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ABSTRACT 

SPECTRAL CHARACTERIZATION OF CYTOCHROMES P450 ACTIVE 

SITES USING NMR AND RESONANCE RAMAN SPECTROSCOPY 

Remigio Usai, BSc. 

Marquette University, 2017 

 

The Cytochrome P450 (P450s) has been the subject of intense research for 

over six decades. An efficient approach for isotopic labeling of the prosthetic 

group in heme proteins was exploited to produce an analogue of the soluble 

bacterial cytochrome P450cam (P450cam) that contains a 13C labeled-protoheme 

prosthetic group. HU227 strain of E. coli, which lacks the δ-aminolevulinic acid 

(δ-ALA) synthase gene, was employed in the heterologous expression of 

P450cam harboring a prosthetic group labeled with 13C at the Cm and Cα positions 

by growing cells in the presence of [5-13C] δ-ALA, which was synthesized in four 

steps from [2-13C] glycine. NMR spectroscopy was used to confirm labelling of 

the hemes at the Cm and Cα positions. This system was utilized as proof of 

principle for the strategy of defining active site structure in cytochrome P450cam, 

including proton-to-proton distances on bound substrates, using NMR methods1. 

Such data are potentially of significant use in furnishing necessary experimental 

restrictions in docking routines, which are commonly employed in determining 

the relative affinities of drug candidates. 2D NOESY was employed and 

resonances assigned for the 13C labeled reference positions on heme and substrate. 

To confirm these resonance assignments on camphor, a substrate analogue, 

norcamphor was used.  

In another project, though it’s widely accepted that a highly reactive 

Fe(IV)=O π-cation radical, compound I, facilitates the oxidation of relatively inert 

hydrocarbons, spectroscopic characterization of this putative intermediate has 

eluded detection under turnover conditions, presumably due to its very short 

lifetime. Chemically inert substrates of P450s have been utilized in a novel 

approach to capture and stabilize this transient intermediate and characterize it 

with resonance Raman (RR) spectroscopy coupled with cryoradiolysis studies. 

Specifically, perfluorodecanoic acid was utilized as an inert surrogate substrate of 

a thermophilic cytochrome P450 designated CYP119 which was reported to 

possess a stable compound 12. Clearly, the presence of an inert substrate at low 

temperatures may prolong the lifetime of Compound I, allowing characterization 

by UV-visible and possibly RR and cryoradiolysis methods. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Cytochromes P450 

1.1.1 Heme proteins                      

 

Heme proteins are metalloproteins that contain heme prosthetic group or closely 

related structural analogues. There are 4 types of hemes namely heme a, b, c and d 3,4 

shown in Figure 1 below:    

 

 

Figure 1 Chemical structures of four commonly occurring natural hemes a, b, c and 

d.3,4,5 
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The four individual pyrroles are labeled 1-1V. Heme b is by far the most 

common and its molecular structure and labeling of the heme is shown in Figure 2 

below:  

 

 

Figure 2 Molecular structure and labeling scheme of heme b. 

They are virtually ubiquitous in all forms of life and exhibit remarkable functional 

diversity. The functions of heme proteins include reversible O2 transport and storage6 

(hemoglobin and myoglobin respectively), reversible electron transfer7 (cytochrome b5), 

nitric oxide transport (nitrophorin) and catalysis of redox reactions8 (nitric oxide 

synthase, peroxidase and cytochromes P450). Heme proteins have a variety of catalytic 

properties and the most fascinating is cytochrome P450s.  
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1.1.2 Discovery of P450 

 

In 1955 Axelrod9 and Brodie10 first discovered the oxygenase enzyme system in 

endoplasmic reticulum of the liver. In 1958, Garfinkel11 and Klingenberg12 reported the 

special CO bound pigment in liver microsomes showing a strong Soret absorption 

maximum near 450 nm in the UV absorption spectrum as shown in Figure 3 below. The 

discovery of cytochrome P450s is usually credited to Klingenberg who first reported that 

an intense absorption band near 450 nm12 is formed when carbon monoxide is added to 

reduced rat liver microsomes by either diphosphopyridine nucleotide (DPNH) or 

dithionite. Therefore the name P450 coined for these enzymes is derived from the intense 

electronic absorption band of the ferrous CO adducts that maximizes near 450 nm13. CO 

binds to the heme, producing the unusual Soret, and inhibiting enzyme function, it would 

be useful to ascribe structure to the axial ligands in the ferrous cytochrome P450-CO 

complex.14 From these early studies of P450s, research on P450s continued to increase 

and more enzymes discovered yearly. The generally agreed mechanism or catalytic cycle 

for P450s is shown in Scheme 1 below. Most of the intermediates have been 

characterized and resonance Raman (rR) which is described below has played a 

significant role in these studies. 
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Figure 3 Absorption spectrum of Cytochrome P450-CO complex showing characteristic 

Soret peak at about 450 nm 11, 12 

 

1.1.3 Cytochromes P450 

 

Cytochromes P450 (CYP, P450) are heme proteins with a cysteine thiolate axial 

ligand on the proximal side of the heme. Cytochromes P450 can efficiently catalyze the 

most difficult of reactions known to occur in biological systems, including: hydroxylation 

of very difficult inactivated hydrocarbon C-H bonds15, 16, 17 using molecular oxygen. 

These metalloenzymes activate molecular oxygen and insert one of the oxygen atoms 

between the C-H bonds of the inert hydrocarbon, whereas the other oxygen is reduced to 
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water as shown in the general Equation 1 below. This superfamily represents the largest 

family of all proteins listed in the gene data banks.18, 13 

Equation 1 General reaction of monooxygenation by cytochromes P450 

R3C-H + O2 + 2e- + 2H+ → R3C-OH + H2O 

 

The study of cytochrome P450s is one of the most popular research topics in 

biochemistry and molecular biology due to due to their importance in medicine and 

biotechnology. Other application fields and P450 research areas are shown in Figure 4 

below. 

  

 

Figure 4 P450 research fields showing various inter-relationships between them.19,20 The 

scheme  is not intended to be comprehensive but to give the reader a flavor of the 

broadness of the P450 field. 
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1.1.4 The P450 catalytic cycle 

 

 
Scheme 1 Cytochrome P450 catalytic cycle21 

 

The generally accepted catalytic cycle for P450s is shown in Scheme 1 above21. 

The cytochromes P450 perform this impressive chemistry utilizing the highly-concerted 

steps. The resting state of the enzyme is the substrate free and the heme iron is in the 

ferric state with five d-electrons in a low spin ((S = ½) configuration. This low spin is due 

to a large ligand field contributed by the axial cysteine thiolate (fifth ligand) and an 
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axially coordinated water molecule (sixth ligand).8 The low spin is due to the electric 

field of the protein and not an intrinsic feature of the water complex.22  The substrate 

binds to the six-coordinate (6C) ferric resting state [1]. Different substrates cause 

different percentage conversion from 6cLS to 5cHS. The substrate binding displaces the 

water cluster coordinated as the sixth ligand to the heme resulting in weakening of the 

ligand field hence converts it to high-spin (5cHS) (S = 5/2) electronic configuration. The 

5cHS ferric substrate bound form [2] exhibits a more positive reduction potential 

(increasing from -330 mV to -173 mV) hence easily reduced to a ferrous species [3]. The 

electron for the reduction is passed from NADPH via a redox partner to the heme iron 

being reduced to the ferrous iron while still in high-spin state. Molecular oxygen binding 

to ferrous species forms an oxy-P450 species, which is more properly formulated as ferric 

superoxo intermediate [4]. A second electron transfer event results in reduction of the oxy 

P450 complex resulting in the formation of a nucleophilic peroxo intermediate (Fe-O-O-) 

[5], which is easily protonated (from surrounding amino acid residues or water molecule) 

to the distal (terminal) oxygen atom to form the ferric hydroperoxo intermediate (Fe-O-

O-H) [6]. Another protonation step results in cleavage of the O-O bond forming a water 

molecule and the very reactive π-radical cation species compound I [7] which catalyzes 

the oxygen insertion into the inert C-H bond to form the product ROH and reforms the 

resting form of the enzyme. The rR work has concentrated more on two sub-classes of 

P450s, bacterial and mammalian which are briefly described below: 
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1.1.5. Bacterial P450s 

 

Bacterial P450s have been extensively studied because they are soluble, relatively 

stable and easily expressed. Most studied of these is cytochrome P450cam originally 

from Pseudomonas putida which is shown in Figure 5 below and its redox components 

has served as a model of these bacterial P450s with the goal of improving our 

understanding of cytochrome P450 structure and function8, 23. Another important bacterial 

protein studied is CYP102 which utilizes a fused mammalian-like diflavin reductase, 

therefore serving as a good mimic of mammalian P450s8,23. Also, well studied of 

bacterial cytochromes P450 is the thermophilic CYP119 which is also very soluble and 

has a high identity in the heme binding region with mammalian P450s consisting of a 

conserved cysteine for heme coordination and conserved threonine which facilitate 

coordination of a water ligand to the ferric heme, binding of oxygen to ferrous prosthetic 

group, and cleavage of the bound dioxygen molecule to give the final oxidizing 

species24,25. 

 

Figure 5 The structures of all three redox components of P450cam26 
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1.1.6. Mammalian P450s 

 

The mammalian cytochrome P450s participate in a vast array of important 

physiological functions and are responsible for the metabolism of xenobiotics, including 

drugs and exogenous pollutants, as well as biosynthesis of steroids, fatty acids and 

vitamins.8, 23, 27 Majority of these enzymes are very important for human health including 

CYP3A4 and CYP2D6. Cytochrome P450 2D6 is of great interest since it metabolizes 

about 20 % of known drugs.28 Mammalian proteins are divided into drug metabolizing 

and steroidogenic P450s.  

1.1.6.1 Drug Metabolizing P450s 

 

These are enzymes involved in human drug metabolism due to their high levels of 

expression and broad substrate specificity, ≈75 % of available drugs are processed by 

these enzymes, with CYP3A4 and CYP2D6 having the largest contribution (45 % and 20 

%, respectively). These enzymes generally have a malleable pocket, allowing one 

enzyme to catalyze a wider spectrum of substrates.8,  23, 27   

1.1.6.2. Steroidogenic P450s 

 

Approximately a quarter of the human P450s are involved in synthesis and 

modification of steroids.  These P450s have more rigidly organized active sites and that 

accept a limited number of substrates but carry out highly stereo- and regioselective 

transformations.8, 23 Major examples of steroidogenic P450s include CYP11A1, CYP17, 

and CYP19.  
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The study of intermediates discussed in the catalytic cycle is very difficult due to 

the high instability of the intermediates that will not accumulate to a useful extent. This 

has led to researchers developing many great techniques for stabilization of unstable 

intermediates and overcome these challenges. 

1.1.7 Stabilization of unstable intermediates. 

 

1.1.7.1 Rapid mixing methods    

Important to understanding of P450 mechanisms of oxygenation was finding that 

artificial oxidants, such as H2O2, can be used in the place of reducing equivalents and 

oxygen for oxygenation of substrates.29, 30 Studies were done with rapid freeze quench or 

cryogenic quenching techniques to study the intermediates.31, 30 

1.1.7.2 Stopped flow techniques 

Stopped flow studies using m-chloroperoxybenzoic acid (m-CPBA) revealed a 

spectral intermediate similar to what was expected for compound I in both P450cam32, 

33and the thermophilic P450, CYP119.34, 35 Similar studies have been employed by Ballou 

and coworkers36, 37 to directly observe compound I. The compound I was generated by 

rapidly mixing the substrate free protein with m-chloroperoxybenzoic acid. 

1.1.7.3 Cryoradiolysis  

The cryoradiolysis approach which was pioneered by Martyn Symons and 

coworkers (1980s) and refined and used extensively by Hoffman, Sligar38 and coworkers 

(1990-present), the intermediates along the catalytic cycle can be studied. The technique 
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involves irradiation of sample (at liquid nitrogen temperature) with 60Co irradiation.  This 

technique will be discussed in more detail later in chapter 3. 



12 

 

1.1.8 Optical properties of cytochromes P450 

 

Nature has chosen heme as a cofactor for a wide range of heme proteins including 

cytochrome P450s. The iron-porphyrin complex intensely absorbs in the visible region 

hence proteins can be monitored by absorption spectroscopy. Moreover, heme proteins 

provide resonance Raman spectra because of high resonance enhancement of the 

chromophore when excitation line is tuned near the electronic transitions. The extended 

aromatic porphyrin ring gives rise to low-lying π-π* electronic transitions that are excited 

with visible lasers39,40.   

 

Figure 6 Absorption spectrum of NiOEP (OEP = octaethylporphyrin).41, 40 
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 Figure 6 above shows the absorption spectrum of NiOEP, illustrating the typical 

spectral signature of a metalloporphyrin: the intense Soret (or B) band near 400 nm, and a 

pair of weak bands near 520 nm and 550 nm called Q1 (or α) and Q0 (or β) bands 

respectively. In idealized D4h symmetry of the tetrapyrrolle ring, the lowest unoccupied 

molecular orbitals π* (LUMO) are degenerate and have eg symmetry while the highest 

occupied molecular orbitals π (HOMO) are of a1g and a2u symmetries. The two HOMOs 

have nearly similar energy and there is large interaction between the orbital excitations: 

a1g → eg and a2u → eg the transition dipoles adding up for the intense Soret band (392 

nm) and nearly canceling out for the weaker Q0 transition (552 nm). About 10 % of the B 

band intensity is borrowed by the Q transition, producing the Q1 vibronic side band at 

516 nm40.  
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1.2 Raman Spectroscopy of heme proteins 

Raman spectroscopy is a technique discovered by an Indian scientist C. V. Raman 

in 192842, 43. This technique is used to study vibrational modes. It is done by scattering 

light from an intense source, in modern times a laser. In Raman spectroscopy, the sample 

is irradiated by an intense laser in the UV-visible region (νo) and the scattered light is 

observed usually in the direction perpendicular to the incident beam. The scattered light 

consists of two forms namely: Rayleigh scattering (strong and has same frequency as the 

incident beam (ν o)) and Raman scattering (very weak and has frequencies (ν o) ± (ν m), 

where ν m is the vibrational frequency of the molecule). If an incident photon encounters a 

molecule that is in the ground vibrational state (ν0), then it loses energy and can be 

scattered as a low energy photon. This is called Stokes Raman scattering. Contrary to 

that, if an incident photon encounters a molecule that is already in the excited vibrational 

state (ν1), then it can gain energy from the molecule and be scattered as a high-energy 

photon. This is called anti-Stokes Raman scattering, see Figure 7 below. According to 

the Boltzmann distribution, the excited vibrational states are not well populated at room 

temperature and this population diminishes as the energy of the vibrational states 

increases. Therefore, observations are made on the Stokes Raman bands. Scattered light 

is focused by collection lens and focused onto the entrance slit of the single 

monochromator equipped with a CCD detector.  
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Figure 7 Schematic representation of the Raman Effect 

 

 

Figure 8 Raman scattering spectroscopy 

Raman scattering is a very weak process with very low probability of photon and 

molecular energy exchange, thus requires a very high concentrated sample, i.e. molar 

range. The sensitivity issue is the major disadvantage of conventional Raman 
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spectroscopy and is largely overcome by using resonance Raman spectroscopy which is 

discussed next.
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1.2.1 Resonance Raman spectroscopy 

 

Instrumentation 

 

 
 

Figure 9 Schematic diagram and view of a cryogenic resonance Raman instrument setup, 

collimating lens (CL), notch filter (NF), and Charge coupled device (CCD).  

 

Resonance Raman spectroscopy involves use of excitation lines whose excitation 

frequency approaches the energy of the electronic transition of the target chromophore. 

The technique is well suited for studying complex biological molecules like heme 

proteins inasmuch as it permits active site interrogation owing to its ability to selectively 

enhance vibrational modes of the chromophoric heme prosthetic group.44 This powerful 

spectroscopic tool has long been established as an exquisite probe of active site structure 

for a wide range of heme proteins and enzymes.44–46 The technique offers a major 
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advantage over IR spectroscopy in that there is no interference from water making it a 

method of choice for studying vibrational properties of proteins, samples of which are 

typically in aqueous buffers.  The vibrational modes of the prosthetic heme group buried 

in the active site of these large biological polymers are selectively enhanced by exploiting 

laser (excitation) lines which are in or near resonance with the Soret or Q bands 

electronic transitions.  

Isotopic labeling (15N, 13C and 2H) of high symmetry model compounds, such as 

metal complexes of tetraphenylporphyrin (H2TPP), octaethylporphyrin (H2OEP), 

etioporphyrins (H2(EtioI)) and (H2(EtioIII), has been used to unambiguously assign heme 

core vibrational modes.47,48 If each peripheral substituent of the iron protopophyrin IX 

complex is considered as an atom, the heme has D4h symmetry having a total of 37 atoms 

and 105 vibrational modes. The modes consist of 71 in-plane (ip) modes (2N-3) (where 

N=37 atoms) and 34 out-of-plane (oop) modes (N-3) and are classified as follows: 

Equation 2 Heme vibrational modes 

ip = 9A1g + 8A2g + 9B1g + 9B2g + 18Eu 

oop =3A1u + 6A2u + 5B1u + 4B2u + 8Eg 

Only the g (gerade, meaning even) are Raman active hence of the 71 in-plane 

vibrational modes 35 (g symmetry) are Raman active whereas 18 (Eu) (ungerade, 

meaning uneven) are infrared active.  

Most applications have focused on the so-called marker bands in the high 

frequency region, which effectively document oxidation and spin states of the central 

iron, in addition to providing a reliable indicator of heme core size.45,47  The oxidation 
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marker band (4), occurring at ~1360 cm-1 in Fe(II) and ~1375 cm-1 in Fe(III) species, is 

ascribable to the pyrrole ring symmetric stretch, which is very sensitive to the oxidation 

state of the central iron. The so-called spin state marker bands (ν2, ν3 and ν10) report on 

the core size and spin state of the iron center (Table 1).  
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Table 1 Assignment and frequencies of in-plane vibrational modes of some nickel 

porphyrin complexes45 

 

Symmetry νi Description NiOEP NiP NiTPP

A1g ν1 ν(Cm-X) [3041] [3042] 1235

ν2 ν(CβCβ) 1602 1575 1572

ν3 ν(Cα-Cm)sym 1520 1459 1470

ν4 ν(Pyr half ring)sym 1383 1376 1374

ν5 ν(Cβ-Y)sym 1138 [3097] [3097]

ν6 ν(Pyr breathing) 804 995 1004

ν7 δ(Pyr def)sym 674 731 889

ν8 ν(Ni-N) 360/343 369 402

ν9 δ(Cβ-Y)sym 263/274 1066 1079

B1g ν10 ν(Cα-Cm)asym 1655 1650 1594

ν11 ν(CβCβ) 1577 1505 1504

ν12 ν(Pyr half ring)sym 1331 1319 1302

ν13 δ(Cm-X) 1220 1185 238

ν14 ν(Cβ-Y)sym 1131 [3097] [3097]

ν15 ν(Pyr breathing) 751 1003 1009

ν16 δ(Pyr def)sym 746 730 846

ν17 δ(Cb-Y)sym 305 1060 784

ν18 ν(Ni-N) 168 237 277

A2g ν19 ν(Cα-Cm)asym 1603 1611 1550

ν20 ν(Pyr quarter ring) 1394 1354 1341

ν21 δ(Cm-X) 1307 1139 [257]

ν22 ν(Pyr half ring)asym 1121 1005 1016

ν23 ν(Cβ-Y)asym 1058 [3087] [3087]

ν24 δ(Pyr def)asym 597 806 828

ν25 δ(Pyr rot.) 551 429 560

ν26 δ(Cβ-Y)asym [243] 1317 1230

B2g ν27 ν(Cm-X) [3041] [3041] 1269

ν28 ν(Cα-Cm)sym 1483 1504 [1481]

ν29 ν(Pyr quarter ring 1407 1368 1377

ν30 ν(Pyr half ring)asym 1160 1003 1004

ν31 ν(Cβ-Y)asym 1015 [3088] [3087]

ν32 δ(Pyr def)asym 938 819 869

ν33 δ(Pyr rot.) 493 435 450

ν34 δ(Cβ-Y)asym 197 1193 1191

ν35 δ(Pyr tranl.) 144 197 109

Eu ν36 ν(Cm-X) [3040] [3042] [1254]

ν37 ν(Cα-Cm)asym [1637] 1624 [1586]

ν38 ν(CβCβ) 1604 1547 [1552]

ν39 ν(Cα-Cm)sym 1501 1462 [1473]

ν40 ν(Pyr quarter ring) 1396 1385 [1403]

ν41 ν(Pyr half ring)sym [1346] 1319 [1331]

ν42 δ(Cm-X) 1231 1150 [233]

ν43 ν(Cβ-Y)sym 1153 [3097] [3097]

ν44 ν(Pyr half ring)asym 1133 1033 [1003]

ν45 ν(Cβ-Y)asym 996 [3087] [3100]

ν46 δ(Pyr)asym 927 806 [864]

ν47 ν(Pyr breathing) 766 995 [1023]

ν48 δ(Pyr)sym 605 745 [895]

ν49 δ(Pyr rot.) 544 366 [512]

ν50 ν(Ni-N) [358] 420 [436]

ν51 δ(Cb-Y)asym 328 1064 [1093]

ν52 δ(Cβ-Y)sym 263 1250 [1213]

ν53 δ(Pyr transl) 212 282 [306]
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1.2.2 RR spectroscopy of cytochrome P450 

 

Resonance Raman studies of wild type P450cam (CYP101) and mutants has been 

extensively studied to understand structure/ function relationships. Most of the 

assignments of Raman bands for P450s have been done based on model 

compounds.49,50,47 The oxidation state marker band, ν4 is around 1373 cm-1, characteristic 

of the ferric (FeIII) state.51,52 The spin state marker bands are ν3, ν2 and ν10 which occur 

around 1503 cm-1, 1583-1 and 1638 cm-1 respectively for 6cLS. Substrate binding results 

in the shift of the spin state marker bands, ν3 and ν2 to 1488 cm-1 and 1566 cm-1 for 5cHS 

species. 

Table 2 Cytochrome P450cam heme core marker bands. Adapted from ref 53
.  
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1.2.3 Metal ligand interactions in heme proteins 

 

Heme proteins are capable of binding various exogenous diatomic ligands; e.g., 

CO, O2, NO and CN- with differing geometries ranging from linear to bent 

configurations.  Clearly, the ligand of most interest in P450 chemistry is dioxygen, 

including its reduced peroxo- and hydroperoxo- intermediates (scheme 1). Unfortunately, 

most of oxygenated intermediates are unstable and therefore difficult to trap and 

spectroscopically characterize. To better understand the chemical environment of the 

P450 distal pocket, RR spectra are acquired with other more stable, diatomic ligand 

complexes of P450, including CO, NO and CN-. The Fe-X-Y fragments can interact with 

the distal pocket polar residues and be distorted by steric interactions with non-polar 

distal pocket residues, thus mimics physiologically relevant oxy complexes.  

The bonding between the metal center and a diatomic molecule, XY, involves σ 

and π interactions. The XY molecules have vacant or partially unoccupied π* orbitals that 

match well with the filled dπ orbitals of the central metal ion (Fe). This orbital geometry 

results in the Fe-XY π back-bonding, where donation of electron density from Fe ion to 

XY in the dπ-π* system occurs. Due to this back-bonding, the Fe-X bond becomes 

stronger while X-Y bond becomes weaker.21 
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Figure 10 Schematic representation of σ- and π- bonding in porphyrin54, 55
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1.3 NMR Spectroscopy of heme proteins 

NMR is a very useful technique for investigating structure-function relationships 

in metalloproteins. NMR is used to investigate the electronic environment and physical 

structure of the heme and its protein environment for several oxidation/ spin states of the 

protein.   

Experimental distance restraints data obtained from proton-proton NOEs (Nuclear 

Overhauser effect) are the primary data used to define the secondary and tertiary structure 

of a protein. NOEs arise from through space dipole-dipole interactions of nearby protons, 

rather than through bond interactions. Therefore, distances of protons nearby in space, ≤ 

5Å can be derived even though the protons may be on residues far away in the primary 

sequence of the protein. The intensity of the NOE cross peak is proportional to the 

inverse of the sixth power of the distance between the two nuclei due to averaging caused 

by rotational motion. 

NMR can be applied to molecules for which no single crystal structures are 

available. Comparison can also be made from the solution state structure derived from 

NMR spectroscopy and the X-Ray crystal structure i.e. the methods complement each 

other.56 NMR of protein solution can be employed to help the assignment of heme or 

amino acid proton signals and consequently determine the 3D structure from solution 

state of protein hence complement X-Ray diffraction data.  NMR as a tool has much to 

offer for all hemeproteins. The NMR spectra of paramagnetic hemes show some 

hyperfine shifted regions easy for analysis e.g. the hyperfine shifted regions are very well 

resolved and outside the diamagnetic region (0-10 ppm window). However paramagnetic 

hemes have large linewidths in high spin forms but reduced linewidths in low spin forms. 
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Studies with a paramagnetic heme ferric-CN (low spin) were done in our lab and will be 

discussed briefly.  It is noted that diamagnetic heme protein signals exhibit less line 

broadening, however the window is in the strongly overlapped region only showing little 

except that the protein is folded57.  

In high resolution NMR experiment an NMR tube containing the sample solution 

of interest is placed in a magnetic field B0 and then subjected to irradiation by one or 

several of radio-frequency (rf) pulses, B1, B2 or B3 as shown in Figure 11. Under the 

influence of B0 the nuclear spins are polarized and net macroscopic magnetization (M0) is 

along the Z axis. B1 applied along the X axis causes a torque on M0. The corresponding 

free induction decay (FID) is recorded during a period of ≈ 1 s, and the NMR spectrum is 

obtained by Fourier transform (FT) of the FID. 

 

 Figure 11 NMR signal obtained after application of a magnetic field 

 

 

 

 

 

 

 

 

B1 
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 1.3.1 The Nuclear Overhauser effect (NOESY) 

 

NOESY refers to the fractional change in intensity of one NMR line when another 

resonance is irradiated in a double irradiation experiment (cross polarization of nuclear 

spins). Nuclear Overhauser effects are due to dipolar interactions (through space 

interactions) between different nuclei and are correlated with the inverse of the sixth 

power of the internuclear distance58, where r is radial distance from the proton of origin. 

(see expression below)  

NOE signal ∝ 1/r6 

 

 

Figure 12 Simple 2D NOE spectrum 

 

Figure 12 above shows diagonal peaks and a cross peak obtained from protons 

which are less than 5 Å in space. Diagonal peaks have the same frequencies in both F1 

and F2 dimensions and they arise from coherence that is not transferred between spins 

during the mixing period.59 Cross peaks have different frequencies in F1 and F2 

)
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dimensions and result from the transfer of coherence from one spin to the other during 

mixing period of the experiment. Correlation between those protons close in space is 

indicated by a cross peak and the peak intensity is inversely proportional to the distance 

between the protons as described above.   

NOESY is the main technique employed to determine distances between protons 

attached to labeled 13C positions and protons on the substrate or on protein residues. To 

get distances a comparison of intensity of cross-peak with a reference pair of atoms of 

known separation distance is the easiest way to use:  

ղA{B}/ղX{Y}=r-6
AB/r-6

XY  

where distance of XY is found relative to known reference distance AB.60 

13C filtering helps eliminate thousands of other resonances and see only 

resonances from protons we care about in the active site. Labeling is necessary to enable 

labeled carbons to act as marker positions thus filtering can be done using protons 

attached to these reference positions. One of the initial aims of my work was to generate 

camphor deuterated at 5n and 5x positions to be used to check NOE signals in 

experiments done previously done in our lab and these efforts are described, though 

recently another approach to verify this effect has been undertaken, as described below.
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The first project involves NMR studies including NOE of P450cam which is 

labeled all methine carbons as proof of principle that experimental parameters can be 

obtained. The preparation of labeled samples will be discussed incorporating a method 

described in Mario Rivera’s61 paper of 2006. The approach involves using aminolevulinic 

acid (ALA) labeled 13C at the 4-position. This approach makes it possible to supplement 

13C labeled ALA in some forms of bacteria which lack the ALA synthase gene hence the 

labeled 13C is incorporated into the heme during protein expression. In the present work, 

focus was placed on using the Huber strain HU227 which was donated as a kind gift from 

Dr. Raner62 from the University of North Carolina at Greensboro. Transformation and 

expression of P450cam will be done using the mutant form of Escherichia coli (E. coli) 

HU227 which is unable to produce aminolevulinic acid (ALA) naturally. This E. coli 

strain has a mutation in the hemA gene which encodes for glutamyl-tRNA63. Glutamyl 

tRNA is required for biosynthesis of ALA, which is the precursor in the biosynthesis of 

heme. Therefore, by supplementing labeled ALA it is possible for high level 

incorporation of labeled 13C into the heme. 

However to get the labeled ALA, the method outlined mainly in Kajiwara’s 

paper1  was used starting with labeled glycine and protecting the reactive amine by use of 

Phthalic anhydride, activating the acetic acid to acetyl chloride, coupling reaction and 

hydrolysis to remove the protecting group. This is discussed in more detail in chapter 2. 

Once the methine carbons are labeled, 13C NOE filtered experiments were employed to 

get resonances from the protons on reference 13C labeled carbons and protons on the 

substrate. This technique allows us to calculate distances between protons hence 

important experimental data obtained which can be used to refine docking parameters.      
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1.4 Specific issues to be addressed in this work 

1.4.1 Utility of NMR in mapping active site of substituted hemes e.g. cytochromes 

P450 

Docking of substrates to the active site of P450s is an active research area for 

pharmaceutical chemists, whereby the substrate or inhibitor is docked into the active site 

of the enzyme to see the most energetically favorable structure. However, there is a 

deficiency of experimental evidence to use for the docking studies. The goal of this first 

project is to use NMR with labeled heme to provide distances between substrate and sites 

within the enzyme which contain isotopically labeled heme groups.  

 A lot of substrates have been docked into the active site of the enzyme. However, 

there is no direct experimental evidence for the binding form of the enzyme. Use of NMR 

will possibly help to get some distances from specifically labeled sites on the heme 

groups and some nearby protons from the substrate, hence refining the docking 

parameters. P450cam labeled with isotopically labeled heme will be used as the proof of 

principle method for the studies. Previous studies in our lab had provided preliminary 

evidence that we can obtain distances from labeled heme to the substrate hence to 

complete this project, initial efforts were made to synthesize 5,5’-d2 camphor in order to 

confirm assignments made. As will be seen, many difficulties were encountered and one 

reasonable alternative option, to employ structural analogues of camphor to confirm these 

results, have now been pursued. 
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1.4.2 Utilization of fluorinated substrates to stabilize Compound 1 intermediates of 

cytochromes P450 (CYP119) 

 

 Cytochromes P450 bind and cleave dioxygen to generate a potent intermediate 

(compound I) capable of hydroxylating relatively inert hydrocarbon substrates. The 

compound I form of CYP 119 has been reported to be more stable as compared to other 

P450s rendering this bacterial P450 an attractive choice in employing chemically inert 

substrates to stabilize this rather fleeting intermediate. Stabilization of these forms will 

possibly facilitate their characterization with resonance Raman spectroscopy. Also, 

studies of oxy complexes of CYP 119 will be done including cryoradiolysis of the oxy 

samples to study intermediates in the catalytic cycle for CYP119 including oxy, 

hydroperoxo and, most importantly, compound I.  
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CHAPTER 2 

UTILITY OF NMR IN MAPPING ACTIVE SITE OF SUBSTITUTED HEMES 

e.g. CYTOCHROMES P450

2.1 Introduction 

 

 

Figure 13 The active site of camphor bound cytochrome P450cam64 (Adapted from 

reference 64, PDB 2CPP) 

A very important issue of general interest is understanding how various substrates 

interact with the proteins. A lot of research in the previous decades has focused on 
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studying drug metabolizing enzymes, specifically drug metabolizing cytochromes P450. 

The main goal includes understanding how substrates can fit into various P450s; i.e., 

gaining detailed information about how various substrates, including pharmaceuticals and 

pollutants, interact with drug metabolizing P450s. 

One practical application of these studies is in drug design, where possible drug 

candidates are pre-screened using docking studies (a computer-based approach for 

identification of bound conformation of substrates and prediction of binding affinity). 

There are a lot of possible conformations in which substrates fit into active sites 

(especially for promiscuous drug-metabolizing enzymes which metabolize more than one 

substrate) hence if some experimental parameters are known will restrict docking results. 

Therefore, the goal of this work is to figure out how to get distances of a given substrate 

in the pocket. One way to get distances is to use two-dimensional Nuclear Magnetic 

Resonance (2D NMR) spectroscopy, specifically Nuclear Overhauser Effect 

spectroscopy to find distances between nearby protons. The main challenge for the 

method is that it picks thousands of these proton-proton resonances since proteins are 

very large polypeptide chains with thousands of protons. Hence one way to overcome this 

challenge is to focus only at a few protons we care about near the active site by labeling 

heme with 13C at some definite positions hence look at resonances from protons on the 

labeled anchors. This will enable 13C-filtering hence looking at only resonances from 

labeled positions on heme and other protons near the active site using this methodology. 

To incorporate 13C into the heme simple bacterial expression system Cytochrome 

P450cam will be used as proof of principle. 

Bacterial P450s 
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The cytochromes P450 are typically present in large numbers in eukaryotic cells 

than prokaryotic cells. However, bacterial P450s can be easily expressed and purified, 

they are soluble and relatively stable than mammalian P450s hence most of the 

understanding of P450 structure and mechanism was gained mainly using bacterial 

enzymes. Cytochrome P450cam (CYP101) originally obtained from Pseudomonas putida 

and now expressed in E. coli systems will be used in this work. Cytochrome P450cam 

has been expressed in our lab before but our interest was to incorporate the 13C label. 

Locally there is a strain of bacteria (HU227-a kind gift from Professor Raner, G. M. (The 

University of North Carolina at Greensboro) which cannot make its own aminolevulinic 

acid (ALA, a heme-precursor). HU227 strain of bacteria was used, supplementing the 

growth medium with 5-13C ALA. 
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2.1.1 Synthesis of [5-13C] δ-Aminolevulinic acid (ALA) 

 

ALA is the first common precursor in the tetrapyrrolle biosynthetic pathway, 

leading to hemes, chlorophylls, vitamins etc. There have been several methods reported 

for the synthesis of ALA but these suffer from disadvantages of multi-step routes, low 

yields and inconvenient purification resulting in high cost of synthesis of both unlabeled 

and labeled ALA. Here we report an efficient approach to synthesize ALA using labeled 

glycine. 

ALA can be synthesized starting with glycine, a cheap chemical from Sigma 

Aldrich. For practice the unlabeled glycine was used to form unlabeled ALA. Since we 

are interested in incorporating a 13C label, 2-13C glycine was used to form [5-13C] δ-ALA. 

Aminolevulinic acid (ALA) was synthesized in four steps by the condensation of glycine 

and phthalic anhydride, followed by the conversion to the chloride, coupling reaction 

with a three-carbon unit and hydrolysis. This was adapted from previously published 

procedures1, 65 with minor modifications.  
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2.1.2 Expression of [5-13C] δ-ALA P450cam 

 

The expression of [5-13C] δ-ALA P450cam is essentially like the expression of 

wild type P450cam, with only one exception that 20 mg/L of [5-13C] δ-ALA is 

supplemented to the growth medium. Since HU227 strain of E. coli cannot make its own 

ALA, the labeled ALA is taken up and forms the labeled heme as described in Figure 16 

below. Cytochrome P450cam is used as proof of principle, see Figure 14 below 

 

Figure 14 The active site of P450cam with camphor bound showing distances from 

protons on 13C-labelled positions on heme (yellow) to protons on substrate molecule66 

(Adapted from reference 66)
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2.2 Material and Methods 

Chemicals were of high quality grade and used as received unless stated 

otherwise. Most chemicals were purchased from Sigma Aldrich. HU227 strain of E. coli 

was a kind donation from Professor Raner. Unlabeled glycine was purchased from Sigma 

Aldrich. Phthalic anhydride, Thionyl chloride, Toluene, Zinc/ copper couple, Ethyl 3-

bromopropionate, 2-butanone, sodium iodide, Tetrakis (triphenylphosphine) palladium 

(0), dimethyl acetamide, hexane, diethyl ether, sodium chloride and sodium hydrogen 

carbonate were all purchased from VWR. Labeled glycine [2-13C glycine] was purchased 

from Cambridge isotopes. Hexane is further distilled to make it very pure for the 

chromatographic work. The Cytochrome P450 2D6 plasmid67 was a kind gift from Dr. E 

Johnson of Scripps research institute.  

Instrumentation 

1H NMR and 13C NMR performed using a Varian Model AS 400, 2D HMQC and 

NOESY experiments were performed using a Model Varian AS 600 MHz, equipped with 

a triple resonance cryoprobe. Melting points were determined from a Yanaco micro 

melting point.  GC/ MS spectra performed on an Agilent Technologies GC Model 

G6850A (G2630A) and MS Model G2577A. The software for acquisition and processing 

is MSD ChemStation G1701DA. GC/MS spectra further processed with MestRenova 

software. UV-Visible measurements were obtained using a Hewlett-Packard (HP)) Model 

8452A Diode Array UV-Vis Spectrophotometer. 
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2.2.1 Expression and purification of P450cam 

 

 2.2.1.1 Transformation 

 A water bath was set up at 42 °C. BL21 cells were thawed on wet ice and 2 

falcon tubes were chilled by placing on ice. The cells were mixed gently by flicking the 

tube using the index finger (finger flicking technique). 50 µL of cells were pipetted into 

each of the chilled falcon tubes. 2 µL of P450cam DNA was added to tube 1. Unused 

cells were frozen on ice for 5 minutes and returned to the -80 °C freezer. 2 µL of control 

DNA was added to tube 2 and mixed gently by using the finger flicking technique. The 

tubes were incubated in the cold room for 30 minutes. Cells were heat shocked for 30 s in 

a water bath preset at exactly 42 °C. The tubes were put on ice for 5 minutes without 

shaking. 250 µL of pre-warmed SOC medium was added to each tube. Tubes were 

incubated at 37 °C and shaken at 225 rpm for 1 hour to grow the cells. After 1 hour, the 

cells (50µL) were plated onto an LB agar plate to grow the cells in the appropriate 

antibiotic, in this case 100 mg/L ampicillin. The plates were inverted and incubated at 37 

°C overnight. 

2.2.1.1 Preparation of plates 

10 g of LB agar was added to 250 mL of water in a 500 mL-plastic conical flask. 

The solution was heated in a microwave oven for 2 minutes while turning off power 

(pause) every 15s and gently shaking to avoid formation of bubbles. The solution was 

cooled for about 10 minutes and ampicillin (100 mg/L) was added with gentle shaking. 
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The solution was poured onto clearly labeled plates and allowed to cool down for 30 

minutes. Plates were sealed with parafilm and stored in 4 °C freezer until needed. 

   

2.21.3 Preparation of 2YT (Yeast extract and Tryptone) media 4 x 1 L 

1 L of water was added to each flask, followed by16 g tryptone, 10 g yeast and 5 

g of NaCl. Water was added first then the solid to prevent micro-fog. To another small 

250 mL flask about 80 mL of water was added followed by 2.5 g LB broth (starter 

culture). All flasks were covered with aluminum foil and autoclaved for 20 minutes. The 

media was cooled and 100 mg/L ampicillin was added to each flask. The starter culture 

was inoculated with a single well separated colony from the plates and incubated at 37 

°C, 250 rpm overnight. 

 2.2.1.4 Inoculation 

The 4 large flasks were incubated for about 45 minutes and 10 mL (1 %) of the 

starter culture inoculated into each flask. 5ml of this solution was taken and stored in the 

cold room (blank solution). The cells were incubated at 37 °C and 250 rpm. The growth 

of the cells was monitored by checking optical density after every 30 minutes until 

OD600 was 0.6-0.8 (about 3.5 hours). Results obtained in my second trial are shown in 

Table 3 (below). 

Table 3 Typical growth of cells showing ideal time for inoculation 

 

 

  

Time/minutes 0 15 30 80 100 160 180 200 210

Absorbance at 600nm 0.0154 0.0136 0.1076 0.1164 0.1198 0.2126 0.3646 0.544 0.621
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Glycerol stock Solution 

At this stage when cells had maximum growth rate (OD 600 of 0.6), 800 µL of 

the cells was withdrawn and put in an Eppendorf tube, 200 µL of glycerol was also added 

to the tube, thoroughly mixed by vortexing and stored in -80 °C freezer. 

 

Induction 

I M Isopropyl β-D-1-thiogalactopyranoside (IPTG) was prepared by dissolving 10 

g of IPTG in 42 mL water in a large tube and stirred to ensure all the material dissolves. 

Note IPTG is photosensitive hence the tube was covered with aluminum foil. 

IPTG (final concentration 1 mM) was added to each flask and aminolevulinic acid 

(ALA)i (final concentration 30 µM).  

 The solutions were incubated at room temp (24 °C) and shaken at 190 rpm for 21 

hours. 1 hour before harvest after, camphor was added to each flask (to a final 

concentration of 1 mM) and incubation continued for another hour. Cells were harvested 

by centrifugation using large centrifuging tubes at 7000 rpm (6300 g) for 15 minutes. 

Harvested cells were stored in a plastic tube at -80 °C. Average mass of wet cells was 

about 65 g. 
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2.2.1.5 Purification 

Column preparation (DEAE) 

DEAE column was prepared by running 6 column volumes of running buffer 

through the column. DEAE column was cleaned by running 6 column volumes of 1 M 

KCl. When the column was very dirty, it was cleaned by running 2 column volumes of 

0.1 M KOH, then 2 column volumes of 0.1 M HCl then equilibrated with the correct 

buffer. 

Preparation of Buffers 

This section shows a detailed way in which one of the buffers for purification of 

protein was prepared. A more summarized version of this and many other buffers and 

stock solutions used are shown in the appendix section and this made it easier for more 

buffers prepared during my research studies. 4 L of 1 mM camphor was prepared. All 

solutions prepared use the 1 mM camphor solution.  

0.25 M Tris-chloride stock solution was prepared by dissolving 39.4 g of Tris-

hydrochloride in about 0.5 L of 1 mM camphor solution in a 1 L volumetric flask and 

made up to the mark using the same solution. 

0.25 M Tris-base stock solution was prepared by dissolving 60.57 g of Tris-base 

in about 0.5 L of 1 mM camphor solution in a 1 L volumetric flask and made up to the 

mark using the 1 mM camphor solution.  

Running buffer (A): 50 mM Tris Chloride pH7.5, 25 mM KCl and 1 mM 

camphor. This buffer was prepared by adding 400 ml of 0.25 M Tris-Chloride to 2 L 

volumetric flask. 3.7272 g of KCl was also added to this and made up to 2 L mark using 
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the 1 mM solution of camphor. The base was prepared in an analogous way, using the 

stock solution. The pH was adjusted to 7.5. 

 Cell Lysis 

Lysis buffer contains: 50 mM Tris-Cl pH 7.5 at room temperature, 25 mM KCl, 

and 1 mM camphor. Assuming cells have a density of 1 g/ml the final lysis volume 

would be 65 g x 3=195 ml≈200 mL. Two thirds of this amount will be the lysis buffer so 

for this volume it implies 133 ml of DEAE running buffer prepared in previous section 

was added to a beaker and the cells would make up the difference. All lysis components 

were added as shown below: 

Phenylmethylsulfonylfluoride (PMSF 1 mM), 1 µg/ mL leupeptin, 1 mg/mL 

pepstatin, 1 mg/mL antipain, 32 Units/mL DNase, 3 Units/mL RNase, 1 mg/mL 

lysozyme. The cells were physically cracked into smaller pieces and added to the beaker 

with lysis components and the buffer. The components were sonicated using 50 % duty 

cycle, power 3, timer on hold. Components were sonicated for 1 minute, 5 times allowing 

5 minutes between cycles to cool. Cells were kept on ice for all this period to avoid 

frothing. 

The supernatant was obtained by centrifugation at 14000 rpm (25 200 g) for 20 

minutes followed by centrifugation again at 20000 rpm (51 428 g) using smaller 

centrifuge tubes for 1 hour. The resulting protein was concentrated using a concentration 

cell to a volume of about 20 ml. Buffer exchange was done 5 times adding the DEAE 

running buffer prepared. This is important to remove the other components and this 

enables the protein to bind in the DEAE column.  
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 Column Preparation 

500 ml of 0.5 M Tris-acid and 100 mL of 0.5 M tris-base were prepared. 50 g of 

DE53 pre-swollen anion exchange gel was weighed and placed in 500 ml beaker. 300 mL 

of Tris-hydrochloride was added and mixed gently using a glass rod. The pH of the 

solution was adjusted using Tris-base to pH 7.4 and transferred to a 500-ml conical flask, 

degassed and left to settle for about 30 minutes. The top layer with buffer and fine 

particles was decanted and carefully poured the gel suspension to a vertical column in 1 

continuous pour and was left to settle.   The column was already equilibrated by passing 

through the running buffer to ensure the pH, voltage and conductivity of the buffer is 

almost equal to that of the eluent. This was checked using a calibrated pH meter and the 

conductivity meter and typical results for one of my trials is shown in the table below. 

Table 4 Column equilibration  

 

 

 The column was well equilibrated and the protein was loaded and washed with 

several column volumes of running buffer.  The absorbance of eluent was checked to be 

almost the same as that of the buffer to ensure no components were eluting.  The protein 

was eluted using a gradient of 0 % to 100 % with a flow rate of 2-3 ml/ min and fractions 

of about 2.0 mL each were collected. Elution buffer (buffer B) was 50 mM Tris chloride, 

300 mM KCl, 1 mM camphor, pH 7.5. All fractions with a significant brown color were 

pH Voltage/mV Conductivity / s/cm

Buffer 7.52 31.7 2.73

Eluent 7.49 31.3 2.82
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pooled and fractions with Rz values (A392/ A280) > 0.5 were loaded to the Phenyl 

sepharose column. Typical results are shown in Table 5 below. 

Table 5 Typical Rz values for fractions of P450cam during purification on a DEAE 

column 

 

 

Note that to save time not all fractions were checked and fractions 3-21 with Rz 

values > 0.5 were pooled and mixed. The other fractions were also mixed and purified 

again using DEAE as before. However, it is advisable to reject fractions with very low Rz 

Fraction # A392 A280 Rz value

1 0.7265 2.2623 0.321

2 1.117 2.3369 0.476

3 1.6597 2.541 0.653

4 _ _ _

5 _ _ _

6 _ _ _

7 _ _ _

8 _ _ _

9 _ _ _

10 1.8308 2.126 0.861

11 _ _ _

12 _ _ _

13 _ _ _

14 _ _ _

15 1.1653 1.6415 0.7099

16 _ _ _

17 _ _ _

18 _ _ _

19

20 0.8482 1.5253 0.556

21 0.8099 1.5965 0.507

22 0.9847 1.9928 0.494

23 0.636 1.3949 0.456

24 _ _ _

25 0.8087 1.9887 0.407
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values and those without a significant brown color.  Protein was concentrated and stored 

in the -80 °C freezer for further purification. 

 Phenyl Sepharose (Hi-Res) column 

Running buffer (buffer A): 50 mM Tris-Cl pH 7.5, 50 mM KCl (needed for substrate 

binding, 25 % (NH4)2SO4, 1 mM camphor 

Elution buffer (buffer B): 50 mM Tris-Cl pH 7.5, 50 mM KCl, 1mM camphor. 

The column was equilibrated with several column volumes of the buffer checking 

the pH and conductivity of the solution. The concentrated protein fractions with Rz 

values > 0.5 were placed in small centrifuge tubes and buffer exchange done 5 times 

adding fresh running buffer. When buffer exchange was complete, 75 mg/ml ammonium 

sulfate was added to the protein slowly and immediately loaded the protein to the 

equilibrated column. Note that, if the protein precipitated, it was diluted with a minimum 

amount of buffer (running buffer for sepharose) and load protein immediately.  When 

protein was fully loaded, the buffer was added gently using a dropper and washed the 

protein with several column volumes of buffer. About 48 hours is an ideal wash to get 

pure protein. The protein was eluted using gradient elution as before collecting several 

fractions of about 2 mL each. Protein purity was checked and fractions with Rz ≥ 1.4 

were pooled and are suitable for assays. 

The protein was concentrated as before and buffer exchanged with Phosphate 

buffer (100 mM PB, 100 mM KCl, 1 mM camphor, pH 7.4) to remove ammonium 

sulfate. The concentration of protein was determined using Beer’s law and extinction 

coefficient 102 mM-1cm-1 at 394 nm. The protein was stored in a plastic tube in -80 °C 

freezer. 
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2.2.1.6 Preparation of substrate free substrate free CYP101 

The substrate free form of CYP101 was prepared by passing CYP101 samples, 

isolated in the presence of camphor, through a G25 column slowly with 50 mM MOPS 

(morpholino-propane sulfonic acid) pH 7.4. The purity of substrate free form was 

checked using UV-visible spectroscopy. The MOPS buffer was removed by buffer 

exchange (5 x 1 mL 100 mM PB pH 7.4, 100 mM KCl) through centrifugation at about 

4000 rpm. The purified substrate free samples were used the same day, as it converts to 

P420 easily during the experiment or when stored.  
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2.2.2 Synthesis of ALA 

 

Summary 

Aminolevulinic acid (ALA) was synthesized in four steps by the condensation of 

glycine and phthalic anhydride, followed by the conversion to the chloride, coupling 

reaction with a three-carbon unit and hydrolysis. For practice synthesis was done with 

unlabeled glycine as shown in scheme 2 below 

Abbreviations, Aminolevulinic acid (ALA), Phthalimido acetic acid (PAA), Phthalimido 

acetyl chloride (PACl), Ethyl 3-iodopropionate (EIP), & Ethyl phthalimido levulinate 

(EPL) 

 

Scheme 2 Aminolevulinic acid synthesis 
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 Phthalimido acetic acid (PAA) 

Glycine (1.0 g, 13.0 mmol) and phthalic anhydride (2.0 g, 13.5 mmol) were 

thoroughly ground using a mortar and pestle to increase surface area of reactants & 

heated using a heating mantle at 160 °C under nitrogen, until all of it was melted. Heating 

was continued for a further 2 minutes to ensure complete reaction. After cooling, the 

residue was recrystallized from 100 mL of hot water to give phthalimido acetic acid as 

white needles (2.3 g, 90 % yield). The solid was filtered and allowed to dry under 

vacuum for a couple of hours and further dried by heating in an oven at 100 °C for a few 

more hours to yield about 2.3 g of dried product which was stored in a desiccator under 

vacuum at room temperature. Melting point was 192-194 °C implying that this product 

was pure.1H NMR (CDCl3) δ: 4.49 (dd, J=143.3Hz, 2J=1.1Hz), 7.75-7.92 (m, 4H); 13C 

NMR (CDCl3) δ=38.4 (d, J=13.3 Hz). 

 Ethyl 3-iodopropionate (EIP) 

A suspension of ethyl 3-bromopropionate (10 mL, 78.0 mmol) and NaI (17 g, 

113.4 mmol) in 2-butanone (100 ml) was refluxed at 90 °C for 3 hours under nitrogen. 

After cooling, the crystals were removed by filtration. The filtrate was evaporated, 

diluted with ether 80 mL, and washed with 50 mL of saturated brine 4 times. Distillation 

of the crude product gave ethyl 3-iodopropionate (13 g).  This is illustrated in Scheme 2 

above. 1H NMR (CDCl3) δ: 1.29 (t, 3H, J=7.1Hz), 2.97 (t, 2H, J=7.1 Hz), 3.34 (t, 2H, 

J=7.1 Hz)), 4.19 (q, 2H, J=7.1 Hz) 
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Ethyl phthalimido levulinate (EPL) 

Note that for the following moisture sensitive reactions all liquids were 

transferred using syringes to flame dried flasks which were immediately stoppered. The 

reaction is moisture sensitive and reversible hence all water is eliminated to force 

reaction forward according to Le Chatelier’s principle. A mixture of phthalimido acetic 

acid (2.3 g, 11.1 mmol) and thionyl chloride (10 mL) was refluxed at 80 °C for 3 hours. 

The excess thionyl chloride was removed using the rotor vapor and further removed by 

washing with about 6 mL of hexane 3 times. The residue was dissolved in dry toluene (5 

ml) under nitrogen. 2.5 ml of ethyl 3-iodopropionate was put into a 10-mL flask and 

nitrogen was bubbled through for about 5 minutes. 1 g of zinc/copper couple was placed 

in a two-neck flask and nitrogen was also bubbled through. This was repeated for two 

other small flasks with 2 mL of Dimethylacetamide (DMA) and 27 mL of toluene. Using 

a female- female delivery tube the 2 mL of DMA was transferred to the two-neck flask 

with zinc/copper couple. The same process was repeated to transfer the 27 mL of toluene 

and ethyl 3-iodopropionate under nitrogen.  

The flasks were transferred into the glove box together with a weighing paper, a 

dropper. The two-neck flask was stirred for one hour. After 1 hour, the temperature was 

increased to 60 °C and stirring was continued for 4.5 hours. After 4.5 hours the catalyst, 

418 mg of Pd(PPh3)4 and 5 minutes later the solution of phthalimido acetic acid was 

added using a dropper and reaction was complete after 10 minutes. The solution was 

taken out of the glove box and diluted with 200 mL of ethyl acetate and washed 3 times 

with 50 mL of 1N HCl, followed by 50 mL of saturated NaHCO3 and then lastly washed 

3 times with 50 mL of saturated brine. The product was dried with 20 g of MgSO4 and 
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evaporated. Silica gel chromatography of the crude product on silica gel using 50% 

Hexane:  50 % ethyl acetate, then 30 % hexane: 70 % ethyl acetate gave 1.1 g of ethyl 

phthalimido levulinate. About 24 fractions were collected every 20 minutes and fractions 

checked using thin layer chromatography. Clean fractions containing the product were 

pooled and evaporated.  1H NMR also confirmed the product. The other fractions were 

also mixed and purified again by thin layer chromatography. Typical results are shown in 

the results section. Melting point of product was 70-71 °C, slightly lower than the 

theoretical value of 75-77 °C. This means that the product is not very pure and the 

impurities could be removed by recrystallization in ethanol. For trial 4 the 1H NMR 

showed that the product is clean hence no silica gel chromatography was carried out. The 

product is recrystallized in about 3 mL of hot ethanol to aid dissolution and heated using 

the blower and leave flask standing for some hours to ensure crystals form. 

 Aminolevulinic acid (ALA) 

A solution of ethyl- phthalimido levulinate (1.1 g) in 6 N HCl was refluxed at 110 

°C for 24 hours to remove the protecting group. The reaction mixture was cooled to room 

temperature and filtered. The filtrate was washed with ether (10 mL) using a small 

separating funnel. Note that the product is in the aqueous layer therefore after separation 

of the organic layer from the aqueous layer the product bottom layer was taken out into a 

50-mL beaker, the ether layer then taken out into another beaker then the product is put 

back into the separating funnel and 10 mL of ether added until 4 washes were done.  

The product was evaporated using the rotor vapor to drive off the water and HCl. 

Note this was done at 80 °C and took a long time. When it had completely dried, the solid 
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product was recrystallized using 3 mL of hot ethanol to dissolve the product and a few 

drops of warm ether was added using a dropper. The ether was warmed to about 30 °C. 

The 50-mL flask with product ALA, ethanol and ether was left standing overnight to 

allow crystallization of the product. The product was filtered and stored in vials in the 

desiccator. 
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2.2.3 Biosynthesis of 13C-labeled hemes 

 

To label the hemes, the approach outlined by Rivera and coworkers was used as 

shown in Figure 15. In the studies done so far in our lab we are interested in labeling 

methine carbons hence see resonances from protons on these as reference points thus [5-

13C]-ALA was used. The ALA itself was synthesized in our lab starting with 13C labeled 

glycine to form [5-13C]-ALA.  

 

 

Figure 15 Expected labeling scheme starting with labeled ALA58
 

 

The protons labeled in this work are symmetrically arranged around the heme, 

hence allows to look at all positions around the heme. The labeled positions using [5-

13C]-ALA are also not floppy unlike labeling the vinyls or propionates which are likely to 

give varying distances from the substrate.  

The biosynthesis of labeled heme is highlighted in more detail in the scheme below: 
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Figure 16 Heme biosynthesis from labeled [5-13C]-ALA58 

 

HU227 strain of E. coli was used and this strain lacks the gene to synthesize ALA 

therefore the medium was supplemented with ALA as the sole source of ALA which was 

taken up to label the heme at positions indicated. The detailed biosynthesis of the labeled 

heme is outlined on Figure 16. This will not be discussed further but was included to 

illustrate the biosynthesis of heme. 

2.2.4 Expression of 5-13C ALA P450cam 

 

The same procedure for expressing P450cam above was repeated using HU227 

cells instead, the E. coli strain lacking the gene for ALA synthase instead of the normal 



53 

 

BL21 cells. For this expression, the 2YT medium was supplemented with 20 mg/L [5- 

13C] labeled ALA and all other expression steps are the same. 
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2.2.5 CYP 2D6 transformation and expression 

 

CYP 2D6 transformation 

The original plan to explore the utility of using [5-13C]-ALA generated 13C-

labeled P450s was to begin with an actual drug-metabolizing enzyme, specifically, 

CYP2D6.  A lot of work was done in our lab by other graduate students to try to express 

this enzyme, but it was eventually determined that the plasmid that had been obtained 

from another lab was defective, so the efforts were abandoned and a decision was made 

to focus efforts on CYP101. At some later point, a new plasmid containing the CYP2D6 

gene was obtained from Dr. Eric Johnson of The Scripps Research Institute and I began 

new efforts to express CYP2D6, as described below.  

This work was done at Concordia University of Wisconsin and started in Fall of 

2013. A 20 µL aliquot of BL21 cells were pipetted into a pre-cooled Eppendorf tube and 

2 µL of DNA added to the cells. The cells were mixed gently by flicking with an index 

finger to ensure DNA collects at the bottom of the tube. The tube was placed on ice for 

about 5 minutes. The cells were heat shocked by placing tube in a water bath preset at 

exactly 42 °C ensuring the solution is fully submerged in the water. Tubes were placed 

back in ice for 2 minutes and 80 µL of pre-warmed SOC medium was added to the 

mixture and incubated at 37 °C and 250 rpm for 1 hour to grow the cells prior to plating 

on LB ampicillin plates. The cells were plated onto 2 plates adding 5 µL and 10 µL into 

each plate. The plates were inverted and incubated in an oven at 37 °C overnight. There 

was no growth from all the plates. 

The transformation was repeated using 50 µL of DH5α cells added to a falcon 

tube, 1 µL of DNA 2D6 plasmid added and put on ice for 30 minutes. After exactly 30 
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minutes the falcon tube was placed in a 42 °C water bath tightly controlled. The tube was 

placed back on ice for 2 minutes. 250 µL of clear and pre-warmed SOC medium was 

added and tube incubated at 37 °C, 250 rpm for 1 hour. These cells were plated in three 

labeled plates 10 µL, 100 µL and 200 µL. Cells were delivered with micropipettes using 

sterile tips and spread throughout the plates using a sterile glass rod. The three plates 

were incubated overnight at 37 °C and good colonies were obtained from these plates. A 

colony well separated was selected and grown again to ensure a colony with the 2D6 

plasmid was used. This was achieved by taking a well separated colony and inoculating it 

on a new plate using a sterile wooden splint. A sterile metal loop was used to spread the 

cells evenly so that we get good colonies. Two plates were prepared and incubated at 37 

°C overnight.  

LB broth supplemented with 100 mg/ mL ampicillin was inoculated with a single 

colony from the plates and incubated for 3 hours at 37 °C. OD600 was checked at and mid-

log phase these cells had one plasmid, the 2D6 plasmid. After 3 hours, cells were put on 

ice for about 10 minutes and centrifuged for 8 minutes at 4500 rpm to obtain a good 

pellet. The pellet was resuspended in 100 µL of water and transferred to an Eppendorf 

tube and centrifuged at 13 000 rpm for 1 minute. 1 µL of 10 ng/µL of chaperone pGro7 

was pipetted into the Eppendorf tube and mixed gently with the pipette tip. This solution 

containing cells with 2D6 plasmid and the chaperone pGro7 was transferred to a 

disposable electroporation cell shown in Figure 19 below. To introduce the chaperone, 

pGro7 electroporation was used which is using an electrical pulse to increase the 

permeability of the lipid bilayer and once the pulse is stopped the chaperone is 

incorporated and the lipid bilayer heals with the chaperone inside. 
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Electroporation 

Electroporation was used to incorporate a second plasmid called pGro 7 which 

contains the chaperones groES and groEL which are important in folding of the protein. 

The promoter for this plasmid is araB and the inducer for this promoter is L-arabinose68.  

 

 

Figure 17 Plasmid pGro7,69,70 containing chaperones groES and groEL 

 

 

Figure 18 showing electroporation to incorporate the chaperone into the E. coli DH5α 

cells. The first step involves normal transformation of 2D6 plasmid in DH5α cells, 

whereas the second step is the electroporation step to incorporate the chaperone plasmid.  



57 

 

The pGro 7 chaperone is as shown in Figure 17 above. It contains the chaperones 

groES and groEL. These chaperones help in the proper folding of the 2D6 protein,71,72. 

Induction of 2D6 is by IPTG whereas pGro7 is induced by arabinose. For successful 

expression of 2D6, transformation of the 2D6 plasmid was carried out in a normal way as 

already discussed. To incorporate the second plasmid, pGro7 electroporation was used 

which uses a high voltage and a short pulse to create a voltage across the lipid bilayer 

thus facilitating entry of the chaperone as pores are formed on the lipid bilayer. 

              

 

Figure 19 Electroporation cell (left), multiporator (right) for incorporation of second 

plasmid and details about the electroporation process (bottom)         
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For this electroporation process cells in suspension were placed in the 

electroporation cell shown in Figure 19 above. The electroporation cell was placed in the 

multiporator shown in Figure 19 (right) above and the mode for electroporation of 

bacteria and yeast was selected and charge set to U 2500 V and τ of 5 ms, where U is the 

voltage set and τ is the time constant. Electroporation was triggered by pressing the start 

key and charge appeared on the display U 2000 V, τ 5 ms and o. After charging 

procedure had ended discharging occurred and it was indicated by a flash and a double 

acoustic signal. After the experiment ended a double acoustic signal is emitted and the 

initial information and the set parameters appeared on the display. The actual parameters 

Ua (actual measured voltage, in volts) and τa (actual time constant, in ms) also appear on 

the display. For this experiment Ua 2260 V, τa 3.0 ms, o appeared. That marked the end of 

the experiment and cell were recovered from the electroporation cell by adding 250 µL of 

SOC medium and a micropipette used to suck and release cells from the electroporation 

cell. The micropipette was used to draw the solution from the cell and placed in a 50-mL 

tube and incubated for 1 hour at 37 °C to allow growth of the cells with both 2D6 plasmid 

and the chaperone pGro7.  

After I hour, the cells were inoculated onto plates containing 100 mg/mL of both 

ampicillin and chloramphenicol. Three plates were prepared, 10 µL, 100 µL and all 

recovered cells. Plates were incubated at 37 °C overnight. There was successful growth in 

plates as expected and a new plate was grown from a few selected colonies. This is 

important to ensure only cells with both plasmids grow. 
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Checking if Electroporation was successful 

From the plate grown with both plasmids 2D6 and pGro7, a single well separated 

colony was grown in 10 mL of LB broth and incubated overnight at 37 °C. Glycerol 

stocks were prepared from this overnight culture. Only 1.5 mL of this culture was 

digested to get pure DNA using the QIAprep spin miniprep kit. 

Plasmid Purification 

1.5 mL of bacterial overnight culture was centrifuged at 4500 rpm for 10 minutes 

at 15 °C. The pelleted bacterial cells were resuspended in 250 µL of buffer P1 and 

transferred to a microcentrifuge tube. 250 µL of buffer P2 was added and mixed by 

inverting the tube six times. 350 µL of buffer N3 was added and mixed immediately and 

thoroughly by inverting the tube six times. The cells were centrifuged at 13000 rpm in a 

small table top microcentrifuge for 10 minutes. The supernatant was applied to a 

QIAprep spin column by decanting and centrifuged for 60 s. The column was washed 

with 0.5 mL of buffer PB and centrifuged for 60 s. The column was also washed with 

0.75 mL of buffer PE and centrifuged for 60 s and centrifuged again for 60 s to remove 

any residual wash buffer. The column was placed in a clean microcentrifuge tube and the 

DNA eluted by adding 50 µL of buffer EB (10 mM tris-CL, pH 8.5) to the center of the 

spin column. It was left to stand for 1 minute on ice then centrifuged for 1 min. 

Agarose gel Electrophoresis 

The buffer 50X Tris-acetate-EDTA (TAE) was available and 1X TAE was 

prepared by dissolving 20 mL of the 50X TAE stock with 980 mL of highly polished 

water. Agarose gel (1 %) was prepared by adding 1 g of agarose to 100 mL of 20X TAE 
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buffer and heating in a microwave for about 2 minutes until all the agarose had dissolved. 

The solution was cooled for 5 minutes and poured into a gel tray and the well comb was 

placed. The gel was left to cool down for about 20 minutes at room temperature.   

Preparations of samples: Two vials were used and 8 µL of the pure DNA eluted 

was added to the first vial. 12 µL of deionized water and 2.2 µL of loading buffer was 

added. The marker was prepared by adding 1.5 µL of standard, 18.5 µL of deionized 

water and 2.2 µL of loading buffer. The cell was set up as shown below: 

            

Figure 20 Agarose gel electrophoresis (left) and Foto/UV 26 where the gel is exposed to 

UV radiation and picture obtained. 

 

The sample was loaded onto the gel, marker placed in lane 1 and the digested 

DNA in lane 2 and lanes 3 and 4 left out as negative blank. The voltage was 100 mV and 
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60 s and the cell was run for 1 Hour. After I hour, the cell was stopped and the gel 

removed and immersed in Ethidium bromide (EtBr) for 10 minutes. The gel was exposed 

to UV radiation in a Foto/UV 26 as shown below and focused to get a better picture. The 

picture obtained is shown in the results section. 

CYP2D6 expression 

20 mL of LB broth solution supplemented with 100 mg/L ampicillin and 100 

mg/L chloramphenicol was inoculated with a single validated transformant and incubated 

overnight at 37 °C and 200 rpm. IL, 100 mL and 100 mL of Terrific broth (TB) were 

prepared and the recipe for this preparation is shown in the appendix section. TB was also 

supplemented with 100 mg/L ampicillin and chloramphenicol. 10mL solution of LB 

broth was inoculated into the 1 L flask 1 mL of LB broth solution with cells grown 

overnight was inoculated into each of the 100 mL of TB. The three flasks were incubated 

at 37 °C, 220 rpm and OD was checked after about 3 hours. When OD600 was 0.7, 5 mL 

of 1 M aminolevulinic acid (ALA, 5 mM), 1 mL of 1 M isopropyl β-D-

thiogalactopyranoside (IPTG, 1 mM) and 4 g of arabinose (4 g/L) were added. To the 

first 100 mL culture ALA (5 mM) and IPTG (1 mM) were added. To the second 100 mL 

flask (clearly labeled), ALA (5 mM) and arabinose were added. ALA is the heme 

precursor, IPTG induces 2D6 and arabinose induces the chaperone pGro7. The cells were 

incubated at 30 °C and 190 rpm for 24 hours. After 24 hours, the cells were harvested by 

centrifugation at 4000 rpm for 20 minutes. 10 g/L obtained from the 1 L culture and 2 g/L 

obtained from each of the 100 mL cultures.   

Cell Lysis 
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1 g of cells was taken from the three tubes and placed in small beakers labeled 

both IPTG & arabinose (B), IPTG only (I) and Arabinose only (A). 5 mL of 2D6 running 

buffer was added to each tube and mixed for 20 minutes. The cells were broken down by 

sonication 1 minute each tube allowing 5 minutes to cool. The protein was collected by 

centrifugation at 20000 rpm for 25 minutes. 

Purification of 2D6  

A very quick method (His-spin protein miniprep) to purify Histidine tagged 

proteins from cell-free extracts was followed to get protein for analysis by SDS PAGE. 

This is an easy and fast way to prepare pure protein for small scale studies. This method 

can be used to form purified high-quality protein in about 20 minutes. 250 µL of His-

affinity gel was pipetted to each of the three Zymo-spin P1 columns (labeled both IPTG 

& arabinose, IPTG only and arabinose only) and resin fully resuspended by vortexing and 

the columns were placed in a collecting tube. The gel was centrifuged at 13 000 rpm for 

10 s. 300 µL of protein sample was added to each spin column and the gel was 

resuspended by shaking. The protein interacted with the gel by incubating and shaking 

for 2 minutes. The mixture was centrifuged for 10 s and the flow through were discarded 

and the spin column was placed back into the collection tube. 250 µL of 2D6 running 

buffer prepared as shown in the appendix was added and the gel was resuspended then 

centrifuged for 10 s. The washing was repeated one more time to purify the protein. The 

spin column was placed in a standard microcentrifuge tube and 150 µL of elution buffer 

added and the gel was resuspended. The mixture was centrifuged for 10s at 13 000 rpm to 

collect the protein. 
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SDS-PAGE for 2D6 

Samples for analysis by SDS-PAGE were prepared by adding 5 µL of the whole 

cells and adding 10 µL of sample buffer. The sample buffer (Laemmli Buffer- 1X) was 

prepared by adding 950 µL of sample buffer to 50 µL of β-mercaptoethanol. For the pure 

protein purified obtained using His-spin protein miniprep to purify Histidine tagged 

proteins, 10 µL of protein was pipetted into an Eppendorf tube and 10µL of 1X Laemmli 

buffer was added. 10µL of marker protein was added to a labeled Eppendorf tube. All 

tubes were heated at 85 °C for 8 minutes to denature the proteins. The tubes were 

centrifuged at 13 000 rpm for 30 s and tubes placed on ice ready to load. 

The samples were loaded onto ready SDS-PAGE gel. The gel was run at 60 V for 

2 hours. After 2 hours, the cell was disassembled and stained with about 100 mL of 

Coomassie blue for 2 hours. The gel was washed 5 times with highly polished water and 

100 mL of distaining solution, and 2 kimwipes (to absorb the Coomassie blue) were 

added and mixture was mixed by gentle shaking at 90 rpm overnight. The gel was 

washed with highly polished water five times and a photo of the gel was taken.  
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2.2.6 Resonance Raman spectroscopy of [5-13C] δ-ALA P450cam 

 

RR measurements of ferric forms of the natural abundance and 13C enriched 

P450cam were acquired using 406 nm laser excitation line from the Kr+ laser (Coherent 

Innova Sabre Ion Laser) at the sample at 4 °C. All spectra were measured using a Spex 

1269 spectrometer equipped with a Spec-10 LN liquid nitrogen-cooled detector 

(Princeton Instruments, NJ). The slit width was 150 µm and the laser power incident on 

ferric samples was 10 mW.  Rayleigh scattering was removed from the Raman signal by 

using an appropriate notch filter (Kaiser Optical). The samples were placed in a N2-

driven spinning NMR tube and the spectra were collected using a 180°backscattering 

geometry with a cylindrical lens to achieve a line focus on the tube. Spectra were 

calibrated with data acquired for fenchone and processed with Grams/32 AI software 

(Galactic Industries, Salem, NH)
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2.2.7 NMR spectroscopy of [5-13C] δ-ALA P450cam 

 

NMR samples contained ~0.4-1 mM P450cam (both for the natural isotopic 

abundance and 13C enriched camphor bound P450cam), 30 mM PB, pD 7.4, 100 mM 

KCl, 1 mM camphor. Substrate free samples were prepared as described on page 47 

above followed by equilibration with 30 mM PB, pD 7.4, 100 mM KCl. The substrates 

camphor and norcamphor were added by buffer exchange with 30 mM PB, pD 7.4, 100 

mM KCl, 1 mM camphor/ norcamphor. Substrate binding was confirmed by UV-visible 

spectroscopy and finally10 mM CN- was formed by incubating with the same buffer in 

D2O containing CN- to form the low spin complex.  

One dimensional 1H NMR experiments were performed using 0.1 s acquisition 

time, 20 ms relaxation delay with a total of 256 scans at 25 °C and were collected before 

and after 13C and 2 D NMR measurements to verify sample integrity. A total of 400 000 

scans were collected for the 13C NMR experiment at 20 °C for both the natural abundance 

and 13C enriched substrate bound P450cam. The 1 D version of 1H-13C HSQC 

measurements for the natural abundance and 13C enriched substrate bound and free 

P450cam were performed at 20 °C using 23 ms acquisition time, 0.2 s relaxation delay 

and JCH = 200 Hz; a total of 240 000 scans were collected. 1H-13C HMQC experiments, 

with the decoupler turned off, were performed using 50 ms acquisition time, 10 ms 

relaxation delay and JCH = 300. 1H-1H NOESY was obtained with pre-saturation delay of 

100 ms, acquisition time of 43 ms, 10 ms mixing time, JCH = 600 and 7200 number of 

scans. All 1D NMR data were processed with the Spinworks NMR processing software 

or MestRenova.
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2.2.8 Synthesis of D2 camphor 

 

Ketocamphor synthesis 

 

10 g (1R) -(+)-camphor, 150 mL glacial acetic acid were added to three-neck 

flask. 20.7 g chromium trioxide was carefully added in three portions over 30 minutes 

(CAUTION: CHROMIUM TRIOXIDE MAY EXPLODE, ENSURE ENOUGH ANTI-

BUMPING STONES ADDED TO REACTION MIXTURE) and refluxed for 1 hour. The 

solution was quenched with 150 mL of water and cooled to room temperature. The 

organic layer was extracted using 100 mL ether. The extraction was repeated 3 times and 

the combined organic layer was washed with saturated sodium bicarbonate solution 3 

times, followed by washing with 100 ml of saturated brine. The product was dried with 

20 g of MgSO4, filtered and the solvent dried out under vacuum. 

The product was purified by passing through a silica gel [prepared by heating at 

150 ºC until no water is lost, then added 10 % of water]73 using a hexane/ acetate mixture 

(95:5), followed by alumina gel [activated the same way as silica gel above] using the 

same solvent mixture. Fractions containing relatively pure ketocamphor were pooled and 

analyzed by 1H NMR, 13C NMR and most importantly GC/MS.  

 

Synthesis of D2 Camphor 

Initial attempts 

0.05 g of ketocamphor, 0.0432 g d4-hydrazine and 0.134 g potassium tert-

butoxide were dissolved in 10 mL of DMSO-d6 and refluxed for 18 hours at 175 °C. 

After 18 hours, the mixture was cooled to room temperature and quenched by addition of 
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10 mL D2O and 1 mL of 30 % DCl (to neutralize excess potassium tert-butoxide) and 

stirred at room temperature for 30 minutes74. The method outlined was extracted from 

Perera paper but did not get the product after several trials. The method was also not 

detailed and we later abandoned the method and we tried modified Wolff Kishner 

reduction from literature. The product was obtained by removal of DMSO using 

extraction with 10 mL of ice-cold water and 10 mL ethylacetate. The DMSO is miscible 

in water hence is in the aqueous layer, whereas the product D2 camphor is soluble in 

ethylacetate hence collected in the organic layer. The extraction was repeated at least 3 

times followed by extraction with 10 mL of saturated sodium bicarbonate to get rid of 

excess acid, and lastly 10 mL of saturated NaCl, dried with 20 g of MgSO4, filtered and 

solvent evaporated under nitrogen. The product was purified by silica gel 

chromatography and analyzed by GC/ MS. 

Refined Procedure 

 

Freshly sublimed potassium-tert butoxide or potassium tert-butoxide dried at 110 

ºC under vacuum prior to use and cooled in a vacuum desiccator. DMSO-d6 was freshly 

distilled prior to use to drive out any water. 10.8 mg d4-hydrazine and 33.5 mg potassium 

tert-butoxide were added to 2.5 mL of DMSO-d6. 12.5 mg of ketocamphor and refluxed 

for 18 hours at 175 ºC. The formation of products was monitored by withdrawing a small 

sample using a long needle and checking using TLC and GCMS. The reaction was 

quenched by slow or dropwise addition of 2.5 mL D2O and 250 µL of 30 % DCl and 

stirred at room temperature for 30 minutes. 

 

Removal of DMSO achieved using extraction with 25 mL of ice-cold water and 

10 mL ethylacetate. The DMSO is miscible in water hence is in the aqueous layer, 
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whereas the product D2 camphor is soluble in ethylacetate hence collected in the organic 

layer. The extraction was repeated at least 3 times followed by extraction with 10 mL of 

saturated sodium bicarbonate to get rid of excess acid, and lastly 10 mL of saturated 

NaCl, dried with 10 g of MgSO4, filtered and solvent evaporated under nitrogen. The 

product was purified by silica gel chromatography and analyzed by TLC and GC/ MS.  

The method for hydrazine reduction was unsuccessful after several attempts, 

hence decided to use Cram modification of Wolff Kishner method. Adamantanone was 

initially used for practice since the ketone is not sterically hindered and initially thought 

to be a good model to study reduction of ketocamphor. This method involves isolation of 

hydrazone then adding the hydrazone slowly to refluxing DMSO and potassium tert-

butoxide. However it is well documented in literature that isolation of hydrazone can be 

complicated by formation of corresponding azine which can be formed during the initial 

formation of hydrazone or after isolation.75 Added to this is formation of the hydrazone 

as a very minor product for adamantanone and azine as the major product.  

This led to the reasoning that we need a better choice of model ketone for the 

reduction. Norcamphor was used and promising and giving more percentage hydrazone 

as we would expect in 5-ketocamphor.76 Formation of hydrazone generally was 

performed by stirring a solution of the ketone in anhydrous ethanol and under a nitrogen 

flow overnight. After the reaction was quenched with water and extracted with 

chloroform, dried with MgSO4 and analysis done using NMR, GC/MS and FTIR.  

Benzophenone hydrazone was also studied and was the best in terms of stability 

of hydrazone which is stable for several months. However, this was dismissed as it was 

not a good model for aliphatic hydrazone like ketocamphor hydrazone.  
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2.3 Results and Discussion 

2.3.1 Expression and Purification of P450cam 

  

 

Figure 21 Absorption spectrum for pure substrate bound (high spin) P450cam after 

expression and purification  

The P450cam was expressed and high purity protein obtained. Typical yields are 0.5 mL 

of 0.8 mM P450. The protein was stored at -80 °C. 
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Figure 22 Absorption spectrum of SF natural abundance CYP101 using the MOPS 

column. Initially had about 95 % high spin (SB) after purification of CYP101. After 

passing the SB protein through a MOPS column ≈96 % low spin (SF) was formed.  

 

Conversion from low to high spin state in P450s is correlated to the loss of the 

distal water ligand and this can be directly measured by monitoring the shift in the 

absorbance maximum from 415 nm to 390 nm. The extent of spin state conversion 

depends on temperature, pH, and ionic strength.  For the idealized case, as in CYP101, 

shown in Figure 22 above we observed clean shift from HS to LS upon removal of the 

substrate. 
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2.3.2 Synthesis of ALA 

 

 

Figure 23 1H NMR Comparing labeled to unlabeled ALA 

The spectra above compare the unlabeled relative to the 13C labeled ALA showing 

a doublet at 4.10 ppm in the labeled ALA and a singlet in the unlabeled case. This is one 

unique case of one proton signal (for two equivalent protons) coupled with 13C or where 

coupling is observed between two equivalent protons (on carbon labeled c) split by one 

13C to give rise to a doublet (13C-1H coupling)77, 59. In the unlabeled case, no coupling 

between those two equivalent protons and the 12C hence it’s a singlet. The spectra clearly 

demonstrate successful synthesis of pure labeled aminolevulunic acid.  The yield of ALA 

is 57 % based on the amount of the amount of ethyl phthalimido levulinate used. 
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2.3.3 Expression of [5-13C]-ALA P450cam 

 

 
 

Figure 24 Absorption spectrum for pure substrate bound [5-13C]-ALA P450cam 

The UV-visible spectrophotometry was used to check purity of the protein. As 

shown in Figure 24 above, CYP101 was successfully transformed and expressed in 

HU227 cells to form [5-13C]-ALA P450cam. The yield was 0.5 mL of 0.6 mM protein.  
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2.3.4 CYP 2D6 Transformation and expression 

 

Transformation of 2D6 was very successful and good growth of cells was 

observed when 2D6 plasmid was transformed in DH5α cells. Electroporation was also a 

success to incorporate the second plasmid for the chaperone proteins into the DH5α cells. 

This was confirmed using agarose gel electrophoresis and the results clearly showed both 

plasmids in the cell (see Figure 25 below) 

 
Figure 25 Agarose gel electrophoresis for 2D6 DNA, showing two bands in right lane 

from the 2D6 DNA and chaperone pGro7 DNA and their mass relative to marker bands 

(M) in left lane. The left picture shows a scanned copy of the original picture which was 

very faint and to the right same picture highlighted to show the bands clearly  

 

The transformed   cells were used to express 2D6 and this was also a success.  This was 

checked as SDS PAGE showed formation of CYP2D6 protein 
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Figure 26 SDS PAGE showing optimization for the expression of 2D6 with time (T in 

hours) and the mass of 2D6 protein (≈52 kDa) relative to the markers (M). 

 

As shown in Figure 26 above the 2D6 band could be traced during expression 

checked during the 96-hour period. From this experiment, it can be concluded that 2D6 

was formed (≈52 KDa) and maximized at 60 hours shown by the relative intensity of that 

band.   This project was however stopped because even though there was evidence of 

forming the protein, it was hard to purify and get the protein from the Ni NTA column 

probably due to the high instability of this truncated mammalian protein. 
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2.3.5 Resonance Raman Spectroscopy of [5-13C] δ-ALA P450cam 

 

Figure 27 High frequency RR spectrum of CYP101 
13

C labeled relative to the natural 

abundance CYP101 

 

The high frequency resonance Raman spectra, Figure 27 above shows the [5-

13C]-ALA P450cam relative to the natural abundance P450cam. The oxidation state 

marker band, v4 for natural abundance P450cam occurs at 1369 cm-1as expected for the 

ferric form but shifts by 12 cm-1 to 1357 cm-1 for the 13C labeled protein. This is expected 

since A1g porphyrin breathing mode contains significant contributions from the C-N 

stretches78, 79, as well as C-C stretching modes, i.e. it is a breathing mode of the whole 

macrocycle. Another mode of interest is the v3, which shifts significantly from 1487 to 

1473 cm-1. This is also as expected as the mode arises mainly from Cα-Cm symmetrical 

stretches.78  

Natural abundance 

13C labeled 
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2.3.6 NMR spectroscopy of [5-13C] δ-ALA P450cam 

 

 
Figure 28 UV-visible absorption spectra for the high spin and low spin complexes of 

P450cam80 

 

This experiment was important in generation of low spin ferric complex by use of 

a strong field ligand CN6. The spectra show the spectrum obtained for the high spin (HS) 

form, without cyanide and the low spin (LS) for the cyanide complex of CYP101, the 

latter was used in all subsequent NMR experiments for the [5-13C] δ-ALA P450cam. Full 

spin state conversion was observed upon cyanide binding.  

 

 

 

 

 

 

 

 



77 

 

1D 1H NMR 

 
 

Figure 29 1H NMR of the cyanide complex of natural abundance and [5-13C] δ-ALA 

P450cam measured at room temperature80 

 

1H NMR is used to investigate the electronic environment and physical structure 

of the heme and its protein environment for several oxidation/ spin states. Proton NMR is 

particularly useful as the proton resonances are often shifted outside the bulk of the 

diamagnetic resonances (0-10 ppm) by the strong ring current shift of the porphyrin ring 

and by isotropic shifts for the paramagnetic proteins. The peaks experiencing this 

hyperfine shift arise from the heme itself, amino acids coordinated to the heme or amino 

acids <7 Å from the heme, but not coordinated. Assignments of the paramagnetically 

shifted signals at 11.5 ppm, and 22.1 ppm was done previously for the 3- and 8- methyl 
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peripheral groups respectively. The signal at 13 ppm was assigned to the proximal C-CH 

on propionate.81 The signal at 14.1 ppm was not assigned. The proton NMR was checked 

before and after the HMQC and NOE experiments to check protein integrity.  

13C NMR [5-13C] δ-ALA P450cam 

 
Figure 30 13C NMR for natural abundance and [5-13C]δ-ALA P450cam80 acquired at 25 

°C 

It must be noted that signals in 13C-labeled protein α, β, γ, δ and four-Cα are 

clearly absent in the natural abundance spectrum (black trace) and the signals are due to 

the exclusive enrichment of methine and Cα positions. Assignment of these methine 

protons was based on previous assignments of [5-13C] δ-ALA outer mitochondrial 

cytochrome B5 by Rivera and co-workers,82 who unambiguously assigned protonated 

carbons and pyrrole α and β carbons using various NMR techniques and specifically 

labeled hemes. This assignment was further refined using HMQC results shown in Figure 

31 below. However, assignments of Cα protons is not possible at this point. It was 

observed that natural abundance P450cam-CN complex showed very low sensitivity due 
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to the low natural abundance of 13C. This challenge is overcome by labeling of hemes as 

illustrated in Figure 30 above 

 
Figure 31 HMQC for [5-13C] δ-ALA P450cam at 25 °C80 

 

Heteronuclear Multiple-Quantum Correlation (HMQC) is a 2D experiment used 

to correlate directly bonded carbon (13C)-proton (1H) nuclei of heme substituents. This 

technique utilizes proton detection and has high sensitivity due to the high natural 

abundance of hydrogen (1H). These correlations can be used to map known carbon 

assignments (Figure 30 above) onto their directly attached protons. A control experiment, 

with natural abundance 13C (1.1 %) was also acquired and compared to the spectrum 

above and clearly showed resonances labeled α, β, γ and δ are due to the enrichment of 

the hemes with 13C. Therefore, we can identify which protons are directly attached to the 
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methine carbons α, γ, β and δ. This was accomplished and assignments are shown in the 

HMQC spectrum above. 

Nuclear Overhauser effect (1H-1H NOESY): Correlation through Space 

 
Figure 32 1H-1H NOESY-HMQC spectrum of 13C-enriched cyanide complex of substrate 

bound P450cam at 40 °C80 
 

The experiment gives information on distances between protons nearby in space 

(<5 Å), even though the amino acid residues may be far away in primary sequence. The 

results showed that two meso protons were detected, a signal at 8.33 ppm (β proton) 

exhibiting 2 cross-peaks at 4.01 and 1.37 ppm. The resonance at 4.01 ppm is probably 

from a nearby protein residue. Note that NOE intensity is strongest if spins are close in 

space < 5 Å and NOE drops off quickly with distance, proportional to 1/r6. Therefore, we 

can conclude that the signal at 4.01 ppm is weak (≈ 5 Å from the β proton) whereas the 
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signal at 1.37 ppm is strong (≈ 2 Å from the same β proton). These values are merely 

estimates based on intensities of NOE crosspeaks obtained. Calculations to determine the 

exact distances are not possible since we do not have any known proton-proton distance 

to use as a reference pair as outlined in the introduction. However, the results clearly 

demonstrate that NOE is a useful probe of spatial proximity distances, information which 

could be useful for docking studies.83, 84  

Using the software (SPDBV 4.1.0) we used the crystal structure to estimate which 

amino acid residues are in active site within < 6Å from the β-proton (refer to Figure 33 

below). 

 
 

Figure 33 Amino acid residues within 6 Å from the β-meso proton. The most likely 

candidates are Leu358 or Leu245 which are closest to the β-meso proton.   
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Figure 34 1H NMR of Leucine showing a resonance around 4.0 ppm highlighted. We 

tentatively assign the NOE resonance from the β-proton on 13C labeled heme to this 

leucine proton. 

The assignment is reasonable since the signals observed at 4.01 ppm cannot be 

from a camphor molecule; i.e. the camphor protons are all upfield (between 0-2.6 ppm) 

relative to this signal (Figure 35 below). 
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Where does the signal at 1.37 ppm come from? 

 
 

Figure 35 1H NMR of camphor showing the resonance we observed at 1.37 ppm could 

be coming from a 5n proton from camphor (highlighted) 

 

It was reasoned that if we can get deuterated camphor and repeat the NOE with 

D2-camphor as the substrate, the disappearance of the signal at 1.37 ppm should confirm 

that assignment. The work described below involves our efforts to get D2 camphor. Our 

first attempt was to request a small amount of D2 camphor from Perera’s group after they 

published a paper74 using this compound in their studies. They agreed to collaborate and 

sent us a sample which was a brown oil. We checked the 1H NMR spectrum, which is 

shown in Figure 36 below. 
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Figure 36 1H NMR of 5-D2-camphor (bottom) relative to commercial normal camphor, 

assignments of normal camphor from previously published data85, 86, 87–89. 
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 Figure 37 3-D2-camphor synthesized clearly showing the two protons 3x and completely 

deuterated and absent from the 1H NMR (bottom spectrum). The insert shows the non-

methyl proton enlarged. 

 

For clarity also compare to another form of D2-camphor synthesized during this 

work shown in Figure 37 above. It was clear that the sample sent wasn’t pure and we 

contacted Dr. Perera, confirming the sample sent was not d2 camphor. While he agreed to 

cooperate, further requests to get a pure sample were not successful, eventually the 
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communication stopped altogether. We then faced the task of synthesizing it in our lab 

using their rather poorly described synthetic method. 
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2.3.7 Synthesis of D2 Camphor 

 

 
 

Figure 38 GC/MS spectrum of crude ketocamphor after extractions. The top spectrum 

shows GC spectrum of product (5-ketocamphor (highlighted)) after extractions, which is 

only about 5 % and with a retention time (RT) of 9.6 minutes. The largest component in 

the mixture is the starting material camphor (RT = 7.9 minutes). The bottom spectrum 

shows the mass spectrum of the product 5-ketocamphor. 

 

Proceeding with the synthesis of 5-ketocamphor described on page 68, 5.43 g of a 

white solid was recovered which contained mostly unreacted camphor starting material, 

as shown in Figure 38 above. The mass spectrum shows a peak corresponding to 5-

ketocamphor confirmed by fragmentation pattern and matching with previously 
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published data (see Figure 40 below) The percentage yield of 5-ketocaphor is ≈5 % based 

on the % area of the peaks obtained by integration of the GC/MS peaks. It proved 

possible by chromatographic methods described earlier to isolate 5-ketocaphor from 

unreacted camphor. This was achieved by a better selection of solvents and type of gels 

separation. In these studies, 5 % ethylacetate and 95 % hexane was used on silica gel then 

the same solvent was used for the alumina column. 

 

Figure 39 The top spectrum shows the GC spectrum of 5-ketocamphor purified by a 

couple of columns from a mixture shown in Figure 38 above. The bottom spectrum 

shows the mass spectrum of the pure 5-ketocamphor obtained after the purification 

 

Typical yield of 5-ketocamphor (Figure 39 above) was 230 mg and its % purity 

≈90 % from integration of GC/MS peaks. We report the isolated 5-ketocamphor (most 

abundant peak at 9.7 minutes). The white solid was stored in the desiccator until required.   
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Figure 40 Mass spectrum of 5-ketocamphor published74 (top spectrum) relative to the 

experimental spectrum (bottom spectrum) 

 

Evidence to support isolation of 5-ketocamphor is obtained by comparing the 

experimental data to the published. The two fragmentation patterns show an exact match 

between published and experimental data with only slight differences in the ratios of 

peaks, which we attribute to different conditions in equipment. 
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Figure 41 Comparison of 13C NMR spectrum of ketocamphor synthesized relative to the 

published74.  

 

The 13C NMR spectra provides further evidence for the success in the synthesis of 

5-ketocamphor, though the yield was very low (≈5 % relative to unreacted camphor 

starting material). We present here the 13C NMR, which clearly shows we have 10 

different carbon atoms (labeled with the corresponding chemical shifts) with the two 

carbon atoms bearing the oxygen atoms downfield around 212-214 ppm, also matching 

with published spectra.74 Note that the most intense peak (around 77 ppm) is solvent peak 

CDCl3. To generate D2 camphor, the next step involves hydrazine reduction, using 

deuterated hydrazine. 

Step 2 Synthesis of D2 camphor 
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It is well documented that the hydrazine reduction can be complicated by the 

transformation of the hydrazone to the corresponding azine.75, 90, 91  This challenge may 

be overcome by using absolute ethanol and anhydrous hydrazine for the Wolff-Kishner 

reduction. Other methods to suppress azine formation include use of aprotic solvents and 

inclusion of molecular sieves in the reaction. These methods are only effective to some 

degree and upon work up, concentration, standing and during purification, hydrazones 

undergo rapid transformation to azines. Some of the observations in our studies will be 

discussed in the examples below.  

 

Figure 42 Synthesis of hydrazone scheme showing how the reaction is complicated by 

formation of azine a stable side product.  
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Synthesis of norcamphor hydrazone for practice 

 

Figure 43 Shows 13C spectrum of norcamphor hydrazone after overnight acquisition. The 

spectrum clearly shows this is a mixture of norcamphor hydrazone (peak 162 ppm) and 

the azine (peak at 175 ppm). This was also confirmed by GC/MS spectrum where the 

hydrazone is formed in appreciable amounts during the reaction but surprisingly turns to 

azine during work up or upon standing. No starting material (norcamphor remaining)   
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Figure 44 GC/MS spectra for norcamphor hydrazone showing and confirming the 

existence of the hydrazone (Retention time 8.7 mins, 71 %) and azine (Retention time 

15.0 mins, 29 %).  
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Figure 45 GC/MS spectra of norcamphor hydrazone (26 %) and azine (74 %) after 

extraction. This demonstrates how hard it is to isolate a hydrazone as it transforms to 

azine during work-up, or on standing. 
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Figure 46 GC/ MS spectra of benzophenone hydrazone. The hydrazone of benzophenone 

is stable and will be used to practice, then use the method to get ketocamphor hydrazone. 

  

In this work, we report some lessons gained in synthesis of hydrazones. In the 

first, case camphor due to steric hindrance of the ketone by methyl group 10 (see Figure 

47 below), does not form hydrazone or appreciable amounts of azine if reduction is 

carried out at room temperature or without a catalyst (HCl). This was also reported earlier 

by Kolb and co-workers.76 We also know that the unhindered ketone of 3-ketocamphor 

(camphorquinone) can be reduced at room temperature forming the hydrazone. This was 

also reported by Kolb and co-workers. Adamantanone was used as the first model for 

hydrazone synthesis as it contains an unhindered ketone. This turned out to be a bad 

choice since adamantanone forms azine almost immediately as the major product (≈96 

%) and hydrazone minor product (≈4 %). The hydrazone also converts to the azine upon 
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standing, or catalyzed by acid. Norcamphor was a better choice in the sense that 

hydrazone was the abundant product but also converts to azine during work up and upon 

standing (see Figure 44 and Figure 45 above). It also formed an oil after extraction which 

could not dry and likely to convert to azine faster than if a solid hydrazone was isolated76. 

The conclusions that can be made from the studies include strictly eliminating water and 

to avoid use of acid catalyst as the acid catalyzes formation of azine.    

  

Figure 47 Camphor structure and labeling  

 

A. Synthesis of hydrazones 

 

During synthesis of hydrazones by treatment of ketones with an excess of 

hydrazine hydrate, we made the following observations. Some ketones gave quantitative 

yields of hydrazones like benzophenone while others gave very low yields of hydrazones 

and high yield of azines like adamantanone and norcamphor. Sterically hindered ketones 

gave low yields of hydrazones with great difficulty including reflux overnight and use of 

acid catalyst76. Also, the hydrazones once formed easily transformed into azines during 

work up and upon standing. Norcamphor hydrazone (see Figure 48 below) forms 

substantial amounts during the reaction but transforms into the azine during work up and 
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on standing. This could be formed by coupling of the initially formed hydrazone with 

excess norcamphor. 

 

 

 

 
0

 



98 

 

Figure 48 Gas chromatograms showing monitoring the formation of Norcamphor with 

time. Initially small amount of norcamphor hydrazone was formed and accumulated with 

time maximum around 1.5 hours. Most of the hydrazone transformed to azine during 

work up remaining with negligible amount of hydrazone. This shows that it is difficult to 

isolate the norcamphor hydrazone but it forms in substantial amounts close to 80 % 

during the reaction. 

 

In conclusion, we know formation of hydrazone is sensitive to steric hindrance, 

illustrated by camphor hydrazone which only forms after prolonged reflux and use of 

acid catalyst. In contrast, unhindered ketones either form hydrazone easily at room 

temperature yet quickly converts to azine during work up or upon standing or forms 

quantitative yields of hydrazone which is stable for several hours, days or even months 

depending on the ketone being investigated. This is illustrated by adamantanone forming 

hydrazone almost immediately and azine major product (95 %) and norcamphor 

hydrazone forming maximum amount of hydrazone (80 %) in a couple of hours and 

transforms on further incubation, work up or standing to the azine. On the other hand, 

benzophenone hydrazone forms in about 72 hours but is stable for several days or 

months. In the cases were azines formed, their amount increases on standing, faster if 

hydrazone is liquid and slower when it is solid. In summary, the few ketones studied here 

the mechanism of formation of hydrazones is neither simple nor straightforward as 

illustrated by the examples above. The knowledge gained though will possibly allow 

formation of the hydrocarbon using the Cram modification of the Wolff Kishner 

reduction.  
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Alternate Approach 

Use of norcamphor as the substrate instead of camphor was attempted to help 

confirm the effectiveness of the approach that had been indicated by observation of a 

probable camphor proton resonance in our earlier studies using camphor as substrate.  

This idea came after a discussion during the annual review meeting that instead of using 

D2 camphor a camphor analogue could be used and adamantanone was initially 

suggested. However, on careful analysis of the free adamantanone 1H NMR spectrum we 

observed that the resonances for all protons are not well resolved. However molecular 

volume, hydrogen bonding, high spin percentage in CYP101 for adamantanone and 

binding mode of strongly mimics that of camphor.92  

Norcamphor has well resolved proton resonances but has its drawbacks. It lacks 3, 

7 and 10 methyl groups as in camphor, which are important for hydrophobic interactions 

hence holding camphor in a defined position in the active site, hence it is floppy and 

undergoes multiple hydroxylations by CYP101, approximately 50 % at the 5-exo and 6-

exo positions. To effectively do this assignment, two samples were prepared under the 

same exact conditions and using same batch of protein, one sample with camphor bound 

as done previously and the other with norcamphor bound as shown in figure 49 below 

 

2.3.8 Use of Norcamphor to confirm the assignment 

2.3.8.1 Preparation of samples for NMR 

The Figure 49 below shows the spectra obtained during synthesis of CYP101-CN 

complex with 13C labeled hemes. The sample had been stored as camphor bound sample 
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to avoid degradation. This sample was passed through G-25 equilibrated with MOPS 

buffer as described above. Greater than 95 % high spin complex was formed as illustrated 

in Figure 49 below. The sample was split into two and exchange with the appropriate 

buffer to allow substrate binding (left camphor containing buffer and on the right shows 

spectra for the other sample with norcamphor containing buffer). The exchange was a 

success with greater than 90 % low spin substrate bound sample obtained in each case. 

The last step was incubation with CN- to a total concentration of 10 mM and this was 

also a success confirmed by the UV-visible spectra below and agrees with previously 

published data of cyanide complex of microsomal P450. 
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Figure 49 UV-visible absorption spectra showing preparation of [5-13C] ALA CYP101-

CN ligated samples for NOE measurements. 
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1H-13HMQC for CYP101-CN complex camphor bound 

Figure 50 below shows the 2D HMQC spectra of the cyanide complex of 

camphor bound 13C enriched P450cam collected at 25 °C with a recycle delay of 10 ms 

and decoupling turned off. Protons giving rise to the signals labeled α through to δ are 

reasonably assigned to the methine positions in as much as the corresponding 13C 

chemical shifts are consistent with those observed in the 1D 13C NMR experiment for the 

cyanide complex of camphor bound 13C-labeled P450cam ( Figure 31 above). In the 

current work a similar pattern was observed in the HMQC experiment (Figure 31 above) 

performed at 25 °C with resonances reproducing what was observed earlier (see Figure 

31 above). The experiment was repeated with norcamphor bound in the active site, all 

other conditions kept the same. 
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Figure 50 1H-13C HMQC spectrum of CYP101-CN complex with camphor bound 

acquired at 25 °C 

 

Nuclear Overhauser effect (1H-1H NOESY): Correlation through Space 

 

The spectrum in Figure 51 below shows the 13C-edited NOESY spectrum of 

CYP101-CN complex with camphor bound collected at 25 °C and total collection time 69 

hours. A single diagonal peak at 8.35 ppm (β) was observed. Earlier studies (see Figure 

32 above) showed two methine protons β and δ. The δ proton was not observed this time 

due to a different, smaller spectral acquisition window (ending at about 9.4 ppm) which 
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cut out the delta peak which was observed previously in NOE. Two crosspeaks were 

observed with this diagonal peak as previously reported by Daniel Kaluka80. There was a 

slight shift in these chemical shifts, the more intense peak previously 1.37 ppm now 1.72 

ppm and a weaker peak previously 4.01 ppm now 3.32 ppm. These changes are attributed  

to different temperatures at which the data was acquired (current spectra (Figure 51 

below) was acquired at 25 °C while the previous data (Figure 32 above) was acquired at 

40 °C. A new crosspeak was observed after careful analysis of the spectra and this comes 

around 1.98 ppm. 

The most intense crosspeak (8.35, 1.72 ppm) was arbitrarily assigned an intensity 

of 1, hence the three crosspeaks at 1.72 ppm, 1.98 ppm and 3.32 ppm have intensities 1: 

0.221: 0.196 respectively based on peak volumes obtained by integration of the peaks. 

Also, assuming the weakest or less intense peak at 3.32 A is 5 Å away, then the distances 

of the other crosspeaks were calculated using the equation below (adapted from reference 

60):  

 ղA{B}/ղX{Y}=r-6
AB/r-6

XY  

ղA{B} is the intensity of crosspeak A, whereas rAB is the distance between the protons 

giving rise to the crosspeak. Three of the parameters are known; hence it is possible to 

calculate the relative distances between the protons. The results are summarized in the 

Table 6 below. The calculated distances are within acceptable range from the X-ray data 

considering that the distances in solution are likely to be slightly different from X-ray due 

to free movement in solution. Molecules undergo significant motion, including 

vibrational motion and transitions between states.93 NMR data is a model of the physical 

reality to describe the solution distances. Crystal structures can be affected by 
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intermolecular packing or crystal lattice packing which may lock the structure into a 

particular position, whereas in solution, the molecule can adopt many possible 

conformations.93 A combination of both methods is however ideal in problem solving as 

the methods complement each other and gaining better understanding of the problem. We 

have developed a method allowing accurate determination of distances between protons 

on labeled positions using NMR.  

Table 6 Proton-proton distances from NOE experiment 

Diagonal 1H 

chemical 

shift/ ppm 

Crosspeak 1H 

chemical shift/ 

ppm 

NOE 

integral 

Interproton distance/ Å Possible 

assignment 
NMR X-ray64 

 1.72 1 3.81 5.03 5-exo of 

camphor 

β 8.35 ppm 1.98 0.221 4.90 5.51 5-endo of 

camphor 

 3.32 0.196 5.00 6 α-proton of 

L358 
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Figure 51 1H-1H NOESY-HMQC spectrum of 13C-enriched cyanide complex of substrate 

bound P450cam at 25 °C 

 

1H-13HMQC for CYP101-CN complex norcamphor bound 

Figure 52 below shows the HMQC spectrum of CYP101-CN with norcamphor 

bound. The spectrum was disappointing in two ways. Firstly, the signals were very weak 

even though the collection time was 18 hours relative to the 1-hour spectrum of camphor 

bound CYP101 shown in Figure 50 above. 
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Secondly, the signals drifted relative to the camphor bound spectrum. This was 

surprising since the UV absorption spectra showed very similar spectra for the low spin 

complex described in Figure 49 above. We attribute this to the slow decomposition of the 

sample with norcamphor as it is apparently loosely bound in the pocket.  

 

 
Figure 52   1H-13C HMQC spectrum of CYP101-CN complex with norcamphor bound 

 

Figure 53 below compares HMQC for CYP101-CN complexes with camphor and 

norcamphor bound. All other conditions were the same except the acquisition time for the 

camphor spectrum was 1 hour, whereas for norcamphor it was 18 hours. The α resonance 

was 86,3. 1.8 for camphor and shifted to 71.8, 3.4 ppm for norcamphor, while the γ 

resonance was 79.5. 4.2 for camphor and shifted to 68.1, 4.0 ppm for norcamphor.  The β 

resonance was 42.8. 8.5 for camphor and shifted to 49.7, 7.1 ppm for norcamphor. The δ 
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resonance was 38.8, 10.7 for camphor and shifted to 43.9, 10.4 ppm for norcamphor. 

There was a drift in chemical shifts observed, but it is emphasized that the sample with 

norcamphor bound is apparently unstable, leading to weak signals and drift in chemical 

shifts.  

 
Figure 53 Overlay of 1H-13C HMQC spectra of CYP101-CN complex with camphor 

bound (red) and norcamphor bound (black) 

 

Figure 54 below shows the 13C-edited NOESY experiment for the norcamphor 

bound sample of CYP101-CN. Unfortunately, no useful signals were obtained in this 

experiment. This is attributed to the instability of the sample during the long acquisition 

hours.  
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Figure 54 1H-1H NOESY-HMQC spectrum of 13C-enriched cyanide complex of CYP101 

norcamphor bound at 25 °C   
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2.4 SUMMARY 

 

Owing to severe difficulties encountered in the purification of 2D6, it was decided 

to abandon that project and the revised plan was to complete studies on CYP101 as proof 

of principle. A sample of 5-13C ALA was successfully synthesized and used in an 

expression procedure to yield P450cam labeled with 13C at the four methine carbons (as 

well as four positions which don’t bear hydrogen atoms). Previous experiments in our lab 

showed that NOE signals can be obtained from protons on labeled 13C positions and 

protons on nearby protein residues or substrate. Thus, distances can be obtained 

experimentally from heme to substrate protons for use in restricting docking parameters, 

with data generated in this work leading to estimated distances based on arbitrary 

assignment of 5 Angstroms to the longest distance (weakest crosspeak intensity). 

Attempts to definitely assign the 1.37 ppm signal, suspected to be the 5 position proton of 

camphor were planned employing D2 camphor. It proved possible to successfully 

synthesize and isolate a key intermediate in D2 camphor synthesis (i.e., 5-ketocamphor) 

from unreacted camphor, other keto-camphor isomers and additional derivatives bearing 

hydroxyl groups. However, several attempts to synthesize D2-camphor from this 

intermediate were unsuccessful, leading us to undertake an alternate approach involving 

the use of a camphor analogue that would potentially give rise to a new crosspeak; i.e., 

norcamphor was selected. While all the necessary NMR measurements were performed 

for samples containing norcamphor, owing to an apparent instability of this complex, no 

useful NMR data were obtained. 
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CHAPTER 3 

UTILIZATION OF FLOURINATED SUBSTRATES TO STABILIZE 

COMPOUND 1 INTERMEDIATES OF CYTOCHROMEs P450 (CYP119) 

3.1 Introduction 

CYP 119 is a bacterial cytochrome P450 from the thermophilic archaea 

Sulfolobus acidocaldaricus. It has been shown that CYP119 is an effective model system 

for the study of the intermediate states in cytochromes P450.94,95  This is an orphan 

cytochrome, which means that there are no known natural substrates for this enzyme, 

however, it was shown that CYP119 can hydroxylate fatty acids; e.g., it binds lauric acid 

with high binding affinity and hydroxylates it in ω the position.96 Furthermore, it was also 

shown that CYP119 has relatively stable compound I as compared to other P450s.97  

CYP119 has an optimum growth temperature of 85 °C and denaturation midpoint 

(Tm) of 91 ± 1°C96, which is about 40 °C high than mesophilic P450s like cytochrome 

P450cam.98 It has been suggested that the extended 39 Å-long aromatic clusters unique to 

CYP119 structure (Figure 55 below) contribute to the temperature and pressure stability; 

e.g., a single or double mutation of these residues were shown to lower  the Tm by as 

much as 10 °C.96 In addition to CYP119’s unique stability at high temperature, the 

enzyme displays also very high pressure stability.99 It is noted that the absorption spectra 

of reduced and oxidized states, as well as the carbonyl adduct of this protein, exhibit 

virtually identical characteristics to those of other cytochromes P450.99  
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This enzyme is of great biotechnological interest because its unique thermal 

properties can be utilized for practical industrial purposes e.g. synthesis of organic 

intermediates requiring hostile environments like extremes of pH, temperature or organic 

solvents. Furthermore, the structural features that are responsible for CYP119 heat 

stability could be introduced into other less stable proteins that are of industrial and 

medical interest, allowing their more efficient exploitation.8 

 

 
Figure 55 Crystal structure of CYP119 showing the extended aromatic cluster postulated 

to contribute to the thermal stability96 
 

The goal of this project is to use CYP119 and generate, stabilize and characterize 

the Compound I intermediate using RR technique. As was mentioned in general 

introduction, the structural characterization of this intermediate is of great ongoing 

interest for better understanding the chemistry of cytochromes P450. 
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A wide variety of experimental techniques have been employed to attempt to trap 

and characterize P450 compound I. These include stopped flow methods with rapid UV-

visible detection35, rapid-mixing freeze-quench methods (RFQ)95 and photolysis97. Also, 

a wide variety of spectroscopic methods have been employed to detect and structurally 

characterize this species; e.g.; UV-visible electronic absorption (UV-vis)35, electron 

paramagnetic resonance spectroscopy (EPR)31, Mossbauer spectroscopy31, vibrational 

spectroscopy (resonance Raman (rR)100 and infrared (IR)). A few of these have proved to 

be effective and efforts have been made to stabilize the highly reactive compound I. 

Earlier reported studies were carried out for chloroperoxidase (CPO) and horseradish 

peroxidase (HRP) compound I.100 The reaction of CPO with oxidants like meta-

chloroperoxybenzoic acid (mCPBA) is the model for the peroxide shunt pathway in 

P450s, since it follows a direct pathway from mCPBA binding to formation of compound 

I (a green hydroxylating species) in stopped flow experiments.101 This way of generating 

compound I was useful in capture and characterization of compound I of CYP119 as  

described by Green et al using stopped flow approach with rapid UV-visible detection 

(Figure 56).35  
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Figure 56 UV/visible obtained from stopped flow mixing (1:1) of 20 µM ferric CYP119 

with 40 µM m-CPBA at 4 °C. 

 

Terner and coworkers also reported the rR spectrum of FeIV=O (oxyferryl) 

myoglobin at 797 cm-1, confirmed by isotopic shift to 771 cm-1 upon reaction with 

H2
18O2.

102 For clarity, compound I is FeIV=O porphyrin π-radical cation (two oxidation 

equivalents more than ferric resting state-formally an FeV heme), whereas compound II is 

FeIV=O. Early studies on HRP103 used Soret excitation (near 400 nm). While HRP-I is 

stable in the dark, laser irradiation caused conversion to HRP-II-like photoproduct. There 

was no success using frozen solutions, pulsed lasers or rapid flow. The studies by Terner 

and coworkers104 using excitation near 360 nm minimized photolytic conversion and has 

better enhancement of compound I (Soret near 350 mm). These studies by Terner 

obtained good rR spectrum showing the v4 but no evidence for v(Fe-O) (due to fast 

exchange of Fe=18O in water). The Kincaid group used 356 nm excitation, but with very 
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short (≈1 µs) laser beam exposure to the droplets.100 This minimized photolytic 

conversion and also has the better enhancement of compound I (Soret near 350 nm). In 

this work, a good rR spectrum was obtained showing the same v4 as Terner, but now it 

was also possible to observe the v(Fe=O) mode appearing at 790 cm-1 (based on 

H2
16O2/H2

18O2 studies).  

3.1.1 Generation of Compound I, using the peroxide shunt 

 

As shown in the catalytic cycle (Scheme 1) of the majority of cytochromes P450, 

the Compound I intermediate is generated from ferric hydroperoxo intermediate after a 

second proton delivery to the terminal oxygen atom of the Fe-O-O-H fragment and 

cleavage of the O-O bond. However, some other cytochromes P450, called 

peroxygenases, do not follow this oxygen based cycle, instead, utilize so called “peroxide 

shunt”, in which a hydrogen peroxide, or other peroxy compounds, act as an alternate 

oxygen donor. As was shown above, the m-chloroperoxybenzoic acid (also called m-

chloroperbenzoic acid; mCPBA) was successfully used as a H2O2 mimic in generation 

and trapping Compound I intermediate in several cytochromes P450 (Figure 56).35   

As described in detail above, maximum yield of CYP119-I generated using 

stopped flow approach was ~ 35~ ms for substrate-free CYP119.35 It is noted that the 

commercial mCPBA has a purity of about 80 %, as can be determined using iodometric 

titrations, and a further purification of commercial material is required (vide infra).105 

Furthermore, since the oxygen sensitive modes in the RR spectra of heme proteins are 

sometimes weak or in crowded regions, the isotopic substitution of the oxidizers are 
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needed; e.g., the 18O substituted mCPBA had to be synthesized (see Experimental Part 

below).   

 

 

Figure 57 The formation of compound I through the peroxide shunt pathway, 

oxidizing ferric PFDA bound protein with 3-chloroperoxybenzoic acid (mCPBA) 

 

In the approach presented here, the perfluorinated substrates will be used which 

are presumed to act as a Teflon cap that will be more difficult to oxidize by Compound I 

intermediate; e.g., the C-F bonds are less reactive than the C-H bonds leading possibly to 

prolonged lifetime of Compound I  and its accumulation, allowing the characterization of 

this intermediate using resonance Raman spectroscopy.106  Naturally, the perfluorinated 

substrates might exhibit smaller solubility in aqueous condition or bind to CYPs with 

lower affinity, therefore comprehensive studies of substrate binding were performed as 

described below.  
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Such studies of the protein-substrate binding and the determination of 

stoichiometry of protein complexes constitute an essential element of routine biochemical 

practice. The concentration of the complex is usually assessed from the changes in 

absorbance spectra of the protein so that a series of spectra recorded at a constant protein 

concentration (EO) and increasing concentration of substrate (SO) are used to judge the 

stoichiometry of the complex107.  

In this work, we are interested only in use of dissociation constant (Ks), sometime 

referred to as binding constant Kd and is defined as Equation 3 below 

Equation 3 The dissociation constant of an ES complex 

Kd = Kr/Kf = [E][S]/[ES] 

The reported Kd values for one of the fatty acid of interest to this study, lauric acid 

(LA), was reported as 1.2 ± 0.2 µM. The Kd value for LA was determined using the 

method described in previous reports.108, 109 Kd value of 1.2 µM means that 50% exists as 

the ES complex at 1.2 µM.  
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Figure 58 Binding titration of CYP119 with lauric acid: a plot of ΔAbs (390-420)      

against [LA]. Insert shows titration with increasing [LA] 

Finally, it is noted that previous UV-visible absorption and resonance Raman 

spectra of CYP119 with styrene as substrate, show that at room temperature the enzyme 

is in low spin state (Figure 59).25 The absence of spin state change upon substrate binding 

can be caused by poor displacement of the distal water ligand from the heme iron or 

indicate that the substrate doesn’t bind in the active site. In the above-mentioned studies, 

the authors showed however, that the same sample does exhibit some spin state changes 

when warmed to higher temperature. Furthermore, T1 NMR studies in which the 

distances from the heme to the substrate were calculated, confirmed that even at low 

temperatures the substrate is bound in the active site;25 e.g., the distances from each of the 

styrene protons to the heme are approximately 6.4 Å (Table 7 below)25. If the protein is 
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assumed completely low spin, then calculations showed that the distances will be 4.4-4.5 

Å.  

 
 

Figure 59 High frequency region of the RR spectra for ferric CYP119 with excess 

styrene25 (A) or SF (B) at 22C, and with excess styrene (C) or SF (D) at 70C.  
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Table 7 
25 Maximum distances of styrene protons from the heme iron atom determined 

from 1H NMR T1 relaxation data assuming a completely high spin protein 
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3.1.2 Generation of Compound I, using cryoradiolysis 

 

Another way to generate and stabilize the fleeting intermediates in the P450 

catalytic cycle is using cryoradiolysis (Figure 60 below). Using this approach, which was 

pioneered by Martyn Symons (1980s) and refined and used extensively by Hoffman, 

Sligar38 and coworkers (1990-present), the intermediates along the catalytic cycle can be 

studied. The method is based on preparing the precursor (oxy-ferrous complex) at -20°C 

for CYP119 and quickly freezing at 77 K. At ambient or moderately low temperatures, 

oxy-ferrous complex is easily protonated and cannot be studied, but at 77 K, it is stable 

for several months38, 110 and can be studied by UV-vis, rR, EPR and other methods. This 

is followed by one-electron (from water and glycerol) reduction of the frozen (77 K or 

lower) oxy-ferrous complex using ionizing γ-irradiation (from 60Co source). Such an 

approach allows accumulation of the peroxo intermediate, as only electrons are mobile 

and migrate while other movements including proton transport, are generally restricted at 

77 K. Annealing at different temperatures allows accumulation of the ferric-hydroperoxo 

intermediate. Further warming can permit delivery of a second proton followed by O-O 

bond cleavage and formation of the Compound I intermediate which reacts quickly with a 

suitable substrate. As in previous approach that takes advantage of peroxide shunt (vide 

supra), in this work the perfluorinated substrate will be also used to prolong the lifetime 

of Compound I and hopefully permit RR characterization of this intermediate.   
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Figure 60 The scheme of cryoradiolytic reduction of ferrous dioxygen adduct (left), to 

form peroxo (center) and hydroperoxo (right) intermediates upon γ irradiation and 

annealing, respectively 

 

As mentioned above, the use of very low temperatures is key to trapping CYP’s 

intermediates; e.g., even the relatively stable oxygen adduct often needs to be generated 

at low temperature, such as -20 °C (Figure 61 below).110 In order to generate the oxy 

complex at lower temperatures the protein samples need to be prepared in glycerol/ water 

solutions to prevent the samples from freezing. Furthermore, the glycerol is also required 

for cyoradiolysis since is the major source of electrons and radicals during the γ-

irradiation.110  Fortunately, the enzyme remains folded and active even at low 

temperatures in cryosolvents 

A very important aspect in stabilizing the oxy complexes is to control the pH of 

the sample solution. Volker Ullrich111 and co-workers performed a pH dependence study 

of oxy-ferrous complexes which showed that a proton assisted decomposition of oxy-

cytochrome C occurs in acidic medium111. However, for cytochrome CYP119, the 

substrate binding seems to be better at low pH values like 6.0. Therefore, to get excellent 

quality spectra for oxy-complexes a compromise must be reached, giving adequate 

substrate binding while suppressing autoxidation of the complex, this task is undertaken 
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in this report. In these studies, oxy-samples were prepared by hooking the sample tube to 

the vacuum line as shown in Figure 64 below 

Other key factors to consider in successfully making oxy-complexes include 

proper degassing of the sample using vacuum and argon. Typically, this is repeated three 

times to ensure complete degassing. Reduction of CYP119 is another big challenge and 

takes sometimes up to an hour to achieve complete reduction.80 Optimization of the 

reduction procedure will be discussed in this work and best conditions to ensure the best 

reduction in the best possible time are deduced in this work.  
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Figure 61  The kinetics of formation and decay of oxy-ferrous complex of cytochrome 

P450 3A4110.  (A) Fractions of ferrous (1), oxy-ferrous (2), and ferric (3). At 279 K 

against time. (B) Fractions of oxy-ferrous complex as a function of time at three different 

temperatures: (1) 300 K; (2) 279 K; (3) 243 K.  
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Summary for oxygen sensitive modes studied for cytochrome P450cam and it’s 

D251N mutant. 

 

The data presented in Figure 62 below summarise previous studies of the wild 

type CYP101 and it’s D251N mutant. The v(O-O) stretching mode shows two 

conformers, one sensitive to hydrogen/deuterium (H/D) shift occurring around 1125 cm-

1 and the other showing no H/D shift around 1136 cm-1. These conformers show 16/18O2 

isotope shifts of around 65-66 cm-1. Notice that the conformers are observed after 

deconvolution of the v(O-O) band. The 16O2 - 18O2 difference traces are typically 

deconvoluted using the following procedure.  

First, well isolated bands of the absolute trace are fitted with functions that are 

allowed to have varying bandwidths, intensities, frequencies and Gaussian/Lorenzian 

percentage contributions. The optimal fit gives two parameters that are then kept constant 

during deconvolution procedure, that is: functions composition; e.g, 50/50 % 

Gaussian/Lorenzian, and bandwidths; usually 10.0 cm-1.  

In the next step, the bandwidths of the positive and negative peaks of the 

difference traces are measured. If these bandwidths are wider than the bandwidths of the 

isolated bands, it is reasonable to assume that they are composed of two or more 

components. Furthermore, the second derivative of the trace can be run using Grams 

software to further confirm the presence of multiple conformers. The positive and 

negative peaks in the difference traces are then fitted with two (or more) peaks of fixed 

bandwidth and function. The usual practice is to perform the fitting in a manner that 

restricts the number of peaks to the minimum. The intensities and frequencies of 16O -

16O and 18O -18O modes are then allowed to change during iteration cycles. 
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The deconvoluted traces of samples prepared in H2O buffers are compared with 

these prepared in D2O buffer. Typically, the D2O traces exhibit expected 16O2 - 
18O2 

shifts that are equal in value to that seen in the spectra of H2O samples. Quite often the 

frequencies of the positive and negative bands of the D2O traces are slightly, but clearly, 

shifted with respect to corresponding bands seen in H2O differences.  These up-shifts 

usually reflect the formation of H-bonding interactions between Fe-O-O fragments and 

the heme pocket amino acid residues or water molecules. It is noted that these H/D shifts 

are usually small, 1-3 cm-1, however, if present, they can be easily detected and 

evaluated. 

As will be seen later, one of the bands can be very weak and if the weak band is 

seen and with the correct H/D shift then it is considered a valid peak rather than just 

ignored. On forming the peroxo intermediate the O-O bond weakens yielding a v(O-O) 

frequency of 792 cm-1, whereas the Fe-O bond strengths exhibiting a v(Fe-O) of 553 

cm-1, as shown going from oxo to hydroperoxo intermediate. Protonation to form the 

hydroperoxo intermediate further weakens the O-O bond, v(O-O) = 774 cm-1, while 

strengthening the corresponding Fe-O bond, v(Fe-O) = 564 cm-1, these shifts reflecting 

the overall progress in transitioning between the dioxygen adduct through O-O bind 

cleavage to formation of Compound I. It should be noted that for wild type CYP101, 

the proton transfer is so efficient that upon cryoreduction of the oxo intermediate, only 

the hydroperoxo form is formed. This behaviour was also seen for CYP119 as will be 

discussed in chapter 3. However, the mutant D251N slows down the proton transfer 

and the peroxo intermediate is observed for the mutant. Also, the hydroperoxo 

intermediate for wild type is 25 cm-1 different than that of the mutant D251N. This 
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observation demontrates that even a small structural change in the pocket can cause a 

drastic shift, validating the utility of resonance Raman in studying these catalytic 

intermediates. 

 
Figure 62 Oxygen sensitive modes for superoxo-, peroxo- and hydroperoxo- forms of 

heme proteins. The figure shows the utility of rR for studying Cytochromes P450. 

 

3.2 Materials and Methods 

To carry out the studies on CYP119 as outlined in the goals and introduction, 

expression and purification of CYP119 was done as outlined in the methods below. The 

process helped us understand the biochemistry concepts including transformations, 

expressions and use of various columns for purification.  

3.2.1 Materials 

The plasmid encoding the CYP119 gene was kindly provided by the Sligar group 

(University of Illinois at Urbana-Champaign) and competent BL21 E. coli cells were 

purchased from Biolabs. Tryptone, yeast extract and Luria-Bertani (LB) agar, used in the 

expression procedure described below, were purchased from Mo Bio Laboratories Inc. 

obtained from Sigma Aldrich. Perfluorodecanoic acid (PFDA) was purchased from Alfa 
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Aesar and used without further purification. Lauric acid, β-D glucose, m-Chlorobenzoyl 

chloride, dioxane were purchased from Sigma Aldrich. 

 

3.2.2. Instrumentation 

UV measurements were done using a Hewlett-Packard, Model 8452 Diode Array 

Spectrometer. For checking the substrate binding same instrument was used but equipped 

with a temperature controlled cuvette compartment. 

RR measurements were obtained using a Spec 1269 spectrometer equipped with a 

Spec-10 liquid nitrogen cooled detector (Spec 10 from Princeton Instruments, NJ), at 

liquid nitrogen (N2) temperatures (77 K). The excitation lines employed for oxy samples 

before and after irradiation were 413 nm (Coherent Sabre Kr ion laser) and 441.6 nm 

(Kimmon Model IK4153RC He: Cd laser), respectively. The measurements of ferric 

protein were performed using 406 nm excitation line (Coherent Sabre Kr ion laser). 

Resonance Raman measurements of ferrous CO adducts were acquired using 441.6 nm 

excitation line provided by a He-Cd laser (IK Series He Cd laser, Kimmon Koha Co., 

Ltd.) The laser power was kept below 1.4 m to minimize photodissociation. The power at 

the oxy samples and irradiated forms was approximately 1.5 mW, and for the ferric 

protein was kept at ~ 10 mW. The NMR tube containing the sample was spun and the RR 

spectra collected at liquid N2 temperature using 180° (back scattering) geometry in 

combination with a cylindrical lens, which focusses the laser beam on the sample as a 

line, to avoid local heating.  Temperature during temperature dependence RR 

measurements of ferric and ferrous CO adducts was controlled by adding hot or icy water 

to the Dewar and monitoring the temperature changes every 5 minutes. Fenchone was 
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used to calibrate all spectra, which were processed using Grams 32/ AI (Galactic 

Industries, Salem, NH). Rayleigh scattering discussed earlier was removed by use of an 

appropriate Notch filter from Kaiser Optical.  
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3.2.1 CYP119 expression and purification 

Transformation and expression of CYP119 

This method is adapted from Sligar’s method112 of purifying CYP119 with some 

minor modifications. CYP119 plasmid kindly provided by Sligar’s group from was 

transformed into BL21 cells as described before for CYP 101. A single well separated 

colony was selected and inoculated into a starter culture of 10 mL LB broth 

supplemented with 100 mg/mL ampicillin and grown overnight at 37 °C and 250 rpm. 

1% of the overnight starter culture was inoculated into 80 mL 2YT medium with 100 

mg/L ampicillin and grown at 37 °C, 250 rpm until OD600 reached 0.3 (early log phase ≈ 

2-3 hours). 1% of the early log phase culture was inoculated into 1 L of 2YTamp medium 

also 100 mg/mL ampicillin. A total of 8 L was grown in one of my best trials. The 

solutions were grown at 37°C/250 rpm for 20 hours. Cells were harvested by 

centrifugation at 7000 rpm for 15 minutes at 4 °C. A typical yield was 8.5 g/L of wet 

cells. The cells were stored in the freezer at -80 °C until needed. 

Purification of CYP119 

Cells were thawed and resuspended in 4 volumes (4 mL/g cell paste) of lysis 

buffer (50 mM Tris/HCl pH 8.0, 1mM EDTA, 4 mg/mL lysozyme, 16 U/ mL DNase, 4 

U/mL RNase) and stirred gently for 4 hours at 4°C followed by centrifugation at 20000 

rpm for 1 hour to remove cell debris. The supernatant was incubated at 75 °C for 15 

minutes to remove some of the contaminating bacterial proteins followed by 

centrifugation at 8000 rpm for 30 minutes.  
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The supernatant was saturated to 40 % (NH4)2SO4 and shaken gently for 30 

minutes at 4 °C. The precipitated proteins were removed by centrifugation at 8000 rpm 

for 30 minutes. The supernatant was saturated to 60 % (NH4)2SO4 and shaken gently at 4 

°C for 30 minutes. The pellet was recovered by centrifugation at 8000 rpm, 4 °C for 30 

minutes. The pellet was resuspended in a minimum volume (≈ 5 mL) of 10 mM 

Phosphate buffer (PB), pH 7.2.  

The protein was loaded onto a Bio-gel P100 column equilibrated in 10 mM PB, 

pH 7.2. Several fractions were collected each with a volume of about 2 mL. All fractions 

with Rz values > 0.5 were pooled and concentrated and used in the next purification step. 

The concentrated protein was loaded onto a DEAE 53 anion exchange column 

equilibrated in 10 mM PB, pH 7.2. The protein was washed with 6 column volumes of 10 

mM PB, pH 7.2 and eluted using a 10-100 mM PB gradient at pH 7.2. Fractions with Rz 

values > 1.5 were pooled and concentrated. Protein purity was monitored using mainly 

UV-vis determination of Rz values at each stage, checking P450 content of the Ferrous-

CO complex and SDS PAGE 

P450 content was checked by taking a blank (1.5 mL buffer, ≈20 μL of protein, 

≈5 mg dithionite) in a cuvette with rubber sealed stopper.  The UV range was adjusted to 

400-500 nm. Carbon monoxide gas was bubbled through the solution for two minutes and 

a spectrum was acquired. A band around 450 nm indicates good and active protein. (see 

Figure 63. However, a shoulder or a band near 420 nm indicates P420, the inactive form.  

This process was important throughout my studies, checking for P450 content during 

expression, purification, and before making samples to ensure protein is still intact. 
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Protein concentration of CYP119 was calculated based on the extinction coefficient of 

104 cm-1 mM-1 at 415 nm.98  

 

Figure 63 Absorption spectrum of Cytochrome P450-CO complex for CYP119 showing 

characteristic Soret peak at about 450 nm. 
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3.2.2 Purification of H3 glycerol and deuteration of H3 glycerol to form D3 glycerol 

 

It has been reported previously in our lab that commercial glycerol at 77 K 

exhibits significant fluorescence113. Hence to remove the fluorescence impurities, a 

purification method is employed which involves treatment of glycerol with charcoal 

followed by a vacuum distillation. The methods will be reported here with some slight 

modifications and simplicity to help future experimenters.  

A) Treatment with charcoal 

35 mL of spectrophotometric grade glycerol ≥ 99.5%, (Sigma-Aldrich) was mixed 

with 22.4 mg of charcoal (activated charcoal, decolorizing Sigma-Aldrich) in a round 

bottomed flask and slowly heated while stirring to 55-60 °C for 3 hours. Charcoal was 

removed by vacuum filtration assembly consisting of a 100 mL-round bottom flask, 50 

mL funnel top, fritted glass funnel support with PTFE membrane filters 0.2 µm pore size. 

All glassware was cleaned and dried to avoid introducing more impurities during the 

entire process. Integrity of the sample was checked by RR spectroscopy and GC/MS. The 

fluorescence level was monitored using RR spectroscopy at 77 K. 

B) Vacuum Distillation of glycerol 

10 mL glycerol purified in previous step was placed in a small round bottomed 

flask and connected to a vacuum system and degassed.  The temperature of the silicone 

oil bath was increased to 150 °C and pressure was set to about 6 mTorr.114 The distilled 

glycerol samples were collected in 4 fractions.   

C) Deuteration of glycerol 
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This reaction was carried out under nitrogen atmosphere. A mixture of 10 mL 

commercial glycerol and 74.50 mL (20 M excess) of deuterium oxide was refluxed at 100 

°C for 30 minutes. The temperature was increased to 130 °C to distill off the H2O/ D2O 

by-product. The apparatus was covered with aluminum foil to minimize heat loss to the 

surroundings. The product remaining after distillation was checked by RR spectroscopy 

to ascertain the extent of deuteration. Toluene was used to calibrate the spectra. The 

broad OH stretch at around 3340 cm-1 levels off in D3-glycerol. D3-glycerol was treated 

with charcoal under vacuum distillation as done for H3-glycerol above. 
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3.2.3 Iodometric titrations of mCPBA 

 

Iodometric titration115 is being used to determine the purity of commercial 

mCPBA and the samples of 18O-labeled mCPBA prepared as described later on page 143. 

A 200 mg sample of commercial mCPBA was dissolved in 10 mL of 10% KI (w/v), 

followed by dropwise addition of 5 mL of 1 M acetic acid and dilution to 50mL with 

water. The dark red solution was titrated against 0.01 M S2O3
2-  to a pale-yellow color 

and 1 mL of 1% starch solution (w/v) (freshly prepared) was added and the titration was 

continued until the dark blue solution turned to clear.  

The procedure was validated by checking % 16O mCPBA commercial sample and 

there was good agreement between the values obtained and the manufacturer’s values. 

The procedure above used a lot of sample and was modified especially when 18O mCPBA 

was purified since the initial amount was mg quantities. About 5 mL of 0.03 M potassium 

iodide and 10 mL of 2 M sulfuric acid were added to a 250 mL conical flask with 5.0 mL 

of mCPBA (5.02 mg dissolved in 3-5 mL acetonitrile) and stirred for about 1 hour. The 

liberated iodine was titrated with the standard solution of sodium thiosulfate, 0.0100 M 

and a small amount of starch indicator was added when solution turned pale yellow 

towards the endpoint of the titration. The endpoint was determined by the change of color 

from blue to colorless.  

3.2.4 Preparation of ferrous-CO adducts of CYP119 for RR studies 

 

A 100 μL aliquot of 100 μM sample of substrate free or substrate bound CYP119 

was placed in an NMR tube (WG-5 Economy, Wilmad) and sealed with a rubber septum 

(Sigma-Aldrich, Milwaukee, WI). The tube was saturated with the CO gas for about 30 
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minutes by passing through the CO gas applied through a long needle. The ferrous CO 

adducts were prepared by addition of an excess amount of the reducing agent, sodium 

dithionite (Na2S2O4) dissolved in an argon degassed buffer using a needle. The tube was 

further sealed by adding layers of parafilm on top of the rubber seal.  
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3.2.5 Preparation of oxy complexes 

 

The buffers were prepared as outlined for CYP101 in Chapter 2. A special note is 

hereby brought to the reader’s attention when preparing D2O buffers, since we need 

pH=pD and pH is related to pD by: pD = pH meter reading + 0.40. This relationship was 

discussed extensively elsewhere116 and was taken into consideration in preparation of 

good samples. Each sample was prepared in the same manner and an 80 µL sample of 

200 µM CYP119 in 100 mM Phosphate buffer, 0.3 M NaCl, pH 8.0 were prepared with 

30 % glycerol. The samples were prepared in clearly labeled, shortened NMR tubes (to 

ensure tubes fit in the liquid nitrogen Dewar for irradiation setup). 

The NMR tube containing protein was mounted carefully on the vacuum line and 

evacuated followed by addition of argon gas. This is illustrated in Figure 64. This 

degassing was repeated 3 times to ensure sample is saturated with Argon gas and there is 

no oxygen remaining. This was followed by protein reduction using 2 µL 7-9 mg/ mL of 

freshly prepared sodium dithionite which was titrated into the ferric protein using a gas 

tight syringe through a rubber septum on the vacuum line system, with gentle tapping to 

mix sample. The sample was titrated with small amount (< 2.5 µL) of sodium dithionite 

while monitoring the rising of the sharp band at 550 nm that indicates the formation of 

ferrous form and disappearance of the band at 645 nm, characteristic of high spin ferric 

protein. Sodium dithionite was introduced using a long needle through the rubber septum. 

Sample was warmed up to 50 °C (for relatively quicker reduction ≈10 minutes) followed 

by cooling to -20 °C for 2 minutes. The reduction was studied extensively during this 

work. The reduction was monitored by UV-visible spectroscopy (Figure 65). The 

absorption spectrum shows the best temperature for reduction of CYP119 of about 50 °C. 



138 

 

Higher temperature may lead to heme degradation and lower temperatures reduction is 

too slow and may take up to 2 hours. After cooling the reduced protein for about 2 

minutes, 16O or 18O gas was quickly added and mixed for 3-5 s by vortexing or tapping 

with finger and then quickly (less than 2 s) frozen in liquid nitrogen. 

 

Figure 64 The schematics of vacuum line for preparation of oxy-CYP119 samples. 
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Figure 65 Making oxy complexes involves reduction of ferric SB sample and addition of 

dioxygen. The absorption spectrum of ferric (top right trace), ferrous (bottom traces) for 

LA bound CYP 119. The insert shows the expanded Q band region to show complete 

reduction of sample. 

 

RR measurements of the frozen sample were performed at 77 K, using 413 nm 

excitation line. The choice of excitation line was based on the Soret of oxy adducts of 

cytochromes P450cam which is around 415nm (Figure 66 below).117 
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Figure 66 Absorption Spectra for P450cam before (oxy 415 nm) and after (peroxo, 

hydroperoxo 440 nm) cryoradiolysis117 

 

3.2.6 Cryoradiolytic reduction and annealing studies of oxyCYP119 complexes 

Cryoradiolytic reduction of the oxy complexes of CYP119 was performed as 

reported earlier118 with minor modifications. Specifically, frozen samples of oxy-ferrous 

CYP119 were irradiated with 60Co γ rays at 77 K at Notre Dame Radiation Laboratory 

(University of Notre Dame, South Bend, IN). The samples were exposed to 3.5 megarads 

of γ-irradiation from a 60Co source. During irradiation the samples were contained in a 

modified Dewar vessel and continuously immersed in the liquid nitrogen. Samples were 

kept in liquid N2 before, during and after irradiation. RR measurements were performed 

on irradiated samples using 442 nm and 1.4 mW power for 6 hours each sample. RR 

measurements were acquired using 442 nm because the Soret of both peroxo and 

hydroperoxo is near 440 nm, see Figure 66. 
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Annealing was carried out by immersing the irradiated CYP119 samples (2 sets at 

the same time eg. LA 16O and LA 18O) into pentane/ liquid nitrogen bath at desired 

temperatures (142- and 185 K) for 1 minute.119  Samples were quickly (less than 2 s) 

placed back into liquid nitrogen. 
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3.2.7 Rapid mixing of substrate bound CYP119 with mCPBA 

20 µM CYP119 ferric protein solution (buffered to 100 mM PB, pH 6) was mixed 

with PFDA (15-fold excess) incubated overnight to ensure substrate binding. The UV-vis 

spectra were calibrated using 1.5 mL of 100 mM PB in a 1 cm cuvette. The blank 

solution was discarded and replaced with 1.5 mL of about 20 µM CYP 119 PFDA bound 

was added and a spectrum was acquired for the ferric CYP119.   

The UV-visible was set up to acquire automatically 15 spectra in a total time of 

50 s. A 5-fold excess of 98 % (purified according to previously published procedures)120 

16O mCPBA was added using a 5 μL syringe, quickly mixed with a small glass rod and 

the spectra acquired about a couple of seconds after addition of  5-fold mCPBA at 4 °C. 

A total of 15 spectra were acquired to monitor the accumulation and decomposition of 

Compound I. The process was repeated with LA and SF CYP119 maintaining all other 

conditions the same. 

3.2.8 Purification of 18O mCPBA  

18O mCPBA was synthesized more than two decades ago in our lab and most 

likely decomposed over the years; e.g., the % of peracid was as low as 12 %. The sample 

was purified by dissolving the mCPBA in 50g/L toluene and washed with 100 mM 

phosphate buffer, pH 7.5 (5 x 10 mL)120, 121. The organic layer was dried over MgSO4 and 

carefully evaporated under reduced vacuum. The solution was recrystallized from 

dichloromethane and stored in a plastic container in the freezer at 4°C 

A very high pure sample is required (>90 %).35 High % of 18O mCPBA was 

needed, hence we decided to synthesize it using the steps outlined below. 
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3.2.9 Preparation of 18O mCPBA 

 

Step 1 Synthesis of Hydrogen peroxide (H2
18O2) 

The 18O-labeled hydrogen peroxide was synthesized by the glucose oxidase 

method.122, 123 20 mL of reaction mixture containing 0.1 M β-D-glucose and 1 mM EDTA 

in 10 mM potassium phosphate buffer at pH 5.1 was placed in a 100 mL round bottomed 

flask, which was then connected to the vacuum line. The flask was evacuated and filled 

with argon three times (degassing) to remove oxygen followed by addition of 2 mg of 

glucose oxidase (dissolved in 100 μL of same buffer). The flask was then evacuated and 

immediately frozen in liquid nitrogen to inactivate the catalase activity and to facilitate 

transfer of ≈80 cm3 of 18O2 (3.57 mmol) The mixture was stirred for three hours at 37 °C. 

The reaction was terminated by addition of 0.2 mL of 2 M HCl. The solution was 

carefully neutralized to pH 7.0 by addition of 2 N KOH and then passed through a 2x3 

cm column packed with Dowex 1-X2 ion exchange resin. The concentration of H2O2 was 

checked by iodometric titration and obtained about 20 mL of 73 mM (1.46 mmol). The 

yield of hydrogen peroxide was ~40 %.  

 

 

Step 2 Synthesis of mCPBA 

The synthesis was based on a previously published procedure118. 1.5 mL of 3.6 M 

NaOH was added to a 20 mL-plastic vial equipped with a magnetic stirrer. 15 mg of 

MgSO4, chilled (0º C) solution of H2
18O2 (1 mL of 73 mM or 73 μmoles) and 5 mL 
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dioxane was added to the vial. The reaction mixture was placed in an ice bath and stirred 

vigorously. Then 3-chlorobenzoyl chloride (0.41g or 2.3 mmol) was injected with a 

syringe under the surface of the solution and stirring was continued for 30 minutes. The 

reaction mixture was transferred to a separatory funnel and 10 mL of 20 % sulfuric acid 

was added. The mCPBA was extracted with 4 volumes (5 ml) of chilled dichloromethane. 

The extract was dried over MgSO4, filtered, evaporated under reduced pressure and dried 

under vacuum. The white solid (0.25 g) was checked using iodometric titration and 

GC/MS. The expected yield of mCPBA synthesized using this method (from iodometric 

titration was 1.2 mmol (52 % with respect to benzoyl chloride and 12 % based on 

available oxygen).  The ratio of H2O2:mCPBA was 1 : 2. This method will need to be 

refined and optimized to get higher yield of mCPBA. 
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3.3 Results and Discussion 

 

3.3.1 CYP119 expression and purification  

 

                                                          
Figure 67 UV-visible spectra of protein from various stages of purification by size 

exclusion P100 (top) and anion exchange (DEAE) (middle spectrum) and another P100 

(bottom spectrum) columns. Pure protein with Rz ≈ 1.6 (purple spectrum) was used for 

experiments. 



146 

 

As shown in Figure 67, the purification of CYP119 was monitored mainly using 

UV-visible spectroscopy which allowed us to calculate protein purity by checking Rz 

values (ratio of A416/A280). After the first column, the protein contained a lot of impurity 

protein and Rz was about 0.4. Purification with an anion exchange column DEAE greatly 

improved the purity of the protein and Rz ≈1.1. The final column, also P100, used in 

experiments was for polishing and improving the purity, with a final Rz of about 1.5-1.6 

being obtained.  

 

 

 
 

Figure 68 Absorption spectrum of pure SF CYP119 

 

The absorption spectrum displayed in Figure 68 above shows a purified substrate-

free samples of CYP119 with Rz = 1.6; only high purity protein was used for the rR 
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measurements. The protein was stored in -80 °C freezer until required. UV-visible 

spectroscopy played a key role in following the purity of the protein. 

Protein purity was also checked using SDS PAGE and as expected purity 

improved with subsequent columns used. The expected molar mass of CYP119 was 

estimated to be about 43 kDa in agreement with previously published data on this 

enzyme25.  

 
 

Figure 69 SDS-PAGE results showing protein purity after P100 and DEAE columns. 

Lane 1, M markers, Lane 2 protein after first P100 size exclusion column, Lane 3 after 

anion exchange DEAE column, Lane 4 after a second P100 column which was necessary 

for polishing and improving the purity of the protein. 

 

3.3.2 Purification of H3 glycerol and deuteration of H3 glycerol to form D3 glycerol 

Glycerol was purified according to the published procedures. There was good 

agreement between the results observed and the previously published results.113, 124 The 

deuteration was estimated to be about 95 % by comparing the intensity of the broad OH 

50 

1              2               3               4 
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band at 3340 cm-1 in H3 glycerol and that same band in d3 glycerol which now exhibited a 

broad OD band at 2471 cm-1 (Figure 70 below). All other bands remained were same in 

commercial H3 glycerol and d3 exchanged glycerol confirming the glycerol was still 

intact.  

 

Figure 70 Purification and deuteration of glycerol 
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3.3.3 Iodometric titrations 

 

Table 8 shows some results of iodometric titration of mCPBA for validation of 

the method, average 77.7 %. The specified value is 77 % from Sigma Aldrich. The 

calculation was based on previous publication.115 The important points here are the 

precision of the values and the accuracy. The mCPBA was purified as shown in the 

methods and purity improved to 98 %, which was used in experiments for stabilization of 

Compound I generated by reacting ferric CYP119 PFDA bound with pure 16O mCPBA.  

Table 8 Results from iodometric titrations 

Commercial m-CPBA    

Initial buret reading/ mL 0.00 14.00 11.10 

Final buret reading/ mL 28.80 42.20 39.20 

Volume of S2O3
2- used/ 

mL 28.80 28.20 28.10 

Moles of S2O3
2-  0.001833 0.001795 0.001789 

Moles of I3
-  0.000917 0.000898 0.000894 

Moles m-CPBA 0.000917 0.000898 0.000894 

Mass m-CPBA/ g 0.1582 0.1549 0.1544 

% mCPBA 79.1 77.4 77.2 

Average  78  
 

Note moles I3
- =0.5 x moles of S2O3

2- and 0.2 g of thiosulfate was used 

Pure mCPBA    

Initial buret reading/ mL 13.10 18.80 13.95 

Final buret reading/ mL 18.80 24.45 19.60 

Volume of S2O3
2- used/ 

mL 5.70 5.65 5.65 

Moles of S2O3
2-  0.00057 0.000565 0.000565 

Moles of I3
-  0.000285 0.000283 0.000283 

Moles m-CPBA 0.000285 0.000283 0.000283 

Mass m-CPBA/ g 0.049 0.049 0.049 

% mCPBA 98 98 98 

Average  98  
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Equation 4 Reaction of mCPBA with KI125 The equation shows reaction of mCPBA with 

iodide ions in an acidic medium to form hypoiodous acid. 

 

 
 

Equation 5 Reaction of iodine with excess iodide.125 The hypoiodous acid reacts with 

excess iodide to form triiodide ions which is titrated against thiosulfate as shown in 

Equation 6 below 

 

 
 

 

 

Equation 6 Reaction for the titration of iodine with thiosulfate solution. The progress of 

the titration and its equivalence point monitored by starch indicator turning from blue to 

colorless when all triiodide ions are used up in the reaction. 
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3.3.4 Ferric and ferrous CO complexes of CYP119 

 

Temperature and pH studies of CYP119 in the presence of substrates 

UV-Vis spectroscopy was used to study binding of the lauric acid (LA) and 

perfluorinated decanoic acid (PFDA). The Figure 71 below shows UV-Vis spectra of 

CYP119 in the presence of PFDA at pH 6 (left) and pH 7 (right) at 4 °C (blue) and 65 °C 

(red). It is clear, that in both pH cases the UV-Vis spectra of CYP119 in the presence of 

PFDA at low temperatures (blue spectra) resemble the spectral features of substrate free 

protein; e.g., the low spin state (Figure 71).  The Soret band is observed at 415 nm and 

the Q bands are seen at 530 nm and 566 nm. Interestingly, when temperature was 

increased to 65 °C (red spectra), the Soret band of these samples shifted to about 392 nm 

indicating presence of a significant high spin components characteristic for substrate 

bound CYP (Figure 71 below); e.g., besides that Soret band at around 390 nm, the Q 

band is seen near 540 nm and a charge transfer band is seen at 647 nm. The comparison 

of the UV-Vis data of samples at 65 °C, but different pH, clearly indicates that the 

sample prepared in slight acidic buffer (pH 6) exhibits larger percentage of spin state 

conversion (80 %) than that prepared at neutral pH (60%).  
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Figure 71 Effect of Temperature on spin state for PFDA bound CYP119 in 100 mM PB, 

pH 6 (left) and 7 (right). There is better binding at pH 6 giving rise to more high spin 

form (red trace) than at pH 7  

It is noted that when the experiment was repeated with substrate-free CYP119 no 

shift of the Soret band was observed from the low spin state (417 nm) to the 392 nm, 

characteristic of the high spin state (Figure 71 Error! Reference source not found.).  

 

 
Figure 72 Effect of Temperature on spin state for substrate free CYP119 in 100 mM PB 

at pH 7 
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Similar studies were performed for LA bound CYP119 samples showing around 

80 % spin state conversion of to the high spin state LA binding at pH 6, in agreement 

with previously published data.108, 109 

Based on these studies, it can be concluded that substrate binding by CYP119 is 

affected by pH. Substrate binds better in acidic medium. The possible explanation for this 

is the fact that the isoelectric point (PI) of CYP119 is 6.08. This is the pH at which the 

protein charge is zero, hence the hydrophobic substrate LA or PFDA readily accesses the 

active site. The question that needs to be addressed however, is whether the substrate is in 

the active site at low temperatures or only enters the active site at higher temperatures. 

This issue will be addressed by studies of the ferrous CO adducts that are excellent 

probes of the changes happening in the active site (vide infra). 

The RR studies of PFDA bound CYP119 in ferric and ferrous states 

Figure 73 below shows the comparison of the high frequency RR spectra of 

camphor bound CYP101 and PFDA bound CYP119 at room temperature and at 77 K in 

their ferric and ferrous states. This data was collected as a reference for the RR 

measurements of oxy adducts prepared later; e.g., during initial steps of preparation of the 

oxy adducts, often happens that not enough oxygen was added and the sample contains 

some ferrous forms. Also, when the sample is mixed with oxygen for too long, the 

autoxidation might happen, leading to formation of the ferric state. Therefore, the RR 

spectra of frozen ferrous and frozen ferric samples will help in elucidating the presence of 

possible unreacted ferrous or autoxidized ferric forms in the oxy samples. Furthermore, 

the data are also helpful to ensure the integrity of the CYP119 protein and to confirm 
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whether the RR spectra of PFDA bound protein exhibit low spin or high spin spectral 

pattern.  

As expected, the SB CYP101 sample, at room temperature as well as at 77 K, 

exhibits Raman bands characteristic for the high spin state, that is a ν3, ν2 and ν10 modes 

at 1486 cm-1, 1569 cm-1 and 1625 cm-1, respectively. The corresponding spectra of the 

ferric CYP119 with PFDA present at room temperature and at 77 K show spectral pattern 

characteristic of the low spin state; e.g., the ν3, ν2 and ν10 modes, are seen at 1502 cm-1, 

1584 cm-1 and 1641 cm-1, respectively. The RR spectra of ferrous CYP101 and CYP119 

at both temperatures shows the ν4 mode at around 1342 cm-1 and the ν3 mode near 1465 

cm-1 indicating the five-coordinated high spin form. It is noted that lowering of the 

temperature causes slight upshifts of the Raman bands as well as their narrowing, an 

observation in line with previous studies.126–128 
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Figure 73 The high frequency RR spectra of camphor bound CYP101 and PFDA bound 

CYP119 in their ferric and ferrous states, at room temperature and at 77 K. 
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The RR studies of LA-bound CYP119 at different temperatures 

To further evaluate the substrate binding to CYP119 the RR studies of substrate-

free and LA-bound samples were performed at different temperatures. Figure 74 shows 

LA-bound (left) and substrate-free (right) RR spectra at 10, 20, 40 and 65 °C; the 

corresponding low frequency data are shown in Figure 75 . The high frequency spectrum 

of LA-bound at 10 °C (top left spectrum, Figure 74) exhibit a v3 mode characteristic 

exclusively for low spin complex (1503 cm-1) even though the substrate was added. 

Increase in temperature results in a gradual shift to high spin, achieving ≈80 % high spin 

at 65 °C, in a good agreement with the UV-Vis data. The corresponding data for 

substrate-free sample (Figure 74, right) shows only modest increase of a 5 % high spin 

component at elevated temperatures, and observation consistent with the previously 

published data.25 One possibility is that the LA substrate is not in the active site at low 

temperatures, but enters the active site when temperature is increased, an issue that will 

be addressed in the next section dealing with ferrous CO adducts. 
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Figure 74 High frequency resonance Raman spectra showing effect of temperature on 

binding of lauric acid (left) (≈ 80 % high spin formed at 65 °C and effect of temperature 

on substrate free CYP119 (right) (≈3-5 % high spin formed at 65 °C) 

 

The corresponding data in the low frequency region (Figure 75) shows that the 

increase of temperature in the LA-bound sample causes the spectral changes usually 

associated with the increase of the high spin state, e.g., activation of out of plane modes 

at 319 (γ7) and 496 cm-1, activation of the lower frequency propionate bending mode at 

369 cm
-1 and activation of the lower frequency vinyl bending mode at 408cm-1. There is 

no temperature associated spectral changes observed for the substrate-free sample.  
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Figure 75 Low frequency resonance Raman of substrate free (left) and LA-bound (right) 

CYP119 

 

The RR studies of the CO adducts of CYP119  

The CO adduct of cytochromes P450 are often used and a way to probe the distal 

side of the heme pocket; e.g., the Fe-C-O fragment is very sensitive to changes in its 

polarity such as presence of H-bonding interactions with distal amino acid residues, water 

molecules or substrates. The ν(Fe-C) stretching modes are usually observed in the region 

of 460-490 cm-1, while the ν(C-O) stretching modes are seen in the 1920 - 1970 cm-1 

region. This experiment was carried out to address the question of whether the substrate 

is in active site at low temperature or only enters when the temperature is increased.  
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Figure 76 shows low and high frequency regions of CO adducts of substrate-free, LA-

bound and PFDA-bound samples at 10 °C. The ν(Fe-C) mode of substrate-free sample is 

observed at 476 cm-1, with corresponding ν(C-O) mode seen at 1945 cm-1. Binding of LA 

do not affect the frequency of the v(Fe-C) or v(C-O) modes, however, these modes 

clearly become sharper and exhibit increase in intensity; e.g., the carefully applied 

deconvolution of the ν(Fe-C) envelopes revealed that the bandwidth of the ν(Fe-C) mode 

is substrate-free sample is ~ 24 cm-1 and in the LA-bound protein is ~ 17 cm-1. Such 

effects are usually associated with crowding of the heme pocket caused by some steric 

effect, in this case, presence of LA in the heme pocket. It is noted that these changes are 

slight which is likely because the substrate is small and does not kick out the water 

molecule from the cluster at low temperature. More convincing evidence is obtained for 

the samples containing PFDA substrate. The bottom spectra of Figure 76 clearly shows 

that PFDA binding causes a clear 2 cm-1 downshift of the v(Fe-C) stretching mode and a 

corresponding 6 cm-1 upshift of the v(C-O) mode. The downshift of the ν(Fe-O) mode 

and corresponding upshift of the ν(C-O) mode are usually indicators of the less positive 

environment of the Fe-C-O fragment, and behavior entirely consistent with the presence 

of a chemically neutral substrate, such as PFDA. These data provide direct evidence that 

the substrates are bound in the heme pocket even at the lower temperatures. 
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Figure 76 Low frequency (left) and high frequency (right) resonance Raman spectra of 

ferrous CO adducts of CYP119 and effect of substrates LA and PFDA at 10 °C. 
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3.3.5 RR characterization of CYP119 dioxygen adducts 
 

The formation of oxy ferrous complex of LA and PFDA bound CYP119 was 

confirmed by RR spectroscopy at 77 K. The medium frequency spectra which allow 

simultaneous observation of the ν(Fe-O) and ν(O-O) regions are shown in Figure 77 for 

the LA-bound samples. The spectra were measured for 16O2 and 18O2 samples in H2O 

buffer (A and B, respectively), and for 16O2 and 18O2 samples in D2O solutions (C and D, 

respectively. Furthermore, the 16O2 - 
18O2 difference traces were generated and are shown 

at the bottom of Figure 77. To get better insight into the O-O modes distribution, careful 

deconvolution was performed using 50/50% Gaussian/Lorentzian functions of 11.0 cm-1 

± 0.5 cm-1 bandwidth, and the results of this band fitting are shown in Figure 78.  

Inspection of Figure 78 clearly indicates that the asymmetric envelope of O-O bands can 

be deconvoluted into two modes, a lower frequency one at 1130 cm-1 that is much less 

populated and a higher frequency, dominant mode at 1139 cm-1. These modes exhibit 

expected 16/18O shifts of 66 and 65 cm-1, respectively. The inspection of difference pattern 

in the D2O buffer (Figure 78, B) indicates that the lower frequency mode is H/D sensitive 

and is upshifted by 2 cm-1 in buffer prepared in D2O. Even though this mode is relatively 

weak, the fact that it is indeed present and exhibits the correct frequency and, also 16/18O2 

isotope shifts, then it is considered a valid peak as discussed earlier for Figure 62. It is 

apparent that these two ν(O-O) modes correspond to two Fe-O-O conformers. The 

frequency of the 1139 cm-1 mode and its lack of H/D sensitivity indicate that this Fe-O-O 

conformer doesn’t participate in any substantial H-bonding interactions with active side 

residues or water molecules. On the other hand, the 9 cm-1 downshift of the less 

populated, lower frequency mode and its H/D sensitivity clearly indicate that this mode is 
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H-bonded. It is noted that these rR data are like those of CYP101 and its D251N mutant, 

where also multiple Fe-O-O conformers were observed. The ν(Fe-O) stretching mode is 

seen at 535 cm-1 (Figure 77) and exhibits 28 cm-1 shift upon 18O2 substitution and no H/D 

sensitivity. This is also like ν(Fe-O) modes seen for other oxygenated P450s; i.e., 537 cm-

1 in D251N mutant and ~ 540 cm-1 in CYP101. 
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Figure 77 Medium frequency rR spectra of CYP119 with LA in H2O buffer, A) 
16O2/H2O, B) 18O2/H2O, C) 16O2/D2O, D) 18O2/D2O, and their difference traces. 
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Figure 78 The deconvoluted 16O2- 
18O2 traces in H2O (A) and D2O (B) buffers for the 

LA-bound oxyCYP119.  

 

Similar studies were done for CYP119 bound with PFDA and corresponding RR 

data of isotopically labeled oxy adducts are presented in Figure 79, along with their 

difference traces, where clear positive and negative features are seen. The deconvolution 

procedure, shown in Figure 80, revealed the presence of two Fe-O-O conformers, like LA 

bound samples. Thus, two ν(O-O) modes are seen, one at 1130 cm-1 (1065 cm-1 upon 18O2 

exchange) and the second one at 1139 cm-1 (1073 cm-1 with 18O2 isotopomer).  
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Interestingly, the lower frequency mode is now a dominant one, and exhibits stronger H/D 

sensitivity; e.g., it shifts up by 4 cm-1 in the D2O buffer, and the higher frequency, non-

H/D sensitive mode, is less intense.  It is obvious that these changes in the H-bonding 

interactions with the Fe-O-O fragments reflect alteration in H-bonding network in the distal 

side caused by binding of perfluorinated substrate. It seems reasonable to conclude that 

such changes might affect formation and stability of the Compound I intermediate. The 

ν(Fe-O) mode is seen at 534 cm-1 and shifts down by 29 cm-1 upon 18O2 substitution.  
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Figure 79 Medium frequency rR spectra of oxy CYP119 with PFDA; A) 16O2/H2O, B) 
18O2/H2O, C) 16O2/D2O, D) 18O2/D2O, and their difference traces.  
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Figure 80 The deconvoluted 16O2- 
18O2 traces in H2O (A) and D2O (B) buffers for the 

PFDA-bound oxyCYP119.  

In summary, the oxy complexes of LA- and PFDA-bond samples of CYP119 

were successfully prepared and characterized by RR spectroscopy. The careful 

deconvolution studies revealed that these two adducts exhibit two Fe-O-O conformers, a 

H-bonded and a non-H-bonded form. The H-bonded conformer is dominant in the PFDA 

bound sample. The ν(Fe-O) mode was detected in spectra of samples containing both 

substrates, and was seen at 534-535 cm-1. 
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3.3.6 Resonance Raman studies of cryoradiolytically reduced samples of oxyCYP119 

 

The oxygenated samples of CYP119 bound to LA and PFDA were irradiated and 

handled according to previously published procedures.128, 129 The spectra of 16O2 and 18O2 

samples in H2O and D2O buffers, as well as their difference traces are shown in Figure 

81. These RR data are for irradiated oxy adducts of CYP119 bound with LA and were 

obtained directly after irradiation at 77 K without annealing to higher temperature. The 

oxygen sensitive mode seen at 772 cm-1 shifts to 733 cm-1 in 18O2 sample and exhibit 5 

cm-1 downshift in D2O buffer; the frequency and H/D sensitivity allows for confident 

assignment of this mode to the ν(O-O) stretching mode of the hydroperoxo intermediate. 

Those data are consistent with the previously published RR results for CYPs hydroperoxo 

intermediates and the weakening of the O-O bond relative to the oxygenated complex 

confirms substantial weakening of this bond.  The corresponding ν(Fe-O) mode is seen at 

569 cm-1, shifting by 27 cm-1 upon 18O2 substitution and exhibit small H/D shift of ~ 1 

cm-1. This apparent strengthening of the Fe-O bond, as compared to the Fe-O bond of the 

oxy adduct (535 cm-1), is consistent with the eventual formation of the hydroperoxo form, 

which converts to Compound I upon further protonation.  

It is also important to mention that the failure to observe the peroxo intermediate 

indicates that the heme active site of this enzyme is designed in such a way that the 

proton shuttle for this system is very efficient and transfers a proton even at 77 K.117 Such 

observation was previously made also for WT CYP101.130 It is also noted that EPR 

studies of irradiated oxy adducts of substrate-free CYP119 also showed formation of 

hydroperoxo intermediate immediately after irradiation.131 
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Figure 81 Middle frequency rR spectra of oxy CYP119 with LA after irradiation; A) 
16O2/H2O, B) 18O2/H2O, C) 16O2/D2O, D) 18O2/D2O, and their difference traces.  Total 

collection time was 6 hours for each spectrum using 442 nm excitation line at 77 K. 
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The corresponding studies of PFDA-bound CYP119 were also conducted and the 

results are shown in Figure 82. The mode assigned to ν(O-O) stretching of hydroperoxo 

intermediate is seen at 775 cm-1 and shifts by 40 cm-1 upon 18O2 substitution. This mode 

also exhibits a 5 cm-1 downshift in D2O, securing its assignment to the Fe-O-O-H 

fragment. The corresponding ν(Fe-O) mode is seen at 570 cm-1, and shifts by 25 cm-1 

upon 18O2 substitution (small H/D shift of ~ 1 cm-1).  

The PFDA bound irradiated samples in H2O buffer were annealed at 190 K in an 

attempt to generate compound-I, and measurements of the RR spectra were done using 

the 356 nm excitation line, since the Soret band of compound I occurs at around 360 nm. 

It is anticipated that the RR spectra of annealed LA-bound samples would simply show 

formation of ferric form, owing to efficient reaction of Compound I with this reactive 

substrate. On the other hand, it is possible that the inert substrate, PFDA, would allow 

Compound I to persist and be observed by RR spectroscopy. However, while the PFDA 

samples showed a possible peak at 754 cm-1, possibly due to the ν(Fe-16O) mode of 

compound I, there is no clear negative peak assignable to a ν(Fe-16O) counterpart. 

Consequently, the resonance Raman data on Compound-I are inconclusive and we see no 

clear evidence of compound I (see Figure 83 below). The sample could not be measured 

for longer times owing to photodecomposition after 80 minutes at 1.4 mW and the signal 

was lost and background was quite noisy and unusual. Further studies will include 

measuring the PFDA samples with rapid mixing/ detection. Specifically, a platinum 

sphere mixing device will be used.132 Stopped flow methods will also be used on 

CYP119, PFDA and the putidaredoxin (redox partner)109 to attempt to generate and 

detect the fleeting intermediate CYP119-I.  
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Figure 82 Middle frequency rR spectra of oxy CYP119 with PFDA after irradiation; A) 
16O2/H2O, B) 18O2/H2O, C) 16O2/D2O, D) 18O2/D2O, and their difference traces.  Total 

collection time was 6 hours for each spectrum using 442 nm excitation line at 77 K. 

 

Figure 83 Middle frequency rR spectra of oxy CYP119 with PFDA after annealing at 

190 K; A) 16O2/H2O, B) 18O2/H2O and the difference trace. Total collection time was 1 

hour 20 minutes for each spectrum using 356 excitation line at 77 K.  
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3.3.7 Generation of Compound I, using mCPBA in the presence of fluorinated 

substrate PFDA 

   

The experiment was conducted to determine if fluorinated substrates can prolong 

the lifetime of Compound I. The inability of researchers “to see compound-I in action” 

has led to some doubts in its existence as the most potent oxidizing species. This 

experiment reinforces what was observed using stopped flow methods35 by Green and co-

workers. They reported Compound I maximized in about 35 ms using stopped flow 

technique. In this present study, it was observed that CYP119-I can be captured, and 

characterized with PFDA present. The UV-visible spectroscopy revealed that the the 

absorption spectrum of compound I is detectable for about 45 s in the presence of PFDA. 

Figure 84 (left) shows spectra collected 3.3, 10.0, 16.7, 23.3, 30.0, 36.7, 43.3 and 50.0 s 

after addition of mCPBA (green spectra). As can be seen, there is no evidence for 

formation of the Compound I in this substrate-free CYP119. On the contrary, an identical 

experiment with samples containing PFDA (Figure 84, right) exhibit clear bands at 366 

nm and 690 nm characteristic of the Compound I intermediate. These results agree with 

previously published spectra of compound I in CYP119-I using m-chloroperoxybenzoic 

acid by Green and coworkers.35 However, some portion of the protein degraded (31 % 

loss due to heme degradation) owing to side reactions of compound I.  

Resonance Raman studies of compound I generated using mCPBA on PFDA 

bound CYP119 have not been attempted, owing to difficulties in getting pure 18O 

mCPBA with >90 % active oxygen as the purified commercial 16O mCPBA. In the near 

future, such studies will be conducted with isotopically labeled mCPBA, using a rapid 

mixing device which will soon be refurbished.132 
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Figure 84 UV-visible spectra for substrate free (left) and PFDA bound CYP119 (right) 

showing the generation and stabilization of CYP119-I using 5-fold excess mCPBA. 

CYP119-I lifetime prolonged for up to 45 s. A portion of the protein was also degraded 

from using excess mCPBA.  
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3.4 Summary 

 

The present work employed PFDA as an inert substrate for the thermophilic 

protein CYP119, to capture, generate and spectroscopically characterize Compound I 

intermediate.  CYP119 was shown for the first time to bind LA and PFDA with up to 80 

% spin state conversion at elevated temperature, by UV-visible spectroscopy and rR 

spectroscopy temperature dependence studies. Further studies on ferrous CO complexes 

of CYP119 provided evidence that the substrate is in the active site even at low 

temperatures, even though the RR spectra of the ferric enzyme at low temperatures 

exhibit spectral pattern characteristic of low spin form. This is in agreement with 

previous studies25 of CYP119 with styrene by T1 NMR relaxation studies which proved 

the substrate is bound in the active site of the protein even at low temperatures. In one 

approach, we planned to generate Compound I by following the normal catalytic 

pathway. This involved making oxy complexes of CYP119 with LA and PFDA and RR 

measurement of oxy adduct and their reduced forms generated by irradiation. We report 

for the first time, high quality data for oxy samples in the presence of LA and PFDA 

substrates, revealing the presence of multiple Fe-O-O conformers. It is shown that the 

non-H-bonded conformer is dominant in the sample containing LA, while both (H-

bonded and non-H bonded) conformers are comparable in intensity in the samples with 

PFDA substrate. Both, LA and PFDA bound, cryoradiolytically reduced samples quickly 

form hydroperoxo intermediates, indicative of very efficient proton delivery network in 

the CYP119 active site. In another approach, we have shown using UV-Vis spectroscopy, 

for the first time, that the Compound I can be generated and its half-life prolonged by a 

factor of more than 10 using fluorinated substrate PFDA. With this technique, a 
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Compound I spectrum persisted for up to about 45 s in contrast with stopped flow method 

which showed a rapidly decaying compound I35.  The future plan is to generate 

Compound I using this approach and characterize it by RR spectroscopy.   
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APPENDIX 

List of Abbreviations 

v(Fe-O) iron-oxygen stretching mode 

δ(Fe-C-O) iron-carbon-oxygen bending mode 

Cam  Camphor 

CCD  Charge coupled device 

CYP  Cytochrome P450 

CPO  Chloroperoxidase 

HRP  Horseradish peroxidase 

EPR  Electron paramagnetic resonance 

NMR  Nuclear magnetic resonance 

rR  resonance Raman 

LA  Lauric acid 

PFDA  perfluorodecanoic acid 

mCPBA m-Chloroperoxybenzoic acid 

SB  Substrate bound 

SF  Substrate free 

P450cam Cytochrome P450cam (CYP101) 

PDB  Protein data bank 

HF  High frequency 

HS  High spin 

LS  Low spin 

LF  Low frequency 

 

Solution preparations and recipes 

LB Medium 

Per Liter 

❖ 10 g Tryptone 

❖ 5 g Yeast extract 

❖ 10 g NaCl 
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       For LB Plate, 35g bacto-agar was dissolved in 1L of highly polished water and 40 plates 

made from this solution. 

       2YT Medium 

       Per Liter 

❖ 16 g Tryptone 

❖ 10 g Yeast extract 

❖ 5 g NaCl 

Terrific broth (TB) Medium 

Per Liter 

❖ 12 g Tryptone 

❖ 24 g Yeast extract 

❖ 4 mL glycerol 

Dissolve in 900 mL of highly polished water- autoclave 

❖ 12.54 g K2HPO4 

❖ 2.32 g KH2PO4 

Dissolve in 100 mL of water-autoclave 

 Mix after autoclave and add 50mg ampicillin and 50mg chloramphenicol after 

cooling. 

 

50x TAE buffer 

Per Liter 

❖ 242 g Tris base 

❖ 57.1 mL of 100% acetic acid 

❖ 100 mL of 0.5 M sodium EDTA 

❖ Make up to the mark with DI water 

To make 1x TAE buffer dilute 20mL of 50x TAE with 980mL of DI water. 

2D6 Running buffer (500 mM PB, pH 7.4) 

250 mL…………. Highly polished water 

3.9 g……………. Monosodium phosphate monohydrate 

25.9 g……………. Disodium phosphate, heptahydrate 

20 % glycerol (v/v) 

195mg……………β-mercaptoethanol (10 mM) 

2.15 g……………. CHAPS (14 mM) 

43.5 mg……………phenylmethylsulfonylfluoride (PMSF) 
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2D6 Elution buffer (10 mM PB, pH 7.4) 

250 mL……………. Highly polished water 

0.078 g……………. Monosodium phosphate monohydrate 

0.519……………… Disodium phosphate, heptahydrate 

20 % glycerol (v/v) 

1.16 g………………. Histidine (30 mM) 

14.61 g………………NaCl (1 M) 

2.15 g………………. CHAPS (14 mM) 

195 mg………………. β-mercaptoethanol (10 mM) 

43.5 mg……………phenylmethylsulfonylfluoride (PMSF) 

 

     

  1.5 Stock Solutions 

❖ 1 M Tris Chloride (157.56)- dissolve 157.6 g of Tris-HCl and make up to 1 L 

❖ 1 M Tris base (121.14 g/mol)- dissolve 121.14 g of tris base and make up to 1 L with 

highly polished water 

❖ 1 mM Camphor (152.23 g/mol)- dissolve 152.23 g in 1L water 

❖ 1 M IPTG (238.3 g/mol)- dissolve 11.91 g IPTG in 50 mL of water 

❖ 10 mM PMSF (174.19 g/mol)- dissolve 87 mg in 50 mL of propanol 

❖ 100 mg/mL ampicillin (349.406)- dissolve 1 g of ampicillin in 10 mL of water 

❖ 100 mg/mL Chloramphenicol (323.13)- dissolve 1 g chloramphenicol in 10 mL of 

ethanol 

❖ 20 mg/mL ALA- dissolve 200 mg of ALA in 10 mL of water 

❖ 5 mg/mL antipain- dissolve the 5 mg in 5 mL of highly polished water 

❖ 1 M Aminolevulinic acid (167.59 g/mol) - dissolve 1.006 g of ALA and make up to 6 

mL. 

 


