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ABSTRACT
NOVEL NUMERICAL MODELS OF ELECTROSTATIC INTERACTIONS

AND THEIR APPLICATION TO S-NITROSOTHIOL SIMULATIONS

Maxim V. Ivanov, B.S.

Marquette University, 2016

Atom-centered point charge model of the molecular electrostatics remains a
major workhorse in the atomistic biomolecular simulations. However, this ap-
proximation fails to reproduce anisotropic features of the molecular electrostatic
potential (MEP), and the existing methods of the charge derivation are often asso-
ciated with the numerical instabilities. This work provides an in-depth analysis of
these limitations and offers a novel approach to describe electrostatic interactions
that paves the way toward efficient next-generation force fields.

By analyzing the charge fitting problem from first principles, as an example
of the mathematical inverse problem, we show that the numerical instabilities
of the charge-fitting problem arise due to the decreasing contribution from the
higher multipole moments to the overall MEP. This insight suggests that if the
point charges are arranged over the sphere using Lebedev quadrature, the result-
ing point charge model is able to exactly reproduce multipoles up to a given rank.
At the same time, point charge values can be derived without fitting to the MEP,
avoiding numerically unstable method of the charge derivation. This approach
provides a systematic way to reproduce multipole moments up to any rank within
the point charge approximation, which makes this model a computationally effi-
cient analog of the multipolar expansion. Moreover, the proposed charged sphere
model can be also used in the multi-site expansions with the expansion centers
located at each atom in a molecule. This provides a natural approach to expand
the traditional atom-centered point charge approximation to include higher-rank
atomic multipoles and to account for the anisotropy of the MEP.

We applied the proposed charged sphere model to S-nitrosothiols (RSNOs)—a
class of biomolecules that serves to store and transmit nitric oxide, a biologically
important signaling molecule. We showed that when the atom-centered charged
spheres are optimized together with the Lennard-Jones parameters, the resulting
force field can accurately reproduce the anisotropic features of the intermolecular
interactions that play a crucial role in the biological regulation of RSNO chemistry.
Overall, the developed charge model is a promising approach that can be used in
the biomolecular simulations and beyond, e.g. in the multipolar force fields for
atomistic and coarse-grained simulations.
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Chapter 1

Introduction

1.1 Force Field Models of Intermolecular Interactions

The importance of understanding and proper description of the forces

between molecules cannot be overestimated.1,2 The very existence of a liquid,

solid or even biological systems is a direct consequence of these intermolecular

interactions. Depending on the physical phenomenon behind a particular

interaction, all intermolecular forces can be split into two major classes:

short-range (usually repulsive) and long-range (usually attractive) forces.

At the short range, the molecular wavefunctions overlap significantly and the

energy increases exponentially.1,2 The repulsive behavior of the energy is

determined by the antisymmetry of the wave-function with respect to the

exchange of electrons and is called exchange interaction.

The long range interactions are usually classified into electrostatic, induction

and dispersion.1,2 Despite their seeming difference, all of these interactions follow

the Coulomb’s law of electrostatic interaction, either between static charge

distributions of the molecules (that can be either attractive or repulsive) or

between perturbed distributions of the molecular charge densities (that are

strictly attractive). Induction effects arise from the distortion of one molecule’s

charge density in the electric field of the second, while dispersion interactions are

purely quantum-mechanical in their origin and arise from the correlated motion

of electrons in two molecules that gives rise to instantaneous multipole moments

interacting with each other.

As a result of the short-range repulsion and long-range attraction, a typical

interaction energy curve has a single minimum (Figure 1.1). At the distance R0

the energy has its minimal value −ϵ and all forces are compensated in such way

that the system is at its equilibrium. Smaller separation distance results in the
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exponential growth in energy with a negative slope (i.e. positive force or

repulsion), while at larger distance the energy slowly increases with a positive

slope (i.e. negative force or attraction). Due to the Coulombic nature of the

interactions at the long range, the energy increases proportionally to the power

function of the inverse distance R, i.e. −1/Rn, approaching zero at the infinity.

Figure 1.1: Intermolecular energy as a function of the separation distance

Using the simplified mathematical models of these interactions, the

thermodynamic and kinetic properties of gases, liquids and even complex

biological systems like proteins, nucleic acids, and lipids can be studied by

sampling their conformational space via such simulation techniques as Monte

Carlo or molecular dynamics (MD).3–5 In MD simulations, particles coordinates

r(t) are propagated using Newton’s equations of motion, i.e.

−dU

dr
= m

d2r

dt2
(1.1)

where the potential energy U(r) of the system is calculated using the

mathematical representations of the intra and intermolecular:

U = Ubonds + Uangles + Utorsions + UCoulomb + ULJ (1.2)

Together these intra and intermolecular potentials are usually called a molecular

mechanics force field. The intramolecular portion of the potential energy U

includes the Hooke’s law to model bond Ubonds and angle Uangles vibrations, a
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periodic potential to model the torsional strain Utorsions, while intermolecular

part is usually described by the Coulomb UCoulomb and Lennard-Jones ULJ

potentials. The former models the electrostatic interaction between static charge

distributions and the latter is combination of short-range repulsion and

long-range dispersion attraction. Although the exact form of the potential U

depends on the actual implementation, most of the popular force fields, such as

CHARMM,6–8 AMBER,9–11 GROMOS,12 and OPLS13,14 have very similar forms

of the potential energy. More sophisticated force field libraries may also include

addition terms, e.g. atomic polarizations, cross-terms, etc.

Among all terms in a force field, the Coulomb term of electrostatic

interactions is among the most crucial terms for a proper description of proteins,

nucleic acids, lipids, and other macromolecules, as well as for their interactions

with solvent, ions, and other molecules.15 Due to the properties of the Coulomb’s

law at the long range, the electrostatic interaction between static charge

densities of two molecules can be accurately described by the interaction

between multipole moments of each molecule (e.g. total charge, dipole,

quadrupole, etc).16 Furthermore, various partitioning/distribution schemes

allows obtaining a multi-site multipolar expansion centered at each atom in a

molecule.16–19 Application of the atomic multipoles in the force fields to describe

molecular electrostatic resulted in several multipolar force fields, such as

AMOEBA, SIBFA, NEMO.20–22

However, inclusion of several multipole moments (usually up to quadrupole

moment) per atom even in the modestly sized biomolecule quickly become the

computational bottleneck. Up to this date, only a limited number of small

systems have been studied using the multipolar force fields. Besides being

computationally demanding, the implementation of multipole-multipole

interactions in a simulation is non-trivial.23–31 Firstly, since all multipolar

components are given in a global coordinate system, it is necessary to transform

them into a local coordinate system associated with each atom. Secondly,
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besides a regular force that arises due to the gradient in the energy, torques

produced by every multipole need to be added to each atomic force; and finally,

in order to use multipolar electrostatics with periodic boundary conditions

methods that take into account long-range electrostatics within multipolar

formalism (such as particle mesh Ewald) are required. Due to these reasons, only

very few simulation packages support multipolar formalism thus prohibiting their

widespread usage.

Therefore, the multi-site multipolar expansion expansion is usually truncated

at the atomic monopole (charge), leading to much less computationally

demanding approximation. In this approximation, the continuous charge density

of a molecule is modeled by a set of atom-centered point charges, and

electrostatic interaction between two molecules is simply modeled by a pairwise

Coulomb’s law between atomic charges from each molecule:32–34

UCoulomb =
∑
i>j

qiqj
rij

(1.3)

where qi is the point charge at atom i and rij is the distance between atoms i and

j. The atom-centered charges provide a clear chemically intuitive interpretation

of the electrostatic properties, require a straightforward implementation and thus

have been used in such force field libraries as AMBER, CHARMM, GROMOS,

OPLS since the introduction of the molecular dynamics simulations.

The common approach to derive point charges in the force field development

is to use the least squares fitting to the reference quantum mechanical molecular

electrostatic potential ΦQM over the N grid points in the solvent-accessible

region of the molecule:32–34

χ2 =
N∑
i

[
ΦQM

i −
M∑
j

qj
rij

]2

, (1.4)

where M is the number of point charges and rij is the distance between point

charge j and grid point i.
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Although robust numerical methods of solving linear least squares problems

exist, the charges obtained with this method are very sensitive to even small

perturbations in the problem setup.35–38 These numerical instabilities are usually

related to a large variation of the point charge values for atoms in the interior of

the molecule. These buried atom charges (usually methyl and methylene

carbons) can be dramatically changed due to trivial changes in the the reference

grid sampling, spatial orientation of the molecule, and/or have inconsistent

values across very similar molecules or even conformers of the same molecule.39,40

In order to suppress these large variation of the charge value on the buried

atoms, a restraining function is usually added to the least squares sum that

prevents convergence to the large charge values by keeping them close to a

predefined value, e.g. zero, or some other chemically reasonable value.23,36,41–51

This, however, can negatively affect the molecular dipole moment and the overall

quality of the fit.38,52

Figure 1.2: Effect of σ-hole on the molecular electrostatic potential of
chloromethane CH3Cl and methanethiol CH3SH. Formation of the covalent σ
bond leaves a region of diminished negative charge on its non-involved side along
the extension of the bond. Calculations were performed at MP2/aug-cc-pVTZ
level of theory; the charge density isosurface was plotted at 0.002 au.

Besides the numerical instabilities of the charge fitting problem, there are

also issues with the point charge approximation itself: the isotropic nature of the

single point-charge potential cannot describe anisotropic character of the true

molecular electrostatic potential around each atom in a molecule. As a result,
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local atomic properties such as donor/acceptor features due to the lone pairs,

σ-holes (Figure 1.2) and π-electrons are usually missed by the atom-centered

point charge approximation.53,54 Therefore, intermolecular interactions that

involve a Lewis base B and hydrogen atom in a molecule HX (i.e. hydrogen bond

B · · ·HX) or Lewis base B and a halogen/chalcogen atom Y in molecule YX (i.e.

halogen/chalcogen bond B · · ·YX)55–59 are significantly underestimated or even

entirely missed by the atom-centered point charge model.

Nevertheless, despite the obvious lack of accuracy and numerical difficulties

in the point charge derivations, the simplicity of the point charges drives

scientific community to go beyond the atom-centered paradigm and use point

charges to reproduce effects of higher (above monopole) atomic multipoles by

proper placement of point charges out of the atomic center.60–64

However, none of the existing methods offers a systematic approach in

optimizing the proper position of the off-center point charges as well as in the

derivation of their values. Moreover, due to the numerical instabilities associated

with the buried atom charges it is not clear how to alleviate these instabilities in

the case of off-center charges, as their inclusion into the model produces even

more buried centers.

Besides the electrostatic term, another crucial ingredient of any force field is

the part that models the short-range repulsion and long-rand dispersion forces.

These interactions are often combined in a single Lennard-Jones potential:

ULJ =
∑
i>j

εij

[(
r∗ij
rij

)12

− 2

(
r∗ij
rij

)6
]

(1.5)

where εij if the well depth and r∗ij is the equilibrium van der Waals distance

between atoms i and j.

The parameters εij and r∗ij, often referred to as van der Waals parameters,

are usually obtained by fitting to reproduce experimental liquid properties, such

as density and enthalpy of vaporization.9,14 Then, assuming the transferability of
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the atomic properties these parameters are applied to the molecular systems

other than liquids. Together with the atom-centered point charges fitted to

reproduce electrostatic potential, vdW parameters constitute the non-bonded

part of the molecular mechanics force field. This paradigm have been historically

adopted by many simulation packages and the force field libraries and have been

used throughout the scientific community. In this approach, the only source to

verify the accuracy of the force field potentials and their parameters is to

compare a simulation with the experimental data. This is based on the notion

that the simulation can result in the correct macroscopic observables only if the

microscopic parameters of the system are correct.

Unfortunately, in many cases and especially in the case of complex

biomolecular systems, the amount of the high-quality spectroscopic and

thermodynamic data can be limited to develop a robust methodology that could

validate/adjust force field parameters. Even in the case when experimental data

is available, such methodology would reflect the accuracy of the underlying force

field only implicitly.

Only recently, the dramatic increase in computational power and

development of accurate quantum chemistry methods allowed obtaining, with a

relatively modest computational requirements, large amounts of high quality

data that are often inaccessible to the experiment. For example, the potential

energy surface of a protein residue interaction with its local environment can be

now obtained using the density functional theory or even ab initio methods.

This information is an important source of the reference data to fit the force field

parameters and ensure a correct description of the microscopic properties.28

In order to take advantage of this reference data, a major reconsideration of

the entire workflow in the force field parametrization process is required. For

example, instead of a separate optimization of several force field terms, different

non-bonded parameters (point charges, Lennard-Jones parameters, and, in the

case of polarizable force fields, atomic polarizabilities) can be fitted
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simultaneously to extensive training sets of interaction energies. Then, even in

the case of fixed point charges, fitting to the energy of interaction can implicitly

include the polarization effects, thus improving overall quality of the force

field.65–71 However, such simultaneous force field fitting represents a technically

challenging multi-objective optimization of the parameters of different physical

nature and mathematical form. This is a complex minimization problem that

requires a cautious approach as the search space is nonlinear and ill-defined.

Even in a much simpler case of the linear least squares fitting of point charges to

the reference electrostatic potential, the solution to the problem can be

numerically unstable. Therefore, a simultaneous optimization of point charges

along with Lennard-Jones parameters against a diverse training set would be

even more challenging.

Although available force field libraries contain parameters for all standard

amino acids, accurate force field parameters for non-standard residues might be

missed. A representative example of the non-standard residue for which there is

no accurate force field is S-nitrosocysteine, the most common biological

S-nitrosothiol.

1.2 S-Nitrosothiols and Their Biological Role

Protein S-nitrosation—a covalent post-translational modification of the

cysteine amino acid residue (Figure 1.3)—is involved in a signaling pathway of

nitric oxide, an important cellular signaling molecule that plays role in many

physiological and pathological processes.72–74
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Figure 1.3: S-Nitrosation of a cysteine in a peptide/protein.
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Cysteine-containing proteins as well as low molecular weight peptides, like

glutathione (GSH) can be S-nitrosated and form S-nitrosated proteins (SNO

proteins) and S-nitrosoglutathione (GSNO), respectively.75,76 More than 1000

proteins have been already identified to undergo S-nitrosation in vivo across a

wide variety of living organism.77,78 S-nitrosation has been implicated in

regulating enzymatic activity, protein-protein interaction, protein stability, and

such signaling pathways as cell apoptosis and blood flow vasodilation.79–81

cis trans

Figure 1.4: Structures of two MeSNO isomers: cis and trans

S-nitrosothiols exist in two isomeric forms, cis and trans (Figure 1.4), that

are separated by an appreciable barrier ∼ 10 kcal/mol around the S-N bond

rotation, suggesting the presence of a strong double bond character.82–84

Nevertheless, kinetic experiments on RSNO decomposition have shown that the

stability of RSNOs drastically depends on their substituents, pH, presence of

metal and thiolate (RS–) ions, all of which imply weak S-N bond.72,85,86

These unusual properties in RSNO can be rationalized by a combination of

covalent (S), zwitterionic (D) and ion pair (I) resonance structures (Figure

1.5).87–90 Coexistence of structures D and I with opposite S-N bond character

and formal charge on sulfur (i.e. antagonistic structures) explains the planar

geometry of -SNO group and tendency of RSNO towards decomposition. This

R S N O R S N O R S N O
S D I

Figure 1.5: Resonance representation of RSNO electronic structure as a combina-
tion of covalent (S), zwitterionic (D) and ion pair (I) resonance structures.
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also explains the stability of the RSNO complexes with charged species: for

example, S-coordination to positive ion (e.g. Cu+) favors structure I and thus

leads to the destabilization of the S-nitrosothiol.91,92 At the same time,

N-coordination to positive ion (e.g. Ir3
+) favors structure D and leads to the

stabilization.93

1.757
1.666

2.625

2.294

Figure 1.6: Molecular electrostatic potential of MeSNO around sulfur (top left)
and nitrogen and oxygen (bottom left) atoms and the chalcogen- and hydrogen-
bonded complexes with sulfur (top right) and hydrogen-bonded complexes with
nitrogen and oxygen (bottom right). Calculations were performed at PBE0/def2-
TZVPPD level of theory; the charge density isosurface was plotted at 0.002 au.

The unique electronic structure of RSNOs may also suggest how the –SNO

group interacts with charged and polar environment of CysNO in a S-nitrosated

protein. For example, it was shown computationally that protonated basic

residues (Lys, Arg, His) form hydrogen-bonded complexes due to the presence of

the lone pairs at each atom of the –SNO group (Figure 1.6).89 Among three
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possible complexes, S-coordinated complex is the weakest, while N- and O-

coordinated complex are similar in stability. At the same time, presence of the

positively charged area along the extension of the S-N bond (i.e. σ-hole)

stabilizes the coordination of the negatively charged residue (deprotonated

glutamic or aspartic acid) at the sulfur of the –SNO group, resulting in the

formation of the chalcogen-bonded complex (Figure 1.6).

Depending on the trade-off between the energy released upon the

coordination and the strain caused by the deformation of the protein scaffold,

formation of these complexes inside a real protein can induce conformational

changes leading to the change in the protein activity. For example, Wang and

coworkers proposed a possible mechanism how CysNO induces conformational

change in apolipoprotein E3 (ApoE3).94 They showed that CysNO112 could

form hydrogen bonds and/or ion pairings with the charged Arg61 and Glu109

residues. Formation of these complexes can potentially kink the helix where

Cys112 is attached to, inducing a large conformational change, leading to the

loss of ApoE3 binding to the low-density lipoprotein (LDL) receptors. Decrease

in the binding to LDL receptors is known to play a role in the development of

Alzheimers disease.

While the –SNO group can induce the conformational change, the protein

environment around the –SNO group can control its reactivity. It was shown

computationally that the reactivity of the –SNO group may be changed when

the charged residues coordinate sulfur, nitrogen or oxygen. For example, when

MeNH3
+ coordinates oxygen or nitrogen, the S-N bond shortens and RSNO is

stabilized (contribution of resonance D structure increases), while coordination

to sulfur atom weakens S-N bond and RSNO is destabilized (contribution of I

structure increases). As a result, the tight balance between structures D and I

controls the reactivity of RSNO and can promote either the reaction of

trans-S-nitrosation—NO+ transfer from one thiol to another—or

S-thiolation—formation of the disulfide and HNO (Figure 1.7).95–97 The
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importance of the precise control over the RSNO reactivity cannot be

overestimated as the trans-S-nitrosation is a major pathway of selective protein

S-nitrosation in vivo, while S-thiolation may lead to the S-glutathionylation,

which is another post-translational modification of proteins, and production of a

signaling agent nitroxyl HNO.98–100

HS

R' R

S
N

O
+ HNO+

S

R

S

R' R

S
N

O
+

S-thiolation

S

R'

3NO+
S

R

S

R'

HS

R' R

S
N

O
+ SNO

R'
+

SH

R

S

R' R

S
N

O
+ SNO

R'
+

S

R

trans-S-nitrosation

Figure 1.7: Two pathways of the reaction between S-nitrosothiol (RSNO) and
thiol in neutral (RSH) and anionic (RS–) states.

In the cases when CysNO is positioned between two oppositely charged

residues, the –SNO group experiences appreciable external electric field. This

field can be strong enough to induce the change in the electronic structure of the

–SNO group and thus its reactivity.88 Depending on the direction and strength

of the external electric field either D structure is promoted, resulting in the

stabilization of RSNO, or structure I is promoted, resulting in the destabilization

of RSNO. This, in turn, determines the barrier for the possible reactions of

RSNO with thiols: trans-S-nitrosation or S-thiolation. By changing the direction

and strengths of the external field it was computationally shown that one of the

two reaction barriers can proceed almost barrierlessly, while the other reaction

became completely inhibited. This clearly demonstrates the possible catalytic

effect on the reactivity of CysNO produced by the local charged environment.

To investigate if specific interactions of the –SNO group with basic and acidic

amino acid residues are involved in biological processes, it is necessary to obtain

3-dimensional structures of the S-nitrosated proteins. Determination of the

structures using high-resolution X-ray crystallography is challenging due to the
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–SNO group instability and only very limited number of the crystal structures of

SNO-proteins have been reported.101–103 Nuclear magnetic resonance (NMR)

spectroscopy, on the other hand, provides a convenient way of probing local

environment of the species under the interest without disturbing it. However,

since NMR spectroscopy does not explicitly provide 3D structure of a protein, its

analysis is often complemented by the computer simulation, including molecular

dynamics (MD) simulations. In this cases accurate force field parameters for the

–SNO group are required. Unfortunately, only the most basic force field

description of the CysNO residue is available, which is unable to describe the

hydrogen- and chalcogen-bond interactions that are specific to the -SNO

group.104,105 The complex electronic structure of CysNO and its possible specific

interactions with charged and polar residues require much more accurate

description of its intermolecular interactions, which are mostly of electrostatic

nature and the accurate description of the electrostatic potential is available

using the multipolar force fields. However, due to the significant resources

required to simulate even a modestly sized protein and also a lack of mature

molecular dynamics packages that support multipolar force fields, a direct

application of multipolar formalism to the –SNO group is not feasible at the

moment.

Moreover, although an interaction of a Lewis base with a σ-hole is

electrostatically driven and results in the formation of the halogen or chalcogen

bond, the spatial orientation of the interacting species is also influenced by the

induction, dispersion and exchange-repulsion terms.106 Thus, the existing

methodologies in the force field development a priory can not provide a set of

parameters that would accurately reproduce these interactions: atom-centered

point charge approximation fails to account for the anisotropy due to lone-pairs

and σ-holes, while separate parametrization of Lennard-Jones parameters cannot

fully account for the exchange-repulsion interactions that are specific to the

–SNO group.
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1.3 Objectives

Driven by the need to develop a force field description that is capable to

describe the hydrogen- and chalcogen-bonded complexes in RSNOs, while being

limited to the point charge approximation this works aims (1) to develop the

point charge model with the accuracy comparable with the multipolar force

fields and (2) to apply this approach to a model RSNO molecule. Due to the

complexity of the problem, following concerns have to be taken into the account

during the development of this model:

• Since inclusion of the off-center point charges in a force field

parametrization implies a non-linear optimization, properties of several

optimization algorithms have to be investigated. These algorithms may

include the traditional gradient methods as well as stochastic algorithms

such as evolutionary methods.

• In order to extend the atom-centered approximation into the charge model

with any number of off-center charges, the origin of the numerical

instabilities associated with the buried atoms has to be investigated.

• A general solution to the charge fitting problem implies its compatibility

with a wide range of molecules. Thus, the model should be easily applied

to any molecule.

• In the specific case of -SNO group, the developed charge model should be

parametrized together with other force field terms, such as Lennard-Jones,

in order to reproduce the energy of interaction between the group and

other charged residues.
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Chapter 2

Overview of Theoretical and Numerical Methods

In this Chapter we briefly overview the theoretical and numerical methods

used in this work, which includes a concise introduction into the theory of

electrostatic potential and its spherical harmonics expansion,1,107 formal

algebraic definitions of the numerical techniques (eigenvalue and singular value

decompositions of a matrix, least squares approximation, and matrix

ill-conditioning)108 and a brief introduction into the minimization algorithms.

2.0.1 Spherical Harmonics

Spherical harmonics Ylm(θ, φ) are functions defined on a unit sphere that

found a widespread application in many fields of science, including

electromagnetism, astronomy, fluid dynamics, etc. Spherical harmonics define

the angular part of the solution f(r, θ, φ) to the Laplace equation, a second-order

partial differential equation,

∇2f(r, θ, φ) = 0,

f(r, θ, φ) = R(r)Ylm(θ, φ). (2.1)

where the angular part depends on azimuth angle θ and polar angle φ, the

integer indices l and m (m ≤ |l|) are referred to as the degree and order of

spherical harmonic Ylm, respectively and Laplace operator ∇2 in spherical

coordinates is defined as

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
− 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

r2 sin2 θ

∂2

∂φ2
(2.2)

The angular part of the Laplace operator is also known as the angular

momentum operator L̂2. Then, spherical harmonics Ylm are its eigenfunctions,
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i.e.

L̂2Ylm = ℏl(l + 1)Ylm, (2.3)

L̂2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
, (2.4)

and thus form a complete orthogonal basis set with the orthogonality relation:

∫
S

Ylm(θ, φ)Y
∗
lm(θ, φ)dΩ = δll′δmm′ , (2.5)

where dΩ = sin θdθdφ is the differential solid angle in spherical coordinates and

asterisk corresponds to the complex conjugation such that the phase factor

(−1)m is maintained according to Y ∗
lm = (−1)mYl,−m.

1 The completeness

property implies that any function of angles θ and φ can be represented as a

linear combination of spherical harmonics:

f(θ, φ) =
∞∑
l=0

l∑
m=−l

clmYlm(θ, φ), (2.6)

where clm are Fourier coefficients:

clm =

∫
S

f(θ, φ)Ylm(θ, φ)dΩ. (2.7)

The properties of spherical harmonics Ylm are largely defined by the

associated Legendre polynomials Plm as these polynomials directly appear in the

analytical expression for spherical harmonics:

Ylm(θ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(cos θ)e

imφ (2.8)

1In some problems renormalized spherical harmonics Clm are used such that∫
S
Clm(θ, φ)C∗

lm(θ, φ)dΩ = 4π
2l+1δll′δmm′
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Associated Legendre polynomials are solutions to the general Legendre

equation

(
1− x2

) d2Plm

dx2
− 2x

dPlm

dx
+

[
l(l + 1)− m2

1− x2

]
Plm = 0 (2.9)

and are defined as:

Plm(x) =
1

2ll!
(1− x2)m/2 dl+m

dxl+m
(x2 − 1)l (2.10)

where the integer indices l and m (m ≤ |l|) are referred to as the degree and

order of the associated Legendre polynomials, respectively. When m = 0 these

function correspond to Legendre polynomials Pl(x) that can be defined as the

coefficients in a Taylor series expansion of the generating function:

1√
1− 2xt+ t2

=
∞∑
l=0

Pl(x)t
l, (2.11)

where the function on the left side of the eq. 2.11 is the generating function of

Legendre polynomials. This expansion plays a critical role in the multipolar

expansion of the molecular electrostatic potential.

2.0.2 Molecular Electrostatic Potential

In 1785, the French physicist Charles-Augustin de Coulomb in a series of

experiments showed that the magnitude of the electrostatic force between two

point charges is directly proportional to the product of charge values and

inversely proportional to the square of the distance between them. This force is

directed along the straight line between charges, is attractive when charge are of

opposite sign and repulsive if charges have the same sign:

F =
q1q2
r2

r̂ (2.12)
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The electrostatic force is a result of interaction between two charges and it is

useful to introduce a concept of electric field that is defined by one of the two

charged species:

F = q1E, (2.13)

where electric field E is measured at the position of the charge q1. In case of a

continuous charge distribution the electric field E can be calculated by

integrating the charge density ρ(r):

E(r) =

∫
ρ(r′)

r− r′

|r− r′|3
dr′ (2.14)

Electric field is a vector field and requires three components in order to be

fully defined. Since the vector factor in eq. 2.14 is the negative gradient of the

inverse distance:

r− r′

|r− r′|3
= −∇

(
1

|r− r′|

)
(2.15)

the vector field E can be uniquely defined by a scalar potential Φ with help of

the gradient operation:

E = −∇Φ. (2.16)

The electrostatic potential Φ(r) is uniquely defined by the charge density ρ(r)

and has a physical interpretation of energy required to bring the unitary charge

from infinity to the point r in the electrostatic field of the charge density ρ(r).

Then, given the charge density of a molecule, the molecular electrostatic

potential (MEP) can be computed as:

Φ(r) =

∫
ρ(r′)

|r− r′|
d3r′, (2.17)

A direct calculation of the integral eq. 5.1 is often impractical for most

numerical applications, so different approximations are usually used instead.
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2.0.3 Multipolar Expansion of Electrostatic Potential

Given the charge density of a molecule, its electrostatic potential Φ(r) is

defined by the Coulomb law as

Φ(r) =

∫
V

ρ(r′)

|r− r′|
dr′ (2.18)

where the source coordinate r′ = (r′, θ′, φ′) is integrated over the volume V

occupied by the molecular charge density ρ(r′) and the observation vector

r = (r, θ, φ) is the the point where the electrostatic potential Φ(r) is calculated.

Let γ be an angle between vectors r and r′, then according to the cosine

theorem, the difference |r− r′| can be expressed as

|r− r′| =
√

r2 + r′2 − 2rr′ cos γ. (2.19)

Then, from the definition of the generating function of Legendre polynomials

(eq. 2.11) it immediately follows that in the case when r′ < r, the inverse

distance can be expressed as:

1

|r− r′|
=

1

r

1√
1− 2r′/r cos γ + (r′/r)2

=
1

r

∞∑
l=0

(
r′

r

)l

Pl(cos γ) (2.20)

In the case of r′ > r, the r and r′ can be interchanged in eq. 4.10. Then for

convenience, the notation where r< is the smaller among r and r′ and r> is the

larger of the two is usually used. Using this notation,

1

|r− r′|
=

∞∑
l=0

rl<
rl+1
>

Pl(cos γ). (2.21)

With the help of the addition theorem that expands Pl(cos γ) into spherical

harmonics:

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Ylm(θ, φ)Ylm(θ
′, φ′) (2.22)
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the inverse distance between two vectors can be also expanded so that the source

r′ and observation r vectors are separated:

1

|r− r′|
=

∞∑
l=0

4π

2l + 1

rl<
rl+1
>

l∑
m=−l

Ylm(θ, φ)Ylm(θ
′, φ′). (2.23)

This expression leads to the multipolar expansion of the molecular

electrostatic potential:

Φ(r) =
∞∑
l=0

l∑
m=−l

√
4π

2l + 1
r−l−1QlmYlm(θ, φ), (2.24)

where Qlm are multipole moments of a molecule:

Qlm =

√
4π

2l + 1

∫
V

rlρ(r)Ylm(θ, φ)dr. (2.25)

For example, Q00 is the monopole, i.e. the total charge; Q1m with m = −1, 0, 1

are three components of the dipole moment; Q2m with m = −2,−1, 0, 1, 2 are

five components of the quadrupole moment, etc.

2.1 Methods of Matrix Decomposition

In many numerical problems it is useful to decompose a matrix into a

product of two or more matrices. Depending on the particular class of problems

different decomposition techniques exist. For example, eigendecomposition can

be useful when transformation to the diagonal form is required. Another useful

technique is singular value decomposition (SVD) which can be applied to find

solution of the least squares problem. In this section, we briefly overview the

eigendecomposition, least squares approximation, and singular value

decomposition.108
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2.1.1 Eigendecomposition

Let U be n-dimensional inner product space, i.e. a space where the length of

a vector is defined, and linear transformation τ : U → U map any vector in U to

another vector in the same space U . Then, a scalar λ is an eigenvalue of τ if

there exist an eigenvector u ∈ U associated with λ for which

τu = λu. (2.26)

Equivalently, in the matrix form A of the linear operator τ , λ is an eigenvalue of

the matrix A if there exist an eigenvector u associated with λ for which

Au = λu (2.27)

The set of n eigenvectors forms an eigenbasis of orthogonal vectors {ui}ni such

that:

ui · uj = δij, (2.28)

where ui · uj is the dot product on space U , δij is Kronecker symbol.

Given the set of n eigenvectors ui with corresponding eigenvalues λi, matrix

A can be factorized into:

A = UΛU∗, (2.29)

where Λ is diagonal matrix with the eigenvalues λi on the diagonal, U is unitary

matrix with the columns consisting from eigenvectors ui, and U∗ is the

conjugate transpose of U.

2.1.2 Singular Value Decomposition

Let U be n-dimensional inner product space, V be m-dimensional inner

product space and linear operator τ be such that τ : U → V . Then, there exist
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orthonormal bases {ui}ni=1 in U and {vj}mj=1 in V such that:

τui =


sivi, i ≤ r

0, i > r

(2.30)

and

τ ∗vj =


sjuj, j ≤ r

0, j > r

(2.31)

where r is the rank of operator τ .

From eqs. 2.30-2.31 it immediately follows that {ui}ni=1 and {vi}mi=1 are

eigenvectors of τ ∗τ and ττ ∗, respectively:

τ ∗τui = s2iui, (2.32)

ττ ∗vj = s2jvj, (2.33)

and s2i are their eigenvalues, which are called singular values of operator τ . The

vectors {ui}ni=1 are called right singular vectors and {vj}mj=1 are called left

singular vectors of operator τ .

The matrix representation of the operator τ leads to the widely used singular

value decomposition (SVD) of a matrix. Let A be m× n matrix that represents

operator τ from eqs. 2.30-2.31. Then, changing the orthonormal bases from U to

V gives:

A = VΣU∗ (2.34)

where U is unitary matrix with the columns consisting from right singular

vectors ui and U∗ is its conjugate transpose, matrix V is unitary matrix with

the columns consisting from left singular vectors vi, and Σ is a diagonal matrix

with singular values si on the diagonal:

U = (u1 u2 . . . um) (2.35)
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V = (v1 v2 . . . vn) (2.36)

Σ = diag (s1, s2, . . . , sr, 0, . . . , 0) (2.37)

where r is the rank of matrix A. As it is clear from eqs. 2.32 and 2.33, right and

left singular vectors are also eigenevectors of A∗A and AA∗, respectively, while

s2i are their eigenvalues:

A∗Aui = s2iui, (2.38)

AA∗vj = s2jvj, (2.39)

The expression in eq. 2.34 is called singular value decomposition of matrix A

and has many practical applications, for example the calculation of

pseudoinverse of A, least squares fitting of data, analysis of the numerical

stability of the solutions to the linear matrix equations, etc.

Pseudoinverse of a matrix

Singular value decomposition leads to a generalized version of the inverse of

the rectangular matrix A. Given the linear transformation τ : U → V , its inverse

τ+ : V → U is defined by:

τ+vi =


1
si
ui, i ≤ r

0, i > r

(2.40)

or, equivalently,

τ+τui =


ui, i ≤ r

0, i > r

(2.41)

The transformation τ+ is called the Moore-Penrose generalized inverse or

pseudoinverse of τ . If m = n = r the pseudoinverse τ+ is equivalent to the

inverse τ−1, which in case of the matrix corresponds to the inverse of the square

matrix A.
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In another words, the concept of pseudoinverse generalizes the matrix inverse

to any rectangular matrix A. For example, given m× n matrix A with singular

value decomposition:

A = VΣU∗, (2.42)

its pseudoinverse is defined as

A+ = UΣ+V∗. (2.43)

Then, the solution to the system of linear equation can be easily obtained as:

Ax = b (2.44)

x = A+b =
r∑
i

v · b
si

ui (2.45)

where r is the rank of matrix A and the dot product defined as v · b =
∑n

i v
∗
i bi.

2.1.3 Least Squares Approximation

Consider a system of linear equations:

Ax = v (2.46)

where m× n matrix A corresponds to the linear transformation A : Rn → Rm

(Figure 2.1), v ∈ Rn is a n-dimension vector and x ∈ Rm is a m-dimensional

vector of unknown parameters. This system has a solution if and only if

v ∈ im(A), where image of A is defined as (Figure 2.1)

im(A) = {z ∈ Rm | x ∈ Rn, z = Ax} (2.47)

In case the system has no exact solution, i.e. when v ̸∈ im(A), the solution x

that minimizes the difference between Ax and v is considered as the

least-squares solution to the system of linear equations (eq. 2.46). In another
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Figure 2.1: Linear transformation A maps a vector in U to a vector in V . Vectors
in V that are transformed from vectors in U define image im(A). Vectors in U
that are transformed to a zero in V define a kernel ker(A).

words, x is the solution if the vector Ax is the closest to v, which is equivalent to

Ax− v ⊥ im (A) . (2.48)

Since im(A)⊺ = ker(A∗), where kernel ker(A) = {x ∈ Rm | Ax = 0} (Figure

2.1), then eq. 2.48 can be rewritten as

A∗ (Ax− v) = 0, (2.49)

which results in a system of normal equations:

A∗Ax = A∗v. (2.50)

Accordingly, solution to the normal equations (eq. 2.50) is equivalent to the

solution of the original system of linear equations (eq. 2.46). Then, due to the

property of pseudoinverse (AA+ = 1), the solution to the eq. 2.46 can be found

using the pseudoinverse A+ of A:

x = A+v =
r∑
i

v · b
si

ui, (2.51)

where ui and vi are left and right singular vectors and si are singular values of

matrix A.
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Ill-conditioned matrix

If the columns in the matrix A are (near) orthogonal then all singular values

si have (almost) identical values indicating a well-conditioned matrix. However,

often singular values of a matrix may vary in a wide range of values indicating

an ill-conditioned matrix. To quantitatively measure the condition of matrix A,

the ratio between the largest smax and smallest smin singular values, also known

as the condition number κ(A), is usually used:

κ(A) =
smax

smin

(2.52)

The condition number measures how sensitive is the output to the changes in

the input, often induced by the errors/noise in the input data. For example, the

condition number associated with a linear equation Ax = b indicates how

strongly the solution x can change with respect to a change in b. If the

condition number is large, even a small error in b may lead to a significant

change of the solution x. On the other hand, if the condition number is close to

unity, then the change in x will be comparable to the change in b.

These numerical instabilities can be suppressed using different regularization

techniques.109–111 One way is to truncate the solution expansion of A (eq. 2.34)

ignoring the contribution from the smallest singular values. However, since the

singular values often tend to decay gradually to zero, it can be problematic to

define an appropriate threshold.

In case of the least squares problem the conditioning of the problem can be

improved using Tikhonov regularization109 that adds a quadratic penalty

function to the least squares sum so the solution with a smaller norm is

preferred. This penalty function effectively increases the singular values of the

matrix and improves the stability of the problem.
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2.2 Minimization algorithms

2.2.1 Newton’s Algorithms

Any kind of Newton’s method exploits the quadratic approximation to the

objective function within the vicinity of the minimum as suggested by a

truncated Tailor’s series expansion:

f(x+ d) ≈ f(x) + g(x)⊺d+
1

2
d⊺H(x)d, (2.53)

where x is n-dimensional argument vector, g(x) is the gradient vector and H(x)

is the Hessian matrix at a point x.

The minimum of the f(x) requires its derivative with respect to x to be equal

to zero, resulting in the system of linear equations:

g(x) +H(x)d = 0 (2.54)

which gives the Newton’s direction d towards the minimum:

d = −H(x)−1g(x) (2.55)

The algorithm starts from the exact calculation of the Hessian matrix H0 and

the gradient vector g0 at the initial guess x0. Then the Newton direction d is

computed, which defines the vector xk for the next iteration:

xk+1 = xk + d (2.56)

where the Hessian matrix Hk and gradient vector gk are calculated again. This

iterative procedure repeats until the solution xk is not converged to a minimum

x∗ satisfying the f ′(x) = 0 within a predefined threshold.
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However, the exact Newton direction is reliable only when the Hessian matrix

positive definite and the the difference between the true objective function and

its quadratic approximation is not too large.

The method requires exact calculation of (n2 + n)/2 second-order partial

derivatives of function f(x) at each step (where n is the dimension of the vector

x) and can be computationally too demanding. In quasi-Newton’s methods,

instead of exact computation of the Hessian matrix, it is adjusted at each

iteration and can be produced in different ways ranging from very simple to

highly advanced techniques.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

In the method of Broyden, Fletcher, Goldfarb, Shanno (BFGS) at each

minization step k the Hessian matrix Hk is approximated by Bk using the

updating formula, which converges to the true Hessian at the minimum:

Bk+1 = Bk −
Bksks

⊺
kBk

s⊺kBsk
+

yky
⊺
k

y⊺
ksk

, (2.57)

where sk = xk+1 − xk and yk = gk+1 − gk.

At the first iteration, B0 can be set to any symmetric positive definite matrix,

for example, the identity matrix. The BFGS method converges superlinearly and

has O(n2) complexity per iteration for n-dimensional argument vector x.

2.2.2 Evolutionary Algorithms

An evolutionary algorithm (EA) is a class of minimization algorithms,

inspired by the mechanisms of the biological evolution, such as reproduction,

mutation, recombination, and selection.Each candidate solution to the

optimization problem in the algorithm is called a chromosome or an individual.

A set of chromosomes, called population, is evolving in a EA through the process

of competition and controlled variation. For each chromosome in the population

an associated score of a fitness function is evaluated to measure how well a
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chromosome is adapted to the environment, or in another words, how close the

solution is to the minimum.

Although all evolutionary algorithms share the same principles of biological

evolution to find a minimum of the function, they may differ in the details of

implementation and the nature of the particular applied problem.

Genetic Algorithms

Genetic algorithms are among the most popular evolutionary algorithms,

where chromosomes are usually represented in the binary code, although more

recent implementations also use the real number representation.112–114

Figure 2.2: A simplified scheme of the genetic algorithm procedure.

A GA starts with the initialization of the population by random generation

of solutions followed by the calculation of their fitness function value (score).

Then, selection operator chooses a pair of chromosomes from the population.

Crossover operator breeds two chromosomes to produce an offspring, which is

then added to the new generation. During each iteration, a mutation operator



30

can mutate an offspring with a low probability. This is done to increase the

diversity of solutions and avoid getting into a local minimum. When a new

generation is created, score is calculated for each new chromosome, and then the

next iteration starts with the selection of chromosomes for the new generation.

This iterative procedure continues until the maximum number of generations is

reached. A chromosome with the best fitness in a population is considered as a

solution of the problem (Figure 2.2).

Covariance Matrix Adaptation Evolution Strategy(CMA-ES)

In self-adapted evolution strategy algorithms the population of new candidate

solutions is sampled according to a multivariate normal distribution:115,116

x
(g+1)
k ∼ m(g) + σ(g)N

(
0,C(g)

)
for k = 1, . . . , λ, (2.58)

where ∼ denotes the same distribution on the left and right sides, N
(
0,C(g)

)
is

multivariate normal distribution with zero mean and covariance matrix C(g),

x
(g+1)
k is the k-th offspring from generation g + 1, m(g) is mean value of the

search distribution at generation g, σ(g) is the overall standard deviation (also a

step-size), λ is the number of individuals in the population.

In a single iteration of the algorithm, the mean m(g+1), covariance matrix

C(g+1) and standard deviation σ(g+1) are calculated resulting in the

self-adaptation of the solutions. The covariance matrix adaptation evolution

strategy (CMA-ES) exploits a maximum-likelihood principle for the adaptation

of the parameters of the search distribution. The mean m of the distribution is

updated such that the likelihood of previously successful candidate solutions is

maximized. The covariance matrix C of the distribution is incrementally updated

such that the likelihood of previously successful search steps is increased.

The CMA-ES can be a good alternative method of function minimization in

the cases when gradient methods, e.g. quasi-Newton methods (BFGS), fail due

to a non-convex landscape with sharp bends, discontinuities, outliers, noise, and
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local optima. Calculation of the covariance matrix in the CMA-ES is analogous

to the calculation of the inverse Hessian matrix in a quasi-Newton method.

CMA-ES demonstrates an improved performance on ill-conditioned and/or

non-separable problems by several orders of magnitude.115,116
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Chapter 3

Genetic Algorithm Optimization of Point

Charges in Force Field Development

3.1 Introduction

Molecular dynamics (MD) simulations is a powerful tool to study structure

and function of biological macromolecules at the atomic level.3–5 The accuracy of

MD simulations is highly dependent on the molecular mechanics force field

usedits functional form, as well as its empirical parameters. In traditional

macromolecular all-atom force fields, the bonded parameters include equilibrium

bond distances, bond and dihedral angles, along with the corresponding force

constants and rotation barriers, while non-bonded interactions are typically

described by atom-centered point charges and Lennard-Jones parameters. These

bonded and non-bonded force field parameters are fitted against either

experimental data or, more commonly, data obtained from electronic structure

calculations. Generally, force field parameterization involves separate

optimization of the bonded and non-bonded parameters, as it is common in

parameterization of the classical force field models such as CHARMM,6–8

AMBER,9–11 GROMOS,12 and OPLS,13,14 as well as in more recent

developments.117–121 For instance, in parameterization of the non-bonded terms

in the popular AMBER family of force fields,9,122,123 the point charges are fitted

to the reference molecular electrostatic potential (MEP) of the molecule, while

Lennard-Jones parameters are fitted to reproduce the experimental bulk

properties. However, simultaneous fitting of several parameters describing

intermolecular interactions (point charges, Lennard-Jones parameters, and, in

the case of polarizable force fields, atomic polarizabilities) may significantly

improve the accuracy of force field description.124,125 These simultaneous

optimizations of different force field terms can take advantage of extensive
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training sets that can be easily generated using electronic structure calculations

and may include data on the intermolecular interaction energies.65–69 Moreover,

in this approach the fitted interaction energy would implicitly include the

polarization effects, even staying within the fixed point-charge force field

framework.70,71 However, such simultaneous force field fitting represents a

technically challenging multi-objective optimization of the parameters of

different physical nature. Among various optimization algorithms available for

this purpose, evolutionary methods such as genetic algorithms (GAs) provide a

powerful technique that can efficiently deal with complex and poorly understood

search space.112,113,126 GAs have been successfully used in force field development,

including fitting of dihedral angle127,128 and van der Waals parameters,68,121

atomic polarizabilities,118 parameterization of coarse-grained129 and reactive

force fields,130,131 as well as applied in numerous ad hoc force field parameter

optimizations.132–135 Interestingly, although the assignment of the fixed point

charges is a critical part of many force fields, the application of GAs and other

evolutionary/stochastic optimization techniques to the MEP point-charge fitting

has not been explored, to the best of our knowledge. The traditional approach

for determining point charges in the force field development, usually referred to

as the ESP (Electrostatic Potential) method,32 is to fit the point charges against

the reference quantum mechanical (QM) MEP ΦQM by minimizing the sum of

squared residuals calculated over the N point on a grid:

χ2 =
N∑
i

[
ΦQM(Ri)− ΦPC(Ri)

]2
(3.1)

where ΦPC is the potential produced by the point charges:

ΦPC(R) =
M∑
j

qj
|R− rj|

(3.2)

Examples of different implementations of this method include Merz-Kollman,33,34

CHELP,136 CHELPG,137 which mainly differ by the choice of the reference grid.
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These approaches typically employ Lagrange multipliers to impose constraint on

the overall molecular charge and, sometimes, on the molecular dipole moment.

Alternatively, the χ2 function can be minimized directly using gradient-based

methods with restraint on the total charge and dipole moment.138 Although the

atom-centered MEP-derived point charges provide a clear interpretation of the

electrostatic properties and are computationally inexpensive, they can poorly

reproduce the anisotropic electronic features (e.g. lone pairs, π-systems),53,54 and

also suffer from several technical difficulties. The optimized values of the point

charges not only depend on the grid density and size, or the spatial orientation

of the molecule relative to the Cartesian axes,35,38,137,139,140 they also can be

inconsistent even across very similar molecules, at odds with the fundamental

chemical concept of the transferability of atomic properties. Not only the

MEP-fitted charges for atoms of a common functional group in chemically

similar molecules may be very different, the charges obtained for the conformers

of the same molecule often vary by more than one electron unit. Stouch and

Williams reported39,40 that the disparate charges obtained for directly connected

atoms in different conformers seem to linearly correlate with each other with

high variation (∼ 1.3 e) of the charge values on the interior, buried atoms

(mostly aliphatic carbon atoms), while the exterior atoms (mostly hydrogens)

vary in a much smaller range (∼ 0.3 e). Later, the large variations of charge

values have been rationalized by the low statistical contribution of the buried

carbons to the overall electrostatic potential.36 Furthermore, the ill-conditioned

character of the MEP fitting problem seems to be exacerbated by the

introduction of the total charge constraint using Lagrange multipliers that leads

to the rank deficiency of the least-squares (LS) matrix.37,38 The conformational

dependence of the MEP-derived point charges has been significantly reduced in

the Restrained Electrostatic Potential (RESP) method by Bayly et al.36,141 that

uses an external hyperbolic restraint to force the buried carbon atoms to have

small point charges, thus decreasing the charge variations across different
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conformers. Although several alternative methods of charge derivation have been

proposed,37,136,140,142,143 restraining the charges of buried atoms to prevent the

optimization from converging towards unreasonable values and/or to reduce

conformational dependence of the charges became the most popular in force field

development.23,41–51 In most of these methods, besides a constraint on the total

charge of the molecule, an additional restraining function is added to the LS sum

to keep the buried atom charges close to some predefined values, despite its

possible negative effect on the dipole moment values and the overall quality of

MEP.38,52 Considering the challenges presented by the relatively straightforward

single-objective point charge fitting against the MEP, simultaneous optimization

of point charges along with other force field parameters against a diverse training

set could be expected to present more pitfalls. Therefore, in this chapter we

investigate the performance of the GA techniques when applied to the MEP

point charge fitting problem in a case of small model molecules with the

emphasis on the convergence properties of the algorithm.

3.2 Details of Charge Fitting

3.2.1 Least Squares Fitting

In the ESP method the solution is obtained by minimizing the LS sum (eq.

3.1) that can be rewritten in a more compact algebraic form:

χ2 = |Φ−Aq|2 = |Φ|2 + g⊺ · q+ q⊺Hq (3.3)

g = −2A⊺Φ (3.4)

H = A⊺A (3.5)

where the vector Φ consists from the reference electrostatic potential calculated

at each point of the grid; q is a set of point charges; A is the LS matrix with the

elements corresponding to the inverse distance 1/rij between point i of the grid
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and point charge j in the molecule; vector g and matrix H are gradient vector

and Hessian matrix of the LS sum, correspondingly. Because of the quadratic

dependence of the LS sum on the charge vector q the solution to the LS problem

can be found by setting partial derivatives of χ2 with respect to each point

charge to zero, which results in the system of linear equations, known as normal

equations:144

A⊺Aq = A⊺Φ (3.6)

where q is the solution to the problem which is further referred to as ESP

charges and used as the reference to compare against the GA-optimized values.

No additional constraints or restraints have been imposed to these charges,

except for the atom equivalence due to the symmetry of the molecule.

3.2.2 Fitting with Genetic Algorithms

In the GA approach, each candidate solution is referred to as a chromosome

or an individual. A set of chromosomes, called population, is evolving during a

GA run through iterative application of genetic operators of selection, crossover

and mutation.112,113 Each chromosome in the population has an associated

fitness function value, or a fitness score, that measures how close this candidate

solution is to the desired optimum solution. The algorithm starts by randomly

generating the initial population of the chromosomes, followed by evaluation of

their fitness function values. These scores are then used to select chromosomes

for further crossover and mutation that produce the next generation of the

chromosomes. When the number of generation reaches maximum, the algorithm

stops and the chromosome with the best fitness score in the final population is

considered as solution to the optimization problem.The GA parameters used

here for the point charge fitting against a reference MEP are given in Tables

3.2.2 and 3.2.2. Each chromosome encoded a set of atom-centered point charges

either in a traditional binary or real number representation. We found that, as in

several other cases,114,145 the real-number coding requires smaller population size
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than the binary coding to achieve the results of the same quality. Therefore, the

real-coded chromosomes were used throughout this work.

Table 3.1: Parameters used in the GA fitting of the MEP point charges
Parameter Value

Maximum number of generations 100
Population size 20-200
Variable range [−1; 1]

Table 3.2: Genetic operators used in the GA fitting of the MEP point charges
Operator Binary-Coded Real-Coded Probability
Crossover Two-point BLX-α, α = 0.5 0.90
Mutation Flip bit Random 0.03
Selection Proportional selection –

All point charges have been fitted within the -1 to +1 e range, with no

additional restraints, unless stated otherwise. The root-mean square error

(RMSE) was used as the fitness function:

f = RMSE =

√∑N
i [ΦQM(Ri)− ΦPC(Ri)]

2

N
=

√
χ2

N
(3.7)

Thus, the chromosome with the lowest fitness score in the last generation was

considered as the solution being sought. RMSE has been chosen as the fitness

function because of its clear statistical meaning–an average error per grid point;

however, using either the RMSE or the LS sum χ2 (eq. 3.1) as the fitness

function in the GA optimizations gives very similar results. The average fitness

score of a population ⟨f⟩ calculated at each generation was used to characterize

the convergence of a single GA run, while the standard deviation σf was used to

characterize how diverse or localized are the chromosomes in the population:

⟨f⟩ = 1

S

S∑
i

fi (3.8)

σi =

√√√√ 1

S

S∑
i

(fi − ⟨f⟩)2 (3.9)
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Due to the stochastic nature of the algorithm, several independent GA runs

were used to assess the quality/scatter of the obtained solutions. In most cases

several runs converged to a set of widely dispersed solutions. To understand the

nature of this dispersion and reveal possible correlations between optimized

parameters, we computed variance-covariance (or covariance) matrices Σ for

each set of the obtained GA solutions. The diagonal elements of the covariance

matrix contain the charges variances (eq. 3.10) and the off-diagonal elements

contain the covariances between each pair of charges (eq. 3.11):

var(qj) =
1

N − 1

N∑
i

(qij − ⟨qj⟩)2 (3.10)

cov(qj, qk) =
1

N − 1

N∑
i

(qij − ⟨qj⟩)(qik − ⟨qk⟩) (3.11)

where N is the number of GA runs, qij is the charge on atom j from ith GA run,

⟨qj⟩ is charge on atom j averaged over all GA runs. Eigenvectors of the

covariance matrix form an eigenbasis Σ̃ consisting from the orthonormal vectors

si (principal components), along which the data is changing with the variance

defined by the corresponding eigenvalue σ2
i :

Σsi = σ2
i si (3.12)

Σ̃ = (s1 . . . sM) (3.13)

where Σ̃ is the square matrix of size M , defined by the number of point charges;

σi is standard deviation along eigenvector si.

3.3 GA Charge Fitting for Small Molecules

First, we examine the performance of GAs for the MEP point charge fitting

in a straightforward case of several small molecules with only two

symmetry-independent charges, but vastly different electrostatic properties:

water, ammonia, benzene, and methane. For these systems, a single GA run
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with a small population size (< 40 chromosomes) converges to a localized set of

solutions within 25-50 generations, after which the population stabilizes with

only small fluctuations of the charge values/fitness scores (Figure 3.1).

Surprisingly, although all GA runs demonstrate robust convergence, independent

runs converge to vastly different solutions for the same molecule (Figure 3.2).

For instance, 200 GA runs for CH4 produced solutions with charges on the

carbon atom qC varying from -0.99 to 0.95 e, while the charge on the hydrogen

varied from -0.24 to 0.25 e. Similar scatter of the small-population GA-derived

charge values is observed for other molecules. In the case of H2O, NH3, and CH4

the charges of the central, ”buried” atoms show much larger deviations than the

hydrogen atom charges. Although highly dispersed, the GA solutions tend to

cluster around the solutions that correspond to the charges derived with the ESP

method, eq. 3.6 (shown as yellow dots in Figure 3.2). Increase of the population

size decreases the scatter: GA runs with populations < 50 chromosomes yield

solutions within ±0.01 e of the ESP values.
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Figure 3.1: GA convergence with 20 chromosomes in the population (a) as com-
pared to 50 chromosomes in the population (b).
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Figure 3.2: Distributions of the GA-optimized charges for the model molecules
with two symmetry-independent charges, obtained from 200 GA runs with 20
chromosomes in the population. Yellow dots indicate the solutions obtained with
the ESP method.

At first glance, these results simply suggest that MEP point charge fitting

with GAs is highly inefficient and requires larger population sizes. It is, however,

intriguing why the small-population GA runs quickly converge to non-optimal

solutions that cannot be improved upon any further, even in hundreds of

additional generations (premature convergence). In other words, what is the

origin of these non-optimal solutions that trap small-population GA runs?

Further investigation revealed that there is almost a perfect (R2 = 1.00) linear

correlation between the pairs of qX (X = O, N, or C) and qH values produced

from different GA runs (Figure 3.3). For each correlation, the slopes correspond

to the number of hydrogen atoms per atom X in the molecule, while the

intercept correspond to the overall charge Q = 0.0 e of the molecule:

Q = nxqx + nHqH (3.14)

qX = −nH

nX

qH +
1

nX

Q (3.15)

where nX is the number of X atoms, and nH/nX is the number of hydrogen

atoms per atom X. Indeed, although the GA runs converge to dispersed
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solutions, the zero total charge is always reproduced, with standard deviation σ

in the range from 0.001 to 0.01 e.
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Figure 3.3: Correlations between the GA-optimized charges for the two-charge
model molecules obtained from 200 independent GA runs with 20 chromosomes
in the population; all trend lines have correlation coefficient R2 = 1.00. Yellow
dots indicate the solutions obtained with the ESP method.

We further investigated the GA-fitting performance for molecules with three

symmetry-independent charges on the example of mono- and di-substituted

methane derivatives CH3X, X = F, Cl, O−, and CH2X2, X = F, Cl. Similarly to

the two-charge systems, multiple small-population GA runs (< 100

chromosomes) yield highly scattered solutions, which tend to cluster around the

ESP values as the population sizes increase. However, only GA runs with > 100

chromosomes yield consistent results that match the ESP charges within ±0.01.

The scatter is the largest in case of the charges on the carbon atoms qC : e.g. 200

30 chromosome GA runs for CH3Cl produce qC values covering the entire -1 to

+1 e range, while the charge on hydrogen and chlorine vary in much small ranges

(-0.1 to 0.3 e and -0.3 to -0.1 e, respectively).
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Figure 3.4: The coordinate system for the CH3X and CH2X2 molecules.

Unlike the two-charge systems, the GA solutions for CH3X, and CH2X2 not

only reproduce the correct total charge, but also produce constant dipole
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Table 3.3: Average values and the standard deviations (in parenthesis) of the
monopole and dipole moments computed from the GA-optimized point charges
for CH3X, CH2X2 (X = F, Cl), and CH3O

− molecules along with the reference
values from DFT calculations.

Molecule Monopole, au Dipole, au DFT dipole, au
CH3F 0.002 (0.001) 0.782 (0.005) 0.771
CH3Cl 0.000 (0.002) 0.827 (0.042) 0.794
CH2F2 -0.002 (0.002) 0.814 (0.087) 0.803
CH2Cl2 -0.001 (0.006) 0.712 (0.047) 0.667
CH3O

− -0.9674 (0.006) 0.847(0.018) 0.772

moment values, which are close to the reference DFT values (Table 3.3): the

standard deviation σ is in 0.001 to 0.006 e range for the total charge and in 0.005

to 0.087 au range for the dipole moment. Thus, regardless of the population size,

the GA-optimized point charges satisfy the eqs. 3.16 and 3.17 for the first two

terms of the multipole expansion: the monopole/total charge and the dipole

moment. These equations can be written as dot products between the charge

vector q and the corresponding vector ui:

Q = nXqX + nCqC + nHqH = u1 · q (3.16)

µz = nXzXqX + nCzCqC + nHzHqH = u2 · q (3.17)

where nA is the stoichiometric number of the atom A in the molecule, zA is its

coordinate along the z axis (oriented along the symmetry axis as shown in

Figure 3.4), and qA is its point charge. Geometrically, these equations define two

planes with the vectors u1 and u2 which are orthogonal to the corresponding

plane. The GA solutions align along a three-dimensional line formed by the

intersection of these two planes (Figure 3.5A) which is defined by the cross

product vector u3 = u1 × u2:

q = q0 + tu3 (3.18)

where t is a free parameter, the vector q0 is a set of point charges that satisfies

eqs. 3.16 and 3.17. Projections of this three-dimensional line give three pairwise

linear relationships between each pair of the atomic charges (Figure 3.5B): e.g., a
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projection on the (qC , qH) plane results in a linear correlation between qC and

qH . These pairwise correlations can be derived using the geometric parameters

(Figure 3.4) and dipole moment values:

qC = −nH

nC

zH − zX
zC − zX

qH +
µz −QzX
zC − zX

(3.19)

Importantly, there is a good numerical agreement between the correlations

obtained analytically using the DFT dipole moments and from the linear fitting

of the scattered GA solutions (Table A2 in the Appendix A). Thus, the linear

relationships observed for the two- and three-independent charge systems arise

because all GA solutions satisfy the constant total charge and (for the

three-charge systems) the dipole moment requirements, while the higher

multipole moments produced by these solutions are scattered.
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Figure 3.5: The correlation between the chloromethane point charges obtained
from 200 independent GA runs shown in three dimensions (A) and as two-
dimensional projections, i.e. pairwise correlations between charges (B).

3.4 Covariance Matrix Analysis

In the trivial case of the two- and three-independent charge systems, the

scattered nature of the small-population GA-optimized point charges can be

interpreted using a simple correlation analysis (Figures 3.3 and 3.5). However,

understanding the results for larger, more realistic molecules would require more

general approach, such as the analysis of the eigenvectors of the covariance

matrix Σ computed for a set of GA solutions. We tested this approach by

re-examining the small-population GA results for the two- and three-charged

model systems discussed above. For the two-charge molecules, the covariance
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matrix diagonalization (Table A3 in the Appendix A) yields one vector with

almost negligible variance/eigenvalue (σ2
1 < 105) and one vector with much

higher variance (σ2
2 ∈ [0.06; 0.19]). The first vector s1, along which the data does

not vary, numerically corresponds to the normalized vector u1 that defines the

total charge and is determined by the stoichiometry of the molecule:

Q = nXqX + nHqH = u1 · q (3.20)

where u1 = (nX nH) and q = (qX qH). The second vector s2, i.e. the vector

along which the data shows a significant variation, numerically corresponds to a

normalized vector u = (nH − nX), also determined by the stoichiometry. Thus,

the eigenbasis of the covariance matrix Σ̃ can be represented as:

Σ̃ = (s1 s2) =

(
u1

|u1|
u2

|u2|

)
(3.21)

The dramatic difference in the data variation along the two covariance

eigenvectors suggests that the fitness function has very different curvatures along

these two directions. This curvature of the fitness function can be examined

explicitly by computing and diagonalizing its Hessian matrix, or, for simplicity,

the Hessian of the LS sum H (eq. 3.5):

Hhi = κihi (3.22)

H̃ = (h1 . . . hM) (3.23)

As can be seen from Figure 3.6 and Table A3 in the Appendix A, the Hessian

eigenbases H̃ computed for all four two-charge molecules are numerically

identical to the corresponding covariance matrix eigenbases Σ̃ and the basis of

normalized vectors ui in Ũ:

Σ̃ = H̃ = Ũ =

(
u1

|u1|
u2

|u2|

)
(3.24)
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Figure 3.6: Numerical equivalence of the eigenvectors of the covariance matrix
for the results of 200 GA runs, the eigenvectors of the least-squares sum Hessian
matrix, and the normalized vectors u1 and u2, on the example of water molecule.

There is an inverse relationship between the eigenvalues of the fitness

function/LS sum Hessian and the covariance matrices: the Hessian eigenvector

h2 with near-zero eigenvalue/curvature corresponds to the covariance eigenvector

s2 with a large variance; at the same time, the Hessian eigenvector h1 with a

large curvature corresponds to the covariance eigenvector s1 with near-zero

variance. The latter high-curvature/small-variance vector is also the vector that

defines the total charge of the molecule, u1 (eq. 3.20). Thus, the linear

correlations observed for the GA solutions (Figure 3.3) arise due to a high

curvature of the fitness function with respect to the deviation of the total charge

from the optimal value (zero for the studied molecules).

The fitness function plots indeed show a dramatic difference in the curvatures

(Figure 3.7): when plotted against qX and qH , the fitness function has a

characteristic V-like shape, with the line of zero total charge going through the

bottom of the valley (eq. 3.20). As evident from the 3D plots, changing the

central atom charge qX from -1 to 1 e can result in up to 300-800 kcal/mol

increase of the fitness function. At the same time, 2D profiles along the zero

total charge line show 1-2 orders smaller variation of the fitness function values

(< 60 kcal/mol, note the difference in scales for the 3D and 2D plots in Figure

3.7). The actual minimum of the fitness function is determined by the next
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non-vanishing multipole moment indicated by the positions of the arrows in

Figure 3.7.
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Figure 3.7: Fitness function profiles for the two-charge model molecules: full
profiles (3D plots) and the profiles along the zero total charge line (2D plots).
Red dots show the solutions obtained from GA optimizations (200 runs), and the
yellow dots indicate the ESP solutions.

In case of the three-charge model molecules CH3X and CH2X2,

diagonalization of the covariance matrices Σ of the scattered GA solutions yields

two vectors, s1 and s2, along which the variance is negligible (σ2
1,2 < 10−5), and

the third s3 with much larger variation of the data (σ2
3 ∈ [0.1; 0.2]). As the GA

solutions conserve both the total charge Q and the dipole moment µz, we can

expect that the s1 and s2 vectors correspond to the vectors u1 = (nX nC nH)

and u2 = (nXzX nCzC nHzH), eqs. 3.16 and 3.17, in which case the third vector

s3 should be collinear with the cross product u3 = u1 × u2, along which the GA

solutions are distributed. Unlike the s1 and s2 vectors, the u1 and u2 vectors are

generally not orthogonal, but their orthogonality can be achieved by

appropriately shifting the coordinate origin:

u1 · u2 = 0 (3.25)

n2
X(zX − z0) + n2

C(zC − z0) + n2
H(zH − z0) = 0 (3.26)

z0 =
n2
XzX + n2

CzC + n2
HzH

n2
X + n2

C + n2
H

(3.27)
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where z0 is the coordinate of the new origin along the z axis.

As expected, the set of the three orthogonal vectors ui:

(
u1 u2 u3

)
=


nX nX(zX − z0) nCnH(zC − zH)

nC nC(zC − z0) nHnX(zH − zX)

nH nH(zH − z0) nXnC(zC − zC)

 (3.28)

numerically matches, after normalization, with the eigenbasis of the

corresponding covariance matrix of the GA solutions Σ and the eigenbasis of the

LS sum Hessian matrix H (Table A4 in the Appendix A):

Σ̃ = H̃ = Ũ =

(
u1/|u1| u2/|u2| u3/|u3|

)
(3.29)

Thus, analysis of the covariance matrix provides a convenient and general

method to understand the nature of the premature convergence of the

small-population GA point charge optimizations that yields highly dispersed

suboptimal solutions.

3.5 Rotation of the Optimization Coordinates

As it was shown, GA optimizations of point charges tend to quickly converge

with respect to the leading terms of the multipole expansion associated with

large curvature of the LS sum, but have difficulty navigating towards the minima

along the other directions defined by the Hessian eigenvectors associated with

small curvatures. Thus, the Hessian/covariance matrix eigenvectors provide a set

of linearly independent, natural coordinates expressed as linear combinations of

the point charge coordinates. The latter, on the other hand, represent a linearly

dependent set of coordinates for the fitness function minimization problem. In

fact, optimization in a rotated coordinate system is known to dramatically

deteriorate the GA convergence.146 This can be illustrated on the example of

minimization of a simple function of two variables (Figure 3.8A) that has a low

curvature along the x-axis and much higher curvature along the y-axis, resulting
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in a V-shaped surface similar to the fitness function of the two-charge systems

(Figure 3.7). This model function does not present a problem for GA

optimization in terms of the linearly independent parameters x and y, as written

in Figure 3.8A: all GA runs quickly converge to the true minimum (zero

standard deviation of the GA solutions). However, if the coordinate system is

rotated by angle θ relative to the original axes (Figure 3.8B), the GA

performance significantly deteriorates, as is evident from the increasing standard

deviation, which reaches the maximum for θ = 45◦(Figure 3.8C).
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Figure 3.8: The effect of coordinate rotation on the convergence of GA minimiza-
tions on the example of a simple model function f of two variables associated
with highly different curvatures: the model function plotted in the original coor-
dinate system (A) and in the coordinate system rotated by 45◦(B); the average of
fmin values obtained from 50 GA minimization runs (blue) and the corresponding
standard deviations (red) vs the rotation angle θ.

This effect can be understood in terms of the high selective pressure along

the high-curvature component y. The first chromosome to reach the minimum

along y, i.e the line at the bottom of the valley, will quickly dominate the entire

GA population; any new chromosome that even slightly deviates in the

high-curvature direction incurs high fitness penalty and is not propagated to the

next generation. In the original non-rotated coordinate system, the population is

free to explore various values of the low-curvature parameter x without straying

away from the bottom of the valley along the coordinate y. However, in the case

of a rotated coordinate system, the population would produce a viable offspring

in the direction of the global minimum only if both linearly dependent variables

x′ and y′ change in a precise way to stay at the bottom of the valley. Since this

is a low-probability event for a small population, the population stops changing
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once it reaches the minimum along the high-curvature direction, even though it

may be far from the minimum along the low-curvature direction.

This population stagnation/premature convergence of the GA optimizations

in rotated coordinate systems can be overcome by using large populations

and/or higher mutation rates, which can lead to a significant computational cost.

A more appealing solution is to perform the optimization in linearly independent

coordinates determined by the eigenbasis of the LS-sum Hessian H̃. In this case,

the chromosomes encode a vector n of M real numbers–the optimization

coordinates in the basis H̃, while the fitness function is still evaluated in terms of

the point charges q (eq. 3.7) obtained using a linear transformation:

q = H̃n (3.30)

We tested this approach for the same two- and three-charge model molecules

discussed above. With other GA parameters kept unchanged, optimizations in

the new coordinate system demonstrated much more robust convergence, as they

require less than a half of the population size to achieve results of the same

accuracy. For example, in the case of the three-charge CH3X and CH2X2

molecules, 30 chromosomes were sufficient to converge to solutions that match

the ESP charges within ±0.01 e, and to completely eliminate the linear

correlations observed for the direct point charge optimizations (Table 3.5).

Thus, the efficiency of the point charge fitting using GAs can be dramatically

improved by rotating the optimization coordinates using the eigenvectors of the

LS-sum Hessian. As we already discussed, the covariance matrix of the GA

solutions is numerically equivalent to the Hessian, and this useful property of the

covariance matrices is utilized in some recently developed advanced evolutionary

methods such as the covariance matrix adaptation evolution strategy (CMA-ES)

approach.115,116,147 Like other evolutionary strategy (ES) techniques, CMA-ES

differs from less sophisticated classical GA methods in the implementation of the

crossover and mutation operations; in some cases (CMA-ES included), new
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Table 3.4: Charge fitting for two- and three-charge model molecules: average
fitness scores with standard deviations (in parenthesis) for the GA optimizations
(200 runs with 30 chromosomes per generation) using the point charge coordinates
vs the coordinates defined by the LS-sum Hessian eigenvectors, along with the
fitness scores of the reference ESP solutions; all units are in kcal/mol.

Molecule Point-charge coordinate Eigenvector coordinates ESP
H2O 2.91(1.02) 2.66(5.34× 10−6) 2.66
NH3 3.89(1.06) 3.34(1.06× 10−5) 3.34
C6H6 2.82(1.83) 2.15(1.50× 10−5) 2.15
CH4 1.66(0.57) 1.27(1.30× 10−6) 1.27
CH3Cl 2.46(0.41) 2.14(4.84× 10−2) 2.14
CH2Cl2 2.79(0.42) 2.46(1.95× 10−5) 2.46
CH3F 2.26(0.41) 1.89(3.06× 10−5) 1.89
CH2F2 2.35(0.64) 1.84(2.17× 10−5) 1.84
CH3O

− 4.71(0.98) 3.61(5.02× 10−5) 3.61

candidate solutions/offspring are sampled from the multivariate normal

distribution, rather than produced by the traditional crossover operator.

However, the most important CMA-ES feature in the context of this discussion

is that a new set of solutions is generated using an approximate covariance

matrix, which is updated at every step of the optimization. In this respect,

CMA-ES is highly reminiscent of the quasi-Newton optimization techniques that

use an approximate Hessian matrix which is updated at every step.

3.6 Large-Molecule Example

Here, we tested the performance of the GA and CMA-ES methods for the

point-charge fitting problem in the case of five conformers of 1-chlorobutane, a

more realistic example than the two- and three-charge models discussed so far

(Figure 3.9).

Anti 1 Anti 2 Gauche 1 Gauche 2 Gauche 3

C1

C2C3

C4

Cl
C1

C2
C3

C4

Cl

C1
C2

C3

C4

Cl
C1C2

C3

C4

Cl

C1C2

C3

C4
Cl

Figure 3.9: Five conformers of 1-Chlorobutane with carbon atom numbering.
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In line with the assumptions made in the force field development, the

hydrogen atoms within each methyl and methylene group were considered

equivalent, giving nine point charge values overall to optimize for each

conformer; the point charges were fitted separately for each conformer. In each

case, 200 GA runs with population of 200 chromosomes produced highly

scattered solutions with the average fitness score significantly higher than that of

the reference ESP solutions (Table 3.6). However, just like in the case of the

small models, the GA solutions consistently reproduce the total charge and the

magnitude of the dipole moment; also, there is a very good correspondence

between the eigenvectors of the covariance matrix of the GA solutions and the

LS sum Hessian (Figure 3.10). The eigenvector that corresponds to the highest

curvature (∼ 3600) and the smallest variance (∼ 10−6) corresponds to the total

charge; it is identical for all conformers. While in the case of a large molecule

such as 1-chlorobutane it is less straightforward to derive analytical expressions

for the other high-curvature/low-variance eigenvectors, they seem to correspond

to the leading multipole momentsthe correspondence which is especially clear for

the second highest-curvature vector (curvature ∼ 200, variance ∼ 10−5) that

defines the main dipole moment component. As the curvature decreases, the

physical interpretation of the associated eigenvectors becomes less clear, and the

similarity between the eigenvectors calculated for different conformers decreases,

reflecting different electrostatic properties of these conformers. The last four

eigenvectors have curvatures in the 0.3 to 0.03 range and correspondingly large

variances, ∼ 10−2 − 10−1. These low-curvature/high-variance coordinates have a

small contribution to the overall MEP, do not seem to be associated with

particular multipole moments, and primarily depend on the charges of the buried

carbon atoms.

The GA optimizations in terms of the variables defined by the LS-sum

Hessian eigenvectors yielded solutions with much better fitness scores (Table 3.6)

and significantly decreased the scatter of the solutions (Figure 3.11). At the
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Figure 3.10: Bar-chart representation of the eigenvectors of the Hessian matrix
for five conformers of 1-chlorobutane.

Table 3.5: Charge fitting for 1-chlorobutane conformers: average fitness scores
with standard deviations (in parenthesis) for the GA optimizations using two
coordinate systems (point charges and Hessian eigenvectors), along with the fitness
scores of the CMA-ES and ESP solutions; all units are in kcal/mol.

Conformation Point charges Eigenvectors CMA-ES ESP
anti 1 3.05(0.43) 2.58(0.20) 2.09 2.09
anti 2 3.02(0.41) 2.57(0.19) 2.13 2.13

gauche 1 3.06(0.45) 2.61(0.21) 2.12 2.12
gauche 2 3.08(0.45) 2.58(0.19) 2.10 2.10
gauche 3 3.15(0.49) 2.62(0.18) 2.14 2.14

same time, multiple CMA-ES runs converged to the identical solutions, which

are also equal within more than five decimal placesto the ESP values. The

superb performance of CMA-ES method in this test case suggests that it could

be a promising global-search evolutionary technique for force field development.

3.7 Variance of the Least Squares Solution and the Buried Atom Effect

Besides their importance for the application of evolutionary methods in the

force field development, the insights into the severe convergence problems of the

point charge fitting using classical GA methods can also be useful to revisit some

of the well-known issues with the ESP method. The ESP charges can vary
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Figure 3.11: Standard deviations σ of the charges q and the corresponding coor-
dinates defined by the LS-sum Hessian eigenvectors n obtained from the solutions
of 200 GA performed in terms of the charge coordinates(left), and in terms of the
LS-sum Hessian eigenvector coordinates (right).

depending on the grid setup, and often are highly inconsistent for even slightly

different conformers of the same molecule; the variation is especially large for the

carbon atoms of methyl and methylene groupsthe buried atom effect. These

difficulties, commonly ascribed to the rank-deficient character of the LS matrix,

can be understood in a new light once we recognize that the variation of the ESP

solutions has the same underlying factors as the much larger scatter of the GA

solutions. In fact, all LS fitting problems, not just the ESP, produce slightly

different solutions from the LS matrices A that differ by the number of grid

points, type of the grid, its density, etc. The covariance of these solutions, has

been shown to be proportional to the inverse of the Hessian matrix:111

cov (q∗) ∝ H−1 = (A⊺A)−1 (3.31)

Since a matrix inversion does not change the corresponding eigenvectors, this

covariance matrix also shares the eigenbasis U with the covariance matrix of the



54

GA solutions. Thus, the variance/scatter of the ESP and GA solutions are

related to the same fundamental properties of the LS-sum Hessian matrix, whose

eigenvectors hi define the natural, linearly independent coordinates for the MEP

fitting problem. This provides a convenient framework to discuss the

ill-conditioned nature of the ESP problem, and the buried atom effect associated

with it. The numerical instabilities observed for the standard ESP

implementations can be related to the LS-sum Hessian eigenvectors with the

highest and the lowest curvatures. For any molecule, the first eigenvector defines

the total charge coordinate and the curvature along this coordinate is orders of

magnitude larger than the curvatures along other coordinates. Hence, a very

strong total charge restraint is naturally built into the ESP problem.

Nevertheless, most of the ESP implementations introduce an additional total

charge constraint using Lagrange multipliers,a redundancy that leads to the

known rank-deficiency of the resulting LS matrix. On the other hand, the vexing

problem of the buried atoms arises as a natural consequence of the high-variance

coordinates with curvatures many orders of magnitude smaller than the

curvatures of the coordinates associated with the leading multipole moments.

These low-curvature/high-variance coordinates have a small contribution to the

MEP and do not significantly affect the overall fitness of a solution. Thus,

several solutions can have very similar fitness scores because they have the same

positions along the high-curvature coordinates, although their positions along

the low-curvature coordinates could be quite different. Yet, these very similar

solutions would appear very different when expressed in terms of the linearly

dependent point-charge coordinates. Importantly, the

lowest-curvature/highest-variation eigenvectors have the dominant contributions

from the charges on the buried carbon atoms, as can be seen in the case of the

CH3X and CH2X2 molecules and the 1-chlorobutane conformers. As a result,

these carbon atoms show the highest variation of the point charges, which is

further amplified by the hydrogen/carbon stoichiometric ratios for the CH3 and
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CH2 groups. The usual approach to prevent the wide variation of the ESP

charges on buried the carbon atoms is to use additional restraints to keep these

charges close to a predefined value, e.g. zero, or simply to constrain them to zero

or some chemically reasonable value. This, however, can negatively affect the

overall dipole moment values produced by the fitted point charges, as well as the

overall quality of the fit; a better strategy may involve restraining or

constraining the values along the low-curvature Hessian eigenmode coordinates.

3.8 Summary

In this chapter, motivated by the idea of using evolutionary approaches for

the simultaneous optimizations of several types of force field parametersincluding

point charges, we explored the performance of the genetic algorithm (GA)

approach for a simpler problem of point-charge fitting against the reference

molecular electrostatic potential (MEP). We find that unless unreasonably large

population sizes are used, the GA optimizations produce highly scattered, but

correlated, solutions. Analysis of the covariance matrices for these scattered sets

of GA solutions revealed a remarkable correspondence between the covariance

matrices and the fitness function Hessian matrix, which share the same set of the

eigenvectors. This eigenbasis represents a linearly independent set of coordinates

that are natural for the MEP point-charge fitting problem, unlike the linearly

dependent point charge coordinates. Some of the Hessian/covariance matrix

eigenvectors define the coordinates related to the leading terms of the multipole

expansion (the total charge/monopole, dipole moment components); these

coordinates are associated with high curvature of the fitness function and thus

negligible variation of the GA solutions. On the other hand, other eigenvectors

are associated with negligible fitness function curvatures and thus large variance.

The huge disparity between the curvatures of the Hessian eigenvector

coordinates causes premature convergence of the GA optimizations performed in

terms of the linearly dependent point-charge coordinates, because of the high
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fitness penalty for even a slight deviation from the minimum along the

high-curvature direction that effectively prevents the GA population from

exploring the fitness profile along the low-curvature direction. This leads to a

variety of GA solutions with highly scattered point charge values and moderately

low, but not always optimal fitness scores. The severe scatter of the GA

solutions can be seen as an exaggerated version of the well-known buried atom

effect, the variation of the ESP charges of the buried carbon atoms observed for

different grid setups and/or for different conformers. This effect arises from the

coordinates defined by the low-curvature Hessian eigenvectors and the fact that

the point charges are inappropriate, highly linearly dependent (and also

redundant)96 coordinates for the MEP fitting problem. Thus, MEP fitting in

coordinates defined by the fitness function/LS-sum Hessian eigenbasis is essential

when using evolutionary methods. In this respect, the most promising approach

is to take advantage of the correspondence between the eigenvectors of the

covariance matrix of the solutions and the fitness function Hessian matrix, as it

is done in advanced evolutionary techniques such as covariance matrix

adaptation evolution strategy (CMA-ES). Besides not being proper quantum

mechanically observed parameters, atom-centered point charges are not even

proper variables for the classical MEP fitting problem. At the same time, the

simplicity and efficiency of the point charge model ensures its continuing survival

in the field of the biomolecular simulations, at least in the short term.11,70,71,148

Thus, the insights revealed by the analysis of the GA performance for the point

charge fitting problem could prove useful for the further development and

optimization of the biomolecular force fields using evolutionary methods, as well

as other optimization techniques.

3.9 Computational Details

All geometry optimizations were performed at the B3LYP/aug-cc-pVDZ

level,149–151 as implemented in Gaussian 09 package.152 Reference MEPs were
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generated as cubic grids with linear density of 1.5 points/Å, followed by removal

of the points outside 1.42.0 van der Waals radii range around each atom. This

sampling procedure covers the solvent-accessible region of the molecule, in line

with common charge fitting procedures.36,37

All charge-fitting procedures were implemented using Python programming

language within fftoolbox and genetica modules with the source code available

online. The fftoolbox module extracts molecular geometry and the reference

electrostatic potential from the Gaussian cube file and performs calculation of

the LS sum over the points in the grid. Besides the atom-centered point charges,

fftoolbox also supports the optimization of the extra points placed out of the

atomic centers. The ESP method is implemented as a part of fftoolbox with the

normal equation solved using numpy library.153 GA optimization routines are

implemented in the genetica module using either binary and real-number

chromosome representation. The point charge optimization can be performed in

three coordinate systems: point charges, multipole moments, or in the eigenbasis

of the LS-sum Hessian matrix. Besides a single-objective minimization, genetica

also supports vector-valued FFs using Vector Evaluated GA (VEGA)an

extension of the single-objective GA method to support multi-objective

optimizations. Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

optimizations were performed using cma Python library;115,116,147 in these

optimizations, all values of the initial solution were set to zero and the initial

standard deviation was set to 0.1. Covariance matrix calculations as well as all

matrix eigendecompositions were performed using numpy library. Graphical

representation of the results is supported by matplotlib library.154



58

Chapter 4

Revealing the Ill-Conditioning of the Charge

Fitting Problem

4.1 Introduction

The atom-centered point charge (PC) model of molecular electrostatics has

been a mainstay of biomolecular simulations for

decades.32,33,36,44,49,71,122,142,143,155–159 While chemically intuitive and

straightforward in technical implementation, this model does not provide a

sufficiently detailed description of the anisotropic features of the molecular

electrostatic potential (MEP), such as lone pairs, π-systems, and σ-holes, etc.

which are mostly governed by higher-order multipole terms.53,54 These

anisotropic effects, however, can be described within the PC approximation by

moving beyond the atom-centered paradigm, i.e. by adding non-atom centered

PCs/extended points.60,61,70,160 Although increasing the number of PCs per atom

improves the quality of the electrostatic model, it also can exacerbate

well-known ill-conditioning and redundancy problems37,38,140 of the PC fitting

procedures, leading to numerically unstable solutions.36,161,162

These numerical instabilities are usually related to a large variation of the PC

values for atoms in the interior of the molecule, so-called buried atom

effect.36,39,40,142 The buried atom (usually methyl and methylene carbons)

charges can dramatically change due to trivial changes in the PC fitting problem

(the probe grid sampling, spatial orientation of the molecule, etc.), and/or have

inconsistent values across very similar molecules or even conformers of the same

molecule.35,137 As the inclusion of non-atom centered PCs into the model

produces even more buried centers, it should also increase the numerical

instabilities of the PC fitting problem.
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In fact, these numerical problems are rooted in the mathematical nature of

the PC derivation—the least squares (LS) fitting to the reference MEP:32,33

χ2 (q) = |Φ−Aq|2 = |Φ|2 + g⊺ · q+ q⊺Hq, (4.1)

g = −2A⊺Φ, (4.2)

H = A⊺A, (4.3)

where the LS sum χ2 is the subject of minimization and the solution satisfies

normal equations:144

A⊺Aq = A⊺Φ. (4.4)

Here, the elements of the LS matrix A correspond to the inverse distance 1/rij

between the PC i and the grid point j; Φ is T -dimensional vector of the reference

values of MEP; q is N -dimensional vector of the PC values; g is the gradient of

the function χ2 at the origin (q = 0); H is the Hessian matrix of LS sum χ2.

While the ill-conditioning is common to many LS fitting problems,163–165

numerical difficulties associated with PC fitting are further compounded by

commonly used total charge constraint using Lagrange multiplier.34,37,38,48

One of the most widely used techniques to alleviate the numerical

instabilities of PC fitting is to add artificial restraints to the PC values of the

buried atoms.36,41,43,49 Although this method can be extended to models with

off-center PCs/extended points, one may wonder if it would be possible to

overcome these difficulties in a more elegant way, based on better physical

understanding of the problem.

For instance, an important insight can be gleaned from the

eigendecomposition of the LS sum Hessian matrix (eq. 4.3):

Hui = κiui. (4.5)
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Indeed, the ill-conditioned nature of the LS matrix A can be related to the

significant differences in the eigenvalues κi, i.e. the LS sum curvatures along the

directions defined by the eigenvectors ui.
111,166 Because of the 2–3 order of

magnitude variation of the κi values, different sets of PCs can produce

essentially the same MEP, as these solutions have the same positions along the

high-curvature directions, although the positions along the low-curvature

directions could be quite different.166 Importantly, the eigenvectors with the

largest curvatures usually correspond to the total charge and dipole moment

components of the molecule, while the lower-curvature eigenvectors do not seem

to be associated with particular multipole moments.166,167

However, the exact physical origin of the correspondence between the large

curvature eigenvectors and the first terms of the multipole expansion is unclear,

along with the nature of the low-curvature eigenvectors. Particularly, it is not

clear if the presence of the low-curvature modes of the H matrix and thus the

ill-conditioning of the LS problem is solely because of the nature of the PC

fitting problem, or due to some numerical factors, e.g. an incomplete sampling of

the reference MEP grid.

To address these questions, in this chapter we revisit the PC fitting problem

from the first principles. While the atom-centered PC model traces back to the

intuitive chemical concept of the atomic charge, we consider a general PC model

as a case of the inverse problem, where one seeks to recover the source charge

distribution from its effect, i.e. electrostatic potential distribution. Based on the

properties of the Coulomb law, we construct a best-case electrostatic model for

which the inverse problem can be solved exactly, both in the continuous case, as

well as in the case of a discrete (non-atom centered) PC approximation.

Using this model, we investigate the nature of the eigenvectors ui and their

eigenvalues κi, and dissect the factors responsible for the ill-conditioning of the

LS fitting problem, and discuss how these insights can be used to improve and

simplify the existing PC derivation procedures.
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4.2 Point Charge Fitting as an Inverse Problem

A problem where given an effect (in this case the MEP Φ) defined in the

region VΦ, its cause (a charge distribution ρ) defined in the region Vρ needs to be

determined belongs to a general class of inverse problems and can be described

by the Fredholm integral equation of the first kind:168

∫
Vρ

k(r, r′)ρ (r′) dr′ = Φ(r) , (4.6)

where kernel k(r, r′) specifies the evolution of the cause ρ(r′) into the effect Φ(r),

that in this case corresponds to the Coulomb law:

k(r, r′) =
1

|r− r′|
. (4.7)

The integral equation can also be represented as an operator equation:

Kρ = Φ, (4.8)

where K : U → V is a linear operator defined on space U = range(K∗) ∈ L2 of

square integrable functions, and takes values in space V = range(K) ∈ L2;

K∗ : V → U is adjoint of K. This equation can be solved exactly if and only if

Φ ∈ V . However, in general it is not the case, so a function ρ that minimizes the

residual norm |Φ−Kρ| is considered as the LS solution and thus satisfies the

normal equation:108,168

K∗Kρ = K∗Φ. (4.9)

This LS solution can be obtained as the linear combination of the basis

vectors ui ∈ U :168

ρ = K†Φ =
∞∑
i=1

⟨Φ, vi⟩
µi

ui, (4.10)
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where K† is the Moore-Penrose inverse, µi is a singular value, vi and ui are left

and right singular vectors, respectively and the inner product ⟨Φ, vi⟩ is defined as

⟨Φ, vi⟩ =
∫
VΦ

Φ(r)vi(r)dr (4.11)

The orthogonal bases {ui}∞i=1 and {vi}∞i=1 also form the eigenbases of K∗K

and KK∗ with eigenvalues µ2
i :

K∗Kui = µ2
iui, (4.12)

KK∗vi = µ2
i vi. (4.13)

To obtain a numerical solution to the integral equation (eq. 4.6), the regions

over which the MEP and charge distribution are defined are sampled using a

numerical quadrature. Given N quadrature nodes over the charge distribution

and T nodes over the MEP region the integral equation is transformed into a

system of T linear equations:

Kq = Φ, (4.14)

where the T ×N matrix K is identical to the LS matrix A from eq. 4.1 and

contains the kernel elements kij, as this matrix originates from the kernel k(r, r′)

in the integral equation (eq. 4.6). It will be further referred to as K in order to

highlight its mathematical origin.

Then, the PC value at the node i is the product of the charge density ρi and

the quadrature weight wi:

qi = ρiwi (4.15)

Since the number of the reference values T is usually larger than the number

of the unknown PC values N , the system of linear equations is overdetermined.

Then, a solution that minimizes the LS sum χ2 (q) (eq. 4.1) and satisfies normal

equations (eq. 4.4) is considered as the numerical solution to the integral

equation (eq. 4.6). This solution can be obtained using singular value



63

decomposition (SVD) of matrix K:108,111,144

q = K†Φ =
r∑

i=1

Φ · vi

µi

ui, (4.16)

where K† is the Moore-Penrose pseudoinverse; µi are singular values of matrix

K; vectors vi and ui are left and right singular vectors. If the rank r of matrix

K is less than the dimension of q (r < N), then the matrix K is rank deficient.

Similarly to the continuous case (eqs. 4.12-4.13), the orthogonal bases {vi}ri=0

and {ui}ri=0 form eigenbases for KK⊺ and K⊺K:

KK⊺vi = µ2
ivi, (4.17)

K⊺Kui = µ2
iui, (4.18)

where K⊺K is also a Hessian matrix (eq. 4.5) and µ2
i is identical to its eigenvalue

κi, which is the χ2 curvature along the direction ui:
169

µ2
i = κi (4.19)

In many LS problems, PC fitting included, the singular values vary in a wide

range, revealing the underlying ill-conditioning.37,38,163,164 As a singular value µi

is a denominator in the LS solution (eq. 4.16), the smaller the singular value, the

larger the effect of the corresponding singular vector ui on the LS solution.

Thus, even small variations along ui with small singular value lead to a

significant variations of the LS solution, although these variations do not lead to

significant change in the quality of the fit χ2.166 To understand the origins of the

ill-conditioning in PC fitting, we next consider a system for which the inverse

electrostatic problem can be analytically solved.
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BA

Figure 4.1: Schematic representations of the probe SR and charged Sa spheres in
the continuous (A) and discrete (B) forms. Operators K (eq. 4.28) and matrix K̃
are represented schematically.

4.3 The Two-Sphere Model

The Coulomb kernel (eq. 4.7) can be conveniently expanded in terms of

spherical harmonics so the source r′ and the observation r coordinates are

separated but share the same origin:1,107

k(r, r′) =
1

|r− r′|

=
∞∑
l=0

l∑
m=−l

4π

2l + 1

rl<
rl+1
>

Ylm(r̂′)Ylm(r̂),

(4.20)

where r̂ = r/r denotes the unit vector defined by the polar φ and azimuthal θ

angles; r< is the smaller and r> is the larger of r and r′; Ylm are orthogonal

real-value spherical harmonics:1

∫
S

Ylm(r̂)Yl′m′(r̂)dΩ = δll′δmm′ , (4.21)

where dΩ is the differential of the solid angle.

Then, in the region beyond the divergence sphere where the charge density

vanishes, the MEP can be expanded in a multipole series:1,107

Φ(r) =
∞∑
l=0

l∑
m=−l

√
4π

2l + 1
r−l−1Qmol

lm Ylm(r̂), (4.22)

1For practical purpose, we use real-valued spherical harmonics, thus to compact the derivation
and not to obscure the main idea of the work Ylm with, m < 0 (m > 0) corresponds to Ylms

(Ylmc) in standard notation1
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where a molecular multipole moment Qmol
lm is given by

Qmol
lm =

√
4π

2l + 1

∫
rlρ(r)Ylm(r̂)d

3r. (4.23)

The form of the kernel expansion (eq.4.20) suggests that if the radii r = R

and r′ = a are fixed, the kernel k(R, a) can uniquely map a charge density over a

spherical surface Sa to the corresponding potential Φ(R) on a sphere SR and vice

versa. Thus, for a probe sphere SR with the radius R greater than the radius of

divergence sphere, the MEP can be reproduced exactly by a sphere Sa with

surface charge density σ(a) such that the multipole moments of the sphere QSa
lm

are equivalent to the multipole moments of the molecule Qmol
lm :

QSa
lm ≡ Qmol

lm , (4.24)

where multipole moments of the sphere are:

QSa
lm =

√
4π

2l + 1
al
∫
Sa

σ(a)Ylm(â)dΩ. (4.25)

In this case, the original integral eq. 4.6 is transformed into a surface integral

equation: ∫
Sa

k(R, a)σ(a)dΩ = Φ(R), (4.26)

or, equivalently, in an operator form

Kσ = Φ, (4.27)

where K : L2(Sa) → L2(SR) is a compact infinite-rank operator (Figure 4.1A):

Kσ =
∞∑
l=0

l∑
m=−l

µl⟨σ, Y Sa
lm ⟩Y SR

lm , (4.28)
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where subscripts Sa and SR denote the spheres, on which the corresponding

spherical harmonics are defined; the projection ⟨σ, Y Sa
lm ⟩ is the inner product on

the L2(Sa) space:

⟨σ, Y Sa
lm ⟩ =

∫
Sa

σ(a)Y Sa
lm (â)dΩ (4.29)

and for each degree l there is a singular value µl in the form of the

distance-dependent factor from the MEP expansion (eq. 4.20):

µl =
4π

2l + 1

al

Rl+1
. (4.30)

Accordingly, the spherical harmonics Y SR
lm and Y Sa

lm are left and right singular

vectors and thus the eigenfunctions of the operators K∗K and KK∗, while the

squares of the singular values µl are their eigenvalues (eqs. 4.12-4.13). Since the

singular values µl and spherical harmonics Y Sa
lm and Y SR

lm form a singular system

of the operator K, the solution to integral equation (eq. 4.26) can be expressed

as:

σ = K†Φ =
∞∑
l=0

l∑
m=−l

⟨Φ, Y SR
lm ⟩

µl

Y Sa
lm . (4.31)

According to the multipole expansion (eq. 4.22), the inner product ⟨Φ, Y SR
lm ⟩

depends on the radius R of the probe sphere and the multipole moments of the

molecule:

⟨Φ, Y SR
lm ⟩ =

∫
SR

Φ(R)Y SR
lm (R̂)dΩ =

√
4π

2l + 1

1

Rl+1
Qmol

lm . (4.32)

The dependence on the radius R cancels out, so the charge density depends

only on the radius a of the sphere Sa and the molecular multipole moments:

σ(a) =
∞∑
l=0

l∑
m=−l

√
2l + 1

4π
a−lY Sa

lm (â)Qmol
lm , (4.33)

and the charged sphere Sa exactly reproduces the MEP Φ(R).
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4.4 Analytical Point Charge Model

We can construct an approximate discrete analog of the two-sphere model

(eqs. 4.26-4.33, Figure 4.1) using a quadrature that exactly integrates spherical

harmonics Ylm over a sphere up to a given l (eqs. 4.29 and 4.32), e.g. the widely

used170–172 Lebedev quadrature,173 that defines N quadrature nodes (Figure 4.4)

with predetermined angular coordinates θi, φi, and integration weights wi:

∫
S

Ylm(θ, φ)dΩ =
N∑
i

Ylm(θi, φi)wi. (4.34)

Then, given the surface charge density σi the corresponding point charge is:

qi = σiwi. (4.35)

Figure 4.2: Number of Lebedev quadrature points N (red triangles) and dimension
dn = (n+ 1)2 (green circles) as functions of the degree n

Due to the orthogonality of the spherical harmonics Ylm (eq. 4.21), the

N -node Lebedev quadrature that exactly integrates spherical harmonics over the

sphere Sa up to l = 2n

N∑
i

Y Sa
lm (θi, φi)Y

Sa

l′m′(θi, φi)w
Sa
i = ỸSa

lm · ỸSa

l′m′ = δll′δmm′ , (4.36)
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defines an orthonormal basis of dimension dn = (n+ 1)2:

ỸSa = { ỸSa
lm, −l ≤ m ≤ l }nl=0, (4.37)

where the ỸSa
lm vectors have N elements defined as:

Ỹ Sa
lmi = Ylm(θi, φi)

√
wSa

i . (4.38)

Similarly, the probe sphere SR can be represented by a T -node Lebedev grid that

integrates spherical harmonics up to l = 2t and defines an orthogonal basis ỸSR

of dimension dt = (t+ 1)2.

In this discrete representation, the operator K (eq. 4.28) then becomes a

T ×N matrix K̃:174

K̃ σ̃σσ = Φ̃, (4.39)

where the elements of K̃, σ̃σσ, and Φ̃ are:

K̃ij =
√

wSa
i wSR

j /rij, (4.40)

σ̃i = σi

√
wSa

i , Φ̃j = Φj

√
wSR

j . (4.41)

Since usually the probe grid has more points than the source grid, i.e.

T > N , the matrix equation (eq. 4.39) is a LS problem (eq. 4.1) that can be

solved using SVD of the matrix K̃ (eq. 4.16), giving a discrete analog of eq. 4.33:

σ̃σσ =
n∑

l=0

l∑
m=−l

Φ̃ · ỸSR
lm

µl

ỸSa
lm, (4.42)

where ỸSR
lm and ỸSa

lm are left and right singular vectors, and the corresponding

singular values µl are the same as in the continuous case (eq. 4.30).

Since we use the Lebedev quadrature, the dot product Φ̃ · ỸSR
lm corresponds

to exact numerical integration and gives a result identical with the continuous
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case (eq. 4.32):

Φ̃ · ỸSR
lm =

T∑
j=0

ΦjY
SR
lmjwj =

√
4π

2l + 1

1

Rl+1
Qmol

lm , (4.43)

so the solution to eq. 4.39 depends only on the radius a and the multipole

moments Qmol
lm :

σ̃σσ =
n∑

l=0

l∑
m=−l

√
2l + 1

4π
a−lQmol

lm ỸSa
lm. (4.44)

The corresponding PC values qj can be obtained using the quadrature

weights wSa
j :

qi = σiw
Sa
i = σ̃i

√
wSa

i , (4.45)

or, in a vector form:

q =
n∑

l=0

l∑
m=−l

√
2l + 1

4π
a−lQmol

lm YSa
lm ⊙wSa , (4.46)

where wSa is the vector of the quadrature weights for the sphere Sa. Therefore,

we can use Lebedev grid that shares the origin with a molecule to construct an

analytical PC model that exactly reproduces molecular multipole values up to

the degree n.

From this model, we can see that the ill-conditioning of the PC fitting due to

the decay of the singular values is intrinsic to the inverse electrostatic problem,

as the singular values µl decrease with increasing l (eq. 4.30). Indeed, the higher

the multipole moment, the smaller its contribution to the overall electrostatic

potential. Also, this contribution gets smaller as we move the probe further away

from the source, and the singular values get smaller with the increasing radius of

the probe sphere R, or decreasing radius of the source sphere a.

The ill-conditioning problems become even more severe as we switch from

modeling the MEP using the Lebedev quadrature, which is the best suited to

reproduce the molecular multipoles, to an irregular atom-centered quadrature, as

shown on a numerical example below.
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BA

Figure 4.3: Cross-section representations of the quadratures used for two-sphere
model (A) (n = 1, N = 6 and t = 11, T = 194 for spheres Sa and SR, respec-
tively) as compared with the traditional atom-centered model (B). Green circles
correspond to the point charges; blue circles correspond to the reference grid points

Figure 4.4: PC representation of the charged sphere Sa using the Lebedev quadra-
ture with n = 1 and n = 2 as compared with the geometry of methanol molecule.

4.5 Lebedev vs. Atom-Centered Model: Numerical Example

First, we consider an electrostatic PC model of a methanol molecule with

PCs placed at the nodes of the Lebedev quadrature over the sphere Sa (a = 2 au)

(Figures 4.3A and 4.4). In this case, the PC values can be obtained analytically

from the reference multipole moments (eq. 4.46) or by numerical fitting to the

reference MEP over the probe sphere SR (R = 8 au, t = 11, T = 194):

σ̃ =
r∑

i=1

Φ̃ · ṽi

µi

ũi, (4.47)
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where the PC value can be found as qj = σ̃j

√
wSa

j and the maximum rank r is

the number N of quadrature nodes/PCs over the sphere Sa. The quality of the

fit is measured using the root mean square deviation (RMSD) calculated over

the T nodes of the probe grid:

RMSD =

√
χ2

T
. (4.48)

Naturally, the analytical PC values from eq. 4.46 exactly reproduce the

molecular multipole moments up to the degree n defined by the quadrature

(Table 4.2). For each degree l there are 2l + 1 values of order m, so overall

(n+ 1)2 multipole moments are reproduced, which matches the dimension dn of

the corresponding basis ỸSa (eq. 4.37). As the dimension dn increases (i.e

number of nodes T ), more multipole moments are reproduced and the RMSD

rapidly approaches zero (Figure 4.5).

Number of quadrature nodes T

Figure 4.5: RMSD as the function of the number N of PCs on the charged sphere
Sa

Since the dimension dn does not match the number of quadrature nodes N

(Figure 4.5),175,176 we can obtain numerical solutions with eq. 4.47 that are

equivalent to the analytical results (eq. 4.46) by setting the rank r to the

dimension of the grid, dn = (n+ 1)2 (Table 4.2). Note, that the slight differences

in the resulting PC and multipole values obtained with the two methods arise

due to the finite radius R of the probe sphere SR used in the numerical
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approach. As R increases, the probe sphere SR entirely encompasses the

molecular charge density, and the multipole moments of the charged sphere QSa
lm

converge to the true molecular multipole moments Qmol
lm (Figure 4.5).

Figure 4.6: Few selected multipole moments QSa
lm of the charged sphere Sa as the

functions of the probe sphere radius R.

As the first dn multipole moments Qmol
lm are reproduced by the PC model, the

first dn numerical singular values µi exactly match the radius-dependent part

(eq. 4.30) from the inverse distance expansion (Figure 4.7), and the

corresponding right singular vectors ũi match the basis ỸSa (Figure 4.8):

{ũi}dni=1 = {ỸSa
lm, −l ≤ m ≤ l}nl=0. (4.49)

If we do not restrict the rank r to the dimension of the grid dn, numerical

SVD of the LS matrix K̃ (eq. 4.47) produces N singular vectors/values. While

this slightly improves the RMSD (Table 4.2), the additional N − dn singular

vectors cannot be described analytically (Figure 4.8), as they go beyond the

dimension dn of the corresponding basis ỸSa . However, in the fortuitous case of

the quadrature with n = 1 and N = 6, the remaining 6− 4 = 2 vectors resemble

the basis vectors Ỹ2−2 and Ỹ2−1, so the corresponding quadrupole moments
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exact expression

two-sphere model

atom-centered model

Figure 4.7: Normalized singular values µi/µ1 obtained using the exact analytical
expression eq. 4.30 (green circles) as compared with the numerical values obtained
from SVD of the LS matrix for the two-sphere model (red stars) and for atom-
centered model (black circles). Lebedev quadratures with n = 1, N = 6 and
t = 11, T = 194 were used for the charged Sa (a = 2 au) and probe SR (R = 8
au) spheres, respectively.

Q2−2 and Q2−1 are accurately reproduced, although the exact numerical

integration of the spherical harmonics Y2−2 and Y2−1 is not provided by the

6-node Lebedev grid.

Now, we can use the insights from the best-case scenario spherical PC model

based on the Lebedev quadrature (Figure 4.3A) to understand the traditional

PC fitting problem with atom-centered charges and the probe grid that follows

the solvent-accessible surface (vdW grid, Figure 4.3B). From the point of view of

the inverse electrostatic model, the atom-centered PC fitting corresponds to a

numerical solution using an irregular and suboptimal integration grid to

represent the source charge distribution. This problem can be treated by SVD of

the LS matrix K:

q =
r∑

i=1

Φ · vi

µi

ui, (4.50)

where the maximum value of rank r is the number of atoms in the molecule, i.e.

r = 6 in the case of methanol.

We can see that even in this case the singular vector u1 with the largest

singular value µ1 corresponds the total charge (Figure 4.8), which is reproduced
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A B C
atom-centered modeltwo-sphere modelspherical harmonics

Figure 4.8: The orthonormal bases of the right singular vectors: basis of spherical
harmonics ỸSa (A), basis from the numerical SVD of the LS matrix in two-sphere
PC model (B), and atom-centered model (C).

Table 4.1: Effect of the numerical rank r (SVD in eq. 4.50) and the total-
charge constraint on the values of atom-centered PCs of methanol and the RMSD
(kcal/mol).

qC qHg qHt qO qH RMSD
SVD, r = 6 0.215 -0.018 0.048 -0.592 0.371 2.457
tSVD, r = 5 -0.058 0.056 0.118 -0.532 0.370 2.625
tSVD, r = 4 0.007 0.089 -0.101 -0.070 -0.010 8.729

Lagrange, Q0 = 0 0.276 -0.035 0.030 -0.603 0.367 2.587
Elimination, Q0 = 0 0.276 -0.035 0.030 -0.603 0.367 2.587

SVD, Q0 = 0 0.214 -0.019 0.047 -0.593 0.370 2.597
Trivial, Q0 = 0 0.214 -0.019 0.047 -0.593 0.370 2.597

with only a slight slight numerical deviation (< 0.01), a consequence of the

molecular charge density spillover beyond the solvent-accessible surface defining

the vdW grid.167

Although the other singular vectors do not exactly match the corresponding

spherical harmonics, the u2–u4 vectors can be roughly related to the three

components of the dipole moment (Figure 4.8), and the corresponding singular

values are commensurate with the singular value µl (l = 1) obtained for the

Lebedev grid model (Figure 4.7). The remaining singular values µ5 and µ6 are

significantly distorted from the singular value µl (l = 2), so the components of

the quadrupole moment are not reproduced as precisely as the the dipole

moment components (Table 4.2).

Among all singular vectors {ui}6i=1, the singular vector u6 with the lowest

singular value µ6, which is 100 times smaller than µ1, is dominated by the

contribution from the methyl carbon atom (Figure 4.8). Since such small

singular values cause numerical instabilities of the LS solution, once can use a
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regularization technique such as truncated SVD (tSVD) that reduces the rank r

by removing the lowest-µi vector(s) from the SVD expansion.111 Removal of u6

that decreases the rank to r = 5 leads to dramatic change in the methyl group

charges—the carbon atom charge in particular, which drops from 0.22 to −0.06.

Yet, these changes lead only to marginal changes in the the multipole moment

and RMSD values, a typical example of the buried atom effect (Tables 4.1, 4.2).

This suggests a natural way to impose a restraint on the buried atom charges

without introducing a restraining function into the LS sum χ2, an addition that

can negatively affect the electrostatic properties of the PC model.38,52

Further removal of the singular vectors u5 and u6 (i.e. r = 4) leads to severe

deterioration of the LS solution, as the corresponding multipole moment strongly

deviate from the reference values and the RMSD significantly increases (Tables

4.1, 4.2). Thus, it appears that the tSVD approach should be applied only to the

singular vectors that strongly depend on the buried atoms, an important point

that will be discussed in detail elsewhere.
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4.6 Total-Charge Constraint

Commonly used PC fitting approaches also modify the LS sum (eq. 4.1) by

adding a Lagrange multiplier λ in order to constrain the total charge to the

correct value:34,37,48

χ2 (q) = |Φ−Kq|2 + λ(1⊺ · q−Q0), (4.51)

which increases the dimension of the Hessian matrix H = K⊺K in the normal

equation (eq. 4.4): H 1

1⊺ 0


q
λ

 =

K⊺Φ

Q0

 , (4.52)

where 1 is an all-ones column-vector.

However, as we have seen, both in the case of the idealized Lebedev grid and

the less-than-ideal atom-centered PC models, the Hessian eigenvector with the

largest curvature corresponds to the total charge (Figure 4.8 and also Ref.166).

Thus, in the case of the two-sphere PC fitting, the total charge is reproduced

exactly (Q0 < 10−5), while in the atom-centered PC model the total charge only

slightly deviates from the exact value due the close proximity of the vdW grid

and slight distortion of the total-charge vector u1 from its analytical analog Ỹ0

(Q0 = 0.003 for methanol, Table 4.2).

Addition of the Lagrange multiplier leads to an extra eigenvector u7 that

appears in the eigenbasis of the Hessian matrix (Table 4.3). The curvature along

this vector is the smallest in the magnitude (κ7 = −0.009) and the vector itself

primarily depends on the Lagrange multiplier λ, with only marginal contribution

from the PC values. At the same time, remaining eigenvectors {u}6i=1 preserve

the structure of the original eigenbasis, with negligible contribution from the

Lagrange multiplier λ (Table 4.3). Thus, application of the the total charge

constraint in addition to already strong restraint (imposed by the eigenvector
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u1) appears to be redundant. Moreover, addition of the Lagrange multiplier

aggravates the rank deficiency of already ill-conditioned LS problem.37,38

Table 4.3: Eigenvalues µ2
i and eigenvectors ui of the LS Hessian matrix H in

constraint-free case and with the Lagrange multiplier to constraint the total
charge.

u1 u2 u3 u4 u5 u6 u7 atom
µ2
i 732.3 25.0 10.6 10.2 1.5 0.1

Constraint-free

0.412 0.158 -0.005 -0.002 0.101 0.891 – qC
0.410 0.249 -0.486 0.688 0.051 -0.241 – qHg

0.410 0.239 -0.434 -0.725 0.052 -0.242 – qHg

0.409 0.447 0.682 0.023 -0.341 -0.226 – qHt

0.407 -0.416 0.324 0.015 0.720 -0.194 – qO
0.401 -0.695 -0.080 0.001 -0.592 0.004 – qH

µ2
i 732.3 25.0 10.6 10.2 1.5 0.1 -0.01

Lagrange multiplier

0.412 -0.158 -0.005 -0.002 -0.101 0.889 0.066 qC
0.410 -0.249 -0.486 0.688 -0.051 -0.240 -0.019 qHg

0.410 -0.239 -0.434 -0.725 -0.052 -0.241 -0.019 qHg

0.409 -0.447 0.682 0.023 0.341 -0.225 -0.020 qHt

0.407 0.416 0.324 0.015 -0.720 -0.194 -0.012 qO
0.401 0.695 -0.080 0.001 0.592 0.005 -0.005 qH
0.003 0.001 0.000 0.000 0.006 -0.075 0.997 λ

Alternatively, the total charge can be constrained by incorporating condition

on the proper total charge directly into the LS sum,32,140,142 by eliminating one of

the charges and setting it to:

qn = Qmol
0 −

N−1∑
i

qi, (4.53)

where n is the index of the eliminated charge. This reduces the dimension of the

LS problem by one:

χ2 (q) =
T∑
j

[
Φj −

Qmol
0

rnj
−

N−1∑
i

(
1

rij
− 1

rnj

)
qi

]2

(4.54)

and modifies the elements of the Hessian matrix:

Hkm =
T∑
j

(
1

rkj
− 1

rnj

)(
1

rmj

− 1

rnj

)
. (4.55)
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Although the solution obtained with this approach is numerically equivalent

to the solution with Lagrange multiplier, regardless which atom has been

eliminated (Elimination, Q0 = 0 in Tables 4.1 and 4.2), the structure of the right

singular vectors becomes disrupted, (Figure 4.6) which prevents the application

of the truncated SVD to improve the numerical stability of the solution.

g
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g
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g
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g

g
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g

g

t

g

No constraint

C eliminated

H-gauche eliminated

H-trans eliminated

H-gauche eliminated

O eliminated

H eliminated

Figure 4.9: Hessian eigenbases along with corresponding singular values in the
constrained free case and with the total charge constraint by the elimination of
one of the atoms.

Given that even for the atom-centered PC/vdW probe model the total charge

value deviates only very slightly from the reference value, it should be possible to

correct for this deviation without exacerbating the numerical instabilities of the
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LS problem, e.g. using the total charge vector u1. To do that, we convert the

SVD solution (eq. 4.50) to a system of linear equations:

q =
r∑

i=0

Φ · vi

µi︸ ︷︷ ︸
ci

ui = Uc, (4.56)

U⊺q = c. (4.57)

Then, we replace u1 in U⊺ by an all-ones vector 1, and set the corresponding

coefficient c1 in c to the exact value of the molecular total charge Qmol
0 :

U⊺
Q0
q = cQ0 , (4.58)

where

U⊺
Q0

=

[
1 u2 · · · uN

]⊺
, (4.59)

cQ0 =

[
Qmol

0 c2 · · · cN

]⊺
. (4.60)

This approach does not introduce any redundant constraints, preserves the

electrostatic properties of the unconstrained solution, and results only in to

minor changes in the PC values (SVD, Q0 = 0 in Tables 4.1 and 4.2) and is

compatible with truncated SVD. Also, the error in the total charge value is small

enough and can be corrected by simply distributing the Q0 error correction

across the atomic charges; this trivial total charge correction gives result nearly

identical to eq. 4.58 (Trivial, Q0 = 0 in Tables 4.1 and 4.2).

4.7 Summary

To understand the origins of the ill-conditioning of the least-squares (LS)

point charge (PC) fitting problem, we revisited the PC representation of the

molecular electrostatic potential (MEP) from the first principles, as an example

of the inverse problem.
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Based on the properties of the Coulomb potential that can be expanded in

terms of spherical harmonics, we introduce a model where the MEP of a

molecule is exactly reproduced by a charged sphere that has the same multipole

moments Qlm as the molecule. Using Lebedev quadrature this continuous model

is converted into a discrete PC model, where the PC values are evaluated

analytically from the multipole moments Qlm up to the maximum value

determined by the quadrature.

In this context, the traditional atom-centered PC model can be viewed as an

irregular numerical quadrature, poorly suited to reproduce the multipolar

expansion of the MEP. As such, this quadrature only allows integration of the

monopole and, approximately, dipole terms. The corresponding

large-curvature—or ‘stiff’164,165—Hessian eigenvectors ui can still be related to

the corresponding multipoles Qlm. This explains previously observed

correspondence between the highest-curvature Hessian eigenvectors and the total

charge and the dipole moment components;166,167 this correspondence quickly

breaks down for the higher multipole moments.

This consideration then reveals the origins of the ill-conditioning of the PC

fitting due to the presence of low-curvature—or ‘sloppy’164,165—vectors ui. The

intrinsic ill-conditioning arises even in the case of the ideal spherical model: since

the higher-rank multipole moments Qlm have smaller contribution to the MEP,

the singular values µl decay as l increases. The ill-conditioning is further

exacerbated in the numerical treatment of the Lebedev grid model because the

number of PCs does not match the dimension of the basis formed by Lebedev

quadrature. The remaining singular values/curvatures are even lower in

magnitude and do not correspond to particular multipole moments Qlm. The

same rank-deficiency problems apply to the atom-centered PC grids. However, in

that case most of the eigenvectors do not have a direct correspondence to the

multipole moments, which leads to even wider spread-out of the singular

values/curvatures.
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These insights can suggest several ways to alleviate the ill-conditioning of the

problem. For instance, the buried atom problem can be addressed by truncating

the sloppy singular vectors with dominant contribution from these atom, instead

of introducing additional restraining functions36,41,43,49 that can negatively affect

the overall electrostatic properties of the molecule.38,52 Also, slight deviations of

the total charge of the fitted PC solution can be fixed by adjusting the stiff

total-charge vector u1 and the corresponding coordinate Qmol
0 , rather than

introducing a Lagrange multiplier that increases the rank-deficiency of the

Hessian matrix.37,38

The results presented here can help further application of the PC model in

biomolecular simulations. Although the force fields using point charges may not

be as accurate as the force fields that explicitly include multipoles and/or

polarization effects, the simplicity and computational efficiency of the PC model

has ensured its continued survival.70 In fact, representation of multipoles using

the Lebedev grid PC model can provide an alternative to the multipole moment

expansion;177 it also can be used to extend recently proposed Distributed Charge

Model.61,160

4.8 Computational Details

MEP and multipole moments were calculated at the B3LYP/aug-cc-pVDZ

level149–151,178 as implemented in Q-Chem package.179 For atom-centered PC

fitting the reference MEP was generated as the cubic grid with linear density 2.8

points/Å, followed by the removal of the points outside of 1.0-2.0 van der Waals

radii range around each atom (vdW grid). For the two-sphere PC model the

Lebedev quadrature rules were used as implemented in PyQuante package.180,181

Charge fitting procedures were implemented in the in-house developed fftoolbox

Python library.182 SVD was performed using numpy library.153 Spherical

harmonics were accessed from scipy library.183
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Chapter 5

Point Charges Meet Accuracy of Multipoles

5.1 Introduction

Many molecular interactions of (bio)chemical importance are governed by

subtle anisotropic features of the molecular electrostatic potential (MEP), such

as lone pairs, σ-holes, π-systems.15,57,184,185 In this regard, computationally

efficient yet accurate modeling of electrostatic interactions is critical for reliable

simulation of the biological macromolecules at the atomic level. Expansion of the

electrostatic interaction into a series of the interacting atomic multipoles

provides a rigorous framework to introduce anisotropic electrostatic features into

a simulation.16–19 Recent advancements in the development of the new force

fields and methodologies bring closer to reality the routine application of the

multipolar force fields to the systems in the size range of practical interest.29–31

Yet, up to date only limited number of systems has been studied using the

multipolar force fields.24,186–188 Besides a significant computational cost,

implementation of the multipole-multipole interactions is non-trivial as it

requires definition of a local reference frame for each atom, calculation of forces

and torques for each atomic multipole, and finally, implementation of the

Particle-Mesh Ewald schemes29–31 for simulating periodic boundary conditions.

Therefore, in the majority of existing force fields the multi-site expansion

expansion is truncated at the monopole, leading to the computationally less

demanding atom-centered point charge approximation.32–34 However, isotropic

nature of a single point charge potential is unable to describe the anisotropic

character of the MEP around a given atom.53,54,189 Moreover, numerical

difficulties in the point charge derivations due to the ill-conditioned least squares

charge fitting problem have resulted in the sophistications of the derivation by

addition of the restraints/constraints.36–38,49,140 Nevertheless, low computational
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requirements and relative simplicity in the implementation of the point charge

potentials motivate to go beyond the atom-centered paradigm and use off-center

point charges to reproduce effects of higher-rank (above monopole) atomic

multipoles.60–64 However, none of the existing methods offer a systematic

approach in placing the off-center point charges as well as in the derivation of

their values.

In the previous Chapters we showed that the atom-centered point charges

correspond to an improper coordinate system/quadrature that exacerbates the

numerical stability of the obtained solution due to the ill-conditioned nature of

the inverse electrostatic problem.166,190 In order to alleviate the numerical

instability, point charges must be placed over the sphere, according to the

Lebedev quadrature rule that exactly integrates spherical harmonics—this solves

the inverse electrostatic problem analytically and allows one to obtain point

charges directly, avoiding ill-conditioned least squares fitting.190

In this chapter, we demonstrate that the point charges placed at the nodes of

a Lebedev quadrature can approximate the multipole moment expansion of MEP

up to any given degree in a systematic fashion. Using Stone’s distributed

multipoles16 we introduce the multi-site Lebedev model where the electrostatic

potential of each atom is modeled by an atom-centered Lebedev sphere. On

several examples we demonstrate that a simple point charge framework can

describe anisotropy of the MEP with the accuracy previously thought to be

achieved only by the multipolar force fields.

5.2 Point-Charge Representation of the Multipolar Expansion

The MEP can be computed exactly using the molecular charge density ρ(r)

from quantum mechanical (QM) calculations:

ΦQM(r) =

∫
ρ(r′)

|r− r′|
d3r′. (5.1)



85

At the long range, MEP can be expanded into the multipole series up to a

degree n using the multipole moment values Qlm:
1,107

Φn(r) =
n∑

l=0

l∑
m=−l

Qlmr
−l−1Ylm(θ, φ), (5.2)

where r is defined by the magnitude r, polar angle φ and azimuthal angle θ;

Ylm(θ, φ) are renormalized real-value spherical harmonics.1

As long as the molecular multipole moments are reproduced there is no

concern about the way the charge density ρ(r) is distributed in space. Therefore,

it is indifferent to the MEP if we replace the molecular charge density ρ(r) by

the sphere of radius a with surface charge density σ(a) centered at the origin of

the molecular multipole expansion in such way that the multipole moments of

the sphere are equivalent to the multipoles of the molecule:

Qlm =

∫
V

rlρ(r)Ylm(θ, φ)dr = al
∫
Sa

σ(a)Ylm(θ, φ)dΩ. (5.3)

where dΩ is the differential of the solid angle.

A B

Figure 5.1: Continuous charged sphere model centered at the origin of the molec-
ular multipole expansion (A) and its point-charge (B) representation.

1Here we use real-value spherical harmonics with the normalization
∫
Ylm(θ, φ)Yl′,m′(θ, φ) =

4π
2l+1δll′δmm′
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Then, the sphere splits space into two regions (Fig. 5.1): the region outside

the sphere with potential Φout and the region inside the sphere with potential

Φin. Depending on the relative magnitude of the source a and observation r

vectors the multipole series expansions takes either its regular or inverse forms.191

In the region outside the sphere, where r > a, the electrostatic potential Φout is

equivalent to the multipole moment expansion of the MEP (eq. 5.2):

Φout
n (r) =

n∑
l=0

l∑
m=−l

Qlmr
−l−1Ylm(θ, φ), (5.4)

where the regular multipole moments of the sphere Qlm are given by eq. 5.3. At

the same time, inside the sphere, where r < a, the multipole expansion takes its

inverse form:

Φin
n (r) =

n∑
l=0

l∑
m=−l

QI
lmr

lYlm(θ, φ), (5.5)

where the inverse multipole moments QI
lm are given by

QI
lm = a−l−1

∫
σ(r)Ylm(θ, φ)dΩ. (5.6)

Then, according to the Gauss’s law, the discontinuity in the normal

component of the electric field E = −∇Φ in crossing the sphere defines the

charge density of its surface:

∂Φin
n

∂r
− ∂Φout

n

∂r

∣∣∣
r=a

=
4π

a2
σn, (5.7)

Using the that fact the regular and inverse multipoles of the sphere are uniquely

related Qlm/Q
I
lm = a2l+1, the surface charge density σ(a) over the sphere can be

expressed in terms of the multipoles Qlm and radius a:

σn(a) =
n∑

l=0

l∑
m=−l

2l + 1

4π
a−lQlmYlm(θ, φ). (5.8)
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The derived charge density (eq. 5.8) also corresponds to the outer expansion

introduced by Rogers (eq. 17 in Ref.177) and to the solution of the inverse

electrostatic problem previously introduced in Chapter 4 (eq. 4.29).

We can now represent the charged sphere numerically using a spherical

quadrature. For example, using the Lebedev-Laikov grid173 that exactly

integrates spherical harmonics up to l = 2n, the multipole moments of the sphere

can be obtained computed up to degree n:176

Qlm = al
N∑
i

σiYlm(θi, ϕi)wi (5.9)

where N is the number of the nodes in the quadrature, θi and φi are the angular

coordinates and wi is the integration weight at the node i.

Accordingly, using the discrete representation of the multipole moments (eq.

5.9), the expansion outside the sphere (eq. 5.4) can be represented in the

discrete form:

Φn(r) =
N∑
i

σiwi

n∑
l=0

l∑
m=−l

al

rl+1
Ylm(θi, φi)Ylm(θ, φ). (5.10)

For a sufficiently large separation between the sphere and an observation point r,

this expansion can be reduced to a point-charge potential ΦPC
n (Figure 5.1):

Φn(r) ≃ ΦPC
n =

N∑
i

qi
|r− ai|

, (5.11)

where qi is the point charge at the node i:

qi = wi

n∑
l=0

l∑
m=−l

2l + 1

4π
a−lQlmYlm(θi, φi). (5.12)

Thus, the point charges arranged over the sphere according to the Lebedev

quadrature rule produce electrostatic potential that at large distances is

numerically identical to the potential produced by the multipole moments.
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Below, numerical examples provide a quantitative consideration of the proposed

Lebedev charge model.

Table 5.1: Averaged over the set of reference molecules ⟨a⟩, minimum amin and
maximum amax values of the radius required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n ⟨a⟩ amin amax

1 0.8 0.5 1.4
2 1.2 0.7 2.0
3 1.4 0.9 2.1
4 1.9 1.0 2.8

5.3 Numerical Examples of the Lebedev Charge Model

5.3.1 Modeling Single-Site Molecular Multipoles

First, we tested if the Lebedev charge model (eq. 5.11) accurately reproduces

the electrostatic potential from the molecular multipole expansion (eq. 5.2)

within the solvent-accessible surface of the molecule. A set of 17 organic

molecules was used for the reference calculations (Appendix A). To measure the

quality of the approximation we used the root mean square deviation (RMSD)

between the multipolar potential Φn and its point-charge analog ΦPC for

different ranks n over the M points in the van der Waals grid:

RMSD =

√∑M
i [Φn(ri)− ΦPC

n (ri)]
2

M
(5.13)

In all molecules that we considered, the RMSD approaches zero as the rank n

increases and the radius of the sphere decreases (Figure 5.2 and Appendix A).

For example, in order to achieve 0.05 kcal/mol difference in the RMSD in the

expansion up to octopole moment, the radius of the sphere should be a = 1.4 au

on average. (Table 5.1) The small-radius requirement tends to increase for

smaller molecules and lower rank n, with the smallest value of 0.5 au for water

molecule with rank n = 1 (Figure 5.2). According to eq. 5.9, the point charge

values scale as a−l and for extremely small spheres they approach infinity (if
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l > 0). We verified that the radius of 0.5 au does not lead to unreasonably high

charge values (with the highest absolute value of 18.0 e in uracil due to its large

quadrupole moment, see Appendix A) and thus was used as the sphere’s radius

in all calculations throughout this chapter.

0.5
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l/m
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a

Figure 5.2: Effect of the sphere radius a on the RMSD between the multipolar
expansion (eq. 5.2) and point-charge potential (eq. 5.11) in water.

Regardless the radius value, multipole moments of the sphere are constant

and exactly match the molecular multipoles. As the Lebedev rule suggests, in

order to reproduce the dipole moment of the molecule, six point charges in

octahedral arrangement are required with two points along each dimension.

Thus, in the case of water molecule, the Lebedev charge model with n = 1 is

reduced to a trivial case where two non-zero point charges are separated by the

distance 2a and the corresponding electrostatic point charge potential

corresponds to the potential produced by a point dipole (Figure 5.3). As n

increases, more points are added according to the quadrature rule (e.g. N = 14

points for n = 2, N = 26 points for n = 3, see Appendix A for details) and the

electrostatic potential produced by the collection of point charges converges to

the QM MEP (Figure 5.8 and Appendix A). While for small molecules the

single-site molecular multipole expansion converges relatively fast, truncation at

a higher degree n is required for larger molecules in order to properly describe

local features of the potential around each atom (atomic electrostatic potential,
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AEP).2 Nevertheless, in most cases, starting from n = 2 or 3 molecular

expansion calculated using Lebedev charge model becomes superior than the

MEP-fitted atom-centered point charges and such anisotropy features as lone

pairs and σ-holes start to emerge (Figures 5.4 and 5.5 and Appendix A).

Figure 5.3: Electrostatic potential of water in the plane of the molecule within
single-ste Lebedev model with n = 1, 2 and a = 0.5, 3.5 (two right columns) as
compared with the true multipole moment potentials (left column).

5.4 Modeling Multi-Site Atomic Multipoles

In order to describe the electrostatic properties of larger molecules, multi-site

expansion of the MEP centered at the nuclei positions is required. Application of

various partitioning/distribution schemes allows one to obtain multi-site

multipolar expansion beyond the monopole up to any rank.1,16–19 However, in

many existing force fields multipolar expansion is truncated at the monopole

leading to the atom-centered approximation that fails completely in describing

the AEP, especially around atoms such as nitrogen, oxygen, sulfur and halogens

2Atomic electrostatic potential (AEP) grid is obtained from the MEP grid by selecting the
grid points that are the closest to the corresponding atom.
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n = 1 n = 2 n = 3
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-6
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Figure 5.4: Electrostatic potential over the isosurface of constant charge density
(0.002 au) of CH3SH calculated with single-site Lebedev models (a = 0.5, n =
1, 2, 3).

Figure 5.5: Electrostatic potentials calculated using single-site Lebedev model
(a = 0.5, n = 1, 2, 3, 4) of water and CH3SH in the plane of the molecules.
Contour levels: -100, -50, -25, -12, 0, 12, 25, 50, 100 kcal/mol.
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where such anisotropy features as lone pairs and σ-holes become dominant.53,54

Quantitatively it can be seen by comparing the atom-centered point charge

potential with the QM MEP over the solvent-accessible region of the molecule.

The improper reproduction of the QM MEP is indicated low values of Pearson’s

correlation coefficient, high root mean square deviation (RMSD), high root mean

absolute error (RMAE) and high maximum error between the point charge and

QM potentials (Table 5.2 and Appendix A).54 Among the worst cases is sulfur

atom in CH3SH molecule, which in atom-centered point charge model produces

isotropic potential instead of displaying areas of negative potential above and

below the plane of the molecule due to the lone pairs and a small area of the

positive potential along the C-S bond in the plane of the molecule due to the

σ-hole (Figure 5.6 and Appendix A).

Quantum Mechanical Model Multi-Site Lebedev ModelAtom-Centered Model

-30

-18

-6

6

18

30

Figure 5.6: Electrostatic potential over the isosurface of constant charge density
(0.002 au) calculated using three charge models: quantum mechanical (left), multi-
site Lebedev model (middle, a = 0.5, n = 2) and atom-centered point charge model
(right).

Multi-Site Lebedev 
Point Charge Model

SIngle-Site Lebedev 
Point Charge Model

Figure 5.7: Point charge representation of single-site and multi-site Lebedev mod-
els of CH3SH.
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Here, to include effects of higher atomic multipoles we used Stone’s

distributed multipole analysis (DMA)16 and applied Lebedev charge model at

each atomic center (Fig. 5.7). To avoid an excessive proliferation of the

expansion centers, we removed the methyl hydrogens from the analysis and

retained other types of hydrogens (e.g. hydrogens in amine, hydroxyl groups,

etc) up to rank n = 1 such that the effects of the higher multipoles (n > 1) on

these hydrogens are transferred to the neighboring atoms.1
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Figure 5.8: Convergence of the CH3SH electrostatic potential to the QM MEP
within single-site (circles) and multi-site Lebedev (squares) models. RMSD and
Pearson R2 correlation coefficient are used to quantify the convergence.

The multi-site Lebedev model reproduces all distributed multipoles as well as

overall molecular multipole moments (Appendix A). It converges to the QM

MEP faster than the single-site model with significantly improved description of

the AEP around each atom (Figure 5.8, Appendix A). Also, most cases with

n > 2 on all heavy atoms are significantly superior than the atom-centered model

in the description of the overall MEP and local AEPs as indicated by the

lowered RMSD, RMAE and max. error values and increased correlation

coefficient (Table 5.2). Indeed, visual inspection of the MEP map on the

isodensity surface of CH3SH reveals the presence of the areas with negative

potential above and below the plane of the molecule and the area of the positive

potential along the C-S bond in the plane of the molecule (Figure 5.6).
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Table 5.2: Comparison of the multi-site Lebedev (a = 0.5 au and n = 2) and atom-
centered point charge models to reproduce AEPs. Averaged statistical parameters
are reported, see Appendix A for values in individual cases. All dimensional
quantities are in kcal/mol.

Parameter Model S N O Br

RMSD
Atom-Centered 1.240 1.235 0.699 1.017

Multi-Site Lebedev 0.382 0.433 0.313 0.316

RMAE
Atom-Centered 0.383 0.183 0.064 0.161

Multi-Site Lebedev 0.085 0.130 0.028 0.049

Max. Error
Atom-Centered 3.682 3.505 2.218 3.498

Multi-Site Lebedev 1.150 1.097 1.152 0.924

R2 Atom-Centered 0.683 0.873 0.901 0.328
Multi-Site Lebedev 0.980 0.990 0.986 0.933

5.5 Summary

The Lebedev charge model—a model where point charges are arranged over

the sphere using the Lebedev quadrature rule—reproduces atomic and molecular

multipoles and describes major local features of the MEP including the presence

and directionality of the donor/acceptor features such as lone pairs and σ-holes.

As compared to other methods where point charge values are derived directly

from the multipole moments,38,61,62,143 in the proposed model charge values can

be obtained analytically without any fitting and/or solving systems of linear

equations. The quality of the potential can be systematically improved within

the point charge approximation, which makes this model a computationally more

efficient numerical analog to the multipolar formalism. Finally, existing support

of the off-center point charges in most simulation packages allows an immediate

implementation of the model to achieve the multipolar quality within the point

charge framework.

5.6 Computational Details

Geometry optimizations were performed at the MP2/aug-cc-pVTZ level151 as

implemented in Gaussian package. Single-site molecular multipole moments and

distributed multipole moments were calculated using Stone’s Generalized

Distributed Multipole Analysis (GDMA) software. Methyl hydrogens atoms were
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removed from the analysis; all other hydrogens were retained up to n = 1. The

van der Waals grid was generated with linear density of 2.8 points/Å, followed

by the removal of the points outside of 1.66-2.2 van der Waals radii range around

each atom. Atom-centered point charges were fitted to the quantum mechanical

MEP over the vdW grid points using singular value decomposition (SVD) in

numpy library as implemented in the in-house developed Python library

fftoolbox.182 Lebedev quadrature rules were used as implemented in PyQuante

package.180,181 Lebedev point charge models were implemented in the fftoolbox

library. Spherical harmonics were accessed from scipy library.183
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Chapter 6

Application of the Model to S-Nitrosothiols

6.1 Simultaneous Fitting of Several Force Field Terms for CysNO

In order to reproduce the effect of the charged residues on the properties of

the –SNO group during the molecular dynamics simulations, the force field

parameters must be able to properly describe the interaction between the –SNO

group and the charged or polar protein residues. While the description of the

electrostatic potential using the accurate multipolar force fields is

computationally expensive, the Lebedev charge model introduced in the

Chapters 4 and 5 can provide multipolar quality of the description within

computationally inexpensive point charge approximation.

Although the interactions between a Lewis base and σ-hole are

electrostatically driven, the spatial orientation of interacting species is largely

due to the induction, dispersion and exchange-repulsion.106 Thus, here we

perform simultaneous fitting of electrostatic and Lennard-Jones terms, as well as

some of the bonded terms. The reference interaction energies were obtained with

MeSNO as a model for CysNO, while NH4
+ and MeCOO– were used to model

lysine residue and aspartic/glutamic acid, respectively.

6.1.1 Bonded Terms: Equilibrium Bond lengths, Angles and Force
Constants

In AMBER force fields, bond and angle terms are usually described by the

harmonic approximation:

UFF =
∑
bonds

kr(r − r0)
2 +

∑
angles

kθ(θ − θ0)
2, (6.1)

where kr and kθ are the force constants and r0 and rθ are equilibrium bond

lengths and angles. Due to the functional form of the harmonic potential,
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optimization of the bonded force field parameters was performed in two steps:

first, the force constants were optimized with the equilibrium bond lengths and

angles taken from the optimized geometries of cis- and trans-MeSNO, then the

equilibrium bonds and angles were optimized with the force constants taken

from the first step. The optimization of the parameters results in two

minimization procedures where at the first step the least square sum is taken as

the function of the force constants:

χ2(kr, kθ) =
∑
i

[
UQM
i − UFF

i (kr, kθ)
]2

(6.2)

and at the second step, the least square sum is taken as the function of the

equilibrium constants:

χ2(r0, θ0) =
∑
i

[
UQM
i − UFF

i (r0, θ0)
]2

(6.3)

Here, the reference QM energies UQM were obtained from the relaxed PES scan

along C-S, S-N, N-O bonds and C-S-N, S-N-O angles of cis- and trans-MeSNO.

The optimized force field parameters (Table 6.1) closely reproduce QM energy

scans (Figures 6.1 and 6.2).

Table 6.1: Force constants and equilibrium values fitted to relaxed PES scans
r0, Å kr, kcal/(mol Å2)

rCS 1.793 211.191
rSN 1.803 80.689
rNO 1.184 733.739

θ0, degree kθ, kcal/(mol degree2)
θCSN 98.166 0.0134
θSNO 116.862 0.0265

6.1.2 Non-Bonded Terms: Point Charges and Lennard-Jones Param-
eters

The reference grid of quantum mechanical (QM) interaction energies between

MeSNO and ammonium ion NH4
+ was obtained in Ref.89 by density functional
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Figure 6.1: QM vs. optimized FF potential energy scans along bonds in cis- (top)
and trans-MeSNO (bottom).
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Figure 6.2: QM vs. optimized FF potential energy scans along angles in cis- (top)
and trans-MeSNO (bottom).
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theory (DFT) calculations at PBE0/def2-SV(P)+d level of theory. The reference

grid was constructed by placing the probe NH4
+ molecule at different positions

over the solvent-accessible region of the MeSNO around C, S, and N atoms

(Figure 6.3). For each grid point, a constrained optimization was performed with

the probe fixed at the nitrogen atom.

Figure 6.3: Representation of the the interaction energies between MeSNO (cis-
MeSNO on the left and trans-MeSNO on the right) and ammonium ion NH4

+.
Position of each colored sphere corresponds to the position of the nitrogen in
NH4

+. The color of the sphere represents the strengths of the interaction: red for
repulsion and blue for attraction.

Given the reference QM interaction energies, the point charges and

Lennard-Jones parameters can be obtained by the non-linear least square fitting.

To account for possible polarization effects due to the S-N and N-O bond terms,

force constants kSN and kNO were also included in the fit in a way that the

overall least square sum contains both, bonded and non-bonded force field terms:

χ2(Qlm, ε, r
∗, kSN , kNO) =

∑
i

[
UQM
i − Unon−bonded

i (Qlm, ε, r
∗)− U bonded

i (kSN , kNO)
]2

(6.4)
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where the bonded term is described by the harmonic potential of the S-N and

N-O bonds:

U bonded(kSN , kNO) = kSN(rSN − r0SN)
2 + kNO(rNO − r0NO)

2 (6.5)

and the non-bonded term contains Coulomb and Lennard-Jones terms:

Unon−bonded(Qlm, ε, r
∗) =

∑
i<j

qiqj
rij

+ εij

[(
r∗ij
rij

)12

− 2

(
r∗ij
rij

)6
]

(6.6)
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Figure 6.4: Correlation between interaction energies calculated using PBE0/def2-
TZVPPD (QM energies) and optimized force field (FF energies).

Unlike in the traditional force fields where the point charges are placed at the

atomic positions, here we place point charges according to the Lebedev

quadrature rule around each atom in MeSNO. As it was shown in Chapter 5,

such arrangement allows multipolar description of the electrostatic properties.

While point charges over the sphere were used for the energy calculations in the

least squares sum (eq. 6.4), the minimization was performed using atomic

multipoles Qlm. At each minimization step atomic multipoles were converted to

the point charges using eq. 4.46:

qi =
n∑

l=0

l∑
m=−l

√
2l + 1

4π
a−lQlmYlm(θi, φi)wi. (6.7)
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where radius of the spheres was set to a = 0.5 au and multipole moments were

included up to quadrupole (n = 2).

Figure 6.5: PES scans between MeSNO (cis on the left and trans on the right) and
acetate anion MeCOO– (top) and the intrinsic reaction coordinate (IRC) profile
along the minimum energy path between three hydrogen bonded complexes of
MeSNO (cis on the left and trans on the right) and ammonium ion NH4

+ (bottom).
IRC path is calculated at PBE0/def2-TZVPPD at the geometries calculated using
PBE0/def2-SV(P)+d level of theory.

The optimized point charge values, Lennard-Jones parameters and force

constants (Tables 6.3 and 6.2) yeild interaction energy very closely matching the

reference QM energies, with the root mean squared deviation (RMSD) of 0.64

kcal/mol and Pearson’s correlation coefficient R2 of 0.91. Especially good

correlation was obtained for the attractive part of the PES, while the repulsion

interactions resulted in a more scattered correlation due to the poor

approximation of the short-range repulsion using the Lennard-Jones potential

(Figure 6.4). To confirm that the optimized –SNO group force field corresponds

to the physically meaningful parameters, the force field interaction energy was

compared with the QM energies along the minimum energy path between three
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hydrogen-bonded complexes of MeSNO and ammonium ion NH4
+ (Figure 6.5).

The optimized force field reproduces stabilization of all three complexes as well

the energy barrier between them. To verify that the sulfur atom force field

parameters reproduce the formation of the chalcogen-bonded complex, force field

interaction energy was compared against the QM PES scan along the S · · ·O

separation distance in the MeSNO · · · MeCOO– complex (Figure 6.4). The

optimized force field underestimates the depth of the potential well by 0.5

kcal/mol for cis-MeSNO and by 1.43 kcal/mol for trans-MeSNO and

overestimates the position of the minimum by 0.65 Åfor both conformers. This

can be explained by the fact that force field parameters of the acetate anion were

taken from the standard AMBER ff99SB library that are not optimized for this

specific interaction.

Table 6.2: Optimized SN and NO force constants in MeSNO in case of separate
and combined optimization of each conformer.

conformer SN NO
cis/tran 80.422 733.705

cis 80.739 733.693
trans 79.587 733.785

Table 6.3: Optimized non-bonded force field parameters of -SNO group in case of
separate and combined optimization of each conformer.
atom conformer Q00 Q11c Q11s Q22c Q22s Q20 r0 ε

O
cis/tran -0.906 0.346 -0.296 -0.420 -0.002 0.097 1.961 0.002

cis -1.245 0.535 -0.611 -0.172 0.164 0.187 1.872 0.005
trans 1.085 -0.262 1.641 -1.388 -0.587 -0.544 1.191 4.159

N
cis/tran 1.270 0.953 -0.896 -1.694 0.148 -1.128 2.239 0.002

cis 1.500 0.993 -1.509 -1.979 -0.165 -1.253 2.081 0.005
trans -0.351 0.185 2.000 -1.104 1.996 -0.337 2.548 0.000

S
cis/tran -0.478 0.264 0.428 -0.039 -0.017 -0.123 2.725 0.001

cis -0.369 0.023 0.386 0.506 0.591 -0.246 2.702 0.002
trans -0.848 0.328 1.216 1.325 -0.069 0.299 2.827 0.001
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6.2 Summary

Here, in order to describe anisotropic character of the interaction between the

–SNO group and the charged residues, atomic multipoles were fitted together

with the Lennard-Jones parameters and S-N and N-O bonds force constants. To

model the multipolar character of the electrostatic properties of the –SNO group,

Lebedev charge model proposed in the Chapters 4 and 5 was used with the

charged spheres centered at the atomic positions. We showed that the optimized

–SNO group force field can accurately reproduce anisotropic interactions such as

formation of hydrogen and chalcogen bonds. On the example of the interaction

between MeSNO and the charged residue models, it is shown that the Lebedev

charge model is a promising instrument to simulate specific interactions where

the reproduction of anisotropy in the electrostatic potential is of the crucial

importance.

6.3 Computational Details

Density functional theory (DFT) calculations were performed with the

Gaussian 09 package152 using Perdew-Burke-Ernzerhof hybrid functional

(PBE0).192,193 Double- and triple-ζ basis sets def2-SV(P) and def2-TZVPPD by

Weigend and Ahlrichs194 with diffuse functions by Rappoport and Furche195 were

obtained from the EMSL Basis Set Exchange Database.196,197 The def2-SV(P)

basis set was further augmented by a tight d function at the sulfur atom with ζ

= 2.994 and the resulting basis set is denoted as def2-SV(P)+d. Solvent effects

were included using the implicit integral equation formalism polarizable

continuum model (IEF-PCM)198 with diethyl ether (ε = 4.24) parameters to

mimic the protein environment.199

Sequential least squares programming (SLSQP) was used in the least-squares

minimizations as implemented in scipy library.153,183 SLSQP is a quasi-Newton

method with a BFGS update of the B matrix (eq. 2.57) and can handle

constraints and boundaries. In the force field optimization total charge of
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MeSNO was constrained to the value of -0.1136 to be compatible with the

CysNO residue, force constants and Lennard-Jones parameters were bounded

within the range of positive values.
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Chapter 7

GSNO Synthesis and NMR Spectroscopy

Glutathione (GSH), a tripeptide γ-glutamyl-cysteinyl-glycine, found to be

S-nitrosated in vivo with formation of S-Nitrosoglutathione (GSNO, Figure 7.1).

GSNO has been reported to be an integral part of the physiological function of

nitric oxide.75,76 Being the smallest biological S-nitrosothiol, GSNO is an ideal

system to initiate the study of biological RSNOs using NMR spectroscopy.

HO

O O
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H
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O

H
N

O

OH
NH2

Glutathione

HO

O O

N
H

S

O

H
N
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N
O

Figure 7.1: Structure of glutathione (GSH) and S-Nitrosoglutathione (GSNO).

GSNO can be easily synthesized from GSH and NaNO2 under acidic

conditions. The mechanism of GSNO formation, which is also true for any

S-nitrosothiol, can be described by the following equations:72,86

NaNO2 +H2O −−→ NaOH + HNO2

HNO2 +H+ −−→ H2NO2
+

GSH + H2NO2
+ −−→ GSNO+ H2O+H+

Formation of GSNO was verified by the appearance of pink colored solution

and quantitatively by measuring light absorption at 335 nm (Figure 7.2) using

ε ∼ 900M−1cm−1. UV-vis spectrum has two characteristic peaks at 335 nm and

545 nm that are responsible for nN → π∗ and nO → Oπ∗ transition, respectively.

1H-1H TOCSY spectra of GSH and GSNO were provided by Dr. Sem’s group

from Concordia University, Wisconsin (Figure 7.3). The spectrum of GSH shows

the peaks corresponding to cysteine and glutamate. The spectrum of GSNO is

significantly different from the GSH spectrum. First, besides the peaks
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Figure 7.2: UV-vis spectra GSNO at different times after mixing.

Table 7.1: Predicted chemical shifts (in ppm) in CH2 hydrogens of ethylSNO
relative to the ethylSH at PBE0/pcS-2 level of theory using gauge-independent
atomic orbital (GIAO) method.

conformation calculations experiment
cis 0.35 1.12

0.98-1.43
trans 3.90 2.01

corresponding to GSNO there are also peaks from an unknown system, probably

due to the presence of a contaminant.

Upon S-nitrosation, chemical shifts of Hα in cysteine are shifted downfield by

0.2 ppm, β protons of cysteine are split and shifted by 1.2 and 1.3 ppm.

According to the literature, Hβ of several RSNOs can be shifted downfield by

0.98-1.43 ppm, which is in agreement with the observed shifts for GSNO here.

Quantum mechanical calculations of ethylSNO (a simple model for CysNO)

predict Hβ shifts in 0.35-3.90 range, depending on the conformation of ethylSNO

(cis or trans), which is in relative agreement with the experimental findings.

The split in the cysteine β-protons suggests that the protons become

non-equivalent upon S-nitrosation. Conformationally flexible GSH can lead to

formation of stable conformation of GSNO where protonated glutamate amine is

hydrogen-bonded to one of the atoms of the –SNO group. Krezel and Bal

studied protonation macro-constants of the thiol and amine groups of GSH and

revealed that several electrostatic self-interactions of GSH are possible and may

be responsible for its structure and reactivity. One of the proposed interactions
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Figure 7.3: 1H-1H TOCSY spectra of 10mM GSH and 1 mM GSNO, both at pH
7.0 and room temperature.

is a direct interaction between protonated amine and deprotonated thiolate. By

analogy, the identical interaction but with the –SNO group is possible in GSNO

and probably is responsible for the surprising stability of GSNO, which is the

most stable among all primary RSNOs, as well as it can explain its pink

color—an exception in the series of red primary RSNOs. Possible

self-stabilization of GSNO by protonated amine group is also supported by the

resonance description of RSNO. If the positively charged ligand coordinates the

–SNO group at nitrogen or oxygen, the double bond character of S-N bond

increases, thus the stability of GSNO also increases. Besides, such coordination

could simply protect the –SNO group from being decomposed by copper ions.

However, these hypotheses require additional experimental validation.
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Experimental and Computational Details

All reagents were purchased from Sigma-Aldrich. GSNO solution was

prepared by mixing 40 mM GSH with 40 mM NaNO2 in 125 mM HCl, followed

by a 10 min incubation period at room temperature in the dark. The stock

GSNO solutions were prepared on the day of the experiment and kept on ice

before use. The same samples of GSNO were used in UV-vis spectroscopy and

1H-1H total correlation spectroscopy (TOCSY). NMR experiments were

performed on a 500 MHz Varian NMR System at 25 ◦C.

All calculations were performed using density functional theory (DFT) with

the Gaussian 09 package152 using Perdew-Burke-Ernzerhof hybrid functional

(PBE0)192,193 and polarization-consistent pcS-2 basis set by Jensen.200 Isotropic

shielding constant were calculated using the gauge-independent atomic orbital

(GIAO) method.201,202
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Chapter 8

Conclusions

Motivated by the limitations of the atom-centered point charge model

currently used in the field of biomolecular simulations, this work provides

in-depth analysis of the point charge approximation and offers a novel approach

to describe electrostatic interactions. The proposed model can describe

multipolar features of the molecular electrostatic potential (MEP) within

computationally inexpensive point charge framework and paves the way toward

efficient next-generation force fields.

Traditional atom-centered point charge approximation of the MEP not only

fails to reproduce the complexity of the MEP but also is associated with

numerical problems that arise during the least squares (LS) fitting. For example,

slight changes in the setup of the charge fitting problem may significantly change

the optimized charge values, especially in the case of buried methyl carbon

atoms.

We show in Chapter 3 that this well-known effect becomes exacerbated in

case of the genetic algorithm optimizations where several minimization runs

converged to different but correlated solutions with the variations that are

especially large for the buried atoms. Analysis of the covariance matrix for these

scattered solutions revealed that the large variation of the optimized solutions is

due to the wide range of the curvature values along the eigenvectors of the LS

Hessian matrix. The solutions tend to be constrained along the eigenvectors with

the largest curvatures and tend to be spread out along the eigenvectors with the

smallest curvatures. Remarkably, the stiff large-curvature eigenvectors

correspond to the first few multipole moments in the multipolar expansion of

MEP (total charge, dipole moment), while the sloppy small-curvature

eigenvectors largely depend on the buried atoms and do not bear any physical

meaning.
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In order to provide a physical interpretation of this observation, in Chapter 4

we considered the LS charge fitting problem from the first principles as an

example of the inverse problem, opposed to the traditional view as being merely

a statistical method of finding the best fit. Similarly to many other inverse

problems, inverse electrostatic problem can be described by an integral equation,

which in most cases can be solved only approximately using numerical

techniques. However, we have shown that if the charge density is defined over a

sphere and the reference electrostatic potential is defined over a larger outer

sphere, the inverse electrostatic problem can be solved exactly. Availability of

the exact solution provides an opportunity to demonstrate general properties of

the charge fitting problem.

First, the exact solution reveals the origin of the underlying ill-conditioning

of the charge fitting problem. Analysis of the singular values/vectors of the LS

matrix reveals that the numerical instabilities associated with the LS point

charge fitting are due to the decreasing contribution from higher multipoles to

the overall electrostatic potential. The different sets of charges that yield the

same first multipole moments and differ in the higher moments may equally well

reproduce electrostatic potential of a molecule.

Second, analysis of the point charge LS problem suggests, that if the point

charges are arranged over a sphere according to the Lebedev quadrature rule

that exactly integrates spherical harmonics, the charge values can be obtained

directly from multipole moments without fitting to the reference MEP.

Importantly, such arrangement provides a systematic way to introduce any rank

of multipole moments within the point charge approximation, which makes this

model a computationally efficient analog to the multipolar formalism.

As an analog of the multipolar expansion, the Lebedev charge model can be

also used in the multi-site expansions with expansion centers located at the

positions of each atom in a molecule. In this respect, atom-centered Lebedev

spheres provides a natural approach to expand the traditional atom-centered
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point charge approximation to include higher-rank multipoles. In Chapter 5 we

demonstrated on a set of reference molecules that the atom-centered Lebedev

spheres can reproduce MEP to the same accuracy as the multipole moments.

When the atomic multipoles are fitted together with the Lennard-Jones

parameters, the resulting force field can accurately reproduce the anisotropic

interactions such as hydrogen and chalcogen bonds. On the example of the

interaction between MeSNO and the charged amino acid residue models, it is

shown that the atom-centered charged spheres model is a promising instrument

to simulate specific interactions where the reproduction of the anisotropy in the

electrostatic potential is of the crucial importance.

Overall, the proposed Lebedev charge model can find its place in a variety of

applications. For example, the model can be used in the development of the

next-generation multipolar force fields for atomistic simulations. Since the point

charge potentials are already used in the majority of the simulation packages,

such implementation would require less technical difficulties as compared to the

introduction of the actual multipolar formalism, especially in the case of the

implementation of the boundary conditions. Besides atomistic simulations, the

same approach can be applied to the coarse-grain simulations where charged

spheres can model the electrostatic properties of groups of atoms, e.g. amino

acid residues. Finally, a single charged sphere can be used to model electrostatic

properties of small spherical molecules, e.g. drug candidates, solvent molecules,

etc.
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Appendix A

Statistical Data on the Electrostatic Properties of the Model

To compare point charges models with the reference potential we used root
mean square deviation (RMSD), root mean absolute error (RMAE), Pearson’s
correlation coefficient (R2), maximum error, proportionality coefficient α in
ΦPC

n = αΦref + β, all of which were computed over the molecular electrostatic
potential (MEP) grid and over the atomic electrostatic potential with the grid
points defined as being the closest to the corresponding atom in the molecule:

RMSD =

√∑N
i [ΦPC

n (ri)− Φref (ri)]
2

T
(A.1)

RMAE =

∑N
i |ΦPC

n (ri)− Φref (ri)|∑N
i |Φref (ri)|

(A.2)

R2 =

[∑N
i

(
ΦPC

n (ri)− ΦPC
n

)(
Φref (ri)− Φref

)]2
∑N

i

(
ΦPC

n (ri)− ΦPC
n

)2 ∑N
i

(
Φref (ri)− Φref

)2 (A.3)
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Figure A-A1: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

A.2 Bromomethane
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Table A-B1: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.5 1.1 1.0 1.4

Table A-D1: Molecular multipole moments Qlm of ammonia calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 -0.634 0.000 0.000 -2.258 0.000 0.000 0.000 0.000
AC PC 0.000 -0.660 0.000 0.000 -1.254 0.000 0.000 0.001 0.000
SS LM 0.000 -0.634 0.000 0.000 -2.258 0.000 0.000 0.000 0.000
MS LM 0.000 -0.634 0.000 0.000 -2.258 0.000 0.000 0.000 0.000
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Figure A-E1: Convergence of the RMSD between ammonia QM MEP and electro-
static potential calculated using charge models: single-site (SS LM) and multi-sites
(MS LM) Lebedev models (a = 0.5 au).

Table A-F1: Comparison of ammonia QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 5.703 0.198 0.958 1.564 0.958
2 SS LM 3.326 0.125 0.983 1.025 1.001
3 SS LM 1.755 0.039 0.998 0.332 1.004
2 MS LM 3.357 0.147 0.978 1.161 1.001
3 MS LM 1.672 0.051 0.997 0.441 1.006
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Table A-G1: Comparison of ammonia QM AEPs with the potential produced by
charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– N1 AC PC 3.445 0.113 0.985 1.802 0.782
2 N1 SS LM 1.772 0.042 0.995 0.737 1.140
3 N1 SS LM 0.977 0.013 0.997 0.261 1.008
2 N1 MS LM 2.863 0.067 0.991 1.171 1.212
3 N1 MS LM 1.627 0.016 0.989 0.367 0.968
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Figure A-A2: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B2: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.8 1.5 2.1 2.5

Table A-D2: Molecular multipole moments Qlm of bromomethane calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.834 0.000 -1.370 0.000 0.000 2.371 0.000
AC PC 0.000 0.000 0.857 -0.001 -1.219 -0.006 0.003 2.110 -0.008
SS LM 0.000 0.000 0.834 0.000 -1.370 0.000 0.000 2.371 0.000
MS LM 0.000 0.000 0.834 0.000 -1.370 0.000 0.000 2.371 0.000
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Figure A-E2: Convergence of the RMSD between bromomethane QM MEP and
electrostatic potential calculated using charge models: single-site (SS LM) and
multi-sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F2: Comparison of bromomethane QM MEP (over molecular vdW grid)
with the potential produced by charge models: atom-centered point charges (AC
PC), single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5.
All dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 3.498 0.132 0.976 0.837 0.977
2 SS LM 2.827 0.102 0.986 0.648 0.972
3 SS LM 2.008 0.065 0.993 0.451 1.005
2 MS LM 2.726 0.082 0.990 0.557 0.980
3 MS LM 1.176 0.027 0.999 0.210 0.997

Table A-G2: Comparison of bromomethane QM AEPs with the potential pro-
duced by charge models: atom-centered point charges (AC PC), single-site (SS
LM) and multi-sites Lebedev models (MS LM). All dimensional quantities are in
kcal/mol. Subscript under the atom name corresponds to the order of the atom
in the molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– Br5 AC PC 3.498 0.161 0.328 1.017 0.582
2 Br5 SS LM 1.780 0.081 0.800 0.507 0.785
3 Br5 SS LM 1.323 0.040 0.932 0.312 1.027
2 Br5 MS LM 0.857 0.050 0.925 0.311 0.915
3 Br5 MS LM 0.190 0.009 0.997 0.059 1.004
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A.3 Chloromethane
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Figure A-A3: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B3: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.8 2.0 2.0 2.8

Table A-D3: Molecular multipole moments Qlm of chloromethane calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.837 0.000 -0.640 -0.001 0.000 1.104 0.001
AC PC 0.000 0.000 0.851 0.001 -0.611 0.002 0.001 1.059 0.006
SS LM 0.000 0.000 0.837 0.000 -0.640 -0.001 0.000 1.104 0.001
MS LM 0.000 0.000 0.837 0.000 -0.640 -0.001 0.000 1.104 0.001
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Figure A-E3: Convergence of the RMSD between chloromethane QM MEP and
electrostatic potential calculated using charge models: single-site (SS LM) and
multi-sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F3: Comparison of chloromethane QM MEP (over molecular vdW grid)
with the potential produced by charge models: atom-centered point charges (AC
PC), single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5.
All dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 2.341 0.098 0.988 0.604 0.988
2 SS LM 2.946 0.112 0.983 0.715 0.971
3 SS LM 1.717 0.054 0.995 0.380 1.004
2 MS LM 2.442 0.071 0.991 0.510 0.988
3 MS LM 0.943 0.021 0.999 0.167 0.998

Table A-G3: Comparison of chloromethane QM AEPs with the potential pro-
duced by charge models: atom-centered point charges (AC PC), single-site (SS
LM) and multi-sites Lebedev models (MS LM). All dimensional quantities are in
kcal/mol. Subscript under the atom name corresponds to the order of the atom
in the molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– Cl5 AC PC 2.341 0.106 0.709 0.684 0.956
2 Cl5 SS LM 2.000 0.096 0.772 0.609 0.989
3 Cl5 SS LM 1.250 0.033 0.943 0.261 0.927
2 Cl5 MS LM 0.633 0.033 0.966 0.220 1.028
3 Cl5 MS LM 0.240 0.007 0.998 0.046 0.997



130

A.4 cis-MeSNO
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Figure A-A4: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B4: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.8 1.5 1.3 2.6

Table A-D4: Molecular multipole moments Qlm of cis-mesno calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.937 0.305 0.582 0.000 0.000 2.668 -0.773
AC PC 0.003 0.000 0.919 0.291 -0.351 0.000 0.000 2.787 -1.191
SS LM 0.000 0.000 0.937 0.305 0.582 0.000 0.000 2.668 -0.773
MS LM 0.000 0.000 0.937 0.305 0.582 0.000 0.000 2.668 -0.773
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Figure A-E4: Convergence of the RMSD between cis-mesno QM MEP and electro-
static potential calculated using charge models: single-site (SS LM) and multi-sites
(MS LM) Lebedev models (a = 0.5 au).

Table A-F4: Comparison of cis-mesno QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 6.843 0.217 0.944 1.396 0.944
2 SS LM 6.916 0.254 0.926 1.642 0.978
3 SS LM 7.137 0.101 0.984 0.753 0.999
2 MS LM 3.047 0.105 0.987 0.680 0.989
3 MS LM 1.439 0.037 0.998 0.262 0.998
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Table A-G4: Comparison of cis-mesno QM AEPs with the potential produced by
charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– O1 AC PC 4.702 0.180 0.736 1.472 0.625
– N2 AC PC 5.707 0.243 0.622 1.670 0.494
– S3 AC PC 3.344 0.483 0.802 1.130 0.798
2 O1 SS LM 5.957 0.198 0.637 1.723 0.519
2 N2 SS LM 6.916 0.258 0.649 1.734 0.546
2 S3 SS LM 4.662 0.590 0.627 1.468 0.955
3 O1 SS LM 2.884 0.069 0.960 0.656 1.084
3 N2 SS LM 3.096 0.120 0.902 0.867 1.002
3 S3 SS LM 1.887 0.177 0.970 0.441 1.119
2 O1 MS LM 1.747 0.072 0.962 0.609 0.861
2 N2 MS LM 1.123 0.061 0.985 0.394 0.956
2 S3 MS LM 1.401 0.223 0.930 0.526 0.918
3 O1 MS LM 0.868 0.031 0.992 0.264 1.017
3 N2 MS LM 1.051 0.038 0.993 0.265 0.949
3 S3 MS LM 0.426 0.045 0.996 0.118 0.989

Table A-H4: Atom-centered point charge values of cis-mesno fitted to the reference
QM MEP. Subscript under the atom name corresponds to the order of the atom
in the molecule.
O1 N2 S3 C4 H5 H6 H7

-0.15 -0.01 -0.00 -0.25 0.15 0.13 0.13

Table A-I4: Atomic coordinates of cis-mesno optimized at mp2/aug-cc-pVTZ level
of theory.
# Element x, Å y, Å z, Å
1 O -1.435 -2.789 0.000
2 N -2.272 -0.659 0.000
3 S 0.000 1.778 0.000
4 C 2.854 -0.053 0.000
5 H 4.418 1.279 0.000
6 H 2.923 -1.235 1.680
7 H 2.923 -1.235 -1.680
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A.5 Fluoromethane
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Figure A-A5: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B5: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.6 1.8 2.0 2.3

Table A-D5: Molecular multipole moments Qlm of fluoromethane calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.816 0.000 0.352 0.000 0.000 -0.613 0.000
AC PC 0.000 0.000 0.821 0.000 0.061 0.000 0.000 -0.108 0.000
SS LM 0.000 0.000 0.816 0.000 0.352 0.000 0.000 -0.613 0.000
MS LM 0.000 0.000 0.816 0.000 0.352 0.000 0.000 -0.613 0.000
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Figure A-E5: Convergence of the RMSD between fluoromethane QM MEP and
electrostatic potential calculated using charge models: single-site (SS LM) and
multi-sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F5: Comparison of fluoromethane QM MEP (over molecular vdW grid)
with the potential produced by charge models: atom-centered point charges (AC
PC), single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5.
All dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 2.043 0.099 0.990 0.700 0.990
2 SS LM 1.979 0.063 0.994 0.515 0.996
3 SS LM 2.029 0.046 0.997 0.387 1.002
2 MS LM 2.067 0.069 0.994 0.545 1.003
3 MS LM 0.878 0.022 0.999 0.187 0.999

Table A-G5: Comparison of fluoromethane QM AEPs with the potential pro-
duced by charge models: atom-centered point charges (AC PC), single-site (SS
LM) and multi-sites Lebedev models (MS LM). All dimensional quantities are in
kcal/mol. Subscript under the atom name corresponds to the order of the atom
in the molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– F5 AC PC 1.032 0.053 0.995 0.542 0.868
2 F5 SS LM 0.708 0.017 0.997 0.212 1.052
3 F5 SS LM 2.029 0.030 0.979 0.413 0.954
2 F5 MS LM 0.844 0.025 0.991 0.275 0.963
3 F5 MS LM 0.878 0.019 0.993 0.230 0.985
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A.6 Formamide
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Figure A-A6: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B6: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.5 1.1 1.0 1.4

Table A-D6: Molecular multipole moments Qlm of formamide calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 -1.684 -0.167 -1.671 0.000 0.000 -2.872 -0.425
AC PC 0.000 0.000 -1.682 -0.159 -1.636 0.000 0.000 -3.005 0.102
SS LM 0.000 0.000 -1.684 -0.167 -1.671 0.000 0.000 -2.872 -0.425
MS LM 0.000 0.000 -1.684 -0.167 -1.671 0.000 0.000 -2.872 -0.425
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Figure A-E6: Convergence of the RMSD between formamide QM MEP and elec-
trostatic potential calculated using charge models: single-site (SS LM) and multi-
sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F6: Comparison of formamide QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 2.477 0.048 0.997 0.646 0.997
2 SS LM 8.695 0.178 0.963 2.497 1.016
3 SS LM 5.586 0.086 0.990 1.260 1.000
2 MS LM 2.771 0.045 0.997 0.638 1.003
3 MS LM 1.372 0.018 1.000 0.273 1.002
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Table A-G6: Comparison of formamide QM AEPs with the potential produced
by charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– N2 AC PC 0.886 0.194 0.985 0.401 1.192
– O3 AC PC 2.477 0.039 0.975 0.756 0.995
2 N2 SS LM 5.984 1.405 0.848 2.854 1.902
2 O3 SS LM 7.880 0.119 0.765 2.433 0.670
3 N2 SS LM 5.548 1.632 0.749 2.957 1.323
3 O3 SS LM 2.623 0.037 0.983 0.746 1.059
2 N2 MS LM 1.216 0.319 0.981 0.591 1.092
2 O3 MS LM 1.115 0.019 0.994 0.372 0.982
3 N2 MS LM 0.685 0.243 0.991 0.426 0.945
3 O3 MS LM 0.411 0.004 1.000 0.095 1.005

Table A-H6: Atom-centered point charge values of formamide fitted to the refer-
ence QM MEP. Subscript under the atom name corresponds to the order of the
atom in the molecule.
C1 N2 O3 H4 H5 H6

0.64 -0.93 -0.59 0.04 0.44 0.39

Table A-I6: Atomic coordinates of formamide optimized at mp2/aug-cc-pVTZ
level of theory.
# Element x, Å y, Å z, Å
1 C 0.000 0.795 0.000
2 N -1.782 -1.051 0.000
3 O 2.271 0.423 0.000
4 H -0.827 2.702 0.000
5 H -1.235 -2.871 0.000
6 H -3.629 -0.626 0.000
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A.7 Furan
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Figure A-A7: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B7: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 1.4 1.1 1.3 1.3

Table A-D7: Molecular multipole moments Qlm of furan calculated using atom-
centered point charges (AC PC), single-site (SS LM) and multi-sites (MS LM)
Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.000 0.302 -4.767 0.000 0.001 2.541 0.000
AC PC 0.000 0.000 0.000 0.294 -4.687 0.000 0.000 2.642 0.000
SS LM 0.000 0.000 0.000 0.302 -4.767 0.000 0.001 2.541 0.000
MS LM 0.000 0.000 0.000 0.302 -4.767 0.000 0.001 2.541 0.000
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Figure A-E7: Convergence of the RMSD between furan QMMEP and electrostatic
potential calculated using charge models: single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au).

Table A-F7: Comparison of furan QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 3.205 0.161 0.967 0.784 0.967
2 SS LM 11.242 0.461 0.771 2.250 0.956
3 SS LM 10.917 0.313 0.880 1.697 1.058
2 MS LM 2.825 0.167 0.968 0.795 1.015
3 MS LM 1.243 0.052 0.997 0.257 1.008

Table A-G7: Comparison of furan QM AEPs with the potential produced by
charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– O5 AC PC 3.205 0.186 0.359 1.368 0.839
2 O5 SS LM 11.242 0.470 0.061 3.540 0.750
3 O5 SS LM 8.952 0.140 0.453 1.496 1.107
2 O5 MS LM 2.680 0.121 0.728 0.975 1.123
3 O5 MS LM 0.567 0.025 0.988 0.204 1.032
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A.8 Imidazol
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Figure A-A8: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B8: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.6 0.9 1.3 1.3

Table A-D8: Molecular multipole moments Qlm of imidazol calculated using atom-
centered point charges (AC PC), single-site (SS LM) and multi-sites (MS LM)
Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.411 1.466 -4.709 0.000 0.000 -0.474 -4.615
AC PC 0.000 0.000 0.411 1.454 -4.630 0.000 0.000 -0.370 -4.688
SS LM 0.000 0.000 0.411 1.466 -4.709 0.000 0.000 -0.474 -4.615
MS LM 0.000 0.000 0.411 1.466 -4.709 0.000 0.000 -0.474 -4.615
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Figure A-E8: Convergence of the RMSD between imidazol QM MEP and electro-
static potential calculated using charge models: single-site (SS LM) and multi-sites
(MS LM) Lebedev models (a = 0.5 au).

Table A-F8: Comparison of imidazol QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 3.581 0.085 0.992 0.915 0.992
2 SS LM 12.419 0.267 0.930 2.839 1.006
3 SS LM 11.651 0.158 0.969 1.880 1.018
2 MS LM 2.603 0.071 0.995 0.754 1.008
3 MS LM 1.127 0.024 0.999 0.260 1.004
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Table A-G8: Comparison of imidazol QM AEPs with the potential produced by
charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– N5 AC PC 3.581 0.065 0.933 1.301 0.777
– N8 AC PC 2.932 0.300 0.993 0.925 1.311
2 N5 SS LM 12.419 0.204 0.139 4.074 0.268
2 N8 SS LM 10.713 0.912 0.979 2.936 2.237
3 N5 SS LM 7.081 0.040 0.941 1.077 0.842
3 N8 SS LM 11.323 1.914 0.886 5.078 1.964
2 N5 MS LM 1.926 0.030 0.982 0.644 0.945
2 N8 MS LM 2.119 0.493 0.979 1.215 1.141
3 N5 MS LM 0.653 0.010 0.999 0.209 1.022
3 N8 MS LM 0.580 0.111 0.996 0.296 0.915

Table A-H8: Atom-centered point charge values of imidazol fitted to the reference
QM MEP. Subscript under the atom name corresponds to the order of the atom
in the molecule.
C1 H2 C3 H4 N5 C6 H7 N8 H9

-0.43 0.24 0.14 0.12 -0.51 0.13 0.13 -0.12 0.29

Table A-I8: Atomic coordinates of imidazol optimized at mp2/aug-cc-pVTZ level
of theory.
# Element x, Å y, Å z, Å
1 C 2.111 0.577 0.000
2 H 3.993 1.343 0.000
3 C 1.199 -1.860 0.000
4 H 2.270 -3.590 0.000
5 N -1.396 -1.870 0.000
6 C -2.061 0.538 0.000
7 H -3.965 1.256 0.000
8 N 0.000 2.082 0.000
9 H -0.024 3.983 0.000
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A.9 Methanesulfonamide
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Figure A-A9: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B9: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.6 0.8 1.0 1.7

Table A-D9: Molecular multipole moments Qlm of methanesulfonamide calculated
using atom-centered point charges (AC PC), single-site (SS LM) and multi-sites
(MS LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multi-
poles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.011 -0.161 -1.525 -5.586 0.011 -0.013 7.591 -2.417
AC PC 0.000 0.011 -0.160 -1.523 -5.955 0.012 -0.016 7.726 -2.097
SS LM 0.000 0.011 -0.161 -1.525 -5.586 0.011 -0.013 7.591 -2.417
MS LM 0.000 0.011 -0.161 -1.525 -5.586 0.011 -0.013 7.591 -2.417
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Figure A-E9: Convergence of the RMSD between methanesulfonamide QM MEP
and electrostatic potential calculated using charge models: single-site (SS LM)
and multi-sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F9: Comparison of methanesulfonamide QM MEP (over molecular vdW
grid) with the potential produced by charge models: atom-centered point charges
(AC PC), single-site (SS LM) and multi-sites Lebedev models (MS LM) with
a = 0.5. All dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 2.554 0.040 0.998 0.504 0.998
2 SS LM 15.135 0.253 0.915 3.162 0.966
3 SS LM 7.877 0.106 0.983 1.399 0.997
2 MS LM 6.331 0.140 0.976 1.650 0.988
3 MS LM 3.677 0.048 0.997 0.622 1.005
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Table A-G9: Comparison of methanesulfonamide QM AEPs with the potential
produced by charge models: atom-centered point charges (AC PC), single-site
(SS LM) and multi-sites Lebedev models (MS LM). All dimensional quantities are
in kcal/mol. Subscript under the atom name corresponds to the order of the atom
in the molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– O2 AC PC 1.007 0.022 0.993 0.357 1.005
– O7 AC PC 1.026 0.021 0.994 0.355 1.003
– N8 AC PC 1.641 0.250 0.982 1.005 0.683
2 O2 SS LM 13.269 0.183 0.772 2.958 1.193
2 O7 SS LM 15.135 0.201 0.755 3.395 1.266
2 N8 SS LM 11.427 1.997 0.399 7.874 -0.755
3 O2 SS LM 5.549 0.057 0.945 1.105 1.047
3 O7 SS LM 5.864 0.063 0.934 1.241 1.046
3 N8 SS LM 3.424 0.394 0.433 1.801 0.973
2 O2 MS LM 5.966 0.090 0.906 1.460 1.041
2 O7 MS LM 5.988 0.120 0.849 1.895 0.987
2 N8 MS LM 2.218 0.251 0.675 1.111 0.914
3 O2 MS LM 1.996 0.026 0.990 0.431 0.992
3 O7 MS LM 2.801 0.041 0.977 0.689 0.995
3 N8 MS LM 1.642 0.191 0.951 0.803 1.223

Table A-H9: Atom-centered point charge values of methanesulfonamide fitted to
the reference QM MEP. Subscript under the atom name corresponds to the order
of the atom in the molecule.
S1 O2 C3 H4 H5 H6 O7 N8 H9 H10

1.13 -0.57 -0.56 0.21 0.21 0.21 -0.56 -0.85 0.39 0.39

Table A-I9: Atomic coordinates of methanesulfonamide optimized at mp2/aug-
cc-pVTZ level of theory.
# Element x, Å y, Å z, Å
1 S 0.077 0.311 -0.002
2 O 0.353 1.599 -2.410
3 C -2.899 -1.223 0.010
4 H -3.034 -2.358 1.714
5 H -4.314 0.267 -0.001
6 H -3.035 -2.380 -1.679
7 O 0.354 1.633 2.387
8 N 2.081 -2.126 0.015
9 H 3.157 -2.077 -1.569
10 H 3.159 -2.053 1.595
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A.10 Methanesulfonic acid
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Figure A-A10: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B10: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.6 0.9 1.1 1.7

Table A-D10: Molecular multipole moments Qlm of methanesulfonic acid calcu-
lated using atom-centered point charges (AC PC), single-site (SS LM) and multi-
sites (MS LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM
multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.169 0.990 -1.349 -6.192 -1.244 -1.766 4.126 3.014
AC PC 0.000 0.172 0.992 -1.343 -6.325 -1.185 -1.819 4.133 2.992
SS LM 0.000 0.169 0.990 -1.349 -6.192 -1.244 -1.766 4.126 3.014
MS LM 0.000 0.169 0.990 -1.349 -6.192 -1.244 -1.766 4.126 3.014
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Figure A-E10: Convergence of the RMSD between methanesulfonic acid QMMEP
and electrostatic potential calculated using charge models: single-site (SS LM) and
multi-sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F10: Comparison of methanesulfonic acid QM MEP (over molecular vdW
grid) with the potential produced by charge models: atom-centered point charges
(AC PC), single-site (SS LM) and multi-sites Lebedev models (MS LM) with
a = 0.5. All dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 2.978 0.031 0.999 0.402 0.999
2 SS LM 17.860 0.222 0.931 2.982 0.975
3 SS LM 11.210 0.095 0.987 1.320 1.008
2 MS LM 2.131 0.039 0.998 0.517 0.998
3 MS LM 1.124 0.012 1.000 0.172 1.001



148

Table A-G10: Comparison of methanesulfonic acid QM AEPs with the potential
produced by charge models: atom-centered point charges (AC PC), single-site (SS
LM) and multi-sites Lebedev models (MS LM). All dimensional quantities are in
kcal/mol. Subscript under the atom name corresponds to the order of the atom
in the molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– O2 AC PC 1.278 0.019 0.993 0.305 0.998
– O7 AC PC 1.205 0.028 0.996 0.344 1.026
– O8 AC PC 1.910 0.075 0.994 0.475 1.033
2 O2 SS LM 11.465 0.160 0.656 2.847 1.058
2 O7 SS LM 10.170 0.243 0.808 2.915 1.170
2 O8 SS LM 11.336 0.684 0.885 3.794 1.340
3 O2 SS LM 4.161 0.049 0.945 0.898 0.985
3 O7 SS LM 4.026 0.077 0.973 0.962 1.087
3 O8 SS LM 4.730 0.209 0.970 1.219 1.119
2 O2 MS LM 0.965 0.018 0.994 0.295 1.014
2 O7 MS LM 0.998 0.021 0.997 0.267 0.997
2 O8 MS LM 1.197 0.065 0.998 0.384 1.042
3 O2 MS LM 0.792 0.005 0.999 0.104 0.991
3 O7 MS LM 0.605 0.006 1.000 0.093 0.998
3 O8 MS LM 1.051 0.030 0.999 0.191 0.982

Table A-H10: Atom-centered point charge values of methanesulfonic acid fitted to
the reference QM MEP. Subscript under the atom name corresponds to the order
of the atom in the molecule.
S1 O2 C3 H4 H5 H6 O7 O8 H9

1.12 -0.51 -0.69 0.22 0.26 0.26 -0.55 -0.53 0.42

Table A-I10: Atomic coordinates of methanesulfonic acid optimized at mp2/aug-
cc-pVTZ level of theory.
# Element x, Å y, Å z, Å
1 S -0.163 0.260 -0.134
2 O -0.404 2.690 1.067
3 C 3.034 -0.699 0.025
4 H 3.188 -2.594 -0.743
5 H 4.098 0.644 -1.108
6 H 3.622 -0.623 1.989
7 O -1.141 -0.210 -2.649
8 O -1.458 -1.793 1.730
9 H -2.471 -2.890 0.666
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A.11 Methanethiol
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Figure A-A11: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B11: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.9 1.3 1.7 2.4

Table A-D11: Molecular multipole moments Qlm of methanethiol calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.298 0.588 -2.107 0.000 0.000 0.830 -1.640
AC PC 0.000 0.000 0.300 0.602 -1.372 0.000 0.000 0.103 -2.150
SS LM 0.000 0.000 0.298 0.588 -2.107 0.000 0.000 0.830 -1.640
MS LM 0.000 0.000 0.298 0.588 -2.107 0.000 0.000 0.830 -1.640
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Figure A-E11: Convergence of the RMSD between methanethiol QM MEP and
electrostatic potential calculated using charge models: single-site (SS LM) and
multi-sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F11: Comparison of methanethiol QM MEP (over molecular vdW grid)
with the potential produced by charge models: atom-centered point charges (AC
PC), single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5.
All dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 5.259 0.244 0.925 1.416 0.925
2 SS LM 4.070 0.183 0.956 1.084 0.964
3 SS LM 2.158 0.080 0.991 0.496 1.010
2 MS LM 2.855 0.106 0.984 0.655 0.985
3 MS LM 1.686 0.051 0.997 0.305 1.001

Table A-G11: Comparison of methanethiol QM AEPs with the potential pro-
duced by charge models: atom-centered point charges (AC PC), single-site (SS
LM) and multi-sites Lebedev models (MS LM). All dimensional quantities are in
kcal/mol. Subscript under the atom name corresponds to the order of the atom
in the molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– S1 AC PC 4.526 0.189 0.237 1.665 0.426
2 S1 SS LM 2.896 0.105 0.729 0.949 0.672
3 S1 SS LM 2.032 0.034 0.965 0.404 1.064
2 S1 MS LM 1.164 0.037 0.961 0.336 0.986
3 S1 MS LM 0.902 0.027 0.979 0.247 0.999
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A.12 Methanol
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Figure A-A12: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B12: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.7 0.9 1.6 1.9

Table A-D12: Molecular multipole moments Qlm of methanol calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.568 0.431 -0.849 0.000 0.000 1.170 -2.761
AC PC 0.000 0.000 0.561 0.436 -1.055 0.000 0.000 0.499 -2.855
SS LM 0.000 0.000 0.568 0.431 -0.849 0.000 0.000 1.170 -2.761
MS LM 0.000 0.000 0.568 0.431 -0.849 0.000 0.000 1.170 -2.761
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Figure A-E12: Convergence of the RMSD between methanol QM MEP and elec-
trostatic potential calculated using charge models: single-site (SS LM) and multi-
sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F12: Comparison of methanol QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 3.326 0.136 0.982 0.925 0.982
2 SS LM 5.108 0.182 0.966 1.295 1.003
3 SS LM 3.125 0.082 0.992 0.614 1.008
2 MS LM 1.950 0.071 0.995 0.509 1.004
3 MS LM 0.866 0.027 0.999 0.193 1.000

Table A-G12: Comparison of methanol QM AEPs with the potential produced
by charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– O1 AC PC 2.232 0.062 0.943 0.853 1.019
2 O1 SS LM 3.234 0.084 0.881 1.160 1.049
3 O1 SS LM 2.827 0.041 0.961 0.676 1.003
2 O1 MS LM 0.825 0.025 0.995 0.342 1.047
3 O1 MS LM 0.866 0.015 0.994 0.231 0.963
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A.13 Tetrazole
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Figure A-A13: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B13: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.5 1.3 1.1 1.3

Table A-D13: Molecular multipole moments Qlm of tetrazole calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 2.179 -0.334 -0.989 0.000 0.000 2.995 -0.745
AC PC 0.000 0.000 2.133 -0.329 -1.564 0.000 0.000 3.067 -0.678
SS LM 0.000 0.000 2.179 -0.334 -0.989 0.000 0.000 2.995 -0.745
MS LM 0.000 0.000 2.179 -0.334 -0.989 0.000 0.000 2.995 -0.745
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Figure A-E13: Convergence of the RMSD between tetrazole QMMEP and electro-
static potential calculated using charge models: single-site (SS LM) and multi-sites
(MS LM) Lebedev models (a = 0.5 au).

Table A-F13: Comparison of tetrazole QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 7.334 0.097 0.988 1.556 0.988
2 SS LM 12.000 0.188 0.958 3.063 1.015
3 SS LM 6.235 0.099 0.988 1.575 1.008
2 MS LM 2.272 0.028 0.999 0.478 1.005
3 MS LM 1.014 0.010 1.000 0.175 1.002
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Table A-G13: Comparison of tetrazole QM AEPs with the potential produced by
charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– N2 AC PC 3.691 0.201 0.990 1.243 1.421
– N3 AC PC 6.948 0.150 0.921 1.508 0.927
– N4 AC PC 7.334 0.103 0.818 2.047 0.613
– N5 AC PC 4.724 0.111 0.921 1.596 0.901
2 N2 SS LM 7.772 0.651 0.986 3.862 1.919
2 N3 SS LM 10.138 0.227 0.854 2.250 0.998
2 N4 SS LM 11.333 0.142 0.607 3.141 0.496
2 N5 SS LM 8.175 0.169 0.809 2.473 0.806
3 N2 SS LM 6.235 0.560 0.832 3.083 1.091
3 N3 SS LM 5.167 0.156 0.961 1.532 1.138
3 N4 SS LM 4.081 0.082 0.912 1.552 1.062
3 N5 SS LM 5.683 0.091 0.963 1.386 1.109
2 N2 MS LM 0.637 0.057 0.996 0.327 1.025
2 N3 MS LM 0.869 0.029 0.998 0.276 1.006
2 N4 MS LM 0.844 0.013 0.997 0.261 0.968
2 N5 MS LM 0.998 0.020 0.998 0.295 1.006
3 N2 MS LM 0.512 0.042 0.999 0.245 0.947
3 N3 MS LM 0.496 0.011 1.000 0.113 1.003
3 N4 MS LM 0.646 0.004 1.000 0.099 1.015
3 N5 MS LM 0.357 0.008 1.000 0.117 1.004

Table A-H13: Atom-centered point charge values of tetrazole fitted to the reference
QM MEP. Subscript under the atom name corresponds to the order of the atom
in the molecule.
C1 N2 N3 N4 N5 H6 H7

0.26 0.09 -0.26 -0.04 -0.37 0.23 0.09

Table A-I13: Atomic coordinates of tetrazole optimized at mp2/aug-cc-pVTZ level
of theory.
# Element x, Å y, Å z, Å
1 C 1.584 1.330 -0.000
2 N 1.577 -1.209 0.000
3 N -0.811 -2.046 -0.000
4 N -2.231 -0.004 0.000
5 N -0.789 2.113 -0.000
6 H 3.022 -2.450 -0.000
7 H 3.252 2.489 0.000
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A.14 Thiazole
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Figure A-A14: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B14: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 1.0 0.9 1.6 1.4

Table A-D14: Molecular multipole momentsQlm of thiazole calculated using atom-
centered point charges (AC PC), single-site (SS LM) and multi-sites (MS LM)
Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.372 -0.514 -3.310 0.000 0.000 4.639 4.602
AC PC 0.001 0.000 0.364 -0.511 -3.224 0.000 0.000 4.682 4.816
SS LM 0.000 0.000 0.372 -0.514 -3.310 0.000 0.000 4.639 4.602
MS LM 0.000 0.000 0.372 -0.514 -3.310 0.000 0.000 4.639 4.602
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Figure A-E14: Convergence of the RMSD between thiazole QM MEP and electro-
static potential calculated using charge models: single-site (SS LM) and multi-sites
(MS LM) Lebedev models (a = 0.5 au).

Table A-F14: Comparison of thiazole QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 4.463 0.182 0.967 1.036 0.967
2 SS LM 9.586 0.440 0.820 2.489 0.909
3 SS LM 8.955 0.256 0.933 1.562 1.018
2 MS LM 2.725 0.097 0.989 0.608 1.002
3 MS LM 1.213 0.034 0.999 0.205 1.006
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Table A-G14: Comparison of thiazole QM AEPs with the potential produced by
charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– N5 AC PC 3.762 0.113 0.845 1.473 0.652
– S8 AC PC 3.436 0.482 0.812 0.936 0.805
2 N5 SS LM 9.224 0.280 0.043 3.660 0.125
2 S8 SS LM 8.599 0.743 0.690 1.492 1.145
3 N5 SS LM 6.088 0.111 0.794 1.575 0.649
3 S8 SS LM 8.549 0.479 0.871 1.158 1.287
2 N5 MS LM 2.278 0.058 0.959 0.788 0.892
2 S8 MS LM 0.867 0.088 0.991 0.193 0.985
3 N5 MS LM 0.475 0.014 0.999 0.178 1.014
3 S8 MS LM 0.437 0.040 0.998 0.089 0.981

Table A-H14: Atom-centered point charge values of thiazole fitted to the reference
QM MEP. Subscript under the atom name corresponds to the order of the atom
in the molecule.
C1 H2 C3 H4 N5 C6 H7 S8

-0.34 0.23 0.14 0.12 -0.45 0.08 0.17 0.04

Table A-I14: Atomic coordinates of thiazole optimized at mp2/aug-cc-pVTZ level
of theory.
# Element x, Å y, Å z, Å
1 C 2.299 0.041 0.000
2 H 4.277 -0.441 0.000
3 C 1.199 2.396 0.000
4 H 2.228 4.156 0.000
5 N -1.380 2.430 0.000
6 C -2.264 0.106 0.000
7 H -4.249 -0.358 0.000
8 S 0.000 -2.226 0.000
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A.15 trans-MeSNO
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Figure A-A15: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B15: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.7 1.9 1.3 2.4

Table A-D15: Molecular multipole moments Qlm of trans-mesno calculated using
atom-centered point charges (AC PC), single-site (SS LM) and multi-sites (MS
LM) Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 1.132 0.436 0.370 0.000 0.000 1.542 -0.126
AC PC 0.002 0.000 1.133 0.426 -0.482 0.000 0.000 1.312 -0.353
SS LM 0.000 0.000 1.132 0.436 0.370 0.000 0.000 1.542 -0.126
MS LM 0.000 0.000 1.132 0.436 0.370 0.000 0.000 1.542 -0.126
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Figure A-E15: Convergence of the RMSD between trans-mesno QM MEP and
electrostatic potential calculated using charge models: single-site (SS LM) and
multi-sites (MS LM) Lebedev models (a = 0.5 au).

Table A-F15: Comparison of trans-mesno QM MEP (over molecular vdW grid)
with the potential produced by charge models: atom-centered point charges (AC
PC), single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5.
All dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 5.058 0.159 0.966 1.254 0.966
2 SS LM 8.471 0.244 0.928 1.923 1.012
3 SS LM 7.229 0.093 0.984 0.869 1.004
2 MS LM 2.528 0.084 0.991 0.651 0.989
3 MS LM 1.411 0.025 0.999 0.210 1.000



161

Table A-G15: Comparison of trans-mesno QM AEPs with the potential pro-
duced by charge models: atom-centered point charges (AC PC), single-site (SS
LM) and multi-sites Lebedev models (MS LM). All dimensional quantities are in
kcal/mol. Subscript under the atom name corresponds to the order of the atom
in the molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– O1 AC PC 5.058 0.111 0.722 1.201 0.626
– N2 AC PC 4.492 0.539 0.183 2.190 0.328
– S3 AC PC 3.421 0.379 0.882 1.228 0.864
2 O1 SS LM 8.471 0.214 0.161 2.145 0.235
2 N2 SS LM 7.451 0.622 0.409 2.766 0.653
2 S3 SS LM 5.914 0.502 0.782 1.803 1.306
3 O1 SS LM 2.805 0.063 0.926 0.649 0.927
3 N2 SS LM 4.495 0.354 0.962 1.589 1.506
3 S3 SS LM 1.379 0.047 0.992 0.205 1.014
2 O1 MS LM 1.111 0.038 0.975 0.374 0.945
2 N2 MS LM 1.540 0.118 0.956 0.521 0.876
2 S3 MS LM 1.566 0.171 0.951 0.590 0.955
3 O1 MS LM 0.826 0.017 0.994 0.185 0.986
3 N2 MS LM 0.481 0.038 0.994 0.185 0.964
3 S3 MS LM 0.514 0.032 0.997 0.124 0.996

Table A-H15: Atom-centered point charge values of trans-mesno fitted to the
reference QM MEP. Subscript under the atom name corresponds to the order of
the atom in the molecule.
O1 N2 S3 C4 H5 H6 H7

-0.17 0.05 0.06 -0.60 0.25 0.20 0.20

Table A-I15: Atomic coordinates of trans-mesno optimized at mp2/aug-cc-pVTZ
level of theory.
# Element x, Å y, Å z, Å
1 O -3.186 -2.143 0.000
2 N -0.937 -1.787 0.000
3 S 0.000 1.439 0.000
4 C 3.340 0.768 0.000
5 H 4.305 2.582 0.000
6 H 3.850 -0.279 1.689
7 H 3.850 -0.279 -1.689
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A.16 Uracil
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Figure A-A16: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B16: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.6 0.7 0.9 1.3

Table A-D16: Molecular multipole moments Qlm of uracil calculated using atom-
centered point charges (AC PC), single-site (SS LM) and multi-sites (MS LM)
Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 -0.469 1.926 1.847 0.000 0.000 -14.328 -2.227
AC PC 0.000 0.000 -0.468 1.933 2.082 0.000 0.000 -14.372 -2.201
SS LM 0.000 0.000 -0.469 1.926 1.847 0.000 0.000 -14.328 -2.227
MS LM 0.000 0.000 -0.469 1.926 1.847 0.000 0.000 -14.328 -2.227
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Figure A-E16: Convergence of the RMSD between uracil QM MEP and electro-
static potential calculated using charge models: single-site (SS LM) and multi-sites
(MS LM) Lebedev models (a = 0.5 au).

Table A-F16: Comparison of uracil QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 1.569 0.036 0.999 0.443 0.999
2 SS LM 18.215 0.486 0.793 5.599 0.937
3 SS LM 27.503 0.231 0.926 3.412 1.034
2 MS LM 2.335 0.039 0.998 0.499 1.001
3 MS LM 1.051 0.017 1.000 0.226 1.003
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Table A-G16: Comparison of uracil QM AEPs with the potential produced by
charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– N1 AC PC 1.531 0.073 0.956 0.672 1.017
– N5 AC PC 1.317 0.146 0.984 0.446 0.792
– O9 AC PC 1.356 0.024 0.995 0.412 1.048
– O11 AC PC 1.312 0.031 0.996 0.401 1.053
2 N1 SS LM 14.847 0.740 0.833 6.576 2.683
2 N5 SS LM 7.406 1.849 0.727 4.504 1.604
2 O9 SS LM 9.592 0.293 0.154 4.525 0.178
2 O11 SS LM 9.302 0.348 0.493 4.030 0.285
3 N1 SS LM 8.418 0.414 0.564 3.622 1.318
3 N5 SS LM 18.815 3.693 0.064 9.673 0.781
3 O9 SS LM 8.349 0.135 0.784 2.418 0.721
3 O11 SS LM 9.015 0.186 0.768 2.495 0.712
2 N1 MS LM 1.198 0.094 0.983 0.733 0.950
2 N5 MS LM 0.819 0.200 0.996 0.482 0.914
2 O9 MS LM 0.745 0.016 0.997 0.259 0.976
2 O11 MS LM 0.661 0.016 0.998 0.187 0.990
3 N1 MS LM 0.882 0.028 0.980 0.279 0.928
3 N5 MS LM 0.748 0.057 0.997 0.200 1.089
3 O9 MS LM 0.372 0.007 1.000 0.119 0.993
3 O11 MS LM 0.314 0.008 1.000 0.093 0.996

Table A-H16: Atom-centered point charge values of uracil fitted to the reference
QM MEP. Subscript under the atom name corresponds to the order of the atom
in the molecule.
N1 C2 C3 C4 N5 C6 H7 H8 O9 H10 O11 H12

-0.45 0.12 -0.60 0.88 -0.58 0.77 0.18 0.24 -0.63 0.35 -0.62 0.34
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A.17 Water

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
radius, au

0.0

0.5

1.0

1.5

2.0

2.5

3.0
R

M
S

D
, k

ca
l/m

ol
water

n=1

n=2

n=3

n=4

Figure A-A17: Effect of radius a on the RMSD between the MEP expansion Φn

and electrostatic potential calculated using single-site Lebedev charge model.

Table A-B17: Values of the radius a required to reproduce MEP expansion Φn up
to given degree n with less than 0.05 kcal/mol difference in RMSD.

n 1 2 3 4
a, au 0.5 0.9 1.6 2.7

Table A-D17: Molecular multipole moments Qlm of water calculated using atom-
centered point charges (AC PC), single-site (SS LM) and multi-sites (MS LM)
Lebedev models (a = 0.5 au, n = 2) as compared with the QM multipoles.
Model Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

QM 0.000 0.000 0.000 -0.784 -1.727 0.000 0.000 1.276 0.000
AC PC 0.000 0.000 0.000 -0.802 -1.005 0.000 0.000 0.811 0.000
SS LM 0.000 0.000 0.000 -0.784 -1.727 0.000 0.000 1.276 0.000
MS LM 0.000 0.000 0.000 -0.784 -1.727 0.000 0.000 1.276 0.000
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Figure A-E17: Convergence of the RMSD between water QM MEP and electro-
static potential calculated using charge models: single-site (SS LM) and multi-sites
(MS LM) Lebedev models (a = 0.5 au).

Table A-F17: Comparison of water QM MEP (over molecular vdW grid) with
the potential produced by charge models: atom-centered point charges (AC PC),
single-site (SS LM) and multi-sites Lebedev models (MS LM) with a = 0.5. All
dimensional quantities are in kcal/mol.
n Model Max. Error RMAE R2 RMSD α
– AC PC 3.594 0.141 0.978 1.391 0.977
2 SS LM 3.080 0.087 0.991 0.893 1.007
3 SS LM 0.943 0.024 0.999 0.254 1.003
2 MS LM 2.077 0.073 0.994 0.743 1.006
3 MS LM 0.895 0.026 0.999 0.272 1.003

Table A-G17: Comparison of water QM AEPs with the potential produced by
charge models: atom-centered point charges (AC PC), single-site (SS LM) and
multi-sites Lebedev models (MS LM). All dimensional quantities are in kcal/mol.
Subscript under the atom name corresponds to the order of the atom in the
molecule.
n Atom Model Max. Error RMAE R2 RMSD α
– O1 AC PC 2.994 0.075 0.921 1.069 1.129
2 O1 SS LM 1.581 0.049 0.977 0.644 1.074
3 O1 SS LM 0.664 0.015 0.996 0.214 0.964
2 O1 MS LM 1.569 0.045 0.977 0.595 1.048
3 O1 MS LM 0.862 0.018 0.994 0.260 0.956


