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ABSTRACT 

DESIGN AND SYNTHESIS OF SELECTIVE ESTROGEN RECEPTOR β 

AGONISTS AND THEIR PHARMACOLOGY 

K. L. Iresha Sampathi Perera, B.Sc. (Hons), M.Sc. 

 

Marquette University, 2017 

Estrogens (17β-estradiol, E2) have garnered considerable attention in influencing 

cognitive process in relation to phases of the menstrual cycle, aging and menopausal 

symptoms.  However, hormone replacement therapy can have deleterious effects leading 

to breast and endometrial cancer, predominantly mediated by estrogen receptor-alpha 

(ERα) the major isoform present in the mammary gland and uterus.  Further evidence 

supports a dominant role of estrogen receptor-beta (ERβ) for improved cognitive effects 

such as enhanced hippocampal signaling and memory consolidation via estrogen activated 

signaling cascades.   

Creation of the ERβ selective ligands is challenging due to high structural similarity 

of both receptors.  Thus far, several ERβ selective agonists have been developed, however, 

none of these have made it to clinical use due to their lower selectivity or considerable side 

effects.  The research in this dissertation involved the design of non-steroidal ERβ selective 

agonists for hippocampal memory consolidation.  The step-wise process to achieve the 

ultimate goal of this research includes: (1) design and synthesis of (4-

hydroxyphenyl)cyclohexyl or cycloheptyl derivatives, (2) in vitro biological evaluation of 

synthesized compounds to identify highly potent and selective candidates, and (3) in vivo 

biological evaluation of selected candidates for hippocampal memory consolidation. 

Several (4-hydroxyphenyl)cyclohexyl or cycloheptyl derivatives were synthesized 

having structural alterations on both aromatic and cyclohexyl/heptyl ring scaffolds.  ERβ 

agonist potency was initially evaluated in TR-FRET ERβ ligand binding assay and 

compounds having high potency were re-evaluated in functional cell based assays for 

potency and ERβ vs. ERα selectivity.  Two compounds from each series, ISP 163-PK4 and 

ISP 358-2 were identified as most selective ERβ agonists.  Both compounds revealed high 

metabolic stability, solubility and no cross reactivity towards other nuclear receptors.  In 

vivo efficiency of ISP 358-2 was evaluated in ovariectomized mice (C57BL/6) with object 

recognition (OR) and object placement (OP) tasks.  The results indicate improved memory 

consolidation at 100 pg/ hemisphere and 0.5 mg/Kg via DH infusion and IP injection 

respectively.  The information learned from this project serves as a foundation for 

development of other cycloheptyl/hexyl based ERβ agonists or antagonists having 

acceptable pharmacological profiles.  
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CHAPTER 1 

BACKGROUND AND GOALS OF RESEARCH 

The goal of this research is the design, synthesis and biological evaluation of 

estrogen receptor β (ERβ) selective agonists for hippocampal memory consolidation for 

potential use by postmenopausal women. 

1.1 Discovery of Estrogen Receptors 

Estrogens, such as 17β-estradiol (E2, Figure 1.1), play an important role in the 

growth, development and maintenance of a variety of tissues which are mainly mediated 

by the estrogen receptor (ER), a ligand-activated transcription factor.1-2  There are two 

distinct subtypes of estrogen receptors, ERα and ERβ, which are found to diverge with 

respect to their transcriptional activities and tissue distribution.2-4  Since the first 

observations by Jensen and co-workers in 19685 that exogenous estrogen binds to a specific 

receptor protein in the rat uterus, this estrogen receptor protein (ERα) has been extensively 

studied.  The gene which encodes for ERα (ESR1 located on chromosome 6) was 

successfully cloned in 1986.4  Until 1995, it was believed that there was a single ER which 

was responsible for facilitating all the biological effects of estrogens.  Thus, it was a 

surprise when, in 1995, a second distinct estrogen receptor from rat prostate was reported 

by the Gustafson’s group.  This later estrogen receptor is known as ERβ and the gene which 

encodes for ERβ is located on chromosome 14.4, 6-8 
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Figure 1.1: Structure of 17β-estradiol (E2) 

The two receptors, ERα and ERβ, display overlapping but distinct patterns of tissue 

distributions as well as different types of transcriptional regulation.9-10  ERα is highly 

expressed in the breast, liver and uterus and contributes to the malignant growth in these 

tissues, whereas ERβ has counteractive anti-proliferative effects on breast cancer cell 

lines.11-13  In addition, ERβ is expressed in the lungs, prostate, colon, brain and 

gastrointestinal tract and upon binding of estradiol, it exerts beneficial effects in these 

organs/ tissues without the risk of breast cancer.9, 11, 14 These differential effects prompted 

researchers to develop novel ERβ selective ligands (agonists / antagonists)9 

1.2 Estrogen Receptors and Human Disease 

The prevalence of breast cancer remains highest among all the cancers in women 

and it is the leading cause of cancer-related mortality within the United States.15-16  While 

initiation and progression of breast cancer involves several environmental and genetic 

factors, estrogen and ERs plays a vital role in the progression and treatment of this disease.  

Approximately 70% of breast cancers are ERα positive and respond to the selective 

estrogen receptor modulator (SERMs) prodrug tamoxifen as part of anti-estrogen 

therapy.4, 17-18  While, tamoxifen has relatively low binding to either ERα or ERβ (7% and 

6% relative binding affinity (RBA) compared to estradiol), it is metabolized by cytochrome 

P450 enzymes into 4-hydroxytamoxifen (4-OHT) which has greatly increased binding 
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affinity (178% and 338% RBA compared to estradiol)(Scheme 1.1).19  Competitive binding 

of 4-OHT to ERα effects a decrease in expression of cyclin D1 (important for cell 

progression through the G1 phase), and c-myc (which regulates cell growth).  These 

changes eventually lead to repression of Bcl2, which regulates anti-apoptosis, thus leading 

to increased cell death.4, 20  In estrogen-sensitive malignancies ERα usually act as an 

oncogene whereas ERβ is a tumor suppressor which clearly reveals a divergent relationship 

(yin/yang relation) between the ER subtypes.4 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.1: The major metabolic pathway involves initial conversion of tamoxifen to N- 

desmethyl-tamoxifen and 4-hydroxy-tamoxifen followed by conversion to 

endoxifen via CYP450s21 

Estrogen and its receptors are essential for the development and branching 

morphogenesis of the prostate.  ERβ is predominantly expressed in both human and rodent 
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prostate in comparison to ERα.  So far, ERβ shows anti-proliferative effects for certain 

prostate cancer cell lines (DU145) by repressing key oncogenes such as 

phosphatidylinositol 3-kinase (PI3K), c-myc, cyclin E (which is involved in promotion of 

cells from the S phase to the G1 phase) and stimulating the expressions of anti-proliferative 

genes such as the phosphatase and tension homolog (PTEN), Forkhead box O3 protein 

(FOXO3) which functions as a trigger for apoptosis, and cyclin-dependent kinase inhibitor 

1 (CDKN1A) which regulates cell cycle progression at the G1 and S phases.4, 22-23 

Osteoporosis is defined as the loss of bone mass and strength, mainly due to 

increased bone resorption and this condition is associated with estrogen deficiency.3  In 

ERα knock-out (αERKO) mice, shorter bone lengths and reduced mineral density were 

observed in comparison to wild type mice.3, 24  Conversely, adult female ERβ knock-out 

(βERKO) mice were found to have slightly higher bone mineral density, signifying a 

regulatory role for ERβ in bone growth.3, 25  Similarly, male mice deficient in ERα, or both 

ERα and ERβ, (due to knock-out) exhibited reduced bone mineral density, bone diameter 

and length, while male mice with only ERβ knockout did not exhibit these reductions.3, 26  

These observations suggest the significance of ERα in bone mass regulation.  

ERs also have profound effects in the brain, mainly in brain injury, 

neurodegeneration and cognitive decline.27  Both ERs are distributed in numerous regions 

of the brain such as the hypothalamus, hippocampus, cerebral cortex, forebrain and 

midbrain.23  Dubal, et al., demonstrated that the removal of ERα completely abolished the 

protective role in brain injury, whereas the protection is preserved in the absence of ERβ 

in ovariectomized / ischemia mice models.23, 27  Another study, where stroke was induced 

from reversible middle cerebral artery (MCA) occlusion, found that no enhanced tissue 
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damage was observed in female αERKNO mice.28  This indicates the subtype independent 

nature of estrogen action towards brain injury prevention.  Impressively, Gustafsson, et al. 

showed an abundance of morphological abnormalities such as neuronal loss and 

proliferation of astroglial cells in the brains of βERKO mice and.no changes were observed 

in αERKO mice.29  Moreover, several researchers conclude that ERβ is crucial for neuron 

survival and its valuable influence on treatment of neurodegenerative diseases including 

Alzheimer disease, Parkinson disease, and schizophrenia.7, 23, 30 

1.2.1 Estradiol, the Hippocampus and Memory 

A plethora of literature accumulated over last twenty years has demonstrated that 

17β-estradiol (E2) is an important trophic factor that mediates the function of cognitive 

regions of the brain.31  “The importance of estrogen in cognitive function has been 

highlighted by examining cognition in relation to phases of the menstrual cycle, 

menopausal symptoms, circulating hormone levels and aging.”32  The decline in E2 

production as a result of menopause is linked with etiology of dementia, depression and 

cognitive decline in women, as well as rapid memory decline in animal models.31 

According to recent studies, it is evident that E2 governs the dendritic length in the 

basal forebrain and neuronal dendritic spine density in the somatosensory cortex, the 

amygdala, and the prefrontal cortex of the brain.33  Similarly, estradiol controls 

morphology and synaptic plasticity in the hippocampus; the major brain region responsible 

for cognitive activity.  So far, several mechanisms of action for the effects of estradiol on 

cognitive functions of the hippocampus have been recognized through several distinct 

pathways.  E2 promotes the formation of new dendritic spines and excitatory synapses, and 

stimulates the expression of N-methyl-D-aspartate (NMDA) mediated synaptic activity.  
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Moreover, E2 increases the phosphorylation of the cAMP response element binding 

protein (CREB) and long term potentiation (LP) which are highly responsible for the 

learning and long-term memory.32-34 

ERα and ERβ are confined in several compartments in hippocampal neurons, such 

as the nucleus, axon terminals and dendritic spine synapses.  In the nucleus, ERs mediate 

the estrogen effects on the classical genomic pathway leading to the gene transcription.  

However, the localization of ERs at distal sites, such as dendritic spines and axon terminals, 

proposed the possibility of a “non-genomic” or “non-classical” mechanism of estrogen 

receptors.  Indeed, binding of both ERs to the metabotropic glutamate receptor 1 (mGluR1) 

triggers the hippocampal extracellular signal-regulated kinase (ERK) signaling and 

promotes CREB phosphorylation.  The interaction of E2 with NMDA receptor also triggers 

ERK signaling as well as local protein synthesis.  Both ERK and CERB play pivotal role 

in hippocampal memory consolidation.  Besides intracellular ERs, several putative 

membrane bound ERs have been identified (e.g. GPER, ER-X and Gq-ER).  E2 binds to 

these receptors and enhances the memory consolidation by activating the c-Jun N-terminal 

kinase (JNK) cascade, which eventually facilitates gene transcription and protein 

translation (Figure 1.2)31, 33 
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Figure: 1.2: Schematic illustration of non-classical mechanisms required for E2 and ERs 

                     to enhance hippocampal memory consolidation33 

Though estrogen has been involved in influencing cognitive functions, the sub type 

of estrogen receptor responsible for these effects remain unclear.  However, accumulating 

biochemical, pharmacological and behavioral studies support the key role of ERβ for 

hippocampal memory and synaptic plasticity.  A few selected examples are discussed 

here.32-33 
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In general, hippocampal memory in rodents have been primarily evaluated in 

spatial tasks, including object placement, the Morris water maze and the radial arm maze, 

as well as through object recognition tasks.33  In 2002, Gustafsson and coworkers, 

demonstrated that removal of either receptor (by ERα or ERβ knockouts) impairs the 

spatial memory in the Morris water maze 31, 35-36  Semple-Rewland, et al., showed that 

spatial memory deficit induced by ERα knockouts can be restored by viral vector-mediated 

delivery of the ERα gene to the hippocampus.  However, the same delivery of the ERα 

gene to the hippocampus did not restore memory deficit in ERβ knockout mice.31, 37  

Moreover, both Walf, et al.31, 38-39and Brandon, et al.32showed that exogenously 

administrated E2 did not enhanced the hippocampal memory in female ERβ knockout 

mice.  

Besides the memory related studies, Brandon and coworkers examined the 

molecular events driven by ERβ in the hippocampus.32  Since estrogen exerts effects on 

synaptic physiology by activating non-genomic signaling cascades (MAPK), the 

abundance of pCREB levels were monitored in ovariectomized rats.  Dosing 

ovariectomized rats with ERβ selective agonist (WAY-200070) and estradiol significantly 

increased the phosphorylated cAMP response element binding (pCREB) levels; there were 

not pCREB level increases observed with administration of the ERα selective agonist PPT 

(Figure 1.3).32  
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Figure 1.3: Structure of ERα and ERβ selective agonists 

1.2.2 Estrogen Decrease in Menopause and Hormone Replacement Therapy  

Estrogen levels decrease in both sexes as humans age, but drop more precipitously 

in women during the menopausal transition.  Lower estrogen levels during menopause is 

correlated with “diseases of the skeleton (osteoporosis), cardiovascular system (coronary 

heart disease) and central nervous system (Alzhimer’s disease).”1  Hormone replacement 

therapy (HRT), the prolonged administration of estrogen and progesterone supplements, 

was initially developed to address the lower production of these important mediators.  HRT 

reduced the risk of dementia, mild cognitive impairment and prevented the spine and hip 

fraction in postmenopausal women.  However, the safety of continuous administration of 

estrogen supplements in HRT is currently under scrutiny due an increased risk of breast 

and endometrial cancer.40-43  The etiology of HRT carcinogenicity is complex, but an 

increasing amount of evidence supports the formation of catecholic estrogens via CYP450 

and their subsequent oxidation to tumor-initiative quinones (Scheme 1.2). 44-48 
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Scheme 1.2: Mechanism of quinone formation and DNA adduction 

Nevertheless, estradiol has garnered considerable attention over the past decades in 

influencing cognitive processes in relation to phases of the menstrual cycle, aging and 

menopausal symptoms.  Accumulating evidence supports the dominant role of estrogen 

receptor-beta (ERβ); the predominant isoform in the hippocampus for improved cognitive 

effects.32  ERβ mediates estradiol’s effects on neural plasticity, neuroprotection, enhanced 

hippocampal signaling and memory consolidation via estrogen activated signaling 

cascades, via the extracellular signal-regulated kinase/mitogen-activated protein kinase 

pathway (ERK/MAPK).49-50  Due to the deleterious effects of activating ERα compared to 

beneficial effects of activating ERβ, selective ERβ agonists are an exciting new direction 

in drug discovery for the treatment of cognitive deficits in postmenopausal women.  
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1.3 Estrogen Receptor Structure and Mechanism of Action  

“ERα and ERβ belong to the nuclear hormone receptor family whose members are 

ligand-controlled transcription factors.”7  ERα is a 66 kDa, 595-residue protein whereas 

ERβ is a 62 kDa, 530-residue protein.2  Both ERs exhibit similar architecture, having six 

regions of the primary amino acid sequence (A-F) and composed of three major functional 

domains: the N-terminal or A/B domain (NTD), the DNA-binding domain (DBD), and the 

C-terminal D/E/F or ligand-binding domain (LBD) (Figure 1.4).  The two human ERs 

share ~ 97% similarity between the DBD domains, 59% similarity in the LBD domains, 

but only 16% similarity in the NTD domain.  The two receptors are functionally not 

interchangeable.2, 4, 6 

 

 

 

 

 

 

 

Figure 1.4: Schematic representation of structural domain of human ERα and ERβ4 

The N-terminal domain (NTD) of ER consists of ligand-independent activation 

function (AF1) where it involves the protein-protein interactions and transcriptional 

activation.  In ERα, the AF1 domain shows higher activity in stimulation of reporter gene 

expression via estrogen response element (ERE) whereas AF1 activity of ERβ appeared to 
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be diminished under the same conditions.  This dissimilarity in N-terminal region accounts 

for the difference in activity of ERα and ERβ towards various exogenous ligands.6-7 

The DNA binding domain (DBD) of both receptors shares a high degree of 

sequence homology and each contains a zone called “zinc fingers”.  This region is rich in 

cysteine residues and four cysteine residues are coordinated to the zinc atom to form the 

finger structure, having a loop of 15 to 22 aminoacids.51   Zinc fingers are common to 

transcription factors and there are two zinc fingers for each receptor.  These play an integral 

role in receptor- DNA binding in that they offer “an optimum architecture for the mutual 

recognition between specific sequences of amino acids and nucleotides”51.  This eventually 

establishes the hydrogen bridges (via H-bonding) in order to form the stable ER-DNA 

complex.8, 51 

 

 

 

 

 

 

 

Figure 1.5: Formation of Zinc fingers in DNA binding domain.  (Adapted from Selective  

Estrogen Receptor Modulators, A. Cano, et al., Springer, 2006, pg 20)51 

The C-terminal ligand binding domain (LBD) governs the target gene expression 

via ligand binding, receptor dimerization and subsequent dimer-nuclear translocation.  The 

LBDs of both receptors have higher homology with respect to their amino acid sequences 

and have similar tertiary architecture.  LBD usually comprises of 12 helices (H1-H12) in 
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three anti parallel layers.  It incorporates an activation function 2 segment (AF2), whose 

structure and function are mainly mediated by incoming ligands.  AF2 interaction surface 

is composed of amino acids in helix 3, 4, 5, and 12 and the positioning of helix 12 is 

effected by incoming ligands based on their agonist or antagonist nature.  Overall, the 

ligand-binding domains of ERs have a net hydrophobic character, which is an essential 

prerequisite for attachment of low molecular weight organic molecules.2, 6-7  Small 

differences between the LBDs of ERα and ERβ influence the shape of their ligand binding 

pockets there by engendering unique affinities for ligands.6  These differences in the LBD 

will be discussed in more detail in Section 1.4. 

The ERs are mostly localized in the cytoplasm in complex with heat-shock proteins 

(Hsp) 50, 70 and 90 which stabilize the receptors in an inactive state.4  “The action of ERs 

is tripartite, as it involves the receptor, ligands (natural or synthetic) and coregulatory 

proteins.”52  In the classical mode of action, binding of estrogen to the LBD of ER induces 

receptor conformational changes (mainly dissociation of ER-Hsp chaperone complex), 

leading to receptor dimerization (ER2).  This dimer binds to a specific sequence of DNA 

in the promoter region known as the estrogen response element (ERE).  This binding 

promotes the recruitment and interaction with coregulators from the nucleus, and formation 

of a pre-initiation complex.  Finally, the receptor-DNA-coregulator complex undergoes 

DNA transcription to form mRNA and thereby desired proteins which lead to an alteration 

in cell function (Figure 1.6).4, 8, 51 
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Figure 1.6: Classical mechanism action of estrogen receptor53  

In addition to its classical mode of action, it is now accepted that ERs can mediate 

gene expression without directly binding to DNA.  One possible pathway is transcriptional 

cross-talk, where the E2-receptor complex is tethered to a transcription factor (TF) that 

interacts with the DNA, thus avoiding a direct ER-DNA interactions (Figure 1.7).4, 6, 8, 54  

Examples for transcriptional cross talk include interaction of ERs at activating protein 1 

(AP1), specificity protein 1 (Sp1), cAMP response element-binding protein (CREB), 

nuclear factor κB (NFκB), p53 binding sites.  Interaction of ER with the nuclear factor κB 

(NFκB) prevents the NFκB binding to interleukin-6 (IL-6) promoter leading to repression 

of cytokine IL-6 protein.  ERs regulate several genes by this mechanism and both AP1 and 

Sp1 mediated gene expression vary with the ligand, cell and receptor subtype.4, 6, 54-55  

Furthermore, “ERs stimulate transcriptional responses in the absence of estradiol.  

Epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor 

(IGF1R) can initiate the protein kinase cascade, thus phosphorylation and activation of ERs 

in the absence of the ligand.”8   
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Figure 1.7: a) classical mechanism of action.  b,c,d) “indirect effects of estrogen receptors 

on transcriptional activation”6 

 

Likewise, accumulating evidence supports for the rapid and non-genomic effects 

of membrane bound and cytoplasmic ERs where binding of estradiol activates the 

following proteins: mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-

kinase (PI3K), nitric oxide synthase 3 (NOS3), human epidermal growth factor receptor 2 

(HER2) and G proteins (GP).  Finally, these proteins can signal to regulate the gene 

expression via activation of other transcriptional factors.6, 8 

1.4 Important Interactions within the Ligand Binding Domain 

While the ligand binding domains (LBDs) of ERs share less than 60% of amino 

acid sequence, the ligand binding pockets (LBP) of the two isoforms have only minute 

variations in structure and composition.11  The crystal structure of estradiol bound to ERα 

revealed a hydrogen bonding network between the endogenous ligand and surrounding 

amino acid residues.56  The phenolic OH group interacts with a bound water molecule and 

two amino acid residues of the ER LBP (Glu353 and Arg394 in ERα, Glu305 and Arg346 

in ERβ, Figure.1.8) and the 17β-hydroxy group is involved in an additional hydrogen bond 

a b c d 
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interaction to His524 (ERα) or His475 (ERβ).57  The two LBPs are composed of 23 amino 

acid residues, 21 of which are conserved and only two of which are variant.  The residues 

Leu384 and Met421 in ERα are replaced with Met 336 and Ile373 in ERβ respectively.  

Furthermore, the interchanged Leu384/ Met336 residues are positioned above the B- and 

C-rings of estradiol whereas the interchanged Met421/Ile373 residues are positioned below 

the estradiol D-ring within the LBP.  These minute alterations in amino acid sequence plus 

other small variations in tertiary structure make the ERβ LBP smaller in volume (279 Å3) 

in comparison to the LBP of ERα (379 Å3).  However, the creation of ERβ selective ligands 

seems to be a real challenge due to higher structural similarity of LBP of both receptors.11, 

47, 57-60 

 

 

 

 

 

 

 

Figure 1.8: “Principal interactions of estradiol with ERα and ERβ conserved and 

nonconserved residues”60 
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1.5 Estrogen Receptor – Agonists, Antagonist and Selective Estrogen Receptor 

Modulators 

 

The molecules that bind to ERs possess significant variations in the process of 

uptake, binding, and/or recruitment of coregulator(s) leading to different transcriptional 

responses.  The conformational changes that occur at the LBD upon formation of ER-

molecular complex determine its transcriptional responses relative to the native estrogen.61   

Natural and synthetic ligands may be classified as agonists, antagonists or selective 

estrogen receptor modulators (SERMs).  Ligands that form complexes in a similar but not 

identical manner to those formed by estradiol are known as ER agonists.  They recruit a 

similar set of cofactors and eventually produce similar but not identical transcriptional 

responses.51, 61  On the contrary, ligands that form complexes at the LBD, but create 

different conformational changes compared to estradiol, are termed as ER-antagonists or 

antiestrogens.  These complexes fail to dimerize or recruit the same set of cofactors as 

estradiol or recruit different cofactors leading to a blocking of transcriptional responses.51, 

61   

ER agonists and antagonists bind at the same site of the LBD with different binding 

orientations or modes.  For this reason, agonist or antagonist activity is mainly due to the 

spatial repositioning of helix 12 (H12) after binding; the location of this helix is a key factor 

for the subsequent recruitment of the transcription cofactors.2, 62  Indeed, the binding of an 

agonist restructures the ligand binding domain, making helix 12 rotate in a way that it is 

positioned over the ligand binding pocket.  This facilitates the movement of coactivators 

while removing the corepressors from their original site.  In contrast, antagonist ligands 

lodge into the hydrophobic groove conferred by helices 3, 4, and 5 and disrupts helix 12 

conformation for coactivator interaction.  Figure 1.9 depicts the difference in positioning 
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of H12 of ERα upon binding of agonist (diethylstilbestrol) and antagonist (4-

hydroxytamoxifen) to the LBD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: a) The conformation of H12 of ERα due to diethylstilbestrol (agonist) binding 

(yellow) and tamoxifen (antagonist) binding (magenta) b) Ligand-dependent 

structural deviation between agonists (red) and antagonists (white) 

conformations. 2 

 

The folded yellow and extended pink portions represents the H12 helix in agonist 

and antagonist mode respectively and are readily discernable.  Moreover, the superposition 

of both agonist and antagonist forms of LBD without any modification clearly reveal the 

a) 

b) 
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conformationally conservative nature of the LBD (blue colored) aside from the H12 

orientation. 2, 6, 62  

ERα agonists (red in Figure 1.10a) primarily interact with Glu353, Arg394 and 

His524, whereas ERα antagonists (white) have an additional interaction with Asp351 

(upper left corner of Figure 1.10a).  This additional interaction is responsible for the 

antagonism which prevents the conformational change of helix 12.  Similar amino acid 

residues in ERβ are engaged in these interactions (Figure 1.10b); these differ only in 

residue numbering (Glu305, Arg346, His475, Asp303).2 

Selective estrogen receptor modulators (SERMs) are a structurally diverse class of 

therapeutic agents that interact with estrogen receptors but that exhibit a selective ER 

agonist vs antagonist profile which is tissue/organ specific. 63  To date several SERMs 

drugs are developed and some are approved for clinical use.  For an example, tamoxifen is 

used as an antagonist for the treatment of breast cancer, but shows agonist effects on bone 

mineral density and serum lipids on postmenopausal women.  Raloxifene, is used for 

treatment of osteoporosis and vertebral fractures, even though it is a failed breast cancer 

drug.17, 51, 63  Table 1.1 shows the classification of SERMs and Figure 1.11 shows some of 

their chemical structures.51   
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Figure 1.10: a) The binding interactions in the ERα for agonists (red) and antagonists 

(white). b) binding interactions in ERβ for agonist (blue) and antagonist 

(green) 2 

 

 

 

 

 

 

 

 

 

 

 

a) 

b) 
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Table 1.1: “Classification of SERMs” (Adapted from Selective Estrogen Receptor 

Modulators, Cano, et. al, Springer, 2006, pg 51)51 

 

 

 

 

 

 

 

Chemical Class SERM       

Triphenylethylenes Tamoxifen* AstraZeneca   

 Toremifene* Orion    

 Droloxifene# Pfizer    

 Idoxifene# Smithkline Beecham  

      

Benzothiophenes Raloxifene*,†  Eli Lilly & Co   

 Arzoxifene†  Eli Lilly & Co   

      

Naphthylenes Lasofoxifene†  Pfizer    

 Trioxifene#     

      

Indoles  Bazedoxifene†  Wyeth    

 Pipendoxifene†  Wyeth    

      

Benzopyrans EM-800†  Schering Plough   

 Acolbifene†  Schering Plough   

 Levormeloxifene* Novo-Nordisk   

           

      
  * Commercialized for different indications: breast cancer treatment, contraception,  

   Ovulation induction, prevention and treatment of postmenopausal osteoporosis. 

† Phase III clinical research     

# Clinical development cancelled       
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a) Triphenylethylene derivatives 

 

 

 

 

 

 

b)  Benzothiophenes  and Napththalene derivatives 

 

 

 

 

 

 

 

 

c) Indoles and Benzopyran derivatives 

 

 

 

 

 

 

 

Figure: 1.11: Selected chemical structures of SERMs 51 
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1.6 Review of ERβ Subtype Selective Ligands 

Estradiol has nearly equivalent binding affinity for ERβ and ERα.  While there are 

a considerable amount of compounds known which have greater selectivity for ERα, only 

a limited number molecules with greater selectivity for ERβ have been reported.60  Among 

natural products, coumestrol, genistein, liquiritigenin, naringenin and apigenin are some 

examples of ERβ-selective agonists (Figure 1.12).  They are found in many plants 

(phytoestrogen) and foods, especially in soybeans.  The isoflavone genistein shows nearly 

20 to 30-fold selectivity for ERβ over ERα and it was the first ERβ selective natural product 

characterized from X-ray crystallography (Figure 1.13).64  Coumestrol, liquiritigenin, 

naringenin, and apigenin also show considerable selectivities for ERβ in binding affinity 

assays (β/α 7, 11, 20, and 30 respectively).7, 10, 60, 65-67 

 

 

 

 

 

  

 

 

 

 

 

Figure 1.12: Examples of natural ERβ-selective agonists60 
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Figure 1.13: a) “Schematic representations of hERβ–GEN complex. Helices are depicted 

as rods and H12 is colored in green.” b) “Comparison of ligand-binding 

mode of GEN (protein-light blue; ligand, green) in hERβ-LBD and E2 

(protein-red; ligand-purple) in hERα-LBD (PDB code: 1ERE) within the 

cavity. The ligands are viewed looking down from the β-face of the cavity 

and only those side chains that interact with the bound ligand or exhibit 

different orientations are shown. Hydrogen bonds are depicted as broken 

lines”64 

1.6.1 Design of Non-Steroidal ERβ Selective Agonists 

The design and development of non-steroidal ERβ selective agonists has piqued 

much interest due to their potential lower carcinogenic properties compared to steroidal 

molecules.60 To date, several non-steroidal selective ERβ agonists have been synthesized 

and a few selected examples are discussed here. 

In 2001, Katzenellenbogen and co-workers at the University of Illinois; discovered 

2,3-bis(4-hydroxyphenyl)propionitrile (DPN), a chiral molecule, as one of the most potent 

and selective ERβ agonists (Figure 1.14).60, 68  The racemic molecule has 70-fold higher 

relative binding affinity for ERβ compared to ERα and 170-fold higher relative potency in 

transcription assays (ERβ vs ERα).68  Due to its present commercial availability, several 

researchers have used (±)-DPN as a pharmacological probe to evaluate the unique biology 

a) b) 
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of ERβ in both in vivo and in vitro biological studies.60, 69-70  Subsequently; in 2009 Handa, 

et.al, separated the enantiomers by chiral HPLC.  They reported that (S)-DPN 

demonstrated a higher affinity for ERβ compared to (R)-DPN, and that (S)-DPN showed 

nearly 80-fold selectivity for ERβ.71  In 2012, the Katzenellenbogen group prepared the 

(S)-and (R)- DPN by enantioselective synthesis.  They confirmed the high affinity and 

potency preference of both enantiomers toward the ERβ (80-300), however, in this study, 

authors reported that (R)-DPN as the preferred agonist for ERβ activity.72  Computational 

docking of the (S)-stereoisomer with either ERα or ERβ shows that the hydroxyl group of 

the β - ring (see structures for aromatic ring designation) exerts a favorable H-bonding 

network with Glu353 and Arg394 in ERα (or Glu305 and Arg346 in ERβ) while the 

hydroxyl group of the α-ring interacts with His524 in ERα (or His475 in ERβ).  In this 

orientation, the CN group of DPN interacts with the sulfur atom of Met336 in ERβ in a 

more favorable manner than with the similarly positioned Leu384 residue of ERα.  In 

contrast, computational docking of (R)-DPN shows that the CN group projects in the 

opposite direction in comparison to the S-enantiomer and thus exerts a weaker interaction 

with the surrounding amino acid residues (Figure 1.14).  These docking studies suggest 

that the selectivity of DPN racemate towards ERβ mainly stems from the strongly 

interacting geometry of S-DPN and not from R-DPN at the ligand binding pocket.60, 68, 73 
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Figure 1.14: “Crossed stereo view of S-DPN (Panel A) and R-DPN (Panel B) docked and 

minimized in the ER and ER LBD Pockets, respectively. DPN and the ERβ 

pocket residues are shown with standard atom colors, whereas in the ERα 

complex, DPN and the pocket residues are shown in orange.”73 

 

In 2004, the Wyeth research group reported a series of ERβ selective agonists 

belonging to the benzoxazoles family.60  The ERB-041, WAY-292, WAY-659, WAY-818, 

and WAY-200070 are some examples from the Wyeth compound library (Figure 1.15). 9, 

60, 74  Among these, ERB-041 showed a 250-fold highest selectivity for ERβ having binding 

affinities (IC50) of 1200 nM and 5.4 nM for ERα and ERβ respectively.  Both docking and 

X-ray crystallographic studies reveal that the hydroxyl group of the 3-fluoro-4-
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hydroxyphenyl moiety forms H-bonds with nearby Glu305 and Arg346 of ERβ residues 

while the benzoxazole hydroxyl group hydrogen bonds to His475.  These interactions are 

common to both estrogen receptors (Figure 1.16).  Notably, the benzoxazole vinyl 

substituent is positioned in close proximity to Ile373 of ERβ while in ERα the vinyl group 

interacts with the Met421 residue (Figure 1.17).  It was suggested that the increased steric 

interaction of the vinyl group with the larger Met residue, as compared to the more compact 

Ile373 was responsible for the higher selectivity of ERB-041 with ERβ compared to ERα.9, 

60, 74-75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: Examples of ERβ-selective agonists from Wyeth library60 
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Figure 1.16: Schematic representation of ERB-041 complexed with ERα and ERβ,  

showing key interactions within the ligand binding domain9 

 

 

 

 

 

 

 

Figure 1.17: ERB-041 binding interactions with ERα and ERβ60 

In 2006, Eli Lilly group developed a series of polycyclic benzopyran (PBP) 

derivatives as selective ERβ agonists (Figure 1.18).  

 

 

 

 

 

Figure 1.18: Racemic unadorned and racemic all-cis 3,4-cyclofused- (n= 1-3)  

                      benzopyrans60, 76 
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The racemic cyclopentyl annulated benzopyran (n = 1) exhibited good activity 

(0.47nM for ERβ and 4.34nM for ERα) and modest selectivity (β/α = 9).  The enantiomers 

were separated by chiral chromatography and named as SERBA1 and SERBA-2.  SERBA-

1 demonstrated the higher affinity for both ERβ and ERα (ERβ, Ki = 0.19 nM; ERα Ki = 

2.68 nM) compared to the enantiomer SERBA-2 (ERβ, Ki = 1.54 nM; ERα Ki = 14.5 nM).  

Moreover, the ERβ/ERα selectivity was greater for SERBA-1 (14.1) compared to SERBA-

2 (9.4).  This selectivity is mainly attributed to the two different binding orientations of 

SERBA-1 in both receptors.  According to the X-ray crystal structures (Figure 1.19), the 

most efficient interactions arise with ERβ, where the hydroxy of the phenol group is 

hydrogen bonded to Arg346/Glu305 while the benzopyran hydroxyl forms a H-bond with 

His475.  The fused cyclopentane ring lodges a small hydrophobic pocket, near to Ile373 

residue in ER β complex.  In ERα, the presence of Met421 makes the pocket too small to 

accommodate the cyclopentane ring.  Thus, binding of SERBA-1 in ERα forces a rotation 

of 180° along its central axis.  This orientation preserves the Arg/Glu H-bonding network, 

but the OH-His524 H-bonding interaction is weakened due to the greater distance between 

these groups (Figure 1.20).60, 76-77 
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Figure 1.19: “Surface diagram of the X-ray structure of SERBA-1 complexed to ERα (1A) 

and ERβ (1B)”77 

 

 

 

 

 

 

 

 

 

Figure 1.20: SERBA-1 binding interactions with ERα and ERβ60 

In 2011, the Katzenellenbogen group prepared estrogen analogs lacking the B ring 

(i.e. ACD- pseudosteroids), as ERβ selective agonists (Figure 1.21).47  While these authors 

initially reported78 the preparation of a trans-hydrindane skeleton, this was later corrected79 

to a cis- hydrindane (ACD-1, Figure 1.21) on the basis of X-ray crystallography.  The 

trans-hydrindane structure was eventually prepared80 and binding assays were performed 

on these compounds as well as on selected A-ring substituted variants.  From their ACD 

library, all compounds showed lower overall affinity but more importantly greater 

selectivity towards ERβ.   
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Figure 1.21: Design of ACD-pseudosteroids as ERβ selective agonists 

In addition to the aforementioned compounds, several other ERβ agonists with 

varied structural scaffolds (naphthalenes, quinolines, aromatic aldoximes, sulfonamides, 

salicylaldoximes, and carboranes etc.) have been developed by several research groups.58-

60  However, only limited number of compounds display comparable selectivity and 

potency simultaneously with the acceptable pharmacological profile.  Therefore, the 

challenge faced by ERβ targeted drug design process is to develop novel molecules with 

improved ERβ selectivity, potency, as well as reduced side effects. 

1.7 Design of 4-Cyclohexyl or Cycloheptyl Phenolic Derivatives as Selective ERβ  

      Agonists 

The basic requirements for any pharmacophore depends on size, shape and specific 

interactions with the surrounding residues of the target receptor.  While there is a variety 

of structural classes of molecules that possess greater affinity for the ERβ, there are some 

ACD-1 
RBA α = 1.5±0.26 

RBA β = 21.5±4.6 

β/α = 14.6 

 

ACD-2 

RBA α = 1.04±0.09 

RBA β = 8.7±1.5 

β/α = 8.4 

 

ACD-3 

RBA α = 2.38±0.19 

RBA β = 10±1.3 

β/α = 4.2 

 

ACD-4 

RBA α = 1.7±0.15 

RBA β = 6.84±0.41 

β/α = 4.1 

 



32 
 

 
 

significant prerequisites in guiding the development of ER β selective pharmacophores.  A 

phenolic OH is essential to establish the hydrogen bond network involving Arg346, Glu305 

and water triad in the ERβ binding cavity.  A second hydroxyl group, should be positioned 

nearly 11.0 ± 0.5 Å relative to the phenolic OH in order to exert hydrogen bonding 

interaction with His475 as well as Thr 299 in ERβ.  This Thr299-OH interaction is specific 

to ERβ and might contribute to the ERβ subtype selectivity.  Further, the presence of 

Met336 and Ile373 residues seems significant since they determine the size of a 

substituents that can be accommodated within the cavity and thereby ERβ selectivity. 60  

Based on these prerequisites, our research group focused on the design of non-

steroidal ERβ selective agonists for hippocampal memory consolidation in post-

menopausal women.  In this regards, the Donaldson laboratory developed a unique 

structural class of compound, cis-4-(4-hydroxyphenyl)cycloheptane methanol from 

organoiron methodology (Scheme 1.3).  The compound is comprised of a phenolic and 

cycloheptane-hydroxymethyl core; the 1st generation synthesis is outlined in Scheme 1.3.81 

 

 

 

 

Scheme 1.3: 1st generation synthesis of cis-4-(4hydroxyphenyl)cycloheptane methanol 

[reagents: a, vinylmagnesium chloride/THF/CH2Cl2 (57%); b, 4-

acetoxystyrene (2 eq), 5% Grubbs’ 1st generation catalyst (64%); c, H2O2/HO-

, d, LiAlH4, then 140˚C. (32%); e, H2,10% Pd/C (50%)] 

The cis-4-(4-hydroxyphenyl)cycloheptane methanol proved to be a potent agonist 

in cell-based ERβ agonist assays with an IC50 of 5.4 ± 0.3 nM and nearly 1000-fold 

selectivity for ERβ over ERα, making (±)-1.5 the most selective ERβ agonist reported.81  
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Figure 1.22: Predicted binding orientation of the lead compound A) in ERβ agonist 

conformation B) in antagonist conformation C) Overlay of estradiol (black) 

and lead compound (yellow)81 

 

In Figure 1.22 is shown the lowest energy docking representation into human ERα 

and ERβ in agonist and antagonist conformations of our lead compound.  Initial docking 

studies were conducted with estradiol crystal structure to confirm the method validity and 

obtained results were as expected.  Docking pose predictions indicate a higher ERβ affinity 

in agonist conformation where it forms two hydrogen bonds, one with tightly bound water 

and the other with His 475.  On the contrary, a different binding mode is shown in the ERβ 

antagonist conformation where hydrogen bonding of the phenolic hydroxyl is to Thr299 

rather than His 475.  Moreover, molecular overlay of estradiol and our lead compound 

reveals the well-aligned nature of both oxygen atoms of the two molecules in the ERβ 

pocket.81 

Using 4-(1-hydroxyphenyl)-1-hydroxymethylcycloheptane as a starting point, the 

research described in this dissertation seeks to expand on these results.  A second scaffold 

has been developed which exhibits high ERβ vs ERα selectivity, as evidenced by cell-

based functional assays.  Compounds from these two scaffolds were taken forward into 
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animal model studies for the consolidation of memory acquisition, and information on 

interactions with hERG, cytochromes and other nuclear receptors was obtained. 
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CHAPTER 2 

DEVELOPMENT OF 4-(4-HYDROXYPHENYL)CYCLOHEPTANEMETHANOL 

AND ANALOGUES 

 
2.1 Background and 1st Generation Synthesis of 4-(4-

(hydroxyphenyl)cycloheptanemethanol 

 

As part of initial efforts in the Donaldson laboratory to prepare estradiol analogs, 

an iron- mediated synthesis of 2,6-cycloheptadiene-1-methanols was adapted with olefin 

cross-metathesis.82-83  The first generation synthesis of 4-(4-

hydroxyphenyl)cycloheptanemethanol, as carried out by Dr. Rajesh Pandey, is presented 

in Scheme 2.1.  The precursor, 1-methoxycarbonylpentadienyl) Fe(CO)3
+ cation I, was 

prepared from furan in 5 steps (32.8% yield) according to the previously published 

procedure.84  Addition of vinyl magnesium chloride to cation I, in CH2Cl2 as reaction 

medium, gave the 2-vinyl-3-pentene-1,5-diyl complex II in moderate yield (57%, 

Scheme 2.1).  The cross-metathesis reaction of II with 4-acetoxystyrene (2 equivalents) 

gave complex III, along with the self-metathesis products, in 64% yield.  Oxidatively 

induced-reductive elimination of III, followed by ester reduction and thermal Cope [3,3] 

rearrangement afforded (±)-(4-(hydroxymethyl)cyclohepta-2,5-dien-1-yl)phenol 

RKP35C in 32% yield over two steps.  Finally exhaustive hydrogenation of RKP35C 

yielded desired (±)-4-(4-(hydroxyphenyl)cycloheptanemethanol in 50% unoptimized 

yield.81  Thus the 1st generation synthesis gave 2.0 in 10 steps, 1.9% yield from 

commercially available furan.  While this approach gave initial access to 2.0 for ER 

binding assays, it has several limitations.  These include low overall chemical yield (ca. 
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2%), preparation of racemic material, use of stoichiometric iron, access to only the cis-

stereoisomer and difficulties in translation to other analogs.  In addition, attempts to 

prepare additional samples of 2.0 by this pathway were problematic as the cross-

metathesis reaction did not prove robust in a subsequent student’s hands.  Therefore, a 

second-generation route to 2.0 was pursued. 

 
 

 

 

 

 

 

 

 

 

 

Scheme 2.1: 1st Generation synthesis of 4-(4-hydroxyphenyl)cycloheptanemethanol 

from organoiron methodology  

2.2 2nd Generation Synthesis of 4-(4-hydroxyphenyl)cycloheptanemethanol 

In order to circumvent a number of the low yielding steps, it was decided to 

pursue the preparation of 2.0 from a non-organoiron approach.  This strategy involved 

preparation of a protected analog of 4-(4-hydroxyphenyl)cycloheptanone (2.7), followed 

by introduction of the hydroxymethyl substituent (Scheme 2.2). 
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Scheme 2.2: Retrosynthetic analysis for preparation of 4-(4-hydroxyphenyl)-1-

hydroxymethylcycloheptane 

To this end, esterification of commercially available para-anisic acid 2.1 with 

thionyl chloride in the presence of methanol led to the formation of methyl 4-

methoxybenzoate (2.2, Scheme 2.3), which was identified by comparison of its 1H and 

13C NMR spectral data with the literature values.85  The Grignard reaction of 2.2 with in 

situ generated 3-butenyl magnesium bromide in 1:4 ratio under dry conditions gave the 

3° alcohol 2.3a as a major product (85%).  Obtaining these yields was dependent on a 

number of crucial experimental conditions.  Use of 4-equivalents of Grignard reagent 

was necessary; use of only 2 equivalents of 3-butenyl magnesium bromide gave a lower 

yield (13%).  In addition, the length of time for exposure of the crude reaction mixture 

to the NH4Cl workup conditions must be kept short, since longer exposure led to the 

formation of triene 2.3b (Scheme 2.3) as a by-product.  The formation of compound 2.3b 

can be rationalized by slow dehydration of 2.3a in the presence of acidic ammonium 

chloride (pKa = 9.24) (Scheme 2.4). 
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Scheme 2.3: Preparation of tertiary alcohol intermediate 2.3a 

 

 

 

 

 

Scheme 2.4: Mechanism of formation of compound 2.3b 

The structures of 2.3a and 2.3b were assigned on the basis of their NMR spectral 

data.  In particular, the signals at δ 4.88 – 4.98 (m, 4 H) and 5.73 - 5.84 (m, 2 H) ppm in 

the 1H NMR spectra of each are characteristic for the vinyl protons while two doublets 

of doublets at  6.88 and 7.28 ppm are typical for a 1,4-disubstituted phenyl substituents.  

The peak at δ 76.9 ppm in the 13C NMR spectrum of 2.3a was assigned to the tertiary 

alcohol carbon.  A triplet signal at δ 5.8 ppm in the 1H NMR spectrum of 2.3b was 

assigned to the proton of the trisubstituted olefin. 

Reaction of 2.3a with Grubbs’ 1st generation catalyst (G-I) under optimum 

experimental conditions (0.01 M concentration, slow addition of 4% of G-I over 8 h via 

syringe pump, 45 °C, and G-I quench with 50 equiv. DMSO) led to 2.4a as a major product 
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in 70- 75% yield (Scheme 2.5).  However, in certain instances the formation of self- or 

cross metathesis (CM) product 2.4b from 2.3a was observed (Scheme 2.5).   

 

 

 

 

 

 

 

 

Scheme 2.5: Ring closing metathesis and ionic reduction 

The structural assignment for 2.4a was based on its NMR spectral data.  In 

particular, signals at δ 5.83-5.86 (m, 2 H) and at δ 1.82-1.90 (m, 2 H), 1.97–2.10 (m, 4 H), 

2.44-2.55 (m, 2 H) in the 1H NMR spectrum of 2.4a correspond to the hydrogens within 

the cycloheptenol ring, while signals at δ 113.5 and 76.5 ppm in the 13C NMR spectrum 

correspond to the cycloheptenol olefinic and alcohol carbons respectively. 

Ionic reduction86 2.4a with 5 equivalents of triethylsilane and 10 equivalents of 

trifluoroacetic acid, in dry CH2Cl2, gave 2.5 (90%).  The removal of the OH group was 

confirmed by the presence of a signal at δ 49.4 ppm in the 13C NMR spectrum and a triplet 

of triplets at  2.69 ppm in 1H NMR spectrum which correspond to the benzylic carbon and 

its attached proton. 

Our first strategy for olefin-to-ketone conversion relied on epoxidation of 2.4a with 

meta-chloroperoxybenzoic acid to provide a mixture of cis- and trans-epoxides 2.5a (I and 
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II, Figure 2.1) in good yield (74%).  The structure of 2.5a was assigned based on its 1H 

NMR spectral data; no olefinic proton signals were observed and instead two new triplets 

of triplets and three multiplets were observed in  2.14-3.19 ppm region.  The same 

behavior was observed in the 13C NMR spectrum where the eighteen signals appear as a 

doublet set of nine for each stereoisomer. 

 

 

 

 

Figure 2.1: Diastereomers of compound 2.5a (I and II) 

Lewis acid-mediated ring opening of epoxide 2.5a was carried out with boron 

trifluoride etherate in anhydrous benzene to give the known87 cycloheptanone 2.7, albeit in 

low yield (26%).  Moreover, an aldehydic by-product was observed which can be 

rationalized by the following mechanism (Scheme 2.6). 

 

 

 

 

 

 

 

 

Scheme 2.6: Possible mechanism for generation of 2.7 and aldehydic by-product 

2.5a - I 2.5a - II 



41 
 

 
 

Alternatively, hydroboration of compound 2.5 with BH3.THF followed by 

oxidation from 30% H2O2 and 1N NaOH gave alcohol 2.6 in 93% yield (Scheme 2.7).  

Notably, attempted oxidative workup with sodium borate gave 2.6 in lower yields (20-

30%).  The absence of the olefinic signals and the presence of two multiplets at δ 3.90-4.06 

ppm (1H) in 1H NMR spectrum of 2.6 and the presence of two new peaks at δ 72.7, 71.5 

ppm in its 13C NMR spectrum support the presence of this product as a mixture of 

diastereomers.  

 

 

 

 

Scheme 2.7: Transformation of olefin 2.5 into cycloheptanone 2.7 

Oxidation of the secondary alcohol 2.6 to the corresponding ketone 2.7 was effected 

using either pyridinium chlorochromate and silica or celite as an adsorbent (55% yield), or 

n-propylmagnesium bromide and 1,1’-(azodicarbonyl)dipiperidine (20% yield),88 or Dess-

Martin periodinane with addition of 2-5 drops of water (50% yield, Scheme 2.7).  The 

product was identified by comparison of its spectral data with the literature values.87 

Wittig reaction of 2.7 with two equivalents of the ylide generated from reaction of 

methyltriphenylphosphonium bromide with nbutyllithium provided the exocyclic olefin 2.8 

(79%, Scheme 2.8).  The structural assignment of 2.8 was supported by the presence of 

characteristic peaks for the exocyclic alkene at δ 4.77 (2H) ppm in the 1H NMR spectrum 

and δ113.8 and 110.9 ppm in the 13C NMR spectrum.   
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Hydroboration of 2.8 with BH3.THF, followed by oxidation with 30% H2O2 and 3N 

NaOH afforded alcohol 2.9 (48-60%) as a mixture of cis- and trans- diastereomers 

(Scheme 2.8). The doublet at δ 3.46 ppm (2H) in the 1H NMR spectrum of 2.9 and peaks 

at δ 68.6 and 68.4 in 13C NMR spectrum were evidence of this mixture.  

Finally, deprotection of the methyl ether was achieved under BBr3 conditions to 

give the desired 4-(4-(hydroxyphenyl)cycloheptanemethanol 2.10 (ISP163) (28%) as a 

mixture of cis- and trans-isomers (Scheme 2.8).  The cis-stereoisomer was identified by 

comparison of its NMR spectral data with the literature values,81 while the doubling of 

many of the peaks was taken as evidence of the trans-stereoisomer.  This assignment of 

the 13C NMR signals for the trans-stereoisomer was eventually corroborated by HPLC 

separation of the stereoisomers as well as X-ray crystallography (vide infra) 

 

 

 

 

 

 

Scheme 2.8: Conversion of 2.7 into 4-(4-(hydroxyphenyl)cycloheptanemethanol  

The overall route (summarized in Scheme 2.9) requires 9 steps from commercially 

available material, and while it proceeded in a slightly improved overall yield (2.1%), 

compared to the original synthesis, the harsh conditions of the final step dictated the need 

for a different phenolic protecting group. 
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2.3 3rd Generation Synthesis of 4-(4-hydroxyphenyl)cycloheptanemethanol 

Our next focus was to introduce a readily cleavable protecting group.  Protection of 

commercially available methyl 4-hydroxybenzoate 2.11 as the t-butyldimethylsilyl ether 

provided 2.12 (84%, Scheme 2.10).  Characteristic signals for the t-butyl and two methyl 

groups appear at δ 0.99 (9H) and 0.22 (6H) ppm in the 1H NMR spectrum and at δ 18.1/25.7 

and -4.3 ppm respectively in the 13C NMR spectrum of 2.12.  The same 7 step synthetic 

sequence (Grignard addition, RCM, ionic reduction, hydroboration/oxidation, Wittig 

olefination, hydroboration/oxidation) eventually led to 2.19 under optimized conditions.  

However, the ionic reduction of 2.14 under acidic conditions, proceeded in a lower 60% 

yield due to silyl ether cleavage to give the degraded by-product 2.15a.  The by-product 

2.15a could be recycled by further TBDMS protection.  Use of 3N NaOH in the oxidative 

workup for hydroboration/oxidation of 2.18 also resulted in cleavage of the TBDMS group 

and afforded lower yields (40%).  Alternatively, use of 1N NaOH for the workup gave the 

product 2.19 without silyl ether cleavage (66%).  Deprotection of 2.19 was carried out 

under TBAF conditions to give 2.10 (ISP163) in 88% yield as a clean product.  Following 

this procedure, the mixture of stereoisomers was obtained in 9 steps from commercially 

available methyl 4-hydroxybenzoate, and in 10.7% overall yield. 
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Scheme 2.9: 9-Step, 2nd generation synthesis of 4-(4-(hydroxyphenyl)cycloheptane 

                     methanol (2.1% yield) 
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Scheme 2.10: 3rd  Generation synthesis of 4-(4-(hydroxyphenyl)cycloheptanemethanol 

                       (10.7% yield) 
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2.4 4th Generation Synthesis of 4-(4-hydroxyphenyl)cycloheptanemethanol 

While the 3rd generation synthesis (Scheme 2.10) proceeded in 4.4% yield, the 

length of this route (9 steps) and the use of expensive precursors (4-bromo-1-butene, $ 

248/mol) and reagents (Grubbs’ 1st generation catalyst, Dess-Martin periodinane) 

necessitated the development of a shorter synthesis of intermediate 2.17.  This synthesis 

commenced from commercially available 4-(4-hydroxyphenyl)cyclohexanone 2.20 that 

was protected with TBDMSCl to give the silyl ether 2.21 (95%, Scheme 2.11).  The 

presence of peaks at δ 0.98 (9H) and 0.19 (6H) ppm in 1H NMR verifies the product 

formation.  Ring expansion of cyclohexanone ring to cycloheptanone ring (2.22) was 

achieved under Büchner–Curtius–Schlotterbeck conditions89 with the use of ethyl 

diazoacetate and boron trifluoride etherate in dry ether (81%).  Krapcho-

decarboethoxylation of keto-ester 2.22 with LiCl/ H2O in DMSO at 160 ˚C furnished the 

key intermediate 2.17 in 78% yield.  Subsequent transformation of 2.17 to 2.10, by the 

route previously developed in Scheme 2.10, resulted in an 6-step, 20% overall yield route 

to a mixture of cis- and trans isomers of 4-(4-(hydroxyphenyl)cycloheptanemethanol.  

Utilizing this route, a sample of 2 g of 2.10 was eventually prepared.  This mixture of 

stereoisomers was subjected to ER binding assays; the results of these assays are described 

in Chapter 4. 
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Scheme 2.11: Preparation of 4-(4-(hydroxyphenyl)cycloheptanone intermediate by ring 

expansion 

2.5 Separation of Stereoisomers of 4-(4-(hydroxyphenyl)cycloheptanemethanol 

Since the 2nd, 3rd, and 4th generation syntheses furnished the target compound as a 

mixture of four stereoisomers, the next aim was to separate these isomers in order to 

identify the most potent candidate.  Figure 2.2 depicts the analytical HPLC chromatogram 

of ISP163 using a chiral cellulose 2(OZH) column with isopropanol : hexanes (1:4) as 

eluent and UV detection at 254 nm. This clearly reveals the presence of 4 stereoisomers at 

different retention times.  

 

 

 

 

 

 

 

Figure 2.2: Identification of presence of four isomers of ISP163 

PK
1 

PK
2 

PK
3 

PK
4 
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Due to the prohibitive cost of a preparative HPLC column, it was decided to 

contract a preparative separation of the mixture, to access the individual isomers.  This 

would provide sufficient quantities of the stereoisomers for ER binding assay as well as 

absolute configuration determination. The company Phenomenex (Torrence, CA) was 

contracted for these chromatographic services. 

Initial analytical method development by Phenomenex revealed that a Lux 

Cellulose-35 µm column and isocratic mobile phase of ethanol: 2-propanol: hexanes 

(4.33:8.66:87) was optimal, with detection at 280 nM.  The isolation process utilized a 250 

x 30 mm preparative column and the aforementioned solvent system.  This method 

produced a 12 min HPLC run with the first desired peak eluting just before 8 minutes 

(Figure 2.3).  The blue color zones were collected as pure isomeric products. 

. 

 

 

 

 

 

 

 

 

Figure 2.3: Prep Chromatogram of ISP163 for a single injection (courtesy of Phenomenex) 

Since these conditions were isocratic, stacked injections were implemented to 

accelerate the process.  In this regards, subsequent injections were made 6 min after the 
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previous injection with the products from the first injection collected shortly after the 

second injection was made (Figure 2.4).  

 

 

 

 

 

 

 

Figure 2.4: Implemented Stacked Injections for ISP163 (courtesy of Phenomenex) 

Analytical QC was developed to assess the separation.  Two Lux Cellulose-35 µm 

150 x 4.6 mm columns were used in series with ethanol : 2-propanol : hexanes (2 : 7 : 91) 

as an isocratic solvent system (Figure 2.5).  The analytical QC chromatograms confirmed 

separation of the stereoisomers and indicated that each fraction was of > 94% enantiomeric 

excess. 

However, these chromatograms also indicated “system” impurity peaks at ca. 7.5 

and 9.5 min.  Furthermore, 1H NMR analysis of the fractions returned by Phenomenex 

indicated signals due to an unidentifiable contaminant.  Fortunately, this contaminant was 

considerably more soluble in CDCl3 than the desired compound, and thus extracting the 

solids with this solvent gave a solid product which was essentially contaminant free by 1H 

NMR spectroscopy (Figure 2.6). 
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Figure 2.5: Analytical QC chromatograms of all four isomers of ISP163 (courtesy of 

Phenomenex) 
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Figure 2.6: 1H NMR analysis of all four isomers of ISP163 

Comparison of the 13C NMR spectra of peaks 3 and 4 with that previously obtained 

for cis-4-(4-(hydroxyphenyl)cycloheptanemethanol (obtained from the 1st generation 

synthesis), indicated that these fractions corresponded to the cis-isomer, and by deduction 

the lack of correspondence of the 13C NMR spectra for peaks 1 and 2 with the previously 

obtained material indicated that they had the trans-stereochemistry.  These spectroscopic 

assignments were eventually corroborated by single crystal X-ray diffraction of three of 

the fractions.  Figure 2.7 contains the ORTEP projections of peak 3 and peak 4 isomers, 

including not only relative configuration (cis) but also absolute stereochemistry (7R, 10S 

for peak 3; 7S, 10R for peak 4, crystallographic numbering).  The 7-membered ring in each 

structure has a somewhat twisted long chair confirmation. 
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Figure 2.7:a) ORTEP projections of the stereoisomers of trans- 4-(4-

(hydroxyphenyl)cycloheptanemethanol; a) peak 3 (7R, 10S); b) peak 4 (7S. 

10R); c) 3D-crystal packing of peaks 3 and 4 (identical) in solvent 

 

The X-ray crystal structure of the peak 1 isomer contains two symmetrically 

independent molecules of the same chirality (Figure 2.8).  The ordered 7-membered ring 

in structure a has a long chair conformation with both substituents in an equatorial 

orientation.  However, the situation with structure b is more complex since it has a 

disordered 7-membered ring structure with an overlap of 7/10,11-chair over 10/7,13-chair.  

Thus, the absolute configuration of this isomer was indeterminate. 

a b 

c 
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Figure 2.8: a) and b) Two possible X-ray crystal structure of pk1 isomer c) 3D-crystal packing 

in solvent 

 

 

 

 

a 

b 
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2.6 Synthesis of Other 4-Cycloheptylphenol Analogues for SAR Studies 

Having established ISP163 (compound 2.10) as a lead compound, our next 

approach was to design a series of 4-cycloheptylphenol based analogs with various 

functional moieties in order to test the SAR studies.   

 

 

 

 

 

Scheme 2.12: Synthesis of analog 2.23  

Treatment of the mixture of diastereomeric epoxides 2.5a with three equivalents of 

lithium aluminum hydride in dry THF, gave a mixture of two diastereomeric alcohols 2.6 

in low yield (35%) which were identified by comparison of their NMR spectra with that 

previously prepared. (Scheme 2.12).  Since the two diastereomers did not show clear 

separation by TLC, the mixture was carried forward in the next reaction step.  The mixture 

of diastereomers 2.6 was subjected to the ether cleavage using excess BBr3 in anhydrous 

CH2Cl2 to afford compound 2.23 (86%, ISP58).  The product was a mixture of 

diastereomers (1:1 ratio) and the presence of the phenol group was confirmed by a singlet 

at 4.84 ppm assigned to the phenolic hydrogen in its 1H NMR spectrum. 

Cycloheptanone 2.7 was demethylated with 48% HBr under refluxing conditions 

to afford phenol 2.24 (49%, ISP242, Scheme 2.13).  The use of BBr3 conditions was 

problematic, as the 1H NMR spectrum of the crude product did not show any peaks 

belonging to a ketone functionality.  The removal of the methyl ether in 2.24 was evidenced 
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by an absence of the signals for the OMe group.  Reaction of 2.24 with hydroxylamine 

hydrochloride in the presence of NaHCO3 gave oxime 2.25 (52%, ISP166) as a mixture of 

E-  and Z- stereoisomers.  The occurrence of characteristic signals at δ 140.4 and 141.3 

ppm in the 13C NMR spectrum of 2.25 corresponded to the C=N carbons of the 

diastereomers.  Alternatively, treatment of phenolic cycloheptanone 2.24 with 2.2 

equivalents of MeLi. LiBr complex provided the diastereomeric tertiary alcohol 2.26 (40%, 

ISP362).  The two singlets at δ 1.23 and 1.21 ppm in 1H NMR spectrum, integrating to 

three protons in total, correspond to the methyl group of the diastereomeric product. 

  

 

 

 

 

 

 

 

  

 

Scheme 2.13: Synthesis of analogs 2.24, 2.25 and 2.26 

Horner–Wadsworth–Emmons olefination of 2.7 with the anion generated from the 

reaction of trimethyl phosphonoacetate with NaH gave 2.27 as a mixture of E- and Z- 

stereoisomers (31%, Scheme 2.14).  Formation of the 3,3-disubstituted enoate was 

evidenced by the presence of a singlet at δ 5.74 ppm and two singlets at δ 3.69 ppm in the 
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1H NMR spectrum of this product, which correspond to the olefinic CH and the OMe 

protons of the two stereoisomers.  Reduction of the methyl ester with DIBAL furnished the 

primary allylic alcohols 2.28 (43%), again as a mixture of E- and Z- stereoisomers.  The 

multiplet at δ 5.42-5.50 ppm and the doublet at δ 4.19 ppm in 1H NMR spectrum of this 

product correspond to the olefinic C-H and alcohol methylene protons respectively.  

Subsequent hydrogenation of 2.28 followed by demethylation with BBr3 provided the 4-

(2-hydroxyethyl)cycloheptyl)phenol 2.30 (ISP248) in low yield over 2 steps (7%).  This 

low yield was primarily attributed to the harsh methyl ether cleavage conditions. 

 

 

 

 

 

 

 

 

 

 

Scheme 2.14: Synthesis of 4-(2-hydroxyethyl)cycloheptyl)phenol  

3-Methyl-4-hydroxybenzoic acid 2.31 was converted into its methyl ester 2.32 by 

reaction with thionyl chloride in methanol under refluxing conditions (88%, Scheme 2.15).  

Formation of the methyl ester was confirmed by the presence of two singlets at δ 2.27 (3H) 

and 3.89 (3H) ppm in the 1H NMR spectrum of 2.32, corresponding to the OMe and Ar-
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CH3 protons.  Protection of 2.32 with tert-butyldimethyl silyl chloride gave the silyl ether 

2.33 (84%).  Transformation of 2.33 to the cycloheptanol 2.37 utilized the sequence of 

steps developed in the 2nd and 3rd generation syntheses of 2.10 (i.e. Grignard addition, 

RCM, ionic reduction, and hydroboration/oxidation).  Deprotection of 2.37 was carried out 

using TBAF/THF at reflux to obtain the 4-(4-hydroxy-3-methylphenyl)cycloheptan-1-ol 

2.38 (53%, ISP275) as a mixture of diastereomers.  The six-step sequence gave 6.62 % 

overall yield over 6 steps.  The structures of 2.34-2.38 were assigned by comparison of 

their 1H NMR spectral data with that obtained for the parent compounds 2.13-2.16 and 2.23 

(see Schemes 2.10 and 2.13).  

 

 

 

 

 

 

 

 

 

 

 

 

.  

 

 

 

 

 

 

 

 

Scheme 2.15: Synthesis of 4-(4-hydroxy-3-methylphenyl)cycloheptan-1-ol 
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The primary differences appeared in the aromatic region (signals due to 1,2,4-trisubstituted 

benzene vs 1,4-disubstituted benzene) and the appearance of a singlet at ca. δ 2.2 ppm due 

to the aryl methyl group. 

Oxidation of the mixture of cis- and trans- 4-(4-

(hydroxyphenyl)cycloheptanemethanol (2.10) with DDQ in CH2Cl2 gave the tricyclic ether 

2.39 (66%, ISP360, Scheme 2.16).  The structural assignment for 2.39 was supported by 

its NMR data.  In particular, the presence of two multiplets at δ 3.84-3.90 and 3.96-4.07 

ppm in 1H NMR spectrum integrating to one proton each correspond to the diastereotopic 

ether protons, while signals at δ 69.9 and 76.5 ppm in the 13C NMR spectrum correspond 

to the secondary and quaternary aliphatic ether carbons respectively.  This cyclization is 

rationalized by oxidation of 2.10 to the benzyl carbocation intermediate 2.39# (Scheme 

2.16) which is trapped by intramolecular attack of the hydroxymethyl group, followed by 

deprotonation. 

 

 

 

 

 

Scheme 2.16: Oxidative cyclization of 2.10 to generate tricyclic ether 2.39 

In order to explore the effects of the aliphatic ring size on ER binding affinity and 

selectivity, six-and five membered analogs of 2.10 were prepared.  The synthesis of 4-(4-

(hydroxyphenyl)cyclohexanemethanol and other derivatives are discussed in Chapter 3.  

For the cyclopentyl analog, commercially available 4-(4-hydroxyphenyl)cyclohexan-1-one 
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2.20 was converted into the known90 methyl ether 2.40 (44% unoptimized, Scheme 2.17) 

using iodomethane and K2CO3 in DMF.  The key ring contraction of 2.40 was effected with 

diphenyldiselenide and 30% H2O2 in tBuOH91 to afford the carboxylic acid 2.41 in low 

yield (40%). The product was identified by comparison of its NMR spectral data with the 

literature values.92  Finally, reduction of 2.41 with lithium aluminium hydride, followed by 

demethylation under BBr3 conditions afforded the 3-(4-

(hydroxyphenyl)cyclopentanemethanol 2.43 (36%, ISP427) as a mixture of diastereomers.  

 

 

 

 

 

 

 

 

 

 
                        

 

 

 

 

 

Scheme 2.17: Synthesis of 3-(4-(hydroxyphenyl)cyclopentanemethanol 
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CHAPTER 3 

DEVELOPMENT OF 4-[4-(HYDROXYMETHYL)CYCLOHEXYL]PHENOL 

AND ANALOGUES 
 

3.1 Synthesis of 4-[4-(Hydroxymethyl)cyclohexyl]phenol 

Based on estrogen receptor literature,47 the binding site cavity for ERβ is smaller 

in volume (279 Å3) than that for ERα (379 Å3).  Thus, in addition to the lead compound 

4-(4-(hydroxyphenyl)cycloheptanemethanol, described in the previous chapter, it was 

desirable to prepare analogs with varying cycloalkane ring(s).  In particular, the 

differences in molecular flexibilities between a “rigid” cyclohexane ring and a “floppy” 

cycloheptane ring, as well as the O-O interatomic distance, upon ligand binding and 

functional activation would shed light on important pharmacophore parameters.  

Molecular mechanics calculations of the O-O interatomic distances in cis-4-(4-

(hydroxyphenyl)cycloheptanemethanol varied between 10.7-11.0 Å.  This range of 

distances is due to (i).the flexible nature of the seven-membered ring, and (ii), rotation 

about the ring-to-CH2OH bond.  The calculated distances are similar to those observed in 

the crystal structures (10.63-11.15 Å, see Figure 2.7 and 2.8).  In comparison, the O-O 

interatomic distance calculated for trans-4-[4-(hydroxymethyl)cyclohexyl]phenol (10.7 

Å) is within the range for known ligands of the estrogen receptor.  In this regards, 

syntheses of 4-[4-(hydroxymethyl)cyclohexyl]phenol and its analogs were designed 

from commercially available 4-(4-hydroxyphenyl)cyclohexan-1-one (3.1, Scheme 3.1). 

Protection of the phenol hydroxyl moiety of 3.1 with tert-butyldiphenylsilyl 

chloride (TBDPSCl) in CH2Cl2 gave 3.2 (93%).  The formation of the silyl ether was 
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confirmed by the presence of peaks at δ 7.74-7.70 (m, 4H), 7.45-7.34 (m, 6H), and 1.09 

(s, 9H) ppm in 1H NMR spectrum of the product.  Attempted Wittig olefination of 3.2 

with the ylide generated from methoxymethyl triphenylphosphonium chloride and n-

butyllithium or t-BuOK as the base, was ineffective (Scheme 3.1).  In contrast, reaction 

of 3.2 with the ylide generated from methyltriphenylphosphonium bromide with n-

butyllithium afforded the product 3.3 (85%).  The presence of a peak at δ 107.4 ppm in 

the 13C NMR spectrum and a peak at δ 4.65 (narrow t, 2H) ppm in the 1H NMR spectrum 

of 3.3 is characteristic of the exocyclic olefinic carbon and its attached protons.  

Subsequent hydroboration of 3.3 with BH3.THF followed by oxidation with 30% H2O2 

and 3N NaOH in ethanol gave 4-[4-(hydroxymethyl)cyclohexyl]phenol 3.4a (ISP171) 

(28%).  Notably, the use of 3N NaOH led to cleavage of the TBDPS protecting group.  

This product was determined to be a mixture of cis- and trans-stereoisomers (ca. 3 : 1 

ratio) by integration of the alcoholic methylene protons at δ 3.60 (1.5H) and 3.39 (0.5H) 

in the 1H NMR spectrum.  These relative chemical shifts are characteristic of cis- and 

trans-4-substituted cyclohexanemethanols.93-95 

The lower yield of the last step led us to explore an alternative protecting group 

strategy. Protection of 3.1 with tert-butyldimethylsilyl chloride (TBDMSCl) provided 

compound 3.5 (95%, Scheme 3.2).  Signals at δ 0.99 (9H) and 0.20 (6H) ppm in the 1H 

NMR spectrum and δ  -4.2, 18.4 and 25.9 ppm in 13C NMR spectrum of 3.5 are 

characteristic of the t-butyldimethylsilyl ether.  In a fashion similar to that in Scheme 3.1, 

Wittig methenylation of 3.5 gave 3.6 (84%).  Hydroboration of 3.6 with BH3.THF, 

followed by oxidation with 30% H2O2, and 3N NaOH proceeded with concomitant 

cleavage of the TBDMS group afforded 3.4a (40%).   
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Scheme 3.1: 1st Generation synthesis of 4-(4-(hydroxymethyl)cyclohexyl)phenol 

Alternatively, the TBDMS protecting group was stable under workup conditions 

of 1N NaOH to afford 3.7 (66%).  Under the BH3.THF conditions, the product was found 

to be a 3:2 mixture of cis:trans stereoisomers by 1H NMR integration and LC/MS data.  

Alternatively, use of 9-BBN instead of BH3.THF, followed by 30% H2O2/1N NaOH 

produced 3.7 (74%) as a 2:3 mixture of cis:trans stereoisomers.  The use of these two 

borane reagents have been previously demonstrated as a method to tune the cis:trans 

outcome for 4-substituted methylenecyclohexanes.96  Finally, removal of the TBDMS 

group was achieved under TBAF conditions to give 3.4a (ISP171) as a mixture of cis- 

and trans-stereoisomers (Figure 3.1).  The synthesis of this mixture was achieved in 43% 

overall yield over a four-step sequence.  
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Scheme 3.2: 2nd Generation synthesis of 4-(4-(hydroxymethyl)cyclohexyl)phenol 
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Figure 3.1: 1H NMR spectra of 4-[4-(hydroxymethyl)cyclohexyl]phenol from a) produced 

using 9-BBN b) produced using BH3.THF as hydroboration reagent (solvent 

= CD3OD) 

Treatment of the mixture of cis- and trans-4-[4-(hydroxymethyl)cyclohexyl]phenol 

(ISP171) with 1.1 equivalent of DDQ in dichloromethane gave a separable mixture of the 

bicyclic ether 3.8 (ISP358-1, 40%, Scheme 3.2), and unreacted trans-3.4b (ISP358-2, 20% 

borsm).  The oxidative conditions were optimized using the 2:3 mixture of cis:trans 

stereoisomers produced from 9-BBN hydroboration, 0.5 equivalent of DDQ and 5 h 

reaction time resulting in 47% maximum recovery of 3.4b along with 37% of cyclic ether 

3.8.  The structure of 3.4b (ISP358-2), tentatively assigned on the basis of its 1H NMR 

spectral data, was eventually corroborated by single crystal X-Ray diffraction analysis 

(Figure 3.2).  The cyclohexane ring has a chair conformation with both substituents in an 

a) 

b) 

cis  

trans 
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equatorial orientation.  The O-O distance found in this X-ray crystal structure (10.658 Å) 

is quite similar to that calculated on the basis of molecular mechanics (10.7 Å).  

 

 

Figure 3.2: a) X-ray crystal structure of compound 3.4b (ISP358-2) b) Crystal packing 

nature of compound 3.4b in solution 

 

Oxidation of either the cis- or trans-stereoisomer of 4-[4-

(hydroxymethyl)cyclohexyl]phenol would result in the same benzylic carbocation 

intermediate 3.8# (Scheme 3.3).  Thus, the formation of the separable mixture of 3.8 

(ISP358-1) and the trans-isomer 3.4b (ISP358-2) is due to the faster rate of generation of 

intermediate 3.8# from the cis-isomer.  Since the cis-isomer is less stable, and therefore 

higher in energy, compared to the trans-isomer, the barrier to oxidation of cis-3.4a to 3.8# 

(plus the DDQ reduction anion) should be lower, and thus the rate of oxidation is faster, 

than for trans-3.4b (plus the DDQ reduction anion). 

 

a b 
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Scheme 3.3: Mechanistic rationale for bicyclic ether formation of cis-isomer over trans 

isomer 

 

With a route to the trans-isomer 3.4b secured, the ring opening of bicyclic ether 3.8 

was examined as a selective means for preparation of the cis-isomer.  Ionic reduction of 

3.8 with either sodium cyanoborohydride/BF3.Et2O or triethylsilane/CF3COOH gave a 

mixture of cis- and trans- 4-[4-(hydroxymethyl)cyclohexyl]phenol in 1:4 and 2:3 ratios 

respectively.  

3.2 Synthesis of 4-Cyclohexylphenol Analogs  

To explore structure activity relationship (SAR) further, and search for compounds 

with improved potencies, physiochemical and biological properties several other 4-

cyclohexylphenol analogs were synthesized. 
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Scheme 3.4: Synthesis of analogs 3.9, 3.10, and 3.11 

Reduction of 3.1 with sodium borohydride afforded the secondary alcohol 3.9 

(ISP33, 90%, Scheme 3.4).  Similarly, reaction of 3.1 with NH2OH.HCl in the presence of 

NaHCO3 gave oxime 3.10 (ISP36, 70%).  Finally, nucleophilic addition of MeLi to 3.1 

gave the tertiary alcohol 3.11 (ISP361, 37%) in moderate yield under unoptimized 

conditions.  The alcohol 3.9 was determined to be a mixture of isomers whereas alcohol 

3.11 was a single isomer from their 1H and 13C NMR spectral data. 

Removal of the protecting group from 3.6 with TBAF gave 4-(4-

methylenecyclohexyl)phenol 3.12 (ISP365, 83%) and subsequent hydrogenation over 

Pd/C furnished the 4-(4-methylcyclohexyl)phenol 3.13 (ISP366, 80%, Scheme 3.5).  

Dihydroxylation of 3.6 with OsO4 in the presence of N-methylmorpholine-N-oxide (NMO) 
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gave diol 3.14 in 86% yield.  The presence of peaks at δ 66.2 and 72.4 ppm in 13C NMR 

spectrum of 3.14 were assigned to the primary and tertiary alcohol carbons respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.5: Synthesis of analogs 3.12, 3.13, 3.15, 3.16 and 3.17 

Removal of TBDMS group gave 4-[4-hydroxy-4-

(hydroxymethyl)cyclohexyl]phenol 3.15 (ISP411, 78%).  Reaction of 3.12 with 

paraformaldehyde, MgCl2 and NEt3
97

 effected carbonylation ortho to the phenol group to 
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give 3.16 (ISP384, 44%).  Reaction of 3.16 with NH4OH.HCl in the presence of NaHCO3 

gave oxime 3.17 (ISP389, 69%) as an inseparable mixture of E- and Z- stereoisomers.  

Katzenellenbogen, et. al, have previously reported on similar salicylketoximes as potent 

ERβ agonists that display antiproliferative activities in a glioma model.98   

Ortho carbonylation of bicyclic ether 3.8 was attempted using the same protocol as 

mentioned previously (Scheme 3.6).  The anticipated product 3.18 (ISP394) was obtained 

in very low yield (17%) along with the unsaturated alcohol 3.19 (ISP393, 8%).  The 

structures of 3.18 and 3.19 were assigned on the basis of their 1H NMR spectral data.  For 

3.18, signals in its 1H NMR spectrum at δ 9.99 (s, 1H) and 4.06 (s, 2H) ppm correspond to 

the aldehyde and ether methylene protons respectively, while for 3.19 signals at δ 10.01 (s, 

1H), 6.10 (s, 2H) and 3.49 (d, 2H) ppm correspond to the aldehyde, olefinic and 

hydroxymethylene protons respectively.   

The unsaturated aldehyde 3.19 presumably arises via eliminative opening of the 7-

oxabicyclo[2.2.2] octane ring of 3.8 under the MgCl2/NEt3 reaction conditions.  To test this 

hypothesis, treatment of bicyclic ether 3.8 with MgCl2 and NEt3 in the absence of 

formaldehyde gave unsaturated product 3.20 (ISP402, 78%).  Peaks at δ 5.97-5.92 (m, 1H) 

and 3.48 (dd, 2H) ppm in the 1H NMR spectrum correspond to the vinylic and methylene 

protons respectively.  Hydrogenation of 3.20 over Pd/C gave a mixture of the cis- and 

trans-stereoisomers 3.4a (ISP171, 67%) in 3:2 cis : trans ratio. 
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Scheme 3.6: Synthesis of analogs 3.18, 3.19 and 3.20 

Horner–Wadsworth–Emmons olefination of 3.2 with trimethyl phosphonoacetate 

and NaH, afforded enoate 3.21 (95%, Scheme 3.7).  Peaks at δ 5.65 (s, 1H) and 3.69 (s, 

3H) ppm in the 1H NMR spectrum of 3.21 correspond to the olefinic and methyl ester 

protons respectively, while a signal in its 13C NMR spectrum at δ 51.1 ppm is characteristic 

of the methyl ester carbon.  Selective ester reduction of 3.21 was accomplished using 

excess DIBAL to give the allylic alcohol 3.22 (58%).  The triplet at δ 5.42 and doublet at 

δ 4.17 ppm in the 1H NMR spectrum of 3.22 correspond to the olefinic C-H and the 

hydroxymethylene protons.  Hydrogenation of 3.22 followed by removal of the TBDPS 

protecting group under TBAF conditions gave 4-[4-(2-hydroxyethyl)cyclohexyl]phenol 

3.24 (RKP231IIF, 20%).  The overall yield of the synthesis is 5% over 5 steps. 
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Scheme 3.7: Synthesis of 4-[4-(2-hydroxyethyl)cyclohexyl]phenol  

3.3 Synthesis of Fluorine Containing 4-Cyclohexylphenol Analogs 

The introduction of fluorine into drug-like molecules is promising since it generates 

new pharmaceutical candidates with potentially improved pharmacological profiles.  While 

fluorine mimics hydrogen with respect to steric requirements (van der Waals radius: H, 

1.20 Å; F, 1.35 Å), the presence of F alters electronic properties of the molecule due to its 

higher electronegativity.  Incorporation of fluorine into drug candidates also enhance their 

in vivo metabolic stability, lipophilicity and blood-brain barrier penetration.99-100  

 

 

 

 



72 
 

 
 

 

 

 

 

 

 

Scheme 3.8: Synthesis of analog 3.25b 

 

 

 

 

99 

 

Scheme 3.9: Synthesis of analogs 3.26a and 3.26b 

Attempts to generate 3.25a from 3.9 by substitution using diethylaminosulfur 

trifluoride [DAST] or bis(2-methoxyethyl)aminosulfur trifluoride [DeoxofluorTM] at room 

temperature was ineffective and instead afforded the elimination product 1',2',3',6'-

tetrahydro-[1,1'-biphenyl]-4-ol 3.25b (ISP346, 51-63%, Scheme 3.8).  Since secondary 

alcohols favor the elimination product, deoxyfluorination of primary alcohols was 

examined.101-102  Reaction of the mixture of cis- and trans-stereoisomers 3.4a with 

deoxofluor gave 3.26a as a mixture of diastereomers (40%, Scheme 3.9).  Encouraged by 

these results, the pure trans-stereoisomer, 3.4b was then subjected to the same conditions 

and afforded the desired fluoro product 3.26b (ISP441, 64%).  The structure of 3.26b was 
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based on its NMR spectral data.  In particular, doublets at δ 89.4 ppm (1JC-F = 166 Hz) in 

the 13C NMR spectrum and at δ 4.23 ppm (2JH-F = 47.8 Hz) in the 1H NMR spectrum 

correspond to the fluoromethylene substituent. 

Ortho-fluorination of compound 3.1 or 3.9 was attempted with 1-chloromethyl-4-

fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate) [SelectfluorTM] or N-

fluorobenzenebenzenesulfonamide (NFSI) as fluorinating reagents103-105 (Scheme 3.10).  

Unfortunately, in each case only starting material was recovered. 

 

 

 

 

 

 

Scheme 3.10: Attempted synthesis towards analogs 3.27 and 3.28 

Consequently, an alternative approach was conceived.  Protection of phenol 3.29 

with benzyl bromide produced 3.30 (95%, Scheme 3.11).  The multiplet at δ 7.47-7.32 (5H) 

ppm and a singlet at δ 5.13 (2H) ppm in the 1H NMR spectrum of 3.30 corresponds to the 

benzyl group.  Addition of the Grignard reagent generated from 3.30 with 1,4-

dioxaspiro[4.5]decan-8-one afforded the tertiary alcohol 3.31 (82%).  Treatment of 3.31 

with 2-3 drops of concentrated H2SO4 acid in THF/water to effect hydrolysis of the cyclic 

ketal proceeded with concomitant dehydration to give 3.32 in moderate yield (52%).  

However, large scale synthesis was unreliable from this protocol.  Alternatively, use of 

trifluoroacetic acid, instead of sulfuric acid, in CH2Cl2 furnished the product 3.32 in 
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excellent yield (90%).  Reduction of 3.32 with H2 in the presence of 10% Pd/C proceeded 

with both hydrogenation of the alkene and hydrogenolysis of the benzyl ether to deliver 

the desired 3.33 (ISP452, 45%).   

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3.11: Synthesis of intermediate 3.33 

The triplet of triplets at δ 3.00 (1H) ppm in 1H NMR spectrum of 3.33 corresponds 

to the benzylic hydrogen of the cyclohexanone ring while the peak at δ 214.1 ppm in 13C 

NMR spectrum corresponds to the carbonyl carbon.  Cyclohexanone 3.33 is the ortho-

fluoro analog of 4-(4-hydroxyphenyl)cyclohexan-1-one and as such can serve as a starting 

material for synthesis of fluorinated analogs using previously established routes.  
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Scheme 3.12: Synthesis of 3.38 and proposed routes to 3.39a and 3.39b 

Attempted reaction of 3.33 with either TBDMSCl or TBDMSOTf as previously 

demonstrated for 3.1 (see Scheme 3.2), was sluggish even at optimal conditions.  The lack 

of reactivity of 3.33 under these reaction conditions is most probably a consequence of the 

electron withdrawing nature of the ortho fluorine atom on the nucleophilicity of the 

phenolic hydroxyl group. 

Alternatively, benzyl protection of 3.33 proceeded in a fashion similar to 3.29 gave 

3.34 (79%, Scheme 3.12).  Subsequent Wittig methenylation of 3.34 followed by 

hydroboration/oxidation using 9-BBN led to 3.36 in 16% yield over 2 steps.  Finally, 
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cleavage of the benzyl protection was accomplished under hydrogenation conditions to 

give 2-fluoro-4-[4-(hydroxymethyl)cyclohexyl]phenol 3.37 (ISP470) as a mixture of cis- 

and trans-stereoisomers.  The overall yield of the synthesis is 1.8% over 8 steps.  Reduction 

of 3.33 with NaBH4 gave the corresponding cyclohexanol 3.38 (ISP450) as a mixture of 

cis- and trans-stereoisomers (61%).  Conversion of 3.37 to its corresponding bicyclic ether 

3.39a, thereby chemical separation of trans isomer 3.39b will be conducted in future.  
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CHAPTER 4 

BIOLOGICAL EVALUATION OF ERβ SELECTIVE COMPOUNDS 

4.1 In vitro and In vivo Biological Evaluation – Assay Summary 

Compounds prepared in the previous chapters were evaluated for in vitro ER 

activity, interaction with selected CYP enzymes, hERG activity, and nuclear receptor 

screening, and in vivo efficacy for memory consolidation.  The in vitro biological studies 

with respect to ERα and ERβ activity, conducted by Alicia Schultz and Lucky Lu from the 

Sem lab at Concordia University-Wisconsin, include: 

• TR-FRET (Time Resolved Fluorescence Resonance Energy Transfer) ERβ binding 

assay, which measures the displacement of a fluorescently labelled estradiol from 

the ligand binding domain protein; 

• Selected compounds were carried forward to a cell-based functional assay, which 

      depends upon cell membrane penetration, the ability of ligand binding to ER and   

      to effect dimerization and subsequent protein transcription.  These were  

      conducted for both ERβ and ERα, in both agonism as well as antagonism mode; 

• CYP inhibition/binding activity, which measures the inhibition of selected CYP 

liver enzymes toward the metabolism of luciferin releasing substrates 

 

No-stress/no-reward in vivo memory consolidation studies, conducted by Jaekyoon Kim 

from the Frick lab at University of Wisconsin Milwaukee, include: 

• Object placement (answers the “where” memory question) by direct hippocampal 

and intraperitoneal injections 

• Object recognition (answers the “what” memory question) by direct hippocampal 

and intraperitoneal injections 
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4.2 Description of In vitro Assays and Results 

4.2.1 TR-FRET ERβ Binding Assay 

A Lanthascreen TR-FRET ERβ binding assay was conducted to assess the binding 

affinity of synthesized ligands.  Assays were conducted using a commercially available 

ERβ assay kit from ThermoFisher and verified to work with the Spectramax M5 (white 

plates) plate reader.  The screen consists of ERβ ligand-binding domain (LBD) tagged with 

glutathione-S-transferase and a terbium-labeled anti-GST antibody.  A proprietary 

fluorescein-labeled ligand, Fluormone ES2 Green, is bound in the LBD.  Excitation of the 

terbium label causes fluorescence at 488 nm, which is transferred to the tagged ligand 

which fluoresces at 518 nm (Figure 4.1).  When the ligand is bound, the ratio of 

518nm/488nm is high; displacement of the fluorescent ligand by a competitor results in 

diminished fluorescence at 518 nm, and thus a lower 518 nm/488 nm ratio. Eight different 

concentrations were examined to obtain a Ki value.  Typical data, as represented for the 

stereoisomers of ISP163, are shown in Figure 4.2.  

 

Figure 4.1: Simplified schematic for TR-FRET ERβ binding assay 

(http://slideplayer.com/slide/8532001/26/images/32/Receptor+binding+

assay.jpg)  
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Figure 4.2: TR-FRET ERβ binding profile of ISP163 isomers 

4.2.2 ERα and ERβ Cell-Based Assay 

Cell based assays were carried out to investigate the agonist and antagonist activity 

of synthesized ligands.  Assays were conducted using a commercially available ERβ assay 

kits from Indigo Biosciences.  The assay involves non-human mammalian cells engineered 

to express human estrogen beta (NR3A2) incorporating both the N-terminal DNA binding 

domain and the C-terminal ligand binding domain.  Cells incorporate the cDNA encoding 

beetle luciferase.  Upon binding, the encoded protein forms homo- and heterodimers that 

interact with specific DNA sequences to activate transcription, including the production of 

luciferase (Figure 4.3).  Quantifying changes in luciferase expression (via relative 

luminescence) provides a surrogate measure of the changes in ERβ activity.  As compared 

to the TR-FRET assay, an increase in fluorescence indicates the increased agonism.  The 

assay can be used to detect either agonist activity or antagonist activity.  In the antagonist 

mode, where the addition of estradiol (EC75 = 3.2 nM) serves as an agonist and thus effects 

transcription and production of luciferase, a decrease in fluorescence signifies that the test 
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compound serves as an antagonist against the action of E2.  Similar kits are available to 

assess functional ERα activity.  The agonist assay was conducted under optimized 

biological conditions delineated in the kit manual, verified to work with the Spectramax 

M5 (white plates) plate reader, and performed in duplicate.  Seven different concentrations 

were examined to obtain an IC50 value.  Typical data for ERβ activity, as represented for 

the four isomers of ISP163, are shown in Figure 4.4. 

 

 

Figure 4.3: Schematic representation of ERα and ERβ cell-based assay 

(https://www.caymanchem.com/pdfs/15739.pdf) 

 

 

 

 

 

 

 

 

 

Figure 4.4: ERβ cell-based agonist assay profile of IS163 isomers  
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4.2.3 TR-FRET Results for 4-(4-(hydroxymethyl)cyclohexyl)phenol and its Analogs 

The binding affinity (Ki) values of lead 4-(4-(hydroxymethyl)cyclohexyl)phenol 

(ISP 171) and its analogs were first studied in Lanthascreen TR-FRET ERβ binding assay 

(Table 4.1).  In particular; compounds bearing a hydroxymethyl functionality attached to 

the cyclohexyl core showed higher affinities in the range 80-240 nM.  Of the two 

components in the mixture of cis- and trans-stereoisomers (ISP 171, IC50 = 240 nM), it 

was found that the trans-isomer was more potent (ISP 358-2, IC50 = 80 nM) than the 

mixture.  Introduction of unsaturation within the six-membered ring (ISP 402, IC50 = 89 

nM) did not greatly change the binding affinity compared to ISP358-2.  Attachment of the 

OH group directly to the cyclohexyl core (ISP33, ISP361) did reduce the affinity by 

approximately one to two orders of magnitude.  This is presumably due to the less than 

optimal distance between phenolic OH and hydroxyl group for proper binding to the 

receptor.  The combination of both a hydroxyl and hydroxymethyl group attached to the 

six-membered ring (ISP 411, 2,500 nM) exhibited a 30-fold reduction in affinity compared 

to ISP358-2.  This result might be attributed to the interaction of the second OH with 

neighboring water molecule inside the cavity thereby creating a disruption of the optimal 

conformation within the ligand binding pocket.  On the other hand, extension of the chain 

length to a hydroxyethyl group (RKP231IIF, 7 nM) increased the affinity, but this trend 

was reversed with the insertion of an exocyclic alkene moiety (RKP228, 521 nM).  This 

decrease in affinity may be due to the reduced flexibility of the side arm. 

Replacing the hydroxymethyl group with different polar groups such as ketone 

(SM01, 4500 nM), oxime (ISP36, 215 nM) or ethyl acrylate functionality (RKP230, 681 

nM) resulted in some decrease in ERβ binding.  The presence of the aliphatic hydroxyl 
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group was not crucial for binding affinity.  In fact, ligands with hydrophobic groups 

attached to the cyclohexyl ring revealed pronounced affinity (ISP366, 11 nM; RKP231IF, 

15 nM) or similar affinity (ISP365, 85 nM).  The ability of simple 4-alkyl phenols to bind 

to ERβ and ERα has previously been reported.106  For example, 4-adamantyl phenol (AdP, 

Figure 4.5) was found to have ERβ IC50 = 200 ± 1 nM and ERα IC50 = 1000 ±1000 nM 

respectively.106  While these binding affinities are considerably less than for E2, they 

highlight the relative importance of the hydrogen bonding between the phenol OH and 

Glu/Arg residues, along with the hydrophobic interactions of the alkyl portion, in 

comparison to hydrogen bonding interactions between His and an aliphatic OH group. 

 

 

 

 

Figure 4.5: Reported ERβ agonist 4-adamantyl phenol (AdP) 

The cyclic ether had diminished affinity (ISP358-1, 250 nM). Introduction of a 2-

methylenehydrazine-1-carboxamide (ML431, 16,000 nM) or 2-methylenehydrazine-1-

carbothioamide (ML432, 5,000 nM) to the cyclohexyl ring greatly reduced binding affinity 

due to rigid and longer chain lengths.  

Meanwhile, compound ISP389, bearing an oxime functionality ortho to the 

phenolic oxygen showed modest affinity whereas those bearing an aldehyde ortho to 

phenolic oxygen such as ISP384, ISP393, and ISP394 reflected significantly lower 

binding affinities ranging from 900 -2100 nM.  Furthermore, an introduction of fluorine  
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Table 4.1: TR-FRET ERβ binding data for six-membered analog 

Compound 

 

TR-FRET 

Data 

(nM) 

Compound 

 

TR-FRET 

 Data 

(nM) 

            
ISP33 

 

 

   960±700 
 

RKP228 

 

 

521±87 

              
ISP361 

 

 

6,000±1600 
     

ISP36 

 

 

215±129 

        
ISP171 

 

240±14 

              
SM01 

 

 

4500±2800 

     
ISP358-2 

 

80±21 

 
                                            

ISP346 

 

 

570±130 

            
                                               

ISP402 

 

89±22 

  
RKP231IF 

 

 

15±2 

     
ISP393 

 

 

900±300 
           

ISP365 

 

 

85±16 

       
ISP411 

 

 

2,500±500 
        

ISP366 

 

 

11±2.7 

 
RKP231IIF 

 

 

7±1 
          

ISP358-I 

 

 

250±56 
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ortho to the phenolic oxygen such as ISP450 and ISP452 decreased the affinity 

dramatically (4281 nM and 880 nM respectively) compared to their non-fluorinated 

analogs.  However, replacing the hydroxyl group in the side chain with fluorine as in 

 

Compound 

 

TR-FRET 

Data 

(nM) 

 

Compound 

 

TR-FRET 

 Data 

(nM) 

           
ISP384 

 

 

1,100±430 
 

                                    

                                     

RKP230 

 

 

681±240 

            
ISP389 

 

 

270±66 

  
                                       

ML431 

 

 

16,000±8,000 

               
ISP394 

 

 

21,000±5000 

 
                                       

ML432                                     

 

 

5,000±2400 

                                       
                                               

ISP441 

 

 

49.5±18.3 

                  
                                       

ISP450 

 

 

4,281±2,516 

 

 

                           
                                               

ISP452 

 

 

880±464 
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ISP441 showed slightly higher affinity (49.5 nM) compared to the parent molecule 

(ISP358-2, 80 nM). 

4.2.4 Cell-based Functional Assay Results for Selected 4-[(hydroxymethyl) 

         cyclohexyl)]phenol Analogs 

4-[4-(Hydroxymethyl)cyclohexyl]phenol and analogs having lower IC50 values 

ranging from 7 to 240 nM were further tested in cell based assays to evaluate both their 

binding affinity as well as ERβ selectivity (Table 4.2).  The mixture of cis- and trans-

stereoisomers (ISP171) and the trans-only isomer (ISP358-2) showed identical ERβ 

agonist potencies (IC50 31 nM) and these results indicated the compounds to be more potent 

in the functional based assay than the TR-FRET ligand displacement assay.  In contrast, 

compounds RKP231IIF, RKP230 and ISP365 resulted in poorer ERβ potencies (IC50 72, 

89, 101 nM respectively) compared to their TR-FRET assay results.  These differences 

may be due to the nature of the assays; the TR-FRET assay measures only displacement of 

a labelled estradiol from the ligand binding domain, while the cell-based assay depends 

upon effecting conformational changes in the ER such that homo-dimerization and DNA 

binding/transcription must occur.  Additional interactions between the aliphatic hydroxyl 

group and the His475 may play a role in these latter conformational changes.  All 

compounds showed no ERβ antagonist activity (> 10,000 nM), or ERα agonist or 

antagonist activity thus demonstrating their pronounced selectivity towards the ERβ.  Of 

those, ISP358-2 gave > 3000-fold selectivity for ERβ over ERα in the cell-based functional 

assay, making it the most selective agonist thus reported.  
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Table 4.2: Cell-based assay data for selected six-membered analogs and comparison to 

TR-FRET assay 

 

 

  

Compound TR-FRET 

ERβ Agonist 

(nM) 

ERβ 

Agonist 

(nM) 

ERβ 

Antagon. 

(nM) 

ERα 

Agonist 

(nM) 

ERα 

Antagon. 

(nM) 

 
ISP171 

 

 

240±14 

 

 

30±15 

 

 

>10,000 

 

 

700,000 

±80,000 

 

 

>10,000 

 
ISP358-2 

 

 

80±21 

 

 

31±7 

 

 

>10,000 

 

 

100,000 

±17,000 

 

 

>10,000 

 

 
RKP231IIF 

 

 

7±1 

 

 

72±16 

 

 

>10,000 

 

 

72,000± 

22,000 

 

 

>10,000 

 
RKP231IF 

 

 

15±2 

 

 

89±6 

 

 

>10,000 

 

 

25,000±13

00 

 

 

>10,000 

 

 
ISP365 

 

 

85±16 

 

 

101±10 

 

 

>10,000 

 

 

In 

progress 

 

 

In 

progress 
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4.2.5 TR-FRET and Cell-based Assay Results for 4-[4-(hydroxymethyl)  

         cycloheptyl]phenol and Analogs 

The ERβ binding affinity (Ki) of lead 4-[4-(hydroxymethyl)cycloheptyl]phenol 

(ISP163) and its analogs were determined in the TR-FRET assay as previously described 

(Table 4.3).  The lead molecule ISP163 showed higher affinity as IC50 = 44 nM.  Extension 

or shortening of the distance between the phenolic and aliphatic hydroxyl groups (ISP248 

or ISP58, IC50 = 37 and 31 nM respectively) has similar binding affinity (within the error 

limits); this change in potency was not as significant as shown in the six membered analogs 

(see Table 4.1) from TR-FRET assay. 

Introduction of a methyl group ortho to the phenolic oxygen (ISP275) decreased 

the affinity by > 100-fold, compared to ISP58, indicating adverse steric interactions in the 

ligand binding pocket.  Introduction of two alkenes to the cycloheptyl ring (RKP35C, IC50 

378 nM) or the bicyclic ether functionality (ISP365, IC50 400 nM) diminished the binding 

affinities by 9-fold compared to ISP163, thus emphasizing the need for flexibility in the 

ring system.  A change in oxidation state of the hydroxyl group, to the cycloheptanone ring 

(ISP242) decreased the binding affinity by 6-fold in comparison to ISP58. Compounds 

having lower IC50 values were further evaluated in cell-based functional assays (Table 4.4). 
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Table 4.3: TR-FRET ERβ binding data for seven-membered analogs 

 

 

 

  

Compound 

 

TR-FRET 

 DATA 

(nM) 

Compound TR-FRET 

 DATA 

(nM) 

      
                                            

ISP163 

 

 

44±16 

                 
                                  

ISP 242 

 

 

182±63 

   
                                          

RKP35C 

 

378±97 

 
                                   

ISP360 

 

 

400±100 

   
ISP248 

 

37±9 

   
ISP275 

 

3400±1500 

            
ISP58 

 

 

31±7 

  
ISP427 

 

 

3,370±3,560 
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Table 4.4: TR-FRET and cell-based assay data for selected seven-and five-membered 

analogs 

 

 

 

 

 

 

Compound TR-

FRET 

DATA 

(nM) 

ERβ 

Agonist 

(nM) 

ERβ 

Antagon. 

(nM) 

ERα  

Agonist 

(nM) 

ERα 

Antagon. 

(nM) 

 
                            

ISP163 

 

 

44±16 

 

 

30±9 

 

 

>100,000 

 

 

10,500 

±200 

 

 

>10,000 

          
                            

ISP248 

 

 

37±9 

 

 

104±27 

 

 

>10,000 

 

 

45,000 

±17000 

 

 

>10,000 

 

 
                              

ISP58 

 

 

31±7 

 

 

401±29 

 

 

>10,000 

 

 

1,400 

±400 

 

 

>10,000 

 
                            

ISP166 

 

 

Not 

done 

 

 

1,460 

±305 

 

 

>10,000 

 

 

350,000 

±250 000 

 

 

>10,000 

 

 
                            

ISP427 

 

 

3,370 

±3,560 

 

 

2,100 

±250 

 

 

>10 000 

 

 

>10,000 

 

 

>10,000 
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The lead molecule, ISP163, displayed similar potency for ERβ agonist activity as 

found in the TR-FRET assay.  The seven-membered analogs varying in distance between 

the hydroxyl groups (ISP248, and ISP58) resulted in lower potencies (IC50 > 100 nM) as 

ERβ agonists, while the oxime analog (ISP166) was nearly 50-fold less potent.  Similar to 

the cyclohexyl compounds, these analogs did not show any ERβ antagonist activity (> 

10,000 nM), or ERα agonist or antagonist activity, indicating their greater selectivity 

towards the ERβ agonist activity.  From those, ISP163 gave > 350-fold selectivity for ERβ 

agonist activity over ERα making it as the most selective agonist among the seven-

membered series.  The five-membered ring analog 4-[3-

(hydroxymethyl)cyclopentyl]phenol (ISP427) showed very poor potency in both the TR-

FRET ligand displacement and cell-based functional assays.  This may be due to the 

inability of this smaller ring to occlude water molecules from the binding site.  

4.2.6 TR-FRET and Cell-based Assay of the Stereoisomers of 4-[4-(hydroxymethyl)- 

          cycloheptyl]phenol 

Since ISP163 is a mixture of four stereoisomers it was crucial to evaluate the 

potency and selectivity of the individual isomers.  Toward this end, binding affinity from 

TR-FRET assay and agonist activity from cell based assay were evaluated (Table 4.5 and 

Figure 4.6).  The two trans-stereoisomers (PK1 and PK2) reflected greater affinity than 

the mixture (ISP163) whereas the cis-stereoisomers PK3 (1R,4S absolute configuration) 

and PK4 (1S,4R absolute configuration) reflected lower affinity in the TR-FRET assay.  In 

contrast, all four isomers revealed lower potency in the cell-based ERβ agonist assay (IC50 

47-119 nM) in comparison to the mixture of stereoisomers.  Of those, PK2 and PK4 

showed higher ERβ agonist activity than for PK1 or PK3.  All of the stereoisomers 
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exhibited no ERβ antagonist activity (> 10μM), and no agonist or antagonist activity (> 

10μM) toward ERα.  However, in search for the better ERβ agonist selectivity between 

isomers, percent ERα agonist activity at highest concentration was assessed.  In this study, 

PK4 (1S,4R absolute configuration) manifested 47% activity at 12μM compared to the 

PK2 (34% activity at 10μM). 

Table 4.5: TR-FRET and cell-based assay data for ISP163 stereoisomers 

 

 

 

 

 

 

 

Figure 4.6: ERβ cell-based assay profiles for individual ISP163 stereoisomers  

 

ISP 163 

Isomers 

TR-

FRET 

ERβ 

(nM) 

ERβ 

Agonist 

(nM) 

ERβ 

Antagon. 

(µM) 

ERα 

Agonist 

(µM) 

% Agonist 

Activity @ 

Highest 

 

Concentration 

(µM)  

ERα 

Antagon. 

(µM) 

 

Mixture 

 

44±16 30±9 >100 10.5±0.2  >10  

PK1 

 

>25 68±48 >36 5±3 150% @ 36 

 

>36 

PK2 

 

33±10 47±4 >23 >10 34% @ 10 

 

>10 

PK3 

 

90±36 119±13 >10 >10 10% @ 10 

 

>10 

PK4 

 

65±26 

 

53±10 >12 >12 47% @ 12 

 

>12 
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4.2.7 CYP450 Assay and Results for ISP358-2 and ISP163 

The four-main drug metabolizing cytochrome P450 isoforms are CYP1A2, 

CYP2D6, CYP2C9, and CYP3A4.107  The interaction of ligands with these CYP450 

isoforms may be evaluated using P450-GloTM inhibition assay kits available from Thermo 

Fisher.  Isoform-specific substrates (Luciferin-ME, Luciferin-MEEGE, Luciferin-H, 

Luciferin-PPXE for CYP1A2, CYP2D6, CYP2C9, and CYP3A4 respectively) are 

incubated with the appropriate CYP enzyme, NADPH regeneration system and the test 

compound.  Each CYP enzyme acts on a specific luminogenic P450-GloTM substrate 

(Reaction A) to produce a luciferin product that generates light (chemiluminescence) upon 

interaction with the luciferin detection reagent (Reaction B), which is added after the CYP 

reaction has been completed (Figure 4.7).  Light is used to monitor CYP activity since the 

amount of light produced is proportional to the amount of luciferin product formed after 

the CYP reaction.   

 

 

 

 

 

 

 

 

Figure 4.7: Schematic diagram for basis of CYP450 assay   

(http://www.lumflu.com/A_Info.asp?id=36)  
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Interaction of the ligand with the CYP, either by metabolism or by inhibition of the 

CYP, causes a decrease in the luminescence.  Typical data for inhibition of CYP2C9 by 

ISP358-2 are shown in Figure 4.8. 

 

 

 

 

 

 

 

 

Figure 4.8: CYP2C9 assay profile for ISP358-2  

The results for the best six-membered ring lead (ISP358-2) and the mixture of 

seven-membered ring stereoisomers (ISP163) are detailed in Table 4.6.  The 

concentrations at which the two lead substances either inhibit these CYP450s and/or are 

metabolized by these CYP450s are significantly greater than their effective ERβ binding 

concentrations, thus confirming their suitability as drug candidates for further 

development. 
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Table 4.6: CYP450 assay data for ISP358-2 and ISP163 

 

 

 

 

 

 

4.2.8 hERG Assay results for ISP358-2 

hERG (the human Ether-à-go-go-Related Gene) assay evaluates a compound’s 

inhibition activity towards the Kv11.1, the alpha subunit of a voltage-gated potassium ion 

channel.  This channel is involved in cardiac action potential repolarization (electrical 

activity) of the heart that regulates the heart's beating, inhibition of which is linked with 

the fatal disorder known as ventricular arrhythmias.108  Compound ISP358-2 was 

submitted to Thermo Fisher to evaluate (on a per-fee basis) the inhibition hERG ion 

channel (Figure 4.9).  The results indicate 13% inhibition at 100 μM, representing an IC50 

of > 100 μM. This results again indicates safety of this lead compound against irregular 

heartbeat at the effective ERβ agonist concentration. 

 

  

CYP Enzyme 

 

ISP358-2 

IC 50 (µM) 

ISP163 

IC 50 (µM) 

CYP 2D6 

 

Did not converge >62.5 

CYP 3A4 

 

>62.5 31±2.7 

CYP 1A2 

 

>62.5 >62.5 

CYP 2C9 

 

34±4.7 1.8±0.3 
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Figure 4.9: hERG profile of ISP358-2  

4.2.9 Nuclear Receptor Panel Screening 

Since ER is a nuclear receptor it is important to establish if potential agonists of 

ERβ are agonists towards other nuclear receptors.  A selected panel of receptors consisted 

of androgen receptor (AR, essential for normal female fertility and male skeletal integrity), 

glucocorticoid receptor (GR, a major component of the endocrine influence, specifically 

stress response), mineralocorticoid receptor (MR, important for expressing proteins which 

regulate ion and water transport), peroxisome proliferator-activator receptor delta (PPAR-

Δ, involved in development of diabetes, obesity, atherosclerosis and cancer), progesterone 

receptor (PR, involved in cell proliferation), thyroid hormone receptor beta (TR-β, 

mediates functions of thyroid hormone), and the vitamin D receptor (VDR, involved in 

mineral metabolism) were considered.  The panel screenings for ISP358-2 and ISP163-

PK4 were conducted by Thermo/Life (on a per-fee basis) from GeneBlazer Cell based 

assay and results are summarized in Tables 4.7 and 4.8.  Both compounds showed no 
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activity at 0.25, 2.5 and 25 μM concentrations thus confirming no cross-reactivity towards 

the aforementioned receptors at the effective ERβ agonist concentration. 

Table 4.7: Nuclear receptor panel screen data for ISP358-2 

 

 

 

 

 

 

Table 4.8: Nuclear receptor panel screen data for ISP163-PK4 

 

 

 

 

 

 

4.3 Description of In vivo Assays and Results 

4.3.1 Assessment of Memory Consolidation in Ovariectomized Mice 

The effects of lead compounds on memory consolidation were assessed.  In 

particular, two types of behavioral tasks were utilized and which diverge in terms of the 

protocol for testing.  The object recognition (OR) task tests the knowledge of object identity 

(“what”) and object placement task (OP) tests the knowledge of object location or spatial 

Nuclear 

receptor 

ISP 358-2 

@ 25 µM 

ISP 358-2 

@ 2.5 µM 

ISP 358-2 

@ 0.25 µM 

AR -6 -5 -6 

GR -1 0 2 

MR 0 0 -1 

PPAR-δ 2 3 2 

PR -2 0 -1 

TR-β -1 -1 -1 

VDR -1 -1 -1 

Nuclear 

receptor 

ISP 163-PK4 

@ 25 µM 

ISP 163-

PK4 

@ 2.5 µM 

ISP 163-

PK4 

@ 0.25 µM 

AR -4 -6 -5 

GR 1 -1 -1 

MR 0 0 1 

PPAR-δ 2 2 3 

PR -1 -2 -1 

TR-β -2 -1 0 

VDR 0 0 -1 
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memory (“where”).  These tasks are sensitive to E2, exert low stress on subjects and a 

single training trial is ideal for mediating rapid biochemical activations to memory 

formation.33, 69, 109   Prior to testing, female mice (C57BL/6) used in this study were 

ovariectomized.  For assay of administration directly to the brain, these mice were also 

implanted with a bilateral guide cannula aimed at the dorsal hippocampus.  After one week 

of recovery, mice were trained in a square arena and were allowed to accumulate 30 s 

exploring two identical objects placed near the adjacent corners.  Immediately after this 

training, mice were administered, either by dorsal hippocampal infusion (DH) or 

intraperitoneal injection (IP), with either vehicle (negative control); DPN, a known agonist 

(positive control), or the lead compound (ISP358-2) in different concentrations.  For OP 

retention, animals were retested after 24 h with one of the objects in a different position; 

for OR retention animals were tested after 48 h with one new/novel object in place of a 

familiar object (Figure 4.10).  

 

 

 

 

 

 

 

 

 

Figure 4.10: Illustration of object placement (OP) and object recognition (OR) protocols  
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Since mice are inherently drawn to novelty110 under unthreatened environment, 

mice who remember the training objects spend more time than chance (15 s) with either 

the new placement (OP assay) or novel object (OR assay) and less time than chance 

exploring the familiar object in these assays. 

4.3.2 Assessment of Memory Consolidation by Dorsal Hippocampal Infusion 

Due to its potency and high ERβ selectivity, as well as its ease of preparation, trans-

4-[4- (hydroxymethyl)cyclohexyl]phenol (ISP358-2) was selected for initial screening by 

single DH infusion.  Five groups of mice (10 mice per group) were tested with each group 

receiving either vehicle (1% DMSO in saline), or DPN (10 pg/hemisphere), or ISP358-2 

(10 pg/ hemisphere, 100 pg/hemisphere, 1 ng/hemisphere).  For the object recognition task, 

mice receiving vehicle or the 10 pg dose of ISP358-2 did not spend more than chance time 

with the novel object, while mice receiving the known ERβ agonist DPN, or ISP358-2 at 

the 100 pg or 1 ng/hemisphere dose spent statistically significant more time than chance 

with the novel object (Figure 4.11a).  Similar results were obtained for the object placement 

task; neither administration of the vehicle nor the 10 pg dose of ISP358-2 exhibited 

differences in exploring the familiar vs. the moved object, while treatment with DPN, 100 

pg and 1 ng/hemisphere of ISP358-2 did result in statistically significant more time spent 

with the moved object vs. the familiar object (Figure 4.11b).  These data were confirmed 

by one-sample t-test, one-way ANOVA, and Fisher’s LSD posthoc tests70, 109 and suggest 

that 100 pg and 1 ng of ISP358-2, administered by dorsal hippocampal infusion, enhances 

object recognition and object placement memory consolidation in the ovariectomized 

mouse model. 
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Figure 4.11: a) Amount of time (of 30 sec total) spent with the novel object in OR assay; 

b) Amount of time (of 30 sec total) spent with the novel in OP assay [DH 

infusion] 

4.3.3 Assessment of Memory Consolidation by Intraperitoneal Administration 

While the above results demonstrate the effectiveness of ERβ agonist ISP358-2 for 

memory consolidation in this animal model, dorsal hippocampal infusion is a less than 

ideal means of therapeutic administration.  Studies of CNS drugs indicate that optimal 

characteristics for crossing the blood-brain barrier correspond to molecular weight ≤ 400, 

clog P = 1.5-2.7, polar surface areas (PSA) = 60-70 Å3, number of (nitrogen + oxygen 

atoms) ≤ 5, and low molecular flexibility.111-112. ISP358-2 fits the majority of these criteria 

except that it has PSA ~ 40 Å3.  In order to determine if this compound is capable of passing 

the blood-brain barrier and arriving at the hippocampus, object recognition and object 

placement tasks were conducted after a single intraperitoneal administration (IP) of 

ISP358-2 (Figure 4.12 a and b).  Four groups (10 mice per group) of mice were tested: 

vehicle (1% DMSO in saline), positive control DPN (0.05 mg/kg) and two doses of ISP-

358-2 (0.5 mg/kg and 5 mg/kg).  These doses of ISP358-2 were based in relationship to 

a) b) 
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the known effective dose of DPN previously established by the Frick group.  For the object 

recognition task, mice receiving vehicle did not spend time more than chance with the 

novel object while mice receiving the 0.5 mg/kg or 5 mg/kg dose of ISP358-2 by IP 

injection spent more time with the novel object.  The same trend was observed in the object 

placement task, and both OR and OP data were confirmed by one-sample t-test, one-way 

ANOVA, and Fisher’s LSD posthoc tests.70, 109  These results suggest that 0.5 mg and 5 

mg of ISP358-2 enhanced the object recognition and object placement memory 

consolidation after intraperitoneal administration.  Gratifyingly, these results confirmed 

both effectivity and blood-brain barrier (BBB) permeability of ISP358-2 which is an 

essential requirement of central nervous system (CNS) drugs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: a) Amount of time (of 30 sec total) spent with the novel object in OR assay; 

b) Amount of time (of 30 sec total) spent with the novel in OP assay [IP 

injection] 

 

 

 

 

 

 

 

b) a) 
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CHAPTER 5 

CONCLUSIONS AND OUTLOOK 

5.1 Summary 

The overall goal of this research was the design, synthesis and biological evaluation 

of ERβ selective agonists for hippocampal memory consolidation in postmenopausal 

women.  Two major types of non-steroidal compounds were synthesized and evaluated for 

in vitro ERβ vs. ERα agonism, and in vivo effect on memory consolidation in an 

ovariectomized mouse model. 

After identifying important prerequisites from the literature and from docking 

studies, research was focused towards the design of (4-hydroxyphenyl)cyclohexyl or 

cycloheptyl derivatives as selective ERβ agonists.  Toward this end, cis-4-(4-

(hydroxymethyl)cycloheptyl)phenol was first prepared from organoiron methodology and 

found to be an ERβ agonist in the 50 nM range with >1000- fold selectivity for ERβ over 

ERα in cell-based assays.81  While these biological results were promising, the organoiron 

synthetic route was problematic and difficult to replicate.  Three alternative syntheses were 

established using cheaper starting materials and more robust synthetic protocols; the most 

efficient route proceeded in fewer steps and with greater yields (20% in six steps).  These 

new protocols gave a racemic mixture of diastereomers of 4-(4-

(hydroxymethyl)cycloheptyl)phenol (ISP163); the individual stereoisomers were obtained 

by preparative chiral HPLC.  The relative stereochemistry of the diastereomers was 

established by NMR spectroscopy, while the absolute configuration of the individual cis-

isomers were determined by single crystal X-ray diffraction analysis.  A second lead 
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molecule, 4-(4-(hydroxymethyl)cyclohexyl)phenol (ISP171) was synthesized by sharing 

common synthetic pathways as in ISP163.  The product was a mixture of cis- and trans-

stereoisomers and a chemical separation of the mixture, via faster oxidative cyclization of 

the cis-isomer, afforded the trans- isomer ISP358-2 in 47% yield under optimal conditions.  

Several other 4-cyclohexyl and cycloheptyl phenolic analogs were prepared with varying 

functional groups, chain lengths, and molecular rigidity in order to establish structure 

activity relationships (SARs).  

A TR-FRET ERβ binding assay was conducted as an initial screen for the binding 

affinity of the synthesized ligands.  The incorporation of an aliphatic hydroxyl functionality 

at the end of the side chain, but not directly to the ring core appeared to have a stronger 

effect on the binding affinity of both six- and seven-membered ring scaffolds (ISP163, 

ISP171, ISP358-2, ISP402, ISP248 and RKP231IIF).  In contrast, introduction of an 

alkene functionality, and thereby rigidity within the ring structure decreased the binding 

affinity of ligands (ISP346 and RKP35c).  To supplement the TR-FRET findings, cell-

based assays were conducted for selected compounds having higher binding affinity to 

investigate their potential for binding and ability to effect transcription.  Among the six-

membered series the trans isomer ISP358-2 revealed the highest potency as ERβ agonists 

(~ 30 nM).  The same trend was observed in the seven-membered series where ISP163 

exhibited the highest ERβ agonist activity (~ 30 nM).  In general, all compounds which 

were tested in cell based assay did not have any observable effect on ERβ antagonist, ERα 

agonist or ERα antagonist activity.  Of particular note is that ISP358-2 and ISP163 exhibit 

> 3000-fold and > 300-fold selectivity for ERβ over ERα, thus making these compounds 

the most selective ERβ agonists yet reported.  Finally, the cell based assay for the individual 
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ISP163 stereoisomers (PK1-PK4) revealed that ISP163-PK4 [4(S)-(4-hydroxyphenyl)-1-

(R)-hydroxymethylenecycloheptane] possessed the best combination of potency (~ 53 nM) 

and ERβ:ERα selectivity (226-fold).   

Having recognized ISP163 and ISP358-2 as best ERβ agonist from each series, 

their metabolic stability was evaluated.  Both compounds exhibited poor inhibitory activity 

(> 30 µM) against four known drug metabolizing CYP450s, thus confirming their stability 

inside the liver.  The exception was ISP163 which exhibited IC50 = 1.8 µM for CYP2C9.  

This value is still considerably poorer than the ERβ IC50 (30 nM).  Neither ISPI63-PK4 

nor ISP358-2 exhibited cross reactivity with other common nuclear receptors (<2% 

activation at 25 µM).  Additionally, ISP358-2 did not show any observable effect on hERG 

inhibition indicating its non-cardiotoxicity.  

Memory consolidation in ovariectomized mice (C57BL/6) was assessed for 

ISP358-2 via DH infusion and IP administration.  A statistically significant effect was 

observed for memory consolidation in both object placement and object recognition tests 

at the 100 pg/hemisphere (DH) and 0.5 mg/Kg (IP) dose level.  These are both 

approximately one order of magnitude less potent in comparison to the DPN; 10 

pg/hemisphere (DH) and 0.05mg/Kg (IP).  These relative efficacies are consistent with the 

relative ERβ agonist activity of ISP358-2 compared to DPN.  The IP data also provides 

strong evidence for the blood-brain-barrier (BBB) permeability of ISP358-2. 
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5.2 Conclusion 

The results presented in this dissertation demonstrate the development of two types 

of non-steroidal selective ERβ agonists.  Among those, [4(S)-(4-hydroxyphenyl)-1-(R)-

hydroxymethylenecycloheptane] (ISP163-PK4) and trans-4-(4-

(hydroxymethyl)cyclohexyl)phenol (ISP358-2) display > 225-fold and > 3000-fold 

selectivity for ERβ over ERα respectively.  ISP358-2 was shown to have a statistically 

significant effect on memory consolidation in ovariectomized mice by either DH and IP 

administration.  The lack of off-target nuclear receptor activity, as well as lack of hERG 

activity, and the high metabolic stability (compared to effective dose) highlight the 

potential for this compound as a potential therapeutic for hippocampal memory 

consolidation. 

5.3 Outlook 

It is evident that great deal of research over the past two decades has focused on the 

design of estrogen receptor beta selective ligands as drug candidates.  There is extensive 

literature on relationships between ERβ agonists and hippocampal physiology for the 

development of new CNS drugs.   

The (4-hydroxyphenyl)cyclohexyl or cycloheptyl based ERβ agonists, specifically 

ISP163 and ISP358-2, described herein serve as a foundation for the development of small 

non-steroidal molecules as ERβ agonists.  Nevertheless, scalable stereo-specific synthesis 

of those is essential for further biological studies.  Moreover, it is important to synthesize 

the cis-ISP171 to compare its potency with respect to trans-stereoisomer (ISP358-2). One 

potential route to this compound is outlined in Scheme 5.1.  
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The crystal structures of ISP358-2 with ERβ and ERα should provide valuable 

information into the origin of its selectivity.  It will be necessary to establish collaborations 

for these studies.  Additionally, while ISP358-2 interacts with the panel of four CYP 

enzymes at concentrations 1,000-fold greater than the ERβ IC50 value, it will be important 

to assess the metabolic products produced from this compound with human liver 

microsomes.  Furthermore, while the memory consolidation efficacy of ISP358-2 via 

intraperitoneal administration demonstrates the ability of this compound to pass the blood-

brain barrier, the ability of this compound to be transported across intestinal mucosa is, yet, 

unknown.  This will require assessment of this lead molecule to be transported across a 

Caco-2 cell monolayer.  A correlation between the Caco-2 monolayer permeability and in 

vivo absorption is well recognized.113-114  Additionally, OP and OR testing via oral (gavage) 

administration could provide evidence for intestinal adsorption.  
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Scheme 5.1: Proposed synthetic protocol for cis- and trans-ISP171 
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CHAPTER 6 

SYNTHESIS AND CHARACTERIZATION 

6.1 Chemicals and General Methods 

All the chemicals were purchased from Sigma-Aldrich, Matrix scientific, or Alfa 

Aesar and used as received.  Reactions with moisture- or air-sensitive reagents were 

conducted under an inert atmosphere of nitrogen in oven-dried glassware with anhydrous 

solvents.  Reactions were followed by TLC on precoated silica plates (60 Å, F254, EMD 

Chemicals Inc) and were visualized by UV lamp (UVGL-25, 254/365 nm).  Flash column 

chromatography was performed by using flash silica gel (32–63 μ).  NMR spectra were 

recorded on Varian UnityInova 400 MHz instrument.  CDCl3, [D6] dimethylsulfoxide and 

[D6] acetone were purchased from Cambridge Isotope Laboratories.  1H NMR spectra were 

calibrated to  = 7.26 ppm for residual CHCl3,  = 2.50 ppm for d5-DMSO and  = 3.30 

ppm for residual d3-CD3OD.  13C NMR spectra were calibrated from the central peak at  

= 77.23 ppm for CDCl3,  = 39.52 ppm for d6-DMSO and  = 49.00 ppm for CD3OD.  

6.2 Experimental Details  

 

 

 

 

Methyl 4-methoxybenzoate (2.2).  Para anisic acid 2.1 (8.010 g, 52.56 mmol) was 

dissolved in methanol (200 mL) and SOCl2 (10 mL, 6.8 mmol) was added dropwise with 

stirring at 0 °C over 30 min.  The system was heated at 65 ˚C for 12 h under N2.  The 
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resulting mixture was cooled to room temperature and diluted with water (50 mL).  

Methanol was evaporated and the pH was adjusted to pH = 7 with saturated sodium 

bicarbonate solution (5 mL).  The resulting solution was extracted with ethyl acetate (3 × 

30 mL).  The combined organic extracts were washed with brine (20 mL), dried (MgSO4), 

and concentrated to give 2.2 as a colorless solid (7.16 g, 82%).  1H NMR (400 MHz, d6-

DMSO) δ 7.04 and 6.17 (AA’BB’, JAB = 8.7 Hz, 4H), 2.95 (s, 3H), 2.93 (s, 3H) ppm.  13C 

NMR (100 MHz, d6-DMSO) δ 165.9, 163.2, 131.2, 121.8, 114.0, 55.5, 52.0 ppm. The 

NMR spectral data for 2.2 are consistent with the literature values.115 

 

 

 

 

 

5-(4-Methoxyphenyl)-1,8-nonadien-5-ol (2.3a).  Dry magnesium turnings (3.654 g, 152.1 

mmol) were placed in a flame dried three-necked flask followed by THF (30 mL).  The 

system was connected to the N2 environment while stirring and fitted with a condenser and 

an addition funnel.  The addition funnel was loaded with a solution of 4-bromo-1-butene 

(7.72 mL, 76.1 mmol) in THF (20 mL).  A little amount of the bromobutene solution (2 

mL) was added slowly to the magnesium turnings, and the contents were heated to reflux.  

Once the Grignard formation had started, the remaining bromide solution was added 

dropwise maintaining a gentle reflux.  The reaction was stirred until most of the magnesium 

had reacted.  A solution of methyl 4-methoxybenzoate 2.2 (2.528 g, 15.20 mmol) in THF 

(30 mL) was loaded into the addition funnel and added dropwise over 30 min.  After stirring 
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overnight at ambient temperature, a saturated solution of NH4Cl (30 mL) was added to 

quench the reaction.  The resultant emulsion was stirred for 2 h and the solution was 

extracted with ether (3 x 40 mL).  The combined organic layers were washed with water 

(30 mL), then brine (2 x 20 mL) and dried (MgSO4).  The solvent was evaporated to give 

alcohol 2.3a as a yellow oil (3.182 g, 85%).  1H NMR (400 MHz, CDCl3) δ 7.29 and 6.88 

(AA’BB’, JAB = 8.9 Hz, 4H), 5.84-5.73 (m, 2H), 4.98–4.88 (m, 4H), 3.81 (s, 3H), 1.96–

1.84 (m, 8H) ppm.   13C NMR (100 MHz, CDCl3) δ 158.2, 139.0, 137.9, 126.6, 114.8, 

113.7, 77.1, 55.3, 42.4, 28.1 ppm. 

 

 

 

 

 

1-(4-Methoxyphenyl)-4-cyclohepten-1-ol (2.4a).  Alcohol 2.3a (1.015 g, 4.126 mmol) 

was dissolved in dry CH2Cl2 (415 mL, 0.01 M) to give a colorless solution.  A solution of 

Grubbs I catalyst (0.136 g, 0.165 mmol, 4%) in CH2Cl2 (15 mL) was added slowly through 

the syringe pump over 10 h and the mixture was heated at 40 °C with stirring for 12-18 h.  

The reaction mixture was cooled to room temperature, quenched with DMSO (50 eq, 0.600 

mL) and continued to stir for 12 h.  The mixture was concentrated to dryness and the crude 

material was purified by column chromatography (SiO2, hexanes-diethyl ether = 80:20) to 

give 2.4a (0.675 g, 75%) as a green oil.  1H NMR (400 MHz, CDCl3) δ 7.43 and 6.87 

(AA’BB’, JAB = 9.0 Hz, 4H), 5.86-5.83 (m, 2H), 3.80 (s, 3H), 2.55-2.44 (m, 2H), 2.10-1.97 
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(m, 4H), 1.90-1.82 (m, 2H), ppm.  13C NMR (100 MHz, CDCl3)  158.3, 142.3, 132.1, 

125.8, 113.5, 76.5, 55.2, 40.1, 23.0 ppm. 

 

 

 

 

 

 

5-(4-Methoxyphenyl)-1-cycloheptene (2.5).  Alcohol 2.4a (1.720 g, 7.880 mmol) was 

dissolved in dry CH2Cl2 (50 mL) to give a light green solution.  Triethylsilane (1.4 mL, 8.8 

mmol) was added followed by TFA (6.2 mL, 79 mmol).  The mixture was stirred at room 

temperature for 48 h while monitoring the reaction by TLC.  After complete disappearance 

of starting material, the solution was concentrated to a bilayer oil and purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 50:50) to give 2.5 as a brown oil (1.433 g, 

90%).  1H NMR (400 MHz, CDCl3)  7.11 and 6.84 (AA’BB’, JAB = 8.6 Hz, 4H), 5.91-

5.87 (m, 2H), 3.79 (s, 3H), 2.69 (tt, J = 11.3, 3.2 Hz, 1H), 2.35-2.25 (m, 2H), 2.23-2.13 (m, 

2H), 1.91-1.83 (m, 2H), 1.54-1.43 (m, 2H) ppm.  13C NMR (100 MHz, CDCl3)  157. 9, 

141.8, 132.5, 127.7, 113.9, 55.5, 49.6, 35.2, 28.2 ppm. 
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1,2-Epoxy-5-(4-methoxyphenyl)cycloheptane (2.5a).  A solution of cycloheptene 2.5 

(0.551g, 2.73 mmol) in freshly distilled CH2Cl2 (20 mL) was stirred for 10 min.  To this 

solution was added dropwise a solution of m-chloroperoxybenzoic acid (mCPBA) (1.008 

g, 70% wt, 4.090 mmol) in freshly distilled CH2Cl2 (10 mL).  The solution was stirred 

under nitrogen and the reaction was followed by TLC.  The solvent was evaporated and 

residue was treated with saturated sodium bicarbonate solution (20 mL) with stirring for 

30 min.  The mixture was extracted with CH2Cl2 (3 x 20 mL), concentrated and purified 

by column chromatography (SiO2, hexanes-ethyl acetate = 50:50) to give 7 (0.441 g, 74%) 

as a yellow oil.  This was determined to be a mixture of cis- and trans-stereoisomers by 1H 

and 13C NMR spectroscopy.  1H NMR (400 MHz, CDCl3)  7.12-7.05 (m, 4H),  6.86-6.79 

(m, 4H), 3.78 (s, 3H), 3.77 (s, 3H), 3.20-3.16 (m, 2H), 3.13-3.07 (m, 2H), 2.55 (tt, J = 11.1, 

3.3 Hz, 1H), 2.41-2.28 (m, 4H), 2.13 (tt, J = 11.1, 2.2 Hz, 1H), 1.93-1.84 (m, 2H), 1.83-

1.77 (m, 2H), 1.75-1.67 (m, 2H), 1.66-1.57 (m, 4H), 1.51-1.39 (m, 2H) ppm.  13C NMR 

(100 MHz, CDCl3)  157.8/157.6, 141.2, 139.9, 127.6/127.3, 113.8/113.7, 56.1, 55.1, 49.2, 

48.0, 32.6, 32.0, 28.8, 27.5 ppm. 
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4-(4-Methoxyphenyl)cycloheptanol (2.6).  Epoxide 2.5a (0.100 g, 0.460 mmol) was 

dissolved in dry THF under N2.  To this solution was added LiAlH4 (0.048 g, 1.4 mmol) 

and AlCl3 (0.056 g, 0.46 mmol). The resulting mixture was stirred for 12 h, then treated 

with water (15 drops) and diluted with saturated aqueous KOH (3 mL) and water (10 mL).  

The mixture was filtered through celite and extracted with ether (3 × 20 mL).  The 

combined organic extracts were dried (MgSO4), and solvent was evaporated.  The residue 

was purified by column chromatography (SiO2, hexanes-ethyl acetate = 20:80) to give 2.6 

(0.032 g, 32%) as a light-yellow oil.  This product was determined to be a mixture of cis- 

and trans-stereoisomers on the basis of 1H and 13C NMR spectroscopy.  1H NMR (400 

MHz, CDCl3) δ 7.11 and 7.09 (2 × d, J = 8.3 Hz, 2H total), 6.83 (d, J = 8.2 Hz, 2H), 4.06-

4.00 and 3.99-3.90 (2 × m, 1H total), 3.78 (s, 3H), 2.72–2.56 (m, 1H), 2.15-2.05 (m, 1H), 

2.02–1.50 (m, 10H) ppm.  13C NMR (100 MHz, CDCl3)  157.6, 141.4, 127.5, 113.7, 72.7, 

71.6, 55.2, 46.2, 38.2, 37.6, 36.9, 35.7, 31.7, 29.6, 23.3, 21.3 ppm. 
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4-(4-Methoxyphenyl)cycloheptanol (2.6).  To a solution of cycloheptene 2.5 (1.24 g, 6.14 

mmol) in freshly distilled THF (25 mL) at 0 ˚C, was added dropwise a solution of borane-

tetrahydrofuran complex (1M in THF, 11.3 mL, 11.3 mmol).  The solution was gradually 

warmed to room temperature and stirred for 20 h under N2.  The reaction mixture was 

cooled to 0 ˚C, and water (440 mL) was added slowly followed by 30% hydrogen peroxide 

(8.50 mL) and 1N sodium hydroxide (14.5 mL).  The resulting solution was stirred at room 

temperature for 30 min and extracted with ethyl acetate (2 x 20 mL), concentrated and 

purified by column chromatography (SiO2, hexanes-ethyl acetate = 60:40) to give 2.6 

(1.150 g, 85%) as a yellow oil.  This was determined to be a mixture of diastereoisomers 

by 1H and 13C NMR spectroscopy by comparison to a sample previously prepared. 

 

 

 

 

 

4-(4-Methoxyphenyl)cycloheptanone (2.7). A solution of epoxide 2.5a (0.038 g, 0.17 

mmol) in benzene (20 mL) was treated with borontrifluoride etherate (0.15 mL, 0.87 mmol) 

under N2.  The light yellow solution became darker in color and was stirred for 1 h.  The 
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mixture was treated with saturated aqueous sodium carbonate (25 mL), and the organic 

layer was separated and dried (MgSO4).  The solvent was evaporated under reduced 

pressure to give a yellow crude oil.  The residue was purified by column chromatography 

(SiO2, hexanes-ethyl acetate = 80:20) to afford 2.7 (0.010 g, 26%) as a colorless oil.  1H 

NMR (400 MHz, CDCl3) δ 7.10 and 6.84 (AA’BB’, JAB = 8.7 Hz, 4H), 3.79 (s, 3H), 2.77–

2.53 (m, 4H), 2.16–1.52 (m, 7H) ppm.  13C NMR (100 MHz, CDCl3) δ 215.0, 157.9, 139.9, 

127.4, 113.9, 55.3, 47.9, 43.8, 42.9, 38.6, 32.2, 23.8 ppm.  The spectral data obtained for 9 

was consistent with the literature values.87 

 

 

 

 

 

 

4-(4-Methoxyphenyl)cycloheptanone (2.7).  Method A: To a solution of cycloheptane-

alcohol 2.6 (0.701g, 3.19 mmol) in CH2Cl2 (30 mL) at room temperature, were added 

pyridinium chlorochromate (1.39 g, 6.44 mmol) and silica (or celite) (1.52 g), and the 

resulting mixture was stirred at room temperature for 4 h.  The solution was filtered through 

a small pad of silica gel eluting with CH2Cl2.  The filtrate was concentrated in vacuo, and 

the residue was purified by column chromatography (SiO2, hexanes-ethyl acetate = 80:20) 

to afford 2.7 (0.389 g, 55%) as a colorless oil.  The 1H NMR spectrum of the product was 

identical to that previously obtained. 
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Method B: Dry magnesium turnings (0.152 g, 6.33 mmol) were placed in a flame dried 

three-necked flask followed by THF (10 mL).  A solution of propylbromide (0.200 mL, 

1.27 mmol) in THF (2 mL) was added dropwise while refluxing under nitrogen 

environment.  Once the Grignard formation was completed, the mixture was cooled to 

room temperature and a solution of 1,1’-(azodicarbonyl)dipiperidine (0.319g, 2.53 mmol) 

in THF (4 mL) was added dropwise over 15 min.  Then alcohol 2.6 (0.132 g, 0.600 mmol) 

was slowly added while stirring overnight at ambient temperature.  A saturated solution of 

NH4Cl (30 mL) was added to quench the reaction.  The resultant emulsion was stirred for 

30 min and the solution was extracted with ether (2 x 20 mL).  The combined organic layers 

were washed with water (30 mL), then brine (20 mL) and dried (MgSO4).  The solvent was 

evaporated and purified by column chromatography (SiO2, hexanes-ethyl acetate = 80:20) 

to afford 2.7 (0.027 g, 20%) as a colorless oil.  The 1H NMR spectrum of the product was 

identical to that previously obtained. 

Method C: To a solution of cycloheptane-alcohol 2.6 (0.787 g, 3.58 mmol) in CH2Cl2 (38 

mL) at room temperature, were added Dess–Martin periodinane (4.55 g, 10.7 mmol) and 

water (0.2 mL) and mixture was stirred at room temperature for 6 h.  The mixture was 

quenched with 1:1 mixture of saturated Na2S2O3 and NaHCO3 solution and continued to 

stir for 30 min.  The resulting solution was stirred at room temperature for 30 min and 

extracted with ethyl acetate (2 x 20 mL), dried (MgSO4) concentrated and purified by 

column chromatography (SiO2, hexanes ethylacetate = 80:20) to afford 2.7 (0.389 g, 50%) 

as a colorless oil.  The 1H NMR spectrum of the product was identical to that previously 

obtained. 
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1-(4-Methoxyphenyl)-4-methylenecycloheptane (2.8).  To a stirred solution of 

PPh3CH3Br (1.25 g, 3.50 mmol) in anhydrous THF (30 mL) at -10˚C under N2, was added 

a solution of n-butyl lithium (1.6 M in hexanes, 2.3 mL, 3.7 mmol) dropwise.  After 

complete addition, the deep yellow mixture was stirred for another 45 min at -10˚C before 

slowly adding a solution of 2.7 (0.380 g, 1.74 mmol) in THF (6 mL).  The solution changed 

from a deep to light yellow in color, and the mixture was gradually warmed to room 

temperature and stirred overnight.  The solution was diluted with water (20 mL) and 

aqueous layer was extracted with ethyl acetate (2 × 20 mL).  The combined organic extracts 

were washed with brine and dried (MgSO4).  The residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 80:20) to give 2.8 (0.296 g, 79%) as a light-

yellow oil.  1H NMR (400 MHz, CDCl3) δ 7.10 and 6.83 (AA’BB’, JAB = 8.4 Hz, 4H), 4.77 

(s, 2H), 3.79 (s, 3H), 2.61–2.45 (m, 2H), 2.32 (broad t, J = 12.2 Hz, 2H), 2.00–1.84 (m, 

3H), 1.71–1.48 (m, 4H) ppm.  13C NMR (100 MHz, CDCl3) δ 157.6, 151.9, 141.6, 127.7, 

113.8, 110.9, 55.5, 47.5, 37.9, 37.2, 36.1, 35.3, 27.4 ppm. 
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(4-(4-Methoxyphenyl)cycloheptyl)methanol (2.9).  To a solution of 2.8 (0.296 g, 1.37 

mmol) in freshly distilled THF (10 mL) at 0 ˚C, was added dropwise a solution of borane-

tetrahydrofuran complex (1M in THF, 2.75 mL, 2.7 mmol).  The resulting mixture was 

warmed to room temperature and stirred for 20 h.  The reaction mixture was cooled to 0 

˚C, and pure ethanol (115 mL) was added slowly followed by 30% hydrogen peroxide (2 

mL) and 3N sodium hydroxide (10 mL).  The mixture was heated at reflux for 1 h, extracted 

with ethyl acetate (2 × 20 mL), dried (MgSO4), and the solvent evaporated.  The crude 

material was purified by column chromatography (SiO2, hexanes-ethyl acetate = 60:40) to 

give 2.9 (0.155 g, 48%) as a colorless gum.  This was determined to be a mixture of 

diastereoisomers by 1H and 13C NMR spectroscopy.  1H NMR (400 MHz, CDCl3) δ 7.11 

and 6.83 (AA’BB’, JAB = 8.8 Hz, 4H), 3.77 (s, 3H), 3.46 (d, J = 6.4 Hz, 2H), 2.69–2.55 (m, 

1H), 2.00–1.72 (m, 8H), 1.68–1.39 (m, 4H) ppm.  13C NMR (100 MHz, CDCl3) δ 157.6, 

142.1, 141.8, 127.7, 113.8, 68.6, 68.4, 55.4, 47.2, 46.0, 42.2, 41.0, 38.8, 36.8, 36.5, 33.0, 

31.5, 30.6, 29.9, 28.5 ppm. 

 

 

 

 



118 
 

 
 

 

 

 

 

 

4-(4-(Hydroxymethyl)cycloheptyl)phenol (2.10).  To a stirred solution of 2.9 (0.180 g, 

0.769 mmol) in anhydrous CH2Cl2 (10 mL) at -78 ˚C, was added dropwise a solution of 

boron tribromide  (1M in CH2Cl2, 2.31 mL, 2.31 mmol).  After complete addition, the 

reaction mixture was stirred for 30 min at -78˚C and gradually warmed to room temperature 

over a 2 h period.  The mixture was quenched with water (10 mL) and the aqueous layer 

was extracted with CH2Cl2 (3 × 20 mL).  The combined organic extracts were washed with 

brine and dried (MgSO4).  Evaporation of the solvent and purification from column 

chromatography (SiO2, hexanes-ethyl acetate = 50:50) gave 2.10 (0.048 g, 28%) as a 

colorless solid.  This product was determined to be a mixture of cis- and trans-

stereoisomers on the basis of 1H and 13C NMR spectroscopy.  mp 60-63 °C.  1H NMR (400 

MHz, CDCl3) δ 7.03 and 6.74 (AA’BB’, JAB = 8.5 Hz, 4H), 5.10 (s, 1H),3.48 (d, J = 6.6 

Hz, 2H), 2.67–2.49 (m, 1H), 1.97–1.32 (m, 11 H) ppm.  13C NMR (400 MHz, CDCl3) δ 

153.8, 142.0, 141.8, 127.9, 127.8, 115.4, 68.6, 68.5, 47.2, 46.1, 42.2, 41.3, 38.9, 36.7, 36.5, 

33.0, 31.5, 30.6, 29.9, 28.5, 27.4, 24.3 ppm. 
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Methyl 4-((tert-butyldimethylsilyl)oxy)benzoate (2.12).  To a stirred solution of methyl-

4-hydroxybenzoate 2.11 (8.000 g, 52.5 mmol) in anhydrous CH2Cl2 (80 mL) under N2 was 

added imidazole (10.7 g, 157 mmol) while stirring at 0 ̊ C.  After 45 min, tert-butyldimethyl 

silyl chloride (11.9 g, 78.9 mmol) was added and stirred at 0 ˚C for 2 h, and at room 

temperature overnight.  The resulting mixture was diluted with brine (70 mL) and 

partitioned with CH2Cl2 (3 x 30 mL).  The combined organic extracts were dried (MgSO4), 

concentrated and purified by column chromatography (SiO2, hexanes -ethyl acetate = 

90:10) to give 2.12 as a colorless gum. (11.73 g, 84%).  1H NMR (400 MHz, CDCl3) δ 7.93 

and 6.84 (AA’BB’, JAB = 8.9 Hz, 4H), 3.86 (s, 3H), 0.97 (s, 9H), 0.21 (s, 6H) ppm.  13C 

NMR (100 MHz, CDCl3) δ 170.0, 160.2, 131.5, 123.2, 119.9, 51.9, 25.7, 18.1, -4.3 ppm.  

The spectral data for this compound were consistent with the literature values.116 

 

 

 

 

 

 

 

 



120 
 

 
 

 

 

 

 

 

5-(4-((tert-Butyldimethylsilyl)oxy)phenyl)nona-1,8-dien-5-ol (2.13).  Dry magnesium 

turnings (6.75 g, 0.281 mmol) were placed in a flame dried three-necked flask followed by 

THF (25 mL).  The system was under N2 while stirring and fitted with a condenser and an 

addition funnel.  The addition funnel was loaded with a solution of 4-bromo-bute-1-ene 

(11.5 mL, 0.113 mol) in THF (20 mL).  A slight amount of bromobutene solution (3 mL) 

was added slowly to the magnesium turnings, and the contents were heated at 65 ˚C to 

reflux.  Once the Grignard formation was started, the remaining bromide solution was 

added dropwise.  The reaction was stirred until most of the magnesium had reacted and a 

solution of 2.12 (5.000 g, 18.8 mmol) in THF (25 mL) was loaded into the addition funnel 

and added dropwise over 45 min.  The mixture was stirred overnight at ambient 

temperature and a saturated solution of NH4Cl (30 mL) was added to quench the reaction.  

The resultant emulsion was stirred for 1 h and the solution was extracted with ether (3 x 30 

mL).  The combined organic extracts were washed with water (30 mL), followed by brine 

(2 x 20 mL) and dried (MgSO4).  The solvent was evaporated to give pure alcohol 2.13 as 

a colorless oil (5.208 g, 80%).  1H NMR (400 MHz, CDCl3) δ 7.23 and 6.82 (AA’BB’, JAB 

= 8.6 Hz, 4H), 5.85-5.73 (m, 2H), 5.01–4.86 (m, 4H), 2.13–1.80, (m, 9H), 1.01 (s, 9H), 

0.22 (s, 6H) ppm.   13C NMR (100 MHz, CDCl3) δ 154.2, 140.0, 138.4, 126.4, 119.6, 114.6, 

76.8, 42.2, 28.2, 25.8, 18.3, -4.3 ppm. 
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1-(4-((tert-Butyldimethylsilyl)oxy)phenyl)cyclohept-4-en-1-ol (2.14).  To a solution of 

2.13 (0.313 g, 0.903 mmol) in dry CH2Cl2 (100 mL, 0.01 M) was added a solution of 

Grubbs I catalyst (0.029 g, 0.032 mmol, 4%) in CH2Cl2 (10 mL) via syringe pump over 10 

h and the mixture was stirred at 40 °C for 24 h.  Reaction mixture was cooled to room 

temperature, quenched with DMSO (50 eq, 0.15 mL) and continued to stir for another 12 

h.  The mixture was concentrated to a dark brown crude material and directly subjected to 

the column chromatography (SiO2, hexanes- diethyl ether = 80:20) to give 2.14 (0.247 g, 

86%) as a colorless oil.  1H NMR (400 MHz, CDCl3) δ 7.35 and 6.79 (AA’BB’, JAB = 8.7 

Hz, 4H), 5.86-5.79 (m, 2H), 2.54-2.43 (m, 2H), 2.10–1.94 (m, 4H), 1.90-1.82 (m, 2H), 1.73 

(s,1H), 0.99 (s, 9H), 0.20 (s, 6H) ppm.  13C NMR (100 MHz, CDCl3)  154.5, 142.9, 132.3, 

125.9, 119.8, 76.7, 40.3, 25.7, 23.2, 18.3, -4.2 ppm. 

 

 

 

 

 

tert-Butyl(4-(cyclohept-4-en-1-yl)phenoxy)dimethylsilane (2.15).  To a solution of 2.14 

(1.601 g, 5.034 mmol) in anhydrous CH2Cl2 (20 mL) was added triethylsilane (0.8 mL, 5.0 
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mmol) followed by TFA (4.0 mL, 20 mmol).  The mixture was stirred at room temperature 

for 3 h while monitoring the reaction by TLC.  After detecting the decomposition of both 

starting material and product, the solution was concentrated to a dark brown oil and directly 

subjected to the column chromatography (SiO2, hexanes = 100%) to give 2.15 as a light-

yellow oil (0.906 g, 60%).  1H NMR (400 MHz, CDCl3)  7.05 and 6.78 (AA’BB’, JAB = 

8.7 Hz, 4H), 5.92-5.89 (m, 2H), 2.69 (tt, J = 11.2, 3.2 Hz, 1H), 2.36-2.27 (m, 2H), 2.24-

2.14 (m, 2H), 1.93-1.85 (m, 2H), 1.55-1.44 (m, 2H), 1.01 (s, 9H), 0.22 (s, 6H) ppm.  13C 

NMR (100 MHz, CDCl3)  153.6, 142.1, 132.7, 127.7, 120.0, 49.8, 35.2, 28.1, 25.9, 18.3, 

-4.2 ppm. 

 

 

 

 

 

tert-Butyl(4-(cyclohept-4-en-1-yl)phenoxy)dimethylsilane (2.15).  To a solution of 

phenol 2.15a (0.212 g, 1.13 mmol) in anhydrous CH2Cl2 (20 mL) was added imidazole 

(0.230 g, 3.38 mmol) while stirring at 0 ˚C under N2.  After 30 min tert-butyldimethyl silyl 

chloride (0.254 g, 1.69 mmol) was added at 0 ˚C and mixture was gradually warmed to 

room temperature overnight.  The resulting mixture was diluted with brine (20 mL) and 

extracted with CH2Cl2 (2 x 20 mL).  The combined organic extracts were dried (Na2SO4), 

concentrated and purified by column chromatography (SiO2, hexanes-ethyl acetate = 

90:10) to give 2.15 as a light-yellow oil (0.240, 70%).  The 1H NMR spectral data was 

identical to that previously obtained.  



123 
 

 
 

 

 

 

 

 

4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)cycloheptan-1-ol (2.16).  To a solution of 

2.15 (0.906 g, 2.99 mmol) in freshly distilled THF (20 mL) at 0 ˚C under N2 was added 

dropwise a solution of borane-tetrahydrofuran complex (1M in THF, 6.0 mL, 6.0 mmol).  

The solution was gradually warmed to room temperature and stirred for 18 h.  The reaction 

mixture was cooled to 0 ˚C, and water (250 mL) was added slowly followed by 30% 

hydrogen peroxide (4.5 mL) and 1N sodium hydroxide (7.5 mL).  The resulting solution 

was stirred at room temperature for another 30 min  and extracted with ethyl acetate (2 x 

25 mL), concentrated and purified by column chromatography (SiO2, hexanes-ethyl acetate 

= 80:20) to give 2.16 (0.880 g, 92%) as a yellow oil.  This was determined to be a mixture 

of diastereoisomers by 1H and 13C NMR spectroscopy.  1H NMR (400 MHz, CDCl3) δ 7.01 

(m, 2H), 6.74 (m, 2H), 4.06-3.99 and 3.98-3.90 (2 x m, 1H total), 2.69-2.53 (m, 1H), 2.14-

1.49 (m, 11H), 0.97 (s, 9H), 0.18 (s, 6H) ppm.  13C NMR (100 MHz, CDCl3)  153.6, 142.1, 

127.5, 120.0, 73.0, 71.9, 46.4, 46.1, 38.3, 37.8, 37.3, 37.1, 37.0, 35.9, 31.8, 29.8, 25.9, 23.5, 

21.5, 18.4, - 4.2 ppm. 
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4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)cycloheptan-1-one (2.17).  To a solution of 

2.16 (0.050 g, 0.16 mmol) in CH2Cl2 (10 mL) at room temperature, was added Dess–Martin 

periodinane (0.132 g, 0.312 mmol) and water (0.1 mL) and mixture was stirred at room 

temperature for 6 h.  The mixture was quenched with 1:1 mixture of saturated Na2S2O3 and 

NaHCO3 solution and continued to stir for another 30 min.  The resulting solution was 

extracted with CH2Cl2 (2 x 20 mL), dried (Na2SO4), concentrated and purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 80:20) to afford 2.17 (0.036 g, 72%) as a 

colorless oil.  1H NMR (400 MHz, CDCl3) δ 7.01 and 6.75 (AA’BB’, JAB = 8.6 Hz, 4H), 

2.72–2.51 (m, 5H), 2.13–2.06 (m, 1H), 2.04–1.95 (m, 2H), 1.86–1.68 (m, 2H), 1.62–1.52 

(m, 1H), 0.97 (s, 9H), 0.18 (s, 6H) ppm.  13C NMR (100 MHz, CDCl3) δ 215.3, 153.9, 

140.6, 127.5, 120.1, 48.1, 44.0, 43.1, 38.7, 32.2, 25.9, 24.1, 18.3, -4.2 ppm. 
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tert-Butyldimethyl(4-(4-methylenecycloheptyl)phenoxy)silane (2.18).  To a stirred 

solution of PPh3CH3Br (0.476 g, 1.33 mmol) in anhydrous THF (20 mL) at -10˚C under 

N2, was added a solution of n-butyl lithium (1.6 M in hexanes, 0.83 mL, 1.3 mmol) 

dropwise.  After complete addition, the deep yellow mixture was stirred for another 45 min 

at -10˚C before slowly adding a solution of 2.17 (0.212 g, 0.667 mmol) in THF.  The 

solution changed from a deep to light yellow in color, and the mixture was gradually 

warmed to room temperature and stirred overnight.  The solution was diluted with water 

(20 mL) and aqueous layer was extracted with ethyl acetate (2 × 25 mL).  The combined 

organic extracts were washed with brine and dried (Na2SO4).  Removal of the solvent and 

purification from column chromatography (SiO2, hexanes–ethyl acetate = 90:10) gave 2.18 

(0.120 g, 57%) as a light-yellow oil.  1H NMR (400 MHz, CDCl3) δ 7.03 and 6.75 

(AA’BB’, JAB = 8.7 Hz, 4H), 4.76 (s, 2H), 2.59–2.45 (m, 2H), 2.37–2.26 (m, 2H), 2.01–

1.85 (m, 3H), 1.70–1.48 (m, 4H), 1.00 (s, 9H), 0.20 (s, 6H) ppm.  13C NMR (100 MHz, 

CDCl3) δ 153.4, 151.9, 142.3, 127.7, 120.0, 110.7, 47.6, 40.0, 37.2, 36.3, 35.4, 27.6, 25.9, 

18.4, -4.2 ppm. 
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4-(4-(Hydroxymethyl)cycloheptyl)phenol (2.10).  To a solution of 2.18 (0.320 g, 1.01 

mmol) in freshly distilled THF (10 mL) at 0 ˚C, was added dropwise a solution of borane-

tetrahydrofuran complex (1M in THF, 2.1 mL, 2.1 mmol).  The resulting mixture was 

warmed to room temperature and stirred for 18 h.  The reaction mixture was cooled to 0 

˚C, and pure ethanol (85 mL) was added slowly followed by 30% hydrogen peroxide (2.0 

mL) and 3N sodium hydroxide (2.5 mL).  The mixture was stirred for 1 h at room 

temperature, extracted with ethyl acetate (2 × 20 mL), dried (Na2SO4), and the solvent 

evaporated.  The crude material was purified by column chromatography (SiO2, hexanes-

ethyl acetate = 60:40) to give 2.10 (0.088 g, 40%) as a colorless solid.  This was determined 

to be a mixture of diastereoisomers by 1H and 13C NMR spectroscopy.  mp 60-63 °C.  1H 

NMR (400 MHz, CDCl3) δ 7.03 and 6.74 (AA’BB’, JAB = 8.7 Hz, 4H), 5.53 (s, OH), 3.48 

(d, J = 6.4 Hz, 2H), 2.65–2.49 (m, 1H), 1.97–1.30 (m, 12H).  13C NMR (100 MHz, CDCl3) 

δ 153.8, 142.0, 141.8, 127.7, 115.4, 68.8, 68.5, 47.2, 46.1, 42.2, 41.3, 38.9, 36.7, 36.5, 33.0, 

31.5, 30.6, 29.9, 28.5, 27.5, 24.3 ppm.  The NMR spectral data is consistent with previously 

observed values. 
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(4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)cycloheptyl)methanol (2.19)  To a solution 

of 2.18 (0.821 g, 2.60 mmol) in freshly distilled THF (10 mL) at 0 ˚C, was added dropwise 

a solution of borane-tetrahydrofuran complex (1M in THF, 5.4 mL, 5.4 mmol).  The 

resulting mixture was warmed to room temperature and stirred for 18 h.  The reaction 

mixture was cooled to 0 ˚C, and 1N sodium hydroxide (3.2 mL) was added slowly followed 

by 30% hydrogen peroxide (1.5 mL).  The mixture was stirred for 1 h at room temperature, 

extracted with ethyl acetate (2 × 25 mL), dried (Na2SO4), and the solvent evaporated.  The 

crude material was purified by column chromatography (SiO2, hexanes-ethyl acetate = 

80:20) to give 2.19 (0.572 g, 66%) as a colorless oil.  This was determined to be a mixture 

of diastereoisomers by 1H and 13C NMR spectroscopy.  1H NMR (400 MHz, CDCl3) δ 7.02 

and 6.74 (AA’BB’, JAB = 8.3 Hz, 4H), 3.45 (d, J = 6.5 Hz, 2H), 2.67–2.53 (m, 1H), 1.98–

1.38 (m, 11H), 1.29-1.09 (m, 1H), 0.98 (s, 9H), 0.19 (s, 6H) ppm.  13C NMR (100 MHz, 

CDCl3) δ 153.5, 142.6, 142.4, 127.6, 127.5, 119.9, 68.7, 68.5, 47.3, 46.1, 42.2, 41.2, 38.9, 

36.8, 36.4, 33.1, 31.5, 30.7, 30.0, 28.5, 27.6, 26.1, 24.2, 18.3, -4.2 ppm. 
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4-(4-(Hydroxymethyl)cycloheptyl)phenol (2.10).  To a solution of 2.19 (0.873 g, 2.61 

mmol) in anhydrous THF (20 mL) was added a solution of TBAF (1M in THF, 10.0 mL, 

0.010 mol) while stirring.  The mixture was heated to reflux at 70 ˚C overnight and cooled 

to room temperature.  The solution was partitioned between ethyl acetate and water.  The 

organic layer was washed with brine, dried (Na2SO4) and concentrated.  Purification by 

column chromatography (SiO2, hexanes-ethyl acetate = 60:40) gave 2.10 (0.508 g, 88%) 

as a colorless solid.  mp 60-63 °C.  The 1H NMR spectral data is consistent with that 

previously obtained.  

 

 

 

 

 

4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)cyclohexan-1-one (2.21).  To a stirred 

solution of 4-(4-hydroxyphenyl)cyclohexanone 2.20 (4.0 g, 0.021 mol) in anhydrous 

CH2Cl2 (40 mL) at 0 ˚C was added imidazole (4.3 g, 0.063 mol) under N2.  After 30 min 

tert-butyldimethyl silyl chloride (4.6 g, 0.032 mol) was added at 0 ˚C and mixture was 

gradually warmed to room temperature overnight.  The resulting mixture was diluted with 
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brine (25 mL) and partitioned with CH2Cl2 (2 x 30 mL).  The combined organic extracts 

were dried (Na2SO4), concentrated and purified by column chromatography (SiO2, 

hexanes-ethyl acetate = 90:10) to give 2.21 (6.081 g, 95%) as a colorless solid. mp 39-42 

°C.  1H NMR (400 MHz, CDCl3) δ 7.08 and 6.78 (AA’BB’, JAB = 8.4 Hz, 4H), 2.96 (br t, 

J = 12.3 Hz, 1H), 2.56–2.40 (m, 4H), 2.25–2.14, (m, 2H), 1.97–1.82 (m, 2H), 0.98 (s, 9H), 

0.19 (s, 6H) ppm.  13C NMR (400 MHz, CDCl3) δ 211.6, 154.3, 137.7, 127.7, 120.1, 42.2, 

41.6, 34.6, 25.9, 18.4, -4.2 ppm. 

 

 

 

 

 

 

Ethyl 5-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-oxocycloheptane-1-carboxylate 

(2.22).  To a solution of ketone 2.21 (1.14 g, 3.74 mmol) in anhydrous diethyl ether (15 

mL) at 0 ˚C under N2 was added an aliquot of BF3.Et2O (0.92 mL, 7.5 mmol).  A solution 

of ethyl diazoacetate (0.77 mL, 7.47 mmol) in anhydrous ether (5 mL) was added dropwise 

over a period of 20 min and the resulting solution was stirred at room temperature for 12 

h.  The reaction mixture was cooled to 0 °C and neutralized with saturated sodium 

bicarbonate solution (20 mL).  The resulting mixture was extracted with CH3Cl3 (3 x 15 

mL), the combined organic extracts washed with brine (20 mL), dried (Na2SO4) and 

concentrated.  The dark yellow crude oil was purified by column chromatography (SiO2, 

hexanes-diethyl ether = 70:30) to give keto ester 2.22 (1.182 g, 81%) as a colorless oil.  
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The product is in equilibrium with its keto-enol tautomer.  1H NMR (400 MHz, CDCl3) δ 

12.74 (s, 0.4H), 7.02-6.97 (m, 2H), 6.77-6.72 (m, 2H), 4.27-4.16 (m, 2H), 3.64-3.56 (m, 

0.3H), 2.94–2.78 (m, 1H), 2.72-2.58 (m, 2H), 2.48-2.24 (m, 1H), 2.16-1.76 (m, 4H), 1.65-

1.54 (m, 1H), 1.32 and 1.29 (2 x t, J = 7.2 Hz, 3H total), 0.97 (s, 9H), 0.18 (s, 6H) ppm.  

13C NMR (100 MHz, CDCl3) δ 209.0, 208.8, 178.9, 173.0, 170.6, 154.0, 140.9, 139.9, 

127.7, 127.5, 120.2, 120.0, 101.5, 61.4, 60.7, 59.6, 58.5,49.6, 47.9, 47.2, 42.2, 36.8, 35.4, 

34.6, 32.8, 32.2, 27.8, 25.9, 23.9, 22.6, 18.4, 14.5, -4.2 ppm. 

 

 

 

 

 

 

4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)cycloheptan-1-one (2.17).  To a stirred 

solution of 2.22 (1.74 g, 4.46 mmol) in DMSO (20 mL) at room temperature was added 

sequentially lithium chloride (1.3 g, 0.031 mol) and water (2.8 mL) at room temperature.  

The mixture was heated to reflux at 160 °C for 5 h, cooled to room temperature and poured 

into water.  The resulting solution was extracted with ether and ethyl acetate (3 x 20 mL), 

washed with brine, dried (Na2SO4) and evaporated in vacuo to provide desired product 2.17 

(1.114 g, 78%) as a colorless oil.  The NMR spectral data for the product is consistent with 

that previously obtained. 
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4-(4-Hydroxycycloheptyl)phenol (2.23).  To a stirred solution of 2.6 (0.028 g, 0.13 mmol) 

in anhydrous CH2Cl2 (30 mL) at -78˚C, was added dropwise a solution of boron tribromide 

in CH2Cl2 (1M, 0.3 mL, 0.03 mmol).  After complete addition, the reaction mixture was 

stirred for 30 min at -78˚C and gradually warmed to room temperature over a 2 h period.  

The mixture was quenched with water (10 mL) and aqueous layer was extracted with 

CH2Cl2 (3 × 20 mL).  The combined organic extracts were washed with brine and dried 

(MgSO4).  Evaporation of the solvent gave 2.23 (0.024 g, 86%) as a yellow crystalline 

solid.  This product was determined to be a mixture of cis- and trans-stereoisomers on the 

basis of 1H and 13C NMR.  1H NMR (400 MHz, CDCl3) δ 7.11-6.99 (m, 2H), 6.80-6.70 

(m, 2 H), 4.85 (s, OH), 4.56-4.48 and 4.42-4.34 (2 × m, 1H total), 2.78–2.59 (m, 1H), 2.53–

1.38 (m, 11H) ppm.  13C NMR (100 MHz, CDCl3)  153.5, 141.0, 127.7, 115.9, 56.1, 55.7, 

45.9, 45.3, 40.0, 39.4, 39.2, 37.7, 37.6, 36.3, 34.2, 31.3, 25.2, 23.5 ppm. 
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4-(4-Hydroxyphenyl)cycloheptanone (2.24).  A sample of 2.7 (0.074 g, 0.339 mmol) was 

dissolved in 48 % HBr (8 mL) and the mixture heated to reflux at 115 ˚C for 2 h.  Then the 

mixture was cooled to room temperature and portioned between ethyl acetate and water.  

The organic layer was washed with sodium bicarbonate solution, followed by brine, dried 

(Na2SO4) and concentrated.  The residue was purified by column chromatography (SiO2, 

hexanes-ethyl acetate = 20:80) to give 2.24 (0.057 g, 82%) as a brown syrup.  1H NMR 

(400 MHz, CD3OD) δ 6.98 and 6.70 (AA’BB’, JAB = 8.5 Hz, 4H), 4.98 (s, 1H), 2.77–2.39 

(m, 4H), 2.02–1.47 (m, 7H) ppm.  13C NMR (100 MHz, CD3OD) δ 218.1, 156.4, 140.3, 

128.5, 116.1, 49.0, 44.6, 43.7, 39.6, 33.1, 24.3 ppm. 

 

 

 

 

 

4-(4-Hydroxyphenyl)cycloheptanone oxime (2.25).  To a solution of 2.24 (0.048 g, 0.23 

mmol) in ethanol (10 mL), was added sodium bicarbonate (0.024 g) and hydroxylamine 

hydrochloride (0.023 g, 0.32 mmol).  The mixture was stirred at room temperature for 5 h 

and extracted with ethyl acetate (2 × 10 mL).  The combined organic extracts were dried 
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(MgSO4) and concentrated.  Purification of the residue by column chromatography (SiO2, 

hexanes-ethyl acetate = 65:35) gave 2.25 as a light brown gum (0.026 g, 52%).  1H NMR 

(400 MHz, CD3OD) δ 6.98 and 6.67 (AA’BB’, JAB = 8.5 Hz, 4H), 2.86-2.30 (m, 4H), 2.09-

1.20 (m, 8H) ppm.  13C NMR (100 MHz, CD3OD) δ 165.0, 164.8, 156.4, 156.3, 141.3, 

140.4, 128.5, 128.3, 116.1, 40.0, 39.7, 37.1, 34.1, 33.7, 33.3, 29.6, 28.4, 27.9, 24.8 ppm.   

 

 

 

 

 

 

4-(4-hydroxyphenyl)-1-methylcycloheptan-1-ol (2.26).  To a solution of 2.24 (0.158 g, 

0.773 mmol) in dry Et2O (15 mL) at -78 °C under N2, was added slowly a solution of 

methyllithium-lithium bromide complex (1.5 M in ether, 1.1 mL, 1.7 mmol).  The mixture 

was stirred for another 30 min at -78 °C, warmed to room temperature and stirred for 

another 1 h.  The mixture was cooled to 0 °C and quenched with water.  The mixture was 

extracted with diethyl ether (2 × 30 mL), dried (Na2SO4) and concentrated.  The residue 

was purified from column chromatography (SiO2, hexanes-ethyl acetate = 80:20) to give 

2.26 (0.068 g, 40%) as a colorless solid.  1H NMR (400 MHz, MeOD) δ 6.97 and 6.67 

(AA’BB’, JAB = 8.5 Hz, 4H), 2.63–2.44 (m, 1H), 1.97–1.30 (m, 10H), 1.23 (s, 1H) 1.21 (s, 

2H) ppm.  13C NMR (100 MHz, MeOD) δ 156.3, 141.7, 128.6, 128.4, 116.0, 74.6, 74.5, 

64.4, 44.2, 43.4, 42.8, 40.8, 40.4, 39.0, 38.5, 31.5, 31.2, 23.7, 23.6 ppm. 
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Methyl-2-(4-(4-methoxyphenyl)cycloheptylidene)acetate (2.27).  Sodium hydride (32 

mg, 55% in mineral oil, 0.80 mmol) was added to a stirring solution of trimethyl 

phosphonoacetate (0.130 mL, 0.80 mmol) in dry THF (3 mL) at 0 °C.  After 45 min, a 

solution 4-(4-methoxyphenyl)cycloheptanone 2.27 (0.147 g, 0.673 mmol) in dry THF (5 

mL) was added and the reaction mixture was stirred at room temperature for 12 h.  The 

mixture was diluted with water (15 mL) and the resulting mixture was extracted with ether 

(2 × 20 mL), dried (MgSO4) and concentrated.  The residue was purified by column 

chromatography (SiO2, hexanes–ethyl acetate = 90:10) to give 2.27 (0.057 g, 31%) as a 

colorless oil.  The product was determined to be a mixture of E and Z stereoisomers from 

1H and 13C NMR spectroscopy.  1H NMR (400 MHz, CDCl3) δ 7.08 and 6.82 (AA’BB’, 

JAB = 8.1 Hz, 4H), 5.74 (s, 1H), 3.78 (s, 3H), 3.69 (d, J = 3.6 Hz, 3H), 2.86 (broad t, J = 

14.9 Hz, 1H), 2.72-2.36 (m, 3H), 2.10-1.86 (m, 3H), 1.80-1.44 (m, 6H) ppm.  (Solvent 

peaks are overlapped in 1.30-2.20 ppm region).  13C NMR (100 MHz, CDCl3) δ 167.2, 

167.1, 166.8, 166.6, 157.9, 157.8, 141.1, 140.7, 127.6, 115.5, 113.9, 77.6, 55.4, 51.0, 47.7, 

47.1, 38.9, 38.2, 38.0, 37.4, 36.7, 35.3, 32.6, 31.3, 27.2, 25.9, 22.9, 14.3 ppm. 
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(Z)-2-(4-(4-Methoxyphenyl)cycloheptylidene)ethan-1-ol (2.28).  To a solution of 2.27 

(0.200 g, 0.730 mmol) in dry CH2Cl2 (5 mL) under nitrogen at –40 ̊ C was added a solution 

of diisobutylaluminum hydride in CH2Cl2 (1.58 mL, 1.2 M, 1.9 mmol). After 90 min, 

saturated aqueous potassium sodium tartrate was added and reaction mixture was gradually 

warmed to room temperature.  After 4 h the mixture was filtered through a pad of celite 

and extracted several times with water (2 × 15 mL).  The combined organic layers were 

dried (MgSO4), and concentrated to give 2.28 (0.078 g, 43%) as a colorless gum.  The 

crude product was used in the next step without any further purification.  1H NMR (400 

MHz, CDCl3) δ 7.09 and 6.83 (AA’BB’, JAB = 8.7 Hz, 4H), 5.50-5.42 (m, 1H), 4.19 (d, J 

= 7.2 Hz, 2H), 3.79 (s, 3H), 2.67-2.19 (m, 4H), 2.14-1.85 (m, 4H), 1.69-1.44 (m, 3H) ppm.  

13C NMR (100 MHz, CDCl3) δ 157.7, 145.1, 141.5, 141.3, 129.4, 127.6, 127.6, 124.2, 

124.1, 113.8, 59.2, 55.4, 47.6, 47.0, 38.3, 37.6, 37.4, 36.8, 36.1, 30.2, 29.2, 27.8, 26.5 ppm. 
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4-(4-(2-Hydroxyethyl)cycloheptyl)phenol (2.30).  To a solution of compound 2.28 (0.078 

g, 0.32 mmol) in methanol (10 mL) was added 10% Pd/C (0.040 g, 10 mol %).  The mixture 

was stirred under H2 balloon at room temperature for 12 h.  The reaction mixture was 

filtered through a pad of celite, concentrated and dried (MgSO4) to give the crude 

hydrogenated product (0.080 g, 0.323 mmol).  The crude product was dissolved in 

anhydrous CH2Cl2 (8 mL), cooled to -78˚C, and a solution of boron tribromide (1M in 

CH2Cl2, 0.97 mL, 0.97 mmol) was added dropwise.  After complete addition, the reaction 

mixture was stirred for 30 min at -78˚C and gradually warmed to room temperature over a 

2 h period.  The mixture was quenched with water (5 mL) and the aqueous layer was 

extracted with CH2Cl2 (3 × 10 mL).  The combined organic extracts were washed with 

brine and dried (MgSO4).  Evaporation of the solvent and purification by column 

chromatography (SiO2, hexanes-ethyl acetate = 65:35) gave 2.30 (0.005 g, 7%) as a light 

brown solid.  This was determined to be a mixture of diastereoisomers by 1H and 13C NMR 

spectroscopy.  1H NMR (400 MHz, CDCl3) δ 7.04 and 6.74 (AA’BB’, JAB = 8.7 Hz, 4H), 

3.71 (td, J = 6.9, 1.4 Hz, 2H), 2.66-2.48 (m, 1H), 1.96-1.13 (m, 13H) ppm.  13C NMR (100 

MHz, CDCl3) δ 153.6, 142.2, 127.8, 115.3, 61.5, 47.1, 45.9, 41.1, 40.9, 38.8, 36.8, 36.3, 

35.9, 35.4, 34.8, 34.5, 33.9, 33.0, 32.1, 27.3, 24.4 ppm. 
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Methyl 4-hydroxy-3-methylbenzoate (2.32).  To a solution of 4-hydroxy-3-

methylbenzoic acid 2.31 (5.000 g, 0.033 mol) in anhydrous methanol (80 mL) was added 

dropwise through an addition funnel SOCl2 (5 mL, 0.066 mol) over 1 h while stirring at 0 

°C.  After 30 min the system was heated at reflux overnight under N2.  The resulting 

mixture was cooled to the room temperature and diluted with water (50 mL).  Methanol 

was evaporated and the pH was adjusted to pH =7 with saturated sodium bicarbonate 

solution (15 mL).  The resulting solution was extracted with ethyl acetate (3 × 40 mL).  

The combined organic extracts were washed with brine (20 mL), dried (Na2SO4), and 

concentrated to give methyl ester 2.32 (4.80 g, 88%) as a light orange solid.  mp 124-125 

°C.  1H NMR (400 MHz, CDCl3)  7.84 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 6.83 (d, J = 8.4 

Hz, 1H), 6.48 (s, OH), 3.89 (s, 3H), 2.27 (s, 3H) ppm.  13C NMR (100 MHz, CDCl3)  

168.0, 158.9, 133.1, 129.6, 124.4, 122.0, 115.4, 52.4, 16.0 ppm.  The 1H and 13C NMR 

spectral data are consistent with the literature values.117-118 
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Methyl 4-((tert-butyldimethylsilyl)oxy)-3-methylbenzoate (2.33).  To a stirred solution 

of 2.32 (0.500 g, 3.01 mmol) in anhydrous CH2Cl2 (25 mL) at 0 ˚C under N2, was added 

imidazole (0.410 g, 6.02 mmol).  After 30 min tert-butyldimethyl silyl chloride (0.680 g, 

4.52 mmol) was added at 0 ˚C and mixture was gradually warmed to room temperature 

overnight.  The resulting mixture was diluted with brine (25 mL) and partitioned with 

CH2Cl2 (2 x 20 mL).  The combined organic extracts were dried (Na2SO4), concentrated in 

vacuo and purified by column chromatography (SiO2, hexanes-ethyl acetate = 10:90) to 

give 2.33 (0.712 g, 84%) as a colorless gum.  1H NMR (400 MHz, CDCl3)  7.84 (d, J = 

2.3 Hz, 1H), 7.77 (dd, J = 2.3, 8.4 Hz, 1H), 6.77 (d, J = 8.4 Hz, 1H), 3.86 (s, 3H), 2.22 (s, 

3H), 1.01 (s, 9H), 0.23 (s, 6H) ppm.  13C NMR (100 MHz, CDCl3)  167.2, 158.4, 132.7, 

129.1, 128.8, 123.1, 118.1, 51.9, 25.9, 18.3, 16.9, -3.8 ppm. 

 

 

 

 

 

5-(4-((tert-Butyldimethylsilyl)oxy)-3-methylphenyl)nona-1,8-dien-5-ol (2.34).  Dry 

magnesium turnings (2.65 g, 0.110 mol) were placed in a flame dried three-necked flask 
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under N2 followed by THF (25 mL).  A solution of 4-bromo-1-butene (6.70 mL, 0.066 mol) 

in THF (20 mL) was loaded to the addition funnel and a small amount of bromobutene 

solution (2 mL) was added slowly to the magnesium turnings.  The solution was heated at 

65 ˚C to reflux.  Once the Grignard formation was started, the remaining bromide solution 

was added dropwise over 45 min.  The reaction was stirred until most of the magnesium 

had reacted and solution of 2.33 (3.086 g, 0.011 mol) in THF (15 mL) was filled into the 

addition funnel and added dropwise over 30 min.  The mixture was gradually cooled and 

stirred at ambient temperature overnight.  A solution of saturated NH4Cl (30 mL) was 

slowly added in order to quench the reaction and resultant emulsion was stirred for 1 h.  

The mixture was extracted with ether (3 x 30 mL) and the combined organic extracts were 

washed with brine (2 x 20 mL) and dried (Na2SO4).  The solvent was removed to give 

alcohol 2.34 (2.217 g, 56%) as a colorless oil.  1H NMR (400 MHz, CDCl3) δ 7.13 (d, J = 

2.4 Hz, 1H), 7.03 (dd, J = 2.6, 8.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.85-5.74 (m, 2H), 

4.99–4.88 (m, 4H), 2.22 (s, 3H), 2.11–1.97 (m, 2H), 1.93-1.81 (m, 7H), 1.02 (s, 9H), 0.22 

(s, 6H) ppm.   13C NMR (100 MHz, CDCl3) δ 152.5, 139.2, 138.1, 128.5, 128.1, 123.6, 

118.1, 114.6, 77.1, 42.2, 28.3, 25.9, 18.4, 17.4, -4.0 ppm. 

 

 

 

 

 

1-(4-((tert-Butyldimethylsilyl)oxy)-3-methylphenyl)cyclohept-4-en-1-ol (2.35).  

Alcohol 2.34 (0.974 g, 2.70 mmol) was cyclized using Grubbs’ catalyst I (0.090 g, 0.108 
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mmol, 4%) in a fashion similar to the preparation of 2.14.  Purification of the crude product 

by column chromatography (SiO2, hexanes-diethyl ether = 80:20) gave 2.35 (0.573 g, 64%) 

as a light green oil.  1H NMR (400 MHz, CDCl3) δ 7.28 (br d, J = 2.3 Hz, 1H), 7.18 (dd, J 

= 2.5, 8.4 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H), 5.87-5.82 (m, 2H), 2.50 (br t, J = 13.3 Hz, 2H), 

2.22 (s, 3H), 2.11–1.97 (m, 4H), 1.91-1.83 (m, 2H), 1.68 (s, 1H), 1.02 (s, 9H), 0.22 (s, 6H) 

ppm.  13C NMR (100 MHz, CDCl3)  152.6, 142.7, 132.3, 128.4, 127.7, 122.9, 117.9, 77.1, 

40.3, 25.9, 23.3, 18.5, 17.2, -4.0 ppm. 

 

 

 

 

 

 

tert-Butyl(4-(cyclohept-4-en-1-yl)-2-methylphenoxy)dimethylsilane (2.36).  Ionic 

reduction of tertiary alcohol 2.35 (0.209 g, 0.623 mmol) in anhydrous CH2Cl2 (15 mL) 

with triethylsilane (0.1 mL, 0.626 mmol) and TFA (0.5 mL, 6.23 mmol) was carried out in 

a fashion similar to the preparation of 2.15.  Purification of the crude product by column 

chromatography (SiO2, hexanes = 100%) gave 2.36 (0.113 g, 57%) as a colorless oil.  1H 

NMR (400 MHz, CDCl3)  7.00 (d, J = 2.2 Hz, 1H), 6.91 (dd, J = 8.1, 2.2 Hz, 1H), 6.72 

(d, J = 8.4 Hz, 1H), 5.94-5.90 (m, 2H), 2.68 (tt, J = 11.5, 3.4 Hz, 1H), 2.38-2.28 (m, 2H), 

2.27-2.16 (m, 5H), 1.95-1.87 (m, 2H), 1.58-1.44 (m, 2H), 1.06 (s, 9H), 0.26 (s, 6H)  ppm.  

13C NMR (100 MHz, CDCl3)  151.9, 142.1, 132.7, 129.5, 128.8, 125.1, 118.4, 49.7, 35.1, 

28.1, 25.9, 18.3, 17.2, -4.0 ppm. 
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4-(4-((tert-Butyldimethylsilyl)oxy)-3-methylphenyl)cycloheptan-1-ol (2.37).  The 

hydroboration-oxidation of cycloheptene 2.36 (0.334 g, 1.06 mmol) was carried out in a 

fashion similar to the preparation of 2.16.  Purification of the crude product by column 

chromatography (SiO2, hexanes-ethyl acetate = 80:20) gave 2.37 (0.116 g, 33%) as a 

colorless oil.  This was determined to be a mixture of diastereoisomers by 1H and 13C NMR 

spectroscopy.  1H NMR (400 MHz, CDCl3) δ 6.94 (d, J = 7.9 Hz, 1H), 6.84 (br t, J = 7.4 

Hz, 1H), 6.66 (d, J = 8.3 Hz, 1H), 4.06-3.99 and 3.98-3.89 (2× m, 1H total), 2.66-2.49 (m, 

1H), 2.18 (s, 3H), 2.13-2.05 (m, 1H), 2.02-1.48 (m, 10H), 1.00 (s, 9H), 0.20 (s, 6H) ppm.  

13C NMR (100 MHz, CDCl3) δ 151.9, 141.9, 141.8, 129.4, 128.7, 124.6, 118.3, 73.1, 71.9, 

46.4, 46.1, 38.3, 37.9, 37.3, 37.2, 37.0, 35.9, 31.9, 29.8, 26.0, 21.5, 18.4, 17.2, -4.0 ppm. 
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4-(4-Hydroxy-3-methylphenyl)cycloheptan-1-ol (2.38).  To a solution of 2.37 (0.100 g, 

0.299 mmol) in anhydrous THF (15 mL) was added a solution of tetrabutylammonium 

fluoride (1M in THF, 1.2 mL, 1.2 mmol).  The mixture was heated at 70 ˚C overnight and 

cooled to room temperature.  The solution was partitioned between ethyl acetate (2 x 15 

mL) and water (2 x 10 mL).  The organic layer was washed with brine, dried (Na2SO4) and 

concentrated.  Purification by column chromatography (SiO2, hexanes-ethyl acetate = 

50:50) gave 2.38 (0.035g, 53%) as a colorless solid.  1H NMR (400 MHz, CDCl3) δ 6.92 

(d, J = 8.2 Hz, 1H), 6.86 (br t, J = 7.3 Hz, 1H), 6.69 (d, J = 8.2 Hz, 1H), 5.84 (s, OH) 4.08-

4.01 and 4.00-3.90 (2 x m, 1H total), 2.66-2.44 (m, 1H), 2.22 (s, 3H), 2.16-1.48 (m, 11H) 

ppm.  13C NMR (100 MHz, CDCl3) δ 152.4, 141.4, 129.4, 124.9, 124.0, 114.9, 73.2, 72.1, 

46.4, 46.1, 38.4, 37.9, 37.1, 37.0, 36.9, 35.7, 31.9, 29.8, 23.5, 21.5, 16.2 ppm. 
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4-(6-Oxabicyclo[3.2.2]nonan-5-yl)phenol (2.42).  Cyclic ether formation of 4-(4-

(hydroxymethyl)cycloheptyl)phenol 2.10 (0.075 g, 0.34 mmol) was carried out  in a 

fashion similar to the preparation of 3.8.  Purification by column chromatography (SiO2, 

hexanes-ethyl acetate = 60: 40) gave 2.42 (0.049 g, 66%) as a light yellow viscous oil. 1H 

NMR (400 MHz, CDCl3) δ 7.15 and 6.58 (AA’BB’, JAB = 7.8 Hz, 4H), 6.30 (s, 1H), 4.07–

3.96 (m, 1H), 3.90–3.84 (m, 1H), 2.25–1.60 (m, 11H) ppm.  13C NMR (100 MHz, CDCl3) 

δ 154.3, 142.5, 125.6, 114.9, 76.5, 69.9, 42.9, 33.8, 32.5, 30.3, 22.6, 21.5 ppm.   

 

 

 

 

 

4-(4-methoxyphenyl) Cyclohexanone (2.40).  To a solution of 4-(4-

hydroxyphenyl)cyclohexanone (0.500 g, 2.63 mmol) in DMF (10 mL) was added K2CO3 

(0.545 g, 3.94 mmol) and iodomethane (0.21 mL, 0.485 g, 3.42 mmol).  The reaction was 

heated at reflux overnight.  The reaction was cooled, diluted with H2O and extracted with 

ethyl acetate.  The organic extracts were combined and washed with brine, dried (Na2SO4) 
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and concentrated.  The residue was purified by column chromatography (hexanes-ethyl 

acetate = 80:20) to give 2.40 (0.238 g, 44%) as a colorless solid.  mp 70-74 °C. [lit. mp 74 

°C].90  1H NMR (CDCl3) δ 7.17 and 6.87 (AA’BB’, JAB = 8.6 Hz, 4H), 3.79 (s, 3H), 2.98 

(tt, J = 11.9, 3.8 Hz, 1H), 2.56-2.44 (m, 4H), 2.24-2.15 (m, 2H) and 1.97-1.84 (m, 2H) ppm. 

The NMR data was consistent with the literature values.90 

 

 

 

 

3-(4-Methoxyphenyl)cyclopentane-1-carboxylic acid (2.41).  To a solution of 

cyclohexanone 2.40 (0.100 g, 0.490 mmol) in a heavy-walled reaction vessel was added 

diphenyldiselinide (0.002 g, 0.005 mmol), t-BuOH (4 mL) and 30% H2O2 (0.4 mL).  The 

reaction vessel was sealed and heated at 100 °C for 4 d.  After cooling the reaction vessel 

was opened and 10% Pd/C (20 mg) was added and solvent was distilled off.  The residue 

was treated with 10% aqueous Na2CO3 (40 mL) and extracted with CH2Cl2 (3 × 20 mL).  

The aqueous phase was adjusted to pH 1 with HCl and extracted with CH2Cl2 (3 × 25 mL).  

The combined extracts were dried (Na2SO4) and concentrated.  The residue was purified 

by column chromatography (SiO2, hexanes-ethyl acetate = 60:40) to give 2.41 (0.044 g, 

41%) as a colorless oil.  This product was determined to be a mixture of cis- and trans- 

stereoisomers on the basis of 1H and 13C NMR spectroscopy.  1H NMR (400 MHz, CDCl3) 

δ 7.18, 7.06 and 6.84 (AA’BB’, JAB = 8.7 Hz, 4H total), 3.79 (s, 3H), 3.24–3.16 (m, 0.4H), 

3.15–2.92 (m, 1.6H), 2.72–2.63 (m, 0.3H), 2.42–2.33 (m, 0.7H), 2.21–1.69 (m, 5H) ppm.  
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13C NMR (100 MHz, CDCl3) δ 182.7, 179.9, 158.2, 136.5, 135.9, 128.9, 128.2, 114.0, 

113.9, 59.5, 55.5, 45.7, 43.6, 38.5, 37.6, 34.2, 29.3, 27.7 ppm. The 1H NMR data for this 

compound were consistent with the literature values.92 

 

 

 

 

(3-(4-Methoxyphenyl)cyclopentyl)methanol (2.42).  To a solution of 2.41 (0.083 g, 0.377 

mmol) in anhydrous THF (5 mL) at 0 °C under N2 was slowly added LiAlH4 (0.043 g, 1.13 

mmol).  After addition was completed the reaction was gradually warmed to room 

temperature and continued to stir for 3 h.  The mixture was cautiously quenched with water 

and extracted with ethyl acetate (3× 15 mL).  The combined extracts were dried (Na2SO4) 

and concentrated.  The residue was  purified by column chromatography (SiO2, hexanes-

ethyl acetate = 80:20) to give 2.42 (0.042 g, 54%) as a colorless oil.  This product was 

determined to be a mixture of cis- and trans- stereoisomers on the basis of 1H and 13C NMR 

spectroscopy.  1H NMR (400 MHz, CDCl3) δ 7.17 and 6.84 (AA’BB’, JAB = 8.7 Hz, 4H), 

3.79 (s, 3H), 3.61 (d, J = 6.7 Hz, 1.7H), 3.57 (d, J = 7.1 Hz, 0.3H), 3.08–2.97 (m, 1H), 

2.40–2.15 (m, 2H), 2.13–1.98 (m, 1H), 1.94–1.81 (m, 1H), 1.68–1.52 (m, 2H), 1.34–1.23 

(m, 1H) ppm.  13C NMR (100 MHz, CDCl3) δ 157.9, 137.7, 128.0, 113.8, 67.7, 67.6, 55.4, 

45.3, 43.9, 42.0, 41.4, 38.5, 37.1, 35.1, 33.7, 29.4, 28.4 ppm. 
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4-(3-(Hydroxymethyl)cyclopentyl)phenol (2.43).  To a solution of 2.42 (0.030 g, 0.145 

mmol) in anhydrous CH2Cl2 (8 mL) at -78 ˚C, was added dropwise a solution of boron 

tribromide (1M in CH2Cl2, 0.44 mL, 0.44 mmol).  After complete addition, the reaction 

mixture was stirred for 30 min at -78˚C and gradually warmed to room temperature over a 

2 h period.  The mixture was quenched with water (10 mL) and the aqueous layer was 

extracted with CH2Cl2 (3 × 15 mL).  The combined organic extracts were washed with 

brine, dried (MgSO4) and concentrated.  The residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 50:50) to give 2.43 (0.010 g, 36%) as a 

colorless solid.  This product was determined to be a mixture of cis- and trans- 

stereoisomers on the basis of 1H and 13C NMR spectroscopy.  1H NMR (400 MHz, CDCl3) 

δ 7.10 and 6.76 (AA’BB’, JAB = 8.2 Hz, 4H), 3.62 (d, J = 6.7 Hz, 1.6H), 3.58 (d, J = 7.2 

Hz, 0.4H), 3.06–2.93 (m, 1H), 2.40–2.14 (m, 2H), 2.11–1.94 (m, 1H), 1.93–1.71 (m, 1H), 

1.67–1.49 (m, 2H), 1.33–1.20 (m, 1H) ppm.  13C NMR (100 MHz, CDCl3) δ 153.9, 137.7, 

128.2, 115.3, 67.8, 67.7, 45.3, 44.0, 42.0, 41.4, 38.5, 37.2, 35.0, 33.7, 29.4, 28.4 ppm. 
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4-(4-((tert-Butyldiphenylsilyl)oxy)phenyl)cyclohexan-1-one (3.2).  To a solution of 4-

(4-hydroxyphenyl)cyclohexanone (0.815 g, 4.28 mmol) in dry CH2Cl2 (30 ml ) at 0 °C, 

was added imidazole (0.583 g 8.57 mmol).  After stirring for 30 min, a solution of t-

butyldiphenylsilyl chloride (1.60 mL, 5.57 mmol) in CH2Cl2 (9 mL) was added dropwise 

while maintaining the temperature at 0 °C.  The reaction mixture was slowly warmed to 

room temperature and stirred for 12 h.  The mixture was diluted with water (20 mL) and 

partitioned with CH2Cl2 (40 mL).  The organic portion was separated, washed with brine, 

dried (Na2SO4), and concentrated.  The residue was purified by column chromatography 

(SiO2, hexanes-ethyl acetate = 80: 20) to give 3.2 (1.70 g, 93%) as a colorless solid.  mp 

83-84 °C.  1H NMR (400 MHz, CDCl3) δ 7.74-7.70 (m, 4H), 7.45-7.34 (m, 6H), 6.96 and 

6.71 (AA’BB’, JAB = 8.6 Hz, 4H), 2.90 (tt, J = 12.1, 3.3 Hz, 1H), 2.49–2.42 (m, 4H), 2.19–

2.10 (m, 2H), 1.91–1.77 (m, 2H), 1.09 (s, 9H) ppm.  13C NMR (100 MHz, CDCl3) δ 211.6, 

154.3, 137.3, 135.7, 133.2, 130.1, 127.9, 127.5, 119.8, 42.1, 41.6, 34.3, 26.7, 19.7. 
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tert-Butyl(4-(4-methylenecyclohexyl)phenoxy)diphenylsilane (3.3).  A solution of 

nbutyllithium in hexane (1.6 M, 1.5 mL, 2.4 mmol) was added to a stirring solution of 

methyltriphenylphosphonium bromide (0.836 g, 2.34 mmol) in dry THF (20 mL) at -10 

°C.  After 30 min, a solution of 4-(4-butyldiphenylsilyloxyphenyl)cyclohexanone 3.2 

(0.502 g, 1.17 mmol) in dry THF (8 mL) was added dropwise.  The reaction mixture was 

slowly warmed to room temperature and stirred overnight.  After this time, the mixture was 

diluted with water (20 mL), extracted with ethyl acetate (2 ×25 mL), dried (Na2SO4) and 

concentrated.  The residue was purified by column chromatography (SiO2, hexanes-ethyl 

acetate = 80:20) to give 3.3 (0.423 g, 85%) as a colorless oil.  1H NMR (400 MHz, CDCl3) 

δ 7.75-7.71 (m, 4H), 7.46-7.34 (m, 6H), 6.93 and 6.69 (AA’BB’, JAB = 8.6 Hz, 4H), 4.65 

(t, J = 1.7 Hz, 2H), 2.55 (tt, J = 12.0, 3.3 Hz, 1H), 2.42–2.34 (m, 2H), 2.20–2.09 (m, 2H), 

1.95–1.87 (m, 2H), 1.50–1.38 (m, 2H), 1.10 (s, 9H) ppm.  13C NMR (100 MHz, CDCl3) δ 

153.8, 149.2, 139.5, 135.7, 133.3, 130.0, 127.9, 127.6, 119.5, 107.4, 43.4, 35.9, 35.4, 26.7, 

19.7 ppm. 
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4-(4-(Hydroxymethyl)cyclohexyl)phenol (3.4a).  A solution of borane-THF complex in 

THF (1 M, 1.22 mL, 1.22 mmol) was added to a solution of 3.3 (0.261 g, 0.611 mmol) in 

THF (6 mL) at 0 °C.  The reaction mixture was slowly warmed to room temperature and 

stirred for 20 h.  The mixture was then cooled to 0 °C, followed by sequential addition of 

ethanol (50 mL), hydrogen peroxide solution (30% in water, 1.00 mL) and 3N NaOH 

solution (5.0 mL).  The mixture was warmed to room temperature and stirred for 30 min.  

The reaction mixture was extracted with ethyl acetate (2 ×20 mL).  The organic portion 

was washed with brine, dried (Na2SO4), and concentrated.  The residue was recrystallized 

from chloroform to give 3.4a (0.035 g, 28%) as a colorless solid.  mp 118-122 °C.  1H 

NMR (400 MHz, CD3OD) δ 7.04-6.98 (m, 2H), 6.70-6.65 (m, 2H), 3.60 (d, J = 7.6 Hz, 

1.5H), 3.39 (d, J = 6.6 Hz, 0.5H), 2.54–2.44 (m, 0.7H) and 2.37 (tt, J = 12.1, 3.4 Hz, 0.3H), 

1.93–1.70 (m, 3H), 1.61 (d, J = 6.3 Hz, 4H), 1.46–1.37 (m, 1H), 1.14–1.02 (m, 1H) ppm.  

13C NMR (100 MHz, CD3OD) δ 156.2, 139.6, 128.7, 116.0, 68.0, 64.4, 45.2, 44.0, 41.4, 

37.0, 35.4, 31.2, 30.5, 28.0 ppm. 
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tert-Butyldimethyl(4-(4-methylenecyclohexyl)phenoxy)silane (3.6).  Wittig 

methenylation of compound 3.5 (2.00 g, 6.57 mmol) was carried out in a fashion similar to 

the preparation of 3.3.  Purification of the crude residue by column chromatography (SiO2, 

hexanes-ethyl acetate = 90: 10) gave 3.6 (1.678 g, 84%) as a colorless oil.  1H NMR (400 

MHz, CDCl3) δ 7.06 and 6.77 (AA’BB’, JAB = 8.3 Hz, 4H), 4.68 (s, 2H), 2.62 (tt, J = 12.1, 

3.4 Hz, 1H), 2.42 (br d, J = 13.5 Hz, 2H), 2.18 (br t, J = 13.2 Hz, 2H), 2.00-1.93 (m, 2H), 

1.57-1.45 (m, 2H), 0.99 (s, 9H), 0.20 (s, 6H) ppm.  13C NMR (100 MHz, CDCl3) δ 153.9, 

149.2, 139.8, 127.8, 119.9, 107.4, 43.5, 36.0, 35.4, 25.9, 18.4, -4.2 ppm.  Anal. calcd. for 

C19H30OSi: C, 75.43; H, 9.99.  Found: C, 75.71; H, 10.02. 

 

 

 

 

 

 

4-(4-(Hydroxymethyl)cyclohexyl)phenol (3.4a).  Hydroboration-oxidation of 3.6 (0.350 

g, 1.16 mmol) was carried out in a fashion similar to the hydroboration-oxidation of 3.3.  

Purification of the residue by column chromatography (SiO2, hexanes-ethyl acetate = 
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65:35) gave 3.4a (0.095 g, 40%) as a colorless solid.  The 1H NMR spectral data were 

consistent with previously obtained values. 

 

 

 

 

(4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)cyclohexyl)methanol (3.7).  The 

hydroboration of 3.6 (0.821 g, 2.71 mmol) was carried out in a fashion similar to the 

hydroboration of 3.3.  After stirring for 18 h, the reaction mixture was cooled to 0 °C, 

followed by sequential addition of 1 N sodium hydroxide solution (3.2 mL) and hydrogen 

peroxide solution (30% in water, 1.50 mL).  The mixture was warmed to room temperature 

and stirred for 1.5 h.  The reaction mixture was quenched with saturated sodium 

bicarbonate solution (10 mL), diluted with water (20 mL) and extracted with ethyl acetate 

(2 ×20 mL).  The combined organic extracts were washed with brine, dried (Na2SO4,) and 

concentrated.  The residue was purified by column chromatography (SiO2, hexanes-ethyl 

acetate = 70:30) to give 3.7 (0.572 g, 66%) as a colorless oil.  1H NMR (400 MHz, CDCl3) 

δ 7.06 and 6.76 (AA’BB’, JAB = 8.5 Hz, 4H), 3.69 (d, J = 7.4 Hz, 1.3H), 3.50 (d, J = 6.5 

Hz, 0.7H), 2.59-2.51 (m, 0.5H), 2.42 (tt, J = 12.1, 3.8 Hz, 0.5H), 1.96-1.84 (m, 2H), 1.80-

1.37 (m, 7H), 0.98 (s, 9H), 0.19 (s, 6H) ppm.   13C NMR (100 MHz, CDCl3) δ 153.7, 140.4, 

140.0, 127.8, 119.9, 68.9, 64.6, 43.8, 42.6, 40.3, 36.2, 34.1, 30.0, 29.4, 27.0, 25.9, 18.4, -

4.2 ppm. 
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4-(4-(Hydroxymethyl)cyclohexyl)phenol (3.4a).  To a solution of 3.7 (0.594 g, 1.85 

mmol) in anhydrous THF (10 mL) was added a solution of TBAF (1M in THF, 7.5 mL, 

7.5 mmol) while stirring.  The mixture was heated to reflux at 70 ˚C overnight and cooled 

to room temperature.  The solution was partitioned between ethyl acetate and water.  The 

organic layer was washed with brine, dried (Na2SO4) and concentrated.  Purification by 

column chromatography (SiO2, hexanes-ethyl acetate = 60:40) gave 3.4a (0.280 g, 73%) 

as a colorless solid.  mp 118-122 °C.  The 1H NMR spectral data is consistent with that 

previously obtained.  

 

 

 

 

 

 

 

 

4-(2-Oxabicyclo[2.2.2]octan-1-yl)phenol (3.8) and trans-4-(4-

(Hydroxymethyl)cyclohexyl)phenol (3.4b).  To a solution of a mixture of cis- and trans-

4-(4-(hydroxymethyl) cyclohexyl)phenol 3.4a (0.050 g, 0.242 mmol) in anhydrous CH2Cl2 

(15 mL) at -10 °C, was slowly added a suspension of 2,3-dichloro-5,6-dicyano-1,4-
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benzoquinone (0.059 g, 0.262 mmol ) in CH2Cl2 ( 5 mL) over a period of 30 min.  The 

green solution continued to stir at 0 °C for 2 h and gradually warmed to room temperature 

and stirred for another 3 h.  The mixture was quenched by slow addition of saturated 

sodium bicarbonate solution at 0 °C.  After a few minutes, the layers were separated and 

the aqueous layer was extracted with CH2Cl2 (2 × 20 mL).  The combined organic extracts 

were washed with brine, dried (Na2SO4), and concentrated.  The residue was purified by 

column chromatography (SiO2, hexanes-ethyl acetate = 60: 40) to give 3.8 (0.020 g, 40%) 

followed by 3.4b (0.010 g, 20%) both as colorless solids.  3.8: mp 120-124 °C.  1H NMR 

(400 MHz, CD3OD) δ 7.18 and 6.64 (AA’BB’, JAB = 7.9 Hz, 4H), 4.04 (s, 2H), 2.01 (t, J = 

7.8 Hz, 4H), 1.94–1.73 (m, 5H) ppm.  13C NMR (100 MHz, CD3OD) δ 157.2, 138.9, 127.1, 

115.6, 73.0, 71.3, 34.5, 27.3, 25.9 ppm.  Anal. calcd for C13H16O2: C, 76.44; H, 7.89.  

Found: C, 76.39; H, 7.97.  3.4b: mp 115-120 °C.  1H NMR (400 MHz, CD3OD) δ 7.00 and 

6.68 (AA’BB’, JAB = 8.7 Hz, 4H), 3.39 (d, J = 6.7 Hz, 2H), 2.36 (tt, J = 12.1, 3.0 Hz, 1H), 

1.87 (br t, J = 15.4, 4H), 1.55–1.36 (m, 3H), 1.14–1.02 (m, 2H) ppm.  13C NMR (100 MHz, 

CD3OD) δ 156.3, 139.8, 128.6, 116.0, 68.8, 45.1, 41.4, 35.3, 31.2 ppm.  Anal. calcd for 

C13H18O2: C, 75.69; H, 8.79.  Found: C, 75.66; H, 9.09. 
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4-(4-Hydroxycyclohexyl)phenol (3.9).  Cyclohexanone 3.1 (0.200 g, 1.05 mmol) was 

dissolved in anhydrous methanol (15 mL) and NaBH4 (0.400 g, 10.6 mmol) was added 

while stirring at room temperature.  Reaction was continued for 3 h and mixture was 

extracted with ethyl acetate (3× 20 mL).  The combined extracts were concentrated to give 

product 3.9 (0.181 g, 90%) as a colorless solid.  mp 196-208 °C.  1H NMR (400 MHz, 

CD3OD) δ 7.00 and 6.67 (AA’BB’, JAB = 8.7 Hz, 4H), 3.61–3.53 (m, 1H), 2.38 (tt, J = 

11.8, 3.4 Hz, 1H), 2.05–1.98 (m, 2H), 1.87–1.78 (m, 2H), 1.56–1.30 (m, 4H) ppm.  13C 

NMR (100 MHz, CD3OD) δ 156.5, 139.1, 128.7, 116.0, 71.3, 49.3, 44.2, 36.8, 34.1 ppm.  

HRMS m/z 191.1077 [calcd for C12H15O2
– (M–H+) 191.1078]. 

 

 

 

 

 

 

 

4-(4-Hydroxyphenyl)cyclohexanone oxime (3.10).  To a solution of cyclohexanone 3.1 

(0.050 g, 0.26 mmol) in ethanol (10 mL), were added Amberlyst (0.060 g) and 
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hydroxylamine hydrochloride (0.039 g, 0.560 mmol).  The mixture was stirred at room 

temperature for 2 h and then filtered.  The filtrate was concentrated and extracted with ethyl 

acetate (2 × 10 mL) and water (2 × 10 mL).  The combined organic extracts were 

concentrated and dried (MgSO4).  Evaporation of the solvent gave 3.10 as a colorless solid 

(0.037 g, 70%).  mp 171-174 °C.  1H NMR (400 MHz, CD3OD) δ 7.00 and 6.69 (AA’BB’, 

JAB = 8.2 Hz, 4H), 3.39 (br d, J = 13.5 Hz, 1H), 2.67 (t, J = 12.8 Hz, 1H), 2.41 (br d, J = 

14.0 Hz, 1H), 2.20 (td, J = 14.6, 5.4 Hz, 1H), 1.93 (br t, J = 15.8 Hz, 2H), 1.81 (td, J = 14.0, 

5.2 Hz, 1H), 1.61–1.42 (m, 2H) ppm.  13C NMR (100 MHz, CD3OD) δ 160.8, 156.7, 138.3, 

128.6, 116.2, 44.1, 35.8, 34.6, 32.8, 25.1 ppm. 

 

 

 

 

 

 

4-(4-Hydroxy-4-methylcyclohexyl)phenol (3.11).  To a solution of 3.1 (0.100 g, 0.526 

mmol) in dry Et2O (20 mL) at -78 °C under N2, was added slowly a solution of 

methyllithium-lithium bromide complex (1.5 M in ether, 0.78 mL, 1.2 mmol).  The mixture 

was stirred for another 30 min at -78 °C, warmed to room temperature and stirred for 

another 1 h.  The mixture was cooled to 0 °C and quenched with water.  The mixture was 

extracted with diethyl ether (2 × 30 mL), dried (Na2SO4) and concentrated.  The residue 

was purified from column chromatography (SiO2, hexanes-ethyl acetate = 80:20) to give 

3.11 (0.040 g, 37%) as a colorless solid.  mp 126-131 °C.  1H NMR (400 MHz, CD3OD) δ 
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7.03 and 6.67 (AA’BB’, JAB = 8.3 Hz, 4H), 2.35 (tt, J =12.4, 3.6 Hz, 1H), 1.87–1.69 (m, 

4H), 1.61–1.44 (m, 4H), 1.21 (s, 3H) ppm.  13C NMR (100 MHz, CD3OD) δ 156.3, 139.9, 

129.6, 116.0, 69.3, 44.3, 39.9, 31.8, 30.9 ppm.  HRMS m/z 205.1234 [calcd for 

C13H17O2
– (M–H+) 205.1234].  

 

 

 

 

 

4-(4-Methylenecyclohexyl)phenol (3.12).  To a solution of 3.6 (0.739 g, 2.44 mmol) in 

anhydrous THF (20 mL) was added a solution of TBAF (1M in THF, 9.8 mL, 9.8 mmol).  

The mixture was heated to reflux at 70 ˚C for 5 h and cooled to room temperature.  The 

solution was partitioned between ethyl acetate (2 × 30 mL) and water (20 mL).  The 

combined organic layers were washed with brine, dried (Na2SO4) and concentrated.  

Purification of the crude material by column chromatography (SiO2, hexanes-ethyl acetate 

= 80:20) gave 3.12 (0.379 g, 82%) as a colorless solid.  mp 82-84 °C.  1H NMR (400 MHz, 

CD3OD) δ 6.99 and 6.67 (AA’BB’, JAB = 8.5 Hz, 4H), 4.63 (t, J =1.7 Hz, 2H), 2.57 (tt, J 

=12.3, 4.3 Hz, 1H), 2.41–2.33 (m, 2H), 2.22–2.11 (m, 2H), 1.94–1.85 (m, 2H), 1.45 (qd, J 

=12.3, 4.3 Hz, 2H) ppm.  13C NMR (100 MHz, CD3OD) δ 156.5, 150.2, 139.1, 128.6, 

116.0, 107.7, 44.7, 37.1, 36.2 ppm.  HRMS m/z 187.1128 [calcd for C13H15O
– (M–H+) 

187.1128]. 
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4-(4-Methylcyclohexyl)phenol (3.13).  To a solution of 3.12 (0.150 g, 0.797 mmol) in 

methanol (10 mL) was added 10% Pd/C (0.085 g, 10 mol %) and the mixture was stirred 

under a balloon filled with H2 at room temperature for 12 h.  The reaction mixture was 

filtered through a pad of celite, dried (Na2SO4) and concentrated.  The residue was purified 

by column chromatography (SiO2, hexanes-ethyl acetate = 80:20) to give 3.13 (0.121 g, 

80%) as a colorless solid.  mp = 93-99 °C.  [lit. mp 108°C].119  1H NMR (400 MHz, 

CD3OD) δ 7.05–6.96 (m, 2H), 6.70–6.64 (m, 2H), 2.48–2.28 (m, 1H), 1.83–1.34 (m, 8H), 

1.13–1.04 (m, 1H), 1.03 (d, J = 7.2 Hz, 1H), 0.92 (d, J = 6.6 Hz, 2H) ppm.  13C NMR (100 

MHz, CD3OD) δ 156.3, 140.0, 128.6, 116.0, 44.7, 36.9, 35.9, 33.7, 33.1, 30.0, 23.1 ppm.  

The NMR spectral data for this compound were consistent with the literature values.120 
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4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)-1-(hydroxymethyl)cyclohexan-1-ol (3.14).  

To a solution of 3.6 (0.280 g, 0.926 mmol) and N-methylmorpholine-N-oxide (0.15 g, 1.3 

mmol) in acetone (6 mL) and distilled water (0.3 mL) was added a 2.5% solution of OsO4 

in tert-butanol (90 µL).  The mixture was stirred overnight and a saturated solution of 

NaHSO3 (10 mL) was added to quench the reaction.  The mixture was diluted with ether 

(20 mL) and extracted with water (2 × 10 mL).  The organic layer was dried (MgSO4) and 

concentrated.  Purification of the residue by column chromatography (SiO2, hexanes-ethyl 

acetate = 20:80) gave 3.14 (0.267 g, 86%) as a colorless solid.  mp 80-86 °C.  1H NMR 

(400 MHz, CDCl3) δ 7.04 and 6.76 (AA’BB’, JAB = 8.5 Hz, 4H), 3.69 (s, 1.7H), 3.47 (s, 

0.3H), 2.58-2.39 (m, 1H), 2.04–1.72 (m, 4H, solvent peak overlapped), 1.61–1.37 (m, 4H), 

0.97 (s, 9H), 0.18 (s, 6H) ppm.  13C NMR (100 MHz, CDCl3) δ 154.0, 138.9, 127.7, 120.0, 

72.4, 66.2, 42.8, 35.4, 31.3, 25.9, 18.4, -4.2 ppm. 
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4-(4-Hydroxy-4-(hydroxymethyl)cyclohexyl)phenol (3.15).  To a solution of 3.14 (0.230 

g, 0.683 mmol) in anhydrous THF (10 mL) was added a solution of TBAF (1M in THF, 

2.8 mL, 2.8 mmol).  The mixture was heated to reflux at 70 ˚C for 6 h and cooled to room 

temperature.  The solution was partitioned between ethyl acetate (2 × 20 mL) and water 

(20 mL).  The combined organic layers were washed with brine, dried (Na2SO4) and 

concentrated.  Purification of the crude material by column chromatography (SiO2, ethyl 

acetate-methanol = 90:10) gave 3.15 (0.118 g, 78%) as a colorless solid.  mp 182-188 °C.  

1H NMR (400 MHz, CD3OD) δ 7.02 and 6.68 (AA’BB’, JAB = 8.5 Hz, 4H), 3.62 (s, 2H), 

2.53–2.42 (m, 1H), 1.99–1.89 (m, 2H), 1.85–1.68 (m, 2H), 1.58–1.43 (m, 4H) ppm.  13C 

NMR (100 MHz, CD3OD) δ 156.5, 138.7, 128.6, 116.0, 73.0, 66.5, 44.2, 35.8, 32.5 ppm. 

Anal. calcd. for C13H18O3: C, 70.24; H, 8.16.  Found: C, 70.18; H, 7.78. 
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2-Hydroxy-5-(4-methylenecyclohexyl)benzaldehyde (3.16).  To a solution of 3.13 

(0.100 g, 0.532 mmol) in dry CH3CN (20 mL) was added magnesium chloride (0.076 g, 

0.797) and triethylamine (0.28 mL, 2.0 mmol), followed by paraformaldehyde (0.108 g, 

3.59 mmol).  The reaction mixture was heated at reflux for 6 h.  The mixture was cooled 

to room temperature and quenched with 10% HCl (10 mL) and extracted with ethyl acetate 

(2 × 25 mL). The combined extracts were washed with brine, dried (Na2SO4) and 

concentrated.  Purification of the residue by column chromatography (SiO2, hexanes-

diethyl ether = 80:20) gave 3.16 (0.046 g, 40%) as a colorless oil.  1H NMR (400 MHz, 

CD3OD) δ 9.96 (s, 1H), 7.50 (s, 1H), 7.39 (d, J = 8.5 Hz, 1H), 6.85 (d, J = 8.5 Hz, 1H), 

4.65 (t, J = 1.7 Hz, 2H), 2.68 (tt, J = 12.0, 3.4 Hz, 1H), 2.44–2.34 (m, 2H), 2.24–2.13 (m, 

2H), 1.97–1.89 (m, 2H), 1.49 (qd, J = 13.0, 4.0 Hz, 2H) ppm.  13C NMR (100 MHz, 

CD3OD) δ 197.3, 160.9, 149.6, 139.8, 136.9, 131.5, 122.3, 118.0, 108.1, 44.1, 36.7, 36.0 

ppm. 
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(E)-2-Hydroxy-5-(4-methylenecyclohexyl)benzaldehyde oxime (3.17).  To a solution of 

3.16 (0.050 g, 0.232 mmol) in pure ethanol (10 mL), were added sodium bicarbonate (0.024 

g, 0.278 mmol) and hydroxylamine hydrochloride (0.025 g, 0.348 mmol).  The reaction 

was heated at 80°C for 5 h, cooled and the mixture was extracted with ethyl acetate (2 × 

20 mL).  The combined organic extracts were dried (MgSO4) and concentrated.  

Purification of the residue by column chromatography (SiO2, hexanes-ethyl acetate = 

65:35) gave 3.17 (0.037 g, 69%) as a colorless solid.  This was determined to be a mixture 

of E- and Z-oxime stereoisomers by 1H NMR spectroscopy.  mp 120-125 °C.  1H NMR 

(400 MHz, CD3OD) δ 8.20 (s, 1H), 7.09–7.06 (m, 1H), 7.05 (d, J = 2.4 Hz, 1.8H), 6.99 (d, 

J = 7.9 Hz, 0.2H), 6.78 (d, J = 8.1 Hz, 0.8H), 6.68 (d, J = 8.6 Hz, 0.2H),  4.63 (t, J = 1.6 

Hz, 2H), 2.60 (tt, J = 12.2, 3.3 Hz, 1H), 2.42–2.33 (m, 2H), 2.22–2.10 (m, 2H), 1.94–1.85 

(m, 2H), 1.46 (qd, J =12.5, 4.0 Hz, 2H) ppm.  13C NMR (100 MHz, MeOD) δ 156.4, 152.2, 

150.0, 139.3, 130.1, 129.0, 128.6, 118.3, 117.0, 116.0, 107.8, 107.7, 44.6, 44.4, 37.1, 36.9, 

36.2, 36.1 ppm.  HRMS m/z 230.1187 [calcd for C14H16NO2
– (M–H+) 230.1186]. 
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5-(2-Oxabicyclo[2.2.2]octan-1-yl)-2-hydroxybenzaldehyde (3.18) and 4-Hydroxy-4'-

(hydroxymethyl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-3-carbaldehyde (3.19).  To a 

solution of 3.8 (0.050 g, 0.25 mmol) in dry CH3CN (15 mL) was added magnesium chloride 

(0.035 g, 0.367 mmol) and triethylamine (0.13 mL, 0.09 mmol) and the mixture was heated 

at reflux for 8 h.  The mixture was cooled to room temperature and quenched with 10% 

HCl (10 mL) and extracted with ethyl acetate (2 × 25 mL).  The combined organic extracts 

were washed with brine, dried (Na2SO4) and concentrated.  Purification of the crude 

material by column chromatography (SiO2, hexanes-ethyl acetate = 65:35) gave 3.18 

(0.010 g, 17%) followed by 3.19 (0.005 g, 8%) both as light-yellow oils.  3.18:   1H NMR 

(400 MHz, CD3OD) δ 9.99 (s, 1H), 7.69 (br s, 1H), 7.57 (br d, J = 8.7 Hz, 1H), 6.87 (d, J 

= 8.7 Hz, 1H), 4.06 (s, 2H), 2.12–1.75 (m, 9H) ppm.  13C NMR (100 MHz, CD3OD) δ 

197.3, 161.3, 140.0, 134.9, 130.1, 128.8, 117.7, 72.6, 71.3, 34.5, 27.3, 25.9 ppm.  3.19: 1H 

NMR (400 MHz, CD3OD) δ 10.01 (s, 1H), 7.69 (s, 1H), 7.62 (d, J = 8.5 Hz, 1H), 6.89 (d, 

J = 8.7 Hz, 1H), 6.10 (s, 1H), 3.49 (d, J = 6.1 Hz, 2H), 2.54–2.28 (m, 3H), 2.05–1.73 (m, 

3H), 1.47–1.35 (m, 1H) ppm.  13C NMR (100 MHz, CD3OD) δ 197.5, 161.4, 136.3, 135.6, 

134.6, 129.8, 123.9, 122.2, 118.0, 67.7, 37.2, 29.9, 27.9, 26.9 ppm.  HRMS m/z 231.1027 

[calcd for C14H15O3
– (M–H+) 231.1027]. 
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4'-(Hydroxymethyl)-2',3',4',5'-tetrahydro-[1,1'-biphenyl]-4-ol (3.20).  To a solution of 

3.8 (0.103 g, 0.505 mmol) was in dry CH3CN (25 mL) was added magnesium chloride 

(0.072g, 0.756 mmol) and triethylamine (0.26 mL, 1.89 mmol).  The mixture was heated 

at reflux for 8.  The mixture was cooled to room temperature and quenched with 10% HCl 

(15 mL) and extracted with ethyl acetate (2 × 25 mL).  The combined extracts were washed 

with brine, dried (Na2SO4) and concentrated.  Purification of the crude material by column 

chromatography (SiO2, hexanes- ethylacetate = 65:35) gave 3.20 (0.080 g, 78%) as a 

colorless solid.  mp 177-184°C. 1H NMR (400 MHz, CDCl3) δ 7.20 and 6.69 (AA’BB’, 

JAB = 8.6 Hz, 4H), 5.97–5.92 (m, 1H), 3.48 (dd, J = 6.4, 2.6 Hz, 2H), 2.49–2.23 (m, 3H), 

2.01–1.71 (m, 4H), 1.43–1.31 (m, 1H) ppm.  13C NMR (100 MHz, CDCl3) δ 157.4, 137.5, 

135.0, 127.1, 122.0, 115.8, 67.8, 37.3, 30.0, 28.1, 27.1 ppm.  HRMS m/z 203.1078 [calcd 

for C12H15O2
– (M–H+) 203.1077]. 
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4-(4-(Hydroxymethyl)cyclohexyl)phenol (3.4a).  Method A:  To a solution of 3.8 (0.020 

g, 0.098 mmol) dry CH2Cl2 (10 mL) was added triethylsilane (0.02 mL, 0.12 mmol) 

followed by trifluoroacetic acid (0.08 mL, 0.98 mmol).  The reddish mixture was stirred at 

room temperature overnight and the solution was extracted with ethyl acetate (2 × 10 mL).  

The combined organic extracts were washed with H2O (2 × 15 mL), dried (Na2SO4) and 

concentrated to give 3.4a (0.012 g, 59%) as a colorless solid.  The 1H NMR spectrum 

showed the formation of a 2:3(cis: trans) mixture of isomers.   

Method B: To a solution of 3.8 (0.050 g, 0.25 mmol) in dry THF (15 mL) cooled to -78 

°C was added NaCNBH3 (0.154 g, 2.48 mmol).  The mixture was stirred at this temperature 

for 1 h and BF3.Et2O (2.5 mL, 14 mmol) was added dropwise.  The mixture was warmed 

to room temperature overnight, quenched with water (10 mL) and extracted with ether (2 

× 20 mL). The combined organic extracts were washed with NaHCO3 solution, brine, dried 

(Na2SO4) and concentrated to give 3.4a (0.030, 60%) as a colorless solid.  The 1H NMR 

spectrum showed the formation of a 1:4 (cis: trans) mixture of isomers.   
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4-(4-(Hydroxymethyl)cyclohexyl)phenol (3.4a).  To a solution of compound 3.20 (0.046 

g, 0.23 mmol) in methanol (8 mL) was added 10% Pd/C (0.025 g, 10 mol %) and mixture 

was stirred under a balloon of H2 at room temperature for 12 h.  The reaction mixture was 

filtered through a pad of celite, and concentrated in vacuo to give 3.4a (0.031g, 65%) as a 

colorless solid.  The 1H NMR spectrum showed the formation of a 3:2 (cis: trans) mixture 

of isomers.   

 

 

 

 

 

 

 

Methyl 2-(4-(4-((tert-butyldiphenylsilyl)oxy)phenyl)cyclohexylidene)acetate (3.21).  

Sodium hydride (40 mg, 55% in mineral oil, 0.980 mmol) was added to a stirring solution 

of trimethyl phosphonoacetate (0.160 mL, 0.980 mmol) in dry THF (5 mL) at 0 °C.  After 

45 min, a solution of 4-(4’-t-butyldiphenylsilyloxyphenyl)cyclohexanone 3.2 (0.350 g, 
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0.818 mmol) in dry THF (5 mL) was added and the reaction mixture was stirred at room 

temperature for 8 h.  The mixture was diluted with water (25 mL) and the resulting mixture 

was extracted with ether (2 × 30 mL), dried (MgSO4) and concentrated.  The residue was 

purified by column chromatography (SiO2, hexanes–ethyl acetate = 90:10) to give 

compound 3.21 (0.376 g, 95%) as colorless gum.  1H NMR (400 MHz, CDCl3) δ 7.74- 7.68 

(m, 4H), 7.44-7.32 (m, 6H), 6.91 and 6.69 (AA’BB’, JAB = 8.6 Hz, 4H), 5.65 (s, 1H), 3.96-

3.88 (m, 1H), 3.69 (s, 3H), 2.66 (tt, J = 12.1, 3.4 Hz, 1H), 2.38-2.24 (m, 2H), 2.04-1.93 (m, 

3H), 1.59-1.46 (m, 2H), 1.08 (s, 9H) ppm.  13C NMR (100 MHz, CDCl3) δ 167.4, 162.7, 

154.0, 138.6, 135.7, 133.3, 130.0, 127.9, 127.5, 119.6, 113.3, 51.1, 43.3, 37.9, 35.9, 35.1, 

29.7, 26.7, 19.7 ppm.   

 

 

 

 

 

 

 

 

 

2-(4-(4-((tert-Butyldiphenylsilyl)oxy)phenyl)cyclohexylidene)ethan-1-ol (3.22).  To a 

solution of 3.21 (0.109 g, 0.225 mmol) in dry CH2Cl2 (2 mL) under nitrogen at –40 ˚C was 

added a solution of diisobutylaluminum hydride (0.50 mL, 1.2 M in CH2Cl2, 0.60 mmol).  

After 90 min, saturated aqueous potassium sodium tartrate was added and reaction mixture 

was warmed to room temperature.  After 4 h the mixture was filtered through a pad of celite 

and extracted several times with water (2 × 20 mL).  The combined organic layers were 
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dried (MgSO4), and concentrated to give 3.22 (0.059 g, 58%) as a colorless gum.  This was 

used without further purification in the next step.  1H NMR (400 MHz, CDCl3) δ 7.72 (d, 

J = 7.2 Hz, 4H), 7.45-7.33 (m, 6H), 6.91 and 6.68 (AA’BB’, JAB = 8.4 Hz, 4H), 5.42 (t, J 

= 7.2 Hz, 1H), 4.17 (d, J = 7.2 Hz, 2H), 2.72 (br d, J = 13.9 Hz, 1H), 2.58 (tt, J = 12.1, 3.2 

Hz, 1H), 2.37-2.26 (m, 1H), 2.23-2.13 (m, 1H), 1.97-1.85 (m, 3H), 1.51-1.34 (m, 2H), 1.08 

(s, 9H) ppm.  13C NMR (100 MHz, CDCl3) δ 153.8, 143.4, 139.2, 135.7, 133.3, 130.0, 

127.9, 127.5, 121.1, 119.6, 58.8, 43.8, 37.0, 35.9, 35.4, 28.7, 26.7, 19.6 ppm. 

 

 

 

 

 

 

 

 

2-(4-(4-((tert-Butyldiphenylsilyl)oxy)phenyl)cyclohexyl)ethan-1-ol (3.23).  To a 

solution of compound 45 (0.130 g, 0.285 mmol) in methanol (10 mL) was added, 10% 

Pd/C (0.012 g, 4 mol %). The reaction mixture was stirred under H2 (30 psi) for 12 h.  The 

reaction mixture was filtered through a pad of celite, and the solution was concentrated to 

give 3.23 (0.062 g, 48%) as a colorless oil.  The product was used in the next step without 

further purification.  1H NMR (400 MHz, CDCl3) δ 7.79-7.72 (m, 4H), 7.47-7.35 (m, 6H), 

6.99-6.92 (m, 2H), 6.76- 6.69 (m, 2H), 3.76-3.66 (m, 2H), 2.37 (t, J = 12.5 Hz,1H), 2.27 

(t, J = 6.4 Hz, 1H), 1.86 (d, J = 11.2 Hz, 3H), 1.73-1.56 (m, 3H), 1.56-1.49 (m, 1H), 1.48-

1.27 (m, 3H), 1.13 (s, 9H) ppm.  13C NMR (100 MHz, CDCl3) δ 153.7, 140.2, 135.7, 133.3, 

130.0, 127.9, 127.5, 119.4, 61.0, 43.7, 40.4, 34.5, 33.7, 30.3, 29.1, 26.7, 19.6 ppm. 
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4-(4-(2-Hydroxyethyl)cyclohexyl)phenol (3.24).  To a solution of 3.2 (0.063 g, 0.138 

mmol) in anhydrous THF (8 mL) was added a solution of TBAF (1M in THF, 1.2 mL, 1.2 

mmol) while stirring.  The mixture was heated to reflux at 70 ˚C overnight and cooled to 

room temperature.  The solution was partitioned between ethyl acetate and water.  The 

organic layer was washed with brine, dried (Na2SO4) and concentrated.  Purification by 

column chromatography (SiO2, hexanes-ethyl acetate = 60:40) gave 3.24 (6 mg, 20%) as a 

colorless solid.  mp 120-125 °C.  1H NMR (300 MHz, (CD3)2CO) δ 8.02 (s, 1H), 7.08-7.01 

(m, 2H), 6.77-6.71 (m, 2H), 3.65- 3.56 and 3.43-3.37 (m, 3H total), 2.52-2.33 (m, 1H), 

1.91-1.00 (m, 11H) ppm. 
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1',2',3',6'-tetrahydro-[1,1'-biphenyl]-4-ol (3.25b).  Method A.   To a solution of 3.9 

(0.040 g, 0.21 mmol) in CH2Cl2 (10 mL) at room temperature under N2 was added 

Deoxofluor (0.08 mL, 0.43 mmol) in CH2Cl2 (5 mL).  The mixture was stirred for 20 h, 

after which saturated NaHCO3 (10 mL) was poured into the mixture.  After CO2 evolution 

ceased the mixture was extracted into CH2Cl2 (2 × 20 mL).  The combined extracts were 

dried (MgSO4) and concentrated.  The residue was purified by column chromatography 

(SiO2, hexanes-ethyl acetate = 70:30) to give 3.25b (0.023 g, 63%) as a colorless solid.  mp 

79-84 °C.  1H NMR (400 MHz, CDCl3) δ 7.12 and 6.80 (AA’BB’, JAB = 8.6 Hz, 4H), 5.79–

5.76 (m, 2H), 4.92 (s, 1H), 2.81–2.71 (m, 1H), 2.32–2.07 (m, 4H), 1.95–1.88 (m, 1H), 

1.78–1.66 (m, 1H) ppm.  13C NMR (100 MHz, CDCl3) δ 153.8, 139.9, 128.1, 127.2, 127.0, 

115.3, 39.4, 33.8, 30.2, 26.1 ppm. 

Method B.  To a solution of 3.9 (0.054 g, 0.28 mmol) in THF (20 mL) at room temperature 

under N2 was added DAST (0.08 mL, 0.61 mmol) in THF (3 mL).  The mixture was stirred 

for 20 h, then saturated NaHCO3 (15 mL) was poured into the mixture.  After CO2 evolution 

ceased the mixture was extracted into ethyl acetate (2 × 10 mL).  The combined extracts 

were dried (Na2SO4) and concentrated.  The residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 70:30) to give 3.25b (0.025 g, 51%) as a 
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colorless solid.  The NMR spectral data were consistent with the previously obtained 

values. 

 

 

 

 

 

 

4-(-4-(Fluoromethyl)cyclohexyl)phenol (3.26b).  To a solution of 3.4b (0.065 g, 0.315 

mmol) in CH2Cl2 (12 mL) at -78 ˚C under N2 was added a solution of Deoxofluor (0.09 

mL, 0.473 mmol) in CH2Cl2 (3 mL).  The mixture was gradually warmed to room 

temperature.  On completion, saturated aqueous NaHCO3 (10 mL) was poured in to the 

mixture and after CO2 evolution ceased the mixture was extracted into CH2Cl2 (2 × 20 mL).  

The combined extracts were dried (Na2SO4) and concentrated.  The residue was purified 

by column chromatography (SiO2, hexanes-ethyl acetate = 80:20) to give 3.26b (0.037 g, 

56%) as a colorless solid.  mp 103-109 °C.  1H NMR (400 MHz, CD3OD) δ 7.00 and 6.68 

(AA’BB’, JAB = 8.5 Hz, 4H), 4.23 (d, J = 48.1 Hz, 2H), 2.37 (tt, J = 12.3, 2.8 Hz, 1H), 

1.90–1.80 (m, 4H), 1.78–1.59 (m, 2H), 1.52–1.37 (m, 2H), 1.24–1.09 (m, 2H) ppm.  13C 

NMR (100 MHz, CD3OD) δ 156.5, 139.7, 128.6, 116.0, 89.4 (d, J = 166 Hz), 44.9, 39.6 

(d, J = 17 Hz), 35.0, 30.0, 29.9 ppm. 
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1-(benzyloxy)-4-bromo-2-fluorobenzene (3.3.).  To a solution of 4-bromo-2-

fluorophenol 3.29 (1.00 g, 5.24 mmol) in DMF (8 mL), benzyl bromide (1.16 g, 0.81 mL, 

6.81 mmol) and potassium carbonate (0.941 g, 6.81 mmol) were added and the mixture 

was heated at reflux for 6 h.  After cooling to room temperature the mixture was poured 

into ice-cold water.  The resulting mixture was partitioned with ethyl acetate (2 x 20 mL) 

and washed with brine (2 x 20 mL).  The combined organic extracts were dried (Na2SO4), 

concentrated and purified by column chromatography (SiO2, hexanes -ethyl acetate = 

90:10) to give 3.30 (1.397 g, 95%) as a colorless solid.  mp 55-60 ˚C.  1H NMR (400 MHz, 

CDCl3) δ 7.47-7.32 (m, 5H), 7.26 (dd, J = 10.6, 2.3 Hz, 1H), 7.19-7.13 (m, 1H), 6.88 (t, J 

= 8.7 Hz, 1H), 5.13 (s, 2H) ppm.  13C NMR (100 MHz, CDCl3) δ 152.9 (d, JC-F = 250 Hz), 

146.3 (d, JC-F = 10 Hz), 136.2, 128.9, 128.4, 127.6, 127.3, 120.0 (d, JC-F = 20 Hz), 117.1, 

(d, JC-F = 10 Hz), 112.8 (d, JC-F = 10 Hz), 71.7 ppm. The NMR spectral data for this 

compound are consistent with the literature values.121 
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8-(4-(Benzyloxy)-3-fluorophenyl)-8-hydroxy-1,4-dioxaspiro[4.5]decane (3.31).  Dry 

magnesium turnings (0.384 g, 0.016 mol) were placed in a flame dried three-necked flask 

followed by THF (10 mL).  The system was flushed with N2 and fitted with a REFLUX 

condenser and an addition funnel.  The addition funnel was filled with a solution of 3.30 

(0.900 g, 3.20 mmol) in THF (10 mL).  A little amount of the bromobenzene solution (3 

mL) was added slowly to the magnesium turnings, and the contents were heated at reflux.  

Once the Grignard formation had started, the remaining bromide solution was added 

dropwise and the mixture was stirred until most of the magnesium had reacted.  A solution 

of 1,4-cyclohexanedione monoethylene acetal (0.250 g, 1.60 mmol) in THF (10 mL) was 

added dropwise over 20 min.  After stirring overnight at room temperature, a saturated 

solution of NH4Cl (15 mL) was slowly added to quench the reaction.  The resultant 

emulsion was stirred for 15 min and the solution was extracted with ether (3 x 20 mL).  

The combined organic layers were washed with brine (20 mL), dried (MgSO4) and 

concentrated.  The residue was purified by column chromatography (SiO2, hexanes-ethyl 

acetate = 70:30) to give 3.31 (0.470 g, 82%) as a colorless solid.  mp 137-143 ˚C.  1H NMR 

(400 MHz, CDCl3) δ 7.46-7.28 (m, 5H), 7.26 (s, 1H), 7.18-7.12 (m, 1H), 6.95 (t, J = 8.4 

Hz, 1H), 5.13 (s, 2H), 4.03-3.93 (m, 4H), 2.16-2.01 (m, 4H), 1.83-1.75 (m, 2H), 1.71-1.63 
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(m, 2H), ppm.  13C NMR (100 MHz, CDCl3) δ 152.7 (d, JC-F = 245 Hz), 145.5 (d, JC-F = 13 

Hz), 142.6 (d, JC-F = 5 Hz), 136.8, 128.8, 128.3, 127.6, 120.3 (d, JC-F = 4 Hz), 115.4 (d, JC-

F = 2 Hz), 113.3 (d, JC-F = 20 Hz), 108.5, 72.1, 71.5, 64.5, 64.4, 36.7, 30.9 ppm. 

 

 

 

 

 

 

 

4-(4-Benzyloxy-3-fluorophenyl)-3-cyclohexanone (3.32).  Method A: Compound 3.31 

(0.100 g, 0.279 mmol) was dissolved in THF: Water-4:1 mixture (10 mL) to give a 

colorless solution.  Then 2-3 drops of Conc sulfuric acid was slowly added and the mixture 

was heated at reflux for 5 h.  After completion, the solution was diluted with brine and 

extracted with ethyl acetate (2 x 10 mL).  The combined organic layers were washed with 

brine (20 mL), dried (Na2SO4) and concentrated.  The residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 80:20) to give 3.32 (0.043 g, 52%) as a 

light yellow solid.  mp 74-82 ˚C. 1H NMR (400 MHz, CDCl3) δ 7.50-7.30 (m, 5H), 7.16 

(dd, J = 12.6, 2.1 Hz, 1H), 7.10-7.03 (m, 1H), 6.96 (t, J = 8.6 Hz, 1H), 6.02 (nr t, J = 3.9 

Hz, 1H), 5.15 (s, 2H), 3.05 (br s, 2H), 2.82 (t, J = 6.4 Hz, 2H), 2.67-2.59 (m, 2H) ppm.  13C 

NMR (100 MHz, CDCl3) δ 210.0, 152.8 (d, JC-F = 245 Hz), 146.1 (d, JC-F = 11 Hz), 136.6, 

136.3 (d, JC-F = 2 Hz), 134.6 (d, JC-F = 6 Hz), 128.8, 128.4, 127.6, 121.0 (d, JC-F = 3 Hz), 

120.7, 115.6 (d, JC-F = 2 Hz), 113.4 (d, JC-F = 19 Hz), 71.6, 40.0, 38.8, 27.9 ppm. 
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Method B:  To a solution of 3.31(1.189 g, 3.317 mmol) was dissolved in dry CH2Cl2 (20 

mL) was added TFA (3.5 mL, 0.046 mol) and the mixture was stirred at room temperature 

for 4h while monitoring the reaction by TLC.  Once completed, saturated aqueous NaHCO3 

(10 mL) was added and stirred for another 10 minutes.  The resulting solution was extracted 

with CH2Cl2, washed with brine (10 mL), dried (Na2SO4) and concentrated.  Purification 

of the crude material by column chromatography (SiO2, hexanes-ethyl acetate = 80:20) 

gave 3.32 (0.883 g, 90%) as a light yellow solid.   

 

 

 

 

 

 

 

4-(3-Fluoro-4-hydroxyphenyl)cyclohexanone (3.33).  To a solution of 3.32 (1.000 g, 

3.374 mmol) in ethyl acetate (15 mL), was added 10% Pd/C (0.360 g, 10 mol %) and the 

mixture was stirred under a balloon of H2 at room temperature for 12 h.  The reaction 

mixture was filtered through a pad of celite, concentrated, and the residue was purified by 

column chromatography (SiO2, hexanes-ethyl acetate = 60:40) to give 3.33 (0.315 g, 45%) 

as a colorless solid.  mp 137-145 °C.  1H NMR (400 MHz, CD3OD) δ 6.97 (dd, J = 12.4, 

2.1 Hz, 1H), 6.91-6.87 (m, 1H), 6.86-6.79 (m, 1H), 3.00 (tt, J = 12.1, 3.5 Hz, 1H), 2.58 (td, 

J = 14.0, 6.1 Hz, 2H), 2.41-2.33 (m, 2H), 2.19-2.10 (m, 2H), 1.86 (qd, J = 12.8, 4.2 Hz, 

2H) ppm.  13C NMR (100 MHz, CD3OD) δ 214.1, 152.8 (d, JC-F = 240 Hz), 144.5 (d, JC-F 
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= 20 Hz), 138.6 (d, JC-F = 10 Hz), 123.7 (d, JC-F = 10 Hz), 118.7 (d, JC-F = 10 Hz), 115.2 (d, 

JC-F = 20 Hz), 42.8, 42.1, 35.3 ppm. 

 

 

 

 

 

 

4-(4-(Benzyloxy)-3-fluorophenyl)cyclohexan-1-one (3.34).  To a solution of 3.33 (0.205 

g, 0.984 mmol) in DMF (10 mL), was added benzyl bromide (0.219 g, 0.15 mL, 1.28 mmol) 

and potassium carbonate (0.177 g, 1.28 mmol) and the mixture was heated at reflux for 6 

h.  After cooling to room temperature, the mixture was poured into ice-cold water.  The 

mixture was extracted with ethyl acetate (2 x 15 mL) and the combined extracts were 

washed with brine (15 mL), dried (Na2SO4), and concentrated.  Purification of the residue 

by column chromatography (SiO2, hexanes-ethyl acetate = 90:10) gave 3.34 (0.232 g, 79 

%) as a colorless solid.  mp 81-87 °C.  1H NMR (400 MHz, CDCl3) 7.49-7.29 (m, 5H), 

7.02-6.88 (m, 3H), 5.11(s, 2H), 2.95 (tt, J = 12.2, 6.9 Hz, 1H), 2.51-2.43 (m, 3H), 2.22-

2.13 (m, 2H), 1.92-1.79 (m, 2H) ppm.  13C NMR (100 MHz, CDCl3) δ 211.0, 152.9 (d, JC-

F = 240 Hz), 145.3 (d, JC-F = 10 Hz), 138.7 (d, JC-F = 10 Hz), 136.7, 128.7, 128.2, 127.5, 

122.3 (d, JC-F = 10 Hz), 115.9, 114.7 (d, JC-F = 20 Hz), 71.6, 41.8, 41.3, 34.0 ppm 
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1-(Benzyloxy)-2-fluoro-4-(4-methylenecyclohexyl)benzene (3.35).  A solution of 

nbutyllithium in hexane (2.5 M, 0.47 mL, 1.17 mmol) was slowly added to a solution of 

methyltriphenylphosphonium bromide (0.556 g, 1.56 mmol) in dry THF (20 mL) at -10 

°C.  After 20 min, a solution of 3.34 (0.232 g, 0.778 mmol) in dry THF (10 mL) was added 

dropwise.  The reaction mixture was slowly warmed to room temperature and stirred 

overnight.  The mixture was diluted with water (10 mL), extracted with ethyl acetate (2 

×25 mL), dried (Na2SO4) and concentrated.  The crude residue was purified by column 

chromatography (SiO2, hexanes-ethyl acetate = 90:10) to give 3.35 (0.165 g, 72 %) as a 

colorless solid.  1H NMR (400 MHz, CDCl3) 7.56-7.29 (m, 5H), 7.02-6.83 (m, 3H), 5.13 

(s, 2H), 4.71 (s, 2H), 2.63 (tt, J = 12.2, 3.3 Hz, 1H), 2.49-2.37 (m, 2H), 2.27-2.12 (m, 2H), 

2.04-1.92 (m, 2H), 1.57-1.43 (m, 2H) ppm.  13C NMR (100 MHz, CDCl3) δ 153.0 (d, JC-F 

= 250 Hz), 148.6, 144.9, 141.0, 137.0, 133.9 (d, JC-F = 20 Hz), 128.7, 128.2, 127.6, 122.3, 

115.8, 114.9 (d, JC-F = 20 Hz), 107.8, 71.7, 43.3, 35.7, 35.2 ppm. 
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(4-(4-(Benzyloxy)-3-fluorophenyl)cyclohexyl)methanol (3.36).  A solution of 9-BBN in 

THF (0.5 M, 1.46 mL, 0.729 mmol) was added to a solution of 3.35 (0.108 g, 0.364 mmol) 

in THF (15 mL) at 0 °C.  The reaction mixture was slowly warmed to room temperature 

and stirred for 20 h.  The mixture was cooled to 0 °C hydrogen peroxide solution (30% in 

water, 0.20 mL) and 1N NaOH solution (0.50 mL) was sequentially added.  The resulting 

mixture was warmed to room temperature, stirred for 15 min and extracted with ethyl 

acetate (2 ×20 mL). The combined organic extracts were dried (Na2SO4), and concentrated.  

The residue was purified by column chromatography (SiO2, hexanes-ethyl acetate = 60:40) 

to give 3.36 (0.025 g, 22%) as a colorless solid.  This was determined to be a 1:2 mixture 

of cis- and trans-stereoisomers by 1H NMR integration.  1H NMR (400 MHz, CDCl3) 7.50-

7.28 (m, 5H), 7.01-6.80 (m, 3H), 5.11 (s, 2H), 3.67 (d, J = 7.9 Hz, 0.7H), 3.50 (d, J = 6.2 

Hz, 1.3H), 2.60-2.50 (m, 0.3H), 2.47-2.36 (m, 0.7H), 1.98-1.33 (m, 8H), 1.17-1.03 (m, 1H) 

ppm.  13C NMR (100 MHz, CDCl3) δ 154.2, 151.8, 144.8, 141.6, 137.0, 128.8, 128.2, 

127.6, 122.4, 122.3, 115.9, 115.1, 114.9, 114.7, 71.8, 68.7, 64.6, 43.7, 42.2, 40.2, 36.2, 

33.9, 29.8, 29.3, 26.8 ppm. 
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2-Fluoro-4-(4-(hydroxymethyl)cyclohexyl)phenol (3.37).  To a solution of 3.36 (0.050 

g, 0.159 mmol) in ethyl acetate (10 mL) was added 10% Pd/C (0.017 g, 10 mol %) and 

mixture was stirred under a balloon of H2 at room temperature for 12 h.  The reaction 

mixture was filtered through a pad of celite, concentrated, and the residue was purified by 

column chromatography (SiO2, hexanes-ethyl acetate = 60:40) to give 3.37 (0.018 g, 51%) 

as a colorless solid.  This was determined to be a 1:2 mixture of cis- and trans-stereoisomers 

by 1H NMR integration.  1H NMR (400 MHz, CD3OD) 6.92-6.85 (m, 1H), 6.84-6.76 (m, 

2H), 3.60 (d, J = 7.4 Hz, 0.7H), 3.39 (d, J = 6.5 Hz, 1.3H), 2.55-2.33 (m, 1H), 1.94-1.34 

(m, 8H), 1.15-1.01 (m, 1H) ppm.  13C NMR (100 MHz, CD3OD) δ 154.0, 151.6, 143.9, 

141.1, 123.5, 118.5, 115.0, 68.8, 64.4, 45.0, 41.3, 37.1, 35.2, 31.0, 30.4, 29.5, 27.8 ppm. 
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2-Fluoro-4-(4-hydroxycyclohexyl)phenol (3.38).  To a solution of 3.33 (0.033 g, 0.159 

mmol) in anhydrous methanol (10 mL) was added NaBH4 (0.090 g, 2.38 mmol).  The 

mixture was stirred at room temperature for 2 h and then diluted with water.  The resulting 

mixture was extracted with ethyl acetate (2× 15 mL), combined extracts were dried 

(Na2SO4) and concentrated.  Purification of the crude material by column chromatography 

(SiO2, hexanes-ethyl acetate = 65:35) gave the 3.38 (0.020 g, 61%) as a colorless solid.  mp 

179-186 °C.  1H NMR (400 MHz, CD3OD) δ 6.91-6.85 (m, 1H), 6.83-6.74 (m, 2H), 3.60-

3.52 (m, 1H), 2.39 (tt, J = 12.0, 3.1 Hz, 1H), 2.05-1.96 (m, 2H), 1.88-1.79 (m, 2H), 1.52-

1.20 (m, 4H) ppm.  13C NMR (100 MHz, CD3OD) δ 152.8 (d, JC-F = 240 Hz), 144.0 (d, JC-

F = 10 Hz), 140.3, 123.6, 118.5, 115.1 (d, JC-F = 10 Hz), 71.1, 44.0, 36.6, 33.8 ppm. 
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5-(4-Methoxyphenyl)-1,2-cycloheptanediol (2.5b).  Epoxide 2.5a (0.103 g, 0.469 mmol) 

was dissolved in 0.5 M sulfuric acid solution (50 mL) and heated to reflux for 24 h.  The 

organic oil turned to a brown color and the mixture was allowed to cool and extracted with 

ether (3 × 30 mL).  The combined ethereal extracts were washed with water (2 × 20 mL), 

dried (MgSO4) and concentrated to give a crude residue. The residue was purified by 

column chromatography (SiO2, ethyl acetate = 100%) to give 2.5b (0.064g, 65%) as a 

colorless solid. mp 66-70 ˚C.  1H NMR (400 MHz, CDCl3)  7.08 and 6.82 (AA’BB’, JAB 

= 8.5 Hz, 4H), 3.79 (s, 3H), 3.67-3.51 (m, 2H), 2.92 (s, 2H), 2.69-2.60 (m, 1H), 2.02-1.77 

(m, 6H), 1.68-1.54 (m, 2H) ppm. 13C NMR (400 MHz, CDCl3)  157.8, 141.0, 127.4, 113.8, 

78.5, 77.2, 55.3, 44.1, 33.2, 31.9, 30.8, 29.8 ppm 

 

 

 

 

 

 

4-(4-((tert-Butyldimethylsilyl)oxy)phenyl)cyclohexane-1-carboxaldehyde (3.7-I).  To 

a solution of 3.7 (0.315 g, 0.983 mmol) in CH2Cl2 (15 mL) at room temperature, was added 

Dess–Martin periodinane (0.625 g, 1.47 mmol) and water (10 drops) and mixture was 
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stirred at room temperature for 6 h.  The mixture was quenched with 1:1 sodium 

thiosulfate:sodium bicarbonate solution.  The resulting mixture was stirred at room 

temperature for 30 min, and extracted with ethyl acetate (2 x 20 mL), dried (MgSO4), and 

concentrated to give the product 3.7-I (0.282 g, 90%) as a mixture of stereoisomers.  1H 

NMR (400 MHz, CDCl3) δ 9.78 and 9.67 (2 x s, 1H total), 7.10-6.97 (m, 2H), 6.80-6.71 

(m, 2H), 2.56-1.32 (m, 10H), 0.97 (s, 9H), 0.18 (s, 6H) ppm.   13C NMR (100 MHz, CDCl3) 

δ 205.9, 153.9, 139.9, 127.8, 119.9, 46.5, 42.9, 42.8, 41.6, 33.6, 33.3, 31.1, 30.8, 29.4, 27.6, 

26.6, 25.9, 25.2, 18.4, -4.2 ppm. 

 

 

 

 

 

 

4-(4-(((tert-Butyldimethylsilyl)oxy)methyl)cyclohexyl)phenol (3.4a-I).  To a solution of 

4-(4-(hydroxymethyl)cyclohexyl)phenol 3.4a (0.225 g, 1.09 mmol) in dry CH2Cl2 (30 ml) 

at 0 °C, was added imidazole (0.223 g, 3.27 mmol) and the mixture was stirred for a 30 

min.  A solution of t- butyldimethylsilyl chloride (0.115 g, 0.764 mmol) was added, and 

the mixture was slowly warmed to room temperature and stirred for 8 h.  The mixture was 

diluted with water (20 mL) and extracted with CH2Cl2 (2 × 20 mL).  The combined organic 

extracts were washed with brine, dried (Na2SO4), and concentrated.  The residue was 

purified by column chromatography (SiO2, hexanes-ethyl acetate = 90: 10) to give the 

product 3.4a-I (0.090 g, 26%) as a colorless oil.  1H NMR (400 MHz, CDCl3) δ 7.14-7.04 
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(m, 2H), 6.82-6.73 (m, 2H), 5.14 (s, 1H), 3.67 (d, J = 7.6 Hz, 1.2 H), 3.49 (d, J = 6.2 Hz, 

0.8H), 2.60-2.48 (m, 0.6 H), 2.41 (br t, J = 11.5 Hz, 0.4 H), 1.96-1.34 (m, 9H), 0.94 (s, 9H), 

0.10 (s, 6H) ppm.  13C NMR (100 MHz, CDCl3) δ 153.8, 140.0, 139.6, 128.1, 115.3, 69.1, 

64.9, 43.9, 42.5, 40.2, 35.8, 34.2, 30.1, 29.6, 26.9, 26.2, 18.6, -5.0 ppm. 

 

 

 

 

 

 

4-(4-(((tert-Butyldiphenylsilyl)oxy)methyl)cycloheptyl)phenol (2.10-I).  To a solution 

of 4-(4-(hydroxymethyl)cycloheptyl)phenol 2.10 (0.158 g, 0.717 mmol) in dry CH2Cl2 (15 

ml) at 0 °C, was added imidazole (0.122 g, 1.79 mmol).  The mixture was stirred for 30 

min and then a solution of t-butyldiphenylsilyl chloride (0.15 mL, 0.574 mmol) in CH2Cl2 

(2 mL) was added.  The mixture was slowly warmed to room temperature and stirred 

overnight.  The mixture was diluted with brine (20 mL) and extracted with CH2Cl2 (2 × 20 

mL).  The combined organic extracts were dried (Na2SO4), and concentrated.  The residue 

was purified by column chromatography (SiO2, hexanes-ethyl acetate = 80: 20) to give the 

product 2.10-I (0.135 g, 41%) as a colorless oil.  1H NMR (400 MHz, CDCl3) δ 7.79-7.68 

(m, 4H), 7.51-7.38 (m, 6H), 7.13-7.04 (m, 2H), 6.82-6.74 (m, 2H), 5.05 (s, 1H), 3.53 (s, 

2H), 2.75-2.50 (m, 1H), 2.02-1.42 (m, 11H), 1.12 (s, 9H) ppm.  13C NMR (100 MHz, 

CDCl3) δ 153.4, 142.1, 135.8, 134.2, 129.7, 127.8, 115.3, 69.3, 69.1, 47.4, 46.2, 42.0, 41.1, 

39.0, 36.9, 36.5, 33.0, 31.5, 30.6, 30.0, 28.5, 27.4, 24.3, 19.5 ppm.    
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Table 1 Crystal data and structure refinement for ISP163-PK1 

Identification code ISP163PK-1 (don2e) 

Empirical formula C14H20O2 

Formula weight 220.30 

Temperature/K 99.90(14) 

Crystal system orthorhombic 

Space group P212121 

a/Å 9.9579(5) 

b/Å 10.1803(8) 

c/Å 24.0251(12) 

α/° 90.00 

β/° 90.00 

γ/° 90.00 

Volume/Å3 2435.5(3) 

Z 8 

ρcalcg/cm3 1.202 

μ/mm-1 0.617 

F(000) 960.0 

Crystal size/mm3 0.3986 × 0.202 × 0.0143 

Radiation Cu Kα (λ = 1.54184) 

2Θ range for data collection/° 7.36 to 148.1 

Index ranges -9 ≤ h ≤ 12, -10 ≤ k ≤ 12, -29 ≤ l ≤ 27 

Reflections collected 12560 

Independent reflections 4845 [Rint = 0.0642, Rsigma = 0.0740] 

Data/restraints/parameters 4845/0/293 

Goodness-of-fit on F2 1.052 

Final R indexes [I>=2σ (I)] R1 = 0.0807, wR2 = 0.1991 
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Final R indexes [all data] R1 = 0.1259, wR2 = 0.2335 

Largest diff. peak/hole / e Å-3 0.34/-0.31 

Flack parameter -1.1(5) 

Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic 

Displacement Parameters (Å2×103) for don2e. Ueq is defined as 1/3 of of the trace of 

the orthogonalised UIJ tensor. 

Atom x y z U(eq) 

O1 1257(4) 1630(3) 813.4(12) 52.5(8) 

O2 3907(3) 358(4) 5117.3(13) 59.1(9) 

C1 1195(4) 854(4) 2522.1(16) 37.3(9) 

C2 1216(4) 2128(5) 2308.6(18) 44.1(10) 

C3 1228(4) 2376(5) 1742.0(18) 44.4(10) 

C4 1263(4) 1325(5) 1370.9(17) 43(1) 

C5 1255(5) 56(5) 1570.3(18) 47.4(10) 

C6 1227(4) -190(5) 2138.3(17) 42.8(9) 

C7 1205(4) 595(5) 3144.6(17) 40.8(9) 

C8 2613(4) 837(6) 3378.8(19) 50.9(12) 

C9 2777(4) 415(6) 3985.6(19) 51.3(12) 

C10 2505(5) 1489(6) 4415(2) 55.6(13) 

C11 1114(6) 2141(7) 4353(2) 72.2(17) 

C12 21(5) 1331(6) 4067(2) 59.9(14) 

C13 73(4) 1388(6) 3436.0(18) 51.2(12) 

C14 2660(4) 1019(6) 5005(2) 57.4(13) 

O1A 3775(3) 5782(4) 587.8(12) 50.2(8) 

O2A 2794(4) 6197(4) 5279.3(14) 63(1) 

C1A 3762(4) 6250(4) 2321.7(17) 40.8(9) 

C2A 3683(4) 4998(5) 2084.0(18) 43.2(10) 

C3A 3678(4) 4818(5) 1513.4(17) 41.2(9) 

C4A 3766(4) 5923(4) 1159.4(18) 41.8(9) 

C5A 3875(5) 7157(5) 1385(2) 47.8(10) 

C6A 3867(5) 7312(5) 1957(2) 46.3(10) 

C7A 3723(4) 6485(5) 2944.2(18) 46.8(10) 

C8A 2439(5) 6014(11) 3195(2) 109(3) 

C9A 2148(5) 6604(11) 3763(2) 127(4) 

C10A 2678(5) 5945(7) 4266(2) 71.9(18) 

C11A 4048(7) 5372(7) 4195(3) 80(2) 

C12A 5045(4) 6139(9) 3868(2) 82(2) 

C13A 4968(4) 6014(8) 3225(2) 69.7(19) 

C14A 2565(6) 6837(7) 4755(2) 73.8(18) 
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Table 3 Anisotropic Displacement Parameters (Å2×103) for don2e. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

O1 49.1(16) 69(2) 39.9(16) -0.5(15) 3.0(14) -11.0(18) 

O2 39.9(15) 87(3) 50.0(19) 11.3(18) -3.4(14) -4.1(18) 

C1 26.1(15) 41(2) 45(2) -4.6(17) 0.6(16) -6.3(18) 

C2 31.1(17) 52(3) 49(2) -8(2) 1.0(19) -6(2) 

C3 34.3(18) 45(2) 54(3) 2(2) 1.5(19) -2(2) 

C4 26.5(16) 55(3) 47(2) -2(2) 2.1(17) -7(2) 

C5 38.2(19) 52(3) 52(3) -8(2) 7(2) -3(2) 

C6 37.2(18) 44(2) 48(2) -4.4(19) 3.5(19) 1(2) 

C7 28.4(16) 48(2) 46(2) -2.7(18) -1.1(17) 1.2(19) 

C8 27.0(18) 76(4) 49(3) -5(2) -0.6(17) 2(2) 

C9 32.5(18) 69(3) 53(3) -3(2) -6.2(18) 9(2) 

C10 48(2) 68(4) 50(3) -7(2) -9(2) -5(2) 

C11 68(3) 92(4) 57(3) -20(3) -16(3) 26(4) 

C12 39(2) 81(4) 59(3) -3(3) 5(2) 14(2) 

C13 26.2(17) 80(4) 47(3) 0(2) 1.8(17) 6(2) 

C14 41(2) 85(4) 46(3) -3(3) -2.3(19) 4(2) 

O1A 41.1(14) 66(2) 43.4(17) 2.6(14) 0.9(13) -11.1(17) 

O2A 73(2) 73(3) 43.3(19) 1.9(17) -2.3(16) -24(2) 

C1A 30.4(16) 42(2) 50(2) -2.5(19) -1.4(17) 1.5(19) 

C2A 31.2(18) 53(3) 45(2) 5.8(19) 4.1(17) -4.0(19) 

C3A 32.4(18) 41(2) 50(2) -1.7(19) 0.9(17) 0.3(18) 

C4A 26.3(15) 50(3) 50(2) 6.7(19) -1.6(17) -5.7(19) 

C5A 39(2) 45(3) 60(3) 11(2) -4(2) -7(2) 

C6A 39(2) 36(2) 65(3) -2(2) -7(2) 0(2) 

C7A 35.7(19) 58(3) 46(2) -8(2) -5.8(18) 5(2) 

C8A 36(2) 253(11) 39(3) -31(4) 3(2) -25(4) 

C9A 38(2) 303(14) 40(3) -34(5) -10(2) 42(5) 

C10A 59(3) 111(5) 46(3) -21(3) 18(2) -36(3) 

C11A 107(5) 69(4) 63(4) 12(3) 4(3) 31(4) 

C12A 30(2) 170(7) 46(3) 18(4) -8(2) -8(3) 

C13A 30(2) 138(6) 42(3) 3(3) 0.8(18) 4(3) 

C14A 75(4) 111(5) 35(3) -7(3) -8(2) 21(3) 



198 
 

 
 

Table 4 Bond Lengths for don2e. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C4 1.375(5)   O1A C4A 1.381(5) 

O2 C14 1.437(6)   O2A C14A 1.436(7) 

C1 C2 1.395(7)   C1A C2A 1.398(6) 

C1 C6 1.408(6)   C1A C6A 1.395(6) 

C1 C7 1.519(6)   C1A C7A 1.515(6) 

C2 C3 1.384(6)   C2A C3A 1.383(6) 

C3 C4 1.393(6)   C3A C4A 1.413(6) 

C4 C5 1.378(7)   C4A C5A 1.372(7) 

C5 C6 1.388(6)   C5A C6A 1.384(7) 

C7 C8 1.530(5)   C7A C8A 1.493(7) 

C7 C13 1.553(6)   C7A C13A 1.490(6) 

C8 C9 1.529(7)   C8A C9A 1.519(8) 

C9 C10 1.528(7)   C9A C10A 1.479(10) 

C10 C11 1.544(7)   C10A C11A 1.494(8) 

C10 C14 1.505(7)   C10A C14A 1.490(8) 

C11 C12 1.528(8)   C11A C12A 1.489(9) 

C12 C13 1.517(7)   C12A C13A 1.551(7) 

  

Table 5 Bond Angles for don2e. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C2 C1 C6 117.4(4)   C2A C1A C7A 123.1(4) 

C2 C1 C7 121.6(4)   C6A C1A C2A 117.0(4) 

C6 C1 C7 120.9(4)   C6A C1A C7A 119.9(4) 

C3 C2 C1 122.1(4)   C3A C2A C1A 121.7(4) 

C2 C3 C4 119.3(4)   C2A C3A C4A 119.4(4) 

O1 C4 C3 116.7(4)   O1A C4A C3A 121.1(4) 

O1 C4 C5 123.4(4)   C5A C4A O1A 119.2(4) 

C5 C4 C3 119.8(4)   C5A C4A C3A 119.7(4) 

C4 C5 C6 120.7(4)   C4A C5A C6A 119.8(4) 

C5 C6 C1 120.6(4)   C5A C6A C1A 122.4(4) 

C1 C7 C8 109.9(3)   C8A C7A C1A 111.7(4) 

C1 C7 C13 110.4(4)   C13A C7A C1A 112.0(4) 

C8 C7 C13 114.6(4)   C13A C7A C8A 115.2(5) 

C9 C8 C7 113.8(4)   C7A C8A C9A 113.5(6) 

C10 C9 C8 115.1(5)   C10A C9A C8A 119.2(8) 

C9 C10 C11 113.6(4)   C9A C10A C11A 114.1(4) 

C14 C10 C9 113.0(5)   C9A C10A C14A 109.9(6) 

C14 C10 C11 108.7(4)   C14A C10A C11A 113.4(5) 
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C12 C11 C10 116.8(5)   C12A C11A C10A 117.7(6) 

C13 C12 C11 113.9(5)   C11A C12A C13A 116.7(6) 

C12 C13 C7 117.1(4)   C7A C13A C12A 117.8(4) 

O2 C14 C10 114.4(4)   O2A C14A C10A 113.7(6) 

  

Table 6 Hydrogen Bonds for don2e. 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

O1 H1 O21 0.84 1.80 2.631(5) 167.6 

O2 H2 O1A2 0.84 2.11 2.896(5) 156.0 

O1A H1A O2A3 0.84 1.82 2.655(5) 175.7 

O2A H2AA O14 0.84 1.93 2.726(5) 158.1 

11/2-X,-Y,-1/2+Z; 21-X,-1/2+Y,1/2-Z; 31/2-X,1-Y,-1/2+Z; 41/2-X,1-Y,1/2+Z 

  

Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement 

Parameters (Å2×103) for don2e. 

Atom x y z U(eq) 

H1 1276 935 625 79 

H2 4412 420 4839 89 

H2A 1221 2849 2560 53 

H3 1213 3254 1608 53 

H5 1270 -659 1316 57 

H6 1229 -1071 2269 51 

H7 999 -357 3199 49 

H8A 3273 354 3148 61 

H8B 2822 1785 3348 61 

H9A 2160 -328 4059 62 

H9B 3705 90 4039 62 

H10 3193 2191 4355 67 

H11A 789 2380 4729 87 

H11B 1230 2967 4141 87 

H12A 107 404 4186 72 

H12B -868 1652 4192 72 

H13A 164 2320 3325 61 

H13B -800 1072 3291 61 

H14A 2584 1783 5258 69 

H14B 1911 413 5092 69 

H1A 3305 5130 498 75 

H2AA 3190 6716 5496 95 
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H2AB 3632 4252 2321 52 

H3A 3615 3960 1361 49 

H5A 3956 7902 1150 57 

H6A 3935 8172 2108 56 

H7A 3721 7461 2992 56 

H8AA 2474 5046 3230 131 

H8AB 1690 6234 2940 131 

H9AA 2497 7514 3763 153 

H9AB 1161 6662 3804 153 

H10A 2063 5189 4342 86 

H11C 4429 5219 4570 96 

H11D 3947 4502 4015 96 

H12C 5955 5867 3987 98 

H12D 4941 7078 3966 98 

H13C 5737 6500 3065 84 

H13D 5091 5076 3129 84 

H14C 3221 7560 4713 89 

H14D 1656 7231 4759 89 
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Table 1 Crystal data and structure refinement for ISP163-PK3. 

Identification code ISP163-PK3 (don2d) 

Empirical formula C14H20O2 

Formula weight 220.30 

Temperature/K 100.00(10) 

Crystal system monoclinic 

Space group P21 

a/Å 10.0103(7) 

b/Å 10.1468(8) 

c/Å 12.2271(9) 

α/° 90.00 

β/° 103.012(8) 

γ/° 90.00 

Volume/Å3 1210.05(16) 

Z 4 

ρcalcg/cm3 1.209 

μ/mm-1 0.621 

F(000) 480.0 

Crystal size/mm3 0.2462 × 0.1633 × 0.0221 

Radiation Cu Kα (λ = 1.54184) 

2Θ range for data collection/° 7.42 to 148.44 

Index ranges -12 ≤ h ≤ 11, -12 ≤ k ≤ 12, -14 ≤ l ≤ 15 

Reflections collected 15025 

Independent reflections 4596 [Rint = 0.0583, Rsigma = 0.0618] 

Data/restraints/parameters 4596/1/305 

Goodness-of-fit on F2 1.029 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic 

Displacement Parameters (Å2×103) for don2d. Ueq is defined as 1/3 of of the trace of 

the orthogonalised UIJ tensor. 

Atom x y z U(eq) 

O1 3964(2) 4063(2) 1458.7(16) 30.5(4) 

O2 7030(2) 6822(2) 10051.0(17) 33.9(5) 

C1 5101(3) 4152(3) 4982(2) 26.6(5) 

C2 3716(3) 4102(3) 4424(2) 29.8(6) 

C3 3325(3) 4072(3) 3253(2) 28.0(6) 

C4 4309(3) 4102(3) 2620(2) 25.5(5) 

C5 5691(3) 4153(3) 3157(2) 28.8(6) 

C6 6061(3) 4162(3) 4325(2) 28.4(6) 

C7 5523(3) 4186(3) 6257(2) 26.7(6) 

C8 4760(3) 5290(3) 6723(2) 33.7(7) 

C9 5481(3) 5899(3) 7855(2) 31.7(6) 

C10 6122(3) 4950(3) 8812(2) 27.5(6) 

C11 5385(3) 3632(3) 8797(2) 31.3(6) 

C12 5806(4) 2622(3) 8006(3) 34.2(7) 

C13 5262(3) 2835(3) 6748(2) 32.1(6) 

C14 6212(3) 5645(3) 9938(2) 32.9(7) 

O1A -429(2) 6584(2) 1371.8(17) 33.8(5) 

O2A 1553(2) 5163(3) 10642.6(17) 41.3(6) 

C1A -226(3) 6766(3) 4824(2) 27.8(6) 

C2A 954(3) 6672(3) 4404(2) 30.8(6) 

C3A 872(3) 6620(3) 3249(2) 32.7(6) 

C4A -399(3) 6647(3) 2508(2) 28.2(6) 

C5A -1590(3) 6727(3) 2902(2) 30.6(6) 

C6A -1484(3) 6790(3) 4059(2) 29.8(6) 

C7A -183(3) 6805(3) 6074(2) 30.4(6) 

C8A 32(3) 5426(3) 6601(2) 31.3(6) 

C9A -555(3) 5270(4) 7643(2) 35.8(7) 

C10A 261(3) 5862(3) 8769(2) 29.9(6) 

C11A 1373(3) 6864(4) 8679(2) 34.3(6) 

C12A 863(4) 8053(3) 7923(3) 36.7(7) 

C13A 820(4) 7856(4) 6671(3) 38.7(7) 

C14A 866(4) 4736(4) 9545(2) 37.8(7) 

Final R indexes [I>=2σ (I)] R1 = 0.0528, wR2 = 0.1256 

Final R indexes [all data] R1 = 0.0730, wR2 = 0.1399 

Largest diff. peak/hole / e Å-3 0.28/-0.25 

Flack parameter 0.0(3) 
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Table 3 Anisotropic Displacement Parameters (Å2×103) for don2d. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

O1 34.0(11) 26.7(12) 27(1) 2.2(9) -0.8(8) 5.1(9) 

O2 39.7(11) 22.1(11) 34.2(10) -0.4(9) -3.4(9) -1.1(9) 

C1 29.8(13) 17.6(13) 30.1(12) -0.3(11) 1.7(10) -1.7(11) 

C2 29.6(13) 26.9(15) 32.4(14) -1.0(13) 6.1(11) -3.7(12) 

C3 24.3(12) 22.4(14) 32.7(14) 3.2(12) -3.1(10) -1.1(11) 

C4 30.6(13) 16.3(13) 26.7(12) -1.0(11) 0.4(10) 0.8(11) 

C5 31.7(14) 21.9(14) 31.3(13) 0.4(12) 3.6(11) 2.0(12) 

C6 24.2(12) 22.1(14) 35.2(14) -0.5(13) -1.4(11) -0.2(11) 

C7 31.2(14) 21.0(14) 26.2(13) -0.7(11) 3.0(11) -0.7(11) 

C8 39.1(16) 27.0(17) 29.4(14) -3.0(12) -4.2(12) 6.6(13) 

C9 40.8(16) 23.6(15) 27.7(15) -0.5(12) 1.5(12) 1.4(13) 

C10 29.3(14) 22.8(15) 28.7(13) -1.0(11) 3.1(11) -1.4(11) 

C11 39.4(15) 22.5(15) 31.3(14) -0.7(12) 6.8(12) -7.5(12) 

C12 48.4(18) 18.6(15) 33.5(16) 0.5(11) 4.5(13) -1.9(12) 

C13 41.8(16) 21.5(15) 30.7(15) 0.0(12) 3.7(12) -1.8(12) 

C14 40.4(16) 26.6(17) 29.9(15) -0.9(11) 4.3(12) -2.6(12) 

O1A 38.3(12) 37.7(14) 23.8(10) 1.8(9) 3.7(9) 5.7(10) 

O2A 44.2(13) 47.9(15) 27(1) 1.1(10) -2.4(9) 16.2(11) 

C1A 33.8(14) 22.7(14) 25.4(13) -0.6(12) 3.3(11) -1.0(12) 

C2A 26.3(13) 30.9(16) 30.6(13) 0.5(12) -3.4(10) -1.4(12) 

C3A 30.0(14) 37.0(19) 31.0(14) 1.8(13) 7.1(11) -0.4(13) 

C4A 34.8(14) 21.9(15) 26.1(13) 1.1(11) 3.4(11) 1.0(12) 

C5A 27.2(13) 30.5(16) 30.5(14) 0.3(13) -1(1) 1.4(12) 

C6A 29.4(13) 28.7(16) 30.7(13) -1.3(12) 5.5(11) 0.3(12) 

C7A 31.8(13) 31.4(17) 25.9(13) -3.5(12) 2.4(11) 1.5(13) 

C8A 36.8(15) 28.8(16) 26.7(13) -2.4(12) 3.5(11) -3.5(12) 

C9A 37.0(15) 38.0(19) 29.7(14) -0.4(13) 1.5(12) -10.9(14) 

C10A 31.0(14) 31.6(17) 24.8(13) -0.9(11) 1.4(11) 2.2(13) 

C11A 32.6(14) 36.4(18) 29.9(14) -2.6(13) -1.2(11) -4.7(14) 

C12A 50.0(19) 27.0(17) 30.9(15) -8.0(12) 4.4(13) -9.9(14) 

C13A 54.3(19) 27.5(17) 33.1(16) -3.2(13) 7.3(14) -9.9(15) 

C14A 45.1(18) 37.3(19) 28.1(15) -1.3(13) 2.3(13) 7.5(14) 
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Table 4 Bond Lengths for don2d. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C4 1.384(3)   O1A C4A 1.384(3) 

O2 C14 1.438(4)   O2A C14A 1.430(4) 

C1 C2 1.402(4)   C1A C2A 1.394(4) 

C1 C6 1.384(4)   C1A C6A 1.389(4) 

C1 C7 1.521(4)   C1A C7A 1.520(4) 

C2 C3 1.397(4)   C2A C3A 1.396(4) 

C3 C4 1.384(4)   C3A C4A 1.387(4) 

C4 C5 1.392(4)   C4A C5A 1.384(4) 

C5 C6 1.393(4)   C5A C6A 1.397(4) 

C7 C8 1.537(4)   C7A C8A 1.535(5) 

C7 C13 1.542(4)   C7A C13A 1.532(4) 

C8 C9 1.539(4)   C8A C9A 1.527(4) 

C9 C10 1.539(4)   C9A C10A 1.555(4) 

C10 C11 1.526(4)   C10A C11A 1.530(4) 

C10 C14 1.531(4)   C10A C14A 1.521(4) 

C11 C12 1.532(4)   C11A C12A 1.536(5) 

C12 C13 1.528(4)   C12A C13A 1.535(4) 

  

Table 5 Bond Angles for don2d. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C2 C1 C7 121.0(3)   C2A C1A C7A 122.5(2) 

C6 C1 C2 117.2(3)   C6A C1A C2A 117.9(2) 

C6 C1 C7 121.7(3)   C6A C1A C7A 119.5(2) 

C3 C2 C1 121.2(3)   C1A C2A C3A 120.9(3) 

C4 C3 C2 120.1(2)   C4A C3A C2A 119.8(3) 

O1 C4 C5 118.5(2)   O1A C4A C3A 117.7(3) 

C3 C4 O1 121.9(2)   C5A C4A O1A 121.7(3) 

C3 C4 C5 119.6(2)   C5A C4A C3A 120.6(2) 

C4 C5 C6 119.4(3)   C4A C5A C6A 118.7(3) 

C1 C6 C5 122.4(3)   C1A C6A C5A 122.1(3) 

C1 C7 C8 110.5(2)   C1A C7A C8A 111.6(3) 

C1 C7 C13 110.3(2)   C1A C7A C13A 111.4(3) 

C8 C7 C13 111.2(2)   C13A C7A C8A 114.8(3) 

C7 C8 C9 117.0(2)   C9A C8A C7A 113.6(3) 

C8 C9 C10 117.6(3)   C8A C9A C10A 118.4(3) 

C11 C10 C9 114.9(3)   C11A C10A C9A 116.0(2) 

C11 C10 C14 110.1(2)   C14A C10A C9A 108.6(3) 

C14 C10 C9 109.0(2)   C14A C10A C11A 110.5(3) 
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C10 C11 C12 113.1(2)   C10A C11A C12A 114.6(2) 

C13 C12 C11 117.0(3)   C13A C12A C11A 115.4(3) 

C12 C13 C7 117.7(2)   C7A C13A C12A 115.7(3) 

O2 C14 C10 112.7(2)   O2A C14A C10A 113.4(3) 

  

Table 6 Torsion Angles for don2d. 

A B C D Angle/˚   A B C D Angle/˚ 

O1 C4 C5 C6 -178.6(3)   O1A C4A C5A C6A -179.9(3) 

C1 C2 C3 C4 -0.5(5)   C1A C2A C3A C4A -0.7(5) 

C1 C7 C8 C9 -152.1(3)   C1A C7A C8A C9A -153.1(2) 

C1 C7 C13 C12 171.7(3)   C1A C7A C13A C12A 175.5(3) 

C2 C1 C6 C5 1.4(5)   C2A C1A C6A C5A -0.2(5) 

C2 C1 C7 C8 -52.0(4)   C2A C1A C7A C8A -78.5(4) 

C2 C1 C7 C13 71.3(4)   C2A C1A C7A C13A 51.2(4) 

C2 C3 C4 O1 179.4(3)   C2A C3A C4A O1A -179.6(3) 

C2 C3 C4 C5 0.4(5)   C2A C3A C4A C5A 0.1(5) 

C3 C4 C5 C6 0.5(5)   C3A C4A C5A C6A 0.4(5) 

C4 C5 C6 C1 -1.5(5)   C4A C5A C6A C1A -0.4(5) 

C6 C1 C2 C3 -0.4(5)   C6A C1A C2A C3A 0.8(5) 

C6 C1 C7 C8 128.3(3)   C6A C1A C7A C8A 99.7(3) 

C6 C1 C7 C13 -108.4(3)   C6A C1A C7A C13A -130.5(3) 

C7 C1 C2 C3 179.9(3)   C7A C1A C2A C3A 179.0(3) 

C7 C1 C6 C5 -178.9(3)   C7A C1A C6A C5A -178.5(3) 

C7 C8 C9 C10 -46.7(4)   C7A C8A C9A C10A -77.5(4) 

C8 C7 C13 C12 -65.4(3)   C8A C7A C13A C12A -56.5(4) 

C8 C9 C10 C11 -31.4(4)   C8A C9A C10A C11A 16.0(4) 

C8 C9 C10 C14 -155.6(3)   C8A C9A C10A C14A -109.1(3) 

C9 C10 C11 C12 83.1(3)   C9A C10A C11A C12A 56.6(4) 

C9 C10 C14 O2 -59.6(3)   C9A C10A C14A O2A -175.4(3) 

C10 C11 C12 C13 -73.8(4)   C10A C11A C12A C13A -86.4(3) 

C11 C10 C14 O2 173.4(2)   C11A C10A C14A O2A 56.3(3) 

C11 C12 C13 C7 53.9(4)   C11A C12A C13A C7A 64.3(4) 

C13 C7 C8 C9 85.1(3)   C13A C7A C8A C9A 79.0(3) 

C14 C10 C11 C12 -153.3(3)   C14A C10A C11A C12A -179.3(3) 
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Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement 

Parameters (Å2×103) for don2d. 

Atom x y z U(eq) 

H1 3290(40) 4440(40) 1220(30) 23(9) 

H2 6610(40) 7460(50) 9600(40) 52(12) 

H2A 3031 4088 4850 36 

H3 2381 4032 2890 34 

H5 6375 4181 2730 35 

H6 7007 4176 4685 34 

H7 6529 4375 6479 32 

H8A 3864 4938 6802 40 

H8B 4570 6006 6159 40 

H9A 4807 6457 8120 38 

H9B 6215 6488 7719 38 

H10 7081 4760 8744 33 

H11A 4383 3781 8563 38 

H11B 5582 3266 9567 38 

H12A 6820 2605 8158 41 

H12B 5502 1741 8200 41 

H13A 4259 2685 6576 38 

H13B 5667 2149 6346 38 

H14A 5275 5874 10012 39 

H14B 6610 5030 10554 39 

H1A -1140(50) 6720(50) 1020(30) 57(13) 

H2AA 900(50) 5610(60) 10900(40) 79(16) 

H2AB 1826 6643 4910 37 

H3A 1685 6566 2973 39 

H5A -2461 6739 2394 37 

H6A -2298 6850 4332 36 

H7A -1115 7095 6145 36 

H8AA -403 4768 6034 38 

H8AB 1027 5235 6806 38 

H9AA -674 4316 7761 43 

H9AB -1481 5671 7476 43 

H10A -415 6324 9125 36 

H11C 2095 6410 8387 41 

H11D 1798 7189 9442 41 

H12C -71 8281 8005 44 

H12D 1464 8815 8196 44 

H13C 577 8707 6282 46 

H13D 1752 7618 6592 46 

H14C 120 4122 9614 45 
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H14D 1523 4245 9203 45 
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Table 1 Crystal data and structure refinement for ISP163-PK4. 

Identification code ISP163-PK4 (don2c) 

Empirical formula C14H20O2 

Formula weight 220.30 

Temperature/K 99.90(14) 

Crystal system monoclinic 

Space group P21 

a/Å 10.0043(3) 

b/Å 10.1405(4) 

c/Å 12.2188(3) 

α/° 90.00 

β/° 103.121(3) 

γ/° 90.00 

Volume/Å3 1207.22(6) 

Z 4 

ρcalcg/cm3 1.212 

μ/mm-1 0.623 

F(000) 480.0 

Crystal size/mm3 0.8254 × 0.4513 × 0.0546 

Radiation CuKα (λ = 1.54184) 

2Θ range for data collection/° 7.42 to 148.64 

Index ranges -12 ≤ h ≤ 12, -12 ≤ k ≤ 12, -15 ≤ l ≤ 14 

Reflections collected 7992 

Independent reflections 7992 [Rint = 0.0000, Rsigma = 0.0091] 

Data/restraints/parameters 7992/1/306 
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Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic 

Displacement Parameters (Å2×103) for don2c. Ueq is defined as 1/3 of of the trace of 

the orthogonalised UIJ tensor. 

Atom x y z U(eq) 

O1 6036.6(17) 5934.1(17) 8540.7(12) 24.9(3) 

O2 2970.2(16) 3174.2(18) -54.6(13) 27.7(4) 

C1 4897(2) 5849(2) 5011.7(18) 21.2(4) 

C2 6281(2) 5899(2) 5572.3(18) 23.3(4) 

C3 6675(2) 5927(2) 6742.1(18) 23.8(4) 

C4 5689(2) 5899(2) 7383.4(17) 21.3(4) 

C5 4305(2) 5854(2) 6841.0(17) 23.2(4) 

C6 3924(2) 5837(2) 5673.1(18) 23.1(4) 

C7 4475(2) 5811(2) 3739.4(17) 21.4(4) 

C8 5250(3) 4704(3) 3278.6(19) 28.7(5) 

C9 4522(2) 4099(2) 2145.5(19) 26.1(5) 

C10 3877(2) 5049(2) 1185.7(18) 22.2(4) 

C11 4614(2) 6376(2) 1204.0(19) 26.3(5) 

C12 4188(3) 7377(2) 1996(2) 28.6(5) 

C13 4737(3) 7167(2) 3257.9(19) 26.8(5) 

C14 3795(2) 4357(2) 61.7(18) 25.3(5) 

O1A 426.7(18) 3417.3(18) 8623.7(13) 27.1(4) 

O2A -1557(2) 4841(2) -642.8(14) 34.3(4) 

C1A 231(2) 3231(2) 5173.3(17) 22.8(4) 

C2A -958(2) 3335(3) 5590.8(18) 26.2(5) 

C3A -870(2) 3392(3) 6746.1(18) 25.5(5) 

C4A 402(2) 3353(2) 7495.6(18) 23.4(4) 

C5A 1600(2) 3268(3) 7099.3(18) 25.3(5) 

C6A 1490(2) 3208(2) 5941.9(19) 24.6(5) 

C7A 195(2) 3181(2) 3924.1(18) 24.2(5) 

C8A -34(2) 4575(2) 3395.9(17) 24.6(5) 

C9A 555(2) 4725(3) 2352.1(18) 27.8(5) 

C10A -258(2) 4136(3) 1229.4(18) 25.9(5) 

C11A -1378(2) 3137(3) 1319.4(19) 29.3(5) 

C12A -863(3) 1944(3) 2073.4(19) 30.9(5) 

C13A -837(3) 2150(3) 3320.6(19) 30.7(5) 

C14A -863(3) 5270(3) 452.9(19) 30.9(5) 

Goodness-of-fit on F2 1.062 

Final R indexes [I>=2σ (I)] R1 = 0.0688, wR2 = 0.1938 

Final R indexes [all data] R1 = 0.0696, wR2 = 0.1948 

Largest diff. peak/hole / e Å-3 0.48/-0.25 

Flack parameter -0.1(2) 
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Table 3 Anisotropic Displacement Parameters (Å2×103) for don2c. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

O1 31.0(8) 18.9(9) 22.6(7) 0.7(6) 1.2(6) 2.3(7) 

O2 33.2(8) 16.8(9) 28.5(8) -1.0(6) -2.3(6) -2.8(7) 

C1 26.4(10) 11.0(9) 23.4(9) 0.3(8) 0.0(7) -2.0(8) 

C2 25.4(10) 16.9(11) 26.8(10) 1.1(9) 4.1(8) -1.3(9) 

C3 22.6(10) 17.9(12) 27.6(10) 0.8(9) -1.2(8) -2.1(9) 

C4 28.4(11) 9.7(10) 23.4(9) 0.1(8) 0.9(8) 1.3(8) 

C5 26.5(10) 16.0(11) 26.5(10) 1.1(9) 4.9(8) 0.3(9) 

C6 21.7(10) 16.3(11) 28.6(10) 1.2(9) 0.6(8) 0.5(8) 

C7 24.6(10) 14.6(10) 22.2(9) -0.7(8) -0.6(7) -1.7(8) 

C8 37.4(13) 19.3(12) 25.3(10) -1.5(9) -1.6(9) 4.4(10) 

C9 34.8(12) 14.6(12) 26.4(10) -0.4(9) 2.0(8) 2.6(10) 

C10 25.3(10) 16.5(12) 23.9(9) 0.2(8) 3.5(8) -1.2(8) 

C11 35.2(11) 16.5(11) 26.7(10) 0.5(8) 6.3(9) -5.4(10) 

C12 44.0(14) 12.9(12) 26.9(11) 2.3(8) 4(1) 0.8(10) 

C13 38.0(12) 15.0(11) 25.2(10) 0.1(8) 2.6(9) -0.9(9) 

C14 32.5(12) 17.6(12) 24.1(10) -0.6(8) 2.8(8) -3.7(9) 

O1A 31.3(9) 27.7(10) 21.2(7) 0.4(7) 3.8(6) 4.3(7) 

O2A 37.8(10) 37.4(11) 23.4(8) -1.3(7) -2.0(7) 14.4(9) 

C1A 29.6(11) 14.5(11) 22.7(10) 0.1(8) 2.5(8) -0.1(9) 

C2A 25(1) 22.9(12) 27.6(10) 1.2(9) -0.2(8) 1.3(9) 

C3A 24.6(11) 24.2(13) 27.3(10) 1.4(10) 5.2(8) 2.6(9) 

C4A 29.4(11) 16.3(11) 23.5(10) -0.1(9) 4.2(8) 1.7(9) 

C5A 26.1(10) 21.6(12) 26.2(10) -1.7(9) 1.6(8) 1.4(9) 

C6A 25.1(10) 21.1(12) 27(1) -1.1(9) 4.4(8) 0.1(9) 

C7A 27.5(10) 20.4(12) 23.3(10) -1.0(8) 2.6(8) 0.1(9) 

C8A 29.4(11) 19.3(12) 22.6(9) -1.1(8) 0.9(8) -2.1(9) 

C9A 30.3(11) 27.9(13) 22.5(9) 0.9(9) 0.4(8) -6.7(10) 

C10A 29.0(11) 25.1(13) 21.4(9) -1.4(9) 1.2(8) 0.3(10) 

C11A 29.1(11) 29.2(14) 26.3(10) -3.2(10) -0.8(8) -4.9(10) 

C12A 43.7(14) 20.7(13) 26.2(10) -4.3(9) 3.3(9) -7.3(10) 

C13A 43.7(13) 20.1(12) 27.3(11) -1.9(9) 6.1(9) -6.4(10) 

C14A 41.6(13) 25.0(13) 22.8(10) 0.7(9) 0.8(9) 6.6(11) 
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Table 4 Bond Lengths for don2c. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C4 1.378(2)   O1A C4A 1.374(3) 

O2 C14 1.445(3)   O2A C14A 1.429(3) 

C1 C2 1.399(3)   C1A C2A 1.400(3) 

C1 C6 1.399(3)   C1A C6A 1.390(3) 

C1 C7 1.516(3)   C1A C7A 1.519(3) 

C2 C3 1.394(3)   C2A C3A 1.395(3) 

C3 C4 1.392(3)   C3A C4A 1.389(3) 

C4 C5 1.394(3)   C4A C5A 1.394(3) 

C5 C6 1.391(3)   C5A C6A 1.395(3) 

C7 C8 1.541(3)   C7A C8A 1.549(3) 

C7 C13 1.542(3)   C7A C13A 1.535(3) 

C8 C9 1.539(3)   C8A C9A 1.529(3) 

C9 C10 1.542(3)   C9A C10A 1.547(3) 

C10 C11 1.532(3)   C10A C11A 1.533(3) 

C10 C14 1.528(3)   C10A C14A 1.526(3) 

C11 C12 1.529(3)   C11A C12A 1.537(4) 

C12 C13 1.530(3)   C12A C13A 1.533(3) 

  

Table 5 Bond Angles for don2c. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C2 C1 C6 117.27(19)   C2A C1A C7A 122.69(18) 

C2 C1 C7 121.2(2)   C6A C1A C2A 118.0(2) 

C6 C1 C7 121.6(2)   C6A C1A C7A 119.3(2) 

C3 C2 C1 121.4(2)   C3A C2A C1A 120.51(19) 

C4 C3 C2 120.35(19)   C4A C3A C2A 120.3(2) 

O1 C4 C3 122.08(19)   O1A C4A C3A 117.7(2) 

O1 C4 C5 118.74(19)   O1A C4A C5A 122.00(19) 

C3 C4 C5 119.17(19)   C3A C4A C5A 120.2(2) 

C6 C5 C4 119.9(2)   C4A C5A C6A 118.6(2) 

C5 C6 C1 121.9(2)   C1A C6A C5A 122.3(2) 

C1 C7 C8 110.28(19)   C1A C7A C8A 110.80(19) 

C1 C7 C13 109.68(18)   C1A C7A C13A 111.45(19) 

C8 C7 C13 111.50(19)   C13A C7A C8A 113.69(19) 

C9 C8 C7 116.41(19)   C9A C8A C7A 113.0(2) 

C8 C9 C10 117.8(2)   C8A C9A C10A 118.4(2) 

C11 C10 C9 114.86(19)   C11A C10A C9A 115.93(19) 

C14 C10 C9 108.95(19)   C14A C10A C9A 108.4(2) 

C14 C10 C11 110.07(18)   C14A C10A C11A 110.43(19) 
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C12 C11 C10 112.95(19)   C10A C11A C12A 114.32(19) 

C11 C12 C13 117.2(2)   C13A C12A C11A 114.6(2) 

C12 C13 C7 117.11(19)   C12A C13A C7A 115.3(2) 

O2 C14 C10 112.46(18)   O2A C14A C10A 113.1(2) 

  

Table 6 Hydrogen Bonds for don2c. 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

O1 H1 O2A1 0.90(4) 1.74(4) 2.632(2) 172(3) 

O2 H2 O12 0.91(4) 2.08(4) 2.955(2) 161(4) 

O1A H1A O23 0.79(4) 1.91(4) 2.698(2) 172(5) 

O2A H2AB O1A4 0.80(4) 1.96(5) 2.763(3) 177(4) 

11+X,+Y,1+Z; 21-X,-1/2+Y,1-Z; 3+X,+Y,1+Z; 4+X,+Y,-1+Z 

  

Table 7 Torsion Angles for don2c. 

A B C D Angle/˚   A B C D Angle/˚ 

O1 C4 C5 C6 179.0(2)   O1A C4A C5A C6A -179.9(2) 

C1 C2 C3 C4 0.3(4)   C1A C2A C3A C4A 0.3(4) 

C1 C7 C8 C9 152.3(2)   C1A C7A C8A C9A 153.47(19) 

C1 C7 C13 C12 -171.6(2)   C1A C7A C13A C12A -175.2(2) 

C2 C1 C6 C5 -1.0(3)   C2A C1A C6A C5A 0.8(4) 

C2 C1 C7 C8 51.7(3)   C2A C1A C7A C8A 77.9(3) 

C2 C1 C7 C13 -71.5(3)   C2A C1A C7A C13A -49.8(3) 

C2 C3 C4 O1 -179.5(2)   C2A C3A C4A O1A 179.8(2) 

C2 C3 C4 C5 -0.6(3)   C2A C3A C4A C5A 0.6(4) 

C3 C4 C5 C6 0.0(3)   C3A C4A C5A C6A -0.7(4) 

C4 C5 C6 C1 0.8(4)   C4A C5A C6A C1A 0.0(4) 

C6 C1 C2 C3 0.4(4)   C6A C1A C2A C3A -0.9(4) 

C6 C1 C7 C8 -128.5(2)   C6A C1A C7A C8A -100.5(3) 

C6 C1 C7 C13 108.4(2)   C6A C1A C7A C13A 131.8(3) 

C7 C1 C2 C3 -179.7(2)   C7A C1A C2A C3A -179.3(2) 

C7 C1 C6 C5 179.1(2)   C7A C1A C6A C5A 179.2(2) 

C7 C8 C9 C10 46.8(3)   C7A C8A C9A C10A 77.8(3) 

C8 C7 C13 C12 65.9(3)   C8A C7A C13A C12A 58.7(3) 

C8 C9 C10 C11 31.0(3)   C8A C9A C10A C11A -15.9(3) 

C8 C9 C10 C14 155.0(2)   C8A C9A C10A C14A 108.9(3) 

C9 C10 C11 C12 -83.0(2)   C9A C10A C11A C12A -57.1(3) 

C9 C10 C14 O2 60.0(2)   C9A C10A C14A O2A 175.8(2) 

C10 C11 C12 C13 74.1(3)   C10A C11A C12A C13A 87.4(3) 
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C11 C10 C14 O2 
-

173.22(18) 
  C11A C10A C14A O2A -56.2(3) 

C11 C12 C13 C7 -54.2(3)   C11A C12A C13A C7A -66.4(3) 

C13 C7 C8 C9 -85.6(3)   C13A C7A C8A C9A -80.1(3) 

C14 C10 C11 C12 153.6(2)   C14A C10A C11A C12A 179.2(2) 

  

Table 8 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement 

Parameters (Å2×103) for don2c. 

Atom x y z U(eq) 

H1 6860(40) 5540(40) 8760(30) 39(9) 

H2 3360(40) 2640(40) 530(30) 48(10) 

H2A 6966 5915 5147 28 

H3 7621 5966 7104 29 

H5 3621 5834 7269 28 

H6 2977 5818 5314 28 

H7 3469 5619 3514 26 

H8A 6145 5059 3200 34 

H8B 5441 3989 3844 34 

H9A 3787 3510 2282 31 

H9B 5194 3539 1879 31 

H10 2916 5235 1250 27 

H11A 5617 6229 1440 32 

H11B 4415 6744 434 32 

H12A 3173 7386 1844 34 

H12B 4483 8262 1802 34 

H13A 4330 7850 3661 32 

H13B 5741 7319 3432 32 

H14A 3400 4972 -556 30 

H14B 4734 4127 -8 30 

H1A 1180(40) 3290(50) 8980(40) 61(12) 

H2AB -970(40) 4420(50) -830(30) 59(12) 

H2AA -1831 3365 5084 31 

H3A -1682 3458 7021 31 

H5A 2473 3251 7607 30 

H6A 2305 3150 5669 30 

H7A 1124 2884 3851 29 

H8AA -1031 4762 3190 29 

H8AB 400 5235 3963 29 

H9AA 1481 4322 2521 33 

H9AB 677 5679 2233 33 
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H10A 417 3671 874 31 

H11C -1810 2815 556 35 

H11D -2096 3594 1617 35 

H12C -1457 1178 1797 37 

H12D 77 1724 2000 37 

H13C -625 1295 3713 37 

H13D -1767 2416 3388 37 

H14C -1517 5764 797 37 

H14D -115 5881 382 37 
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Table 1 Crystal data and structure refinement for ISP358-2. 

Identification code ISP358-2 (don2f) 

Empirical formula C13H18O2 

Formula weight 206.27 

Temperature/K 100.00(10) 

Crystal system orthorhombic 

Space group Pbca 

a/Å 12.0669(2) 

b/Å 8.09601(18) 

c/Å 22.4321(4) 

α/° 90.00 

β/° 90.00 

γ/° 90.00 

Volume/Å3 2191.46(7) 

Z 8 

ρcalcg/cm3 1.250 

μ/mm-1 0.653 

F(000) 896.0 

Crystal size/mm3 0.25 × 0.15 × 0.01 

Radiation Cu Kα (λ = 1.54184) 

2Θ range for data collection/° 7.88 to 148.36 

Index ranges -10 ≤ h ≤ 14, -9 ≤ k ≤ 8, -19 ≤ l ≤ 27 

Reflections collected 9115 

Independent reflections 2181 [Rint = 0.0318, Rsigma = 0.0235] 
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Data/restraints/parameters 2181/0/138 

Goodness-of-fit on F2 1.043 

Final R indexes [I>=2σ (I)] R1 = 0.0414, wR2 = 0.1109 

Final R indexes [all data] R1 = 0.0503, wR2 = 0.1190 

Largest diff. peak/hole / e Å-3 0.23/-0.20 

 

 
Table 2 Fractional Atomic Coordinates (×104) and Equivalent Isotropic 

Displacement Parameters (Å2×103) for don2f. Ueq is defined as 1/3 of of the trace of 

the orthogonalised UIJ tensor. 

Atom x y z U(eq) 

O1 6398.2(8) 5568.4(12) 5152.2(4) 27.0(2) 

O2 6894.3(8) 2635.2(13) 9776.1(4) 30.9(3) 

C1 6163.1(10) 5414.5(15) 7017.2(5) 21.2(3) 

C2 6978.5(11) 6355.0(17) 6734.5(6) 25.2(3) 

C3 7075.8(11) 6425.1(17) 6119.5(6) 25.5(3) 

C4 6335.5(11) 5541.8(15) 5766.6(6) 22.5(3) 

C5 5517.3(11) 4598.7(16) 6031.9(6) 24.9(3) 

C6 5437.1(11) 4537.3(16) 6652.7(6) 24.0(3) 

C7 6135.1(10) 5371.5(15) 7694.9(5) 21.4(3) 

C8 7066.4(11) 4283.3(17) 7941.1(6) 24.6(3) 

C9 7105.2(11) 4268.6(17) 8619.6(5) 23.8(3) 

C10 5996.7(11) 3692.7(16) 8874.8(6) 23.5(3) 

C11 5066.9(11) 4813.0(18) 8648.1(6) 26.6(3) 

C12 5026.6(10) 4848.1(18) 7965.8(6) 25.7(3) 

C13 6009.6(12) 3638.7(18) 9550.2(6) 28.0(3) 

 

Table 3 Anisotropic Displacement Parameters (Å2×103) for don2f. The Anisotropic 

displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

 

Atom U11 U22 U33 U23 U13 U12 

O1 30.6(5) 30.7(5) 19.9(5) -1.3(4) -0.7(4) -3.2(4) 

O2 37.5(6) 28.1(5) 27.0(5) 5.6(4) -5.5(4) -3.4(4) 

C1 20.6(6) 20.6(6) 22.4(6) -0.1(5) -0.7(5) 2.8(5) 

C2 24.5(6) 27.4(7) 23.7(7) -2.7(5) -2.6(5) -5.7(5) 

C3 25.5(6) 26.7(7) 24.4(7) 0.5(5) 1.3(5) -4.5(5) 

C4 25.0(6) 22.4(6) 20.0(6) -1.6(5) -1.5(5) 4.8(5) 

C5 25.0(7) 23.8(6) 26.1(7) -2.6(5) -4.4(5) -1.7(5) 

C6 22.1(6) 23.7(6) 26.1(7) 1.1(5) -0.9(5) -1.3(5) 

C7 20.0(6) 22.9(6) 21.2(6) -0.1(5) -0.7(5) -1.3(5) 

C8 21.9(6) 29.4(7) 22.6(6) 1.0(5) 2.4(5) 4.0(5) 
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Table 4 Bond Lengths for don2f. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C4 1.3805(15)   C5 C6 1.3967(18) 

O2 C13 1.4340(17)   C7 C8 1.5310(17) 

C1 C2 1.3964(18)   C7 C12 1.5291(17) 

C1 C6 1.3931(18)   C8 C9 1.5226(17) 

C1 C7 1.5209(16)   C9 C10 1.5279(18) 

C2 C3 1.3858(18)   C10 C11 1.5297(18) 

C3 C4 1.3915(18)   C10 C13 1.5159(17) 

C4 C5 1.3827(19)   C11 C12 1.5315(17) 

 

Table 5 Bond Angles for don2f. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

C2 C1 C7 118.82(11)   C1 C7 C12 115.03(11) 

C6 C1 C2 117.03(12)   C12 C7 C8 109.83(10) 

C6 C1 C7 124.13(12)   C9 C8 C7 112.81(10) 

C3 C2 C1 122.29(12)   C8 C9 C10 110.49(11) 

C2 C3 C4 119.40(12)   C9 C10 C11 109.67(11) 

O1 C4 C3 121.65(12)   C13 C10 C9 111.98(11) 

O1 C4 C5 118.52(11)   C13 C10 C11 110.91(11) 

C5 C4 C3 119.83(12)   C10 C11 C12 111.50(11) 

C4 C5 C6 119.88(12)   C7 C12 C11 111.99(11) 

C1 C6 C5 121.57(12)   O2 C13 C10 112.15(11) 

C1 C7 C8 110.94(10)           

 

Table 6 Hydrogen Bonds for don2f. 

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 

O1 H1 O21 0.84 1.82 2.6594(14) 172.7 

O2 H2 O12 0.84 1.97 2.7924(14) 165.1 

13/2-X,1-Y,-1/2+Z; 2+X,1/2-Y,1/2+Z 

C9 22.7(6) 26.6(7) 22.1(6) 1.8(5) -1.7(5) 1.8(5) 

C10 26.2(7) 22.2(6) 22.2(6) -0.7(5) 0.4(5) -2.5(5) 

C11 22.9(7) 31.3(7) 25.5(7) 0.9(5) 3.4(5) -0.7(5) 

C12 19.7(6) 32.2(7) 25.1(7) 1.5(5) -0.5(5) -0.4(5) 

C13 30.4(7) 29.3(7) 24.1(7) 0.5(5) 1.4(5) -2.6(6) 
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Table 7 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement 

Parameters (Å2×103) for don2f. 

Atom x y z U(eq) 

H1 6910 6208 5046 41 

H2 6660 1674 9839 46 

H2A 7484 6968 6972 30 

H3 7643 7070 5940 31 

H5 5011 3994 5792 30 

H6 4874 3882 6830 29 

H7 6284 6522 7836 26 

H8A 6962 3139 7796 30 

H8B 7785 4688 7786 30 

H9A 7274 5393 8768 29 

H9B 7702 3519 8755 29 

H10 5852 2549 8726 28 

H11A 5184 5948 8800 32 

H11B 4348 4412 8804 32 

H12A 4828 3736 7816 31 

H12B 4442 5627 7836 31 

H13A 6090 4776 9707 34 

H13B 5294 3195 9695 34 
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