b4  1.392 1.399 0.007  1.39 1.399 0.009 

b5  1.416 1.440 0.024  1.415 1.445 0.030 

b6  1.385 1.373 -0.012  1.387 1.374 -0.013 

b7  1.399 1.404 0.005  1.396 1.404 0.008 

b8  1.366 1.334 -0.032  1.358 1.322 -0.036 

b9  1.371 1.336 -0.035  1.358 1.334 -0.024 
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Table 2. 5. The experimental (X-ray) and calculated [B1LYP-40/6-

31G(d)+PCM(CH2Cl2)] bond lengths of the neutral and cation radicals of 3 (in Å).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5. Comparison of the oxidation-induced bond length changes (in Å) of 3/3+•, 

obtained by X-ray crystallography and DFT calculations. 

 

 
 X-ray crystallography  DFT calculations 

bonda  3 3+• ∆  3 3+• ∆ 

b1  1.478 1.456 -0.022  1.485 1.446 -0.039 

b2  1.404 1.434 0.030  1.398 1.43 0.032 

b3  1.403 1.378 -0.025  1.399 1.383 -0.016 

b4  1.389 1.395 0.006  1.386 1.396 0.010 

b5  1.410 1.429 0.019  1.409 1.433 0.024 

b6  1.391 1.374 -0.017  1.384 1.373 -0.011 

b7  1.406 1.416 0.010  1.403 1.413 0.010 

b8  1.368 1.333 -0.035  1.357 1.322 -0.035 

b9  1.363 1.349 -0.014  1.358 1.335 -0.023 
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Figure 2. 6. Comparison of the experimental oxidation potentials of 1-7 (A) and lowest-

energy absorption maxima of 1+•-7+• (B) with the corresponding calculated values [(TD-

)B1LYP-40/6-31G(d)+PCM (CH2Cl2)] (top axes). The bottom axes show scaled values, 

obtained from the linear correlations shown in the corresponding panels. Note that the 

data point excitation energy for tBu-7+• was not used in linear correlation in Panel B, 

because small intensity of the intervalence band in the spectrum of tBu-7+• prevented 

accurate determination of its position. The experimental observation of relatively red-

shifted and weak transition for tBu-7+• likely originates from the non-equilibrium 

conformations of tBu-7+• with lower dihedral angle, i.e. CR < 90º. 

 

 

Most importantly, Figure 2.7 shows that the biaryls with dihedral angles φCR = 0º– 45º 

(i.e. 1+•-4+•) exhibit (almost) identical oxidation-induced central C–C bond contraction 

(0.04 ± 0.002 Å) and a complete delocalization of the hole over both aryl moieties 

(Figure 2.7). In contrast, biaryls with a larger dihedral angle φCR > 45º show a systematic 

decrease in the C–C bond shortening with increasing φCR, i.e. 0.028 Å in 5+•, 0.014 Å in 

6+•, and 0.004 Å in 7+• and a concomitant increase in the localization of the spin/charge 

on a single aryl moiety (Figure 2.7). This surprising observation of two different regimes 

based on dihedral angle,  
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i.e. complete vs partial charge delocalization on two aryl moieties in biaryl cation 

radicals, suggests that a change occurs in the mechanism of charge 

delocalization/stabilization.   

 

 

Figure 2. 7. Changes in the oxidation-induced central aryl-aryl C–C bonds in various 

biaryls cation radicals against φCR and the corresponding isovalue plots of spin/charge 

distribution. The fraction of spin/charge distribution per aryl moiety, obtained by the 

natural population analysis,23,24 is indicated below the structures. A vertical line at 45º 

separates biaryls with completely delocalized (1+•- 4+•) vs partially /fully localized charge 

(5+•-7+•).  

 

 

Supporting this view, plots of experimental oxidation potentials Eox1 and 

excitation energies νmax of 1+•-7+•, shown in Figure 2.8, also reveal two different trends in 

the range of 0º–45º and 45º–90º, where the biaryl with φCR ~ 45º represents a crossover 

point (see Figure 2.8). Excitation energies for the D0➝D1 transition in biaryls 1+•-4+• in 

the ‘0º–45º regime’ show a linear red shift against cos(φCR), and the nature of this 

electronic transition is consistent with completely delocalized ground and excited states 

(Figure 2.9). The position of the D0➝D1 transition in 5+•-7+• in the ‘45º–90º regime’ 

remains largely unchanged except reduced molar absorptivity with increasing φCR, and 
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the corresponding electronic transition was shown to have a charge transfer character 

(Figure 2.9). Note that the cation radical tBu-7+• with φCR ≈ 90º shows that the charge is 

fully localized onto one unit with extremely weak D0➝D1 transition of charge transfer 

character (Figure 2.9). The observed angular dependence of redox and optical properties 

of 1+•-7+• in Figure 2.8 and the nature of the D0➝D1 transitions clearly suggests that 

there is crossover from delocalization to hopping mechanism that depends on dihedral 

angle.   

 

Figure 2. 8.  Plots of Eox1 of 1-7 against cos(φCR) (A) and νmax of 1+•-7+• against cos(φCR) 

(B). A vertical line at 45º separates biaryls with different linear trends, i.e. 1+•-4+•
 (filled 

circles) vs 5+•-7+•
 (empty circles).  
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Figure 2. 9. Typical examples of complete delocalization to partial or full localization 

and nature of the accompanying electronic transition.   

 

Because the biaryls 1-7 do not probe the entire continuum of dihedral angles, we 

carried out a systematic computational scan on a model biaryl cation radical (Figure 

2.10), where a series of constrained optimizations with fixed φCR and subsequent TD-

DFT calculations allowed us to construct a plot of the excitation energies (νmax) with the 

evolution of dihedral angle φ, Figure 2.10.25  
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Figure 2. 10.  A plot of νmax  against cos(φCR), obtained from the scan on a model biaryl 

(structure shown) with the φCR step size of 5º [TD-B1LYP-40/6-31G(d)+PCM(CH2Cl2)]. 

The νmax were scaled according to linear trend with experiment (Figure 2.6). The two 

distinct regions, separated by a blue line, are identified using Marcus two-state model 

where Hab is the electronic coupling between (charge-localized) diabatic states and λ is 

the structural/solvent reorganization parameter.17,26  
  

As the electronic coupling Hab scales linearly with cos(φCR),27,28 the computed 

νmax in the model biaryl also follow a linear dependence with cos(φCR) in 0º–50º range 

(Figure 2.10, red symbols) in accordance with Marcus two-state model for fully 

delocalized systems (Figure 2.10, bottom right). In contrast, the crossover from the linear 

νmax/cos(φCR) trend in model biaryl with φ > 50º is surprising considering that the 

electronic coupling Hab continues to decrease linearly with cos(φCR).  The invariance of 

νmax with the increasing φCR (Figure 2.10, blue symbols) signifies, based on the Marcus 

model (Figure 2.10, top left), that the charge transfer occurs by the hole hopping and 

thereby νmax directly provides the value of reorganization energy, i.e. νmax = λ.26 Thus, the 

interplay between the invariant λ and decreasing Hab in model biaryl with φ > 50º 

represents the cases where 2Hab < λ , i.e. hole distribution switches over from complete 

delocalization over both aryl units (i.e. 2Hab ≥ λ) to partial and then full hole localization 
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onto a single aryl unit. The crossover point in such a system is thus expected to occur 

when 2Hab = λ (Figure 2.8 B). Interestingly, the crossover point of 50º obtained by 

computational scan of a model biaryl is similar to the experimental crossover point of ~ 

45º observed for biaryls 1-7 (compare Figures 2.8.B and 2.10). 

 

CONCLUSION 

In summary, we have demonstrated for the first time using a well-defined series 

of biaryl cation radicals with varied interplanar dihedral angles that a crossover occurs 

from a fully delocalized regime to a mixed-valence regime due to the interplay between 

the electronic coupling and reorganization energy. The observation of a crossover point 

between two regimes is expected because it represents a unique point where the 

reorganization energy is exactly one half of the electronic coupling, i.e. Hab = λ /2.  

Thus, the linear dependence of charge transfer rates against cos2φ trend29 over the entire 

range of dihedral angles under a coherent tunneling mechanism should be contrasted with 

non-coherent mechanism, where the hole stabilization mechanism changes from (static) 

delocalization to (dynamic) hopping at a unique dihedral angle. Note that such crossover 

dihedral angle must satisfy the condition of Hab = λ /2, and therefore the crossover angles 

will be different for different molecules owing to the varied reorganization energies and 

electronic couplings. The studies of non-coherent charge-transfer rates will be undertaken 

using donor-biaryl-acceptor triads with varied dihedral angles in order to demonstrate the 

implication of the crossover of the hole stabilization mechanism from delocalization to 

hopping.  
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GENERAL EXPERIMENTAL METHODS 

 

Biaryls 1-6 and tBu-7 (7) were synthesized using literature procedures and were 

characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. The 

reversible cyclic and square-wave voltammograms of 1-7 and the corresponding model 

compounds were recorded by the electrochemical oxidation at a platinum electrode in 

CH2Cl2 containing 0.1 M n-Bu4NPF6 at 22 ºC at scan rate of 200 mV s-1 and were 

referenced to ferrocene as an added internal standard. The 1+•-7+• cation radicals 

compounds were quantitatively generated via the redox titrations with robust aromatic 

oxidants THE+• SbCl6
– and NAP+•SbCl6

–. 

Materials. All reactions were performed under argon atmosphere unless 

otherwise stated. Veratrole, 3,4-dimethoxybenzaldehyde, 3,4-dimethoxyacetophenone, 

adipoyl chloride, sodium iodide, triethylamine, chlorotrimethylsilane, iodine, red 

mercuric oxide, anhydrous ferric chloride, anhydrous aluminium chloride, mercuric 

chloride, 10% Pd/C, Zn dust, mossy zinc metal, TiCl4, Ag2O, 

tetrakis(triphenylphosphine)-nickel(0), analytical grade acetone, and anhydrous 

acetonitrile were commercially available and were used without further purification.  

Anhydrous tetrahydrofuran (THF) was prepared by refluxing commercial tetrahydrofuran 

over lithium aluminum hydride under an argon atmosphere for 24 hours followed by 

distillation under an argon atmosphere. It was stored in a Schlenk flask equipped with a 

Teflon valve fitted with Viton O-rings. Dichloromethane was repeatedly stirred with 

fresh aliquots of conc. sulfuric acid (~10 % by volume) until the acid layer remained 

colorless. After separation, it was washed successively with water, aqueous sodium 

bicarbonate, water, and aqueous sodium chloride, and dried over anhydrous calcium 
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chloride. The dichloromethane was distilled twice from P2O5 under an argon atmosphere 

and stored in a Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. The 

hexanes and toluene were distilled from P2O5 under an argon atmosphere and then 

refluxed over calcium hydride (~12 h). After distillation from CaH2, the solvents were 

stored in Schlenk flasks under an argon atmosphere. NMR spectra were recorded on 300 

and 400 MHz NMR spectrometers. 

 

Preparation of 2,3,6,7-tetramethoxy-9,9-dimethylfluorene (1)  

Scheme 2. 1: Synthetic scheme for 2,3,6,7-tetramethoxy-9,9-dimethylfluorene (1)  

 

 

 

2,2-Bis(3,4-dimethoxyphenyl)propane (S1). 1,2-Dimethoxybenzene (9.5 mL), 

acetone (2.0 mL), and mercaptoacetic acid (0.4 mL) were added to a solution of conc. 

H2SO4 (d 1.84, 8.0 mL) and water (8.0 mL).  Theresulting mixture was stirred overnight 

(~12 h) at ~60 oC, cooled to room temperature and poured in ice water (200 mL) and 

extracted with CH2Cl2 (3 x 50 mL).  The combined organic extracts were dried over 

anhydrous MgSO4, filtered and evaporated.  The crude solid was crystallized from 

methanol to afford 2,2-bis(3,4-dimethoxyphenyl)propane (S1) as a colorless crystalline 

solid. Yield: 3.1 g, 72%,  mp 91-92 oC; 1H NMR (CDCl3) δ ppm 1.65 (s, 6H), 3.77 (s, 
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6H), 3.86 (s, 6H), 6.69 (d, 2H, J = 2 Hz), 6.76-6.84 (m, 4H); 13C NMR (CDCl3) δ ppm 

31.2, 42.4, 55.8, 55.9, 110.4, 110.8, 118.5, 143.5, 147.0, 148.4. 

2,3,6,7-tetramethoxy-9,9-dimethylfluorene (1). Under argon atmosphere, 

CH3SO3H (1 mL) was added to a solution of 2,2-bis(3,4-dimethoxyphenyl)propane (316 

mg, 1.0 mmol) in dichloromethane (9 mL) at ~0 oC. To this mixture, solide DDQ (227 

mg, 1.0 mmol) was added and the resulting mixture was stirred under an argon 

atmosphere for 30 min. The reaction mixture was poured into a saturated aqueous 

NaHCO3 solution (25 mL), the organic layer was separated, and the aqueous layer was 

extracted with CH2Cl2 (2 x 10 mL). The combined organic layer was washed with 

aqueous sodium carbonate solution, dried over anhydrous MgSO4, filtered and 

evaporated.  Crystallization from a mixture of CH2Cl2/CH3OH afforded 1 as a white 

crystalline solid, yield: 312 mg, 99 %; mp 178-180 oC; 1H NMR (CDCl3) δ ppm 1.65 (s, 

6H), 3.77 (s, 6H), 3.86 (s, 6H), 6.69 (d, 2H, J = 2 Hz), 6.76-6.84 (m, 4H); 13C NMR 

(CDCl3) δ ppm 27.4, 46.7, 56.2, 56.3, 102.5, 106.1, 131.8, 146.1, 148.2, 148.7. 
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Preparation of 2,3,6,7-tetramethoxy-9,10-dihydrophenanthrene (2).  

 

Scheme 2. 2: Synthetic scheme for 2,3,6,7-tetramethoxy-9,10-dihydrophenanthrene 

(2)  

 

 

 

3,3’,4,4’-Tetramethoxystilbene (S2-1). To chilled (~10 ºC) anhydrous 

tetrahydrofuran (240 mL) containing Zn dust (10 g, 154 mmol) was added TiCl4 (8.2 mL, 

74 mmol) dropwise with the aid of a dropping funnel under an argon atmosphere. The 

resulting mixture was warmed to room temperature. The black suspension thus obtained 

was refluxed for two hours. A solution of 3,4-dimethoxybenzaldehyde (6.7 g, 40 mmol) 

in anhydrous tetrahydrofuran (50 mL) was then added drop wise to this black reaction 

mixture during a course of 4 h while refluxing. The resulting mixture was cooled to room 

temperature and quenched with 10% aqueous Na2CO3 (300 mL). The organic layer was 

separated and the aqueous suspension was extracted with dichloromethane (3 x 50 mL) 

followed by diethyl ether (3 x 50 mL). The combined organic layers were dried over 

anhydrous MgSO4 and filtered. Evaporation of the solvent in vacuo afforded 3,4,3’,4’-

tetramethoxystilbene S2-1 in excellent yield as a pale yellow solid. Yield: 5.9 g, 98%; mp 
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152-153 °C (lit 1 mp 152-154 °C); 1H NMR (CDCl3) δppm 3.88 (s, 6H), 3.93 (s, 6H), 

6.84 (d, J = 8 Hz, 2H), 6.91 (s, 2H), 7.01-7.05 (m, 4H); 13C NMR (CDCl3) δ ppm 75.832, 

75.838, 79.2, 79.4, 80.0, 80.4, 80.7, 81.93, 81.96. 

3,3’,4,4’-Tetramethoxybibenzyl (S2-2).  A yellow solution of S2-1 (4.5 g, 15 

mmol) and 10% Pd/C (0.2 g) in ethyl acetate (180 mL) was hydrogenated in a Parr 

apparatus (45 psi) at room temperature for 4 h. After which time, the reaction mixture 

was filtered through a short pad of silica gel. Evaporation of the solvent in vacuo afforded 

3,3’,4,4’-tetramethoxybibenzyl S2-2 as a white solid. Yield: 4.4 g, 97%; mp 109-110 °C 

(lit2 mp 109-110 °C); 1H NMR (CDCl3) δ ppm 2.82 (s, 4H), 3.81 (s, 6H), 3.83 (s, 

6H),6.64 (d, 2H, J = 1.7 Hz), 6.68 (dd, 2H, J = 8, 1.7 Hz), 6.76 (d, 2H, J = 1.7 Hz); 13C 

NMR (CDCl3) δ ppm 37.7, 55.8, 55.9, 111.1, 111.8, 120.3, 134.4, 147.2, 148.6. 

3,3’,4,4’-Tetramethoxy-6,6’-diiodobibenzyl (S2-3).  To a solution of S2-2 (4.2 

g, 14 mmol) in dichloromethane (30 mL) was added in small portions, a mixture of 

iodine (7.1 g, 28 mmol) and red mercuric oxide (6.1 g, 28 mmol), and the reaction 

mixture was allowed to stir at room temperature for 5 h. After which time, the solid was 

removed by filtration through a short pad of silica gel. The filtrate was washed with 5% 

aqueous sodium thiosulphate solution (3 x 100 mL) and then brine (1 x 50 mL). The 

organic layer was dried over anhydrous MgSO4 and filtered. Evaporation of the solvent in 

vacuo afforded 3,3’,4,4’-tetramethoxy-6,6’-diiodobibenzyl S2-3 as a white solid. Yield: 

7.0 g, 90%; mp 152-153 °C (lit 2 mp 152-153 °C); 1H NMR (CDCl3) δ ppm 2.90 (s, 4H), 

3.78 (s, 6H), 3.84 (s, 6H), 6.64 (s, 2H), 7.21 (s, 2H); 13C NMR (CDCl3) δ ppm 41.1, 56.0, 

56.3, 88.3, 112.7, 121.6, 136.1, 148.0, 149.3. 
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2,3,6,7-Tetramethoxy-9,10-dihydrophenanthrene (2). Following a literature 

procedure,3 a solution of 3 (0.28 g, 0.5 mmol) in DMF (52 mL) was thoroughly degassed 

and tetrakis(triphenylphosphine)nickel(0) (0.83 g, 0.75 mmol) was added. The reaction 

mixture was then stirred at 25 °C for 20 min and at 55 °C for 12 h, during which time the 

color of the reaction mixture changed from dark red to yellow. The resulting mixture was 

cooled to room temperature and quenched with 5% hydrochloric acid (50 mL). The 

organic layer was repeatedly washed with water (3 x 100 mL) and the aqueous 

suspension extracted with dichloromethane (5 x 20 mL). The combined organic extract 

were dried over anhydrous MgSO4 and filtered. After removal of the solvent, the residue 

was purified by column chromatography using a 1:4 mixture of ethylacetate/hexanes as 

eluent to afford pure 4 as white solid. Yield: 0.1 g, 67%; mp 174-175 °C (lit2 mp 174-

175.5 °C); 1H NMR (CDCl3) δ ppm 2.78 (s, 4H), 3.90 (s, 6H), 3.96 (s, 6H), 6.75 (s, 2H), 

7.14 (s, 2H); 13C NMR (CDCl3) δ ppm 28.8, 55.8, 56.3, 106.9, 111.4, 126.9, 129.3, 147.9. 

 

Preparation of 3.  

 

Scheme 2. 3: Synthetic scheme for 3 
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1,3-Bis(3,4-dimethoxyphenyl)-2-propen-1-one (S3-1). To a stirred solution of 

3,4-dimethoxyacetophenone (15.5 g, 86 mmol) and 3,4-dimethoxybenzaldehyde (14.3 g, 

86 mmol) in ethanol (100 mL) was added 2 pellets of solid NaOH and the resulting 

mixture was stirred at 22 oC for 4 h. The resulting yellow solid was isolated by filtering in 

vacuo and washed with cold water (until the washings were neutral to litmus and then 

with ice-cold ethanol (2 x 20 mL). Recrystallization of the crude product from ethanol 

afforded pure S3-1 as yellow solid. Yield: 28.0 g, 99%; mp 105-106 °C, 1H NMR 

(CDCl3) δ ppm 3.91 (s, 3H), 3.93 (s, 3H), 3.94 (s, 3H), 3.95 (s, 3H), 6.86-6.92 (m, 2H), 

7.14 (s, 1H), 7.21 (dd, 1H, J = 8, 2 Hz), 7.40 (d, 1H, J = 16 Hz), 7.60 (s, 1H), 7.66 (dd, 

1H, J = 8, 2 Hz), 7.74 (d, 1H, J = 16 Hz); 13C NMR (CDCl3) δ ppm 55.9, 56.05, 56.08, 

109.9, 110.2, 110.8, 111.1, 119.5, 122.9, 128.0, 131.5, 144.1, 149.2, 151.2, 153.1, 188.6. 

 

1,3-Bis(3,4-dimethoxyphenyl)-propane-1-one  (S3-2).  A yellow solution of S3-

1 (6.6 g, 20 mmol) and 10% Pd/C (0.1 g) in ethyl acetate (80 mL) was hydrogenated in a 

Parr apparatus (45 psi) at 22 oC for 4 h. Workup as above afforded pure S3-2 as a white 

solid. Yield: 5.6 g, 85%; mp 80-81 °C; 1H NMR (CDCl3) δ ppm 3.00 (t, 2H, J = 8 Hz), 

3.24 (t, 2H, J = 8 Hz), 3.85 (s, 3H), 3.86 (s, 3H), 3.92 (s, 3H), 3.94 (s, 3H), 6.77-6.79 (m, 

3H), 6.87 (d, 1H, J = 8 Hz), 7.52 (s, 1H), 7.57 (dd, 1H, J = 8, 2 Hz); 13C NMR (CDCl3) δ 

ppm 30.3, 40.4, 56.01, 56.09, 56.1, 56.2, 110.1, 110.2, 111.4, 112.0, 120.3, 122.8, 130.3, 

134.2, 147.5, 149.0, 149.1, 153.4, 198.1. 

 

1,3-Bis(3,4-dimethoxyphenyl)propane (S3-3).  A standard Clemmensen 

reduction of S3-2 was performed. Amalgamated zinc (5.2 g) was prepared by stirring for 

5 min a mixture of mossy zinc (5.2 g), mercuric chloride (0.52 g), water (10 ml), and 
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conc. hydrochloric acid (0.5 mL). The solution was then decanted and to the resulting 

amalgamated Zn was added water (4 ml), conc. hydrochloric acid (9 ml), toluene (10 

mL), and S3-2 (3.96 g, 12 mmol), successively. The resulting mixture was heated at 

reflux for 24 h. The reaction mixture was cooled, diluted with water (50 mL), and 

extracted with dichloromethane (2 x 50 mL). The organic extracts were washed with 

water (2 x 50 mL), dried over anhydrous MgSO4 and filtered. Recrystallization from 

ethanol afforded pure S3-3 as a white solid. Yield: 3.0 g, 79%; mp 74-75 °C; 1H NMR 

(CDCl3) δ ppm 1.86-1.96 (m, 2H), 2.59 (t, J = 7.8 Hz, 4H), 3.86 (s, 12H), 6.70-6.81 (m, 

6H); 13C NMR (CDCl3) δ ppm 33.3, 35.0, 55.8, 55.9, 111.2, 111.8, 120.2, 134.9, 147.1, 

148.8. 

Preparation of 3. To a cooled (~0 oC) solution of S3-3 (1.89 g, 5.9 mmol) in 

CH2Cl2 (45 mL) was added CH3SO3H (5 mL) and DDQ (1.14 g, 6 mmol) and the 

resulting mixture was stirred under an argon atmosphere at ~0 for 30 min. Aqueous 

workup as above and crystallization from a mixture of ethylacetate/hexane afforded pure 

3 as white crystalline solid. Yield: 1.81 g, 98%; mp 152-153 °C (lit4 mp 158-159 °C); 1H 

NMR (CDCl3) δ ppm 2.10-2.19 (m, 2H), 2.42 (t, J = 7 Hz, 4H), 3.91 (s, 12H), 6.76 (s, 

2H), 6.88 (s, 2H); 13C NMR (CDCl3) δ ppm 31.2, 34.0, 56.1, 56.3, 111.7, 112.0, 132.2, 

133.1, 147.6, 147.9. 
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Preparation of 4.  

 

Scheme 2. 4: Synthetic scheme for 4 

 

 

 

Enol silyl ether S4-1. Following closely a literature procedure,5 a mixture of 3,4-

dimethoxyacetophenone (12 g, 67 mmol) and pre-dried sodium iodide (12 g, 80 mmol) in 

dry acetonitrile (80 mL) was stirred under an argon atmosphere. To the resulting yellow 

solution, triethylamine (11 mL, 80 mmol) was added, followed by chlorotrimethylsilane 

(10 mL, 80 mmol). The reaction mixture was stirred for 1 h at room temperature, during 

which time the yellow colored solution produced a white suspension. The resulting 

reaction mixture was quenched with saturated aqueous ammonium chloride (50 mL). The 

organic layer was separated and the aqueous layer was extracted with prechilled (~0 °C) 

hexane (2 x 50 mL). The combined organic extract was washed with ice-water (2 x 50 

mL), brine (2 x 50 mL) and dried over anhydrous MgSO4 and filtered. Removal of the 

solvent in vacuo afforded the enol silyl ether S4-1 in quantitative yield as a pale yellow 

liquid, which was used in the next step without further purification. Yield: 16.6 g, 98%; 

1H NMR (CDCl3) δ ppm 0.26 (s, 9H), 3.88 (s, 3H), 3.89 (s, 3H), 4.36 (d, 1H, J = 1.5 Hz), 
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4.81 (d, 1H, J = 1.5 Hz), 6.82 (d, 1H, J = 8 Hz), 7.12 (d, 1H, J = 2 Hz), 7.17 (dd, 1H, J = 

8, 2 Hz); 13C NMR (CDCl3) δ ppm 0.0, 55.6, 55.7, 89.7, 108.4, 110.5, 117.9, 130.4, 

148.4, 149.1, 155.3. 

1,2-Bis(3,4-dimethoxybenzoyl)ethane (S4-2). Following closely a literature 

procedure,6 a heterogeneous mixture of S4-1 (16.4 g, 65 mmol) and Ag2O (15 g, 65 

mmol) in acetonitrile (40 mL) was heated at 75 °C with vigorous stirring for 8 h, during 

which time a grey metallic silver solid precipitated.  The solid was removed by filtration 

of the reaction mixture through a short pad of celite. The filtrate was washed with brine 

(2 x 50 mL) and dried over anhydrous MgSO4 and filtered. Evaporation of the solvent in 

vacuo followed by crystallization of crude S4-2 from a mixture of 

dichloromethane/methanol afforded pure S4-2 as a pale yellow solid. Yield: 9.0 g, 78%; 

mp 179-180 °C (lit7 mp 181-182 °C);1H NMR (CDCl3) δ ppm 3.42 (s, 4H), 3.93 (s, 6H), 

3.96 (s, 6H), 6.91 (d, 2H, J = 8 Hz), 7.57 (d, 2H, J = 2 Hz), 7.72 (dd, 2H, J = 8, 2 Hz); 

13C NMR (CDCl3) δ ppm 32.4, 56.1, 56.2, 110.1, 110.2, 122.9, 130.1, 149.1, 153.4, 

197.6. 

1,4-Bis(3,4-dimethoxyphenyl)butane (S4-3). A yellow suspension of S4-2 (3.2 

g, 9.0 mmol) and 10% Pd/C (0.2 g) in ethyl acetate (100 mL) with a catalytic amount of 

perchloric acid was hydrogenated in a Parr apparatus (45 psi) at room temperature for 4 

h. An standard workup as above and crystallization from ethanol afforded pure S4-3 as a 

white solid. Yield: 3.1 g, 98%; 1H NMR (CDCl3) δ ppm 1.61-1.65 (m, 4H), 2.55-2.59 (m, 

4H), 3.84 (s, 6H), 3.85 (s, 6H), 6.68-6.71 (m, 4H), 6.77 (d, 2H, J = 8 Hz); 13C NMR 

(CDCl3) δ ppm 31.4, 35.5, 55.9, 56.1, 111.3, 111.9, 120.3, 135.4, 147.2, 148.9. 
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Synthesis of 4. A reaction S4-3 (0.49 g, 1.5 mmol) in CH2Cl2 (18 mL) and 

CH3SO3H (2 mL) with DDQ (0.34 g, 1.5 mmol) at 0 oC as above afforded pure 4 as 

crystalline solid after purification by column chromatography using ethylacetate/hexane 

as. Yield: 0.15 g, 30%; mp 114-115 °C (lit 4 mp 115-116 °C);1H NMR (CDCl3) δ ppm 

1.44 (t, 2H, J = 10 Hz), 2.00-2.13 (m, 4H), 2.61-2.66 (m, 2H), 3.87 (s, 6H), 3.92 (s, 6H), 

6.75 (d, 4H, J = 1.3 Hz); 13C NMR (CDCl3) δ ppm 29.5, 32.6, 56.1, 56.2, 112.19, 112.20, 

132.5, 135.1, 146.7, 148.5. 

 

Preparation of 5.  

 

Scheme 2. 5: Synthetic scheme for 5 

 

 

 

1,5-Bis(3,4-dimethoxyphenyl)-3-pentadienone (S5-1). Following closely the 

procedure described above for the preparation of S3-1, a reaction of 3,4-

dimethoxybenzaldehyde (10.0 g, 60 mmol) with analytical grade acetone (1.74 g, 30 

mmol) in ethanol (60 mL) in the presence of a pallet of NaOH afforded S5-1 as yellow 

solid in excellent yield. Yield: 10.5 g, 99%; mp 121-122 °C (lit 8 mp 122-123 °C); 1H 
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NMR (CDCl3) δ ppm 3.90 (s, 6H), 3.92 (s, 6H), 6.87 (dd, 2H, J = 8, 2 Hz), 6.94 (d, 2H, J 

= 16 Hz), 7.12 (s, 2H), 7.18 (dd, 2H, J = 8, 2 Hz), 7.67 (d, 2H, J = 16 Hz); 13C NMR 

(CDCl3) δ ppm 55.9, 56.05, 56.08, 109.9, 110.2, 110.8, 111.1, 119.5, 122.9, 128.0, 131.5, 

144.1, 149.2, 151.2, 153.1, 188.6. 

1,5-Bis(3,4-dimethoxyphenyl)-3-pentanone (S5-2). Following closely the 

procedure described above for the preparation of S3-2, a yellow solution of S5-1 (9.9 g, 

28 mmol) and 10% Pd/C (0.5 g) in ethyl acetate (100 mL) was hydrogenated in a Parr 

apparatus (45 psi) for 2 h. Standard workup and crystallization from ethanol-

dichloromethane mixture afforded pure S5-2. Yield: 6.0 g, 60%; mp 83-84 °C (lit 8 mp 85 

°C); 1H NMR (CDCl3) δ ppm 2.66 (t, 4H, J = 8 Hz), 2.80 (t, 2H, J = 8 Hz), 3.81 (s, 6H), 

3.82 (s, 6H), 6.64-6.75 (m, 6H); 13C NMR (CDCl3) δ ppm 29.4, 44.9, 55.8, 56.09, 55.9, 

111.2, 111.7, 120.1, 133.7, 147.3, 148.8, 209.5. 

1,5-Bis(3,4-dimethoxyphenyl)pentane (S5-3).  Following closely the procedure 

described above for the preparation of S3-3, Clemmensen reduction of S4-2 (5.0 g, 14 

mmol) with amalgamated zinc (6.0 g), water (4.5 ml), conc. hydrochloric acid (11 ml), 

and toluene (12 mL), at reflux for 35 h afforded pure S5-3 after purification by column 

chromatography using ethylacetate/hexane as eluent.  Yield: 2.9 g, 60%; mp 55-56 °C (lit 

8 mp 56-57 °C); 1H NMR (CDCl3) δ ppm 1.34-1.42 (m, 2H), 1.56-1.67 (m, 4H), 2.51-

2.56 (m, 4H), 3.84 (s, 6H), 3.86 (s, 6H), 6.68-6.79 (m, 6H); 13C NMR (CDCl3) δ ppm 

29.1, 31.8, 35.6, 55.9, 56.0, 111.2, 111.8, 120.2, 135.6, 147.1, 148.8. 

1,5-Bis(3,4-dimethoxy-6-bromophenyl)pentane (S5-4).  To a solution of S5-3 

(2.0 g, 5.8 mmol) in dichloromethane (25 mL) was added drop wise a solution of bromine 

(2.1 g, 12.8 mmol) in dichloromethane (20 min). The standard aqueous workup as above 
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afforded pure S5-4 after crystallization from a mixture of chloroform and methanol. 

Yield: 2.8 g, 95%; mp 77-79 oC; 1H NMR (CDCl3) δ ppm 1.62 (m, 4H), 1.64(m, 2H), 

2.67(t, J = 7.2 Hz, 4H), 3.85(s, 6H), 3.86(s, 6H), 6.71 (s, 2H), 6.99(s, 2H); 13C NMR 

(CDCl3) δ ppm 28.58, 29.47, 33.24, 56.15, 56.17, 111.81, 112.32, 133.98, 134.51, 

146.75, 148.40. 

Synthesis of 5. A dry and argon flushed schlenk flask (100 mL), equipped with a 

magnetic stirrer and a septum was charged with S5-4 (1.25 g, 2.5 mmol) and anhydrous 

diethyl ether (60 mL). The reaction mixture was cooled to –78 oC, and n-BuLi (1.1 mL, 

2.75 mmol, 2.5 M in Hexane) was added dropwise. After this the reaction mixture was 

stirred until it came to room temperature to ensure a complete lithiation, then the reaction 

mixture was cooled back down to –78 oC and CuCN (112 mg, 1.25 mmol) was added.  

The reaction mixture was allowed to warm to room temperature slowly again.  The 

reaction mixture was vigorously stirred till all CuCN dissolved. The quinone DAQ (0.7 g, 

3.0 mmol) was added at –78 oC and the reaction mixture was stirred for overnight.  

Reaction was quenched by addition of 2N aqueous HCl (30 mL). The organic layer was 

separated and the aqueous layer was extracted with dichloromethane (2 x 30 mL). The 

combined organic layers were dried over MgSO4 and then concentrated under reduced 

pressure. Unreacted DAQ was converted to DAQ-H2 by heating the DCM solution of the 

crude products with Zn dust in presence of acetic acid (1mL) until the yellow color of 

DAQ disappeared (≈ 5min.). The resulting solution was filtered to separate Zn dust and 

sparingly soluble DMQ-H2, washed with 10 percent aqueous sodium bicarbonate 

solution (2 x 25 mL), dried over MgSO4 and evaporated under reduced pressure. 

Purification of residue on silica gel with hexanes/ethylacetate gave the cyclic 5 as a 
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viscous liquid. Yield: 171 mg,  20%; mp: low melting solid; 1H NMR (CDCl3) δ ppm 

1.37 (m, 2H), 1.50 (m, 2H), 1.74 (m, 2H), 2.07 (m, 2 H), 2.58 (m, 2H), 3.84(s, 6H), 

3.91(s, 6H), 6.66(s, 2H), 6.72(s, 2H);13C NMR (CDCl3) δ ppm 29.06, 30.24, 35.90, 

56.17, 56.23, 113.06, 114.03, 115.56, 133.99, 147.76, 148.37. 

Preparation of 6.  

Scheme 2. 6: Synthetic scheme for 6 

 

 

 

1,6-Bis(3,4-dimethoxyphenyl)-1,6-hexanedione (S6-1).  Following closely a 

literature procedure,9 a stirred solution of veratrole (13.8 g, 100 mmol) in dry 

dichloromethane (50 mL) was maintained at ~-10 ºC while anhydrous AlCl3 (13.8 g, 109 

mmol) was added in portions. With stirring and cooling at ~0 ºC, adipoyl chloride (8.3 g, 

45 mmol) was added dropwise during a 2-h period. After stirring for 12 h, the mixture 

was poured into a large beaker containing 1 kg of crushed ice, water (100 mL), and conc. 

hydrochloric acid (50 mL). After stirring for 15 min at 0 ºC, the aqueous layer was 

extracted with dichloromethane (5 x 150 mL) and the combined organic extracts were 

washed successively with water (2 x 100 mL), 10% K2CO3 (2 x 100 mL), and dried over 

anhydrous MgSO4 and filtered. After evaporation of the solvent in vacuo, the solid 
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residue was triturated with ether to remove excess veratrole. The crude residue was then 

recrystallized from toluene to afford pure S6-1 as white solid. Yield: 15 g, 86%; mp 148-

149 °C (lit 9 mp 149-150 °C); 1H NMR (CDCl3) δ ppm 1.80-1.84 (m, 4H), 2.97-3.00 (m, 

4H), 3.92 (s, 6H), 3.94 (s, 6H), 6.87 (d, 2H, J = 8 Hz), 7.52 (d, 2H, J = 2 Hz), 7.58 (dd, 

2H, J = 8 Hz); 13C NMR (CDCl3) δ ppm 24.4, 38.1, 56.1, 56.2, 110.0, 110.1, 122.8, 

130.3, 149.1, 153.2, 198.8. 

1,6-Bis(3,4-dimethoxyphenyl)hexane (S6-2).  Following closely the procedure 

described above for preparation of S4-3, S6-1 (10 g, 26 mmol) and 10% Pd/C (1.0 g) in 

ethyl acetate (60 mL) was hydrogenated in a Parr apparatus (45 psig) at room temperature 

for 2 h. After workup and recrystallization from ethanol afforded pure S6-2 as a white 

solid. Yield: 8.3 g, 90%; mp 77-78 °C (lit 10 mp 77-78 °C); 1H NMR (CDCl3) δ ppm 

1.33-1.37 (m, 4H), 1.55-1.63 (m, 4H), 2.54 (t, 4H, J = 7.5 Hz), 3.84 (s, 6H), 3.86 (s, 6H), 

6.69-6.78 (m, 6H); 13C NMR (CDCl3) δ ppm 29.3, 31.8, 35.7, 55.9, 56.0, 111.2, 111.8, 

120.2, 135.6, 147.1, 148.8. 

1,6-Bis(3,4-dimethoxy-6-bromophenyl)hexane (S6-3).  To a solution of S6-2 

(2.1 g, 5.8 mmol) in dichloromethane (50 mL) was added drop wise a solution of bromine 

(13 mmol) in dichloromethane (20 min). The organic layer was washed with aqueous 

sodium bisulfite (2 x 50 mL) and dried over anhydrous MgSO4. Evaporation of solvent 

and crystallization from a mixture of chloroform and methanol afforded S6-3 as white 

solid. Yield: 92%; mp 83-85 oC; 1H NMR (CDCl3) δ ppm 1.42 (m, 4H), 1.59(m, 4H), 

2.64(t, 4H, J = 7.85 Hz), 3.84(s, 6H), 3.85(s, 6H), 6.70(s, 2H), 6.98(s, 2H); 13C NMR 

(CDCl3) δ ppm 29.30, 30.42, 36.04, 56.22, 56.32, 113.08, 114.11, 115.65, 134.22, 

147.81, 148.43. 
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Synthesis of 6. Following closely the procedure described above for preparation 

of 5, S6-3 (1.3 g, 2.5 mmol) in anhydrous ether (60 mL) was reacted with nBuLi (1.1 mL, 

2.75 mmol, 2.5 M in Hexane) and CuCN (112 mg, 1.25 mmol) at –78oC, followed by 

reaction with DAQ (0.7 g, 3.0 mmol).  Workup as above and purification by column 

chromatography on silica gel with hexanes/ethylacetate as eluent afforded cyclic 6 as 

viscous oil. Yield: 231 mg, 26 %; mp: low-melting solid; 1H NMR (CDCl3) δ ppm 0.72 

(m, 2H), 1.16 (m, 2H), 1.38 (m, 2H), 1.60 (m, 2H), 2.46 (m, 2H), 3.80 (s, 6H), 3.90 (s, 

6H), 6.54 (s, 2H), 6.73 (s, 2H); 13C NMR (CDCl3) δ ppm 20.97, 28.36, 29.16, 56.06, 

56.11, 111.13, 113.13, 132.87, 134.85, 146.37, 148.53. 

Preparation of tBu-7.  

Scheme 2. 7: Synthetic scheme for tBu-7 

 

 

 

4-tert-Butyl-1,2-dimethoxybenzene (S7-1).  A catalytic amount of FeCl3 (50 mg) 

was added to a mixture of 1,2-dimethoxybenzene (10.38 g, 100 mmol) and tert-butyl 

chloride (10 mL) in dry DCM (100 mL).  The reaction mixture was stirred at room 

temperature for 10-15 min, followed by addition of methanol (10 mL). Standard aqueous 

workup and filtration through a short pad of silica gel afforded S7-1 as a low melting 

solid in quantitative yield. 1H NMR (CDCl3) δ ppm 1.36 (s, 9H), 3.89 (s, 3H), 3.93 (s, 
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3H), 6.85 (d, 1H, J= 8.2 Hz), 6.93- 7.01 (m, 2H); 13C NMR (CDCl3) δ ppm 31.59, 34.44, 

55.89, 109.34, 110.34, 117.18, 143.99, 146.91,148.50.  

1-Bromo-2-tert-butyl-4,5-dimethoxybenzene (S7-2).  4-tert-Butyl-1,2-

dimethoxybenz-ene (S7-1, 4.5 g, 23 mmol) in CCl4 (25 mL) was cooled to -20 oC 

followed by addition of a solution of bromine (24 mmol) in CCl4 (20 mL) slowly so that 

the temperature did not rise above –10 oC. After completion of the reaction (~1h), an 

aqueous solution of 5% sodium hydrogen sulfate (50 mL) was added, organic layer was 

separated, dried over MgSO4, evaporated to afford S7-2 as a low melting solid which was 

purified by column chromatography on silica gel using hexanes/ethylacetate as eluent. 

Yield: 5.9 g, 95 %, 1H NMR (CDCl3) δ ppm 1.48 (s, 9H), 3.83 (s, 3H), 3.85 (s, 3H), 6.96 

(s, 1H), 7.05 (s, 1H); 13C NMR (CDCl3) δ ppm 29.99, 36.33, 56.11, 117.71, 112.61, 

118.72, 140.11, 147.31, 147.56. 

2,2’-Di-tert-Butyl-4,4’,5,5’-tetramethoxybiphenyl (tBu-7).  Biaryl tBu-7 was 

synthesized using the same procedure as described for the preparation of 5 and 6., using 

S7-2 (683 mg, 2.5 mmol).   Yield: 241 mg, 25 %, mp: 118-120 oC; 1H NMR (CDCl3) δ 

ppm 1.16 (s, 18H), 3.78 (s, 6H), 3.91 (s, 6H), 6.50 (s, 2H), 6.98 (s, 2H). 13C NMR 

(CDCl3) δ ppm 33.39, 36.99, 55.96, 56.03, 111.65, 115.99, 134.68, 139.35, 145.03, 

147.50. 
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1H/13C NMR spectroscopy of Compounds 

 

 

All NMR spectra were recorded as CDCl3 solution at ambient temperatures. 

 

1H NMR spectra of S1-1. 

 

 

 

13C NMR spectra of S1-1. 

 

 

 

1H NMR spectra of 1. 
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13C NMR spectra of 1. 

 

 

 

1H NMR spectra of 2S-1. 

 

 

13C NMR spectra of 2S-1. 
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1H NMR spectra of 2S-2. 

 

 

13C NMR spectra of 2S-2. 

 

 

1H NMR spectra of 2S-3. 
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13C NMR spectra of 2S-3. 

 

 

1H NMR spectra of 2. 
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13C NMR spectra of 2. 

 

 

 

1H NMR spectra of 3S-1. 
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13C NMR spectra of 3S-1. 

 

 

 

1H NMR spectra of 3S-2. 

 

 

 

13C NMR spectra of 3S-2. 
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1H NMR spectra of 3S-3. 

 

 

13C NMR spectra of 3S-3. 
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1H NMR spectra of 3. 

 

 

13C NMR spectra of 3. 

 

 

 

1H NMR spectra of 4S-1. 
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13C NMR spectra of 4S-1. 

 

 

 

1H NMR spectra of 4S-2. 

 

 

 

13C NMR spectra of 4S-2. 
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1H NMR spectra of 4S-3. 

 

 

13C NMR spectra of 4S-3. 

 

 

 

1H NMR spectra of 4. 
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13C NMR spectra of 4. 

 

 

 

1H NMR spectra of 5S-1. 

 

 

13C NMR spectra of 5S-1. 
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1H NMR spectra of 5S-2. 

 

 

 

13C NMR spectra of 5S-2. 

 

 

1H NMR spectra of 5S-3. 
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13C NMR spectra of 5S-3. 

 

 

1H NMR spectra of 5S-4. 

 

 

 

13C NMR spectra of 5S-4. 
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1H NMR spectra of 5. 

 

 

 

13C NMR spectra of 5. 

 

 

 

1H NMR spectra of 6S-1. 

 

 



137 

 

 

 

13C NMR spectra of 6S-1. 

 

 

 

1H NMR spectra of 6S-2. 

 

 

 

13C NMR spectra of 6S-2. 
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1H NMR spectra of 6S-3. 

 

 

 

13C NMR spectra of 6S-3. 

 

 

 

1H NMR spectra of 6. 

 

 

 

 



139 

 

 

 

13C NMR spectra of 6. 

 

 

 

1H NMR spectra of 7S-1. 

 

 

 

13C NMR spectra of 7S-1. 
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1H NMR spectra of 7S-2. 

 

 

 

13C NMR spectra of 7S-2. 

 

 

 

1H NMR spectra of tBu-7. 
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13C NMR spectra of tBu-7. 

 

 

 

Cyclic voltammetry of biaryls 1-7 and model compound 

 

The CV cell was of an air-tight design with high vacuum Teflon valves and Viton 

O-ring seals to allow an inert atmosphere to be maintained without contamination by 

grease. The working electrode consisted of an adjustable platinum disk embedded in a 

glass seal to allow periodic polishing (with a fine emery cloth) without changing the 

surface area (~1 mm2) significantly. The reference SCE electrode (saturated calomel 

electrode) and its salt bridge were separated from the catholyte by a sintered glass frit. 

The counter electrode consisted of a platinum gauze that was separated from the working 

electrode by ~3 mm. The CV measurements were carried out in a solution of 0.1 M 

supporting electrolyte (n-Bu4NPF6) and the substrate in dry CH2Cl2 under an argon 

atmosphere at 22 ºC. All the cyclic voltammograms were IR compensated. The oxidation 

potentials (Eox, calculated by taking the average of anodic and cathodic peaks) were 

referenced to ferrocene. 
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Figure 2. 11. Cyclic (green and red lines) and square-wave (blue lines) voltammograms 

of 2 mM 1-7 in CH2Cl2 (0.1 M n-Bu4NPF6) at a scan rate of 200 mV s-1 and 22 ºC. 
 

 

 

 

 

Figure 2. 12. Cyclic voltammograms of model of 2 mM 3,4-dimethoxy-1-tert-

butylbenzene at various scan rates in CH2Cl2 (0.1 M n-Bu4NPF6) at 22 ºC, and its square-

wave voltammogram. 

 

The model monoaryl, i.e. 3,4-dimethoxytoluene, undergoes an expected 

irreversible electrochemical oxidation because it readily forms the corresponding 2,2-
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dimethyl-3,4,3’,4’-tetramethoxybiphenyl.11 Interestingly, replacing the methyl with tert-

butyl group in 3,4-dimethoxytoluene affords a completely reversible cyclic 

voltammograms because it prevents oxidation coupling due to the steric hindrance. Note 

that the oxidation potentials of 3,4-dimethoxytoluene and 3,4-dimethoxy-1-tert-

butylbenzene are expected to be similar. 

Generation of cation radicals of 1-7 

 

The clean one-electron electron transfer from 1-7 to their cation radicals at the 

equivalence titration point (i.e. 1:1 ratio of electron donor:oxidant) was confirmed by the 

deconvolution of spectra at each titration point using the clean absorption spectra of 

THE
+•

 (or NAP
+•

) and 1
+•

-7
+•

 and fitting of the obtained molar fractions to the 

equilibrium equations of the one- and two-electron oxidation.12 

 

Preparation of NAP+• SbCl6
-: In a dry Schlenk tube equipped with a magnetic 

stir bar, 25.0 mg (0.069 mmol) of NO+SbCl6 was taken out from the Glove Box. Then 

approximately 10 mL of anhydrous CH2Cl2 was added into the Schlenk tube under argon 

atmosphere at room temperature and was kept stirring to dissolve NO+SbCl6. The 

Schlenk tube having light yellow colored solution was placed in an ice bath and was kept 

stirring for 10 minutes. 23.8 mg (0.068 mmol) of annulated napthyl was added at 0 ⁰C 

under argon atmosphere and the resulting solution was kept vigorous stirring with 

occasional degassing to remove in situ generated NO gas. After 1 hour stirring and 

occasional degassing the resulting solution turned to deep blue color which was ready to 

use as oxidant for the redox titration. 
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Preparation of THE+• SbCl6
-: A stock solution of THE+• was prepared by 

dissolving [THE+• SbCl6
-] (4.4 x 10-3 mmol) in anhydrous dichloromethane (20 mL) at 

22 oC under an argon atmosphere. A 3-mL aliquot of the red-orange solution was 

transferred to a 1-cm quartz cuvette equipped with a Schlenk adapter (under an argon 

atmosphere). The redox titrations were carried out by adding the increments of an 

electron donor (tetraarylethylenes and tetraarylbenzidine) dissolved in dichloromethane 

to the above solution of THE+•; and the accompanied color changes were monitored by 

UV-vis-NIR spectroscopy. 
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1 (2.07 mM) + THE+• SbCl6
– (95 uM) → 1+• SbCl6

–
+ THE0 

 

2 (1.93 mM) + THE+• SbCl6
– (94 uM) → 2+• SbCl6

–
+ THE0 

 

3 (2.67 mM) + NAP+• SbCl6
– (85 uM) → 3+• SbCl6

–
+ NAP0 

 

4 (2.67 mM) + NAP+• SbCl6
– (85 uM) → 4+• SbCl6

–
+ NAP0 

 

5 (1.64 mM) + NAP+• SbCl6
– (76 uM) → 5+• SbCl6

–
+ NAP0 

 

 

(continued on the next page) 
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6 (1.54 mM) + NAP+• SbCl6
– (59 uM) → 6+• SbCl6

–
+ NAP0 

 

7 (3.18 mM) + NAP+• SbCl6
– (104 uM) → 7+• SbCl6

–
+ NAP0 

 

 

Figure 2. 13. Spectral changes attendant upon the reduction of 1-7, as indicated, (see 

panel titles for the stock solution concentrations) by THE+• SbCl6
– or NAP+• SbCl6

– in 

CH2Cl2 at 22 ºC. 
 

Note that in cases of large linkers (i.e. 3+•, 5+•, and 6+•), 15%, 10% and 7% of an 

additional species were identified by spectral deconvolution, which were attributed to the 

corresponding rearranged dications. Note that formation of these rearranged dicationic 

species was reversible as they disappeared upon addition of excess neutral biaryl, and 

thus do not interfere in accurate determination of the spectroscopic characteristics of 

biaryl cation radicals. The identity of these rearranged dicationic species is under 

investigation.  
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Crystal data and structure refinement 

 

Generation and crystallization of cation radicals salts: A 25 mL Schlenk tube 

was charged with nitrosonium hexachloroantimonate (44 mg, 0.12 mmol), and a cold 

solution of 1 or 3 (0.12 mmol) in anhydrous dichloromethane (5 mL) was added under an 

argon atmosphere at -10 ºC. The solution was stirred while slowly bubbling argon 

through the solution to entrain gaseous NO for 5 min to yield a dark-colored solution of 

the corresponding cation radical. The resulting cation radical solution was carefully 

layered with dry toluene (10 mL) and placed in a refrigerator (-10 ºC) which after 2 days 

produced single crystals suitable for X-ray structure analysis. 

 

 

 

Figure 2. 14. ORTEP diagrams (50% probability) of 1-4. 

 

 

 

 1+•  3+•  

Figure 2. 15. ORTEP diagrams (50% probability) of 1+• and 3+•.  

1 2

3 4
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Figure 2. 16. Crystal packing diagrams of 1+• (left) and 3+• (right) together with 

counteranion (i.e. SbCl6
-) and disordered CH2Cl2 molecules.  

 

 

Table 2. 6. Crystal data and structure refinement for 1. 

 
Identification code  raj2g 

Empirical formula  C21 H25 N O4 

Formula weight  355.42 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 17.284(2) Å a= 90°. 

 b = 7.1576(9) Å b= 118.787(2)°. 

 c = 17.852(2) Å g = 90°. 

Volume 1935.5(4) Å3 

Z 4 

Density (calculated) 1.220 Mg/m3 

Absorption coefficient 0.084 mm-1 

F(000) 760 

Crystal size 0.60 x 0.25 x 0.15 mm3 

Theta range for data collection 1.34 to 31.88°. 

Index ranges -25<=h<=22, 0<=k<=10, 0<=l<=26 

Reflections collected 31716 

Independent reflections 6334 [R(int) = 0.0280] 
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Completeness to theta = 25.00° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.989 and 0.950 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6334 / 0 / 335 

Goodness-of-fit on F2 1.028 

Final R indices [I>2sigma(I)] R1 = 0.0423, wR2 = 0.1158 

R indices (all data) R1 = 0.0523, wR2 = 0.1229 

Largest diff. peak and hole 0.460 and -0.225 e.Å-3 

 

Table 2. 7.  Crystal data and structure refinement for 2. 

 
Identification code  raj9sa 

Empirical formula  C18 H20 O4 

Formula weight  300.34 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P 21 21 21 

Unit cell dimensions a = 7.48390(10) Å a= 90°. 

 b = 8.79450(10) Å b= 90°. 

 c = 22.7959(3) Å g = 90°. 

Volume 1500.36(3) Å3 

Z 4 

Density (calculated) 1.330 Mg/m3 

Absorption coefficient 0.759 mm-1 

F(000) 640 

Crystal size 0.66 x 0.35 x 0.22 mm3 

Theta range for data collection 3.88 to 67.17°. 

Index ranges -8<=h<=8, 0<=k<=10, 0<=l<=26 

Reflections collected 12583 

Independent reflections 2627 [R(int) = 0.0226] 

Completeness to theta = 67.17° 98.9 %  
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Absorption correction Numerical 

Max. and min. transmission 0.8508 and 0.6342 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2627 / 0 / 280 

Goodness-of-fit on F2 0.990 

Final R indices [I>2sigma(I)] R1 = 0.0244, wR2 = 0.0658 

R indices (all data) R1 = 0.0252, wR2 = 0.0666 

Absolute structure parameter 0.07(14) 

Extinction coefficient 0.0015(3) 

                Largest diff. peak and hole  0.159 and -0.125 e.Å-3 

 

Table 2. 8.  Crystal data and structure refinement for 3. 

 
Identification code  raj7i 

Empirical formula  C19 H22 O4 

Formula weight  314.37 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Orthorhombic 

Space group  P n a 21 

Unit cell dimensions a = 18.4276(2) Å a= 90°. 

 b = 9.23800(10) Å b= 90°. 

 c = 18.8820(2) Å g = 90°. 

Volume 3214.36(6) Å3 

Z 8 

Density (calculated) 1.299 Mg/m3 

Absorption coefficient 0.731 mm-1 

F(000) 1344 

Crystal size 0.35 x 0.25 x 0.15 mm3 

Theta range for data collection 4.68 to 66.98°. 

Index ranges 0<=h<=21, 0<=k<=11, 0<=l<=21 

Reflections collected 26579 

Independent reflections 2889 [R(int) = 0.0177] 

Completeness to theta = 66.98° 97.7 %  



151 

 

 

 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8982 and 0.7839 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2889 / 1 / 415 

Goodness-of-fit on F2 0.994 

Final R indices [I>2sigma(I)] R1 = 0.0542, wR2 = 0.1369 

R indices (all data) R1 = 0.0546, wR2 = 0.1376 

Absolute structure parameter 0.1(2) 

Largest diff. peak and hole 0.768 and -0.218 e.Å-3 

 

Table 2. 9.  Crystal data and structure refinement for 4. 

 

 
Identification code  raj9x 

Empirical formula  C20 H24 O4 

Formula weight  328.39 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 9.7582(3) Å a= 90°. 

 b = 16.5351(5) Å b= 92.560(2)°. 

 c = 21.8816(7) Å g = 90°. 

Volume 3527.13(19) Å3 

Z 8 

Density (calculated) 1.237 Mg/m3 

Absorption coefficient 0.687 mm-1 

F(000) 1408 

Crystal size 0.60 x 0.19 x 0.12 mm3 

Theta range for data collection 3.35 to 67.18°. 

Index ranges -11<=h<=11, 0<=k<=19, 0<=l<=25 

Reflections collected 28526 

Independent reflections 5984 [R(int) = 0.0177] 
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Completeness to theta = 68.00° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9221 and 0.6832 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5984 / 0 / 626 

Goodness-of-fit on F2 1.029 

Final R indices [I>2sigma(I)] R1 = 0.0312, wR2 = 0.0784 

R indices (all data) R1 = 0.0347, wR2 = 0.0804 

Extinction coefficient 0.00054(7) 

Largest diff. peak and hole 0.280 and -0.153 e.Å-3 

 

Table 2. 10.  Crystal data and structure refinement for 1+•. 

 

Identification code  raj1p 

Empirical formula  C19 H22 Cl6 O4 Sb 

Formula weight  648.82 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P 21/n 

Unit cell dimensions a = 8.440(4) Å a= 90°. 

 b = 24.795(11) Å b= 97.684(7)°. 

 c = 12.131(5) Å g = 90°. 

Volume 2516(2) Å3 

Z 4 

Density (calculated) 1.713 Mg/m3 

Absorption coefficient 1.757 mm-1 

F(000) 1284 

Crystal size 0.20 x 0.15 x 0.08 mm3 

Theta range for data collection 1.64 to 31.85°. 

Index ranges -12<=h<=12, 0<=k<=36, 0<=l<=17 

Reflections collected 29955 

Independent reflections 8044 [R(int) = 0.0566] 
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Completeness to theta = 25.00° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8722 and 0.7202 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8044 / 0 / 271 

Goodness-of-fit on F2 1.073 

Final R indices [I>2sigma(I)] R1 = 0.0619, wR2 = 0.1392 

R indices (all data) R1 = 0.0868, wR2 = 0.1479 

Largest diff. peak and hole 1.957 and -2.322 e.Å-3 

 

Table 2. 11.  Crystal data and structure refinement for 3+•. 

 

Identification code  raj10n 

Empirical formula  C19.50 H23 Cl7 O4 Sb 

Formula weight  691.28 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Triclinic 

Space group  P -1 

Unit cell dimensions a = 10.1459(4) Å a= 64.055(2)°. 

 b = 11.9103(5) Å b= 81.580(2)°. 

 c = 12.4173(5) Å g = 75.636(2)°. 

Volume 1305.87(9) Å3 

Z 2 

Density (calculated) 1.758 Mg/m3 

Absorption coefficient 15.187 mm-1 

F(000) 684 

Crystal size 0.40 x 0.20 x 0.10 mm3 

Theta range for data collection 4.22 to 67.44°. 

Index ranges -11<=h<=11, -12<=k<=14, 0<=l<=14 

Reflections collected 4258 

Independent reflections 4258 [R(int) = 0.0494] 

Completeness to theta = 67.44° 98.6 %  
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Absorption correction Numerical 

Max. and min. transmission 0.3120 and 0.0644 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4258 / 3 / 324 

Goodness-of-fit on F2 0.991 

Final R indices [I>2sigma(I)] R1 = 0.0392, wR2 = 0.1090 

R indices (all data) R1 = 0.0404, wR2 = 0.1101 

Extinction coefficient 0.00043(12) 

Largest diff. peak and hole 1.653 and -1.076 e.Å-3 

 

Analysis of the NMR chemical shifts of 2,2’-protons of 1-7 

 

 

 

Figure 2. 17.  1H NMR spectra of 1-7 showing the chemical shifts of aromatic protons. 

The chemical shifts of 2,2’-protons are marked by red color.  
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Table 2. 12. Comparison of the 1H NMR chemical shifts and calculated chemical 

shieldings of 2,2’-protons of all identified conformers of 1-7 as well as relative free 

energies of these conformers 

 

 

 

a Calculated chemical shieldings of the 2,2’-protons; 
b Average of (2) and (2’); 
c Calculated chemical shieldings, scaled according to the linear trend with 1H NMR 

chemical shifts in Figure 2.2 A, i.e. (DFT, scaled) = 25.417-0.75514*(DFT). 

 

 

Computational Details 

 

Electronic structure calculations were performed with the Gaussian 09 package, 

revision D01.13 For the density functional theory (DFT) calculations we used calibrated 

(see Ref. 14 for details, also see refs 12,15-18) B1LYP functional19 that contains 40% 

contribution of the exact exchange with 6-31G(d) basis set by Pople and co-workers.20 

Solvent effects were included using the implicit integral equation formalism polarizable 

continuum model (IEF-PCM, also referred as PCM)21-25 with the dichloromethane 

solvent parameters ( = 8.93). In all DFT calculations, ultrafine Lebedev’s grid was used 

Name 
(NMR),  

ppm 

∆G,  
kcal/mol 

(2),a  
ppm 

(2’),a  
ppm 

(DFT),b 
ppm 

(DFT,scaled),c 
ppm 

1 7.14 0.0 24.21 24.21 24.21 7.14 

2 7.16 0.0 24.21 24.21 24.21 7.14 

3 6.90 0.0 24.50 24.50 24.50 6.92 

4 6.76 
8.3 24.57 24.93 24.75 6.73 

0.0 24.71 24.71 24.71 6.76 

5 6.67 

0.0 24.77 24.89 24.83 6.67 

3.9 24.90 24.90 24.90 6.62 

1.6 24.86 24.88 24.87 6.64 

6 6.55 

0.0 24.96 24.96 24.96 6.57 

2.9 24.86 24.85 24.86 6.65 

2.8 24.80 24.80 24.80 6.69 

5.2 24.82 24.82 24.82 6.67 

4.1 24.82 24.82 24.82 6.67 

6.7 24.76 24.76 24.76 6.72 

10.4 24.78 24.76 24.77 6.71 

13.8 24.84 25.13 24.99 6.55 

7 6.50 0.0 25.08 25.09 25.09 6.47 
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with 99 radial shells per atom and 590 angular points in each shell. For the cation radical 

calculations, wave function stability tests26,27  was performed to ensure absence of 

solutions with lower energy. The values of <S2> operator after spin annihilation were 

confirmed to be close to the expectation value of 0.75, thus indicating that spin 

contamination was not an issue for the performed calculations. Atomic charges were 

calculated using Natural Population Analysis approach,28 which is a part of the Natural 

Bond Orbital analysis.29 Tight cutoffs on forces and atomic displacement were used to 

determine convergence in geometry optimization procedure. Hessians were calculated for 

the optimized structures of all neutral and cation radicals to confirm absence of imaginary 

frequencies. Free energies were computed within harmonic oscillator approximation for T 

= 298.15 K and P = 1 atm.  

 

Electronic excitation energies were calculated using the time-dependent density 

functional theory (TD-DFT).27,30-35 The gauge-independent atomic orbital (GIAO) 

method36 was employed for 1H NMR shift calculations;37 isotropic shielding constants 

were calculated using the B1LYP-40 functional and polarization-consistent pcS-2 basis 

set by Jensen.38 The initial conformations of 3-6 were obtained using ChemAxon Marvin 

(conformers plugin) conformer generator,39 which utilizes molecular mechanics 

calculations.40 After the removal of duplicates, the conformer structures were optimized 

by the RM1 method41 using MOPAC200942 and then by the DFT calculations at the 

B1LYP-40/6-31G(d)+PCM(CH2Cl2) level.  

 

Excitation energies of 3,4,3’,4’-tetramethoxybiphenyl as function of the dihedral 

angle between aryl groups () was performed for the values of  from 0º to 90º with a 
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step size of 5º. For every scan point (i.e. for every value of ), a constrained optimization 

was performed with all fixed dihedral angles. The optimized geometries/electronic 

structures were subjected to the stability test (see above) and TD-DFT calculations.  

 

 

 

Figure 2. 18. The isovalue (±0.03 a.u.) plots and orbital energies of HOMO and HOMO-

1 of 1-7 [B1LYP-40/6-31G(d)+PCM (CH2Cl2)]. 

 

 

Figure 2. 19. The isovalue (±0.003 a.u.) plots of spin density of 1+•-7+• in their ground 

(D0) and excited (D1) states [B1LYP-40/6-31G(d)+PCM (CH2Cl2)]. 
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 91B 92B 

 

 95B 96B 

 

 

 104B 105B 

 

Figure 2. 20. Showing the nature of the D0→D1 electronic transition in 1+•-7+• as well as 

the isovalue plots (±0.03 a.u.) of the most relevant orbitals. 
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Figure 2. 21. Left: Showing the linear correlation between the calculated [B1LYP-40/6-

31G(d)+PCM(CH2Cl2)] gas-phase ionization potentials of identified conformers of 1-7, 

listed in Tables S10/S11, and cos CR in the full range of angles from 0º to 90º. Right: 

Showing the linear correlation between the energies of highest occupied molecular 

orbitals of identified conformers of 1-7 and their ionization potentials. 
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CHAPTER 3  

Hexa-peri-hexabenzocoronene-fluorene hybrid: A platform for highly soluble, easily 

functionalizable HBCs with expanded graphitic core 

 

 

Abstract: Materials based upon hexa-peri-hexabenzocoronenes (HBCs) show significant 

promise in a variety of photovoltaic applications. There remains the need, however, for a 

soluble, versatile, HBC-based platform, which can be tailored via incorporation of 

electro-active groups or groups that can prompt self-assembly. Herein, we report the 

successful synthesis of a new HBC-fluorene hybrid with expanded graphitic core that is 

highly soluble, resists aggregation, and can be readily functionalized at its vertices. We 

also show that this new HBC platform can be tailored to incorporate six electro-active 

groups at its vertices, as exemplified by a facile synthesis of a representative hexaaryl 

derivative of FHBC. Synthesis of new FHBC derivatives, containing electro-active 

functional groups which can allow controlled self-assembly, may serve as potential long 

range charge-transfer materials for photovoltaic applications.   

 

 

Disclaimer: The results discussed in this chapters were further supplimented by DFT 

calculations and relevant computational works by my coworkers Dr. Maxim V. Ivanov. 

My contribution to this chapter is limited to synthesis of various molecules and 

spectroscopic studies with my co–worker Dr. Tushar S Navale. 
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INTRODUCTION 

 

Hexa-peri-hexabenzocoronenes (HBCs) are promising materials for application 

in thin film electronic devices, field effect transistors, and photovoltaic applications.1,2 

Indeed, the design and synthesis of improved HBCs continues to garner tremendous 

attention,3 as expanding the size of the flat π-conjugated graphitic core is expected to 

result in high charge carrier mobility.4,5 While the parent HBC (Figure 3.1) can be 

readily accessed via oxidative cyclodehydrogenation of hexaphenyl-benzene, it is 

insoluble in common organic solvents.5,6  HBCs incorporating alkyl groups at the 

vertices (RHBC, Figure 3.1) display improved solubility, yet often form aggregates in 

solution, as evidenced by broadened signals in their 1H/13C NMR spectra at ambient 

temperatures.7,8 Unfortunately, the incorporation of solubilizing groups at the vertices of 

HBCs restrict their further functionalization with desired electro-active groups.  

To address this issue, we will show that incorporating six fluorene rings, substituted with 

solubilizing groups at their C9 methylenes, into the ‘bay areas’ of the parent HBC core 

produces a hybrid structure that eliminates the issues plaguing HBC (see Figure 3.1). 

Specifically, the hybrid structure provides (i) an expanded graphitic core, (ii) increased 

solubility, and (iii) contains unsubstituted vertices for subsequent functionalization (vide 

infra). Accordingly, we describe the successful synthesis of a highly-soluble HBC–

fluorene hybrid, hereafter referred to as FHBC, and show that it can be readily 

functionalized at all six vertices (Figure 3.1). We will also show that expansion of the 

graphitic core of HBC affords multiple (reversible) 1-e- oxidation, producing a stable, 

non-aggregated cation-radical salt in solution. The successful synthesis of this new, 

readily functionalizable graphitic platform detailed here, offers potential for the design 
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and syntheses of next-generation materials for applications in modern photovoltaic 

devices.  

 

Figure 3. 1. A comparison of the relative sizes of the parent HBC, HBC functionalized 

at its vertices with solubilizing groups (e.g. R = n-alkyl or tert-butyl), and newly designed 

HBC–fluorene hybrid (FHBC, R = n-alkyl) with provisions for both solubility and sites 

for on-demand functionalization (indicated by black dots). 

 

 

 

RESULTS AND DISCUSSION 

 

The strategy for the preparation of FHBC involves an oxidative 

cyclodehydrogenation of a hexaphenylbenzene derivative 5, in which alternate phenyl 

groups (i.e. 1,3,5 phenyls) are functionalized with two fluorenyl rings (Scheme 3.1).  

Initially, we attempted to access 5 via the selective conversion of readily available 

hexakis(4-bromophenyl)benzene9 (1) to a symmetrical 1,3,5-TMS derivative 2 by 

lithiation with tBuLi at -90 oC followed by reaction with TMSCl.10,11 Although 2 was 

easily prepared in high yield, a series of functional group transformations onto 2 (Scheme 

3.1) returned the desired hexabromo derivative 4 in meager yield, largely due to the poor 
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solubility of 4 and its precursors.  The solubility issues forced us to abandon this route for 

accessing FHBC (see Scheme 3.1 and Scheme 3.2 and Experimental section for 

additional details).  

 

Scheme 3. 1: Two different synthetic approaches for the preparation of FHBC. a. i) 

tBuLi (6 equiv)/-90oC; ii) Me3SiCl/-90oC, yield: 76%.  b. 70% HNO3/Ac2O/80 oC, yield: 

40%. c. (i) Sn/HCl/DME/90 oC, yield: 74%; d. Pd(OAc)2/PPh3/aq K2CO3/n-butanol/100 
oC, yield: 68%.  e. aq. HBr (48%)/H2O2 (30%)/THF/ H20, yield: ~76%. f. i) 

NaNO2/H2SO4; ii) H3PO2, produced a highly insoluble mixture of products which could 

not be fully characterized.  

 

 
 

Scheme 3. 2: a. PdCl2(PPh3)2/CuI/diisopropylamine/40 oC/4h, yield: 97%.  b. 9,9-

dihexylfluorene-2-boronic acid pinacol ester/Pd(PPh3)4/aq. K2CO3/ ethanol/toluene/ 

reflux/24h, yield: 89%.  c. Co2(CO)8/p-dioxane/ reflux/14h, Yield: ~96%.  d. DDQ (22 
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equiv)/CH2Cl2-CH3SO3H (9:1) mixture/0 oC/6h, yield: 28% (after chromatographic 

purification). e. FeCl3 (100 equiv)/ CH2Cl2/CH3NO2/22 oC, yield: 18%. 

 

In an alternative strategy, 5 could be prepared as an isomeric mixture in 3 simple 

steps (Scheme 3.2), via a practical if non-elegant route. First, a Sonogashira coupling of 

phenylacetylene (6) with readily-available 1,3-dibromo-5-iodobenzene12 (7) returned 

alkyne 8 in excellent yield.  A 2-fold Pd-catalyzed Suzuki coupling of 8 with 9,9-

dihexylfluorene-2-boronic acid afforded alkyne derivative 9 in 86% yield in two steps. 

Finally, a Co2(CO)8-catalyzed cyclotrimerization of 9 afforded 5 (1,3,5-isomer) and 5’ 

(1,2,4-isomer) as a statistical mixture13 in nearly quantitative yield (Scheme 3.2). 

Repeated attempts to separate highly soluble isomeric mixture of 5/5’, using flash 

chromatography and fractional crystallizations, were unsuccessful. 

We subjected the isomeric mixture of 5/5’ to oxidative cyclodehydrogenation, 

using FeCl3 as an oxidant, which afforded a deep-red solid. A chromatographic 

purification of the red-solid using hexanes as eluents easily separated FHBC as an 

orange-red microcrystalline solid in 18% yield.14 A much higher yield and purer FHBC 

(28%) was obtained by oxidative cyclodehydrogenation of 5/5’, using our recently 

developed procedure with [DDQ/acid] as an oxidant system in CH2Cl2.
15,16 Note that 

oxidative cyclodehydrogenation of only 5 (1,3,5 isomer) can produce FHBC, and as the 

isomeric mixture of 5/5’ contains only ~33% of 5, use of [DDQ/acid]15,16 as oxidant 

produces a nearly quantitative yield of FHBC.  
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Figure 3. 2. Partial 1H NMR spectrum of 10 mM FHBC in CDCl3 at 22 oC showing 

well-resolved resonances for equivalent aromatic protons (labeled).  

 

The HBC-fluorene hybrid (FHBC) was found to be highly soluble in common 

organic solvents, such as hexanes, CH2Cl2, CHCl3, THF, DMF, etc., and its structure was 

established by 1H/13C NMR spectroscopy and MALDI-TOF mass spectrometry (see 

experimental Information). A 1H NMR spectrum of FHBC in CDCl3 showed well-

resolved resonances for all unique protons, indicating minimal or no aggregation at 

ambient temperatures (Figure 3.2). This is distinct from the solution-phase NMR spectra 

of other HBCs, which generally show broad signals owing to extensive aggregation.7,8 
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Figure 3. 3. A. Comparison of the UV-vis absorption (10-6 M) and B. emission spectra of 

FHBC (red) and tBuHBC (blue) in CH2Cl2 at 22 °C. 

 

The UV-visible absorption spectrum of FHBC is compared with well-known 

tBuHBC 6,17 in CH2Cl2  in Figure 3.3 A.  Each shows characteristic well-resolved 

vibronic structure; however, the significant expansion of the graphitic core in FHBC, 

leads to a large red shift (by ~90 nm) of its absorption bands (325, 451, and 486 nm; ɛ451 

= 6.0 x 105 M-1cm-1) and increased molar absorptivity compared to tBuHBC (230, 360, 

and 390 nm; ε360 = 1.9 x 105 M-1cm-1).  Normalized emission spectra of FHBC and 

tBuHBC, at the same concentrations, Figure 3.3.B, show a red-shift of the emission bands 

of FHBC (582, 612 nm) compared to tBuHBC (486, 520 nm).  At higher concentrations, 

tBuHBC shows a broad emission (at ~560 nm) indicating aggregate (i.e., dimer) 

formation.17 In contrast, the emission spectrum of FHBC does not show the appearance 

of a new excimeric band.  

Electrochemical analysis showed that FHBC displays four reversible oxidation 

waves at 0.40, 0.76, 1.01 and 1.19 V (vs. Fc/Fc+) corresponding to the formation of 
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monocation, dication, trication and tetracation, respectively (Figure 3.4. A).  In contrast, 

tBuHBC exhibits a single oxidation wave at 0.64 V vs Fc/Fc+ in CH2Cl2 (see Figure 

3.10).6,17 Moreover, the expansion of the size of the graphitic core in FHBC results in a 

significant lowering of the first oxidation potential (by ~240 mV) in comparison to 

tBuHBC. 

 

 

 

Figure 3. 4. (A) Cyclic (solid red line) and square-wave (dashed blue line) 

voltammograms of FHBC (0.63 mM) in CH2Cl2 containing 0.2 M n-Bu4NPF6 at a scan 

rate of 200 mV s-1 and 22 oC. (B) The spectral changes observed upon the reduction of 

5.5 x 10-6 M MB+•SbCl6
- by an incremental addition of sub-stoichiometric amounts of 

FHBC in CH2Cl2 at 22 oC.   

 

The cation radical of FHBC was generated in solution via quantitative redox 

titrations using magic blue (i.e., MB+• or tris-4-bromophenylamminium cation radical, 

Ered = 0.70 V vs Fc/Fc+, λmax = 728 nm, εmax = 28,200 cm-1 M-1) as an oxidant.18,19 The 

spectrum of FHBC+• remained unchanged at tenfold higher concentration, as well as in 

the presence of excess (up to 10 equivalents) neutral FHBC, suggesting a lack of 
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aggregation either between the molecules of FHBC+• or FHBC+•/FHBC in solution.  In 

contrast, tBuHBC+• readily forms a dimeric cation radical in solution, i.e.  tBuHBC+• + 

tBuHBC → [tBuHBC]2
+• with an equilibrium constant K = 1100 M-1 (see Figure 3.5).  

Expansion of the chromophoric size of FHBC+• (λmax = 460, 528, 664, 1261, and 1418 

nm, ε1418 = 36,000 cm-1 M-1) leads to an increased molar absorptivity (by a factor of ~6) 

when compared to tBuHBC+• (λmax = 550, 836, 1570, 1740, 2100 nm, ε2100 = 5700 cm-1 M-

1), see Figure 3.13.6,17 

 

 

 

Figure 3. 5. Electronic absorption spectrum of tBuHBC+• (blue) and its spectrum in the 

presence of neutral tBuHBC (red).7,8 
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Summarizing, while tBuHBC forms aggregates in neutral, excited, and cation 

radical states, as judged by, respectively, broad NMR spectra, observation of excimeric 

emission (at ~560 nm),6,17 and observation of intervalence transition (at 1200 nm)6,17 in 

its cation radical spectrum in the presence of neutral tBuHBC (see Figures 3.4/ 3.6), such 

spectroscopic signatures of aggregation were completely absent in the case of FHBC. A 

cursory examination of the molecular structures of FHBC and tBuHBC suggests that the 

narrow bay areas in FHBC do not afford arrangement of two hexyl chains in a staggered 

(sandwich-like) dimer. On the other hand, the relatively wider bay areas in tBuHBC 

provide sufficient space for smaller methyl groups to be accommodated in a sandwich-

like (staggered) dimeric structure (Figure 3.6.A).  
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Figure 3. 6. (A) Structures of tBuHBC and FHBC showing the different sizes of the bay 

areas with the aid of circles. (B) Superimposed structures of tBuHBC and FHBC dimers 

obtained from molecular dynamics simulations (see Supporting Information for details). 

(C) Space-filling representation of tBuHBC and FHBC dimers. 

 

As a further probe of the lack of aggregation in FHBC, we performed (1-ns long) 

molecular dynamics (MD) simulations at ambient temperature, which showed that neutral 

tBuHBC indeed forms a stable dimer (with the interplanar separations between the 

aromatic cores close to van der Waals contact (~3.5 Å), while in dimeric FHBC the pair 

of nanographenes lie at a separation of ~7.8 Å (Figure 3.6 B-C). Indeed, the presence of 

the long hexyl chains in FHBC hinders the approach of the graphitic cores in the dimer 

in favor of multiple CH-π interactions between the large π-system and alkyl chains 

(Figure 3.6 B/C). It is important to emphasize that access to FHBC platform, which 
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resists self aggregation, will open new avenues for the preparation of 2-dimensional 

extended aggregates via π-π contacts between the outer phenylenes of fluorene moieties 

that can be functionalized with appropriate groups at its vertices. 

Functionalization of FHBC at its vertices would require access to its hexabromo 

derivative 7 (Scheme 3. 8).  Initial attempts of a six-fold bromination of FHBC in 

CH2Cl2 using bromine resulted in an inseparable mixture of polybrominated products.20 

However, a bromination of the isomeric mixture of 5/5’ (i.e. the precursor to FHBC) in 

CH2Cl2 with bromine, in the presence of a catalytic amounts of iodine (in ~4h), afforded 

isomers 10/10’, appropriately brominated at the desired positions of all fluorenes 

(Scheme 3.8).  An oxidative cyclodehydrogenation of this isomeric mixture (10/10’) 

using DDQ/acid oxidant system followed by column chromatography returned FHBC-

Br6 in 26% yield as a dark-red solid (Scheme 3.9). The structure of FHBC-Br6 was 

established by 1H/13C NMR spectroscopy and further confirmed by MALDI mass 

spectrometry (Figure 3.8). 

As a proof of concept experiment, a six-fold Suzuki coupling of FHBC-Br6 with 

2,5-dimethoxy-4-methylphenylboronic acid, under standard reaction conditions, afforded 

FHBC-Ar6 as a deep-red solid in 91% yield (Scheme 3.10). The structure of FHBC-Ar6 

was established by 1H/13C NMR spectroscopy and MALDI mass spectrometry. A 1H 

NMR spectrum of FHBC-Ar6 in CDCl3 showed well-resolved resonances (see 

Experimental Information) similar to FHBC. 

CONCLUSION 

In conclusion, we have developed a highly soluble versatile HBC platform (i.e. FHBC) 

that contains an expanded graphitic core containing 19 Clar sextets and affords the ready 
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introduction of multiple electro-active groups at its vertices.  This ready tailoring of 

electro-active groups at vertices of FHBC, as demonstrated by a facile synthesis of a 

hexaarylbenzene derivative (i.e. FHBC-Ar6), will allow the preparation of molecules 

with desirable electro-active functional groups suited for controlled assembly to form 

aggregates with tunable properties such as long-range charge transport for applications in 

the modern area of photovoltaics.21,22  

 

GENERAL EXPERIMENTAL METHODS 

 

FHBCs were synthesized using literature procedures and were characterized by 

NMR spectroscopy, mass spectrometry, and X-ray crystallography. The reversible cyclic 

and square-wave voltammograms of FHBCs and the corresponding model compounds 

were recorded by the electrochemical oxidation at a platinum electrode in CH2Cl2 

containing 0.1 M n-Bu4NPF6 at 22 ºC at scan rate of 200 mV s-1 and were referenced to 

ferrocene as an added internal standard.  

 

 

Materials. All reactions were performed under argon atmosphere unless 

otherwise stated. Anhydrous tetrahydrofuran (THF) was prepared by refluxing 

commercial tetrahydrofuran over lithium aluminum hydride under an argon atmosphere 

for 24 hours followed by distillation under an argon atmosphere. It was stored in a 

Schlenk flask equipped with a Teflon valve fitted with Viton O-rings. Dichloromethane 

was repeatedly stirred with fresh aliquots of conc. sulfuric acid (~10 % by volume) until 
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the acid layer remained colorless. After separation, it was washed successively with 

water, aqueous sodium bicarbonate, water, and aqueous sodium chloride, and dried over 

anhydrous calcium chloride. The dichloromethane was distilled twice from P2O5 under an 

argon atmosphere and stored in a Schlenk flask equipped with a Teflon valve fitted with 

Viton O-rings. The hexanes and toluene were distilled from P2O5 under an argon 

atmosphere and then refluxed over calcium hydride (~12 h). After distillation from CaH2, 

the solvents were stored in Schlenk flasks under an argon atmosphere. NMR spectra were 

recorded on 300 and 400 MHz NMR spectrometers. 

Synthesis 

 

Synthetic scheme for the preparation of 1,3-dibromo-5-iodobenzene (7).23 A 

large-scale synthesis of 1,3-dibromo-5-iodobenzene was accomplished in three high 

yielding steps from commercially-available 2,6-dibromo-4-nitroaniline (see Scheme 3.3 

below) using standard literature procedures. 23 
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Scheme 3. 3: Synthesis of 1,3-dibromo-5-iodobenzene (7) 

 

 

 

Synthesis of 1,3-dibromo-5-nitrobenzene. To a refluxing solution of 2,6-

dibromo-4-nitroaniline (40 g, 135 mmol) in a mixture of ethanol (450 mL) and conc. 

H2SO4 (45 mL) was added solid NaNO2 (30 g, 435 mmol) in small portions (5 g portions 

over 5 h) to prevent excessive foaming. After all NaNO2 was added, the resulting reaction 

mixture was stirred at ~90 oC for an additional 36 h.  The reaction mixture was cooled to 

room temperature and poured into ice-cold water (500 mL), which then resulted in the 

precipitation of the product. The solid was filtered using a Buchner funnel and repeatedly 

washed with water (3 x 100 mL). The crude solid was dissolved in boiling ethanol and 

cooled to room temperature to crystallize out pure 1,3-dibromo-5-nitrobenzene as orange 

needles. Yield: 27 g, 72%; mp 95 oC; 1H NMR (CDCl3)  ppm 7.99 (t, 1H, J = 1.7 Hz), 

8.32 (d, 2H, J = 1.7 Hz); 13C NMR (CDCl3)  ppm 123.68, 125.79, 140.27. 

Synthesis of 3,5-dibromophenylamine.  To a solution of 1,3-dibromo-5-

nitrobenzene (27 g, 96 mmol) in a mixture of THF (200 mL) and ethanol (200 mL) was 
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added slowly SnCl2.2H2O (108 g, 480 mmol) in several portions and the resulting 

mixture was stirred for 20 h at ambient temperature.  The solvent was removed on a 

rotavap and the resulting semisolid material was treated with aqueous NaOH (2 M, 250 

mL), stirred for 2 h, and then extracted with diethyl ether (3 x 100 mL). The combined 

ether layers were dried over MgSO4, filtered, and evaporated to afford 3,5-

dibromophenylamine which was used in the next step without further purification. Yield: 

24 g, 96 %; 1H NMR (CDCl3)  ppm 3.76 (s, 2H), 6.76 (s, 2H), 7.01 (s, 1H).   

Synthesis of 1,3-dibromo-5-iodobenzene (7).  The 3,5-dibromophenylamine (13 

g, 52 mmol), obtained above, was dissolved in conc. H2SO4 (100 ml) by stirring in a 

heated (~50 oC) water bath. The resulting solution was cooled to ~0 oC and solid sodium 

nitrite (7.85 g, 113.9 mmol) was added in small portions with continuous stirring and 

maintaining the temperature below 5 oC. The reaction mixture was allowed to stir for an 

additional 2 h at ~0 oC and then poured onto ice-cold solution of KI (25 g, 150 mmol) in 

water (120 mL). The resulting mixture was slowly warmed to room temperature (~1 h) 

and then heated to ~80 oC for an additional 15 minutes. The resulting reaction mixture 

produced a lot of solid which was filtered and washed with cold water (3 x 50 mL). 

Drying and crystallization of the solid product from ethanol afforded the desired 1,3-

dibromo-5-iodobenzene (7) in good yield (15 g, 80%). mp 123-124 oC ; 1H NMR 

(CDCl3)  ppm 7.63 (s, 1H), 7.79 (s, 2H); 13C NMR (CDCl3)  ppm 94.67, 123.58, 

133.85, 138.70. 
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Scheme 3. 4: Synthesis of 1,3-dibromo-5-phenylethynylbenzene (8)24  

 

 

 

To a solution of 1,3-dibromo-5-iodobenzene (6.0 g, 16.6 mmol) in 

diisopropylamine (30 mL) was added PdCl2(PPh3)2 (0.29 g, 0.40 mmol), CuI (0.08 g, 

0.40 mmol), and phenylacetylene (1.82 mL, 16.6 mmol) were added successively at room 

temperature and under an argon atmosphere. The resulting mixture was stirred at ~40 oC 

(water bath) for 4 h. The mixture was then cooled to room temperature and diluted with 

hexanes (100 mL). The contents were filtered through a short pad of silica gel and silica 

pad was washed with hexanes (3 x 25 mL). Evaporation of the solvent in vacuo led to an 

oil which was purified by flash chromatography using a mixture of ethyl acetate and 

hexanes (1:9) as eluent to afford the pure 1,3-dibromo-5-phenylethynylbenzene (8) as a 

white solid (5.4 g, 97%). mp 106- 108 oC; 1H NMR (CDCl3)  ppm 7.34-7.40 (m, 3H), 

7.49-7.54 (m, 2H), 7.60 (d, 2H, J = 1.78 Hz), 7.63 (t, 1H, J = 1.78 Hz); 13C NMR 

(CDCl3)  ppm 86.58, 92.14, 122.42, 122.82, 126.90, 128.67, 129.17, 131.94, 133.17, 

134.07. 
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Scheme 3. 5: Synthesis of 1,3-difluoranyl-5-phenylethynylbenzene (9). 

 

 

To a degassed solution of 8 (1.1 g, 3.3 mmol), 2-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan)-9,9-dihexylfluorene (4.0 g, 8.7 mmol), and  Pd(PPh3)4 (0.09 g, 0.08 mmol) 

in a mixture of pre-degassed toluene (50 mL) and ethanol (13 mL) in a Schlenk flask, 

was added a degassed solution of  potassium carbonate (2 M, 20 mL) with the aid of a 

syringe. The resulting mixture was refluxed for 24 hours while protected from light by 

encasing the flask in aluminum foil.  The reaction mixture was then cooled to room 

temperature, poured onto 5% aqueous HCl (50 mL) and extracted with dichloromethane 

(3 x 30 mL). The combined extracts were washed with water (50 mL) and brine (50 mL) 

and dried over anhydrous MgSO4. Removal of the solvent in vacuo afforded crude 

product which was purified by flash chromatography on silica gel using a mixture of 

ethyl acetate and hexanes (1:99) as eluent to afford 1,3-difluoranyl-5-

phenylethynylbenzene 9 as a viscous oil (2.5 g, 89%). 1H NMR (CDCl3)  ppm 0.60- 

0.73 (m, 8H), 0.77 (t, 12H, J = 6.7 Hz), 1.02- 1.16 (m, 24H), 2.0- 2.08 (m, 4H), 7.32- 

7.41 (m, 10H), 7.60- 7.65 (m, 4H), 7.68 (dd, 2H, J = 8.0 Hz, 1.6 Hz), 7.73- 7.77 (m, 2H), 

7.80 (d, 2H, J = 8.0Hz), 7.82 (d, 2H, J= 1.7 Hz), 7.90 (t, 1H, J = 1.7 Hz); 13C NMR 

(CDCl3)  ppm 14.24, 22.80, 23.96, 29.92, 31.70, 40.64, 55.45, 89.73, 89.80, 120.03, 

120.05, 120.22, 123.12, 124.27, 126.30, 127.02, 127.39, 128.64, 129.22, 131.91, 139.43, 

140.84,141.10, 142.76, 151.20, 151.76. 
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Scheme 3. 6: Trimerization of 1,3-difluoranyl-5-phenylethynylbenzene 9 to an isomeric 

mixture of hexaarylbenzenes 5 and 5’. 

 

 

 

To a degassed solution of 9 (3.52 g, 4.2 mmol) in p-dioxane (80 mL) was added 

octacarbonyldicobalt (0.48 g, 1.4 mmol) under a strict inert atmosphere. The resulting 

mixture was refluxed for 14 hours and then evaporated in vacuo. The resulting solid was 

dissolved in dichloromethane (100 mL) and filtered through a short pad of celite, and the 

celite pad was washed with dichloromethane (25 mL).  Evaporation of the 

dichloromethane and repeated precipitations from a mixture of dichloromethane and 

ethanol afforded a light brown solid which contained a mixture of isomeric 5 and 5’ (3.4 

g, 96%) as confirmed by MALDI mass spectrometry and 1H/13C NMR spectroscopy (see 

spectra below). Multiple attempts to separate the isomeric mixture of 5 and 5’ by 

chromatography and crystallizations were unsuccessful. 
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Scheme 3. 7: Synthesis of FHBC from a mixture of 5 and 5’ using FeCl3 or DDQ. 

 

 

 

FeCl3 procedure:  To a solution of 5 and 5’ (1.5 g, 0.6 mmol) in dry 

dichloromethane (50 mL) was added dropwise a solution of ferric chloride (3.3 g, 20 

mmol) in nitromethane (30 mL) at ~0 oC during the course of 20 min. The ice bath was 

removed and the resulting mixture was stirred for an additional 30 minutes at ~22 °C and 

was then quenched by an addition of methanol (25 mL) followed by water (100 mL). The 

organic layer was separated and the aqueous layer was further extracted with 

dichloromethane (3 x 50 mL).  The combined organic layers were washed with water (3 x 

50 mL) and dried over anhydrous magnesium sulfate and filtered. The resulting dark-red 

solution was then passed through a short pad of silica gel to remove iron containing 

impurities, and the solvent was evaporated to afford dark red solid.  A careful flash 

column chromatography using a mixture of benzene and hexanes (1:19) as eluent 

afforded FHBC (0.27 g, 18%) as a dark-red solid.  mp >450 oC; 1H NMR (CDCl3)  ppm 

0.79 (s, 6H), 1.1- 1.5 (m, 14H), 2.45- 2.85 (m, 4H), 7.17 (t, 1H, J = 7.2 Hz), 7.79 (d, 1H, 
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J = 7.2 Hz), 7.86 (t, 1H, J = 7.2 Hz), 8.67 (d, 1H, J = 7.2 Hz), 10.12 (s, 1H), 10.56 (s, 

1H), 12.04 (s, 1H), 12.22 (s, 1H); 13C NMR (CDCl3)  ppm 14.25, 22.88, 24.58, 30.25, 

31.88, 41.66, 55.93, 115.57, 116.07, 118.61, 121.06, 121.12, 121.61, 122.94, 122.97, 

123.77, 127.70, 127.73, 127.87, 128.58, 130.85, 131.00, 141.23, 142.20, 151.39, 152.24. 

MS: MALDI-TOF (M+) = 2505. 

 

DDQ procedure: A solution of a mixture of 5 and 5’ (0.5 g, 0.2 mmol) in 

dichloromethane (18 mL) containing a protic acid (e.g. CH3SO3H, 10% v/v) or Lewis 

acid (BF3.OEt2, ~25 equiv.) at ~0 oC was treated with DDQ (4.4 mmol, 22 equiv), and the 

solution immediately took on a dark-red coloration. The progress of the reaction was 

monitored by TLC.  After completion of the reaction (~6 h), it was quenched with a 

saturated aqueous solution of NaHCO3 (40 mL). The dichloromethane layer was 

separated and washed with water and brine solution and dried over anhydrous MgSO4 

and filtered. Removal of the solvent in vacuo followed by flash column chromatography 

using a mixture of benzene and hexanes (1:19) as eluent afforded FHBC (0.14 g, 28%) 

as a dark-red solid.   
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Scheme 3. 8: Synthesis of hexabrominated 10 and 10’ by bromination of isomeric 

mixture 5 and 5’. 

 

 

 

To a solution of mixture of 5 and 5’ (1.2 g, 0.48 mmol) in dichloromethane (100 

mL) containing a crystal of iodine was added dropwise a solution of bromine (0.46 g, 2.9 

mmol) in dichloromethane (50 mL), with the aid of a dropping funnel during a course of 

15 minutes. The resulting mixture was stirred for an additional 3.5 h at room temperature. 

The reaction was quenched by addition of aqueous NaOH (1 M, 100 mL). The 

dichloromethane layer was separated and the aqueous layer was further extracted with 

dichloromethane (2 x 25 mL). The combined organic layers were washed with saturated 

aqueous sodium bisulfite (2 x 30 mL) solution, followed by water (50 mL) and brine (30 

mL) and dried over anhydrous magnesium sulfate. The solvent was evaporated under 

vacuum to afford a mixture of 10 and 10’ as a light brown solid (1.42 g, 99%).  This 

mixture was used in the next step without further purification. 
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Scheme 3. 9: Synthesis of Synthesis of FHBC-Br6 from mixture of 10 and 10’ using 

FeCl3 or DDQ. 

 

 

 

FeCl3 procedure: To a solution of 10 and 10’ (0.81 g, 0.27 mmol), from above, 

in dry dichloromethane (100 mL) was added dropwise a solution of ferric chloride (2.7 g, 

17 mmol) in nitromethane (25 mL) at ~0 oC during the course of 20 min. The ice bath 

was removed and the resulting mixture was stirred for an additional 3 h at ~22 °C and 

was then quenched by an addition of methanol (30 mL) followed by water (100 mL). The 

organic layer was separated and the aqueous layer was further extracted with 

dichloromethane (3 x 50 mL).  The combined organic layers were washed with water (3 x 

50 mL) and dried over anhydrous magnesium sulfate and filtered. The resulting dark-red 

solution was then passed through a short pad of silica gel to remove iron containing 

impurities, and the solvent was evaporated to afford dark red solid.  A careful flash 

column chromatography using ethyl acetate, which eluted only the undesired products, 
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followed by dichloromethane that eluted the desired FHBC-Br6 (0.16 g, 20%) as a dark-

red solid.  mp > 450 oC, 1H NMR (CDCl3)  ppm  − (m, 36H), 1.10-1.40 (m, 

96H), 2.44-2.75 (m, 24H), 7.87 (s, 6H), 7.93 (d, 6H, J = 8.0 Hz, 1.5 Hz), 8.47 (d, 6H, J = 

8.0 Hz), 10.07 (s, 6H), 10.47 (s, 6H), 12.00 (s, 3H), 12.12 (s, 3H).  See MALDI and 

1H/13C NMR spectra below. 

DDQ procedure: A solution of a mixture of 10 and 10’ (0.6 g, 0.2 mmol) in 

dichloromethane (18 mL) containing CF3SO3H, 10% v/v) at ~0 oC was treated with DDQ 

(4.4 mmol, 22 equiv), and the resulting mixture was stirred for ~4 h.  It was quenched 

with a saturated aqueous solution of NaHCO3 (40 mL). The dichloromethane layer was 

separated and washed with water and brine solution and dried over anhydrous MgSO4 

and filtered. Removal of the solvent in vacuo followed by flash column chromatography 

as above (used for the material generated by FeCl3 method) afforded desired FHBC-Br6 

(0.17 g, 26%) as a dark-red solid. 

 

Scheme 3. 10: Synthesis of FHBC-Ar6. 
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To a degassed solution of FHBC-Br6 (50 mg, 0.017 mmol), 2,5-dimethoxy-4-

methylphenylboronic acid (0.04 g, 0.20 mmol), Pd (PPh3)4 (0.06 g, 0.005 mmol) in a 

mixture of dry toluene (25 mL) and ethanol (7 mL), was added a degassed solution of 

potassium carbonate (2 M, 10 mL) using a syringe. The resulting mixture was refluxed 

for 24 h under a complete exclusion of light. The reaction mixture was then cooled to 

room temperature, poured into 5% aqueous HCl (50 mL), and extracted with 

dichloromethane (3 x 30 mL). The combined extracts were washed with water (50 mL) 

and brine (50 mL) and dried over anhydrous MgSO4. Removal of the solvent in vacuo 

afforded a solid that was purified using column chromatography on silica gel using a 

mixture of ethyl acetate and hexanes (1:19) as eluent to afford FHBC-Ar6 as a deep red 

solid (48 mg, 85%).  m.p >400 oC. 1H NMR (CDCl3)  ppm 0.76- 0.84 (m, 36H), 1.20- 

1.48 (m, 96H), 2.56- 2.82 (m, 24H), 3.94 (s, 18H), 4.03 (s, 18H), 7.02 (s, 6H), 7.19 (s, 

6H), 7.92-8.02 (m, 12H), 8.69 (d, 6H, J = 8.7 Hz), 10.17 (s, 6H), 10.59 (s, 6H), 12.09 (s, 

3H), 12.25 (s, 3H). 13C NMR (CDCl3)  ppm 14.24, 16.64, 22.90, 24.67, 30.31, 31.89, 

41.62, 55.92, 56.47, 57.26, 113.55, 115.53, 116.26, 118.73, 120.66, 121.19, 121.26, 

121.62, 121.72, 123.03, 125.25, 127.17, 127.81, 127.90, 128.90, 129.52, 130.78, 131.11, 

138.91, 139.87, 142.11, 150.74, 151.88, 152.54.  See MALDI and 1H/13C NMR spectra 

below. 
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Scheme 3. 11: Synthetic scheme for the preparation of 4 
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Synthesis of 225,26 

 

 

A dry Schlenk flask containing hexakis(4-bromophenyl)benzene27 (10.0 g, 9.92 

mmol) and THF (100 mL) was cooled to -98 C in a liquid nitrogen/methanol bath (~15 

min).  A hexane solution of tBuLi (6 equivalent, 35.3 mL, 60 mmol) was added slowly 

with the aid of syringe under an argon atmosphere. The resulting mixture was stirred for 

an additional 10 minutes at -98 C. The cooling bath was then removed and the reaction 

mixture was stirred for an additional 1 hour. During this time, the color of reaction 

mixture turned from greenish yellow to pink. The pink solution was cooled again to -98 

C and maintained at this temperature for 10 minutes before slowly adding 

trimethylsilylchloride (TMSCl) (6 eq, 7.6 mL, 60 mmol) with the aid of a syringe. After 

completing the addition of TMSCl, the cooling bath was removed. The color of the 

reaction mixture changed from colorless to pink to white. This mixture was stirred for an 

additional hour before quenching by addition of aqueous ammonium chloride (40 mL). 

The resulting mixture was extracted with chloroform (3 x 50 mL) and the combined 

organic extracts were dried over MgSO4 and solvent was evaporated under reduced 

pressure. The resulting solid was recrystallized from a mixture of CHCl3/EtOH (70:30) to 

afford pure 2 (7.43 g, 76%). 1H NMR (CDCl3, 400 MHz) δ ppm 6.62 (d, 2H, J = 8.46 
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Hz), 6.72 (d, 2H, J = 8.08 Hz), 6.95 (d, 2H, J = 8.45 Hz), 7.03 (d, 2H, J = 8.08 Hz). 13C 

NMR (CDCl3, 400 MHz) δ ppm -0.99, 119.66, 129.94, 130.69, 132.08, 133.09, 137.70, 

139.43, 139.45. 140.33, 140.69.  

 

Synthesis of 3A 

 

In a dry Schlenk flask containing 2 (2.5 g, 2.53 mmol) was added acetic 

anhydride (10 mL) followed by a dropwise addition of 70% HNO3 (2.5 mL) with the aid 

of a syringe at ambient temperatures. The resulting mixture was heated at ~80 °C for 24 

h, cooled to room temperature, and poured onto a cold (~0 °C) 10% aqueous NaOH 

solution (100 mL). The reaction mixture was extracted with dichloromethane (3 x 25 mL) 

and the combined organic extracts were dried over MgSO4 and the solvent was removed 

under reduced pressure. The resulting crude solid was purified by column 

chromatography using silica gel and hexane : ethyl acetate (80 : 20) mixture as eluent to 

return pure 3A (1.0 g, 44%). 1H NMR (CDCl3, 400 MHz) δ ppm 6.63 (d, 2H, J = 8.66 

Hz), 6.97 (d, 2H, J = 8.92 Hz), 7.07 (d, 2H, J = 8.57 Hz), 7.84 (d, 2H, J = 8.88 Hz). 13C 

NMR (CDCl3, 400 MHz) δ ppm 121.61, 122.94, 131.25, 131.86, 132.29, 137.26, 139.37, 

140.03. 146.18, 146.30. 
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Synthesis of 3B 

 

To a mixture of trinitro derivative 3A (0.8 g, 0.9 mmol), concentrated HCl (20 

mL), and 1,2-dimethoxyethane (20 mL) powdered tin (0.94 g, ~8 mmol) was added in 

small portions. The resulting mixture was stirred for ~13 h at 90 C.  After which time, 

more HCl (15 mL) and powdered tin (200 mg) were added and the stirring was continued 

for additional 3 h at 90 C. The reaction mixture was cooled to room temperature and 

10% aqueous NaOH solution was added until the solution turned basic (pH = 9, pH 

paper). This solution was extracted with diethyl ether (3 x 40 mL) and the combined ether 

extracts were dried over anhydrous MgSO4. The solvent was removed under reduced 

pressure and the crude product was treated with concentrated HCl to form a solid 

precipitate, which was washed by a mixture of ethyl acetate/hexanes (10:90). The 

resulting solid was filtered and treated with pyridine until the solid dissolve and then the 

solution was extracted with diethyl ether and the solvent was removed under reduced 

pressure to afford brown color compound 3B (0.53 g, 74%). 1H NMR (CDCl3, 400 

MHz), δ in ppm 6.23 (d, 2H, J = 8.56 Hz), 6.47 (d, 2H, J = 8.57 Hz), 6.64 (d, 2H, J = 

8.56 Hz), 7.00 (d, 2H, J = 8.50 Hz), 3.369 (-NH2, br hump). 13C NMR (CDCl3, 400 

MHz), δ in ppm 114.28, 119.36, 130.02, 130.62, 132.26, 133.27, 139.70, 140.25, 140.51, 

143.83.  
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Synthesis of 3C 

 

 

To a dry Schlenk flask 3B (0.97 g, 1.2 mmol), Pd(OAc)2 (27 mg, 0.12 mmol), 

PPh3 (124 mg, 0.472 mmol), K2CO3 (372 mg, 2.36 mmol) and n-butanol (35 mL) were 

successively added under argon atmosphere and the resulting mixture was subjected to 

additional degassing and purging with argon. The reaction mixture was then stirred at 100 

C for overnight. The reaction was quenched by addition of water (100 mL) and extracted 

with dichloromethane (4 x 30 mL). The combined organic extracts were dried over 

MgSO4 and the solvent was removed under reduced pressure. The crude product was 

treated with concentrated HCl (5 mL) and the oily residue formed was washed with 

benzene and then added pyridine and dichloromethane (100 mL) and evaporated. The 

resulting solid was washed by a mixture of hexane and ethyl acetate (4:1) to afford pure 

compound 3C (0.46 g, 68%). 1H NMR (CDCl3, 400 MHz), δ in ppm 6.18 (d, 2H, J = 

8.66 Hz), 6.54 (d, 2H, J = 8.50 Hz), 6.73- 6.99 (m, 5H). 13C NMR (CDCl3, 400 MHz), δ 

in ppm 113.88, 124.90, 126.74, 131.62, 131.79, 132.49, 140.35, 140.70, 141.59, 143.35.  
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Synthesis of 3D 

 

Compound 3C (0.65 g, 1.12 mmol) in MeOH (110 mL) was taken in a Schlenk 

flask and 1.7 mL (10 mmol) concentrated aqueous HBr (47% wt/wt) was carefully added. 

To this resulting mixture, 30% aqueous H2O2 (0.76 mL, 6.7 mmol) was added slowly at 

0°- 4 °C during the course of 15 minutes and was allowed to stir overnight. The reaction 

was quenched with aqueous NaOH solution (2 g, 100 mL water) and the resulting solid 

thus formed was filtered and washed with water. The solid was dissolved in CHCl3 (100 

mL) and dried over MgSO4, filtered and the solvent was removed under reduced pressure 

to afford 3D (0.9 g, 76%). 1H NMR (CDCl3, 400 MHz), δ in ppm 4.25 (br hump –NH2), 

6.78 (s, 2H), 6.79-6.85 (m, 2H), 6.89-7.08 (m, 3H). 13C NMR (CDCl3, 400 MHz), δ in 

ppm 107.40, 126.15, 127.46, 131.07, 131.96, 134.54, 138.00, 139.38, 139.75, 141.35. 
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Synthesis of 428 

 

Compound 3D (0.9 g, 0.86 mmol) from above was suspended in EtOH (100 mL) 

and heated to 50 C. To this solution was added dropwise concentrated H2SO4 (5 mL) 

and the temperature was raised to 70 C. To this mixture, solid NaNO2 (0.7 g, 10 mmol) 

was added in portions over 45 minutes and it was heated at 80 C for overnight, cooled to 

room temperature, and poured into ice water. The resultant highly colored solid was 

filtered and could not be characterized due to rather poor solubility. 
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1H/13C NMR spectroscopy of Compounds 

 

 

1H NMR of 1,3-dibromo-5-nitrobenzene 

 

 

 
13C NMR of 1,3-dibromo-5-nitrobenzene 

 

 

 
1H NMR of 3,5-dibromo-phenylamine 
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1H NMR of 1,3-dibromo-5-iodobenzene (7) 

 

 

 
13C NMR of 1,3-dibromo-5-iodobenzene (7) 

 

 

1H NMR of 1, 3-dibromo-5-phenylethynylbenzene (8) 
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7
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13C NMR of 1, 3-dibromo-5-phenylethynylbenzene (8) 

 

 

1H NMR of 1,3-difluoranyl-5-phenylethynylbenzene (9) 

 

 

Expanded 1H NMR of 1,3-difluoranyl-5-phenylethynylbenzene (9) 

 

 

 

BrBr

8
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13C NMR of of 1,3-difluoranyl-5-phenylethynylbenzene (9) 

 

 

 

1H NMR of the mixture of hexaarylbenzenes 5 and 5’ 
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13C NMR of the mixture of hexaarylbenzenes 5 and 5’ 

 

 

Expanded 13C NMR of the mixture of hexaarylbenzenes 5 and 5’ 
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1H NMR of FHBC 

 

Expanded 1H NMR of FHBC 
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Expanded 1H NMR of FHBC 

 

 

13C NMR of FHBC 
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Expanded 13C NMR of FHBC 

 

 

1H NMR of FHBC-Br6 
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Expanded 1H NMR of FHBC-Br6 
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1H NMR of FHBC-Ar6 
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13C NMR of FHBC-Ar6: 
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Expanded 13C NMR of FHBC-Ar6: 

 

 

 

  



205 

 

 

 

MALDI-TOF mass spectrometry 

 

 

 

Figure 3. 7. MALDI-TOF mass spectra of FHBC obtained using dithranol as a matrix. 

Inset showing the isotope distribution for the molecular ion of FHBC. 

 

Figure 3. 8. MALDI-TOF mass spectra of FHBC-Br6 obtained using dithranol as a 

matrix. Inset showing the isotope distribution for the molecular ion of FHBC -Br6. 
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Figure 3. 9. MALDI-TOF mass spectra of FHBC-Ar6 obtained using dithranol as a 

matrix. Inset showing the isotope distribution for the molecular ion of FHBC -Ar6. 
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13C NMR spectrum of 2 

 

 

1H NMR spectrum of 3A 

 

13C NMR spectrum of 3A 
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1H NMR spectrum of 3B 

 

 

13C NMR spectrum of 3B 
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1H NMR spectrum of 3C 

 

 

13C NMR spectrum of 3C 
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1H NMR spectrum of 3D 

 

 

13C NMR spectrum of 3D 

 

 

 

Electrochemistry 

The electron donor strength of FHBC and tBuHBC was evaluated by 

electrochemical oxidation at a platinum electrode in dichloromethane containing 0.2 M n-

Bu4NPF6 as the supporting electrolyte. The cyclic voltammograms of FHBC, when 
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terminated before the start of the fifth oxidation event, showed three reversible oxidation 

waves, which consistently met the reversibility criteria at various scan rates of 200-500 

mV/s, as they all showed cathodic/anodic peak current ratios of ia/ic=1.0 (theoretical) as 

well as the differences between anodic and cathodic peak potentials of Epa-Epc ~ 70 mV at 

22 oC. The reversible oxidation potentials of FHBC were calibrated with ferrocene as 

internal standard (Eox = 0.45 V vs SCE) and were found to be 0.40, 0.76, 1.01 and 1.19 V 

vs Fc/Fc+ corresponding to the formation of mono, di, tri and tetracation respectively. It 

is noted that the fourth oxidation wave in the cyclic voltammogram of FHBC displays a 

quasi-reversible oxidation wave. In contrast, tBuHBC exhibits a single oxidation wave at 

(Eox =) 0.64 V vs Fc/Fc+ in CH2Cl2 (Figure 3.11).29, 30 

 

 

 

Figure 3. 10. Cyclic (solid lines) and square-wave (dashed lines) voltammograms of 

FHBC (red) and tBuHBC (blue) in CH2Cl2 containing 0.2 M n-Bu4NPF6 at a scan rate of 

200 mV s-1 and 22 oC. 
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Generation of FHBC cation radical 

 

Reproducible spectra of FHBC cation radical were obtained in CH2Cl2 solution at 

22 ºC by quantitative redox titrations using magic blue (tris-4-bromophenylamminium 

cation radical, MB+•, Ered = 0.70 V vs Fc/Fc+, λmax = 728 nm, εmax = 28200 cm-1 M-1).31,32  

 

 

Figure3. 11. Chemical structure of magic blue. 

 

Redox titration experiment was carried out by an incremental addition of sub-

stoichiometric amounts of electron donor (FHBC) to the solution of MB+•. The 1-e- 

oxidation of FHBC to FHBC+• and reduction of MB +• to MB can be described by an 

equilibrium equation: 

MB +•  + FHBC ⇄ MB + FHBC +• (eq. 1) 

Depletion of MB+• and formation of FHBC+•established that MB+• was completely 

consumed (Figure 3.12).  
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Figure 3. 12. The spectral changes observed upon the reduction of 5.5 x 10-6 M MB+• by 

an incremental addition of substoichiometric amounts of FHBC in CH2Cl2 at 22 oC. 

 

Numerical deconvolution9,10 of the UV-VIS absorption spectrum at each 

increment of the titration produced the individual spectra of FHBC+• and MB+•. Obtained 

electronic spectrum of FHBC+• shows a significant increase of molar absorptivity (by a 

factor of ~6) as compared to tBuHBC+• (Figure 3.13). 

 

 

 

Figure 3. 13. Comparison of the electronic absorption spectra of FHBC+• and tBuHBC+•. 
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CHAPTER 4  

Spreading Electron Density Thin: Increasing the Chromophore Size in 

Polyaromatic Wires Decreases Interchromophoric Electronic Coupling 

 

 

 

 

 

 

Disclaimer: The results discussed in this chapters were further supplimented by DFT 

calculations and relevant computational works by my coworkers Dr. Maxim V. Ivanov. 

My contribution to this chapter is limited to synthesis of various molecules and 

spectroscopic studies.  
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INTRODUCTION 

 

Poly-p-phenylene-based wires are prototypical systems for charge-transfer studies 

with potential applications in photovoltaic and molecular electronics devices.1-5 

Electronic coupling between a pair of phenylenes in a poly-p-phenylene-based wire is a 

crucial parameter that controls its redox and optical properties, as well as the rates of 

electron transfer in corresponding donor-wire-acceptor systems.6-9 For example, 

unsubstituted poly-p-phenylene wires are characterized by strong interchromophoric 

electronic coupling due to the favorable nodal arrangement of the HOMO lobes and 

relatively small interplanar dihedral angles, which promote effective orbital overlap 

between adjacent phenylenes.10,11 This strong electronic coupling is reflected in the 

sensitivity of redox/optical properties to the wire length, as can be judged by large slopes 

in their 1/n or cos[π/(n+1)] dependences,10,12 where n is number of chromophoric units in 

a wire.  

In this context, an interesting question concerns how many phenylenes should be 

included in a single chromophore. For example, a poly-p-phenylene-based wire shown in 

Figure 4.1 can be either considered as a poly-fluorene (i.e., PFn) or poly-p-phenylene 

(i.e., PPn). Irrespective of how the chromophore is defined, the absorption band of PFn or 

PPn shifts red with increasing wire length, indicating that interchromophoric electronic 

coupling is significant (Figure 4.1).10 But can the value of the electronic coupling depend 

on how one defines the chromophore?  
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Figure 4. 1. Depending on the choice of the monomeric unit, a molecular wire on the top 

can be either considered as poly-fluorene (PFn) or poly-phenylene (PPn). Left. 

Absorption spectra of PFn (or PPn). Right: Energies of maximum absorption plotted 

against cos[π/(n+1)], where n is number of phenylenes (blue) or fluorenes (red). 

 

 

According to the Hückel molecular orbital theory, the energy of the HOMO to 

LUMO transition scales linearly with cos[π/(n+1)] and the scaling factor depends on the 

electronic coupling.10,13 Remarkably, the slope of the linear ν-vs-cos[π/(n+1)]  plot is 

smaller by nearly a factor of two when n is number of fluorenes as compared to the plot 

where n is number of phenylenes (Figure 4.1), suggesting that the electronic coupling 

between fluorenes is by a factor of two smaller than between a pair of phenylenes for the 

same wire. 

As the magnitude of the electronic coupling directly impacts the redox/optical 

properties of the wire and the extent of hole (i.e., polaron) delocalization in the 

corresponding cation radicals, a choice of the chromophore size seems to be an important 

additional parameter. Indeed, a recent study showed on the example of biaryls with 
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varied chromophore size that as the chromophore size increases, the mechanism of hole 

delocalization changes from static delocalization to dynamic hopping.14 

In order to systematically probe the curious dependence of the chromophore size 

on the electronic coupling, herein we designed a set of poly-p-phenylene-based mono- 

and bichromophores (i.e., nPP and nPP2, Chart 4.1) where the size of the chromophore 

is varied from n = 2 to 4 phenylenes. Aided by the electrochemical properties of 

nPP/nPP2 and spectroscopic signatures of their cation radicals with the support from 

DFT calculations we conclude that as the size of the chromophore increases the 

interchromophoric electronic coupling gradually decreases and may reach nearly non-

existent values at the polymeric limit. We show that this initially surprising result 

becomes obvious when one considers this problem with the aid of Hückel molecular 

orbital theory, which predicts that at the polymeric limit the energies of the molecular 

orbitals become nearly degenerate and energy bands are formed, leading to the 

inevitability of decreasing interchromophoric electronic coupling as the chromophore 

expands. 
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Chart 4. 1. Structures of monochromophoric nPP and bichromophoric nPP2 studied in 

this work. R = hexyl. 

 

 

 

 

 

RESULTS AND DISCUSSION 

 
Synthesis. Monochromophores nPP and bichromophores nPP2 (n = 2-4) were 

synthesized by adaptation of the literature procedures. All compounds were characterized 

by 1H/13C NMR spectroscopy and MALDI mass spectrometry. 

The strategy for the preparation of ladder type planer fluorene involves the key 

steps (i) Pd(0)-catalyzed Suzuki coupling or Suzuki type coupling of the fluorene and 

phenylene subunits to assemble the definite number of aromatic units, (ii) alkylation of 

the carbonyl group of ester function to form the diols (and mono alcohol) and (iii) an acid 

catalyzed Friedel-Crafts type intramolecular annulation that results in the formation of 

the planarized -system. 

The simplest member of the series, i.e 2PP or 9,9-dihexylfluorene which is made 

trivially by alkylation of commercially available fluorene. To synthesize 3PP and 4PP, a 
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bromo (mono or di) derivatives of 9,9-dihexylfluorene was used to couple with 

phenylene subunits followed by methylation of carbonyl group of ester functional 

towards its mono or diols. Subsequently mono or diols are treated with methane 

sulphonic acid in dichloromethane to form planarized 3PP and 4PP by Friedel-Crafts 

type intramolecular annulation. The synthesis of 3PP2 required to make mono bromo 

3PP which started with alkylation of simple 2-bromo fluorene followed by nitration by 

using fuming HNO3 acid which in turn coupled with 3,3-dimethyl-3H-

benzo[c][1,2]oxaborol-1-ol, to form the desired alcohol intermediate to afford 2-Nitro-

6,6-dihexyl-12,12-dimethylindenofluorene, S5. The nitro compound was reduced with Sn 

in presence of HCl in the solution of 1,2 dimethoxy ethane and ethanol which was used to 

prepare 2-Bromo-6,6-dihexyl-12,12-dimethylindenofluorene, S6 by Sandmeyer reaction. 

The bromo compound was used to synthesize pinacolato boronic ester which was coupled 

with the same bromo compound to prepare 3PP2.  

The synthesis of 4PP2 is started with the bromination of 4PP to afford dibromo 

4PP, S10a which was converted to monobromo by subsequent lithiation by using n-BuLi 

followed by TMSCl in THF. The produced silyl compound was treated with CF3COOH 

in dichloromethane to make mono bromo 4PP, S11. Albeit this reaction afforded the 

mixture of 4PP, dibromo 4PP and mono bromo 4PP. The purified mono bromo 4PP was 

used to prepare pinacolato boronic ester which was coupled with mono bromo 4PP by 

Suzuki coupling reaction to afford 4PP2. (Scheme 4.1, More details in the experimental 

section) 
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Scheme 4. 1: Synthetic scheme for the preparation of monomers and dimers of 

planer fluorene. 

a. tBuOK, 1-bromohexane, THF, 0 oC 30 min, 20 oC 3 h; b. (Bpin)2, Pd(dppf)Cl2, KOAc, 

1,4-dioxane, 90 ⁰C; c. Methyl 2-bromobenzoate, Pd(PPh3)4, Na2CO3, toluene, H2O, 

reflux; d. MeMgBr, THF, reflux 12 h; e. CH2Cl2/CH3SO3H = 9/1, 0 oC 30 min, 20 oC 3 h; 

f. HNO3 (fuming)/0 oC in AcOH 10 min, 20 oC 14 h; g. (i) 3,3-dimethyl-3H-

benzo[c][1,2]oxaborol-1-ol, Pd(dppf)Cl2, Na2CO3, DME, H2O, reflux; (ii) 

CH2Cl2/CH3SO3H = 9/1, 0 oC 30 min, 20 oC 3 h; h. Sn powder, HCl, DME, EtOH, reflux; 

i. HBr (48%), H2O, MeCN, 90 oC; prechilled aqueous NaNO2 1h, CuBr in HBr (48%) 0 
oC 1h, reflux 12 h.  

 

Electrochemistry. The electron donor strengths of nPP and nPP2 (n = 2-4) were 

evaluated by electrochemical oxidation at a platinum electrode as a 2 mM solution in 

CH2Cl2 containing 0.1 M n-Bu4NPF6 as the supporting electrolyte. The cyclic 

voltammograms (CV) of nPP showed that that upon increasing the number of 

phenylenes, the first oxidation potential decreases from Eox = 1.27 V vs Fc/Fc+ in 2PP, to 

0.89 V in 3PP, to 0.68 V in 4PP (Figure 4.2). Noteworthy, while 2PP (expectedly) 

displays an irreversible CV due to the presence of the substitution-labile carbons that 
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render the cation radicals susceptible to dimerization, the CVs of 3PP and 4PP were 

found to be completely reversible. 

 

 

 

Figure 4. 2. Cyclic (solid lines) and square-wave (dashed lines) voltammograms of 2 

mM nPP (blue) and nPP2 (red) in CH2Cl2 (0.1 M n-Bu4NPF6) at 200 mV s-1 and 22 ºC. 

 

 

The reversible CVs of nPP2 (n = 2-4) showed two well-separated oxidation waves 

that correspond to formation of the cation radical and dication (Figure 4.2). As the 

number of phenylenes in each chromophore increases, the first oxidation potential of 

nPP2 decreases from Eox = 0.90 V vs Fc/Fc+ in 2PP2 to 0.67 V in 3PP2 to 0.58 V in 4PP2. 

Because the Eox of monochromophoric nPP decreases faster with increasing n than Eox of 

bichromophoric nPP2, the amount of hole stabilization, measured as the difference ΔEox 

= Eox[nPP] – Eox[nPP2], decreases from 0.37 to 0.22 to 0.10 V, indicating that the 

interchromophoric electronic coupling decreases with increasing n (Table 4.1). 

Consistent with this conclusion, we also note that the separation between two oxidation 
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waves in nPP2 decreases with increasing chromophore size, signifying that that the 

repulsive interactions between the positive charge densities in nPP2
2+ also decrease with 

increasing chromophore size.15-18 

Table 4. 1. Oxidation potentials (Eox, V vs Fc/Fc+) of nPP and nPP2; experimental (ΔEox, 

V) and computed using B1LYP40/6-31G(d)+PCM(CH2Cl2) (ΔGox, eV) hole 

stabilizations; wavelengths (λ, nm) of maximum absorption of nPP+• and nPP2
+•. Data for 

λ[2PP+•] and λ[2PP2
+•] was taken from literature.10 

 

 

n Eox[nPP] Eox[nPP2] ΔEox ΔGox λ[nPP+•] λ[nPP2
+•] 

2 1.27 0.9 0.37 0.37 690 1240 

3 0.89 0.67 0.22 0.19 872 1784 

4 0.68 0.58 0.10 0.08 1100 2330 

 

 

In order to further probe the electronic structure of nPP2 we resorted to electronic 

spectroscopy of their cation radicals. The cation radicals are expected to display an 

intervalence transition in the near-IR region, the position and intensity of which are 

sensitive to the degree of electronic coupling.19-21 Cation radicals of nPP2 and nPP (n = 3 

and 4) were generated via quantitative22,23 redox titrations using two aromatic oxidants: 

THEO+•SbCl6
– (THEO = tetrasubstituted p-hydroquinone ether, Ered1 = 0.67 V vs Fc/Fc+, 

λmax = 518 nm, εmax = 7300 cm-1 M-1)24 and NAP+•SbCl6
– (NAP = cycloannulated 

naphthalene derivative, Ered1 = 0.94 V vs Fc/Fc+, λmax = 672 nm, εmax = 9300 cm-1 M-

1).25,26 Each redox titration experiment was carried out by an incremental addition of sub-

stoichiometric amounts of the electron donor (D, i.e., nPP2 or nPP) to the solution of an 

oxidant cation radical (Ox+•, i.e., THEO+• or NAP+•). The one-electron oxidation of D to 

D+• and reduction of Ox+• to Ox can be described by an equilibrium shown in eq. 1.  
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Ox+•  + D ⇄ Ox + D+• ………………..(eq. 1) 

The reproducible spectra of nPP+•/nPP2
+• were obtained by a robust numerical 

deconvolution procedure22,23 at each titration point that produced the mole fraction plots 

of each species involved in the redox reaction. The plots show that, in the case of 3PP, 

4PP and 3PP2, addition of a neutral donor leads to exclusive formation of the 

corresponding cation radical and complete consumption of the oxidant (Figure 4.3). In 

the case of 4PP2, the redox titrations involved two successive one-electron oxidations 

with multiple equilibria as shown in Figure 4.3G. Upon addition of 0.5 equivalents of 

4PP2, the oxidant is consumed completely and only the dication 4PP2
2+ is formed, due to 

the similar values of its first and second oxidation energies (Table 4.1). Upon further 

addition of 0.5 equivalents of neutral 4PP2, 4PP2
2+ is completely converted into the 

4PP2
+• via a disproportionation reaction.22 
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Figure 4. 3. A. Spectral changes observed upon the reduction of 0.036 mM NAP+• in 

CH2Cl2 by incremental addition of 2.2 mM solution of 3PP in CH2Cl2. B. Mole fraction 

plot of NAP+• (black) and 3PP+• (blue) against the added equivalents of 3PP. Symbols 

represent experimental points, while the solid lines show best-fit to the experimental 

points using ΔG1 = -0.08 V.22 C. Spectral changes observed upon the reduction of 0.021 

mM NAP+• in CH2Cl2 by incremental addition of 2.1 mM solution of 4PP in CH2Cl2. D. 

Mole fraction plot of NAP+• (black) and 4PP+• (blue) against the added equivalents of 

4PP. Symbols represent experimental points, while the solid lines show best-fit to the 

experimental points using ΔG1 = -1.16 V. E. Spectral changes observed upon the 

reduction of 0.027 mM THEO+• in CH2Cl2 by incremental addition of 0.77 mM solution 

of 3PP2 in CH2Cl2. F. Mole fraction plot of THEO+• (black) and 3PP2
+• (red) against the 

added equivalents of 3PP2. Symbols represent experimental points, while the solid lines 

show best-fit to the experimental points using ΔG1 = -0.06 V. G. Spectral changes 

observed upon the reduction of 0.018 mM NAP+• in CH2Cl2 by incremental addition of 

0.45 mM solution of 4PP2 in CH2Cl2. H. Mole fraction plot of NAP+• (black), 4PP2
2+ 

(grey) and 4PP2
+• (red) against the added equivalents of 4PP2. Symbols represent 

experimental points, while the solid lines show best-fit to the experimental points using 

ΔG1 = -0.39 V and ΔG12 = 0.22 mV. 

 

 

Electronic absorption spectra of nPP2
+• (n = 3-4), obtained from the 

deconvolution, show the presence of a characteristic broad band that is red-shifted (i.e., 

shifted to longer wavelength) as compared to the corresponding monochromophoric 

nPP+• (Figure 4.3), signifying extensive hole delocalization in nPP2
+•. At the same time, 
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as the number of phenylenes in the chromophore increases, the position of the near-IR 

band shifts to longer wavelengths, indicating that the electronic coupling is decreasing.  

In order to further probe the evolution of electronic coupling with chromophore size, we 

resorted to density functional theory (DFT) calculations. 

Accurate description of the electronic structure of π-conjugated cation radicals is 

challenging for DFT due to the self-interaction error (SIE), which may lead in 

unfavorable cases to artificial hole delocalization, artificially low oxidation energies and 

an incorrect description of the excited states.27-30 The SIE can be partially corrected by 

inclusion of a calibrated amount of the exact Hartree−Fock (HF) exchange term into the 

hybrid density functional.19,31 In our past studies, B1LYP32 functional with 40% of HF 

exchange term (i.e., B1LYP-40)33 was introduced where the amount of Hartree-Fock 

exchange term was fine-tuned to reproduce experimental oxidation potentials and cation 

radical excitation energies of poly-p-phenylenes with increasing number of p-phenylenes. 

Noteworthy, it was later shown that B1LYP-40/6-31G(d) performs exceptionally well in 

reproducing the experimental redox/optoelectronic properties of a variety of π-

conjugated10-12 and π-stacked assemblies33-35 that were not included in the original 

training set. Therefore, in this manuscript we performed DFT calculations of nPP/nPP2 

and their cation radical using B1LYP-40/6-31G(d) method and account for the solvent 

effects using the polarizable continuum model (PCM)36 with CH2Cl2 parameters. 

X-ray crystallography of numerous neutral aromatic hydrocarbons and their cation 

radicals has established that oxidation induces significant structural reorganization in the 

form of elongations and contractions of the C-C bonds as well as in decrease of dihedral 

angles between adjacent aromatic moieties.37,38 Indeed, calculations showed that upon 
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oxidation, the molecular structure of nPP2 undergoes a quinoidal distortion, as 

exemplified for 2PP2 in Figure 4.4A below.  

 

 

 

Figure 4. 4. A Schematic representation of the quinoidal distortion in 2PP2→2PP2
+• 

transformation, HOMO of 2PP2 and spin-density of 2PP2
+•. B. Per-phenylene bar-plot 

representation of the distributions of the bond length changes, NPA spins and charges in 

2PP2
+•. 

 

 

Importantly, oxidation-induced bond length changes track in the accordance with 

the disposition of the lobes of HOMO, i.e., bonds that correspond to the bonding lobes 

undergo contraction and bonds that correspond to the antibonding lobes undergo 

contraction, e.g. the average of bonds a and a’ contracts by 0.5-1.7 pm, while the average 

of bonds b and b’ elongates by 0.4-1.8 pm (Figure 4.4B). The natural population analysis 

(NPA) of the electron density in 2PP2
+• further showed that the spin and charge 

distributions parallel the distribution of the bond-length changes indicating polaron 

formation39-41 (Figure 4.4B). 
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A simple yet intuitive model to describe the polaron (i.e., hole) delocalization in 

various mixed-valence compounds is the two-state Marcus-Hush theory, which predicts 

that the extent of polaron delocalization depends on the interplay between electronic 

coupling (Hab) and reorganization energy ().19,20,42,43 In the large electronic coupling 

limit (2Hab  ), the polaron is evenly delocalized between two sites (i.e., class III or 

‘static’ delocalization), while in the limit of small electronic coupling (2Hab < ), the 

polaron is partially delocalized with the distribution maximum centered on one of the 

sites (i.e., class II or ‘dynamic’ hopping). When electronic coupling is non-existent (Hab = 

0, class I), the polaron is fully localized on one site. 

Partitioning the spin, charge and structural reorganization distributions in 2PP2
+• 

between a pair of fluorenes rather than four phenylenes suggests that the polaron is 

evenly delocalized between the fluorenes, hence the mechanism of polaron delocalization 

is ‘static’ delocalization according to the two-state representation (Figure 4.5). 
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Figure 4. 5. Left. Per-phenylene bar-plot representation of the distributions of the NPA 

spin (magenta) superimposed with the plot of C-C bond length (average of a and a’, 

Figure 4) in nPP2
+•. Right: Two-state representation of polaron delocalization in nPP2

+•. 

 

 

Similarly, in 3PP2
+• the spin/charge/bond length changes are delocalized along the 

entire bichromophore, and thus the mechanism of polaron delocalization is also static 

delocalization. However, further increase of the chromophore size shifts the polaron 

distribution towards one side of nPP2
+• (n > 3), indicating that the mechanism of polaron 

delocalization evolves into dynamic hopping, i.e. class II (Figure 4.5).  In the case of 

even longer nPP2
+• (n > 5), the polaron is fully localized on a single chromophore, i.e., 

this bichromophore belong to the class I. Thus, depending the chromophore size, the 

mechanism of hole delocalization in two-state representation may switch from static 

delocalization to dynamic hopping to a complete localization, akin to the switchover 
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observed for biaryls with varied interplanar angle.43 As the extent of hole delocalization 

depends on the interplay between electronic coupling (Hab) and reorganization energy (), 

the switchover in the delocalization mechanism arises due to the decreasing Hab and/or 

increasing .42 

In order to confirm that the switchover in the delocalization mechanism occurs 

due to the decreasing electronic coupling, we first compare computed oxidation free 

energies (Gox) of nPP and nPP2 (n = 2-8). Calculations showed that as the number of 

phenylenes in the chromophore increases, oxidation energies of both nPP and nPP2 

decrease (Figure 4.6A). Furthermore, hole stabilization, measured as the difference ΔGox 

= Gox[nPP] – Gox[nPP2], is the largest for n = 2 and decreases with increasing n.  

Comparing the computed ΔGox with the available experimental values of ΔEox for n = 2-4 

(Table 4.1), it is clear that the B1LYP40 method shows a remarkable performance in 

reproducing hole stabilization for these systems, as the error in the computed ΔGox values 

is less than 0.03 eV. This suggests that calculations can provide reliable information on 

the extent hole stabilization for the longer bichromophores, for which experimental data 

is unavailable.  Calculations show that for longer nPP2 increase in the chromophore size 

reduces the hole stabilization to nearly non-existent values, i.e., ΔGox < 0.01 for n > 5, 

which is consistent with complete localization of the polaron on a single chromophore. 
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Figure 4. 6. A. Oxidation energies (Gox) of nPP (blue) and nPP2 (red) against the 

chromophore size measured in the number of phenylene units (n) computed using 

B1LYP40/6-31G(d)+PCM(CH2Cl2). B Interchromophoric electronic coupling of nPP2 

measured as a half of the HOMO/HOMO-1 energy gap against chromophore size (n). 

Inset shows HOMO and HOMO-1 of 2PP2. C. Orbital energies calculated for a model 

Hückel Hamiltonian matrix (eq. 2) against number of phenylene units. D. Electronic 

coupling measured as a HOMO/HOMO-1 energy gap from a model Hückel Hamiltonian 

matrix against number of phenylene units. Dashed line corresponds to the 3𝜋2 8𝑛2⁄  

dependence derived in the limit of n→; see Supporting Information for details. Inset 

shows per-phenylene barplot representation of HOMO and HOMO-1 wavefunctions of 

2PP2 obtained from Hückel Hamiltonian. 

 

 

Following Hückel’s approach of representing molecular orbitals (MO) as a linear 

combination of atomic orbitals, the two frontier MOs of nPP2 can be represented as 

symmetric and antisymmetric linear combinations of the HOMO of a single 
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chromophore. Then the energy difference between HOMO and HOMO-1 equals twice 

the electronic coupling, and thus can be quickly determined from the DFT calculations of 

neutral nPP2. Following this approach, electronic couplings were computed for each 

nPP2, which showed decreasing dependence with the chromophore size (Figure 4.6B). 

In order to provide an intuitive rationale for this observation we resorted to a theoretical 

model.  Following Hückel theory, each bichromophore nPP2 can be represented as a set 

of 2n electronically coupled phenylenes with the Hamiltonian matrix H: 

𝐇 =

[
 
 
 
 
𝛼 𝛽 ⋯ 0 0
𝛽 𝛼 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 𝛼 𝛽
0 0 ⋯ 𝛽 𝛼]

 
 
 
 

  (𝑒𝑞. 2), 

where H is the 2n×2n tight-binding matrix, α is the orbital energy of a single phenylene, 

and β is the electronic coupling between a pair of adjacent phenylenes. Note that 

analytical expressions of eigenvalues (i.e., MO energies) and eigenvectors (i.e., MO 

wavefunctions) of Hückel Hamiltonian matrix are known from the original works.44,45 

Here, for the sake of simplicity, we set α = 0 and β = -1.  

Diagonalization of the Hamiltonian H produced eigenvalues of a bichromophore, 

among which two largest eigenvalues correspond to the energies of HOMO and HOMO-

1 (Figure 4.6C).  The corresponding eigenvectors can be represented as symmetric and 

antisymmetric linear combinations of the HOMO of a single chromophore. Thus, based 

on the simple Hückel Hamiltonian, the energy gap between HOMO and HOMO-1 

decreases with increasing number of phenylenes in a chromophore, leading to nearly 

isoenergetic values and thus negligible electronic coupling at large n (Figure 4.6D). This 
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is fully consistent with results obtained from DFT calculations (Figure 4.6B). In contrast 

to DFT calculations, solution to the Hückel Hamiltonian matrix is available in an analytic 

form,44,45 and thus allows a derivation of the analytic formula for the electronic coupling, 

which in the limit of n→ follows a simple 3𝜋2 8𝑛2⁄  dependence (Figure 4.6D);  

We note that while in a discrete molecule the MO energies are clearly 

distinguished, at the polymeric limit the energy bands are formed that can be described 

by a continuous density of states (Figure 4.6B).46,47 It is thus inevitable that as the 

oligomer size increases, the spacing between its MO energies (HOMO and HOMO-1 

included) will decrease and reach near-degenerate values at the polymeric limit, which in 

case of a bichromophoric oligomer can be interpreted as decreasing the electronic 

coupling between chromophores. 

Following a recent study14 on the mechanism of hole delocalization in biaryls 

with varied donor strength of the substituent and varied size of the chromophore, an 

alternative explanation of decreasing electronic coupling in nPP2 is warranted. This study 

showed that upon increase in the chromophore size a total of two electrons per orbital 

spreads over a larger area, thus decreasing the amount of the electron density at the 

coupling-mediating carbons at the biaryl linkage and leading to a diminished electronic 

coupling. Likewise, as the number of phenylenes in each chromophore of nPP2 increases, 

the electron density of HOMO spreads over a larger number of carbons, decreasing the 

electron density at the coupling-mediating carbons and thereby decreasing 

interchromophoric electronic coupling. 
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CONCLUSION 

 

Motivated by the question whether a set of linearly connected fluorenes is better 

termed a poly-fluorene or poly-phenylene wire (Figure 4.1), we performed a combined 

experimental/theoretical study on a series of phenylene-based bichromophores nPP2 of 

increasing size. We found that as the number of phenylenes in a chromophore increases 

from n = 2 to 4, the amount of hole stabilization measured electrochemically decreases 

and the absorption band in the electronic spectra of nPP2
+• shifts to longer wavelength, 

indicating that the interchromophoric electronic coupling decreases. Aided by the 

benchmarked DFT calculations of a series of long nPP/nPP2 (n = 2-8) we have shown 

that the electronic coupling decreases to nearly non-existent values when n > 5, leading to 

a complete localization of a polaron (i.e., hole) on a single chromophore in corresponding 

nPP2
+•. Finally, using a model Hückel Hamiltonian we showed that the decreasing 

electronic coupling is a consequence of the clustering of MO energy level as the length of 

the oligomer increases. This obvious, yet fundamental understanding that the 

interchromophoric electronic coupling decreases with increasing chromophore size is 

crucial during the rational design of novel electron donors for photovoltaic and molecular 

electronic applications. 
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GENERAL EXPERIMENTAL METHODS 

 

All reactions were performed under argon atmosphere unless otherwise noted. All 

commercial reagents were used without further purification unless otherwise noted. 

Dichloromethane (Aldrich) was repeatedly stirred with fresh aliquots of concentrated 

sulfuric acid (~10 % by volume) until the acid layer remained colorless. After separation 

it was washed successively with water, aqueous sodium bicarbonate, water, and aqueous 

sodium chloride and dried over anhydrous calcium chloride. The dichloromethane was 

distilled twice from P2O5 under an argon atmosphere and stored in a Schlenk flask 

equipped with a Teflon valve fitted with Viton O-rings. The hexanes and toluene were 

distilled from P2O5 under an argon atmosphere and then refluxed over calcium hydride 

(~12 h). After distillation from CaH2, the solvents were stored in Schlenk flasks under an 

argon atmosphere. Tetrahydrofuran (THF) was dried initially by distilling over lithium 

aluminum hydride under an argon atmosphere. The THF was further refluxed over 

metallic sodium in the presence of benzophenone until a persistent blue color was 

obtained and then it was distilled under an argon atmosphere and stored in a Schlenk 

flask equipped with a Teflon valve fitted with Viton O-rings. NMR spectra were recorded 

on Varian 300 and 400 MHz NMR spectrometers. Mass spectra were recorded on Bruker 

Daltonics MALDI-TOF mass spectrometer and Electronic absorption (UV−vis/NIR) 

measurements were made on a Cary 5000 instrument. 
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Synthetic schemes for the preparation of compounds in Chart 4.1 are presented 

below in individual schemes S2-S5 together with the detailed experimental procedures 

for each step of synthesis and their characterization data (i.e. numerical spectroscopic 

data) as well as 1H/13C NMR spectra are given below. Note that identity of each molecule 

was further confirmed by MALDI mass spectrometry. 

 

Scheme 4. 2:. Synthesis of 3PP 

 

 

Synthesis of 2-bromo-9,9-dihexyl-fluorene, S148:  

 

To an ice cooled solution of 2-bromofluorene (5 g, 20.4 mmol, 1.0 eq.) in dry 

THF (30 mL) under an argon atmosphere was added potassium tert-butoxide (6.90 g, 

61.5 mmol, 2.56 eq.) and then the solution was stirred at room temperature for 15 min. 1-

bromohexane (8.41 g, 50.94 mmol, 2.5 eq.) was added dropwise into the solution and 

continued stirring the reaction mixture for additional 3 h. The reaction mixture was 
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neutralized with 5 % aqueous HCl solution (40 mL). After the reaction mixture was 

extracted with CH2Cl2 (3×40 mL), combined organic extracts were dried over anhydrous 

MgSO4 and the solvent was removed under reduced pressure. The thick crude liquid was 

purified by silica gel column chromatography using hexane as eluent to afford 6.05 g 

(yield 71.7 %) pure gummy S1. 1H NMR (400 MHz, CDCl3) δ ppm 0.63-0.74 (m, 4H), 

0.83 (t, 6H), 1.04-1.22 (m, 12 H), 1.96-2.09 (m, 4H), 7.34-7.41 (m, 3H), 7.50 (dd, J = 

1.84 Hz, 8.00 Hz, 1H), 7.55 (d, J = 1.77 Hz, 1H), 7.60 (d, J = 8.06 Hz, 1H), 7.69-7.74 (m, 

1 H); 13C NMR (400MHz, CDCl3) δ ppm 14.15, 22.72, 23.80, 29.80, 31.61, 40.45, 55.47, 

119.86, 121.12, 122.94, 126.22, 127.03, 127.57, 130.00, 140.12, 140.23, 150.37, 153.05. 

 

Synthesis of S249: 

 

2-bromo-9,9-dihexyl-fluorene (S1, 6.50 g, 15.72 mmol, 1.0 eq.), 

bis(pinacolato)diboron (4.39 g, 17.28 mmol, 1.1 eq.), potassium acetate (4.62 g, 47.16 

mmol, 3.0 eq), and Pd(dppf)Cl2 (667 mg, 0.91 mmol, 0.058 eq.) were mixed in dry 

dioxane (100 mL) under an argon atmosphere and the mixture were heated at 90 °C for 

12 hours. After adding 50 mL of water to quench the reaction, the mixture was extracted 

with dichloromethane (2×30 mL). Combined organic layers were dried over anhydrous 

MgSO4 and solvent was removed under reduced pressure. The crude product was filtered 

through silica using 70:30 mixture of hexane and ethyl acetate to give the title compound 

S2 as a thick liquid (7.16 g, 99% yield). 1H NMR (400MHz, CDCl3) δ ppm 0.5-0.64 (m, 
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4H), 0.75 (t, 6H, J = 7.27 Hz), 0.95-1.14 (m, 12H), 1.39 (s, 12 H), 1.89-2.07 (m, 4H), 

7.27-7.37 (m, 3H), 7.66-7.76 (m, 3H), 7.80 (dd, 1H, J = 7.54 Hz, 0.95 Hz); 13C NMR 

(400MHz, CDCl3) δ ppm 14.16, 22.72, 23.78, 25.09, 29.82, 31.62, 40.38, 55.21, 83.83, 

119.09, 120.21, 123.06, 126.78, 127.60, 128.95, 133.82, 141.04, 144.25, 150.00, 151.43.  

 

Synthesis of S3:   

 

Compound S2 (3.50 g, 7.60 mmol, 1.0 eq), methyl 2-bromobenzoate (2.66 g, 

12.37 mmol, 1.62 eq), Pd(PPh3)4 (50 mg) and 50 mL of toluene were placed in a dried 

Schlenk flask. Then an aqueous solution of Na2CO3 (5 g in 20 mL water) was added in 

the Schlenk flask. The reaction mixture was evacuated and filled with argon for three 

times. The reaction mixture was then heated to reflux for overnight. After completion of 

the reaction, the reaction was quenched by adding 30 mL of water and then extracted 

with dichloromethane (4×50 mL). The combined organic extracts were dried over 

anhydrous MgSO4 and the solvent was removed under reduced pressure. The crude 

product was purified through silica gel column chromatography using hexane to afford 

S3 as solid (3.45 g, 97 %). m.p. 50-52 °C. 1H NMR (300MHz, CDCl3) δ ppm 0.57-0.72 

(m, 4H), 0.76 (t, 6H, J = 7.13 Hz), 1.00-1.19 (m, 12 H), 1.89-2.07 (m, 4H), 3.59 (s, 3H), 

7.28-7.40 (m, 5H), 7.41-7.50 (m, 2H), 7.58 (td, 1H, J = 7.35 Hz, 1.46 Hz), 7.71-7.78 (m, 

2H), 7.85 (ddd, 1H, J = 7.71 Hz, 1.42 Hz, 0.42 Hz); 13C NMR (400MHz, CDCl3) δ ppm 

14.13, 22.71, 23.83, 29.86, 31.66, 40.62, 51.94, 55.21, 119.47, 119.86, 122.93, 123.00, 
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126.88, 127.12, 127.33, 129.82, 130.88, 131.23, 131.35, 140.31, 140.39, 140.90, 140.95, 

142.91, 150.72, 150.95, 169.62. 

Synthesis of 3PP 49:  

 

Compound S3 (4.11g, 8.76 mmol, 1.0 eq.) was dissolved in 60 mL of anhydrous 

THF under argon and CH3MgBr (3 M in diethyl ether, 29.2 mL, 87.69 mmol, 10.0 eq.) 

was added. After refluxing for 10 h, the reaction mixture was cooled to 0 °C by using ice 

bath. Water (100 mL) was added into flask very slowly [Caution: It is exothermic 

reaction] and the mixture was extracted with diethyl ether (3×30 mL). The organic phase 

was dried over anhydrous MgSO4 and the solvent was removed under reduced pressure. 

The intermediate crude alcohol S3a (without purification) was treated with 

CH3SO3H/CH2Cl2 (6 mL/54 mL) at 0 °C for 30 minutes and stirred at room temperature 

for 4 hours. The reaction mixture was quenched with aqueous saturated NaHCO3 solution 

and extracted with dichloromethane. The organic phase was washed with water and dried 

over anhydrous MgSO4. The solvent was removed under reduced pressure and purified 

through silica gel column chromatography using hexane as solvent to afford pure 3PP as 

thick liquid (3.42 g, 86 %). 1H NMR (400MHz, CDCl3) δ ppm 0.57-0.85 (m, 10H), 1.00-

1.19 (m, 12H), 1.61 (s, 6H), 1.99-2.11 (m, 4H), 7.29-7.42 (m, 5H), 7.48-7.50 (m, 1H), 

7.70 (s, 1H), 7.78-7.84 (m, 3H); 13C NMR (400MHz, CDCl3) δ ppm 14.17, 22.77, 23.92, 

27.61, 29.94, 31.68, 40.86, 46.66, 54.83, 113.91, 114.38, 119.46, 119.80, 122.77, 122.94, 
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126.86, 126.82, 126.84, 126.99, 138.65, 139.74, 140.82, 141.41, 150.25, 151.27, 152.95, 

154.22.  

Scheme 4. 3: Synthesis of 3PP2.  

 

 

 

Synthesis of S451:  

 

2-bromo-9,9-dihexylfluorene, S1 (5g, 12.13 mmol) was dissolved in 85 mL of 

glacial acetic acid. To the formed solution, 20 mL of fuming nitric acid were added 

dropwise over 10 min at 0 °C upon vigorous stirring. After addition was completed, 

reaction mixture was further stirred at 20 °C for overnight. The yellow color solution was 

poured into 600 mL of water and extracted with dichloromethane (4×50 mL). The 

combined dichloromethane extracts were washed with saturated aqueous NaHCO3 

solution and water and the organic layer was dried over anhydrous MgSO4. The solvent 

was removed under reduced pressure. Yellow thick liquid was passed through silica pad 
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column using hexane and give yellow colored crude product. Through multiple 

crystallization from methanol afforded 4.55 g (82% yield) of pure S4. m.p. 52 - 54° C, 

Lit.2 54-57 ° C.  1H NMR (400MHz, CDCl3) δ ppm 0.48-0.63 (m, 4H), 0.76 (t, J = 7.23 

Hz, 6H), 0.96-1.16 (m, 12H), 1.91-2.08 (m, 4H), 7.50-7.55 (m, 2H), 7.64 (d, J = 8.56 Hz, 

1H), 7.76 (d, J = 8.41 Hz, 1H), 8.18 (d, J = 2.08 Hz, 1H), 8.26 (dd, J = 8.40, 2.08 Hz, 

1H); 13C NMR (400MHz, CDCl3) δ ppm 14.11, 22.66, 23.83, 29.61, 31.56, 40.13, 56.12, 

118.40, 120.10, 122.62, 123.56, 123.82, 126.67, 130.84, 137.83, 146.58, 147.49, 151.72, 

154.49.  

Synthesis of S549,50:  

 

 

To a mixture of 3,3-dimethyl- 3H-benzo[c][1,2]oxaborol-1-ol (5.30g, 32.71 

mmol, 3.0 eq.), S4 (5.0g, 10.90 mmol, 1.0 eq.), sodium carbonate (6.93g, 65.4 mmol, 6.0 

eq), and Pd(dppf)Cl2 (0.797 g, 1.09 mmol, 0.1 eq.) in a 250 mL Schlenk flask equipped 

with air condenser was added 60 mL of anhydrous DME and 30 mL of water. The 

mixture was evacuated and filled with argon three times. After heating at 100 °C for 

overnight, the reaction mixture was then cooled to room temperature and 50 mL of water 

was added. The blackish solution was transferred to a 1 L separatory funnel and extracted 

with diethyl ether (4×50 mL). The combined organic layers were dried over anhydrous 

MgSO4 and the solvent was removed under reduced pressure. The blackish brown 
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colored crude liquid was dissolved in a 1:1 mixture of hexane and ethyl acetate and 

filtered through MgSO4 pad to remove black palladium content. Then the solvent was 

removed under reduced pressure and the resulting thick brown colored compound (S4a) 

was subjected to CH3SO3H acid (5 mL) catalyzed cyclization reaction in anhydrous 

dichloromethane (45 mL) at 0 °C (30 min) and at room temperature 3 hours to afford S5 

as gummy yellow liquid (5.30 g, 98%). 1H NMR (300MHz, CDCl3) δ ppm 0.54-0.69 (m, 

4H), 0.75 (t, 6H, J = 7.14 Hz), 0.93-1.16 (m, 12H), 1.58 (s, 6H), 1.97-2.14 (m, 4H), 7.32-

7.43 (m, 2H), 7.44-7.51 (m, 1H), 7.70 (d, 1H, J = 0.63 Hz), 7.82 (dd, 3H, J = 8.51, 1.60 

Hz), 8.21 (d, 1H, J = 2.04 Hz), 8.28 (dd, 1H,  J = 8.37, 2.1 Hz); 13C NMR (300MHz, 

CDCl3) δ ppm 14.09, 22.69, 23.91, 27.52, 29.74, 31.61, 40.50, 46.78, 55.48, 114.61, 

115.48, 118.30, 119.48, 120.34, 122.93, 123.48, 127.27, 127.92, 138.23, 138.95, 141.12, 

146.86, 148.11, 152.16, 152.40, 153.59, 154.45. 

Synthesis of S652: 

 

To a solution of S5 (4.51 g, 9.09 mmol, 1.0 eq.) in 50 mL of 1,2-dimethoxyethane 

and 20 mL of ethanol, 50 mL of concentrated HCl and Sn (4.32 g, 36.39 mmol, 4.0 eq.) 

were added carefully and the mixture was stirred at 90 °C for overnight. The reaction 

mixture was poured into ice cold water and extracted with dichloromethane (3×50 mL). 

The combined organic extracts were washed with water (3×50 mL) and dried over 

anhydrous MgSO4. The solvent was removed under reduced pressure to afford pure S6 as 
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a thick liquid (4.20 g, 99 %), which was used for the next reaction without purification.  

1H NMR (300MHz, CDCl3) δ ppm 0.64-0.77 (m, 4H), 0.81 (t, 6H, J = 7.03 Hz), 1.03-

1.22 (m, 12H), 1.59 (s, 6H), 1.80-2.12 (m, 4H), 3.76 (bs, 2H), 6.66-6.73 (m, 2H), 7.31 

(td, 1H, J = 7.27 Hz, 1.26 Hz),  7.38 (td, 1H J = 7.40 Hz, 1.26 Hz), 7.47 (d, 1H, J = 7.32 

Hz), 7.56 (d, 1H, J = 8.75 Hz), 7.64 (d, 2H J = 0.85 Hz), 7.79 (d, 1H, J = 6.91 Hz); 13C 

NMR (400MHz, CDCl3) δ ppm  14.17, 22.80, 23.87, 27.59, 29.99, 31.71, 41.11, 46.57, 

54.57, 109.95, 112.56, 114.04, 114.16, 119.45, 120.25, 122.66, 126.51, 126.95, 132.75, 

136.94, 140.01, 141.35, 145.84, 149.24, 152.89, 153.20, 154.03. 

 

Synthesis of S753: 

 

Compound S6 (3.87 g, 8.30 mmol, 1.0 eq.) was added to a mixture of 

hydrobromic acid (50 mL, 48 %), water (80 mL) and acetonitrile (80 mL). The mixture 

was heated to 90 °C to dissolve S6, then cooled to 0 °C. The pre-chilled sodium nitrite 

(0.86 g, 12.46 mmol, 1.5 eq.) in water (20 mL) was added dropwise to the reaction 

mixture and the mixture was stirred at 0 °C for 1 h. A solution of CuBr (1.3 g, 9.13 

mmol, 1.1 eq.) in hydrobromic acid (80 mL, 48 %) was added dropwise at 0 °C and the 

mixture was stirred vigorously at 0 °C for 1 h. The solution was allowed to warm to room 

temperature and heated at reflux for 12 h. After the reaction was completed, the mixture 

was washed with deionized water and extracted with chloroform. The product S7 (2.40 g, 

54 %) was obtained as a colorless thick liquid by silica gel column chromatography using 
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hexane as an eluent. 1H NMR (400MHz, CDCl3) δ ppm 0.57-0.71 (m, 4H), 0.76 (t, 6H, J 

= 7.17 Hz), 0.94-1.16 (m, 12H), 1.56 (s, 6H), 1.90-2.08 (m,4H), 7.27-7.40 (m, 2H), 7.42-

7.49 (m, 3H), 7.55-7.61 (m, 1H), 7.63 (s, 1H), 7.69 (s, 1H), 7.79 (dd, 1H, J = 7.01 Hz, 

1.42 Hz);  13C NMR (400MHz, CDCl3) δ ppm 14.16, 22.77, 23.88, 27.57, 29.87, 31.66, 

40.75, 46.69, 55.20, 114.04, 114.39, 119.90, 120.82, 120.80, 122.91, 126.21, 127.11, 

127.21, 129.98, 139.16, 139.49, 139.66, 140.48, 149.90, 153.16, 153.52, 154.21. 

Synthesis of S849:  

 

Compound S7 (0.56 g, 1.057 mmol, 1 eq.), bis(pinacolato)diboron (0.294 g, 1.157 

mmol, 1.1 eq.), potassium acetate (0.311 g, 3.16 mmol, 3.0 eq.), and Pd(dppf)Cl2 (23.2 

mg, 0.0317 mmol, 3 mmol%) were mixed in dry dioxane (25 mL) under an argon 

atmosphere and heated at 90 °C for 12 h. The crude reaction mixture was filtered through 

silica using 1:1 mixture of hexane and ethyl acetate to give S8 as a thick liquid (0.58 g, 

95% yield). 1H NMR (400MHz, CDCl3) δ ppm 0.56-0.69 (m, 4H), 0.74 (t, 6H, J = 7.09 

Hz), 0.93-1.13 (m, 12H), 1.41 (s, 12H), 1.56 (s, 6H), 1.96-2.09 (m, 4H), 7.27-7.40 (m, 

2H), 7.45 (dd, 1H, J = 6.52 Hz, 1.26 Hz), 7.65 (s, 1H), 7.70-7.76 (m, 3H), 7.80 (t, 2H, J = 

8.28 Hz); 13C NMR (400MHz, CDCl3) δ ppm 14.17, 22.75, 23.84, 25.10, 27.60, 29.89, 

31.65, 40.68, 46.64, 54.89, 83.79, 114.37, 114.41, 118.79, 119.89, 122.76, 127.05, 

127.09, 128.89, 133.88, 139.17, 139.65, 140.61, 144.47, 150.43, 150.90, 152.87, 154.26.     
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Synthesis of planer fluorene 3PP2 

 

 

Compound S7 (0.24 g, 0.46 mmol, 1.0 eq.), S8 (0.48 g, 0.842 mmol, 1.8 eq.), 

Pd(PPh3)4 (50 mg) and 50 mL of toluene were placed in a dried Schlenk flask. Then an 

aqueous solution of Na2CO3 (5 g in 20 mL water) was added into the Schlenk flask. The 

reaction mixture was evacuated and filled with argon for three times. After refluxed at 90 

°C for 24, the reaction mixture was cooled to room temperature and quenched with water. 

The reaction mixture was extracted with dichloromethane (4×50 mL) and organic layer 

was dried over anhydrous MgSO4. The solvent was removed under reduced pressure and 

the crude product was purified through silica gel column chromatography using hexane to 

afford 3PP2 as white solid (0.19 g, 45 %). m.p. 106-108 °C.  1H NMR (400MHz, CDCl3) 

δ ppm 0.70-0.82 (m, 20H), 1.01-1.16 (m, 24 H), 1.58 (s, 12H), 2.02-2.13 (m, 8H), 7.31 

(td, 2H, J = 7.26 Hz, 1.27 Hz), 7.37 (td, 2H, J = 7.32 Hz, 1.34 Hz), 7.46 (d, 2H, J = 7.58 

Hz), 7.63 (d, 2H, J = 1.35 Hz), 7.65-7.69 (m, 4H), 7.76 (s, 2H), 7.78-7.82 (m, 4H); 13C 

NMR (400MHz, CDCl3) δ ppm 14.17, 22.75, 23.97, 27.64, 29.91, 31.66, 40.81, 46.71, 

54.99, 113.98, 114.47, 119.70, 119.81, 121.43, 122.79, 126.09, 127.01, 127.12, 138.65, 

139.76, 140.29, 140.53, 140.61, 150.60, 152.06, 153.07, 154.26.  
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Scheme 4. 4: Synthesis of 4PP 

 

 

Synthesis of S948: 

 

2,7- dibromofluorene (25 g, 77.15 mmol, 1 eq.) was dissolved in dry THF (200 

mL) and cooled to 0 °C. Potassium tert-butoxide (21.64 g, 192.85 mmol, 2.5 eq.) was 

added and the mixture was stirred for 10 min. Then 1-bromohexane (29.23 mL, 208.30 

mmol, 2.7 eq.) was added dropwise through a dropping funnel. The solution was allowed 

to warm to room temperature and continually stirred for additional 5 hours. The reaction 

was quenched with adding 100 mL of 1% aqueous HCl (v/v) and the mixture was 

extracted with dichloromethane (4×50 mL). The combined organic extracts were dried 

over anhydrous MgSO4. Upon removing the solvent, the crude product remained as a 

light-yellow color liquid. Pure S9 can be obtained after further purification with column 

chromatography (hexane) gave 37.6 g (99% yield) as a white solid. m.p. 56-58 °C, Lit.57 

52°C. 1H NMR (400MHz, CDCl3) δ ppm 0.53-0.63 (m, 4H), 0.78 (t, 6H, J = 7.27 Hz), 

0.98-1.17 (m, 12H), 1.87-1.95 (m, 4H), 7.43-7.46 (m, 4H), 7.50-7.53 (m, 2H); 13C NMR 
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(400MHz, CDCl3) δ ppm 14.15, 22.72, 23.77, 29.72, 31.60, 40.34, 55.81, 121.25, 121.59, 

126.28, 130.26, 139.17, 152.66. 

 

Synthesis of S1050: 

 

To a mixture of S9 (5.0g, 10.15 mmol, 1.0 eq.), sodium carbonate (10.76 g, 101.6 

mmol, 10.0 eq.), and Pd(dppf)Cl2 (1.48 g, 2.03 mmol, 0.2 eq.) in a 250 mL Schlenk flask 

equipped with air condenser, was added 60 mL of anhydrous DME and 30 mL of water. 

The reaction mixture was evacuated and filled with argon three times and refluxed at 100 

°C for 12 h. After 50 mL of water was added, the blackish solution was transferred to a 1 

L separatory funnel and extracted with diethyl ether (4×50 mL). The combined organic 

layers were dried over anhydrous MgSO4 and the solvent was removed under reduced 

pressure. The blackish brown colored crude liquid was dissolved in a 50:50 mixture of 

hexane and ethyl acetate and filtered through MgSO4 pad to remove black palladium 

content. Then the solvent was removed under reduced pressure and the resulting thick 

brown colored compound was purified through silica gel column chromatography using 

hexane/EtOAc (95:5) to afford compound S10 as white solid (1.55 g, 25%). m.p. 126-128 

°C. 1H NMR (400MHz, CDCl3) δ ppm 0.61-0.73 (m,4H), 0.77 (t, 6H, J = 7.28 Hz), 0.96-

1.17 (m, 12H), 1.46 (s, 12H), 1.83 (bs, 2H), 1.90-2.00 (m, 4H), 7.16 (dd, 2H, J = 7.54 Hz, 

1.50 Hz), 7.26-7.32 (m, 6H), 7.38 (td, 2H, J = 8.03 Hz, 1.58 Hz), 7.70-7.76 (m, 4H); 13C 
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NMR (400MHz, CDCl3) δ ppm 14.15, 22.63, 23.91, 29.74, 31.65, 32.64, 40.54, 55.34, 

74.05, 119.19, 124.33, 125.96, 126.21, 127.56, 128.39, 132.22, 139.83, 140.48, 142.71, 

146.57, 150.40.  

 

Synthesis of 4PP 52:  

 

 

To an ice cooled solution of S10 (1.0 g, 1.65 mmol, 1.0 eq.) in anhydrous 

dichloromethane (40 mL), CH3SO3H acid (7 mL) was added. After stirring at 0 ⁰C for 30 

minutes, the reaction mixture was allowed to warm up to room temperature and 

continued stirring for additional 3.5 h. The reaction mixture was neutralized with 

saturated aqueous NaHCO3 solution and extracted with dichloromethane (4×50 mL). The 

combined organic layers were washed with water and dried over anhydrous MgSO4. The 

solvent was removed under reduced pressure and the resulting residue was passed 

through a short silica pad using hexane as solvent to afford pure 4PP as white solid (0.90 

g, 95 %). m.p.: 150-152 ⁰C.  1H NMR (400MHz, CDCl3) δ ppm 0.65-0.78 (m, 10H), 

0.96-1.15 (m, 12H), 1.58 (s, 12H), 2.01-2.11 (m, 4H), 7.31 (td, J = 7.30 Hz, 1.15 Hz, 

2H), 7.37 (td, J = 7.40 Hz, 1.27 Hz, 2H), 7.46 (d, J = 7.31 Hz, 2H), 7.66 (s, 2H), 7.79 (d, 

J = 7.31 Hz, 4H); 13C NMR (400MHz, CDCl3) δ ppm 14.16, 22.81, 23.96, 27.62, 30.00, 

31.71, 41.19, 46.68, 54.56, 113.59, 114.41, 119.77, 122.78, 126.94, 127.07, 138.41, 

139.82, 141.01, 150.74, 153.02, 154.20.      
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Scheme 4. 5:Synthesis of 4PP2 

 

 

 

Synthesis of S1156:  

 

To a Schlenk flask, 4PP (3.85 g, 6.79 mmol, 1.0 eq.), NBS (4 g, 22.46 mmol, 3.30 

eq.) and acetone (40 mL) were added to give a yellow suspension. The reaction mixture 

was refluxed for 3h. After added another portion of NBS (3.0 g, 16.85 mmol, 2.48 eq.), 

the mixture was refluxed for additional 12 h. The reaction was quenched with water and 

the mixture was extracted with CH2Cl2 (3×50mL). The combined organic layers were 

dried over anhydrous MgSO4 and the solvent was removed under reduced pressure. The 

resulting crude was recrystallized from ethanol to afford pure crystal of compound S10a. 

Yield: 4.92 g (99 %). m.p. 194-196 °C. 1H NMR (400 MHz, CDCl3) δ ppm 0.64-0.76 (m, 

10H), 0.99-1.13 (m, 12H), 1.55 (s, 12H), 2.00-2.08 (m,4H), 7.48 (dd, 2H, J = 8.06 Hz, 

1.76 Hz), 7.56 (d, 2H, J = 1.76 Hz), 7.60 (s, 2H), 7.63 (d, 2H, J = 8.06 Hz), 7.76 (s, 2H); 
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13C NMR (400MHz, CDCl3) δ ppm 14.09, 22.69, 23.94, 27.35, 29.86, 31.65, 40.96, 

46.87, 54.58, 113.61, 114.37, 120.56, 121.11, 126.14, 130.04, 137.42, 138.65, 141.08, 

150.92, 152.65, 156.14.  

 

n-Butyllithium in hexane (1.29 mL, 1.6 M, 2.06 mmol, 1.0 eq.) was added to a 

solution of S10a (1.5 g, 2.06 mmol, 1.0 eq.) in anhydrous THF (20 mL) at -78 ºC under 

argon atmosphere and the mixture was stirred for 1 h at the same temperature. Then 

chlorotrimethylsilane (0.38 mL, 3.02 mmol, 1.46 eq.) was added slowly at -78 ºC. After 

keeping at cooling bath for 10 minutes, the mixture was allowed to warm to room 

temperature and stirred for overnight. The reaction mixture was quenched with water and 

the resulting solution was extracted by CH2Cl2 (3×50 mL). The organic layer was dried 

over anhydrous MgSO4. After removing the solvent, the crude product was subjected to 

desilylation reaction by stirring in the mixture of anhydrous CH2Cl2/trifluoroacetic acid 

(36 mL/4 mL) for 4 hours afford crude mixture of S11, which was purified through silica 

gel column chromatography using hexane as an eluent. (Yield = 0.69g, 51 %). m.p. 178-

180 °C. 1H NMR (400 MHz, CDCl3) δ  0.65-0.77 (m, 10H), 0.98-1.14 (m, 12H), 1.56 (s, 

6H), 1.58 (s, 6H), 2.02-2.10 (m, 4H), 7.31 (td, 1H J = 7.32 Hz, 1.27 Hz), 7.37 (td, 1H, J = 

7.34 Hz, 1.30 Hz), 7.44-7.50 (m, 2H), 7.57 (d, 1H, J = 1.65 Hz), 7.62 (s, 1H), 7.62-7.67 

(m, 2H), 7.75-7.82 (m, 3H);  13C NMR (400 MHz, CDCl3) δ  14.15, 22.80, 23.97, 27.48, 

27.62, 29.98, 31.70, 41.12, 46.69, 46.96, 54.60, 113.63, 113.70, 114.46, 119.82, 120.60, 

121.19, 122.80, 126.25, 127.03, 127.10, 127.14, 130.13, 137.29, 138.65, 138.88, 139.74, 

140.77, 141.48, 150.77, 151.02, 152.70, 153.09, 154.22, 156.26.  
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Synthesis of S1249: 

 

Compound S11 (0.26 g, 0.403 mmol, 1.0 eq.), bis(pinacolato)diboron (0.112 g, 

0.441 mmol, 1.1 eq.), potassium acetate (0.118 g, 1.202 mmol, 3.0 eq.), and Pd(dppf) Cl2 

(8.82 mg, 0.012 mmol, 3 mmol%) were mixed in dry dioxane (25 mL) under an argon 

atmosphere and heated at 90 °C for 12 h. After removed the dioxane, the oily residue was 

filtered through silica using 50:50 mixture of hexane/ethyl acetate to give the crude S12 

as a thick liquid, which was further purified by recrystallization from ethanol to afford 

light yellowish crystal S12 (0.264 g, 94% yield). m.p.  153-155 °C. 1H NMR (400MHz, 

CDCl3) δ ppm 0.66-0.75 (m,10H), 0.98-1.13(m,12H), 1.40 (s,12H), 1.58 (s, 6H), 1.59 (s, 

6H), 2.01-2.10 (m, 4H), 7.31 (td, 1H, J = 7.14 Hz, 1.35 Hz), 7.37 (td, 1H, J = 7.42 Hz, 

1.35 Hz), 7.46 (dq, 1H, J = 7.20 Hz, 1.35 Hz, 0.64 Hz), 7.67 (dd, 2H, J = 9.5 Hz, 0.64 

Hz), 7.77-7.81 (m, 4H), 7.84 (dd, 1H, J = 7.53 Hz, 0.98 Hz), 7.89 (t, 1H, J = 0.77 Hz);   

13C NMR (400 MHz, CDCl3) δ ppm  14.15, 22.79, 23.96, 25.07, 27.53, 27.61, 29.98, 

31.69, 41.14, 46.68, 46.70, 54.55, 83.87, 113.60, 113.70, 114.44, 114.88, 119.17, 119.80, 

122.78, 126.69, 127.07, 128.88, 134.07, 138.16, 138.53, 139.79, 140.92, 141.55, 142.90, 

150.74, 150.84, 153.02, 153.33, 153.79, 154.22.  
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Synthesis of 4PP2 

 

 

Compounds S11 (0.157 g, 0.243 mmol, 1.0 eq.), S12 (0.185 g, 0.267 mmol, 1.1 

eq.), Pd(PPh3)4 (50 mg) and 50 mL of 1,2-dimethoxyethane were placed in a dried 

Schlenk flask. Then an aqueous solution of Na2CO3 (5 g in 20 mL water) was added into 

this Schlenk flask. The reaction mixture was evacuated and filled with argon for three 

times. The reaction mixture was refluxed at 90 °C for 48 hours and quenched with water. 

Then reaction mixture was extracted with dichloromethane (4×50 mL) and organic layer 

was dried over anhydrous MgSO4. The solvent was removed under reduced pressure and 

the crude residue was purified through silica gel column chromatography using hexane to 

afford 4PP2 as white solid (0.024 g, 8 %). m.p. 200-202 °C.  1H NMR (400MHz, CDCl3) 

δ ppm 0.68-0.90 (m, 20H), 1.00-1.16 (m, 24H), 1.59 (s, 12H), 1.67 (s, 12H), 2.05-2.13 

(m, 8H), 7.32 (td, 2H,  J = 7.38 Hz, 1.28 Hz), 7.38 (td, 2H, J = 7.45 Hz, 1.34 Hz), 7.47 

(d, 2H, J = 7.28 Hz), 7.67 (s, 2H), 7.68-7.61 (m, 4H), 7.73 (d, 2H,  J = 1.24 Hz), 7.78-

7.83 (m, 6H), 7.87 (d, 2H, J = 7.81 Hz); 13C NMR (400 MHz, CDCl3) δ ppm  14.17, 

22.81, 23.99, 27.63, 27.77, 30.01, 31.72, 41.20, 46.69, 46.85, 54.60, 113.63, 114.49, 

119.79, 120.11, 121.55, 122.79, 126.41, 126.96, 127.09, 128.42, 130.22, 132.57, 138.12, 

138.45, 138.99, 139.82, 140.62, 141.04, 150.77, 150.89, 153.05, 153.38, 154.22, 154.92.   
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1H and 13C NMR spectra of compounds 
1H NMR of S1 

 

13C NMR of S1 

 

1H NMR of S2 
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13C NMR of S2 
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1H NMR of S4 
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13C NMR of S5 
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1H NMR of S7 
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13C NMR of S8 
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1H NMR of S10 
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13C NMR of S10a 
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1H NMR of S12 
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13C NMR of 3PP 
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S4. MALDI-TOF mass spectra 
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SUMMARY AND CONCLUSION OF THE THESIS 

The goal of this work has been motivated towards synthesizing the next 

generation of organic molecules which are suitable to be used in the photovoltaic 

devices. In this context, it is important to develop an intuitive understanding of the 

mechanism of the charge delocalization in electroactive organic molecules. In particular, 

during the rational design of novel charge-transfer molecular assemblies it becomes 

crucial to consider how various geometrical factors control the mechanism of charge 

delocalization. In this work we demonstrated for a set of biaryls with systematically 

varied interplanar dihedral angles that the mechanism of hole delocalization is governed 

by the interplay between the energetic gain from the delocalization and energetic penalty 

from structural reorganization. These factors can be rationalized via two-state Marcus-

Hush theory using two empirical parameters: electronic coupling (Hab) and reorganization 

energy (λ). We showed that in biaryl cation radicals the interplanar angle, where 

switchover in the mechanisms of hole delocalization occurs, corresponds to the case 

when 2Hab = λ. 

Proper understanding the charge transport mechanism and the hole delocalization 

requires availability of robust aromatic oxidants. Among these oxidants, magic blue has 

been widely used as an aromatic oxidant for the one electron oxidation to its commercial 

availability and a reasonable oxidizing power. However, stability of the MB+• SbCl6 
– salt 

is a primary concern which leads to a slow decomposition to produce unknown 

impurities, which have been named “blues brothers”. In this work we demonstrated a 

synthetic approach to synthesis of the oxidant with the whose electron donor properties 

are equivalent to those of original magic blue, yet it does not undergo the decomposition. 
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Hexa-peri-hexabenzocoronene (HBC) is among the most well studied PAHs due 

to its promise in the application of photoelectronic devices.  HBC has a unique graphitic 

structure and large flat π-systems which enables them to be columnar shape by self-

assembly in a crystal and thus provide the suitable platform to delocalize the 

electron/hole throughout the entire crystal. On the other hand, HBC not only show the 

troubles like-aggregations and the less solubility to study their properties, but also limit 

the further functionality to prepare large extended π-systems. The goal of this work is 

driven to solve these issues by designing and synthesizing new hexa-peri-

hexabenzocoronene-fluorene hybrid named as FHBCs that allow the free vertices for 

further functionalization of FHBCs. Also, by introducing long chain alkyl group in the 

FHBCs core we improved the solubility and decrease the aggregations in the solution.  

Finally, motivated by the question whether a set of linearly connected fluorenes is 

better termed a poly-fluorene or poly-phenylene wire, we performed a detailed study on a 

series of phenylene-based bichromophores nPP2 of increasing size. We found that as the 

number of phenylenes in a chromophore increases from n = 2 to 4, the amount of hole 

stabilization measured electrochemically decreases and the absorption band in the 

electronic spectra of nPP2
+• shifts to longer wavelength, indicating that the 

interchromophoric electronic coupling decreases. We further showed that the electronic 

coupling decreases to nearly non-existent values when n > 5, leading to a complete hole 

localization on a single chromophore in corresponding nPP2
+•. This fundamental 

understanding that the interchromophoric electronic coupling decreases with increasing 

chromophore size is crucial during the rational design of novel electron donors for 

photovoltaic and molecular electronic applications. 
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