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ABSTRACT 

Structural Basis of Bilayer Deformation by Membrane-Associated Scaffolds 

Adam Frost 

Yale University 

2008 

The assembly of amphipathic lipids into fluid bilayers that are impermeable to 

macromolecules is fundamental to the existence of viruses, organelles, and cells. Conversely, 

membrane compartmentalization poses problems, since essential processes like cell division, 

cell migration, endo-, exo-, and transcytosis all require cells to remodel and even break their 

membranes without opening lethal leaks. Evolutionary forces have consequently generated 

proteins that can reversibly mold membranes into planes, spheres, cylinders, and saddle-

shaped surfaces. Principally, the BAR (B_in, Amphiphysin, RVS) domain superfamily of 

proteins are recruited from the cytoplasm to induce or stabilize states of high membrane 

curvature, while the Dynamin superfamily of 'large GTPases' facilitate the fission of various 

vesicles and organelles. Members of the BAR domain superfamily often work in concert 

with members of the Dynamin superfamily to form and then fission membrane tubules. 

Here, we describe the membrane deforming properties of select F-BAR modules and the 

GTPase dynamin-1 that were discovered though reconstitution and direct visualization of 

these proteins as they shape and break model membranes. 
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Chapter 1: Introduction 

Membrane Remodeling: The Next Frontier of Structural Biology 

Vast and largely unexplored, the interfaces between biological membranes and the 

compartments they delimit are the loci of diverse and essential processes, including cellular 

motility, intra- and inter-cellular communication, cell division, and the biogenesis of 

organelles. Great strides have been made in characterizing membrane dynamics, but a 

mechanistic understanding of these processes remains in its infancy. Missing from the 

analysis to date are structural descriptions of membrane-associated macromolecules and their 

interactions with the bilayer. To advance our understanding of these fundamental 

mechanisms, we have exploited the versatility of (cryo)electron microscopy to directly image 

membrane-bound protein modules whose interactions with the bilayer are critical players in 

membrane remodeling processes. 

The BAR Domain Superfamily 

The BAR (B_in, Amphiphysin, Rys) domain superfamily of proteins have emerged as 

important actors in membrane-remodeling processes throughout eukarya. Members of the 

superfamily are recruited from the cytoplasm to trigger the formation of plasma membrane 

extensions, invaginations, tubular organelles and transport intermediates, including endocytic 

vesicles (Itoh et al., 2005; Kamioka et al., 2004; Lee et al., 2002; Mattila et al., 2007; Peter et 

al., 2004; Tsujita et al., 2006). Wifhin the BAR domain superfamily, a unique subset of 

proteins that possess F-BAR (Fes/CIP4 homology-Bjyt) domains have been shown to play 

key roles in membrane and cytoskeletal remodeling, coupling these processes by 

simultaneously bending bilayers and triggering fhe polymerization of actin fibers (Chitu and 

Stanley, 2007). The F-BAR subset is also notable for the number of mutations in different F-

1 



BAR proteins that are associated with metabolic, auto-inflammatory, neurological, and 

malignant diseases (Chitu and Stanley, 2007). Here, we will review how F-BARs compare 

structurally within the BAR domain superfamily and the proposed molecular mechanisms by 

which they mold membranes. 

With more than 14 near-atomic structures of BAR domains, we can begin 

generalizing about their form, function and evolutionary history (Casal et al., 2006; Gallop et 

al., 2006; Henne et al., 2007; Li et al., 2007; Masuda et al., 2006; Mattila et al., 2007; Millard et 

al., 2005; Peter et al., 2004; Pylypenko et al., 2007; Shimada et al., 2007; Tarricone et al., 

2001; Weissenhorn, 2005; Zhu et al., 2007). The first structure solved, residues 118-341 of 

human Arfaptin-2, was not immediately recognized as the founding member of the BAR 

domain family (Tarricone et al., 2001). In fact, Arfaptin's ability to induce membrane-

curvature was not discovered until the second structure, residues 26-242 of Drvsophila 

Amphiphysin, was shown to be Arfaptin's structural homolog and their common quaternary 

fold was proposed to be "a universal and minimal BAR domain... a dimerization, membrane-

binding, and curvature-sensing module" (Peter et al., 2004). The shared features of these two 

structures have proven to be denning elements of the BAR superfamily: monomers with 

three a-helices arranged in anti-parallel coiled-coils that dimerize to form curved modules 

with a positively-charged surface. Like the three-helix bundles of the spectrin superfamily 

(Parry et al., 1992), combinations of 3-plus-4 spacing between hydrophobic residues appears 

to drive the assembly of BAR monomers into coiled-coils (Chothia et al., 1981; Kumar and 

Bansal, 1996). The dimerization interface between BAR monomers is composed of mixed 

hydrophobic and polar surfaces that are buried where stretches of the a-helices from one 

monomer pack against those of the other monomer in an anti-parallel orientation. The 

surface area involved in dimerization varies more than 2-fold between individual structures, 
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and a major unanswered question is whether most BARs form constitutive dimers or 

whether dimerization can be a regulated event that occurs in the cytosol or on the membrane 

surface (Gallop et al., 2006; Henne et al, 2007; Li et al., 2007; Pylypenko et al., 2007; 

Shimada et al., 2007). While many interesting differences exist between individual BAR 

modules, architectural conservation of the dimeric 6-helix bundle is the touchstone of the 

BAR domain superfamily. 

Fig. 1-1: The BAR Domain Superfamily 

8AR-PH BAR(Arfcytin) 

A) Phylogenetic tree of the BAR domain superfamily computed with KALIGN (Lassmann 

and Sonnhammer, 2005; Lassmann and Sonnhammer, 2006). Parameters used in the 

calculation: Gap open penalty = 11.0, Gap extension penalty = 1.5, Terminal gap penalties = 

0.20, and Bonus score = 0.0 (B) Comparative views of representative members of the BAR 

superfamily. In the case of the N-BAR domain, the N-terminal amphipathic helix is not part 

of the crystal structure and is shown as a schematic only (Gallop et al., 2006). 
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Adapted for Diverse Membrane-Molding Mechanisms 

Shifting our focus from the center of the 6-helix bundle toward the dimer's twin-tips, 

the distinctive adaptations of individual domains become apparent and some intuitive 

concepts about the mechanisms by which BARs mold membranes suggest themselves. The 

BAR of Arfaptin serves as the founding and paradigmatic example of a "classical" banana-

shaped BAR module, characterized by a concave surface with positive charges aligned to 

interact with the negative charges of the membrane. Just looking at this structure leads one 

to the "scaffolding" hypothesis, which posits that these modules bend membranes by simply 

imposing their charged, curved shapes via electrostatic attraction (Itoh and De Camilli, 2006; 

Peter et al., 2004). Closely related to Arfaptin in their degree of curvature, the BARs of 

amphiphysin and endophilin are distinctive in that they are flanked by N-terminal sequences 

of ~26 residues that appear to fold into a-helices (the so called "Helix 0") in the interfacial 

environment of the bilayer (Farsad et al., 2001; Gallop et al., 2006). The intercalation of 

these amphipathic a-helices into the bilayer has been proposed to act like a "wedge" that 

causes local "buckling" when the lipid's polar headgroups of one monolayer are pushed 

apart (Zimmerberg and Kozlov, 2006). Biochemical (Farsad et al., 2001; Henne et al., 2007) 

and spectroscopic (Gallop et al., 2006) data indicate that the N-terminal helix of endophilin 

and amphiphyisn do act like "wedges" that penetrate into the outer region of one membrane 

leaflet, acting synergistically with the shape-based scaffolding properties of the BAR module. 

Peter et al dubbed the combination of a BAR plus an N-terminal amphipathic helix the N-

BAR module, and these proteins appear to constitute a discrete phylogenetic subset of the 

BAR domain superfamily (Frost et al., 2007; Peter et al., 2004). 

Like the N-BAR domains described above, there are additional examples of BAR 

domain superfamily modules that have co-evolved with conjoined lipid-binding motifs, 
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including P H (PJecksrin Homology) and PX (Phox Homology) domains. Structural examples 

of these conjunctions include the BAR-PH module of APPL-1 (Li et al., 2007) and the PX-

BAR module of the SNX9 (Pylypenko et al., 2007). In the case of the BAR-PH structure, an 

acute angle of dimerization produces the most highly-curved, "boomerang" shape of the 

known BAR structures. This geometry positions the phospholipid binding site of the PH 

domain (found at the dimers twin-tips) in line with the membrane-binding surface of the 

BAR domain, strongly suggesting that the conjoined domains act together to recognize 

specific phosphorylated phosphatidyl-inositides, while scaffolding a very high degree of 

membrane curvature. Similar principles apply to the PX-BAR structure of SNX9, though in 

this case the N-terminal PX domains appear to be more flexibly coupled to the lateral 

surface of the BAR core by a split "yoke" sub-domain (Pylypenko et al., 2007). In addition, 

an amphipathic sequence found immediately N-terminal to the PX-BAR domain appears to 

function like the N-terminal amphipathic "Helix 0" of amphiphysin and endophilin 

(Pylypenko et al., 2007). 

Though only distantly homologous in primary sequence, I-BAR (Jnverse-BAR) 

domains are also descendents of an elongated, dimeric six-helix bundle and are characterized 

by a surface with positive charges aligned to interact with the negative charges of the 

membrane (Habermann, 2004; Lee et al., 2007; Mattila et al., 2007; Millard et al., 2005). Like 

the BAR domain of Arfaptin, I-BAR domains also bind to Rac GTPases (Suetsugu et al., 

2006; Tarricone et al., 2001). However, I-BARs are found in the proteins IRSp53 (Insulin 

Receptor Substrate) and MIM (Missing-In-Metastasis; or IMD for IRSp53, MIM homology 

Domain) and—having nearly neutral curvature—have been described as "zeppelin" shaped 

(Suetsugu et al., 2006). The moniker I-BAR is particularly appropriate because these domains 

appear to induce the formation of filopodia or plasma membrane extensions by through an 
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"inverse" scaffolding mechanism that generates negative—rather than positive—membrane 

curvature through imposition of the dinner's cationic and convex surface (Mattila et al., 

2007). 

F-BAR domains, the most recently adopted members of the BAR superfamily, were 

found via sequence searches for regions of low sequence homology to BAR domains but 

with secondary structure predictions consistent with three-helix, anti-parallel coiled-coils 

(Itoh et al., 2005; Peter et al., 2004). An entire family of actin-regulatory proteins with such 

homology was already known as FCH (Fes and QIP4 Homology) proteins (Aspenstrom, 

1997) or as PCH (S. gpmbe Cdcl5 Homology) proteins (Chitu and Stanley, 2007; Lippincott 

and Li, 2000). Extensive biochemical and cell biological analyses support the hypothesis that 

these regions are functional and structural relatives of the BAR domain and the names F-

BAR (FCH-BAR) or EFC (Extended-FCH) were accordingly proposed (Itoh et al., 2005; 

Tsujita et al., 2006). New structures solved by Shimada et aL and Henne et aL validated this 

hypothesis, providing structural, spectroscopic and biochemical evidence that the F-BAR 

modules of FBP17, CIP4 and FCHo2 are a-helical, anti-parallel dimers with a conserved 6-

helix bundle core but with arc depths ~3-fold smaller than those of "classical" BARs (Henne 

et al., 2007; Shimada et al., 2007). The more subtle curvature correlates directly with the 

larger diameter membrane tubules formed by F-BAR versus N-BAR domains in vitro (Henne 

et al., 2007; Itoh et al., 2005; Shimada et al., 2007). 

F-BARs are also unique among the BAR domain superfamily in their possession of 

five a-helices, where their first and fifth helices are very short and a l of one monomer 

interacts with a5 of the adjacent monomer to contribute to dimer formation. Furthermore, 

F-BAR monomers have "an extended C-terminal peptide" that interacts with a3 and a4 of 
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the adjacent monomer, all together doubling the surface area buried by dimerization (Henne 

et al., 2007; Shimada et al., 2007). Accordingly, Shimada et aL find that the F-BAR domains 

of human CIP4 and FBP17 are constitutive dimers, whereas Henne et aL report that after 

deleting the c-terminal peptide FCHo2 dimers become relatively weak, with aKjOn the 

order of dissociation constants reported by the McMahon group for other "classical" BAR 

domains (~2.5 uM versus 2—15 uM; Henne et al., 2007; Gallop et al., 2006). Biologically, this 

suggests that the extended C-terminal peptide is an important functional component of the 

F-BAR domain and highlights the open questions about whether dimerization is a regulated 

step for some members of the superfamily. 

Beyond its role in dimerization, the C-terminal extended peptide may be a critical 

component of F-BAR function through its role in mediating higher-order oligomerization 

(Frost et al., 2007). The hypothesis that members of the BAR domain superfamily can form 

higher-order oligomers on the membrane surface was first suggested by electron 

micrographs of tubules formed by amphiphysin BAR domains with an arrangement of thin 

rings, arcs or spirals around their circumference (Takei et al, 1999). Subsequently, bi-

functional chemical cross-linkers produced large aggregates when applied to similar in vitro 

preparations (Peter et al., 2004). Finally, Shimada et al. reported that purified F-BAR domains 

also induced tubular membranes that appeared to be encased by a tightly-wound thread of 

protein oligomers which they proposed were strings of F-BARs held together by a unique 

tip-to-tip contact observed in their crystal structures (Shimada et al, 2007). This is an 

important line of investigation, as it addresses the overlooked fact individual BARs can only 

generate local, microscopic membrane curvature, whereas macroscopic transformations— 

like those observed during endocytosis of coat-pits or elongation of tubular carriers between 

organelles—require the ensemble effort of many proteins acting in close proximity. In light 
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of this, it is usually assumed that biologically meaningful membrane deformations require the 

formation of protein coats to shape or stabilize the underlying membrane, presumably 

dirough direct interactions between individual protomers. However, theoretical 

considerations have suggested the possibility that even in die absence of protein-protein 

interactions, protein-induced changes in bilayer properties may create attractive forces that 

cause microscopically bent bilayer regions to coalesce into macroscopic curvature domains 

(Ayton et al., 2007; Bruinsma and Pincus, 1996; Reynwar et al., 2007). 

Context and Significance of the Current Investigation 

Until now, there had been no direct evidence for the shape-based "scaffolding" 

hypodiesis, other than that purified domains generate tubules in vitro whose curvature 

correlates with the concavity of their quaternary structure: classical BARs generate narrower 

tubules than elongated and gendy-curved F-BARs (Farsad et al., 2001; Henne et al., 2007; 

Itoh et al., 2005; Peter et al., 2004; Shimada et al., 2007; Takei et al., 1999). Conversely, I-

BAR modules appear to generate filopodia in vitro and in living cells (tubules of the opposite 

curvature) by binding to the plasma membrane via a convex surface (Mattila et al., 2007). 

There is stronger evidence that some members of the BAR domain superfamily employ the 

second mechanism of protein-induced "buckling" dirough insertion of amphipathic 

sequences (Zimmerberg and Kozlov, 2006). l ike epsin-family proteins (Ford et al., 2002), 

biochemical (Farsad et al., 2001; Henne et al., 2007) and spectroscopic (Gallop et al., 2006) 

data suggest that the eponymous N-terminal helix of endophilin and amphiphysin do act like 

"wedges" that penetrate into one bilayer leaflet. However, no such wedge sequences have 

been identified within or flanking any of the known F-BAR domains. Finally, whether 
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members of the BAR domain superfamily in general, or F-BAR modules in particular, form 

supra-molecular protein coats has been a matter of speculation. While direct protomer 

interactions enable the polymerization of spherical or cylindrical coats for proteins like 

clathrin and its adaptors (Brett and Traub, 2006) and the GTPase dynamin (Hinshaw and 

Schmid, 1995; Takei et al., 1995; Zhang and Hinshaw, 2001), the inherent curvature of 

individual BAR modules may obviate the need for coat formation. 

In short, scaffolding, amphipathic wedges, and collective coat formation may each 

contribute to curvature generation and stabilization by members of the BAR domain 

superfamily, but testing these hypotheses directly requires molecular-scale visualization of 

the proteins in their membrane-bound contexts. The experiments performed here 

accomplish this goal, and clearly shown that tubule formation by select F-BAR domains 

results through a shape-based scaffolding mechanism that is amplified by the self-assembly 

of a helical coat, with no apparent contribution from the insertion of amphipathic sequences. 
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Chapter 2: Structural Basis of Membrane Invagination by F-BAR Domains 

Using a structural approach that allows for the presence of a membrane holds the 

potential to advance a mechanistic description of membrane remodeling by answering four 

immediate questions: first, it would visualize directly how members of the BAR superfamily 

interact with the bilayer. Second, it would provide insight into the ensemble component of 

protein-induced membrane curvature. Third, it would explain whether and how the same 

type of domain accommodates a spectrum of different membrane curvatures. Fourth, 

structures may suggest how spatial regulation of membrane deformation is achieved. By 

showing directly how F-BARs employ a combination of scaffolding and ensemble action to 

induce curvature, this study provides answers to these questions. 

F-BAR PROTEINS SPONTANEOUSLY SEGREGATE FROM CLASSICAL BAR 

PROTEINS DURING MEMBRANE TUBULE FORMATION 

High-level expression of fluorescently-labeled F-BAR proteins revealed that they 

generate membrane tubules inside living cells (Itoh et al., 2005; Tsujita et al., 2006). Less 

appreciated but presumably of functional significance, F-BAR and other BAR superfamily 

proteins physically segregated from each other on membrane surfaces during membrane 

remodeling as seen in Fig. 2-1A (Itoh and De Camilli, 2006). While segregation is likely to be 

determined in part by the affinity of a given BAR superfamily domain for a specific degree 

of curvature, the dynamic alternation of F-BAR and N-BAR microclomains (Fig. 2-1A) 
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Fig. 2-L F-BAR versus N-BAR Tubulation in Living Cells: Spontaneous 

Segregation, Differences in Diameter and Rigidity. 

A) COS7 cell simultaneously transfected with amphiphysin2-GFP (green) and RFP-FBP17 

(red) produces tubular networks in which the two proteins segregate from each other. Insets 

show the GFP, RFP, and merged channels. B) High magnification image of a cell transfected 

with GFP-CIP4 (left) and mRFP-FBP17 (middle) demonstrating the absence of segregation 

between the two proteins (merge; right). Q large invaginations of the plasma membrane 

observed by electron microscopy of thin-sections from COS7 cells transfected with full-

length human GFP-FBP17 and D) GFP-CIP4; in comparison with the smaller tubules 

formed by amphiphysin2-GFP (E). Bars (A) 1 um, (B) 0.5 urn, (C-FJ) 70 nm. 
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suggested that stereotyped protein-protein interactions enabled members of the BAR 

superfamily to distinguish and recruit self-similar domains during membrane remodeling. In 

support of this hypothesis, when two different F-BAR proteins from the Toca family 

(transducer of C_dc42-d,ependent actin assembly (Ho et al., 2004)), namely CIP4/Toca-3 and 

FBP17/Toca-2, were co-expressed they co-locali2ed on the same tubules (Fig. 2-1B). While 

interactions between highly homologous TOCA proteins may involve more than a single 

domain, it is most likely that co-localization of these proteins was driven by their highly 

conserved and structural homologous membrane-binding F-BAR domains (Shimada et al., 

2007). 

F-BAR TUBULES ARE LARGER THAN N-BAR TUBULES IN LIVING CELLS 

When analyzed in living cells, F-BAR tubules were >3-fold wider in diameter than 

tubules formed by N-BARs, as shown by thin-section electron microscopy of COS7 cells 

expressing GFP-FBP17 (Fig. 2-1C and inset), GFP-CIP4 (Fig. 2-1D) and GFP-

amphiphysin-2 (Fig. 2-1E). This observation mirrors data that were previously obtained in 

vitro (Henne et al., 2007; Itoh et al., 2005; Shimada et al., 2007; Tsujita et al., 2006), 

emphasizing that tubulation in vitro generates biologically relevant structures. In addition, the 

striking differences in tubule diameters supported the scaffolding hypothesis, as the size 

difference between F-BAR and N-BAR tubules in living cells correlated directly with the 

difference in the radii of curvature for the respective domains (Casal et al., 2006; Shimada et 

al., 2007). 
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Fig. 2-2: Reconstitution of CIP4 F-BAR Induced Tubulation and Segregation 

from Endophilin N-BAR Domains in vitro. 
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A) electron 
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in vitro by F-BAR 

domains (human 

CIP4, 1-284). The 

yellow arrow 

points to the 

demarcation 

between the membrane surface with and without F-BARs, revealing a smooth bilayer to the 

right and adsorbed protein to the left, as seen in the 2x enlarged inset surrounded by the 

yellow box. To the left of the yellow arrow, the curvature of the membrane has changed 

little, if at all, despite die presence of bound proteins. Induction of tubule formation 

accompanies self-organization of F-BAR domains into a helical coat (cyan arrow and 

enlarged inset). B) Histogram of tubule widths generated in vitro. Q electron 

(cryo)micrograph of a tubule following temperature annealing and its corresponding Fourier 

Transform (D), which displays layerlines beyond ~27 A. E,F) Liposomes co-incubated with 

F-BAR (CIP4) and N-BAR (endophilin-1) proteins in vitro observed after negative staining 

with uranyl formate (E) or uranyl acetate (F), displaying contiguous membrane tubules 

whose change in diameter corresponds with die change in the radius of curvature for F-BAR 

versus N-BAR domains. Bars (A) 300 A; (C) 25 nm; (E,F) 40 nm. 
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IN VTTRO RECONSTTTUTION OF MEMBRANE TUBULATION BY F-BAR 

DOMAINS FOR STRUCTURAL ANALYSIS BY ELECTRON CRYO -MICROSCOPY 

To structurally analyze F-BAR induced membrane deformation, we generated mixed 

populations of tubules in vitro whose range of diameters were consistent with the range 

observed in living cells (57-85 nm in vitro compared with 64-113 nm in living cells, Fig. 2-

2A,B). Notably, micrographs of unstained liposomes caught in the process of tubule 

formation illustrated that tubulation involved at least two intermediate steps that correlated 

with the re-organization F-BAR domains into a defined coat following their adsorption onto 

the membrane. In Fig. 2-2A, a bare bilayer is clearly resolved to the right of the yellow arrow 

and more clearly in the 2X enlarged inset. Immediately to the left of the yellow arrow, the 

outer surface of the bilayer is decorated by bound F-BAR domains but the curvature of the 

membrane has changed little if at all, in comparison with the naked membrane to the right. 

Between the yellow and cyan arrows, the F-BAR domains have clearly self-organized into a 

structured coat, and it is the organization of the coat that appears to transform the spherical 

liposome into a cylindrical tubule. Under the same solution conditions, when an N-BAR 

domain protein was mixed with an F-BAR domain protein prior to incubation with 

liposomes, homogeneous microdomains with a constant diameter—corresponding with the 

curvature of the F-BAR domain—were contiguous with equally homogenous but distinct 

tubules whose smaller diameter corresponded with the curvature of the N-BAR domain (Fig. 

2-2E,F). These in vitro observations were in accord with segregation observed in living cells. 

The heterogeneity within populations of tubules, subtle changes in diameter along 

individual tubules, and the loss of lattice coherence over long distances presented significant 

obstacles to 3D reconstruction. Fortuitously, the long range order of the CIP4 F-BAR coat 

could be improved by subjecting F-BAR tubules to a period of slow temperature annealing 
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before vitrification (see methods). In electron (cryo)micrographs of annealed tubules the 

helical nature of the F-BAR coat was obvious (Fig. 2-2Q and Fourier transforms of these 

images revealed strong layer-lines (Fig. 2-2D). Temperature annealing was only used to 

generate images suitable for structure determination. All other in vitro tubulation reactions 

were performed at room temperature for up to 30 minutes. 

ITERATIVE HELICAL REAL SPACE RECONSTRUCTION OF F-BAR TUBULES 

We employed the Iterative Helical Real Space Reconstruction algorithm (Egelman, 

2000) to reconstruct volumes from individual tubules composed of up to ~3000 F-BAR 

domains, after preliminary efforts with Fourier-Bessel reconstruction failed to achieve the 

desired resolution (Figs. 2-4, see also Appendix II, Figs. AII-3 & AII-4). This approach 

enabled us to resolve individual F-BAR dimers and the contacts defining the helical coat 

(Fig. 2-3). To our knowledge, this is the first reconstruction of a membrane-binding protein 

with sufficient resolution to unambiguously identify individual protein subunits adsorbed 

onto an underlying membrane. The membrane itself appeared relatively smooth, with a 

hydrophobic core that was ~26A thick and phosphocholine headgroup regions that were 

~12A thick (Fig. 2-3Q. The correspondence between the dimensions of the bilayer in our 

reconstructions and measurements of similar synthetic lipid mixtures strongly supported the 

validity of these results (Rodriguez et al., 2007; Wang et al., 2006). Notably, in 

reconstructions calculated from images of tubules with broken-open ends (Fig. AII-3), there 

was additional unstructured density along the surface of the inner leaflet. Since 3D 

reconstruction depends on averaging, we cannot rule out entirely that randomly distributed 

lipid protrusions were responsible for this layer of unstructured density. However, since this 

additional layer was observed only in tubes that were broken open, and given that the F-
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BAR domain was the only protein added to the reaction mixture, it seemed more likely that 

the additional densities represented a disordered layer of protein. This observation was 

significant because it, unexpectedly, conveyed that F-BARs could apparently bind to 

membranes with convex curvature. Mechanistically, this reinforced the idea that membrane-

binding and membrane-bending are separable events (Fig. 2-2A). 

Fig. 2-3: Single Particle Helical Reconstruction of an F-BAR Induced Tubule. 

-670A 

* .» - —**** 

-220A 

* * * » -

~*-r2&'' 

k «»~««ttQp^£.», 

-»»-"33Wi*»le»«> 

._ _ .wt-* 

-220A 

Tar 

A) Surface of a ~67 nm diameter membrane tubule at ~ 17 A resolutions. The protein coat 

is colored blue-gray and the underlying membrane is green. B) Zoom in on the lattice seen 

orthogonal to the cylindrical axis, highlighting the tip-to-tip interactions and the broad 

contacts between laterally-adjacent dimers. C) Cross-sectional slab through one dimer 

parallel with the plane of the tip-to-tip interaction. There are four clearly resolved points of 

membrane binding. The hydrophobic core of the phospholipid bilayer is ~26 A thick and 

the headgroup regions are ~12A thick. 
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Fig. 2-4: Experimental versus Model 2D Fourier Transforms. 

Representative Comparison of Model Projection (L) and Image (R) 2D Fourier Transforms 

Right: Fourier transform of the aligned, straightened tubule overlaid with the lattice and 

annotated with the Bessel function orders used for a preliminary Fourier-Bessel 

reconstruction. Left: Fourier transform of a 2D projection image calculated from a helical 

reconstruction, overlaid with the same lattice. Bottom: Amplitude (continuous) and Phase 

(dotted) modulation of pixels values along the layerline corresponding with the J-9 Bessel 

function from the experimental (right) image data. The phase modulations for the near and 

far sides of the function are precisely 180° out of phase with each other, consistent with the 

assignment of an odd Bessel order. Analysis performed with SUPRIM and PHOELIX 

(Schroeter and Bretaudiere, 1996; Whittaker et al, 1995). 

22 



DIRECT VISUALIZATION OF SCAFFOLDING BY F-BAR DOMAINS 

Like other BAR superfamily domains, F-BAR tabulation requires the presence of 

anionic headgroups to be present in the membrane at >10 mol% (Itoh et al., 2005; Tsujita 

et al., 2006). Moreover, tubulation was inhibited by increasing solution ionic strength, such 

that tubule formation was blocked at >300mM [NaCl] (data not shown), demonstrating that 

membrane deformation by F-BARs depended on electrostatic interactions. Consistent with 

these observations, the scaffolding hypothesis predicts that defined points of contact 

between the protein's clusters of cationic residues and the phospholipid headgroups 

constrain the membrane to match the curvature of the domain. Proving this model, the 3D 

reconstruction visualized how through four points of close apposition the F-BAR dimer 

imposed its own shape on the underlying bilayer (Fig. 2-3C, 2-5B). Moreover, there was no 

significant difference between the curvature of the F-BAR dimer bound to tubules and the 

structure obtained from x-ray crystallography in the absence of lipids (Fig. 2-5B). This 

observation established the additional feature of the scaffolding hypothesis positing that 

protein scaffolds must be more rigid than the membrane. 

To identify which residues participated in membrane binding at these four sites, the 

atomic coordinates of the F-BAR domains of human FBP17 and CIP4 were fit into the map 

manually and then refined using algorithms implemented in UCSF Chimera (Pettersen et al., 

2004) or the program SITUS (Pettersen et al., 2004; Wriggers et al., 1999) with equivalent 

results. The agreement for the fit of both structures was not surprising given that their 

crystal structures superimposed to within 2.15A rmsd between corresponding Ca-atoms 

(Shimada et al., 2007) (see also Fig. 2-7). As illustrated in Fig. 2-5, two regions of membrane 

binding near the center of the module appeared to correspond with the cationic clusters 

composed of R/K27, K30, K33, K110, R113, K114, and R/K150 (where R/K indicates the 
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Fig. 2-5: Fitting F-BAR Crystal Structures into the CryoEM Map Reveals 

Membrane-Binding Residues and Possible Lattice Contacts. 

A) Surface representation of a membrane tubule perpendicular to the cylindrical axis, 

focused on the interactions between four neighboring F-BAR molecules. The underlying 

membrane is colored in grey 

and the protein coat in grey 

mesh. One monomer of each 

F-BAR module is in yellow, the 

other in orange-red. Conserved 

residues hypothesized to 

contribute to the tip-to-tip and 

lateral interactions are 

annotated and shown with 

space-filling atoms. B) Cross-

sectional slab through one 

dimer parallel with the plane of 

the tip-to-tip interactions. The 

four resolved points of 

membrane binding correspond 

with clusters of conserved, cationic residues found along the concave faces of both dimers, 

where R/K indicates the amino acid found in CIP4 or FBP17, respectively (Shimada et al., 

2007). Q Representative images of COS7 cells with high levels of expression of wild type or 

mutated constructs of GFP-FBP17 or D) GFP-CIP4. Some mutations completely abolish 

membrane localization, while others only compromise tubule formation. Bars 10 um. 
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amino acid found in CIP4 or FBP17, respectively). Two additional areas of contact nearer 

the dimer's tips appeared to correspond with a cluster of cationic residues composed of 

R139, R/K140, R/K146 and R/K150. Consistent with this interpretation of our map, 

mutating residues that line the concave face, including K33E, K33Q, R113Q and K114Q, 

compromise membrane binding and tubule formation (Shimada et al., 2007; Tsujita et al., 

2006). 

Importandy, there was no evidence at this resolution that extended amphipathic 

sequences were partially intercalated into the bilayer—distinguishing F-BAR mediated 

tubulation from the combination of scaffolding plus amphipathic "wedges" employed by N-

BAR domains (Farsad et al., 2001; Gallop et al., 2006). However, it is possible, given the 

moderate resolution of this analysis, that isolated residues shallowly inserted into the outer 

leaflet of the bilayer. To explore this possibility, we noted from the fit of the atomic 

coordinates into our reconstruction that F117 faced the membrane from the concave surface 

of the domain and that it was surrounded by the hydrophobic alkane moieties of cationic 

residues that mediated binding to lipid headgroups (Fig. 2-6). To test whether possible 

insertion of F117 into the bilayer contributed to membrane-binding or tubulation, we 

mutated F117 to Ala and Asp, respectively. The F117A mutant had no observable defects in 

membrane tubule formation. Given the smaller volume occupied by the hydrophobic side 

chain of Ala, this suggested that tubulation did not require insertion of a bulky Phe amongst 

the acyl chains of the membrane. Further supporting this idea, when F117 was mutated to 

Trp in aTrp-less variant of the domain, no blue-shift of the fluorescence emission spectrum 

was detectable (data not shown, (Ladokhin et al., 2000)). In contrast, the F117D mutation in 

FBP17 F-BAR domains potently inhibited tubulation in every reaction condition tested in 

vitro (Fig. 2-8A), while the corresponding mutation in full-length CIP4 also inhibited 
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tabulation in living cells (Fig. 2-5D). This observation suggested that the F117D mutant was 

defective in forming high-affinity interactions with the membrane surface via its concave 

surface. We speculate that the functional defect arose because the Asp strongly interacted 

with its neighboring cationic residues, partially neutralizing the surface potential and perhaps 

preventing conformational extensions of Lys and Arg residues toward the membrane 

surface. In support of die latter, we noted that the molecular envelope of the dimer was 

continuous with die bilayer exclusively in the four positions that, based on the fit of the 

crystal structure, were occupied by cationic clusters. 

Fig. 2-6: FBP17 F-BAR Mutant Analysis in vitro 

A) Lower magnification images of samples generated with wild-type protein versus B) the 

"flTWv j . j . ..'...,. '"" .• SHM8»M» T^ « 

K M & - & $ r * mutant K66E, demonstrating the 

K166 BAnt. 
R121 F 1 1 7 

K66v " 7 6 

R113.K114 

K122 R104 KS6 
R104 / KS6 ' 

K122 K56K157 

striking differences in tubule number, 

length, and rigidity seen in vitro and 

quantified in Fig. 2-8A. Q View of the 

concave surface of the FBP17 F-BAR 

domain along the dimer axis with 

F117 and surrounding residues shown 

with space-filling atoms. Additional 

residues mutated in this study are also 

shown. D) Ribbon diagram of the 

FBP17 F-BAR domain parallel with the bilayer surface, with the membrane-binding residues 

that constitute the flat-lattice interface shown with space-filling atoms. E) Same as 'D' but 

seen along the module's long axis. Bars (Q 2 um; (D) 500 nm. 
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F-BAR DOMAINS SELF-ORGANIZE INTO HELICAL LATTICES TO INDUCE 

TUBULE FORMATION 

An important finding of our study was that scaffolding by individual F-BARs was 

necessary but not sufficient for tubule formation. Specifically, the reconstruction 

demonstrated that tubule formation involved the collective assembly of F-BARs into a 

helical coat that propagated curvature around and along the growing tubule. The helical 

lattice was held together by tip-to-tip and extensive lateral interactions (Fig. 2-3A,B, Fig. 2-

5A). Of the two, only the tip-to-tip interaction, mediated in part by K166 in the loop 

between the a 3 and a4 helices, was predicted by the crystal structures (Shimada et al., 2007). 

Importandy, the 6.3A translation and 40.3° rotation separating each dimer along the helical 

path defined by the tip-to-tip interaction did not allow preservation of the reported 

hydrogen bonding pattern, when the dimer was fit as a rigid body. In fact, attempts to 

maintain the hydrogen bonding pattern as seen in the crystal structure resulted in a ~50% 

decrease in the correlation coefficient between our map and the structure. 

The possibility that the tip-to-tip interaction was flexible or underwent 

rearrangement during polymerization of the helical coat was consistent with the existence of 

an additional, lateral contact between neighboring dimers. This broad overlapping 

interaction involved 50% of the dimer's lateral surface, including the loop between a2 and 

ct3, segments of the lateral surface of a3 and a5, and the C-terminal extended peptide 

(Shimada et al., 2007). Notably, the near-atomic model generated by fitting the crystal 

structures into our reconstruction suggested specific contacts that may have been important 

for the formation of the lateral interactions. This included ionic interactions between K66 or 

K273 in one dimer and E285 or D286 in the other, as well as between D161 or N163 in one 

dimer and R47 or K51 in the other (Figs. 2-5A and 2-7). There also appeared to be 
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hydrophobic interactions, including one between directly opposing F276 in both dimers 

(Figs. 2-5A and 2-7). As shown in the bottom panel of Fig. 2-7, these surface exposed 

residues are among the most highly conserved throughout the evolution of the Toca 

proteins, and are oriented on the surface of the model such that if they do participate in 

lateral interactions, neighboring dimers would overlap by -50% of their length. 

Because of die large number of potential pairwise interactions, we did not probe the 

importance of all these residues for the purpose of this study. Nevertheless, analysis of a 

total of 14 mutants along the lateral interface (7 each for CIP4 and FBP17 respectively) 

revealed that most of diem affected tubulation behavior to some extent. Shown here are 

examples illustrating the spectrum of effects that were observed in living cells with full-

length CIP4 or FBP17 (Fig. 2-5QD) and in vitro with purified FBP17 F-BAR domains (Fig. 

2-8A,B). Considering the large surface area involved in the lateral interaction, we were 

surprised that some point mutations did compromise tubule formation both in vitro and in 

living cells, at least as potendy as the previously reported mutation of die tip-to-tip residue 

K166 to Ala (Fig. 2-8A and (Shimada et al., 2007). Specifically, replacing F276 with the 

charged residue Asp in full-length FBP17 and CIP4 potently inhibited tubule formation in 

living cells (Fig. 2-5C,D). Similarly, the same mutation strongly compromised tubulation in 

vitro using isolated F-BAR domains (Fig. 2-8A). Similarly, reversing die charge of K66 

inhibited tubule formation when compared with wild type FBP17 F-BAR domains when 

assayed under equivalent in vitro conditions (Fig. 2-8A, see methods in Appendix II). 
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Fig. 2-7: Evolutionary Conservation and Comparison of Electrostatic Surface 

Potentials of F-BARs from CIP4 and FBP17. 

Electrostatic potentials 

for CIP4 (top) and 

FBP17 (middle). 

Residues that may 

participate in either the 

lateral overlap (right side) 

or the 'side-lying' 

interface (left side) are 

annotated and the residues mutated in this study are shown in bold type for the CIP4 

surface. Conservation of the FBP17 lateral surface, compared with related members of the 

Toca family, is shown below. Conservation scores were determined from an alignment of 

residues 1-300 of human FBP17/TOCA-2 (Q96RU3) with sequences of (accession 

numbers): human CIP4/TOCA-3 (Q15642), human TOCA-1 (Q5T0N5), Chimpanzee 

(XP_512320), Orangutan (Q5RCJ1), Rat (P97531), Mouse (Q8CJ53), X. tmpicaUs 

(NP_001072662), zebrafish (Q5U3Q6), D. mefomgaster(NV_65789), and C ekgans 

(NP_741723). The strongest conservation corresponds with residues that are likely to 

interact, as predicted by fitting the F-BAR structures into the helical reconstruction. Solid 

white circles surround anionic residues at the tip of the module that may interact with 

cationic residues near the center of the module. Dashed white circles surround anionic and 

cationic residues that are also likely to interact between laterally-overlapping dimers. A 

conserved hydrophobic patch, including F276, may also contribute to the lateral contacts 

seen in the helical reconstruction. 
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Fig. 2-8: Mutant Phenotypes & Tubule Persistence Lengths. 

A) Quantification of total tubule number, total tubule length (sum of all tubule lengths 

measured) as determined from 50 low magnification images evenly sampling one EM grid. 

B) Quantification of mean tubule diameter from low-magnification images like those in Fig. 

2-6A,B. Error bars are B 
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The importance of the lateral interactions was further underscored by electron 

microscopic examination of the filaments formed in the absence of liposomes by the F-BAR 

domains of FBP17 or CIP4 (Itoh et al., 2005). Being 12-13 nm thick and with a 4-5 nm 

repeat distance, they must be composed of both lateral and tip-to-tip interactions (Fig. 2-9), 

which contrasts with a previous proposal that the length of the F-BAR dimer corresponds to 

one periodic repeat of these filaments (Shimada et al., 2007). 

Figure 2-9: Isolated F-BAR Domains Polymerize into Filaments Composed of 

Lateral and Tip-to-Tip Interactions in the Absence of Lipids. 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 
nm 

A) Low and B) high power views of negatively stained filaments composed of purified F-

BAR domains (CIP4 1 - 284aa) in lOOmM NaCl buffered solution without lipids or 

detergents. C) Pixel values sampled along the center of the filament corresponding with the 

region indicated by the blue line in *B' revealing a periodicity of 4-5 nm. Bars (A) 46 nm; (B) 

12nm. 
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THE F-BAR COAT IS MORE RIGID THAN N-BAR OR DYNAMIN COATS 

The extensive interactions between dimers observed in the reconstruction explained 

why F-BAR coated tubules seemed to be more rigid than tubules coated by classical BAR 

domains. To quantify the difference in the rigidities of N-BAR and F-BAR tubules in vitro, 

we calculated their persistence length, Lp, which is a measure of macromolecular rigidity 

expressed as the length over which correlations in the direction of the tangent are lost. For 

FBP17-coated tubules, we determined an Lp of 142.3+8.8 urn. In comparison, amphiphysin-

coated tubules had an Lp of 9.1+0.6 um while dynamin-coated tubules, which were used as a 

non-BAR superfamily control sample, had an I^ of 37.3±4.6 urn (Fig. 2-8C,D; dynamin data 

not shown). The 16-fold smaller Lp for amphiphysin tubules compared with FBP17 tubules 

may have been due partly to their thinner diameter, though it would be of interest to 

determine whether N-BAR dimers form less extensive inter-molecular contacts than those 

of the F-BAR coat. Similarly, the 4-fold smaller Lp observed for dynamin, which also forms 

tubular coats, suggested that the contacts making up the dynamin coat were either less 

constraining than those of the F-BAR coat or, less-likely, that F-BAR dimers were more 

rigid than dynamin dimers (Chen et al., 2004; Zhang and Hinshaw, 2001). 

VARIABILITY IN COAT ARCHITECTURE ALLOWS A RANGE OF TUBULE 

DIAMETERS TO FORM 

F-BAR domains generate different diameter tubules in vitro and in living cells (Fig. 2-

1C,D; Fig. 2-2B). To determine the structural basis for this variability, we calculated 

independent reconstructions of tubules with different diameters. These volumes revealed 

that F-BARs rotated relative to the tubule's cylindrical axis while maintaining their intrinsic 

curvature (Fig. 2-10). Specifically, tubules with a diameter near the population mean of 67 
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Fig. 2-10: Independent Reconstructions of Tubules with Different Diameters 

A) The narrowest tubule reconstructed is ~56 nm in diameter, with ~8 tip-to-tip dimers 

around its circumference. Tilting the long axis of the dimer relative to the cylindrical axis 

Radius ~282A \<i» 77.65° \Z-4.0A Cn - 1 

•,*****^, i _ * 

Radius = 335A V> = 40.28° \Z=6.31A C = 2 

Radius - 334A A6 - 40.35° \Z= 6.40A Cn 2 

produces a narrower tubule. In this case, the dimers are so steeply tilted that the tip-to-tip 

contacts appear to be broken (white asterisks). The tubule has no rotational symmetry; the 

fundamental (f+1) helical symmetry does not describe an inter-molecular contact. Only the 

near side of the lattice is shown and the underlying membrane has been masked out to 

emphasize differences in the protein coat. Atomic models of F-BAR domains were fit into 

the map as rigid bodies. B&C) Two tubules with the same apparent diameter and ~9.5 tip-

to-tip dimers around their circumference have resolvable differences in their helical 

symmetry. D) Central section along the longitudinal axis of the thinnest tubule shown in 'A', 

demonstrating that the density of the protein coat accommodates rigid atomic models of the 

F-BAR module that are tilted relative to the cylindrical axis, but whose radius of curvature is 

unchanged. E) View along the cylindrical axis of the thinner reconstruction shown in 'A' and 

T>'. 
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nm had ~9.5 tip-to-tip dimers around the circumference. In these cases, the long axis of the 

dimer was only slightly tilted relative to the cylindrical axis, such that a thread of tip-to-tip 

dimers wrapped around the tubule with a shallow, right-handed twist. Subtle variability in die 

tilt angle of the dimer still produced resolvable differences in the helical symmetry, and 

precluded averaging data from different tubules of the same apparent diameter (Fig. 2-10B 

versus 2-10C). In contrast, the smallest tubule observed was ~57 nm in diameter and 

accommodated only ~8 dimers around its circumference (Fig. 2-10A). In this case, fitting die 

dimers into the map suggested that each F-BAR had a left-handed tilt, relative to die 

cylindrical axis, and the tip-to-tip contacts apparentiy did not form (Fig. 2-10A, white 

asterisks). 

To test the hypodiesis that F-BARs rigidly maintain their intrinsic degree of 

curvature—even when bound to tubules with smaller diameters—we used the tubule radii 

and the pitch of the left-handed helical patii defined by the lateral interactions to calculate 

the helical arc length between die center of one dimer and its nearest lateral neighbors. The 

helical arc lengdis for all tiiree tubules—as measured from the reconstructed volumes—were 

calculated to be 114 + / - 1.5 A (see Appendix II). This indicates that F-BARs bound to the 

smaller tubules were not appreciably deformed and diat they overlapped dieir neighbors by 

the same length, despite being tilted relative to die cylindrical axis (Fig. 2-10A). Moreover, 

using a complete model of die protein coat, built from 128 copies of the CIP4 F-BAR 

domain structure, we observed that the density corresponding wiui die protein coat of the 

thinnest tubule could be entirely accounted for with rigid but tilted F-BAR modules, 

interacting via die same lateral contacts (Fig. 2-10D,E). Finally, abolishing the tip-to-tip 

interaction with die K166A mutation, which produces some tubules in vitro but not in living 

cells (Shimada et al., 2007), appears to bias die population distribution of tubule diameters 

34 



toward smaller diameters (Fig. 2-8A,B). This was consistent with the hypothesis that in the 

absence of the tip-to-tip constraint, F-BAR modules are more likely to tilt relative to the 

tubule axis and thus produce narrower tubules. In contrast, compromising the formation of 

the lateral contacts with the K66E mutation biased the population distribution of tubule 

diameters toward larger diameters (Fig. 2-8B). Taken together, these variations in coat 

structure, particularly in the angle between the dimer's long axis and the cylindrical axis, 

emphasized how plasticity in the lattice allows rigid dinners to accommodate a range of 

curvatures. To our knowledge, this is the first experimental demonstration of this previously 

predicted corollary of the scaffolding mechanism (Blood and Voth, 2006; Henne et al., 

2007). 

F-BAR DOMAINS BIND TO FLAT MEMBRANES VIA A SURFACE OTHER THAN 

THEIR CONCAVE FACE 

Raw micrographs of liposomes in the midst of being transformed into tubules by the 

F-BAR domain displayed regions of the membrane that were clearly decorated by bound 

protein molecules, but whose curvature had not yet appreciably changed (Fig. 2-2A, enlarged 

insets). Fortuitously, we were able to observe this intermediate state directly by cooling 

liposomes below the Tm of the most abundant lipid species used in our experiments 

(palmitoyl-oleyl-phosphatidylserine), which presumably increased membrane rigidity (Fig. 2-

11A,B). Both FBP17 and CIP4 F-BARs bound avidly to these rigid membranes, and formed 

2D arrays in which laterally-adjacent dimers aligned in almost perfect register while 

maintaining tip-to-tip interactions (Fig. 2-11, Fig. 2-12). Unexpectedly and regardless of 

whether crystals were negatively stained or vitrified, a dozen projection density maps 
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Fig. 2-11: (Ciyo)Electron Micrograph of Co-existing Protein-Filaments, Helical and 

2D Lattices; Wide Angle X-Ray Scatter of Lipid Samples; Calculated Fourier 

Transform, and K66E Mutant Phenotype. 

A) Cryo-Electron 

(micrograph of protein 

filaments formed by F-BAR 

| domains alongside a 2D 

lattice and a helical tubule, 

all formed by the same 

1 preparation of human CIP4 

residues 1-284. B) Wide-

angle X-ray diffractogram of 

hydrated liposomes 

equilibrated at 25°C (right 

side) and <4°C (left side). 

The synthetic lipid mixture used in this study appears to undergo a temperature-dependent 

phase transition/separation over this range, at approximately 4°C. The sharp ring at ~4.2A 

corresponds with the hexagonal packing of acyl chains. C) Phase error of unique reflections 

to 15A calculated for the projection terms of the 3D mtz dataset. The size of the boxes in 

the plot correspond to the phase error associated with each measurement (1, <8°; 2, <14°; 3, 

<20°; 4, <30°; 5, <40°; 6, <50°; 7, <80°; 8,<90°, where 90° is random). Box size decreases 

with increasing phase error. D) Negatively stained sample of the K66E mutant incubated 

with liposomes at RT, showing a mix of tubules, liposomes, and small strips of the 2D 

lattices. Bars 70 nm. 
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calculated from similar but not identical crystals lacked any evidence of the two-fold 

symmetry that would be observed if the dimers were bound symmetrically to the bilayer via 

their concave surface (Table 1, Fig. AII-2). The simplest explanation for this absence of a 

two-fold rotational symmetry was that the domains were bound to the membrane obliquely, 

such that their maximum curvature surface could not be imposed. 

To obtain an estimate for the orientation of the module bound to these rigid 

membranes, we used a reference library of evenly-spaced projection views of the FBP17 F-

BAR domain atomic model (Shimada et al., 2007) to search for the highest correlation with 

the calculated 2D projection image (Fig. 2-12C). A broad correlation peak was found for 

views in which the dimer's two-fold axis was rotated by ~60° with respect to the membrane 

normal. In Fig. 2-12C, ribbon diagrams of the domain in this orientation were superimposed 

over the projection image, as seen perpendicular to the membrane surface. In Fig. 2-12D, 

two dimers interacting tip-to-tip are displayed as viewed parallel with the membrane surface 

(or rotated by 90° with respect to the view in 'C). In this "side-lying" state, the lateral 

interactions seen in the helical lattice were unable to form, while the relatively flat 

membrane-binding surface was composed almost entirely of one monomer (another 

indication that the intrinsic rigidity of F-BAR dimers exceeds the rigidity of the membrane). 

A similar side-lying state was recently predicted for N-BAR domains in molecular dynamics 

simulations, in which a range of curvatures were semi-stable depending on the degree to 

which the maximum curvature surface was directly imposed on the membrane (Blood and 

Voth, 2006). 

Based on this orientation, our model predicted that the conserved residues K56, 

K/R104, K122, and K157 played an important role in mediating the electrostatic interaction 

with the membrane in this 'side-lying state' (Figs. 2-6, 2-7, & 2-12D). Point mutations of any 
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of these residues to amino acids of the opposite charge abolished 2D lattice formation (Fig. 

2-12E), and were observed to have decreased tubulation efficiencies in vitro (Fig. 2-6B). 

Moreover, mutating pairs of them (K122E + K157E or K56E + R104D) potently blocked 

tubulation in vitro with purified F-BAR domains (Fig. 2-8A) and in living cells with full-lengui 

GFP-FBP17 (Fig. 2-5C). The K56E + R104D mutation in full-length GFP-FBP17 in living 

cells was particularly striking, in that it apparendy abolished membrane binding entirely and 

resulted in a diffuse distribution of the associated GFP-signal (Fig. 2-5Q. 

These observations suggested that F-BAR proteins may form small clusters on 

membrane surfaces, ready to induce tubule formation (Fig. 2-12F). Importantly, in this side-

lying state the lateral interaction surfaces of die F-BAR domain were obscured, which 

prevented formation of the helical lattice. In support of this idea, the 2D-lattices converted 

to tubular structures upon warming. The easiest explanation for this behavior would be that 

the reduced rigidity and membrane-bending energy above the Tm enabled individual dimers 

to force the bilayer to adopt their intrinsic curvature locally. Consequendy, it was this 

transition to full imposition of die concave face that exposed die module's lateral interaction 

surfaces to neighboring dimers and allowed the helical coat to polymerize (Fig. 2-12F). This 

proposed mechanism for tubulation predicted that inhibiting lateral interactions would shift 

the equilibrium away from tubule generation and towards die formation of 2D arrays. 

Consistent with uiis prediction and our model for the lateral contacts (Fig. 2-5A), the 

mutants K66E and F276D shifted the equilibrium toward the formation of flat lattices even 

at temperatures >T m of the principal lipid component (Fig. 2-1 ID). 
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Fig. 2-12: F-BAR Modules Can Bind to Flat Membranes via a Surface Other Than 

Their Concave Face. 

A) Negatively-stained membranes that 

were pre-cooled before incubation with 

human FBP17 F-BAR domains. B) 

Higher magnification of the 2D F-BAR 

lattice; unit cell a - 33A b - 214A y = 

91.0° C) Projection view of the F-BAR 

domain, calculated from a 3D data set 

composed of images from a single-axis 

tilt series over ±40° (representative lattice 

lines in Fig. All-2, crystal statistics in 

Table 1). Ribbon diagrams of the domain 

are superimposed over the projection 

image, as seen from the orientation with the highest correlation perpendicular to the 

membrane surface. D) Two dimers interacting tip-to-tip viewed parallel with the membrane 

surface, or rotated by 90° with respect to the view in 'C. Residues likely to mediate 

membrane-binding in this side-lying state are shown as space-filing atoms from left-to-right: 

K122, R104, K56, and K157 (see also Figs. 2-6 & 2-7). E) Table of mutant propensity for 

forming flat lattices at different temperatures. F) Proposed model in which tubule formation 

proceeds through observable intermediate steps. F-BARs can bind to flat or curved bilayers, 

clustering in arrays by forming intermolecular interactions. Following the transition to high-

affinity binding of the dimer's concave surface, formation of the lateral contacts triggers the 

vectorial assembly of the helical coat and drives membrane invagination. 
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TABLE 1 2D CRYSTAL IMAGE STATISTCS 

Unit Cell Parameters (»=6)] 

91.0±0.6° 
Images in Single-Axis Tilt Series 
Tilt Range 
Range of Defocus 
Range of Astigmatism 
Number of Observations2 

Number of Fitted Structure Factors 
Overall weighted phase residual 

a = 32.8±0.4A 6 = 213.9±1.0A y = 

13 
±40° 
1550-3150 A 
29-600 A 
304 
128 
5.5° 

Internal Phase Residual Symmetry Comparisons 

PHASE RESID. COMPAR. 

vrs. other spots 
(90° random) 

PHASE RESID. SPOTS 

vrs. Theoretical 
(45° random) 

Target 
Residuals 

1 
2 
3b 
3a 
4b 
4a 
5b 
5a 
6 
7b 
7a 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

Pi 
p2 
pl2_b 
pl2 a 
pl21_b 
pl21 a 
cl2_b 
cl2_a 
p222 
p2221b 
p2221a 
p22121 
c222 
p4 
p422 
p4212 

P3 
p312 
p321 

P6 
p622 

22.7 
59.0 
58.4 
57.7 
59.6 
52.3 
58.4 
57.7 
61. 6 
61.4 
63.0 
66.0 
61.6 
54.3 
60.6 
72.2 
40.4 
49.3 
58.5 
61.2 
63.7 

66 
33 
16 
22 
16 
22 
16 
22 
71 
71 
71 
71 
71 
49 
102 
102 
20 
54 
62 
73 
149 

_ _ 

29.5 
36.4 
41.4 
33.8 
25.4 
36.4 
41.4 
29.5 
31.6 
34.8 
38.4 
29.5 
29.9 
29.5 
38.3 
— 

28.1 
39.3 
29.5 
37.8 

__ 

66 
4 

16 
4 

16 
4 

16 
66 
66 
66 
66 
66 
66 
66 
66 
— 
8 

24 
66 
66 

37.8 
27.4 
30.2 
27.4 
30.2 
27.4 
30.2 
31.4 
31.4 
31.4 
31.4 
31.4 
33.9 
29.7 
29.7 
25.9 
26.7 
28.2 
31.3 
28.5 

six independent crystals, five imaged after negative staining in 1% uranyl acetate, one imaged under cryo 
conditions. 2to 15 A resolution with z* = ±0.028 A"13 Phase residuals were calculated with the program 
ALLSPACE (Valpuesta et al., 1994). Similar results were obtained for all images of nominally untilted 
crystals in negative stain and cryo conditions, and for all images obtained within ±10° of tilt. 
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Chapter 3: DISCUSSION 

Visualising Membrane-Bound F-BARs: A Coat Composed of Shape-Based Scaffolds 

Efforts to refine the mechanistic understanding of membrane remodeling by the 

BAR domain superfamily have been enhanced by the ability to visualize directly how select 

F-BARs interact with the bilayer, thus providing insight into the relative contributions of the 

scaffolding, amphipathic wedge, and oligomerization components of protein-induced 

membrane curvature. Cryo-electron microscopy techniques are uniquely suited for this area 

of research because they enable membranes to be observed under hydrated, near native 

conditions while fully preserving the structure and arrangement of membrane-associated and 

membrane-embedded proteins. When combined with digital image analysis for the alignment 

and averaging of different 2D projections, 3D reconstructions can be built to extract and 

interpret macromolecular information that is inaccessible to other structural methods. In 

addition, combining lower resolution reconstructions derived from cryo-electron microscopy 

with computationally-docked high-resolution crystal/NMR structures can lead to richly 

detailed views that span the spectrum from atoms to sub-cellular membranous organelles. 

This work focused on the F-BAR modules found at the N-terminus of proteins from 

the Toca family (transducer of £dc42-dependent actin assembly), namely Toca-3/CIP4 and 

Toca-2/FBP17 (Aspenstrom, 1997; Ho et al., 2004), whose structures have been solved 

(Shimada et al., 2007). By fitting the atomic models of these F-BARs into 3D 

reconstructions of membrane tubules generated in vitro, it was possible to observe directly 

how F-BARs employ a combination of scaffolding and collective coat formation to induce 

curvature. Specifically, the scaffolding hypothesis predicts that there should be resolvable 

points of contact between the phospholipid headgroups and clusters of cationic residues 
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found on the concave face of the F-BAR module, and that these contacts will constrain the 

membrane to match the curvature of the domain. Essentially proving this model, the 

reconstructions clearly resolved how four clusters of Lys and Arg residues on the surface of 

the F-BAR dimer mediate the attractive forces that enable these rigid dimers to impose their 

own shape on the underlying bilayer. 

It was also observed that scaffolding by individual F-BARs was necessary but not 

sufficient, in that membrane tubule formation also required the collective assembly of F-

BARs into a helical coat. This unique coat was held together by a tip-to-tip interaction—like 

the contact predicted by Shimada et al. based on crystal structures (Shimada et al., 2007)—as 

well as extensive lateral interactions. The broad, overlapping lateral interaction appeared to 

involve ~50% of the dimer's lateral surface, including the entire C-terminal extended peptide 

(Henne et al., 2007; Shimada et al., 2007). Fitting of the near-atomic models into the cryo-

EM maps further suggested that specific contacts may have been important for the 

formation of the lateral interactions, including ionic and hydrophobic interactions between 

surface-exposed residues that have been conserved throughout the evolutionary history of 

the Toca proteins. A simple visual inspection of the twisted or "tilda" shape of the FCHo2 

F-BAR module (Henne et al., 2007) suggests that these F-BARs may polymerize into a coat 

through similar lateral interactions. More generally, it is possible that every module of the 

BAR domain superfamily can oligomerize into a coat with specific architecture, whether 

through tip-to-tip or lateral interactions, and that oligomerization may enable different 

members of the BAR domain superfamily to distinguish self-similar domains during 

membrane remodeling. For example, it has been observed that F-BAR and N-BAR proteins 

will dynamically segregate from each other on membrane surfaces during membrane 

remodeling (Fig. 2-1 and (Itoh and De Camilli, 2006). Such segregation may be determined 
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in part by the affinity of a given BAR for a specific degree of curvature, but stereotyped 

protein-protein interactions may further endow different BARs with the ability to recruit 

self-similar modules to form discrete membrane microdomains. 

Returning to die role of amphipathic "wedges", no such sequences have been 

identified within or flanking the F-BAR modules of Toca proteins, and there was no 

evidence at the resolution of the cryo-electron studies of amphipathic a-helices being 

intercalated into the outer leaflet of the bilayer. This is noteworthy, in that it has been largely 

assumed that the biological role of scaffolding domains, like BARs, is simply to stabilize an 

intrinsically-preferred degree of curvature that corresponds with the shape of module. In 

contrast, the intercalation of amphipathic a-helices has been considered as the primary 

driving force for inducing curvature de novo (Henne et al., 2007), as protein modules that do 

not appear to have a intrinsically-curved shape (e.g. Epsin and Sari proteins) can drive 

membrane curvature generation with amphipathic a-helices alone (Ford et al., 2002; Lee et 

al., 2005). 

The cryo-electron studies did suggest that the membrane-bending energy and die 

energy liberated by membrane-binding of F-BAR scaffolds are of the same order of 

magnitude, in that simple manipulations of the temperature or varying the lipid composition 

could separate membrane-binding from membrane-bending. For example, lowering the 

temperature below the Tm of the principal lipid species (palmitoyl-oleyl phosphatidyl-serine, 

POPS)—a manipulation which presumably increased the rigidity of die membrane— 

inhibited tubule formation. Yet, F-BAR modules of the Toca family still avidly bound to 

these chilled membranes and formed oligomeric arrays in which laterally-adjacent dimers 

aligned in almost perfect register while forming the tip-to-tip contacts. In this state, the 

modules were lying on their sides via different cationic residues and thus could not directly 
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impose their concave faces on the membrane or form the lateral interactions required for 

helical coat assembly. Warming these membranes above their Tm to decrease the membrane-

bending energy enabled the membrane to adopt the intrinsic curvature of the F-BAR's 

concave surface, and the flat membrane sheets were transformed into tubules. These 

observations further reinforced that F-BAR modules are more than simple curvature 

"sensors" or stabilizers; they readily bind to flat membranes and can generate curvature de 

novo. There is also no obvious justification for invoking membrane curvature-mediated 

attractive forces (Bruinsma and Pincus, 1996; Reynwar et al., 2007), since F-BAR dimers 

interact directly and extensively with each other on the surface of both flat and curved 

membranes. Perhaps F-BAR proteins have evolved to cluster together in limited oligomeric 

arrays on the surface of flat membranes, ready to induce membrane tubules in response to 

regulatory signals. 

The Shape of Things to Come 

As the control of membrane topology is fundamental to many essential cellular 

processes, there is a great need to study basic questions about the biology of the BAR 

domain superfamily and membrane remodeling in general. Remaining questions include the 

means by which cells regulate BAR domain function in time and space, targeting them to the 

appropriate membranes at the required times. For example, our current understanding of the 

mechanism of dimerization suggests that post-translational modifications or binding partners 

could inhibit the formation of the 6-helix bundle that defines the BAR fold. Similar 

mechanisms may be employed to regulate membrane-binding, as in the case of Arfaptin-2, 

where Rac or Arf binding to the concave surface likely blocks membrane binding. As noted 

earlier, BAR domains appear to non-specifically bind anionic lipid headgroups, and 
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synergistic partnerships with PH or PX domains are thought to provide specific targeting for 

some BAR proteins. However, in vitro analysis of lipid specificity may be inadequate evidence 

for this conclusion. Simple clusters of four or more K/R residues, like those found in BAR 

domains, have been shown in vivo to specifically interact with PI(3,4,5)P3 and PI(4,5)P2 (Heo 

et al., 2006). The non-specific interactions with anionic headgroups see in vitro with liposome 

preparations may not be comparable with in vivo conditions—especially given that 

electrostatics are sensitive to solution ionic strength and pH, equilibrium conditions in vitro 

which are unlikely to adequately mimic the cystol-membrane interface. Other means of 

regulation may come into play for each step of the higher-order oligomerization reactions, 

whether of helical coats or of discrete rings. Perhaps "capping" proteins will be discovered 

that prevent the formation of promiscuous coat interactions between BAR modules at 

inappropriate times. Finally, the developmental and physiological roles of most members of 

the BAR domain superfamily remain unknown. 

Additional future goals should include an elucidation of the functional relationships 

between members of the BAR domain superfamily and other membrane-associated proteins. 

While the data presented here is focused on the membrane-molding properties of select F-

BAR modules, like other branches of the BAR domain superfamily some F-BAR proteins 

have been shown to bind and modulate the function of the dynamin family of large GTPases 

(Itoh and De Camilli, 2006; Itoh et al., 2005). The first paper to describe the membrane-

deforming properties of F-BAR domains also showed that their ability to induce tubule 

invaginations of the plasma membrane is antagonized by dynamins (Itoh et al., 2005), 

presumably though dynamin-mediated twisting and fission of the tubules (see Appendix I 

and (Roux et al., 2006). Moreover, F-BAR proteins that interact with dynamin have also 

been shown to regulate actin nucleation (Aspenstrom, 1997; Carnahan and Gould, 2003; 
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Coyle et al., 2004; Greer, 2002; Ho et al., 2004; Lippincott and Li, 1998; Lippincott and Li, 

2000; Soderling et al., 2002), and there is strong evidence that the fissioning activity of 

dynamin requires an intact actin cytoskeleton (Itoh et al., 2005). Together, these 

observations hint at a fundamental but poorly understood regulatory network in the 

interplay between F-BAR protein-mediated 1) membrane invagination, 2) nucleation of actin 

fibers, and the fissioning of membrane tubules through 3) recruitment of dynamin-family 

GTPases (Itoh et al., 2005). 

The evidence for such a regulatory system can be summarized as follows. Analysis 

of the domain organization and protein-protein interactions for many F-BAR proteins 

reveals that in addition to dimerizing to form F-BAR modules, these proteins often bind 

Rho-family GTPases or posses regulatory GAP modules for these enzymes. For the F-BAR 

proteins studied here, including Toca-1, Toca-2/FBP17 and Toca-3/CIP4, key links have 

been shown to exist with the GTPase Cdc42 and with N-WASP (Coyle et al, 2004; Ho et al., 

2004; Kakimoto et al., 2006; Qualmann et al., 1999)—two critical and well-known players in 

Arp2/3-mediated actin nucleation at the membrane surface that also participate in 

endocytosis (Benesch et al., 2005; Garrett et al., 2000; Innocenti et al., 2005). Moreover, this 

subset of F-BAR proteins possess SH3 domains, which have been shown to bind to 

dynamins, synaptojanins, and members of the N-WASP/WAVE family (Itoh et al., 2005) as 

reviewed in (Itoh and De Camilli, 2006). These SH3-interactingproteins are known 

participants in either the remodeling of the actin-based cytoskeleton or the remodeling of 

the plasma membrane during endocytosis (Itoh and De Camilli, 2006); but whether each of 

these interactions is physiologically meaningful—and if they are meaningful whether there is 

a temporal sequence for these SH3 interactions that mirrors sequential endocytic stages— 

remains to be determined. 
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Insight into the mechanisms by -which F-BAR proteins partner with other proteins in 

order to accomplish physiological processes like endocytosis may be found through further 

structural examinations of these proteins in their membrane-associated states. For example, 

do F-BAR proteins like FBP17 stably co-assemble with dynamin GTPases around 

membrane tubules? Or does FBP17 only transiently recruit dynamin to nascent tubules, and 

polymerization of the dynamin coat displaces the FBP17 coat? Considering the large 

difference in diameter between FBP17- and dynamin-coated tubules—as determined by the 

curvature and architecture of their respective coats—it seems unlikely that both proteins will 

be bound to adjacent membrane surfaces. However, there is some evidence that this may be 

possible and could be a mechanism by which FBP17 modulates the twistase activity of the 

dynamin coat (see Fig. 3-1 and (Itoh et al., 2005). If this is the case, there may be an analogy 

between F-BAR proteins and other members of the BAR domain superfamily, as there is 

considerable evidence that the "classical" BAR proteins endophilin (Farsad et al, 2001) and 

amphiphysin (Takei et al., 1999) can co-assemble with dynamin-1 on the surface of 

membrane tubules (see Fig. 3-2). As suggested by our analyses of these hybrid tubules and 

work done in vitro by other labs (Hill et al., 2001), co-polymerization of dynamin with 

endophilin may inhibit dynamin-mediated fission (see Fig. 3-2). The physiological 

significance of this finding is unclear, however, in that endophilin appears to be, a required 

component of dynamin-dependent and clathrin-mediated endocytosis at synaptic terminals 

in vivo (Verstreken et al., 2002). 
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Fig. 3-1: Co-Assembly of FBP17 and Dynamin on Membrane Tubules 

FBP17 Dynamin Dynamin + FBP17 

.----• - . .aisss*. *»*"••' SMEW 
£ *C . . . . H "'• 

Liposomes incubated with full-length FBP17, with dynamin alone, or with both proteins. 

The presence of both was reported to induce the reorganization of the FBP17-only and 

dynamin-only coated tubules into narrower tubules decorated by a unique coat. Scale bar 

100 nm. Data generated by T. Itoh, figure adapted from (Itoh et al., 2005). 

If full-length FBP17 is added to liposomes before dynamin-1, and the reaction is monitored 

by sequential negative staining after the addition of dynamin-1, distinct morphologies can be 

observed over the course of approximately one hour. The left and middle panels shown 

above were prepared 5 & 10 minutes, respectively, after the addition of dynamin-1 and ImM 

GDP. The protein coat is disorganized and the underlying tubule shows regions of 

constriction versus relaxation, depending on the amount of bound protein. In the higher 

magnification middle panel there are no striations suggestive of a helical coat; but many large, 

globular protein particles can be seen decorating the outside edge of the tubule. After 1 

hour, as shown in the right panel, the tubules look essentially like dynamin-only tubules with 

a high concentration of free protein in the surrounding solution. These observations are 

consistent with the hypothesis that dynamin-1 can displace FBP17 from the tubule surface. 
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Fig. 3-2: Co-Assembly of EndophilinAl and Dynamin-1 on Membrane Tubules 

Some BAR superfamily proteins, like endophilin (Farsad et al., 2001) and amphiphysin 

(Takei et al., 1999), can stably co-assemble with dynamin-1 on membrane tubules. A) cryo-

electron micrograph of an endophilinAl-only coated membrane tubule. B) electron 

micrograph of a negatively stained dynamin-1-only coated membrane tubule. C, D) electron 

micrographs of negatively stained endophilinAl+dynamin-1 coated tubules after 1 hour in 

the absence of nucleotides. Most notably, the longitudinal spacing between adjacent repeats 

of the helical coat expands in the hybrid coat. These observations are consistent with die 

hypothesis that the presence of the endophilin BAR domain prevents the mechano-chemical 

coupling required for the "twistase" activity of the dynamin-only protein coat. Bar = 50 nm. 

As examination of Figs. 3-1 and 3-2 suggests, membrane-bound samples such as 

these must be improved before they will be amenable for 3D reconstruction. What is more, 

any structural investigations of the complexes formed between members of the BAR domain 

superfamily and eiuier dynamins or actin nucleating factors will have to be complimented 

with dynamic assays of their function in real time in vitro and in living cells. Some structural 

features may simply be artifacts of reconstitution with model membranes in solution 
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conditions that do not adequately mirror the interface between the cytoplasm and the inner 

leaflet of the plasma membrane. A thermodynamic and kinetic assessment of the binding 

affinities for all of the putative SH3 domain interactions could be particularly useful to 

determine whether a protein like FBP17 can stably interact with a dynamin when confronted 

with alternative binding partners like N-WASP. 

As suggested earlier, in addition to the implications for dynamin-dependent 

endocytosis, there is a great deal of interest and much to be learned about the interplay 

between the actin-based cytoskeleton and BAR-mediated membrane deformation. Factors 

that promote F-actin nucleation or stabilization appear to inhibit the accumulation of some 

BAR proteins on the membrane and tubulation in living cells, whereas pharmacological 

disruption of the actin-based cytoskeleton leads to dramatically enhanced tubulation by 

many members of the BAR domain superfamily (Itoh et al., 2005) & unpublished 

observations). In addition to being integral to dynamin-dependent and other modes of 

endocytosis, the link between BAR-domain driven membrane deformation and actin 

nucleation is fundamental to filopodia formation by I-BAR domain proteins and the 

structurally-distinct F-BAR domain of FNBP2 (unpublished observations). The link between 

membrane-deformation and actin nucleation is perhaps nowhere as dramatic as in the case 

of the formation of the cytokinetic actin ring and the invagination and ultimately fissioning 

of the plasma membrane during cell division. While uiere is not yet a clear example of a 

mammalian member of the BAR domain superfamily required for cytokinesis, in the model 

organism S.pombe two independent actin nucleation pathways, one dependent on the Arp2/3 

complex and another involving the formin Cdcl2p, both appear to be triggered by an F-

BAR protein, Cdcl5p, which directly links these actin-based structures to the cell membrane 

through its F-BAR domain (Carnahan and Gould, 2003). 
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Fig. 3-3: Cell Division in S.pombe Requires the F-BAR Protein Cdcl5p 

"* Image adapted from (Kanbe, 1989) of a thin section 

electron micrograph of a freeze-substituted S.pombe 

cell in the process of fissioning. Bar = 1 fim. The 

diameter of the membrane invaginations ranges 

from 50-80 nm (within the range of known BAR 

and F-BAR structures). Schematic representations 

of where the F-BAR domains of Cdcl5p may 

localize have been overlaid in red. Small molecule 

inhibitors of the interaction between the F-BAR 

domain and the plasma membrane could be novel 

cell division inhibitors. 

Are BAR Superfamily Domains "Draggable" Targets? 

Seeking to understand how one protein, Cdcl5p, simultaneously orchestrates the 

regulated assembly of a mechanically-intricate device like the cytokinetic actin ring and 

couples its constriction to the invagination and fissioning of the parent membrane is a 

fundamental pursuit of basic biology. What is more, if malignant cells utilize any members of 

the BAR domain superfamily during cell division, such investigations could lead to new 

therapeutic options in the fight against cancer. More broadly, pharmacological manipulation 

of members of the BAR domain superfamily represents new and completely uncharted 

terrain for cell biology and medicinal chemistry. The data presented in this thesis concerning 

the discrete and specific regions of electrostatic interaction between some F-BAR domains 

and their target membranes suggests that these contacts should be amenable to small-

54 



molecule manipulation, and recent work in diverse fields suggests that this strategy has 

clinical merit. Beyond cell division, some malignancies form cellular extensions that enable 

metastatic migration and invasion—podosomes or so-called "invadopodia" (Iinder, 2007)— 

and at least one BAR protein, ASAP1, is required for invadopodia formation (Bharti et al., 

2007). Metabolically, new work has shown that a complex formed between die VPS9 

domain-containing protein Gapex-5 and the F-BAR protein CIP4 is essential for insulin-

stimulated GLUT4 translocation (Hou and Pessin, 2007; Lodhi et al., 2007), and that CIP4 

KG* animals are unable to internalize GLUT4 from the plasma membrane (unpublished 

observations of S. Corey, personal communication). Small molecule inhibition of CIP4-

mediated internalization of GLUT4 is therefore a novel strategy for treating insulin 

resistance and diabetes mellitus. Finally, testicular Sertoli cells contain tubular invaginations 

of the plasma membrane that transiently form at points of contact with maturing spermatids. 

Recent work has shown that both amphiphysin-1 and dynamin-2 mediate formation of these 

tubules and are required for spermatid maturation and release, hinting that long-sought-after 

male contraceptives could be found in the search for specific BAR domain inhibitors 

(Kusumi et al., 2007). 

Concluding Remarks 

In conclusion, the experiments presented here are important first steps toward the 

structural exploration of membrane remodeling. Future efforts to elucidate the biology of 

die BAR domain superfamily and to develop pharmacological probes that modulate their 

function for research and therapy will benefit from the advancements reported here. 
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Appendix I: GTP-Dependent Twisting of Dynamin 

Implicates Constriction and Tension in Membrane Fission 

This appendix is adapted from Roux, A., Uyhazi, K., Frost, A., and De Camilli, P. (2006). 

Nature 441, 528-531. A.R. and P.D.C. conceived the project, designed the experiments and 

evaluated the results. A.R performed the experiments alone, with the exception of the giant-

liposome assay (K.U. and A.R.), and electron microscopy (A.F. and A.R). A.R and P.D.C. 

wrote the original paper. 
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Dynamin is a GTPase -which genetic studies have strongly implicated in the fission 

reaction of endocytosis (De Camilli et al., 1995; Hinshaw, 2000; Sever et al., 2000). It is a 

member of a family of GTPases that participate in membrane fission by oligomerizing into 

spirals (Hinshaw and Schmid, 1995; Ingerman et al., 2005; Takei et al., 1995) around sites of 

membrane constriction (Takei et al., 1995). Dynamin was initially proposed to act as a 

mechanoenzyme that constricts and cuts the neck of nascent vesicles in a GTP-hydrolysis-

dependent reaction (Hinshaw and Schmid, 1995; Takei et al., 1995), but subsequent studies 

have suggested alternative models (Sever et al., 1999; Stowell et al., 1999). To directly test 

these models of dynamin function, Aurelien Roux developed microscopy assays to monitor 

the real-time effect of nucleotides on dynamin coated lipid tubules. Addition of GTP, but 

not of GDP or GTPyS, to the tubules resulted in their twisting, as visualized by light and 

electron microscopy, suggesting that the turns of the dynamin helix undergo a rotary 

movement relative to each other during GTP hydrolysis. Rotation of dynamin around the 

longitudinal axis of the tubules was confirmed by the movement of streptavidin beads 

attached to biotin-dynamin coated tubules. Twisting activity produced a longitudinal 

contraction of the tubules that was released by tubule break and resulted in supercoiling. 

These findings strongly support a mechanoenzyme activity of dynamin in membrane fission, 

although they demonstrate that ring constriction triggered by GTP is not sufficient for 

fission. We suggest that the numerous interactors of dynamin (Praefcke and McMahon, 

2004; Slepnev and De Camilli, 2000; Soulet et al., 2005), including components of the actin 

cytoskeleton (Cao et al., 2003; Itoh et al., 2005; Qualmann et al., 2000), may cooperate with 

the constricting and twisting activity of dynamin to produce a force leading to fission. 
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Purified dynamin was shown by negative staining electron microscopy to tubulate 

lipid membranes and to constrict and fragment them into small vesicles upon GTP 

hydrolysis (Sweitzer and Hinshaw, 1998; Takei et al., 1999). Subsequently, however, when 

the products of these incubations were analyzed by cryo-EM, GTP-dependent constriction, 

but not fission, was observed (Danino et al., 2004). It was proposed that the fragmentation 

observed in some studies resulted from mechanical stress of the constricted tubules during 

the manipulations involved in sample preparation. A major limitation of EM methods for 

the analysis of dynamin action in cell-free systems is that they rely on static observations. To 

overcome this limitation, we developed a light microscopy-based in vitro system that allows 

dynamic monitoring of dynamin dependent tubulation and fission of lipid membranes. 

We adapted a previously described method for the analysis of polymer-dependent 

membrane deformation (Tsafrir et al., 2003). A drop of lipids is first deposited and dried on 

a coverslip, which is then mounted with thin spacers on a glass slide to create a 

microchamber. Addition of buffers produces a reorganization of the lipids into stacks of flat 

membrane bilayers (see Appendix II) that we used as templates for membrane tubulation by 

purified dynamin. As lipids, either a Brain Polar Lipids (BPL) fraction or a Synthetic Lipids 

Mixture (SLM) mimicking BPL (see see Appendix II), both supplemented with 5% m/m 

PtdIns(4,5)P 2, were used. Injection of purified brain dynamin (0.4-1 mg/ml in the absence of 

nucleotides) into the chamber induced the growth of narrow tubules which could be 

observed by Differential Interference Contrast (DIQ microscopy. Many of the tubules 

started to grow perpendicularly to die membrane plane, then collapsed on it, thus forming a 

two-dimensional network on the most superficial membrane sheet (Fig.lA, arrowheads). 

Other tubules grew at the very edge, and away from the sheets (Fig, 1A and 1C). Tubulation 

was less efficient with a decrease in the PS/PC ratio in the lipid mixture (not shown) and 
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Fig. AI-1: Generation and growth of dynamin-coated membrane tubules. 

A) DIC microscopy images showing 

the effect of dynamin (lmg/ml) on 

membrane sheets composed of 

SLM (see Materials and Methods). 

200 sees after dynamin addition, a 

two-dimensional network of tubules 

is visible (red arrowheads). B) Same 

as in A but without PtdIns(4,5)P2. 

merged Blue arrows present in both A and 

B point to lipid sheet deformations 

produced by the glycerol present in 

the dynamin solution. Q Time lapse sequence showing growth of a single dynamin-coated 

tubule. D) Double fluorescence of a tubule network generated by Alexa 488 dynamin (A-488 

Dyn) on membrane sheets (SLM) doped with a fluorescent phospholipid (Rhod-PE). E) 

Fluorescence and DIC microscopy images of a tubule generated by die sequential addition 

(approximately 15 sec interval) of Alexa 488 dynamin and unlabeled dynamin. Fluorescence 

marks the older portions of the coat, s, seconds. Scale bars, 10 \im in A, B and D; 2 Jim in Q 

5 nm in E. 
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required presence of PtdIns(4,5)P2 (compare Fig. 1A -with Fig. IB). Tubules grew at the rate 

of approx 5-7 Jim/min (Fig. 1Q and up to tens of micrometers (Fig. 1A), eventually forming 

an apparent network (Fig. ID). Fluorescence experiments involving lipids doped with 

Rhodamine-dioleylPhosphatidylEdianolamine (Rhod-PE) and Alexa 488-conjugated 

dynamin confirmed that the linear structures visible by DIC microscopy were indeed 

dynamin coated membrane tubules (Fig ID). 

Sequential injection of Alexa 488-dynamin and unlabeled dynamin revealed lack of 

random molecular intermixing within the coat. When fluorescent dynamin was injected first, 

most fluorescent lipid segments were found at the tubule tips, suggesting that tubules grew 

from their base (Fig. IE). However, several fluorescent segments bracketed by unlabeled 

segments were also seen (Fig. IE), possibly reflecting polymerization of unlabeled dynamin 

from points of discontinuity within the dynamin coat. 

We next investigated die effect of nucleotide on the tubules. 1 mM GTP led to a 

rapid reorganization of the tubule network. Most tubules first became straight (within 

seconds), suggesting contraction and longitudinal stretching between nodes of the network. 

Then, they broke and collapsed, leading to complete disruption (within 10-20 sees) of the 

network and to isolated clusters of membranes (Fig. 2A). GDP injection caused only a light 

contraction of the network, but no fission (Fig 2B). GTPyS, a non-hydrolysable analog of 

GTP, did not produce either contraction or fission, and stimulated the growth of new tubes 

(Fig. 2B). Similar results were obtained using Alexa 488-dynamin and Rhod-PE labeled 

lipids. Both fluorescent dyes underwent die same changes detected by DIC (Fig. 2C), thus 

confirming that lipid tubule disruption by GTP is not the result of dynamin dissociation 

from the lipids in the presence of diis nucleotide. 
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Fig. AI-2: Effect of guanylnucleotides on die dynamin coated lipid tubules. 

A) Time lapse series (DIC microscopy) showing that 1 mM GTP induces rapid (within sees) 

fragmentation of the tubule 

network. B), No fragmentation is 

observed 150 sees after the 

addition of 1 mM GTPyS and 1 

mM GDP, respectively. Q Double 

fluorescence of dynamin (A-488 

Dyn) coated tubules on Rhod-PE 

labeled membrane sheets at 0 and 

50 sees after ImM GTP injection, 

showing that dynamin does not 

dissociate from the lipid 

fragments. D, E) DIC microscopy 
0 1 2 3 
N of breaks/tubule 

0 1 3 3 
N of breaks/tubule 

time-lapse sequences of two dynamin-coated membrane tubule upon exposure to ImM 

GTP. In D, the tubule became straight before a single break (blue arrow), suggesting the 

onset of tension between anchoring points at both ends of the tubule. In E, the tubule 

retracted. Observation of this tubule before GTP addition revealed motion of one of its two 

ends (blue arrow), indicating no anchorage at this end. Red arrows in D and E point to focal 

densities which appear along the tubules as they contract (D) or retract (E). F) Statistics of 

breaks for tubules whose contraction was constrained or non constrained by the apparent 

presence of anchorage points at both ends. For A and B, a SLM containing 50% POPS and 

15 % POPC was used. In all other cases, the standard SLM was used, s, seconds. Scale bars, 

10 flm in a-c; 5 fim in D and E. 
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To gain a better insight into the sequence of events leading to tubule contraction and 

break, the behavior of many individual tubules following GTP addition was examined. 

Increase in longitudinal tension, as indicated by the acquisition of a tight rectilinear course 

(Fig. 2A and 2D), often correlated with the appearance of densities along the tubule 

(arrowheads in Fig. 2D, see discussion below) and ended with a single break that released 

tension and was followed by the retraction of the two stumps (Fig. 2D). In contrast, when 

tubules seemed to be free from anchorage points other than their origin, they retracted 

without any break (Fig. 2E). As revealed by a morphometric analysis, almost no exception 

to this rule was observed (Fig. 2F). Similar results were observed by fluorescence 

microscopy of Rhod-PE and Alexa 488-dynamin labeled tubules (not shown), thus proving 

that breaks involve both the lipid tubules and their dynamin coat. These findings indicate 

that the constricting activity of dynamin is insufficient to achieve fission and that, at least 

under these in vitro conditions, longitudinal tension must come into play. They also 

demonstrate that dynamin can generate such tension, possibly by a contracting activity of the 

coat, which is antagonized by anchorage points at the two ends of the tubule. In fact, cryo-

EM analysis (Chen et al., 2004; Danino et al., 2004; Zhang and Hinshaw, 2001) of lipid 

tubules coated by dynamin in the dilated state and in the constricted state revealed that 

constriction also results in a reduction of the helical pitch (from 13 nm to 9 nm (Danino et 

al., 2004)), thus producing an approximately 30% shortening of the dynamin helix. One 

could expect that, if tubules were anchored at multiple sites along their length, multiple 

fission events would occur. 

To address this question, we investigated the effect of dynamin on preformed 

tubules with multiple anchorage points to a substrate, using a different in vitro assay. Lipid 

tubules were generated by depositing giant liposomes doped with Rhod-PE onto a network 
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of microtubules in the presence of kinesin and ATP (Fig. 3A, left panel), as previously 

described (Roux et al., 2002). The medium was then replaced by an ATP-free buffer to lock 

kinesin in the microtubule-bound state, thus leading to many attachment sites of the lipid 

tubules onto microtubules. Dynamin, or Alexa 488 dynamin, was then added. As seen by 

fluorescence, dynamin did associate with the lipid tubules, and, consistent with its 

microtubule binding properties (Shpetner and Vallee, 1989), also with microtubules (Fig. 3A, 

middle panels). Under these conditions, dynamin did not produce fission events, although it 

appeared to produce tubule constriction with focal swelling (data not shown and Fig. 3A, 

middle panels). This constriction is in agreement with the smaller diameters of dynamin 

coated tubules (about 20 nm (Chen et al., 2004)) relative to kinesin-pulled tubules (in die 

range of 40 nm or more) (Roux et al., 2002). Upon GTP addition, however, lipid tubules 

were rapidly cut into small fragments (Fig. 3A, right panels, Fig. 3B), some of which floated 

away into the medium, possibly reflecting the slow reversibility of kinesin-microtubule 

attachment sites (Fig. 3B, arrowheads). Dynamin, as expected (Maeda et al., 1992), 

dissociated from microtubules although it remained associated with die lipid fragments (Fig. 

3A, center and right panel). Hence, when tubules have multiple attachment sites to a 

substrate (microtubules in this case), the activity of dynamin produce multiple fission events. 

While longitudinal contraction may explain fragmentation of anchored lipid tubules, 

it is not sufficient to account for the significant contraction/retraction observed for free 

tubules in the membrane sheet assay (see for example Fig. 2E). A potential mechanism for 

such a dramatic contraction came from further observation of tubule dynamics upon GTP 

addition. In several cases, dynamin coated tubules formed loops (Fig. 4A). Upon GTP 

addition, these loops underwent twisting to form supercoiled structures (plectonemes, red 

arrows, Fig 4A and Fig. 5 electron micrographs), suggesting an underlying twisting of the 
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Fig. AI-3: Dynamin dependent fission of membrane tubules generated by kinesin on 

a microtubule network. « Before Dynamin injection -•» After Dyn. Inj. •*• After GTP inj. 

A, Fluorescence images of 

membrane tubules which 

were generated from giant 

liposomes [brain polar 

lipids doped with Rhod-PE 

plus 5% PtdIns(4,5)P2] on 

a network of microtubules in the presence of kinesin. The area indicated by a red box is 

shown at higher magnification in the middle panels after the wash-out of ATP and addition 

of Alexa 488-dynamin (1 mg/ml). Tubule constriction with focal swelling, but no fission, can 

be observed. Note that fluorescent dynamin (A-488 Dyn) is associated both with membrane 

tubules and with microtubules (red arrows), consistent with its microtubule binding 

properties. Upon addition of ImM GTP (right panels), tubules, which were anchored at 

multiple points on the microtubules by kinesin, underwent fragmentation into small vesicles. 

B) Fluorescent images showing a lipid tubule before (left panel) and after (center panel) the 

addition of GTP. The right panel show a merge of the two fields in pseudocolors. In the 

middle panel, 20 frames from 60 to 100 sees were superimposed to show diffusion of some 

lipid fragments (red arrowheads) away from the microtubules and thus proving the 

occurrence of fission. In this superimposition of many images (50 msec exposure, 2 sec time 

lapse), only some lipid fragments were visualized because, due to their rapid motility, only 

some of them could be captured by the time lapse. The diffusion of some of the lipid 

particles away from microtubules most likely reflects a slow dissociation of kinesin from 

microtubules. Bars = 5 Jim. 
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dynamin coat itself. Supercoiling would explain retraction of free tubules and dense spots 

appearing on tubules during their contraction and/or retraction (red arrowheads in Fig. 2D 

and E) may represent supercoils. We explored the possibility of monitoring directly the 

twisting activity of the tubules by appending to them a reference point detectable by video-

microscopy. Partial rotations of each turn of the helix over the adjacent one will result in 

complete rotations when compounded over many turns along the tubule. Tubules were 

generated with biotinylated dynamin (see Appendix II) in the presence of streptavidin-coated 

latex beads (260 nm in diameter). DIC microscopy, followed by computational analysis, was 

then used to track the motility of beads on tubules that connected the lipid sheets to an 

anchoring point on the glass slide. No motility was observed before GTP addition. GTP, 

after a lag phase explained at least in part by its diffusion into the microchamber, triggered 

both tubule tension and a striking oscillatory movement of the beads, strongly suggestive of 

rotations around the longitudinal axis of the tubule (Fig. 4B,Q. As many as 30 rotations 

were observed for an individual bead, with die speed of rotation decreasing with the number 

of rotations until the break occurred (Fig 4C,D). Furdiermore, the average maximal speed 

of bead rotation increased with the GTP concentration (Fig. 4C,E). 

These results show that dynamin, during GTP hydrolysis, generates a rotational force 

on lipid tubules, which in turn leads to tubules contraction (and supercoiling), and thus to 

fission if contraction is antagonized by opposing forces. They suggest that the dynamin 

helix acts as a spiral undergoing further torsion upon GTP hydrolysis. In support of this 

possibility, electron microscopy of dynamin coated tubules that had been reacted with GTP 

in suspension and subsequently applied to EM grids, revealed supercoils (Fig. 4F and Fig. 5). 

This result is consistent the "convoluted" appearance previously noted for tubules prepared 

in similar conditions in another study (Danino et al., 2004). All these supercoils had "plus" 
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configuration (Fig. 4F), as expected from a right-handed twist (Charvin et al., 2003). Since 

dynamin is a right-handed helix (Zhang and Hinshaw, 2001), a right-handed twist will further 

coil the helix (see Fig. 4G). Increased coiling is consistent with previous observations made 

by cryo-electron microscopy: i) snapshots of dynamin 1 in the constricted state reveals fewer 

repeating units per turn than dynamin in the dilated state (Chen et al., 2004) and ii) both the 

inner diameter and the pitch of the helix decrease with GTP hydrolysis (Danino et al., 2004). 

The increase in the pitch of the dynamin helix observed upon GTP hydrolysis in one study 

(Stowell et al., 1999), may reflect the rigidity of the lipid nanotubes used as the lipid 

templates in diat study. Under these conditions, the resistance to twisting opposed by the 

template may induce a distortion of the dynamin helix. 
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+ -

supercoil type 

Fig. AI-4: Twisting activity of the 

dynamin coat. 

A, Time-lapse images (DIC 

microscopy) showing that loops of 

dynamin coated tubules undergo 

supercoiling (red arrowheads) upon the 

addition of GTP (1 mM). B) Effect of 

GTP (200 flM) on tubules generated by 

biotinylated dynamin in the presence of 

streptavidin-coated latex beads. The 

time-lapse shows that the addition of 

the nucleotide triggers rotation of a 
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bead around die tubule. C) Tracking of the movement of single beads in experiments 

carried out with two different GTP concentrations. The displacement shown represents 

movements perpendicular to the main axis of the tubules. Green arrowheads show GTP 

addition. D) Instantaneous angular speed (rotations/second) of one of the two beads 

tracked in C (1 mM experiment) versus the number (N) of rotations. E) Average maximal 

angular speed of the beads as a function of the GTP concentration. F) Electron microscopy 

image of a dynamin-coated tubule incubated with GTP (200 (iM) prior to absorption onto 

an EM grid. Note its "plus" supercoiled structure (plectoneme), consistent with the right-

handed coil of a right handed helix. Morphometric analysis demonstrated that the majority 

of plectonemes have a plus configuration. G) Schematic diagram of the effect of GTP on 

dynamin coated tubules. After GTP addition, the dynamin helix undergoes an increase in 

torsion leading to straighteneing of the tubule and supercoiling until a break occurs allowing 

more supercoiling. H) Proposed synergy between the twisting action of dynamin, which 

participates in constriction, and factors that promote the movement of the nascent vesicle 

away from the plasma membrane, which produce tension, in the fission of an endocytic 

vesicle. Scale bars, 10 \im in A; 1 fJim in B; 200 nm in F. 
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Fig. AI-5: EM Evidence of the Twisting Activity of the Dynamin Coat 

Electron micrographs of dynamin-coated tubules incubated with GTP (200 jlM) for 2 

minutes prior to absorption onto EM grids and staining with uranyl formate. These images 

are direct visualizations of the schematic diagrams shown in Fig 4G of the effect of GTP on 

dynamin coated tubules. After GTP addition, the dynamin helix undergoes an increase in 

torsion leading to supercoiling. 

Collectively, the findings reported here provide strong support to the hypothesis that 

dynamin, and most likely other dynamin-like proteins implicated in membrane fission, 

function as mechanoenzymes. They demonstrate that the GTPase activity of polymerized 

dynamin spirals produce a twisting activity that cooperates with conformational changes in 

dynamin to constrict the underlying membrane tubule. In the case of the lipid tubules used 

here as a model system, this twisting activity also contributes to a longitudinal contraction 

that has been helpful to establish the requirement of membrane tension in dynamin-

mediated fission. In the case of a nascent endocytic vesicle, where dynamin may form only 

a very short spiral, other factors may participate in the induction of tension along the axis of 

the tubular neck of the vesicle (Fig. 4H). Strong biochemical (Cao et al., 2003; Itoh et al., 
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2005; Qualmann et al., 2000) and functional (Itoh et al., 2005; Lee and De Camilli, 2002; 

Merrifield et al., 2005) evidence has shown that the actin cytoskeleton acts together with 

dynamin in endocytic fission. Actin-based mechanisms, which were proposed to propel 

nascent endocytic vesicles away from the plasma membrane, may provide such tension 

(Kaksonen et al., 2005; Merrifield et al., 2005). We suggest that a cooperation of 

mechanisms which mediate constriction with mechanisms that create membrane tension 

may represent a general phenomenon in membrane fission (Roux et al., 2005), even though 

the players implicated in the generation of constriction and tension may differ in different 

contexts. 
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Appendix II: Experimental Methods and Materials 

F-BAR Domain Purification and Mutagenesis 

cDNA fragments encoding human FBP17 (1-303) and CIP4 (1-284) were subcloned 

into pGEX6P-l (Amersham Biosciences, Piscataway, NJ) with codons for six additional 

histidine residues inserted at the C-terminus via PCR. Fusion proteins were bacterially 

expressed and purified first on a nickel affinity resin and then on a GST-glutathione affinity 

column. The GST tag was cleaved using PreScission protease (Amersham Biosciences, 

Piscataway, NJ), followed by gel filtration chromatography (Superdex 200 10/300 GL; 

Amersham Pharmacia Biosciences) in buffer containing (350 mM NaCl/250mM 

Imidazole/20mM HEPES/1 mM DTT, pH 7.4). Aliquots of 1-3 mg/ml protein were 

stored at -80° C. Site-directed mutation of select residues was performed via the quick-

change protocol (Stratagene, La Jolla, CA). 

Dynamin-1 Purification and Labeling 

Native dynamins were purified from rat brain, and recombinant dynamin-1 was 

purified from baculovirus-infected SF9 cells, using the GST-tagged SH3 domain of rat 

amphiphysin-2 as an affinity ligand. Conjugation of dynamin to Alexa 488 or biotin was 

carried out by standard procedures. Unlabelled and labelled dynamins were dialysed against 

storage buffer (20mM HEPES, pH 7.4, lOOmM NaCl, 50% (vol./vol.) glycerol), aliquoted 

and stored at minus 80°C. 
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Liposome Preparation, Membrane Binding and Tubulation in vitro 

Synthetic lipids in chloroform were purchased from Avanti Polar Lipids and 

combined in mixtures composed of 85% mol./mol. phospholipids and 15% mol./mol. 

cholesterol. Lipids were dried under a stream of argon with gentle vortexing in glass vials, 

redissolved in absolute hexane, dried with argon again, and dessicated under high-vacuum 

for one hour. Lipids were then hydrated with buffer (50mM KCl/lOmM HEPES/lmM 

DTT, pH 7.4), sonicated, subjected to 10 cycles of freeze-thaw, and used immediately or 

stored in aliquots at minus 80° C (see Fig. AII-1). 

All of the results reported here for F-BAR domains, except for the mutant analysis 

reported below, were obtained using a synthetic phospholipid mixture that included 10% 

brain phosphatidyl-ethanolamine (PE), 5% liver phospho-inositides (PI), 50%) palmitoyl-

oleyl phosphatidyl-serine (POPS), and 35% palmitoyl-oleyl phosphatidyl-choline (POPQ. 

Similar results, although not explicitly presented here, were also seen with synthetic 

phospholipid mixtures that included 20-30% brain phosphatidylethanolamine (PE), 5% liver 

phosphoinositides (PI), 30-40% palmitoyl-oleyl phosphatidylserine (POPS), and 35% 

palmitoyl-oleyl phosphatidylcholine (POPQ. Finally, some of the mutants studied here 

(F117D in particular) only formed tubes when using liposomes composed of pure 16:0/18:1 

phosphatidyl-serine (POPS). Therefore, quantitative comparisons of wild type with mutant 

proteins were performed after incubation with equivalent amounts of pure POPS (see 

below). 

Liposomes (0.1 — 0.25 mg/ml) were equilibrated at 30°C (tubules) or 2°C (2D 

crystals) for 1 hour before adding F-BAR domains at a lipid-to-protein ratio of 2:1 

mass/mass. The ability of the F-BAR domain to bind phospholipids is sensitive to salt 

concentration, hence protein aliquots in high salt buffers were diluted >5-fold into ddH20, 
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or protein+liposome mixtures 'were dialyzed against a low salt buffer overnight (50mM 

KCl/lOmM H E P E S / l m M DTT, p H 7.4) with similar results. Well-ordered helical lattices 

were obtained after a period of slow cooling following tubule formation at 30°C. An 

annealing curve programmed into a PCR machine cooled the sample by 5 degrees per hour, 

each followed by 5 minutes of 1 degree warming, such that after 7 hours the sample was at 

2°C. This annealing procedure was only used for generating samples for cryo(electron) 

imaging and structure determination, and was shown to have negligible effects on the 

morphology of protein-free liposomes (Figure AII-1). In contrast, obtaining 2D lattices with 

the wild-type protein required that the lipids never be warmer than 4°C after exposure to the 

protein. Comparisons of mutant and wild type protein function were performed with 

protein samples that were purified on the same day in the same buffers and matched in 

concentration as assayed by SDS-PAGE and Bradford assays. To avoid bias, quantification 

of tubule forming ability was measured while blinded to the identity of the protein. Tubule 

number and length were measured with N I H ImageJ (http://rsb.info.nih.gov/ij/). 

For experiments using dynamin and dynamin+BAR proteins, two lipid preparations 

were used: 95% brain polar lipids (BPL) plus 5%mol./mol. phosphatidylinositol-4,5-

bisphosphate (Ptdlns^P^, and a synthetic lipid mixture (SLM) composed of 81%mol./mol. 

phospholipids (30% brain phosphatidylethanolamine (PE), 5% liver phosphoinositides (PI), 

30% palmitoyl-oleyl phosphatidylserine (POPS), and 35% palmitoyl-oleyl 

phosphatidylcholine (POPC)), 14%mol./mol. cholesterol, and 5%mol./mol. PtdIns4^P2. 
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Figure AIM: Protein-Free Liposome Controls 

Protein-Free Liposomes at Room Temperature 

' * # i 
•£H& '* " '* A* « ^ SIC ' I 

Protein-Free Liposomes Following Temperature Annealing 

• » 

Low magnification images of a typical liposome preparation at RT, prepared by sonication 

and repeated cycles of freeze-thaw (top panel). Low magnification images of the same lipid 

preparation subjected to the temperature annealing protocol described here. Occasionally, 

tubular structures could be seen, but they bore no resemblance to F-BAR induced tubules 

(bottom panel). 
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Election Microscopy 

2D and helical arrays were screened and where applicable, single-axis tilt series were 

acquired, using 1% uranyl acetate-stained samples and a Philips Tecnai 12 microscope 

operating at 120 kV. To vitrify samples for cryomicroscopy, holey carbon grids were glow 

discharged in the presence of air, sample was applied to the grid in a cold room, and excess 

liquid was blotted off for 4 sec before plunging into liquid ethane. Images were taken at a 

sample temperature of —172°C under low-dose conditions on a Philips Tecnai F20 

microscope equipped with a field emission gun and operating at an accelerating voltage of 

160-200 kV, nominal magnifications of 29-50kx, and defocus values of-1,500 to -22,000 A. 

Images were recorded on either Kodak SO-163 film and developed for 12 min in a full-

strength Kodak D19 developer or on a GATAN 4kx4k CCD. The parameters for correction 

of the contrast transfer function were estimated with ACE as shown in Figure S2C (Mallick 

et al., 2005). 

2D Crystal Image Processing 

Images of 2D crystals were corrected for lattice distortions, effects of the contrast 

transfer function, and astigmatism using the MRC image-processing software package 

(Crowther et al., 1996). Two rounds of "unbending" with a Gaussian-profile maskhole were 

employed, with reference areas of 10% and 5% of total pixel area used in the first and 

second rounds, respectively. Due to the marked asymmetry of the unit cell, quantifying the 

anisotropy in the auto-correlation peak improved the cross-correlation map. The program 

ALLSPACE was used to determine whether any images of negatively stained or vitrified 

crystals possessed a two-dimensional plane group symmetry (Valpuesta et al., 1994). No 

symmetry could be found in any of the images, and attempts to average data from multiple 
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images in reciprocal space yielded unacceptable phase residuals. Consequently, a single-axis 

tilt series including 13 images from ±40° of a single negatively stained crystal was acquired. 

For the images of the more highly tilted crystals, the tilt angle calculated with the program 

EMTILT was within <1° of the nominal goniometer settings (Shaw and Hills, 1981). 

Applying the proper tilt geometry, all 13 images were brought to their common phase origin, 

merged and subjected to an additional round of origin and geometry refinement against the 

preliminary 3D-model obtained after fitting of the lattice lines. After fitting a final set of 

lattice lines (Figure AII-2) the projection structure was then calculated out of the 3D-data set 

using a B-factorofB=-5000A"2. 

Figure AII-2: Representative Lattice Lines from 2D Crystal Tilt-Series 
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Amplitude and phase 

variations along 

representative lattice 

lines after merging 

data from tilted 

crystals in the plane 

group p i , including all 

reflections with a 

signal-to-noise ratio of 

>4. The continuous curves were computed by the program LATLINE (Crowther et al., 

1996). The horizontal z* axis is the distance from the origin of the lattice line. Symbols in the 

phase plots refer to the quality of the data, as given by IQ values. Error bars are the SD of 

phases and amplitudes for the fitted structure factors. 
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Helical Image Processing 

Fourier—Bessel reconstruction proved to be limited in recovering high resolution 

features from the large, hollow helical arrays because of flexibility and multiple image 

interpolations required for axis alignment and straightening (Figure AII-3). Moreover, helices 

with the same apparent diameter proved to have distinct helical symmetries, precluding 

reciprocal space averaging. We therefore reconstructed individual tubes with an extended 

version of the Iterative Helical Real Space Reconstruction (IHRSR) single particle algorithm 

as implemented in SPIDER (Egelman, 2000; Frank et al., 1996). Modifications to the 

procedure included the use of low-resolution Fourier-Bessel reconstructions as starting 

models (Figure S3A-B); initial rounds of projection matching performed with layer-line 

filtered images to enhance the SNR for the helical symmetry search; searching for 

continuous, but smoothly varying, out-of-plane tilt to identify short-range bending in the 

direction perpendicular to the tube's long axis (Figure S2D) and 3D CTF correction with 

Wiener filtering using the frequency-dependent spectral signal-to-noise ratio as determined 

in SPIDER (Frank et al., 1996; Pomfret et al., 2007). Each reconstruction is based on 1,200-

2,400 segments, each 75 nm long with an overlap of 73 nm. The total number of unique F-

BAR dimers contributing to the reconstructions ranged from ~1500 to ~3000 and the 

highest resolution was achieved from images of tubules with an inherent two-fold rotational 

symmetry, Cn=2, around the cylindrical axis (Figure AII-3). Handedness was confirmed by 

analysis of images acquired after tilting the specimen relative to the imaging plane. Surface 

renderings were created with UCSF Chimera (Pettersen et al., 2004) and CCP4MG 

(Potterton et al.). Evolutionary conservation scores and surface mapping were determined 

with Consurf (Landau et al., 2005). Resolution estimates were calculated ab inito with 

RMEASURE (Sousa and Grigorieff, 2007). Helical arc lengths along the left-handed path 
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defined by the lateral interactions were calculated according to: s - JR2 + — • (A0), 

where R is the radius, A% and A8 are the experimentally determined rise and twist for this 

periodicity, respectively. 

Figure AII-3: Resolution Comparison, Representative Electron (Cryo)Micrograph, 

Determination of CTF and Out-of-Plane Tilt 

A) An atomic model of the F-BAR 

domain was converted to SPIDER 

format and filtered to 17 A (purple) 

before fitting it manually into the 

helical reconstruction (grey), 

| | | | | l confirming that the resolution is at 

least as good as the ab inito estimate 

(Frank et al., 1996; Sousa and 

Grigorieff, 2007). B) A windowed 

region from a raw micrograph of a 

helical tubule taken at 160kV, revealing 

a broken open end. C) Representative 

CTF results from the program ACE 

(Mallick et al., 2005). D) The final 

reference projection libraries include 

004 005 006 007 008 

2000 4000 
Angstroms along Tubule 

images with up to 2° of out-of-plane tilt by 0.15° steps. As the particle images overlap by 

97%, a moving average of the out-of-plane tilt values is plotted against position along the 

tubule length for two representative tubules. 
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Figure AII-4: Fourier-Bessel Reconstructions from Individual Tubules & 

the Presence of Rotational Symmetry. 

A,B) Volumes calculated via Fourier-Bessel inversion for a narrow (A) and a wide tubule (B) 

(Carragher et al., 1996). These volumes were used as starting models for single particle 

iterative helical reconstructions. C,D) The reconstruction shown in Figures 3-4 without (A) 

versus with (B) imposition of the 2-fold rotational symmetry. 

Cell culture, transfection and reagents (R. Perera) 

COS7 cells (ATCC, Rockville, MD) were cultured at 37°C and 5% CO2 in 

Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum. FBP17-

GFP, mRFP-FBP17 and Amphiphysin2-GFP have all been previously described (Itoh et al., 
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2005). GFP- and mRFP-tagged proteins were co-expressed in COS7 cells by transfecting 1-

3jlg DNA using the Amaxa nucleofector kit (Amaxa, Cologne, Germany). Cells were seeded 

in glass-bottomed 35mm dishes (Mattek Corporation, Ashland, MA) and imaged 

approximately 14-24 hours later (50-70% confluency). For immunofluorescence, cells were 

grown on coverslips, fixed with 4% formaldehyde (freshly prepared from parafomaldehyde), 

and processed by standard procedures. 

Live Cell Microscopy (R. Perera) 

Prior to imaging, medium was replaced with an imaging buffer containing 136mM 

NaCl, 2.5mM KC1, 2mM CaCl2,1.3mM MgCl2,10mM HEPES at pH 7.4. Cells were imaged 

at 37°C using a spinning-disk confocal system (Perkin Elmer, Waltham, MA), mounted onto 

an IX-71 inverted microscope (Olympus, Melville, NY), equipped with a 1Kb x 1Kb, 

Hamamatsu EM-CCD camera (Hamamatsu, Hamamatsu City, Japan). Samples were imaged 

using a 100X oil objective, yielding a spatial resolution of 0.1 um/pixels. Excitation was 

achieved using 488 argon and 568 argon/krypton lasers (Melles Griot, Carlsbad, CA). 

Exposure times were between 0.2-0.6 seconds. NIH Image J and/or iQ software was used 

to process raw images. 

Formation of Membrane Sheets (A. Roux) 

A pre-washed glass coverslip stored in ethanol was dried under a N2 flux, and 1 ml 

droplets of lipid solution (10 mg/ml 2:1 in pure chloroform) were deposited and allowed to 

dry on the coverslip. Lipid-coated coverslips were further dried under vacuum for at least 

one hour. A small chamber was built by placing die coverslip onto a glass slide, with the 
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lipids facing the glass slide, using double-sided tape as spacers. The lipids were fully re-

hydrated by filling the chamber by capillary action with 15-20 ml of buffer. 

Fig. AII-5: The experimental system used to analyze the tabulation of lipid bilayers 

by differential interference contrast (DIC) microscopy. Lipids are spotted in a 

GST small chamber between 

before and after application of a tubulating protein. Right: Time course analysis of edges of 

membrane sheets (MS) during the incubation with a control protein (top) or with FBP17 

(bottom). Scale bar = 5 Jim. Figure and legend taken from (Itoh et al., 2005). The 

experimental method and this figure were created by Aurelin Roux. 

Video-DIC and Determination of Persistence Lengths (A. Roux) 

Membrane preparations were placed on the stage of an Axiovert 200 ZEISS 

(Germany) microscope for observation at room temperature with a JAI Pulnix (USA) " 

TM1400CL camera and DVR software (Advanced Digital Vision Inc. USA). FBP17, 

amphiphysin and dynamin containing solutions were applied to one side of the chamber and 

the deformation of membrane sheets produced by its diffusion into the chamber was 
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recorded at normal video rate (30 fps) with 1300x1024 resolution under Differential 

Interference Contrast (DIC) settings (Itoh et al., 2005; Roux et al., 2006). For each tubule, 

positions of the tip and the base were tracked using the manual tracking plugin with NIH 

ImageJ (http://rsb.info.nih.gov/ij/). This procedure was repeated for one hundred 

sequential frames for each tubule, and the tip-to-base distance was extracted for each frame. 

Each data point is the rms2 (root mean square to the square) for all of the tip-to-base 

measurements for a given tubule. The rms2 were plotted against the total length and the 

theoretical curve fit to the data derives from the following equation: 6R2(/) = 2(L^)2[x/Lp — 1 

+ e(_ItI#)]; where 6R2(/) is the rms2, x the total length and Lp the persistence length (Derenyi et 

al., 2002; Le Goff et al., 2002a; Le Goff et al., 2002b). 

Kinesin-induced lipid tabulation (A. Roux) 

Microtubule-coated chambers between glass-slides were prepared as described (Roux 

et al., 2002), but using double sided tape as the spacer and washed with kinesin motility 

buffer (see below). Giant liposomes were generated using modifications of the protocol 

from (Moscho et al., 1996). One mgof BPL supplemented with 5% PtdIns(4,5)P2 and 5% 

biotin-LC-DOPE lipid (Avanti Polar Lipids, USA) was dried in a glass vial under vacuum for 

at least half an hour. Lipids were re-suspended by vortexing for 5 min in 1 ml GTPase buffer 

containing 1% v/v glycerol. Small unilamellar vesicles were obtained by sonicating the 

solution on ice with a tip sonicator for 5 min (0.3 Hz cycles) and stored at —20°C. For the 

experiments, 5 ftl of solution were spotted and dried on a glass slide in the vacuum oven for 

half an hour. Giant liposomes were obtained by re-hydrating the lipid spot for 10-15 min 

with 10 fil 220 mM sucrose. These liposomes were then carefully aspirated from the glass 

slide surface with a micropipette, transferred to an Eppendorf tube, clarified by mixing with 
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GTPase buffer (100 |il final volume) and spun at 800 rpm for 2 min. The top 50 |xl of the 

solution were replaced by fresh GTPase buffer and, after resuspension, this material was 

further spun at 800 rpm for 2 min. The top 75 \ll were discarded and the remaining material 

(giant liposomes) was used as follows as starting material for the generation of kinesin-pulled 

tubules. 3 (il of giant liposomes were mixed with 2 fll of 0.1 mg/ml streptavidin in GTPase 

buffer and incubated for 3 min. Two Jil of biotinylated recombinant drosophila kinesin 

(typically from a 1 flM stock, cDNA for was kind gift of Patricia Bassereau, Institut Curie, 

Paris) was then added to this mixture, incubated for 5 min and added to 7 Jll of motility 

buffer (2 mM ATP, 0.4 mg/ml glucose oxidase, 0.2 mg/ml catalase, 240 mM glucose, 5 mM 

DTT, 10 fiM taxol, in GTPase Buffer). The resulting material was added to the microtubule-

coated microchambers after their prewashing with 20 fxl of motility buffer. After a 15-20 min 

incubation to allow tubules to grow, 5 fil of Alexa 488-dynamin in GTPase buffer were 

applied to the chamber. Following an additional 15-20 incubation, 5 \i\ ImM GTP in 

GTPase buffer were applied. 

Wide-Angle X-Ray Scattering 

Liposomes at 20mg/ml were sealed into thin-walled glass capillaries that were 

thermally equilibrated at 30°C or 4°C for 30 minutes before data acquisition. X-ray 

diffractograms were recorded with an image plate mounted on a sealed-tube Rigaku R-Axis 

IIC operating at 50 kV and 100 mA. The x-ray beam was filtered for CuKa radiation using a 

Ni foil. Diffraction patterns were recorded at each temperature for 10 to 30 min. 
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Thin Section TEM 

COS7 cells were fixed with either 1.3% glutaraldehyde in 66mM sodium cacodylate 

buffer or 2% glutaraldehyde in a buffer containing 30mM Hepes-NaOH (pH 7.4), lOOmM 

NaCl, 2.5mM CaCl2. Subsequently, they were post-fixed with 1% Os0 4 in 1.5% K4Fe(CN)6 

and 0.1M sodium cacodylate, en bloc stained with 0.5% uranyl magnesium acetate, 

dehydrated and embedded in Embed 812. Sections were imaged in a Philips Tecnai 12 

operating at 120 kV. Electron microscopy reagents were purchased from Electron 

Microscopy Sciences (Hatfield, PA). 
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