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ABSTRACT 

SYNTHESIS AND REACTIVITY OF SILVER COMPLEXES OF NITROGEN 

CONFUSED SCORPIONATE LIGANDS 

 

Fathiya Jahan, M.S. 

Marquette University, 2019 

 

 

 

Scorpionate ligands are one of the most crucial nitrogen donor ligands in coordination 

chemistry. The scorpionate ligands have served as excellent ligand scaffolds for 

investigating iron(II) spin crossover chemistry. In this study, the complex, 

[Fe(HL*)2](OTf)2, 1, where HL* = bis(3,5-dimethylpyrazol-1-yl)(3-1H-pyrazole)methane 

was prepared which exhibited multiple solid-state structures and solvates. Six crystalline 

forms of 1 were prepared by controlling the crystallization conditions. Thus, when 

reagents are combined in CH3CN, an equilibrium mixture of cis- and trans- is established 

that favors the latter below 310K.  Among the six crystal forms, trans-1, trans-1.CH3CN, 

cis-1 and co-1 undergo SCO below 250K while trans-1.xCH3CN (x=2,4) solvates do not 

undergo SCO before desolvation. Another application of the scorpionates is in nitrene 

transfer reactions. In this contribution, two new N-confused C-scorpionates, TsLipr2 and 
HLipr2, each with two ‘normal’ 3,5-diisopropylpyrazolyl groups, and either an N-tosyl or 

N-H group on the ‘confused’ pz were synthesized. These new ligands complement those 

previously described dimethylpyrazolyl derivatives, HL* and TSL*
, which have less bulky 

‘normal’ pyrazol-1-yls. For these two bulky N-confused scorpionate ligands, the 2:1 and 

1:1 ligand:silver complexes were prepared and characterized both structurally and 

spectroscopically. Their potential as catalysts for nitrene transfer reactions was also 

investigated. 
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CHAPTER 1: INTRODUCTION 

 

Nitrenes are electron deficient, uncharged molecular fragments consisting of a 

nitrogen atom which has only six electrons in its valence shell. They can exist as both 

singlet state and triplet state. In singlet state nitrenes have two pairs of electrons and a 

low- energy empty orbital. In the triplet state they have one electron pair with two 

electrons in parallel spins as shown in figure 1.1.1  

 

 

Figure 1.1.  Electronic States of Nitrene 

 

Transition metal catalyzed nitrene transfer is a promising synthetic method to 

install valuable carbon−nitrogen bonds that are widespread in natural products and 

pharmaceuticals.2-5 Transition metal catalyzed nitrene transfer typically involves the 

formation of a metal-imido intermediate in the presence of a nitrene precursor and a 

transition metal catalyst [LnM]. Group 11 elements such as copper and silver catalysts 

show great promise as cost effective alternates to conventional Rh catalysts.2 Hypervalent 

NH2R
-2H+

NR
-2e-

NR

2-
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iodine reagents are the common nitrene sources for these nitrene transfer reactions as 

shown in equation 1.9 

……………....….(eq.1) 

The metal-imido intermediate then undergoes reaction with an organic substrate 

and two main modes of reactivity have been observed as shown in figure 1.2. 3 

 

Figure 1.2. Transition metal catalyzed nitrene transfer reactions. Figure is taken from reference 3. 

 

Addition of the nitrene across a C=C in an unsaturated organic substrate such as 

olefins, yield a strained, three membered ring containing one nitrogen atom known as the 

aziridine. The aziridine is an important synthetic intermediate in many organic syntheses 

and in pharmaceuticals.4 

 

 

 

This aziridination reaction is thought to proceed by the formation of a radical 

intermediate as shown in figure 1.3.5 

NH2R PhI=NR H2OPhI=O

M NR NR

 

…………(eq.2) 
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Nitrene precursors: ArINTs, ArINNs, NaCINTs, ArN3 etc. 

Figure 1.3: Proposed mechanism for transition metal mediated aziridination of olefins (route A), 

amination of sp3 C-H bonds (route B) and aromatic C-H bonds (route C). Figure is taken from 

reference 5. 

 

The second mode of reactivity of the metal-imido intermediate is the C-H bond 

amination which involves insertion of the nitrene into a C-H bond of an organic substrate 

giving the amine product. Amination of a sp3 C-H bond will take place by a stepwise 

abstraction of hydrogen and radical rebound mechanism giving the carboradical 

intermediate as shown in the figure 1.3 (route B). In contrast, the direct amination of an 

aromatic (sp2) C-H bond involves the electrophilic addition of nitrene radical to an 

aromatic C=C bond as shown in figure 1.3 (route C).3-5 In 1968, Breslow and Sloan 

heated a solution of dichloramine-T(I) in cyclohexane with Zn to yield a sulfonyl nitrene 

which inserted into a C-H bond of the solvent as shown in equation 3.6 



4 
 

………(eq.3) 

 

In 1982, Breslow and Gellman used manganese or iron tetraphenylporphyrin 

(TPP) to catalyze a nitrogen insertion reaction.7 Cyclohexane was reacted with 

(tosyliminoiodo) benzene and manganese(III) - or iron(III) -tetraphenylporphyrin 

chloride to afford N-cyclohexyltoluene-p -sulphonamide as shown in equation 4.  

…………(eq.4) 

 

 

The first report of an efficient olefin aziridination reaction catalyzed by a 

disilver(I) compound was from the He group.8 Efficient aziridination of olefins were 

performed by using 1 equivalent of a tridentate 4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine 

(tBu3tpy), 1 equivalent of a silver(I) salt as the catalyst and PhI=NTs as a nitrenoid source 

in acetonitrile as shown in equation 5. No reaction was observed in the absence of the 

Zn

C6H12

N
H

ZnCl2

H3C

S N

O

O

Cl

Cl

H3C

S N

O

O

H3C

S

O

O

Mn(TPP) or Fe(TPP) C6H12

H3C

S N

O

O

IPh

N
H

H3C

S

O

O
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silver(I) salt and the reaction was unaffected by the counteranions (NO3
-, OTf-, ClO4

- and 

BF4
-). 

.……(eq.5) 

 

Olefin aziridination was also carried out with pyridine or 4-tert-butyl-pyridine as 

the ligand but only a trace amount of aziridine product was obtained. Other ligands like 

bipyridine, 4,4′-di-tert-butyl-bipyridine, or 2,2′:6′,2′′-terpyridine (tpy) gave a decent yield 

of aziridine along with a variety of byproducts. However, no product was observed when 

t Bu-bis(oxazoline) or Ph-bis(oxazoline)- pyridine was used as the ligand. The effect of 

ligand on the yield of the olefin aziridination reaction is given in table 1.1. 

 

Table 1.1: Effect of ligand on the yield of the olefin aziridination reaction. Table is taken from 

reference 8. 

Ligand Yield (GC) 

pyridine trace 

4-tert-butylpyridine trace 

bipyridine 35-50 % 

4,4’-di-tert-butylbipyridine 35-50 % 

2,2’:6’,2’’-terpyridine (tpy) 35-50 % 

4,4’,4’’-tBu
3
tpy 66-91 % 

4-tert-butylbis(oxazoline)                    - 

4-phenylbis(oxazoline)pyridine - 
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Crystal structure of [Ag
2
(
t
Bu

3
tpy)

2
(NO

3
)](NO

3
) contained a dinuclear Ag core 

with a short Ag-Ag interaction of  2.842 Å as shown in figure 1.4. Both Rh2(OAc)4 which 

is used to catalyze similar olefin aziridination 9,10 reactions and 

[Ag
2
(
t
Bu

3
tpy)

2
(NO

3
)](NO

3
)] have short metal-metal distances and accessible 

coordination sites at the terminal positions which means that the two systems may share 

similar mechanistic characteristics. Thus, a disilver compound is required to catalyze the 

two electron nitrene transfer. 

 

Figure 1.4: The molecular structure and space filling model of [Ag
2
(
t
Bu

3
tpy)

2
(NO

3
)](NO

3
)]. 

Figure is taken from reference 8. 
 

Extensive studies have been done for the aziridination reactions using alkenes as  

substrates but only a handful can be found with conjugated dienes as the substrate. 

However, previous studies of vinylaziridines using Cu and Ru-based catalysts have the 

drawbacks that only symmetric dienes can be used and the stereoselectivity (intended cis/ 

trans or trans/cis) of the vinylaziridine cannot be controlled.11-12 The Perez group reported 

a MTpx (M= Cu, Ag) complex that catalyzed vinylaziridination reactions using 
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trans,trans-2,4-hexadien-1-ol as the substrate which is a nonsymmetric diene with an -OH 

group.13 The primary goal of their study was to control the stereo and regioselectivity of 

the vinylaziridine. Aziridination reaction of this kind of nonsymmetric diene would give 

rise to two different kinds aziridines each of them with a cis or trans geometry. These are 

formed either by nitrene addition to the double bond vicinal to the hydroxy end of the 

substrate or by nitrene addition to the double bond vicinal to the methyl end as shown in 

figure 1.5. 

 

                                                                     trans-                                       cis- 

Figure 1.5: Aziridination of trans,trans-2,4-hexadien-1-ol with TpxM catalysts (M=Cu, Ag) using 

PhINTs as the nitrene source. Figure taken from reference 13. 

 

Table 1.2: Reaction of trans,trans-2,4-hexanedien-1-ol with TpxM catalysts(M= Cu, Ag) using 

PhINTs as the nitrene source. Table taken from reference 13. 

Catalyst Conv. % Regio.  trans/cis 

[Tp*Cu](a) > 67 82:18 66:34 

[Tp*Ag](a) > 95  90:10 >98:<2 

[Tp*
,Br

Ag](a) > 99  90:10 >98:<2 

[Tp*
,Br

Ag](b) > 99 89:11 >98:<2 

[Tp*
,Br

Ag](c) 80 89:11 >98:<2 

[Tp*
,Br

Ag](d) > 99 88:12 >98:<2 

Reaction Conditions: 

a) [cat.]/[PhINTs]/[substrate]=1:20:30, 0.0125 mmol catalyst, 5% cat. loading. 
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b) [cat.]/[PhINTs]/[substrate]=1:200:300, 0.0046 mmol catalyst, 0.5% cat. loading 

c) [cat.]/[PhINTs]/[substrate]=1:1000:15000, 0.0030 mmol catalyst, 0.1% cat. Loading 

d) [cat.]/[PhINTs]/[substrate]=1:200:200, 0.0125 mmol catalyst, 0.5% cat. Loading 

 

 

TpxM (M=Cu, Ag) complexes were able to catalyze the aziridination of dienes 

containing a terminal hydroxy group. Aziridine formed by the nitrene addition to the 

double bond vicinal to the hydroxy end of the substrate was favored by the TpxCu 

complex. However, the copper catalyst showed low selectivity as it caused a certain 

degree of inversion of the initial trans configuration of the diene and yielded a final trans 

to cis aziridine ratio of 1:1 to 2:1. On the other hand, only trans aziridines were observed 

with the TpxAg complexes. Since TpxBr gave nearly quantitative conversion using a 5% 

catalyst loading, the aziridination reaction was then conducted by using a 0.1% and 0.5% 

catalyst loading. No loss of catalytic activity was observed at 0.5% catalyst loading. 

However, the aziridine conversion dropped to 80% when 0.1% catalyst loading was used 

as shown in table 1.2. When a 1:200:200 ratio of [cat.]/[PhINTs]/[diene] was used an 

approximately 9:1 mixture of regioisomers of aziridines was formed, with complete 

retention of its configuration.  In order to test if the high selectivity was a result of the 

directing effect of the hydroxyl group, the Perez group13 next employed O-protected 

dienes containing an acetyl or benzyl groups. Lower conversions into aziridines, and 

lower regioselectivity were observed when O-protected dienes were used (acetal, benzyl) 

which confirmed high regioselectivity was caused by the directing effect of the hydroxyl 

group. 
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Figure 1.6: Reaction of O-protected diene with [Tp*BrAg]2 catalyst using PhINTs as the nitrene 

source. [R=Ac, 78% conversion and R=Bn, 66% conversion]. Figure is taken from reference 13. 

 

The diene aziridination was then applied to the synthesis of an amino alcohol, (±) 

sphingosine with an overall yield of 65% as shown in figure 1.7. 

 

 

Figure 1.7: Application of the diene aziridination reaction to the synthesis of (±) sphingosine. 

Figure taken from reference 13. 

 

The mechanism of nitrene transfer in these reactions is still uncertain. It has been 

suggested that the metal nitrene is an active intermediate in the catalytic cycle.14 The 

metal-nitrene intermediate can exist in two electronic states, singlet and the triplet state. 
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N
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A stepwise or radical mechanism will give rise to the triplet species whereas a singlet 

state will be formed from a concerted mechanism as shown in figure 1.8. In order to 

investigate the olefin aziridination reactions from a mechanistic point of view, the Diaz 

and Perez groups employed several mechanistic probe reactions.14 The most commonly 

performed mechanistic probe experiment is to study the stereospecificity of the olefin 

aziridination reaction. Retention of the stereochemistry of the olefin suggests a concerted 

mechanism whereas a certain loss or inversion of the olefin geometry suggests a stepwise 

mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Two commonly proposed pathways for nitrene transfer. Figure is taken from 

reference 14. 
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Olefin aziridination was carried out with four different Z- or E-olefins using 

copper and silver complexes of a series of hydrotris(pyrazolyl)borate Tpx ligands. Each 

type of olefin was converted to the corresponding aziridines with complete retention of 

olefin geometry which contradicts the previous result with E,E-hexadien-1-ol with copper 

and silver based catalysts.13 The observance of retention of initial geometry by the olefins 

suggests that the concerted mechanism is prevalent in both Cu and Ag based catalysts.  

Other mechanistic probe experiments include the addition of radical inhibitors (presence 

of absence of t-butylhydroxitoleuene, BHT) or the use of radical clocks as substrates. 

Loss of aziridine yield in the presence of a radical inhibitor suggests a stepwise 

mechanism. When the aziridination was performed by Tp*,BrM (M= Cu, Ag), the copper 

based catalyst showed a dramatic loss of aziridine yield in the presence of BHT whereas 

the silver catalyst showed no change.14 Therefore, the silver-based catalyst may not form 

a radical intermediate or the intermediate was very short lived and intercepted by BHT. 

The Diaz and Perez groups subsequently investigated aziridination of 1,1-

dicyclopropylethylene (radical clock) using TpBr3Cu and Tp*,BrAg catalysts.14 The silver 

catalyst preferentially formed the imine product while the copper catalyst showed minor 

amounts of other products. From these experiments, copper system showed a stepwise 

mechanism, but silver did not. Their mechanistic proposal from the experimental and 

theoretical calculations suggests that the reaction starts with the formation of a metal-

nitrene intermediate in the triplet state. The copper nitrene intermediate is TpMe2CuIIN.Ts 

but the silver-nitrene intermediate has two unpaired electrons on the nitrogen atom. This 

metallonitrene intermediate can attack the olefin through a transition state (3TS) resulting 

to the formation of the first carbon-nitrogen bond. The triplet state is intercepted with the 
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singlet before the intermediate (3RI) is formed in the case of silver catalyst as shown in 

figure 1.9.14 This explains the retention of stereochemistry by the olefins when the silver 

catalyst was used. This indicates that the aziridination of olefins by silver catalyst follows 

a concerted pathway, however, lack of fitting to the plain Hammett equation indicates 

polar and radical contribution. For the copper catalyst, the interception of the triplet state 

with the singlet takes place beyond the 3RI intermediate. Since the radical intermediate is 

formed first for the copper catalyst, the addition of a radical inhibitor lowers the aziridine 

yield. Thus, the previously accepted proposal that retention of stereochemistry of the 

olefin suggests a concerted pathway is not valid. The Diaz and Perez group14 suggested 

that a stepwise pathway with a triplet copper-nitrene intermediate can also give 

stereospecific aziridination. Also, for the silver catalyst the initial metal-nitrene 

intermediate is biradical even though it follows a concerted pathway. 
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Figure 1.9: Mechanistic proposal for the olefin aziridination reaction catalyzed by TpxM (M= 

Cu, Ag; Tpx= hydrotrispyrazolylborate ligand). Figure is taken from reference 14. 

 

Detailed studies have been done for metal catalyzed amidation of C-H bonds, 

however, efficient examples of such reactions are only a handful. The He group15 have 

synthesized a disilver(I) [Ag2(tBu3tpy)2(NO3)](NO3)] (tBu3tpy=4,4́’,4’’-tri-tert-

butylterpyridine) compound that acts as an efficient catalyst for olefin aziridination and 

intramolecular C-H amidation reactions but the amidation reaction must be carried out at 

82˚C and this disilver catalyst failed to conduct intermolecular C-H amination even at 

elevatedtemperatures as shown in equation 6. 

 

The He group16 then introduced a less electron-donating ligand system, a 

commercially available bidentate ligand, bathophenanthroline. The new catalyst system 

of silver(I) trifluoromethane sulfonate (AgOTf) with 4,7-diphenyl-1,10-phenanthroline 

proved to be an excellent catalyst for intermolecular amination of benzylic C-H bonds as 

shown in equation 7.  

 

 

O

H2N

O

O

O

H
N

AgNO3 (4 mol%) 
ligand (4 mol%)

PhI(OAc)2

CH3CN, 82 °C

NHNS

2 mol% AgOTf/bathophen
PhI=NNs

CH2Cl2, 50 °C

 

……….…(eq.6) 

 

…….……(eq.7) 



14 
 

Silver is known to have the unique ability to change coordination geometry in the 

presence of different Ag counteranion, different ligands, or different metal/ligand ratios. 

Thus, treatment of a single Ag salt and a single ligand will give different catalysts with 

varying selectivity. The Schomaker group17 used this concept and developed a AgOTf: 

phenanthroline catalyst system for the aziridination of homoallenic carbamates to bicyclic 

methylene aziridine. When metal: ligand ratio was 1:1, aziridination was the major mode 

of reaction. When ligand amount was increased, C-H insertion was favored as shown in 

figure 1.10. This indicates that an equilibrium exists between Ag(phen)OTf and 

Ag(phen)2OTf and each complex favors a different mode of reactivity. For tri- and 

disubstituted allenes, the rate of aziridination was faster than C-H insertion. Blocking of 

C-H insertion potential sites resulted in no or decreased reactivity in the case of 

Ag(phen)2OTf while the reactivity of Ag(phen)OTf catalyst towards aziridination 

remained unaffected. This indicates that steric congestion on the Ag center favors 

insertion and less steric congestion favors aziridination.  

 

 

Figure 1.10: Effect of AgOTf: phen stoichiometry on the Aziridination/Insertion Ratio. Figure is 

taken from reference 17.  

 

Compared to AgTpx and other anionic B-scorpionates the reaction chemistry of 

AgTpms or [Agn(Tpmx)m]+ are less explored because of the difficulty in the ligand 

synthesis.18-19 The efficient aziridination and amination catalysis have been reported by 

other groups using silver complexes of charge neutral nitrogen donor ligands, but only a 
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handful reports can be found for tris(pyrazolyl)methanes. Our group has recently 

synthesized a new class of tris(pyrazolyl)methanes, the nitrogen-confused C-

scorpionates, where one of the three pyrazolyl rings is bound to the central methine 

carbon atom via a pyrazolyl ring carbon atom rather than the more usual nitrogen atom. 

Two new nitrogen-confused C-scorpionate ligands with two “normal” pz* groups (=3,5-

dimethylpyrazol-lyl) and a “confused” pyrazolyl with either N-H, HL*, or N-Tosyl 

(Tosyl=p-toluenesulfonyl), TsL*, bound to a central methine carbon atom were prepared 

as shown in figure 1.11. These bulky ligands complement those previously described, HL 

and TsL, which had less bulky, unsubstituted, “normal” pyrazol-1-yls.20 

 

Figure 1.11: Preparative routes to Nitrogen-Confused Scorpionate ligands. Figure is taken from 

reference 20.  

 

 For these four related nitrogen-confused scorpionate ligands, the 2:1 and 1:1 

ligand/silver complexes were prepared and characterized both spectroscopically as shown 

in figure 1.12 and figure 1.3. The complexes’ catalytic activity for aziridination of styrene 

were also reported.   
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Figure 1.12: Summary of the Solid-State Coordination Behavior of 1:1 xL/Ag(OTf) Complexes. 

Figure is taken from reference 20. 

 

 

 

Figure 1.13: Preparation and labeling of 2:1 xL/Ag(OTf) Complexes. Figure is taken from 

reference 20.  

 

The new silver complexes were used to catalyze nitrene transfer reaction between 

styrene, N-tosylamine, and a hypervalent iodine reagent, PhI(OAc)2 at 2 mol % catalyst 

loading in acetonitrile. Table1.3 summarizes the results of the catalysis reaction. 1b gave 

the highest aziridine yield followed by 1a ≈ 2a and then 3a. The other new silver catalysts 

performed similarly to control experiments that show molecular sieves alone have some 

catalytic ability under these conditions (16 h at 80˚C). The aziridination reaction did not 

occur at room temperature, in methylene chloride, or even when using preformed 
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PhI=NTs (as used in other silver catalyzed aziridination reactions). A small amount (1-2 

%) of a statistical diastereomeric mixture of 2,4-diphenyl-N-tosylpyrrolidine (B, Table 

1.3) was also observed in the cases where catalysis was successful. This transformation 

has never been reported with a silver(I) catalyst before.  

 

Table 1.3: Summary of results from Nitrene-Transfer Reactionsa. Table is taken from reference 

20. 

a Conditions: 5mmol of styrene, 1mmol of PhI(OAc)2, 1mmol of H2NTs, 0.02 mmol of [Ag], 0.5g 

of 4 Å molecular sieves, 4mL of CH3CN, 16 h, 80˚C. bIsolated yields based on H2NTs; average of 

three runs (average deviation in parentheses). cTON= mmol (A+B, isolated)/ mmol [Ag]. dIn situ. 
eRoom temperature, 16 h.20 

 

For the very first time, silver(I) C-scorpionates were used as nitrene transfer 

catalysts in the aziridination of styrene in CH3CN using H2NTs and PhI(OAc)2 as an 

oxidant. The new silver complexes with the bulkiest derivative, [Ag(TsL*)2](OTf) was 

proved to be a better catalyst than the [Ag(TsL*)](OTf) and the rest of the catalysts that 
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were tested. This result contradicts the previously reported results where catalytic activity 

is favored when silver adopts lower coordination numbers. However, these silver 

complexes show lower activity for catalytic aziridination compared to the previously 

reported AgTpx complexes. The purpose of this thesis work is to fully investigate if by 

further increasing the steric bulk on the pyrazolyls these current catalysts can be made 

more competitive with other previously reported catalysts for intermolecular aziridination 

reactions. 

The second chapter of this thesis describes initial research on the solution and 

solid-state properties of the iron(II) N-confused C-scorpionate complex, 

[Fe(HL*)2](OTf)2, that served as synthetic training and was aimed at completing work of a 

previous group member, Kristin Meise, M.S.  Kristin had found that this iron(II) complex 

crystallized in different forms in from either methanol or acetonitrile solutions and that 

each form had unusual magnetic switching/ spin crossover (SCO) behavior.  She worked 

extensively on the chemistry in methanol but the work with acetonitrile remained mostly 

incomplete.  Thus, this chapter fully details my efforts toward a completed study of the 

solution equilibrium that controls much of the crystallization behavior of this 

compound.  The structures of five of the six different crystal forms and the magnetic 

properties of the compounds are described; Kristin had previously described only 

two crystal forms, co-1 and cis-1 from this solvent.  This work was submitted to the 

journal Inorganic Chemistry and the final revision is currently under review. 

The third chapter describes the preparation of two new N-confused C-

scorpionates, TsLipr and HLipr, each with two ‘normal’ 3,5-diisopropylpyrazolyl groups, 

and either an N-tosyl or N-H group on the ‘confused’ pz. Also, described in this chapter 
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are the preparation of the silver complexes of these bulky ligands and their potential as 

catalysts for nitrene transfer reactions. The final chapter will be the conclusion and details 

future work for the synthesis of a binuclear copper complex in order to develop even 

better catalysts for nitrene transfer reactions.  
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CHAPTER 2: SELECTIVE ISOMER FORMATION AND CRYSTALLIZATION-

DIRECTED MAGNETIC BEHAVIOR IN NITROGEN-CONFUSED C-

SCORPIONATE COMPLEXES OF FE(O3SCF3)2 

 

2.1. INTRODUCTION 

 

Transition metal complexes that have metal centers with d4 to d7 electron 

configurations and ligands that impart intermediate fields to the metal can be provoked to 

undergo reversible spin crossover (SCO)21,22 between low spin (LS) and high spin (HS) 

electronic states via controlled perturbations to temperature, applied pressure, or various 

forms of electromagnetic radiation.23-31  Since a given SCO complex in each of its 

electronic spin states exhibits different size, color, magnetic properties, and bulk solid-

state electrical resistivity, there has been great interest in their potential employment for 

various technological applications.32-40  The temperature dependence of bulk molar 

magnetic susceptibility (M) is most often used to characterize SCO behavior since it is 

simple to measure and because M directly correlates to the high spin fraction (HS) in the 

sample.  The temperature with HS = 0.5, or T1/2, is generally used as a descriptive 

reference.  The full M versus T plots reveal whether or not the SCO is complete, if SCO 

occurs in one or more steps, and whether there is cooperativity in the form of either a 

large M/dT or a hysteresis (where T1/2↑ (heating) is different than T1/2↓ (cooling)), or 

both.41  The requisite conditions (T, P, h, etc.) for the initiation and progression of SCO 

in the solid state depends not only on the metal ion, the ligand field strength, but, 

critically, on the nature of crystal packing.  Thus, each polymorph42 or solvatomorph43 of 

a given complex typically exhibits different magnetic behavior than its relative.  A 

longstanding research challenge in SCO compounds is to use molecular design and/or 
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crystal engineering approaches to identify structure –property relationships with the goal 

of imparting a specific magnetic behavior (T1/2, M/dT, number of SCO steps, etc.) into 

the bulk solid.  

Within the profuse collection of transition metal complexes that exhibit SCO 

behavior, octahedral iron(II) complexes of organoamine and/or N-heterocyclic donors 

represent one of the largest and most intensely studied classes.44-49  Of these, complexes 

of scorpionate ligands,50,51 poly(pyrazolyl)borates or poly(pyrazolyl)methanes (C-

scorpionates), have received increased scrutiny because of their interesting SCO 

behavior52-59 and their attractive physical properties that are useful for materials 

processing.60-67  While the SCO behavior of iron(II) scorpionates has shown some 

evidence of tunability via ligand modifications,68-72 there is a need for elaboration in 

order to more fully understand the impact of substituent changes on fine-tuning ligand 

field strength and crystal packing, and, hence, controlling SCO behavior in this class of 

compounds.  

We recently introduced a new class of C-scorpionate, the nitrogen-confused C-

scorpionate, where the connectivity of one of the three heterocycles bound to the central 

methine carbon occurs at the 3-carbon ring position instead of the more usual N-1 

position.  The iron(II) complexes [Fe(HL)2](X)2 (X = BF4,
73 OTf74), where HL is a ligand 

with two unsubstituted pyrazolyls and a ‘confused’ pyrazolyl with an N-H moiety, were 

studied.  Both complexes are low spin (LS) at room temperature and undergo SCO with 

T1/2 near 360 K but the triflate (OTf) derivative exhibited a more cooperative SCO than 

the BF4 derivative due to stronger intermolecular charge-assisted hydrogen bonding 

interactions between the pyrazolyl-NH donor and anion acceptor (O versus F).  It is 
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known for iron(II) complexes of normal scorpionates that introducing methyl substituents 

at the 3-pyrazolyl ring positions dramatically reduces T1/2 of SCO presumably because 

interligand steric interactions of six methyl groups near the metal center favor the longer 

bond distances associated with the HS state.  For instance, {Fe[HC(3,5-Me2pz)3 = 

Tpm*]2}(BF4)2 has T1/2 near 200 K75 while {Fe[HC(pz)3 = Tpm]}(BF4)2 has T1/2 near 400 

K.76  Lowering the number of methyls at the 3-pyrazolyl positon gives T1/2 between these 

two extremes as in the cases of [Fe{HC(3-Mepz)2(5-Mepz)}2](BF4)2 (T1/2 = 250 K)77 or 

[Fe(Tpm*)(Tpm)](BF4)2 (T1/2 (polymorph 1) ~ 228 K; T1/2 (polymorph 2) ~ 310 K).78  

Given these results and the current interest in discovering new examples of species that 

undergo thermal SCO with T1/2 near room temperature,79 we initiated a study of the SCO 

behavior of iron(II) complexes of HL*, a N-confused C-scorpionate ligand with two 3,5-

dimethylpyrazolyl rings and an unsubstituted ‘confused’ pyrazolyl; such complexes 

would have four methyl groups near the metal center.  During the course of these studies, 

we discovered that the iron(II) triflate complex showed unexpectedly rich structural 

chemistry that was responsible for the unusual thermal SCO behavior as evaluated by 

magnetometry measurements.  This chapter details the coordination chemistry, 

crystallization behavior, and resultant magnetic properties of [Fe(HL*)2](OTf)2·xCH3CN, 

1·xCH3CN, where x = 0, 1, 2, or 4.  

2.2. EXPERIMENTAL 

 

General Considerations.    Commercial solvents were dried by conventional means and 

distilled under a nitrogen atmosphere prior to use.  Anhydrous Fe(OTf)2 was purchased 

from commercial sources and was purified by low temperature crystallization from 

CH3CN/Et2O to give Fe(OTf)·2CH3CN that was stored under argon in a drybox.74a  The 
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compound HL* was prepared as described elsewhere.74b  The iron(II) complex was 

prepared under argon using Schlenk line techniques, however, after isolation, it was 

stored and manipulated under normal laboratory atmospheric conditions. 

Instrumentation.  Midwest MicroLab, LLC, Indianapolis, IN, performed all elemental 

analyses. Melting point determinations were made on samples contained in glass 

capillaries using an Electrothermal 9100 apparatus and are uncorrected.  IR spectra were 

recorded for samples as KBr pellets in the 4000-500 cm-1 region on a Nicolet Magna-IR 

560 spectrometer or on solid samples using a Thermo Scientific Nicolet iS5 IR 

spectrometer equipped with an iD3 Attenuated Total Reflection (ATR) accessory.  1H 

NMR spectra were recorded on a Varian 400 MHz spectrometer.  Chemical shifts were 

referenced to residual CD2HCN resonance80 at H 1.94 for CD3CN.  Solution magnetic 

moments were measured by the Evans method.81 Magnetic susceptibility data were 

collected on a Quantum Design MPMS3 SQUID magnetometer. Raw moment data were 

corrected for sample shape and radial offset corrections using the MPMS 3 Sample 

Geometry Simulator.82  Diamagnetic corrections of -372x10-6 emu/mol for each trans-1, 

cis-1, and co-1 calculated from tabulated Pascal’s constants83 were applied to the 

measured susceptibility data, as appropriate.  Electronic absorption (UV-Vis/NIR) 

measurements were made on a Cary 5000 instrument. Powder X-ray diffraction patterns 

were collected with an Oxford Diffraction Ltd. Supernova equipped with a 135 mm Atlas 

CCD detector or with a Rigaku Miniflex II instrument using Cu K radiation. 

A. Synthetic Protocol. 
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[Fe(HL*)2](OTf)2, 1.  A solution of 0.854 g (3.15 mmol) HL* in 20 mL CH3CN was 

added to a solution of 0.654 g (1.50 mmol) Fe(OTf)2·2CH3CN in 10 mL CH3CN.  The 

flask originally containing HL* was washed with 5 mL CH3CN and the washings were 

transferred to the reaction medium to ensure quantitative transfer of reagent.  After the 

pale violet solution had been stirred 1 hr at room temperature solvent was removed under 

vacuum distillation with an external room-temperature water bath to facilitate 

evaporation.  The pale lavender pink residue was washed with Et2O (3 x 10 mL) and was 

dried under vacuum to leave 1.073 g (80 %) of 1 as a nearly colorless powder.  Mp, did 

not melt below 200oC.  Anal. Calcd. (found) for 1, C30H36F6FeN12O6S2: C, 40.28 (40.29); 

H, 4.06 (4.08); N, 18.79 (18.79). eff (Evans, CD3CN) = 4.9 B.  IR:  NH (Nujol/KBr) 

=3139; triflate (Nujol/KBr, s to vs): 1286 (as, SO3), 1256 (s, CF3), 1160 (as, CF3), 1033 

(s, SO3), 638 (s, SO3) cm-1.  UV-vis [CD3CN] λ, nm (ɛ, M-1cm-1): 800 (20), 467 sh (90), 

374 sh (280), 338 (600), 320 (640).  See below for 1H NMR data. 

cis-[Fe(HL*)2](OTf)2, cis-1.  This isomer has not yet been obtained pure in bulk form.  

Greatest amounts of this isomer as a powder admixed with small amounts of trans-1 are 

obtained by boiling a CH3CN solution of 1 to dryness with the aid of an external 90oC oil 

bath (see Figure 2.1 for PXRD and 2.2 for NMR). 
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(a) 

 

(b) 

 

Figure 2.1 (a) Comparison of PXRD diffractograms calculated from single crystal diffraction 

data acquired at 250 K of trans-1 (purple) and cis-1 (green dashed line) where the reflections that 

can most easily be used to identify the respective isomers are labeled ‘t’ or ‘c’. (b) Experimental 

PXRD pattern (black) obtained for residue left after boiling a CH3CN solution of 1 to dryness.  

The calculated PXRD pattern for cis-1 (green dashed lines) is shown and peaks characteristic of 

trans-1 are demarcated with a ‘t’. 
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Figure 2.2. Downfield portion of the 1H NMR spectrum of the residue obtained by boiling a 

solution of 1 in CH3CN to dryness with an external oil bath at 90oC. PXRD of sample was shown 

in Figure 2.1b.  

 

Single crystals of cis-1 could be selected (at random) from mixtures with trans-1 

(see below) and analyzed by single crystal x-ray diffraction (scXRD), as follows.  Room 

temperature vapor diffusion of Et2O into a filtered 0.025 M CH3CN solutions of 1 gave 

colorless plate-like needles which are a mixture of isomers, trans-1 and cis-1.  One of the 

latter was hand-selected and used for scXRD.  The bulk colorless needle crystals were 

collected by decanting the mother liquor, washing with Et2O, and drying under vacuum 

20 min.  1H NMR (CD3CN) analysis confirms the bulk crystals to be a mixture of isomers 

(see Figure 2.3). The resonances attributed to the cis- isomer are:  H 50.7 (2 H), 48.0 (2 

H), 44.8 (2 H), 44.2 (6 H), 35.6 (4 H), 21.5 (6 H), 20.3 (6 H), 19.3 (6 H), -41.6 (2 H) 

ppm.   
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Figure 2.3.  1H NMR (CD3CN, 295 K) spectrum of bulk filtered and vacuum dried crystals from 

room vapor diffusion of Et2O into a CH3CN solution of 1.  

 

co-[Fe(HL*)2](OTf)2, co-1.  Crystallization by cooling a hot (60oC) CH3CN solution of 1 

(200 mg/ 1 mL CH3CN, ca. 0.22 M) to room temperature overnight gave 52 mg large, 

pale blue-green block-like prisms of co-1.  An additional 47 mg fraction was obtained by 

evaporating the mother liquor to ½ volume by heating to 60oC under a nitrogen stream, 

then allowing the mother liquor to cool to room temperature 2 h, then cool at 4oC for 12 

h, followed by decantation and drying under nitrogen.   A final crop of 20 mg crystals 

was obtained by concentrating and cooling a second time as above.  Anal. Calcd. (found) 

for co-1, C30H36F6FeN12O6S2: C, 40.28 (40.07); H, 4.06 (4.04); N, 18.79 (18.66).  1H 

NMR (CD3CN)  H 50.7, 50.5, 48.0, 44.7, 44.2, 37.5, 36.6, 35.6, 21.5, 20.4, 19.6, 19.3, 

2.22, -41.0, -41.7 ppm.   

trans-[Fe(HL*)2(CH3CN)x](OTf)2·xCH3CN (x = 1, 2, or 4), trans-1·xCH3CN (x = 1, 2, or 

4).  A solution of 500 mg 1 in 7 mL CH3CN was placed in a freezer at -20oC and the 
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solution became light violet on cooling.  Large violet square plates of trans-1·2CH3CN 

formed over 14 h.  The violet crystals of trans-1·2CH3CN (251 mg) were separated from 

the mother liquor by decanting and drying under an N2 stream.  Evaporation of the 

mother liquor to about 1/3 volume and cooling another 14 h gave a second crop (42 mg) 

of trans-1·2CH3CN.  Total: 293 mg trans-1·2CH3CN.  Note: if any trace colorless 

powder of trans-1·4CH3CN is present in the bulk crystallization, it can be removed by 

shaking and decanting the cold suspension from the larger violet crystals.  Then after 

drying under a nitrogen stream, the violet crystals of di-solvate are then separated 

mechanically from any opaque, pale aqua crystals of the (now desolvated) tetrasolvate.  

Longer crystallization times (4 -7 d) or more dilute solutions produced a mixture of trans-

1·2CH3CN and colorless prisms of trans-1·4CH3CN.  If the crystallization time is 

extended to 2 weeks or more then the violet crystals transform completely into colorless 

prisms of trans-1·4CH3CN.  The crystals of trans-1·4CH3CN rapidly desolvate under a 

N2 stream to give approximately 45 mg of desolvated trans-1 per 100 mg of 1.  The 

following 1H NMR data are for violet trans-1·2CH3CN.  1H NMR (CD3CN, 295 K) H 

50.5 (4 H), 37.5 (2 H), 36.6 (12 H), 19.5 (16 H), 2.22 (6 H), -41.0 (2 H) ppm.   

Samples of 1·2CH3CN desolvate to 1·CH3CN during shipping to combustion analysis 

laboratory.  Samples of 1·CH3CN can be prepared intentionally by subjecting 1·2CH3CN 

to oil pump vacuum (0.1 mtorr) at room temperature 1 h.  Anal. Calcd. (found) for ‘trans-

1·CH3CN’, C32H39F6FeN13O6S2: C, 41.07 (41.31); H, 4.20 (4.29); N, 19.46 (19.70).   

trans-[Fe(HL*)2](OTf)2, trans-1.  Method A.  A 100 mg (0.102 mmol) sample of trans-

1·2CH3CN dissolved in 2 mL CH3CN at room temperature (avoid heating) is 

immediately precipitated with 6 mL Et2O.   The colorless powder 81 mg (0.091 mmol, 89 
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%) is collected after filtration and drying under a nitrogen stream.  Method B.  A sample 

of 65 mg (0.067 mmol) trans-1·2CH3CN is heated at 70oC 4 h under vacuum to give 46 

mg (0.051 mmol, 76 %) trans-1 as a colorless powder.  Anal. Calcd. (found) for ‘trans-

1’, C30H36F6FeN12O6S2: C, 40.28 (40.34); H, 4.06 (4.04); N, 18.79 (18.70).   

B. X-ray Crystallography.   

 

X-ray intensity data from a violet prism of cis-1, a violet needle of trans-1, a violet 

irregular crystal of co-1, a violet prism of trans-1·2CH3CN and a colorless prism of 

trans-1·4CH3CN were collected at 100.0(1) K with an Oxford Diffraction Ltd. Supernova 

equipped with a 135 mm Atlas CCD detector.  The data for trans-1, cis-1, and co-1 were 

also collected at 250 K (a temperature where the latter two crystals were colorless, but the 

former was light violet/pink).  Cu K radiation,  = 1.54184 Å was used for all 

experiments except for trans-1 which used Mo K radiation  = 0.71073 Å.  Raw data 

frame integration and Lp corrections were performed with CrysAlis Pro (Oxford 

Diffraction, Ltd.).84  Final unit cell parameters were determined by least-squares 

refinement of 18495 (100 K) and 14400 (250 K) reflections from the data sets of cis-1, of 

22417 (100K) and 17127 (250 K) reflections from the data sets of co-1, 10392 (100 K) 

reflections from data set of trans-1·2CH3CN and 13813 (100 K) reflections from data set 

of trans-1·4CH3CN, 15651 (100 K) and 10071 (250 K) reflections from the data sets of 

trans-1, with I > 2(I) for all cases.  Analysis of the data showed negligible crystal decay 

during collection in each case.  Direct methods structure solutions were performed with 

Olex2.solve85 while difference Fourier calculations and full-matrix least-squares 

refinements against F2 were performed with SHELXTL.86 Empirical absorption 
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corrections were applied using spherical harmonics implemented in the SCALE3 

ABSPACK scaling algorithm.  The hydrogen atom bound to nitrogen of the pyrazol-3-yl 

group in cis-1, trans-1 (100 K), and trans-1·2 CH3CN were located and refined.  All 

other hydrogen atoms were placed in idealized positions and included as riding atoms.  

The X-ray crystallographic parameters and further details of data collection and structure 

refinements are given in table 2.1. 

Special Details:  For cis-1, one of the triflate anions is well ordered while the other is 

unequally disordered 67%:33% over two nearby positions.  At high temperature the 

extreme disorder causes an A-level alert in the checkcif program; this alert is resolved in 

the 100 K structure.  Also a modulated phase with q-vector (0.077 0 0.171) was found at 

100 K; no satellites were detected at 250 K.  For co-1, one of the triflate ions is 

disordered over two nearby positons.  The major component (84%) is hydrogen bonded 

to the pyrazolyl.  The minor component occupies an alternative position in a cavity.  The 

content of the cavity could not be elucidated but may involve small amount of 

unidentified solvent and/or a third orientation of the anion.  The crystal of trans-1 at 100 

K was a twin where component two is rotated 180o around [-0.01 -0.02 1.00] (reciprocal 

space) or [0.00 0.00 1.00] (direct space).  The crystal of trans-1·2 CH3CN was an 87/8/5 

triplet where component 2 was rotated by -170.9o around [-0.05 1.00 -0.01] (reciprocal 

space) or [-0.05 1.00 -0.02] (direct space) while component 3 was rotated by -174.6o 

around [-0.02 1.00 0.00] (reciprocal space) or [-0.01 1.00 -0.00] (direct space). 
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Table 2.1.  Crystal data and structure refinement for trans-1·2CH3CN and 

trans-1·4CH3CN. 

Identification code  trans-1·2CH3CN trans-1·4CH3CN    

Empirical formula  C34H42F6FeN14O6S2 C38H48F6FeN16O6S2 

Formula weight  976.78 1058.89 

Temperature/K  100.15(10)  100.15(10) 

Crystal system  monoclinic  monoclinic  

Space group  P21/c  P21/n 

a/Å  13.1862(2) 10.29427(7) 

b/Å  11.62430(13) 10.25787(7) 

c/Å  14.3231(2) 22.46703(18) 

α/°  90  90  

β/°  101.7586(15) 95.8748(7) 

γ/°  90  90  

Volume/Å3  2149.38(5) 2359.99(3) 

Z  2  2 

ρcalcg/cm3  1.509 1.490 

μ/mm-1  4.490 4.150 

F(000)  1008.0 1096.0 

Crystal size/mm3  0.257 × 0.233 × 0.129 0.365 × 0.268 × 0.18 

Radiation  CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data 
collection/°  

6.848 to 141.128 7.912 to 141.296 

Index ranges  
-16 ≤ h ≤ 14, -14 ≤ k ≤ 
14, -17 ≤ l ≤ 17 

-12 ≤ h ≤ 12, -12 ≤ k ≤ 
12, -27 ≤ l ≤ 23 

Reflections collected  20304  22365 

Independent reflections  
4080 [Rint = 0.0323,  
Rsigma = 0.0168]  

4468 [Rint = 0.0223,  
Rsigma = 0.0144] 

Data/restraints/parameters  4080/12/334 4468/0/319 

Goodness-of-fit on F2  1.114  1.069 

Final R indexes [I ≥ 2σ (I)]  
R1 = 0.0389, wR2 = 
0.1164  

R1 = 0.0263, wR2 = 
0.0690 

Final R indexes [all data]  
R1 = 0.0416, wR2 = 
0.1182  

R1 = 0.0273, wR2 = 
0.0700 

Largest diff. peak/hole / e 
Å-3  

0.62/-0.57  0.23/-0.41 
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 Table 2.1, contd.  Crystal data and structure refinement for cis-1·at 250 

and 100 K. 

Identification code  cis-1 (250 K) cis-1 (100 K)    

Empirical formula  C30H36F6FeN12O6S2 C30H36F6FeN12O6S2 

Formula weight  894.68 894.68 

Temperature/K  250.00(14) 100.1(6) 

Crystal system  monoclinic  monoclinic  

Space group  P21/c  P21/c  

a/Å  12.9325(3) 12.78177(10) 

b/Å  21.3789(4) 21.02035(20) 

c/Å  14.7731(3) 14.74699(12) 

α/°  90.00  90.00 

β/°  103.050(2) 103.0849(8) 

γ/°  90.00 90.00 

Volume/Å3  3979.02(15) 3859.30(6) 

Z  4  4 

ρcalcg/cm3  1.493  1.540 

μ/mm-1  4.780  4.928 

F(000)  1840.0  1840.0 

Crystal size/mm3  0.383 × 0.233 × 0.144 0.383 × 0.233 × 0.144 

Radiation  CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data 
collection/°  

7.02 to 149.22 7.1 to 148.28 

Index ranges  
-15 ≤ h ≤ 16, -26 ≤ k ≤ 
26, -18 ≤ l ≤ 18 

-15 ≤ h ≤ 15, -25 ≤ k ≤ 
25, -18 ≤ l ≤ 18 

Reflections collected  36060 37282 

Independent reflections  
7971 [Rint = 0.0424,  
Rsigma = 0.0312]  

7739 [Rint = 0.0279,  
Rsigma = 0.0191] 

Data/restraints/parameters  7971/143/603 7739/95/603 

Goodness-of-fit on F2  1.098  1.034 

Final R indexes [I ≥ 2σ (I)]  
R1 = 0.0517, wR2 = 
0.1398  

R1 = 0.0360, wR2 = 
0.0928 

Final R indexes [all data]  
R1 = 0.0651, wR2 = 
0.1650  

R1 = 0.0396, wR2 = 
0.0958 

Largest diff. peak/hole / e 
Å-3  

0.47/-0.56  0.36/-0.48 
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Table 2.1, contd.  Crystal data and structure refinement for trans-1·at 250 

and 100 K. 

Identification code  trans-1 (250 K) trans-1 (100 K)    

Empirical formula  C30H36F6FeN12O6S2 C30H36F6FeN12O6S2 

Formula weight  894.68 894.68 

Temperature/K  250.00(14) 100.1(6) 

Crystal system  monoclinic  triclinic  

Space group  P21/c  P-1 

a/Å  14.8018(7) 12.9592(3) 

b/Å  21.0660(10) 14.6378(4) 

c/Å  13.0878(6) 20.8275(4) 

α/°  90.00  91.421(2) 

β/°  103.434(5) 90.536(2) 

γ/°  90.00 103.016(2) 

Volume/Å3  3969.3(3) 3847.71(16) 

Z  4  4 

ρcalcg/cm3  1.497  1.544 

μ/mm-1  0.570 0.588 

F(000)  1840.0  1840.0 

Crystal size/mm3  0.746 × 0.171 × 0.083 0.715 × 0.137 × 0.068 

Radiation  MoKα (λ = 0.71073) MoKα (λ = 0.71073) 

2Θ range for data 
collection/°  

6.626 to 59.338 6.442 to 57.45 

Index ranges  
-20 ≤ h ≤ 18, -29 ≤ k ≤ 
28, -18 ≤ l ≤ 17 

-17 ≤ h ≤ 17, -18 ≤ k ≤ 
18, -26 ≤ l ≤ 28 

Reflections collected  45285 32057 

Independent reflections  
10168 [Rint = 0.0487,  
Rsigma = 0.0450]  

32057 [Rint = ?,  
Rsigma = 0.0572] 

Data/restraints/parameters  10168/19/525 32057/95/1139 

Goodness-of-fit on F2  1.052  1.013 

Final R indexes [I ≥ 2σ (I)]  
R1 = 0.0902, wR2 = 
0.2699  

R1 = 0.0587, wR2 = 
0.1592 

Final R indexes [all data]  
R1 = 0.1390, wR2 = 
0.3152  

R1 = 0.0897, wR2 = 
0.1702 

Largest diff. peak/hole / e 
Å-3  

1.33/-0.92 1.17/-0.70 
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Table 2.1, contd.  Crystal data and structure refinement for co-1·at 250 and 

100 K. 

Identification code  co-1 (250 K) co-1 (100 K)    

Empirical formula  C30H36F6FeN12O6S2 C30H36F6FeN12O6S2 

Formula weight  894.68 894.68 

Temperature/K  250.00(14) 100.0(3) 

Crystal system  monoclinic monoclinic 

Space group  I2/a  I2/a  

a/Å  23.1055(3) 22.96795(18) 

b/Å  13.2707(2) 13.20086(9) 

c/Å  27.9530(4) 27.72924(19) 

α/°  90.00 90.00 

β/°  108.6125(16) 108.3556(8) 

γ/°  90.00 90.00 

Volume/Å3  8122.8(2) 7979.65(10) 

Z  8  8 

ρcalcg/cm3  1.463  1.489 

μ/mm-1  4.683  4.767 

F(000)  3680.0  3680.0  

Crystal size/mm3  0.39 × 0.356 × 0.208 0.39 × 0.356 × 0.208 

Radiation  CuKα (λ = 1.54184) CuKα (λ = 1.54184) 

2Θ range for data 
collection/°  

7.46 to 148.12 7.5 to 148.3 

Index ranges  
-22 ≤ h ≤ 28, -13 ≤ k ≤ 
16, -34 ≤ l ≤ 34 

-28 ≤ h ≤ 23, -16 ≤ k ≤ 
16, -34 ≤ l ≤ 34 

Reflections collected  29314 38795 

Independent reflections  
8118 [Rint = 0.0332,  
Rsigma = 0.0239]  

8025 [Rint = 0.0277,  
Rsigma = 0.0180] 

Data/restraints/parameters  8118/19/524 8025/38/557 

Goodness-of-fit on F2  1.053  1.060 

Final R indexes [I ≥ 2σ (I)]  
R1 = 0.0498, wR2 = 
0.1474  

R1 = 0.0703, wR2 = 
0.1988 

Final R indexes [all data]  
R1 = 0.0509, wR2 = 
0.1492  

R1 = 0.0718, wR2 = 
0.2004 

Largest diff. peak/hole / e 
Å-3  

1.11/-1.00  4.16/-0.96 
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C. Computational details 

 

General Considerations.  Geometry optimizations were performed using Handy's 

optimized exchange (OPTX) with the PBE correlation (OPBE functional)87 in 

combination with the def2-SV(P) double-zeta basis set for light atoms and def2-QZVPP 

for Fe88 because we have previously found89 (and find again here) that this method 

provides excellent agreement (within 0.09 Å) with solid state structures.  Moreover, such 

an approach has been found to successfully determine spin-state splitting in other iron 

complexes that undergo spin crossover phenomena.90 Solvent effects were accounted for 

by using the polarizable continuum model IEFPCM,91 as implemented in Gaussian 16.92  

Analytical vibrational frequency calculations were carried out to verify that optimized 

geometries were stationary points.  Table 2.2 summarizes the results of these studies.  

Table 2.2.  Summary of SCF energies and thermochemical data from theoretical calculations 

(OPBE/def2-SV(P) (C,H,N), def2-QZVPP (Fe)/PCM (CH2Cl2) on isomers of [Fe(HL*)2]2+ in 

different spin states. 

 trans (HS)2+ trans-(LS)2+ cis (HS)2+ cis-(LS)2+ 

multiplicity 2 0 2 0 

<S2> 6.0198/6.0001 -- 6.0148/6.0000 -- 

Etot(hartree) -3007.348894 -3007.375467 -3007.449739 -3007.375816 

E298 (hartree) -3006.781387 -3006.784702 -3006.781102 -3006.783612 

Eo Etot+ZPE(hartree) -3006.821965 -3006.822503 -3006.821744 -3006.821580 

H298 (hartree) -3006.780443 -3006.783758 -3006.780158 -3006.782668 

G298 (hartree) -3006.895477 -3006.887389 -3006.894910 -3006.886487 

 

2.3 RESULTS AND DISCUSSION 

 

The reaction between Fe(OTf)2 and two equivalents of HL* in CH3CN gives the 

desired complex [Fe(HL*)2](OTf)2, 1, in high yield.  Recrystallization of 1 under different 
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conditions led to the four different crystal types pictured in Figure 2.4.  Recrystallization 

of 1 by room temperature vapor diffusion of Et2O into CH3CN solutions produced  

               

Figure 2.4.  Left: Photograph of the mixture of crystals obtained after recrystallization of 1 by 

vapor diffusion of Et2O into a 0.025 M CH3CN, filtering, and after drying under vacuum 

producing a mixture of large blocks of co-1 and smaller plate-like needles of cis-1 and trans-1.  

Center: Photograph of crystals of trans-1·2CH3CN obtained after cooling a CH3CN solution of 1 

to -20oC, decanting the mother liquor and (immediately) after drying under a nitrogen stream. 

Right: Crystals of trans-1·4CH3CN in their mother liquor.  Each photograph was taken under the 

same magnification.   

 

plate-like needles that are a mixture of cis- and trans- isomers, as defined by the relative 

disposition of the confused pyrazolyl ring on each ligand about iron’s coordination 

sphere.  The unit cell parameters of crystals of each isomer at 250 K are nearly identical, 

so it is very difficult to distinguish these crystals by visual inspection.  The trans- isomer 

can be isolated by alternate means (vide infra).  This mixture of needles was sometimes 

accompanied by large isometric crystalline blocks (left of Figure 2.4) that was found to 

contain both cis- and trans- [Fe(HL*)2]
2+ cations in the same unit cell, so this crystal form 

is referred to as co-1.  Crystals of co-1 are also formed predominantly in a mixture along 

with smaller amounts of plate-like needle mixtures of trans-1 and cis-1 by slow 

evaporation of CH3CN solutions of 1.  Crystals of co-1 are best isolated (giving highest 

quality crystals without contamination of needles) by slowly cooling hot concentrated 

(ca. > 0.2 M) CH3CN solutions to room temperature or to 4oC (at the sacrifice of crystal 
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quality).  Recrystallization of lower concentrations of 1 in CH3CN (≤ ca. 0.10 M) at low 

temperature (-20 oC) gave different CH3CN solvates of trans-1.  More specifically, when 

dilute solutions are placed directly in a -20 oC freezer, violet crystals of a hydrogen-

bonded bis-acetonitrile solvate trans-[Fe(HL*)2](OTf)2·2CH3CN, trans-1·2CH3CN, form 

(Figure 2.4, center) after about 1 d, followed by colorless block-like prisms of the 

tetrasolvate, trans-1·4CH3CN (Figure 2.4, right).  If crystallization chambers are left for 

extended periods (2 weeks to 1 month) the initially formed violet crystals eventually 

transform to colorless trans-1·4CH3CN.  Alternatively, when more dilute (< 0.02 M) 

solutions are cooled in a -20oC freezer, the resulting crystal mixture is composed mainly 

of trans-1·4CH3CN with minor amounts of the disolvate.  If crystals of trans-1·xCH3CN 

(x = 2, 4) are subject to recrystallization by vapor diffusion of Et2O into CH3CN solutions 

at 4oC, then a mixture of trans-1 and trans-1·2CH3CN is obtained. 

A. Solid State Structures. 

 

Crystals of trans-1·x CH3CN (x = 2 or 4) maintained their color over the 

temperature range of 298 to 100 K while trans-1, cis-1 and co-1 changed from colorless 

at room temperature to violet at 100 K.  Thus, the crystal structures of the former two 

complexes were determined at 100 K while those of the latter complexes were 

determined at two temperatures (250 K (colorless) and 100 K (violet)).  The structures of 

the trans-1·xCH3CN solvates (x = 2 or 4) will be described briefly first, then the 

structures of the other compounds are described in more detail because unusual features 

of their crystal packing dictate their peculiar magnetic behavior. 



38 
 

Views of the structure of trans-1·2CH3CN are shown in Figure 2.5 while selected 

bond distances and angles are listed in Table 2.3.  The asymmetric unit consists of an 

iron(II) ion located on an  

    

Figure 2.5. Left:  Asymmetric unit of trans-1·2CH3CN, minor disorder component of anion and 

solvate atoms omitted for clarity.  Thermal ellipsoids are shown at 50% probability.  Right:  View 

of the dication showing trans- disposition of the ‘confused’ pyrazolyls, with most hydrogen atoms 

omitted for clarity. 

Table 2.3.  Selected bond distances (Å), angles (o), and torsions (o) for trans-1·xCH3CN 

(x = 2, 4). 

Bond distances (Å) 1·2CH3CN 1·4CH3CN 

Fe-N2 1.9364(17) 2.1297(10) 

Fe-N11 1.9908(18) 2.1799(11) 

Fe-N21 1.9964(16) 2.2147(11) 

N1-H1n 0.86(3) 0.88 

Bond Angles (o)  

N2-Fe-N11 87.93(6) 83.85(4) 

N2-Fe-N21 87.71(6) 83.61(4)  

N11-Fe-N21 86.95(7) 83.28(4) 

N2 Fe1 N2’ 

180.00(8) 

180.00(8) 180.00(6) 

N2-Fe-N11’ 92.07(6) 96.15(4)  

N11-Fe-N21’ 93.05(7) 96.72(4) 

Bond Torsions (o)  

FeN2-C3C4 -0.3(2) 10.15(15) 

FeN11-N12C4 -1.7(2) 7.89(14) 

FeN21-N22C4 -2.0(2) 12.92(14) 

FeN2-C3C2 -179.47(13) -171.42(8) 

FeN11-N12C13 177.51(13) -173.03(8) 

FeN21-N22C23 176.40(13) -161.71(8) 
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inversion center, one 3N-ligand, one triflate anion, and one CH3CN molecule.  The 

crystal symmetry gives a pseudo-octahedral FeN6 kernel with an average Fe-N bond 

length of 1.97 (3) Å.  This distance is characteristic of low spin (LS) iron(II) and is 

identical to that previously found in [Fe(HL)2](BF4)2 that possessed a dication with 

unsubstituted ‘normal’ pyrazolyls and that was shown to be 100% LS iron(II) by 

magnetometry.73  In the dication of trans-1·2CH3CN, the Fe-N distance associated with 

the ‘confused’ pyrazolyl is much shorter (Fe-N2 1.936(2) Å) than those of the other two 

pyrazolyls (Fe-N11, 1.991(2) Å; Fe-N21 1.997(2) Å).  The ligand is relatively strain-free 

with no discernable distortions72 which normally manifest in pyrazolyl ring twisting (pz 

twist = average of the absolute value of the two torsion angles, |FeN-NCmethine|, and the 

corresponding confused pyrazolyl’s torsion |FeN-CCmethine| ≥ 0o (un-twisted value); here, 

pz twist = 1.4o) and pyrazolyl ring tilting (pz tilt = average of the two |FeN-NCpz| torsions 

and ‘confused’ pz ring equivalent |FeN-CpzCpz| torsion ≤ 180o (un-tilted value); here, the 

pz tilt = 177.8o).  Finally, the ‘confused’ pyrazolyl N-H was located and refined (N1-H1n 

0.86(3) Å) and is, somewhat surprisingly, hydrogen bonded93 to the solvate acetonitrile 

[N1H1n···N3 2.03(3) Å, 172(2)o, N3···N1 2.884(3) Å] rather than to the triflate anions. 

The triflate anions are instead associated with acidic methine and pyrazolyl ring 

hydrogens94 and with solvate methyl hydrogens on neighboring dications to give the 

three-dimensional supramolecular structure. The three dimensional crystal packing of 

trans-1·2CH3CN is of a loosely stacked sheets held together by N-H···N and C-H···X (X 

= O, F) interactions listed in Table 2.4.  A view of the main non-covalent interactions 

involved in the assembly of sheets is given in Figure 2.6 a.  As indicated above, the 

acetonitrile solvate is hydrogen bonded to the confused pyrazolyl groups in the dication 
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via N1-H1n···N3 (2.03 Å).  The triflate anions bridge dications to form chains that run 

along the b- axis by three charge assisted C-H···O interactions, Figure 2.6b and c.  The 

triflate is anchored to acidic methine hydrogen of one dication (C4-H4···O2) while the 

other two oxygens of the triflate are in contact with a neighboring dication’s confused 

pyrazolyl’s 5-hydrogen (C1-H1···O1) and acetonitrile methyl group (C7-H7c···O3).  The 

polymer chain is assembled into sheets along the c-axis by the interaction of the triflate 

O1 and a pyrazolyl methyl hydrogen H10c on a neighboring polymer.  The bc-sheets are 

stacked loosely in the a-direction by weak C-H···F interactions involving the acetonitrile 

methyls (C7-H7a···F2) and pyrazolyl methyl groups (C22-H22···F3a), Figure 2.6d.  

Table 2.4.  Geometries of main N-H···N and C-H···X (X = O, F) weak hydrogen-bonding 

interactions in trans-1·2CH3CN. 

   

Donor(D)(-H) 

···Acceptor(A) 

D-H (Å) H···A (Å) D···A (Å) D-H···A (o) 

N1-H1n···N3 0.86(3) 2.03(3) 2.884(3) 172(3) 
     
C1-H1···O1 0.95 2.41 3.088(3) 128 
C4-H4···O2 1.00 2.34 3.283(3) 157 
C7-H7c···O3 0.98 2.51 3.350(4) 144 
C10-H10c···O1 0.98 2.55 3.483(3) 159 
C7-H7a···F2 0.98 2.57 3.299(7) 131 
C22-H22···F3a 0.95 2.45 3.152(7) 130 
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(a) 

 
   (b)       (c) 

 
(d)  

Figure 2.6.  Supramolecular assembly of trans-1·2CH3CN.  (a) View of complex with intact 

(cyan) and dangling contacts (red).  (b)  Polymer chain propagating along b- axis.  (c) End view 

of the polymer chain (down the b-axis).  (d) View of two bc-sheets stacked along the a-axis by C-

H···F interactions. 
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The structure of trans-1·4CH3CN at 100 K contrasts that of the di-solvate in that 

the dication in the tetrasolvate is HS iron(II) as opposed to LS iron(II) found in the 

disolvate, a difference that can be attributed to the crystal packing, as described below.  A 

comparison of bond distances and angles between the tetra- and di- solvates are found in 

Table 2.3.  Thus, the average Fe-N distance of 2.17 Å in the tetra-solvate is characteristic 

for HS iron(II) versus 1.97 Å for LS iron(II) in the di-solvate.  Moreover, the ligand in 

the tetrasolvate is significantly distorted (Figure 2.7, left) but is  

           

Figure 2.7.  Left:  View of the dication of trans-1·4CH3CN down the Cmethine-Fe vector with most 

H atoms, all CH3CN and triflate atoms removed for clarity to emphasize pyrazolyl ring twisting; 

Center: Comparison of dications in trans-1·4CH3CN (cyan) versus in trans-1·2CH3CN (violet); 

Right:  View of crystal packing of trans-1·4CH3CN showing the half of the acetonitrile molecules 

(as larger black ball and sticks) in channels/pockets along the c- axis. 

 

not very distorted in the disolvate.  That is, the tetrasolvate has both greater pyrazolyl 

ring twisting (10.3o vs 1.4o) and pyrazolyl ring tilting (168.7o vs 177.8o) than the 

disolvate.  In fact, the large pz twist in the tetrasolvate is close to the previously identified 

empirical 11o pz twist limit72 whereby spin crossover has never been observed for an 

iron(II) scorpionate.  This empirical limit presumably reflects that any large distortion(s) 

caused by crystal packing imparts an insurmountable kinetic barrier (especially at low 

temperature) for reorganization to a hypothetical undistorted low spin form.  In trans-
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1·4CH3CN, two of the acetonitriles are hydrogen bonded to the dication (N1···N3 

2.8796(18) Å, N1-H1n···N3, 168o) with a geometry quite similar to that in trans-

1·2CH3CN, vide supra (center of Figure 2.7).  However, the other two acetonitrile 

molecules of solvation in 1·4CH3CN are loosely held in pockets along the c- axis (Figure 

2.7, right) by CH···O94 weak hydrogen-bonding interactions with the triflate anions 

(C9H9a···O1, 2.51 Å, 166o).  These latter acetonitrile molecules are, in turn, pressed 

against the most distorted pz* ring (with N21) to give a short CH··· interaction95 

between the acetonitrile methyl donor and pyrazolyl acceptor (CH9b···Ct(N21) 2.73 Å, 

132o).  The three dimensional supramolecular structure of trans-1·4CH3CN is constructed 

via weak N-H···N hydrogen bonding and various charge-assisted C-H···O interactions 

listed in Table 2.5.  Figures 2.8a and 2.8b show the labelling of the various interactions 

involved in the 3D assembly.  Two of the four acetonitrile solvates are hydrogen bonded 

to the confused pyrazolyl groups in the dication via N1-H1n···N3 (2.01 Å), and will be 

referred to as Type I solvate.  A methyl hydrogen on the other two acetonitriles (Type II) 

are involved in long and presumably weak hydrogen bonding interaction with triflate 

oxygens of type O1 (C9-H9a···O1) to hold these solvate molecules (shown as black 

capped stick representations in Fig 2.8) loosely in the lattice. From a supramolecular 

assembly point of view, each triflate anion caps a ligand of the dications via three sets of 

C-H···O interactions.  The acidic methine hydrogen H4 and the adjacent ring hydrogen of 

the confused pyrazolyl H2 interact with oxygen atoms on one triflate (C4-H4···O2 and 

C2-H2···O3), Figure 2.8b.  A pyrazolyl methyl hydrogen H24c also interacts with O2 

(C24-H24c···O2) to help anchor the triflate to the “back side” of the ligand.  The third 

oxygen, O1, of the triflate acts as a weak hydrogen bond acceptor to Type I (and Type II, 
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as above) acetonitrile methyl hydrogens.  Since each complex contains two triflates and 

two Type I CH3CN’s, the geometry is such as to generate a sheet parallel with the (-1 0 1) 

direction, Figure 2.8c and 2.8d. The sheets are stacked in the third dimension by a C-

H···O interaction between a confused pyrazolyl ring hydrogen (H1, at the 2-position) and 

O3 of a triflate of an adjacent sheet, Figure 2.8e. 

Table 2.5.  Geometries of main N-H···N and C-H···O weak hydrogen-bonding interactions in 

trans-1·4CH3CN.   

Donor(D)(-H) 

···Acceptor(A) 

D-H (Å) H···A (Å) D···A (Å) D-H···A (o) 

N1-H1n···N3 0.88 2.01 2.88

0(2) 

               168 
     C1-H1···O3 0.95 2.57 3.19

2(2) 

               123 
C2-H2···O3 0.95 2.47 3.42

2(2) 

               175 
C4-H4···O2 1.00 2.35 3.31

1(2) 

               162 
C7-H7b···O1 0.98 2.35 3.31

5(2) 

               170 
C9-H9a···O1 0.98 2.51 3.47

2(2) 

               166 
C24-H24c···O2 0.98 2.54 3.18

6(2) 

               123 
 

 
 (a)     (b) 
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 (c)         (d)  

 

(e) 

Figure 2.8.  Supramolecular assembly of trans-1·4CH3CN.  (a) View and labelling of all short 

contacts (completed, cyan; dangling, red) involving trans-1·4CH3CN where two solvate CH3CN 

molecules are represented as black capped sticks.  (b) an alternate and simplified diagram viewed 

down a-axis.  (c) View of sheet down a.  (d)  View of sheet side down the b-axis.  (e)  View down 

b-axis of two stacked sheets. 

 

Single crystal X-ray diffraction data was obtained for a colorless needle of cis-1 at 

250 K and then after cooling to 100 K when the needle was violet (Figure 2.9).  A listing 

of selected bond distances and interatomic angles for cis-1 at different temperatures are 

provided in Table 2.6.  The  
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Figure 2.9.  Left: Structure of cis-[Fe(HL*)2](OTf)2, cis-1, at 100 K; Middle:  Photographs of a 

crystal at different temperature; Right:  Overlay of structures obtained at 250 K (light blue) and 

100 K (violet).  

 

compound crystallizes in the space group P21/c where the asymmetric unit is composed 

of one cation, one well-ordered triflate anion, and another triflate anion that is disordered 

unequally (2:1) over two nearby positions.  The FeN6 coordination environment is 

distorted octahedral since the Fe-N bonds of the confused pyrazolyl are at least 0.02 Å 

shorter than those of the (inequivalent) pz* groups.  At 250 K, the average Fe-N bond 

distance of the six bonds is 2.17(2) Å which is aligned with expectations for HS iron(II).  

At 100 K, the average distance shortens to 2.11(2) Å, indicative of an increasing portion 

(ca. 33%) of LS iron(II).  For reference, the compound [Fe(BnL)2](BF4)2·2CH3CN (with 

an N-benzyl on the ‘confused’ pyrazolyl and unsubstituted ‘normal’ pyrazolyls) had an 

average Fe-N bond distance of 2.14 Å at 250 K (partly LS) and 1.99 Å at 100 K (fully 

LS).73  In cis-1, the average pyrazolyl ring twist is 6o at both temperatures; thus, spin 

crossover behavior is expected and is observed in this case, vide infra. 

Table 2.6.  Bond distances (Å), angles (deg.) and torsion angles (deg.) for cis-1. 

 250 K 100 K 

Bond Distances (Å)   

Fe1-N2 2.146(2) 2.0849(17) 
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Fe1-N11 2.173(2) 2.1089(14) 

Fe1-N21 2.192(2) 2.1356(15) 

Fe1-N2a 2.146(2) 2.0833(16) 

Fe1-N11a 2.196(2) 2.1404(16) 

Fe1-N21a 2.177(2) 2.1242(17) 

   

Bond Angles (o)   

N2-Fe1-N11 82.57(9) 83.46(6) 

N2-Fe1-N21 83.77(9) 84.47(6) 

N11-Fe1-N21 85.25(9) 86.14(5) 

N2a-Fe1-N11a 82.36(9) 83.52(6) 

N2a-Fe1-N21a 83.75(9) 84.29(6) 

N11a-Fe1-N21a 85.52(9) 86.59(6) 

   

Bond Torsions (o)   

C4C3-N2Fe1 -9.3(3) -8.3(2) 

C4N12-N11Fe1 2.3(3) 1.7(2) 

C4N22-N21Fe1 -9.7(3) -9.1(2) 

C4aC3a-N2aFe1 -2.7(3)

  

-3.9(2) 

C4aN12a-N11aFe1 5.5(3) 3.2(2)  

C4aN22a-N21aFe1 -8.3(3) -10.8(2) 

 

The three dimensional supramolecular structure of cis-1 is constructed from N-

H···O,93 C-H···O,94 and C-H···F96 weak charge-assisted hydrogen bonding interactions 

involving hydrogen donors of the dications and either oxygen or fluorine acceptors of the 

triflate anions (Table 2.7 and Figure 2.10).  One of the triflate anions is disordered in a 

2:1 ratio over two positions, thus the discussion will first focus on the well-ordered 

triflate anion with atoms O1, O2, and O3.  A sheet of cations is formed in the ac- plane 

by N-H···O and C-H···O weak hydrogen-bonding interactions involving these well-

ordered triflate anions (contact #’s 1, and 4-8 in Table 2.7).  That is, a dimer is formed by 

a pair of triflate anions bridging two dications where O1 of the triflate interacts with the 

N-H of the confused pyrazolyl (N1-H1n···O1, 1.98 Å) on one cation and O2 interacts 

with the methine hydrogen, H4a, of the neighboring dication.  This hydrogen bonding 

interaction is in the range found for other hydrogen-bonded iron(II) SCO compounds.  

For  
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Table 2.7.  Geometries of main N-H···O and C-H···O weak hydrogen-bonding interactions in 

cis- 1 at 100 K.   

Contact Donor(D)(-H) 

···Acceptor(A) 

D-H (Å) H···A (Å) D···A (Å) D-H···A (o) 

1 N1-H1n···O1 0.83(3) 1.98(3) 2.795(2) 170(3) 
2 N1a-H1na···O1a 0.83(3) 1.96(3) 2.678(3) 143(2) 

3 N1a-H1na···O1b 0.83(3) 2.29(3) 3.103(5) 165(3) 

      

4 C2a-H2a···O2 0.95 2.55 3.243(3) 130 

5 C4a-H4a···O2 1.00 2.26 3.188(2) 154 

6 C24a-H24a···O2 0.98 2.48 3.401(3) 156 

7 C12-H12···O2 0.95 2.56 3.445(2) 156 

8 C22-H22···O3 0.95 2.48 3.190(2) 132 

9 C4-H4···O2a 1.00 2.23 3.157(14) 154 

10 C4-H4···O2b 1.00 2.42 3.34(3) 153 

11 C2-H2···O2a 0.95 2.54 3.22(2) 128 

12 C2-H2···O2b 0.95 2.57 3.29(3) 133 

13 C20a-H20b···O3a 0.98 2.44 3.420(5) 176 

 

 

   (a)      (b) 

Figure 2.10.  Noncovalent interactions of cis-1.  (a) Labeling of atoms involved in interactions.  

Hanging and completed contacts are red and green dashed lines, respectively. Pink spheres 

represent minor triflate disorder component.  (b) View down c-axis of unit cell with noncovalent 

interactions labeled in accord with Table 2.7. 

 

instance, N-H···O interactions in [Fe(2,6-bis(pyrazol-3-yl)pyridine)2](cis,cis-1,3,5-

cyclohexanetricarboxylate dianion)·5.5 H2O range from 1.73 to 1.86 Å 97, those in 

[Fe(2,6-bis[5-methyl-1H-pyrazol-3-yl]pyridine)2](ClO4)2-solvate (solvate = H2O, MeOH, 

or MeNO2) that range from 1.80 to 2.26 Å98 or those in [Fe(2-(pyrazol-1-yl)-6-(pyrazol-
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3-yl)pyridine)2](ClO4)2 of 1.93 and 2.03 Å.99  The dimers are organized into sheets 

parallel with the ac-plane (containing the two dications in the middle of the unit cell in 

Figure 2.10b) by interactions of O2 and O3 of one dimer with the hydrogens at the 4-

positions of the dimethylpyrazolyl groups of neighboring dimers (interactions 7 and 8, 

Table 2.7).  The ac-sheets are stacked along the b-axis by hydrogen bonding interactions 

with oxygen atoms of the disordered triflate (major disorder component:  contact #’s 2, 9, 

11, and 13 minor disorder component: contact #’s 3, 10, and 12 in Table 2.7).  

Importantly, each contact with the disordered triflate falls well below the limits for 

NH···O or CH···O interactions and are in the range of medium-strength hydrogen 

bonds.87a,b  Similarly, the acidic methine hydrogen, H4, of one ac-sheet acts as a donor to 

triflate oxygens from an adjacent sheet (67% involve contact 9 and 33% involve contact 

10, Table 2.7) where both associated C···O distances are well within the accepted limits 

for a CH···O interaction.88  The minor component of the disordered triflate also has a 

number of CH···F weak hydrogen bonding interactions that serve to support the structure 

but will not be discussed further.  The overall supramolecular structure is retained at 250 

K but all contacts are elongated versus those at 100 K. 

The structure of trans-1 was determined at 250 K and 100 K, where the crystal 

was light pink and violet, respectively.  The crystal undergoes a reversible phase 

transition over this temperature range, being monoclinic (P21/c) at 250 K but is triclinic 

(P-1) at 100 K.  In the 250 K structure, the asymmetric unit (Figure 2.11a) contains one 

well-ordered (containing S1) and one disordered triflate (containing S1a) anion in general 

positions and two independent Fe(HL*) units where the iron center in each is located on 
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an inversion center thereby guaranteeing each is the trans- isomer.  The average Fe-N 

bond distance about Fe1a (Table 2.8) of 2.18(3) Å is typical of  

 

(a) 

 

(b) 

Figure 2.11.  (a) Asymmetric unit of the 250 K structure of trans-[Fe(HL*)2](OTf)2, trans-1, with 

partial atom labeling. and (b) View showing shortest three hydrogen bonding interactions ( van 

der Waals radii – 0.4 Å, cyan dotted lines) forming chains.  Color key: Black sticks = well-

ordered triflate ion, Green sticks   = disordered triflate ion, Pale Blue sticks = HS dication with 

central Fe1a, Pink sticks = partial HS/LS dication with central Fe1. 
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Table 2.8.  Bond distances (Å), angles (deg.) and torsion angles (deg.) for trans-1. 

 250 K 100 K 

Bond Distances (Å)  Bond 

Distances (Å) 

   

Fe1-N2 2.082(4) Fe1-N2 1.942(3) Fe1b-N2b 2.143(2) 

Fe1-N12 2.129(4) Fe1-N12 2.010(2) Fe1b-N12b 2.172(3) 

Fe1-N22 2.151(4) Fe1-N22 1.990(2) Fe1b-N22b 2.216(3) 

Fe1a-N2a 2.145(4) Fe1a-N2a 2.063(3) Fe1c-N2c 2.146(3) 

Fe1a-N12a 2.216(4) Fe1a-N12a 2.125(3) Fe1c-N12c 2.214(3) 

Fe1a-N22a 2.173(3) Fe1a-N22a 2.139(3) Fe1c-N22c 2.179(3) 

      

Bond Angles (o)  Bond Angles 

(o) 

   

N2-Fe1-N12 84.52(16) N2-Fe1-N12 87.77(10) N2b-Fe1b-

N12b 

83.42(10) 

N2-Fe1-N22 84.66(15) N2-Fe1-N22 87.68(11) N2b-Fe1b-

N22b 

83.49(10) 

N12-Fe1-N22 85.17(14) N12-Fe1-N22 87.28(10) N12b-Fe1b-

N22b 

82.84(10) 

N2a-Fe1-N12a 83.82(15) N2a-Fe1a-

N12a 

84.98(11) N2c-Fe1C-

N12c 

83.49(10) 

N2a-Fe1-N22a 83.60(14) N2a-Fe1a-

N22a 

84.57(10) N2c-Fe1C-

N22c 

83.37(10) 

N12a-Fe1-N22a 82.79(15) N12a-Fe1a-

N22a 

85.62(10) N12c-Fe1C-

N22c 

82.04(11) 

      

Bond Torsions (o)  Bond 

Torsions (o) 

   

C4C3-N2Fe1 -3.3(6) C4C3-N2Fe1 0.8(4) C4bC3b-

N2bFe1b 

7.3(4) 

C4N11-N12Fe1 -7.7(5) C4N11-

N12Fe1 

0.5(3) C4bN11b-

N12bFe1b 

3.9(4) 

C4N21-N22Fe1 -0.8(5) C4N21-

N22Fe1 

3.9(3) C4bN21b-

N22bFe1b 

8.4(4) 

C4aC3a-N2aFe1a -6.7(5)

  

C4aC3a-

N2aFe1a 

-8.6(4) C4cC3c-

N2cFe1c 

-5.8(4) 

C4aN11a-N12aFe1a -6.0(5) C4aN11a-

N12aFe1a 

-12.5(3) C4cN11c-

N12cFe1c 

-5.5(4) 

C4aN21a-N22aFe1a -3.0(5) C4aN21a-

N22aFe1a 

-4.5(3) C4cN21c-

N22cFe1c 

-3.0(4) 

 

HS iron(II) whereas that about Fe1 of 2.12(3) Å is indicative of partial LS 

character (HS/LS).  The confused pyrazolyl N-H groups in each serve as hydrogen bond 

donors to oxygen atoms of triflate anions (Figure 2.11b).  The HS complex has N-H···O 

interactions with the well-ordered triflate (N1aH1na···O1 , 1.94 Å, 169o) while the 

HS/LS complex interacts with the disordered triflate (N1H1n···O3a, 2.17 Å, 167o).  The 

well-ordered also triflate interacts with the acidic methine hydrogen of the partially LS 

complex (C4H4···O3, 2.30 Å, 157o) to form a chain of complexes with alternating 

(HS/LS) Fe1 and HS Fe1a centers along the [1 0 1] direction.  The three dimensional 

supramolecular structure of trans-1 at 250 K is constructed via various N-H···O 

hydrogen bonding and charge-assisted weak C-H···O interactions listed in Table 2.9.  

Figure 2.12a shows the labelling of the various interactions involved in the 3D assembly.  
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The N-H···O (contact 1, Table 2.9) and C-H···O interactions (contacts 3,5, and 6, Table 

2.9) involving the oxygen atoms of the well-behaved triflate serve to assemble the 

dications into sheets parallel with the ac- plane (Figures 2.12b and 2.12c).  The ac-sheets 

are stacked along the b- direction by N-H···O (contact 2, Table 2.9) and C-H···O 

interactions (contact 4, Table 2.9) between the hydrogens of confused pyrazolyl rings and 

the oxygen atoms of the disordered triflate (Figures 2.12c and 2.12d).  This results such 

that all disordered triflates are found in layers of dictions that are partly LS (the SCO 

layer).  

Table 2.9.  Geometries of main N-H···O and C-H···O weak hydrogen-bonding interactions (sum 

of van der Waals radii – 0.2 Å) in trans-1 (250 K). 

Contact # Donor(D)(-H) 

···Acceptor(A) 

D-H (Å) H···A (Å) D···A (Å) D-H···A (o) 

1 N1a-H1na···O1 0.87 1.94 2.802(6) 169 
2 N1-H1n···O3a 0.87 2.17 3.024(13) 167 

      

3 C1-H1···O2 0.94 2.55 3.108(8) 118 

4 C2a-H2a···O2a 0.94 2.48 3.264(13) 141 

5 C4-H4···O3 0.99 2.30 3.236(6) 157 

6 C10-H10a···O3 0.97 2.46 3.399(9) 163 

 

 
(a) 
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(b)      (c) 

 
(d)  

Figure 2.12.  Supramolecular assembly of trans-1 at 250 K.  (a) View of short contacts (cyan) listed in 

Table 2.9.  The dication that is partially LS has pink carbons while the disordered triflate has a green 

carbon and green oxygen atoms.  (b) View down the b-axis of ac- sheet.  (c) View down c- of the ac-sheet 

(d) View of the unit cell down c. 

 

In the 100 K structure, the asymmetric unit (Figure 2.13a) contains three well-

ordered triflate ions  
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(a) 

 

(b) 

Figure 2.13.  (a) Asymmetric unit of the 100 K structure of trans-[Fe(HL*)2](OTf)2, trans-1, with 

partial atom labeling. and (b) View showing some of the shortest hydrogen bonding interactions 

(  van der Waals radii – 0.45 Å, cyan dotted lines) forming two chains.  Color key: Black sticks 

= well-ordered triflate ion, Green sticks   = disordered triflate ion, Pale Blue sticks = HS dication 

with central Fe1b or Fe1c, Pink sticks = partial HS/LS dication with central Fe1a, dark violet 

sticks LS dication with central Fe1. 
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(containing S1, S1a, and S1b) and one disordered triflate (over two nearby positions in a 

2:1 S1c:S1d ratio) on general positions and four independent Fe(HL*) units whose metal 

centers are on inversion centers generating trans- isomers by symmetry.  Inspection of 

the Fe-N distances reveals that two of the dications with Fe1b and Fe1c are HS (avg. Fe-

N = 2.18(4) and 2.18(3) Å, respectively) and that the dication with a central Fe1 is LS 

(avg. Fe-N = 1.98(3) Å). The last dication with Fe1a has an average Fe-N distance of 

2.11(4) Å that corresponds to approximately 25-33% LS character, so is labelled HS/LS.  

As with the 250 K structure, the triflate ions are hydrogen-bonded to the dications via N-

H···O interactions (cyan dashed lines Figure 2.13b).  Three interactions involve well-

ordered triflate ions (N1H1n···O2b, 1.81(5) Å, 176(4)o; N1bH1nb···O2b, 2.03(4) Å, 

168(4)o; N1cH1nc···O1, 2.07(4) Å, 176(4)o ) while the remaining interaction involves the 

partly LS complex and the disordered triflate (major component:  N1aH1na···O3c, 

2.07(4) Å, 134(4)o and minor component: N1aH1na···O1d 2.12(4) Å, 170(4)o).  Two of 

the well-ordered triflate ions also interact with methine hydrogen on neighboring 

dications (C4H4···O2a 2.26 Å, 154o and C4aH4a···O3 2.21 Å, 154o) to form two 

separate chains.  One chain along the [2 2 0] direction has alternating dications of HS 

Fe1c and (LS/HS) Fe1a while the other chain along the [1 1 0] direction has alternating 

dications of HS Fe1b and (LS) Fe1.  As described above and shown in Figure 2.14a, there 

are four independent dications in the asymmetric unit where the iron atom resides on an 

inversion center.  The iron-nitrogen distances reveal there are two high spin complexes 

(HS1 and HS2), a low spin (LS) complex, and one intermediates spin dication (HS/LS). 

There are also three well behave triflate ions and one triflate that is disordered over two 

nearby positions (green atoms Figure 2.14a).  This disordered triflate is hydrogen bonded 
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to the (HS/LS) complex.  The N-H···O hydrogen bonding and charge-assisted weak C-

H···O interactions listed in Table 2.10 give rise to a three dimensional supramolecular 

structure.  The structure can be described by only considering those interactions 

involving well behaved triflate while those of the disordered triflate (contact #’s 2, 10, 

13, Table 2.10) serve to support the overall structure.  One triflate bridges neighboring 

HS1 and LS dications to form a chain along [1 1 0] via N-H···O interaction with HS1 and 

a C-H···O interaction with LS methine hydrogens (contacts 3 and 8, Table 2.10).  

Similarly, the N-H···O interaction with HS2 and a C-H···O interactions with (HS/LS) 

(contacts 4, 6, 9 and 11, Table 2.10) gives a chain along [2 2 0].  As seen in Figure 2.14b 

and 2.14c, these chains are assembled into sheets in the (2 2 -2) plane by another bridging 

triflate that connects LS complex via a N-H···O interaction and a C-H···O interaction of 

a confused pyrazolyl hydrogen on HS2 (contacts 1 and 7, Table 2.10).  The sheets are 

stacked in the third dimension by C-H···O interactions with bridging triflate oxygens and 

either the unique ring hydrogen of a pz* group on HS1 or the 3-position hydrogen of the 

confused pyrazolyl of HS/LS (contacts 5, 12, and 14, Table 2.10. 

Table 2.10.  Geometries of main N-H···O and C-H···O weak hydrogen-bonding interactions 

(sum of van der Waals radii – 0.2 Å) in trans- 1 at 100 K.   

Contact Donor(D)(-H) 

···Acceptor(A) 

D-H (Å) H···A (Å) D···A (Å) D-H···A (o) 

1 N1-H1n···O2b 0.97(5) 1.81(5) 2.778(4) 176(4) 
2 N1a-H1na···O3c 0.89(4) 2.07(4) 2.765(5) 134(4) 

3 N1b-

H1nb···O1a 

0.76(4) 2.03(4) 2.781(4) 168(4) 

4 N1c-H1nc···O1 0.71(4) 2.07(4) 2.777(4) 176(5) 

      

5 C1a-H1a···O2 0.95 2.47 3.049(5) 119 

6 C2a-H2a···O3 0.95 2.57 3.246(5) 128 

7 C2c-H2c···O3b 0.95 2.50 3.298(6) 141 

8 C4-H4···O2a 1.00 2.26 3.190(4) 154 

9 C4a-H4a···O3 1.00 2.21 3.142(4) 154 

10 C4b-H4b···O2c 1.00 2.31 3.267(5) 160 

11 C10a-H10g···O3 0.98 2.51 3.365(5) 145 

12 C12b-

H12b···O2a 

0.95 2.54 3.463(5) 165 

13 C20b-

H20f···O2c 

0.98 2.24 3.051(6) 139 
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14 C22c-H22c···O3 0.95 2.48 3.422(5) 170 

 

 

(a) 

   

(b)       (c)  

Figure 2.14.  Supramolecular assembly of trans-1 at 100K.  (a) View of selected short contacts 

(numbered cyan lines) listed in Table 2.10; contacts 6 and 12 are omitted for clarity.  The dication 

that is partially LS has pink carbons, the dication that is fully LS is has dark violet carbons, those 

HS dications have grey carbons.  The disordered triflate has a green carbon and green oxygen 

atoms.  (b) Top view of a sheet (2 2 -2) formed by interactions involving only well-behaved 

triflate ions. (c) Side view of sheet. 
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Figure 2.15 provides comparative views of the crystal packing diagrams in the 

250 K (left) and 100 K (right) structures.  The crystal packing is quite similar at both 

temperatures; with layers of HS complexes stacked alternately with layers of complexes 

with partially (LS/HS) or, fully LS (100 K case) complexes along the a- direction (250 K) 

or c- direction (100 K), or colloquially, the SCO layer.  The well-ordered triflates (black 

sticks, Figure 2.15) are found in the HS layers at each temperature.  The main differences 

in the structures occur in the SCO layers.  At 250 K, the SCO layers contain partly HS/LS 

complexes (25-33% LS character from bond distances) and disordered triflate ions.  At 

100 K, one half of the complexes in the SCO layer (25% overall) have converted to fully 

LS (dark violet sticks, right of Figure 2.15).  The other half of complexes in this layer 

remain (HS/LS) (25-33% LS character).  So, based on estimation from bond-distances, 

the entire sample is approximately 31-33% LS at 100 K.  Coincidentally, at 100 K one 

half of the triflate ions in the SCO layer (75 % overall) are now fully ordered (red arrows 

bottom of Figure 2.15); decreasing the temperature from 250 K to 100 K and the 

associated SCO contracts the unit cell sufficiently to lock one of the triflate ions into one 

position.  The remaining 25% of the triflate ions are disordered.  If the minor disorder 

component (34% occupancy) is associated with LS component of the partial SCO, then 

33.5 % (25% LS + 34% occupancy*25% HS/LS) of the total complexes in the unit cell 

would be LS trans-1 at 100 K. 
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Figure 2.15.  Comparison of a portion of the crystal packing diagrams in the 250 K (left) and 100 

K (right) structures of trans-1. Top left: View to down c-axis.  Top right:  View down a- axis.  

Bottom left:  View down a- axis.  Bottom right: View down b-axis.  Axes color scheme:  a- axis 

(red), +b-axis (green), and +c axis (blue).  Red arrows highlight transition in disorder/well-

ordered triflate types upon changing temperature.  

 

Crystals of co-1 turn violet on cooling to 77 K, so single crystal X-ray diffraction 

experiments were performed at two temperatures, 250 K (colorless/pale blue) and 100 K 

(violet).  Views of the 100 K structure are found in Figure 2.16 while bond distances and 

interatomic angles are listed in Table 2.11.  The asymmetric unit (Figure 2.16a) consists 

of one well-ordered triflate (with terminal atoms bound to the S1-C5 unit), one triflate 

that is disordered unequally over two nearby positions (84% containing S1a-C5a and 

16% containing S1b-C5b) and two Fe(HL*) moieties (one with Fe1 on an inversion center 

and one with Fe2 on a two-fold rotation axis).  By crystallographic symmetry, the 

dication with Fe1 is the trans- isomer (angle between iron-bound ‘confused’ nitrogens, 

N2-Fe1-N2’ = 180.0(1)o) whereas that with Fe2 is the 



60 
 

      
   (a)       (b) 

  
(c) 

Figure 2.16.  Views of the structure of a crystal with a 1:1 ratio of cis-12+:trans-12+, a crystal 

form called co-1. (a) asymmetric unit with partial atom labelling and most hydrogen atoms 

removed for clarity.  (b)  View of the trans- (left) and cis- (right) dication components.  (c)  View 

of the dications down the C(methine)-H bond showing greater pz ring tilting in the trans- isomer 

(left) than the cis- isomer (right). 

Table 2.11.  Bond distances (Å), angles (deg.) and torsion angles (deg.) for co-1. 

Bond Distances (Å) 250 K 100 K 

Fe1-N2 2.1321(19) 2.103(3) 

Fe1-N11 2.2059(18) 2.163(3) 

Fe1-N21 2.1850(18) 2.154(3) 

Fe2-N2a 2.132(2) 2.032(4) 

Fe2-N11a 2.178(2) 2.087(3) 

Fe2-N21a 2.156(2) 2.064(3) 

   

Bond Angles (o)   

N2-Fe1-N11 85.32(7) 85.68(11) 

N2-Fe1-N21 84.10(7) 84.82(11) 

N11-Fe1-N21 82.38(7) 83.07(10) 

N2a-Fe2-N11a 85.83(8) 86.83(13) 

N2a-Fe2-N21a 82.26(8) 84.35(13) 

N11a-Fe2-N21a 85.94(8) 87.11(13) 

   

Bond Torsions (o)   

C4C3-N2Fe1 -6.1(3) -6.1(4) 

C4N12-N11Fe1 -4.9(2) -5.0(4) 

C4N22-N21Fe1 -2.2(2) -3.2(4) 
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C4aC3a-N2aFe2 -6.9(3) -5.4(4) 

C4aN12a-N11aFe2 -4.5(3) -3.8(4) 

C4aN22a-N21aFe2 5.9(3) 4.4(4) 

 

cis-isomer (N2-Fe2-N2’ = 92.5(2)o), Figure 2.16b.  At 250 K, the average Fe-N bond 

distances indicate that both the trans- (2.17 Å) and cis- (2.16 Å) components are HS 

Fe(II).  At 100 K, the trans- isomer remains HS (Fe-Navg 2.14 Å) while the cis-isomer has 

Fe-Navg of 2.06(3) Å, a distance between HS (2.18 Å) and LS (ca. 1.98 Å) roughly 

corresponding to about 38 ± 12% HS character (overall 69% HS or 31 ± 6% SCO).  It is 

noteworthy that the trans- component not only has longer bond distances than the cis- 

component but the ligand is more distorted with greater pyrazolyl ring twisting (5.8 vs 

4.4o at 250 K or 4.8 vs 4.5o at 100 K) and ring tilting (171o vs 175o at 250 K or 172o vs 

176o at 100 K), Figure 2.16c.  In other words, the cis- isomer with a less distorted ligand 

and shorter bonds at room temperature undergoes SCO on cooling (albeit incomplete 

over this temperature range). 

An examination of the three-dimensional supramolecular structure provides 

insight into why the cis- component of co-1 undergoes SCO but the trans- does not.  

Views of the crystal packing arrangement are found in Figure 2.17, while Table 2.12 lists 

the short non-covalent interactions that  
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(a) 

 
 (b)       (c)  

 

Figure 2.17.  Supramolecular structure of co-1.  (a) View of important noncovalent interactions 

with atom labeling.  The cis- isomer has light orange carbons as capped sticks while the trans- 

isomer shows carbon as black capped sticks. Hanging and completed contacts are red and green 

dashed lines, respectively. Pink spheres represent minor triflate disorder component.  (b) View of 

unit cell down b with contact # from Table 2.12 labeled.  (c) View of unit cell down c with 

contacts labeled as per Table 2.12.  

help organize the structure.  The three dimensional structures of co-1 at 250 K and 100 K 

are only slightly different, so the 100 K structure is discussed first.  As stated above, there 

are two triflate anions, one well-ordered and one disordered.  The three dimensional 
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structure can be described by only considering charge-assisted C-H···O weak hydrogen 

bonding interactions94 with the well-ordered triflate where interactions with the 

disordered triflate further support the structure.  The C-H···O interactions assemble each 

of the cis- (colored orange in Fig. 2.17) or trans-(colored black in Fig 2.17) isomers into 

separate polymeric chains (that contain only one type of isomer) that run parallel with the 

c- axis (Figures 2.17b and 2.17c).  The cis- chain is organized via trifurcated C-H···O 

interaction involving O1 as a bridging acceptor to a 5-methyl hydrogen donor (H24e) on 

one complex and both a methine (H4a) and a nearby 5-methyl hydrogen (H24f) donor on 

a neighboring complex, (contacts 3, 6, and 7, Table 2.12).  The  

Table 2.12.  Geometries of selected weak hydrogen-bonding interactions in co-1 at 100 K. 

contact Donor(D)(-H) 

···Acceptor(A) 

D-H (Å) H···A (Å) D···A (Å) D-H···A (o) 

 ordered triflate     
1 C2-H2···O3 0.95 2.60 3.286(5) 130 

2 C4-H4···O3 1.00 2.24 3.182(5) 157 

3 C4a-H4a···O1 1.00 2.26 3.211(4) 158 

4 C14-H14a···O3 0.98 2.57 3.434(5) 147 

5 C24-H24b···O2 0.98 2.46 3.366(5) 154 

6 C24-H24e···O1 0.98 2.55 3.477(5) 158 

7 C24-H24f···O1 0.98 2.42 3.279(5) 145 

      

 disordered triflate     

8 N1a-H1na···O3a 0.88 1.96 2.807(5) 162 

9 N1-H1n···O1a 0.88 1.93 2.744(5) 154 

      

10 C1-H1···O2a 0.95 2.45 3.395(6) 173 

11 C1-H1···O2b 0.95 2.53 3.40(2) 153 

12 C1a-H1a···O3b 0.95 2.54 3.20(2) 120 

13 C10a-H10e···O2b 0.98 2.59 3.34(2) 133 

      

14 C22a-H22e···F1b 0.98 2.48 3.269(18) 137 

15 C22a-H22e···F2b 0.98 2.25 2.868(18) 122 

16 C2-H2···F1b 0.95 2.48 2.977(18) 113 

 

interaction of O3 of the triflate ions attached to the cis- chain with the methine hydrogen 

of the trans- isomer (H4, contact # 2 Table 2.12) also places trans- isomers in chains 

parallel to c- (and gives bilayer sheets parallel to the ac- plane), Figures 2.17b and 2.17c.  

The trans- chains are further supported by with their confused pyrazolyl hydrogens as 
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donors (H1n, H1) and oxygen atoms of disordered triflate ions (contacts 9 and 10, Table 

2.12).  The ac-bilayer sheets are stacked along the b- direction by the interaction between 

O2 on one sheet and a 5-methyl hydrogen of a pz* group (H24b) on an adjacent sheet 

(contact 5, Table 2.12).  The other non-covalent interactions listed in Table 2.12 further 

secure this structure.  This packing arrangement places the minor disorder triflate 

component within voids of the supramolecular framework.  The minor component is still 

hydrogen bonded to the trans- isomer but does not bridge neighboring trans- isomers 

within the polymer chain.  Moreover, there is no hydrogen bonding to the cis- isomer.  It 

is further noted that at 250 K, the overall connectivity is retained but non-covalent 

interactions lengthen.  Also, the minor triflate disorder component is not observed.  

Instead, there are solvent accessible voids 162 Å3 in the same location as in the 100 K 

structure.  Thus, the cis- component of co-1 is more loosely packed than the trans- 

component at both temperatures and presumably is freer to adopt a LS configuration at 

low temperature. 

B. Powder X-ray Diffraction.  
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Figure 2.18.  Calculated (blue dashed traces) and experimental (black traces) Powder X-ray 

diffractograms (Cu  radiation, 295 K) for various stages of desolvation of 

[Fe(HL*)2](OTf)2·2CH3CN, trans-1·2CH3CN. (a) Calculated pattern for trans-1·2CH3CN.  (b) 

Air-dried, ground crystals of trans-1·2CH3CN. (c) Crystals of trans-1·2CH3CN dried under 

vacuum at 295 K for 5 min to give pink powder. (d) Crystals of trans-1·2CH3CN dried under 

vacuum at 295 K 1 h. to give colorless powder.  (e)  Crystals of trans-1·2CH3CN dried under 

vacuum at 343 K 1 h.  (f) crystals of trans-1·2CH3CN dried under vacuum at 343 K 12 h. (g) 

Calculated pattern of trans-1 from 250 K single crystal X-ray diffraction experiment.   

 

The multiple crystal forms of 1 identified by single crystal X-ray diffraction 

studies prompted an investigation into the structural nature of the bulk crystalline and 

powder samples.  First, it was found that the PXRD patterns of freshly ground bulk 

crystalline samples of trans-1 or co-1 matched those calculated from their single crystal 

X-ray diffraction data.  The data for ground, air-dried crystals of trans-1·2CH3CN mostly 

matched the calculated pattern but had reflections for desolvated forms, Figures 2.18a 

and b.   If the initially violet trans-1·2CH3CN is subjected to room temperature 

evacuation samples become colorless and PXRD data shows a new phase (Figure 2.18c 

and d) for trans-1·CH3CN, as suggested by NMR and combustion analysis.  This new 

phase only very slowly (several hours) converts with heating at 70oC under vacuum to 

trans-1 (Figures 2.18e-g)  In contrast, samples of trans-1·4CH3CN readily lose solvent 

even at room temperature (neither heating nor evacuation is necessary) to give PXRD 

patterns identical with trans-1 (Figure 2.19).   
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Figure 2.19.  Photographs of crystals of trans-1·4CH3CN in a thin film of mother liquor 

(CH3CN) taken at intervals after removing from freezer and warming on illuminated microscope 

slide stage.  (a) Within 1 min of removal.  (b) After 5 min.  (c) After 15 min, sample is now dry. 

(d) same as (c) but with different lighting, showing colorless nature. (e) calculated pattern for 

trans-1·4CH3CN. (f) experimental PXRD pattern of desolvated crystals. (g) calculated pattern for 

trans-1. 

 

Samples of as-formed powders of 1 crystallized at room temperature by Et2O 

vapor diffusion had PXRD patterns were consistent with an admixture of crystalline 

phases cis-1 and trans-1.  It is noted that because of the similarity in unit cells at room 

temperature these two PXRD patterns are strikingly similar (Figure 2.1) but are 

distinguishable by peaks at: 2 (degrees) = 7.3 (trans), 14.5 and 14.7 (cis) versus 14.4 

and 14.8 (trans), 19.4 (cis) versus 19.6 (trans), 25.0 (cis) versus 25.2 (trans), 27.8 (trans), 

and 29.4 (cis).  Finally, the PXRD patterns reveal that the Et2O-washed, colorless, as-
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formed powders of 1 are mixtures trans-1, cis-1, and sometimes co-1. The relative 

composition of the mixture depends on the temperature of the reaction mixture and that at 

which solvent was removed under vacuum; both are controlled by solution isomerization 

equilibrium (vide infra) where high temperatures favor greater proportions of cis-1 and/or 

co-1 whereas room temperature reactions and distillations gave mixtures that favored 

trans-1 (Figures 2.1 and 2.20).   

 

Figure 2.20.  Representative PXRD patterns for powders of 1 obtained under different conditions 

(black lines).  Calculated patterns for main component of mixture shown as blue dashed traces.  

(a) As-formed lilac-colored solid obtained after 1h mixing at room temperature followed by room 

temperature vacuum distillation, but prior to Et2O wash.   The residue is a mixture of mainly 

trans-1·2CH3CN (blue trace), trans-1·CH3CN and trans-1.  (b) Similar to (a) but for the pink 

powder obtained after incomplete Et2O wash.  The blue trace is for trans-1·CH3CN.  Peaks for 

trans-1 are also present.  (c) Similar to (a) and (b) but for colorless powder obtained after 

complete Et2O wash.  The blue trace is for trans-1.  (d) Colorless powder obtained after 4h 

mixing at 70 oC followed by vacuum distillation using external 40 oC water bath.  The blue trace 

is for co-1. Peaks for both cis-1 and trans-1 are also evident (See Figure 2.1). 
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The composition of the as-formed powder depends on the temperature (and time) 

that the reaction mixture was stirred, the temperature at which solvent was removed, the 

rate for solvent removal, and the completeness of the Et2O washing procedure.  Reactions 

performed at room temperature give mainly trans-1 isomer (Figure 2.20a-c).  If solvent is 

removed under vacuum without heating, the residue prior to Et2O washing will be 

colored between lilac and rose-pink indicating variable amounts of trans-1·xCH3CN (x = 

1, 2) (Figures 2.20b and 2.20c).  The Et2O washing helps drive of CH3CN to give mainly 

trans-1 (weak intensity reflections at 2θ = 7.3 and 27.8o, Figures 2.20c and 2.1) with 

some cis-1 (peak at 2θ  = 14.5o, Figure 2.20c and 2.1). If the preparative reaction is 

heated and then solvent is removed using a warm (ca. 40-50oC) water bath to maintain 

temperature, then variable amounts of co-1 could be detected (at 2θ  = 6.5, 13.4, and 

19.0o) in addition to those for cis-1 and trans-1, Figure 2.20d.  Heating a solution to 

dryness under atmospheric pressure produces mainly cis-1 (maximum ca. 25% trans-1, 

Figures 2.1b). Heating favors the formation of cis- isomer. 

Magnetometry.  The temperature dependence of the magnetic properties of air-dried 

crystals of co-1, a powder sample of cis-1 contaminated with minor amounts of trans-1, 

and phase pure powders of trans-1 and trans-1·CH3CN were investigated by SQUID 

magnetometry.  Figure 2.21  
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(a)        (b) 

        

(c)       (d) 

Figure 2.21.  Magnetic susceptibility data obtained from hand-separated crystals of (a) co-1 (b) 

cis-1 (c) trans-1, and (d) trans-1·CH3CN. 

 

gives the magnetic data, plotted as mT versus T.  The magnetic data for co-1 (Figure 

2.21a) shows a gradual SCO beginning near 300 K (mT = 3.2 cm3Kmol-1, 100 % HS; 

theor. mT = 3.25 cm3Kmol-1 with orbital angular momentum contribution to spin-only 

moment) that stops after mT reaches 1.8 cm3Kmol-1 at 80 K (68% HS, 32% SCO).  This 

behavior is aligned with the crystallographic data that showed only the cis- component 

undergoes partial SCO.  The mT value at 100 K of 2.2 cm3Kmol-1 indicates 23% SCO 

which is on par with 31 ± 6% % SCO estimated from bond distance analysis.  As shown 

in Fig. 2.21b, mT in cis-1 maintains a constant value between 300 K to about 165 K of 

3.2 cm3Kmol-1 consistent with 100% HS Fe(II).  Between 80 to 20 K, mT value drops to 

a constant value of 2.0 cm3Kmol-1, indicating about 72% HS Fe(II).  Given the X-ray 

structural data that showed a rather long average Fe-N bond distance of 2.11(2) Å at 100 

K (consistent with an incomplete 30 ± 5% spin crossover) and a triflate disordered in a 

near 2:1 ratio over two sites, we tentatively ascribe the unusual magnetic behavior to be 

the result of the spin crossover of the minor disorder component in cis-1; the majority of 
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the sample remains HS.  The subtle “hump” in the curve near 100 K is due to trans-1, as 

described next.  For trans-1, MT at 300 K is 3.1 cm3Kmol-1 and reduces to a constant 

value of 2.0 cm3Kmol-1 upon cooling to 80 K or below, in accord with about 28% SCO 

on cooling, similar to cis-1.  As opposed to the gradual transition in cis-1, that of trans-1 

occurs in two unequal steps at T1 = 250 K (18 % SCO) and T2 = 105 K ( % SCO) with 

the former being more gradual (temperature range of transition, T, ~ 78 K) than the 

latter (T ~22 K).  The monoclinic/triclinic crystal phase transition is responsible for the 

abruptness of the low temperature SCO transition.  In particular, the 10 % SCO of this 

second step observed from the magnetomety data is similar to the 8.5% minor component 

of the disordered triflate associated with the LS component of the HS/LS iron site in the 

100 K structure.  Finally, the sample of trans-1·CH3CN of unknown structure undergoes 

a complete but gradual SCO with T1/2 of 156 K. 

C. Solution Properties.  

 

The properties of the various crystalline forms in solution were investigated first 

by their crystallization behavior and then by 1H NMR spectroscopy.  First, dissolution of 

any of the crystalline forms followed by either evaporation or Et2O vapor diffusion over 

about 16 h (or longer) produces a mixture of crystalline forms indicating that the 

complexes undergo isomerization in solution.  When violet crystals of trans-1·2CH3CN 

are dissolved in CH3CN at room temperature, the resulting solution is colorless and 

paramagnetic (eff = 5.0 B), indicating that the LS nature of this complex is due to 

crystal packing effects (vide infra, DFT).  The 1H NMR spectrum of C2h symmetric trans-

1·2CH3CN (or of trans-1·4CH3CN) immediately after dissolution consists of six 
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resonances: five for the hydrogens of the complex and one for CH3CN.  The resonance 

near 20 ppm consists of three overlapping signals, which is evident from integration and 

VT NMR experiments (Figure 2.22).   

 

Figure 2.22.  Overlay of 1H NMR spectra of trans-1 2CH3CN in CD3CN at different 

temperatures.  

 

Over time, new resonances characteristic of a C2 symmetric cis- isomer (notably 

near 51, 48, 45, and 21 ppm, Figures 2.23 and 2.24) grow in intensity at the expense of 

those for trans-1 until an equilibrium mixture of trans- and cis- isomers is reached.  By 

monitoring the trans- to cis- isomerization at 22, 50, 60, and 70 oC, full kinetic and 

thermodynamic parameters for the equilibrium (Equation 1) were obtained (see  

trans-1  ⇄  cis-1  K = [cis-1]/[trans-1] ………………..eq 1 
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below for full details).  The trans- to cis- isomerization reaction (forward reaction 

Equation 1) is first order in trans-1 with a half-life of 36.5 hr at 295 K and only 19.4 min 

at 343 K.  The activation barrier for this conversion is only 83 kJ/mol, which is much 

smaller than typical metal –nitrogen bond dissociation enthalpies (ca. 300-400 kJ/mol).100 

Thus, the isomerization likely occurs via bond stretching and torsional modes of vibration 

rather than 

 

Figure 2.23.  Overlay of the downfield portions of the 295 K1H NMR spectra of a 0.02 M 

solution of trans-1·2CH3CN in CD3CN acquired at five times after dissolution: 5 min (blue), 240 

(black), 480 (black), 1380 (black), and 1800 min (red). The green arrows highlight emergence of 

resonances for the cis- isomer while the purple arrows indicate the receding resonances for the 

trans- isomer. 
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(a) 

 

(b) 

Figure 2.24. (a) Full 1H NMR spectrum (CD3CN, 295 K) showing isomerization of trans-1 to a 

mixture of cis- (green arrows) and trans- (purple rounded pins) isomers. * and o in top spectrum 

are for CH2Cl2 (added for reference) and silicon grease (accidental).   (b) 1H NMR spectra for 1 

formed in-situ by adding 2 equivalents ligand to Fe(OTf)2·CH3CN before (blue spectrum, bottom) 

and after (orange spectrum, top) heating at 70oC. The latter spectra was acquired at room 

temperature minutes after removal from external oil bath.  The green arrow shows resonance for 
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cis- isomer proton and horozontal line can be used to visually see enrichment of cis- isomer with 

heating. 

 

by dissociation.  Supporting this assertion, is that when solutions of 1 are spiked with 

excess ligand, the spectrum consists of two separate sets of resonances, one set for 1 (as a 

mixture of cis- and trans-) and one set for the ligand; the ligand exchange is slow on the 

timescale of the experiment.  At room temperature (295 K), the isomerization proceeds 

until an equilibrium cis/trans ratio (Keq, 295) of 0.66 is achieved.  At 343 K, the 

equilibrium favors the cis- isomer, Keq,343 = 2.2.  The van’t Hoff plot at four different 

temperatures (Figure 2.26) gives H = + 22 kJ/mol and S = +69 J/K·mol.  The small 

positive value of S is expected due to the lower symmetry of the cis- versus trans- 

isomer.  However, the endothermic nature of the trans- to cis- transformation was not 

expected (nor was it predicted by DFT, vide infra) given the otherwise identical HS FeN6 

kernels.  The enthalpic contribution must originate from discrepancies in ion pairing 

between each isomer, or less likely in solvation, due to the different disposition of N-H 

bond donors.  Perhaps the smaller electron repulsion of hydrogen-bonded triflate anions 

in the trans- versus cis- isomer may be responsible for the difference in enthalpy.  We 

will further examine this line of query in future studies that probe anion effects on SCO 

of this complex cation.  The difference in the apparent composition of the as-formed 

powders depending on whether the solution is heated or not during evaporation (Figure 

2.20) originates from the values of H and S which indicate that the cis- isomer is 

favored above 311 K (38 oC).  In a related manner, NMR monitoring of the formation of 

1 in-situ by dissolving the ligand and Fe(OTf)2·2CH3CN in CD3CN initially shows a 

mixture of isomers that slightly favors trans-1 but that converts rapidly to the equilibrium 
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mixture after heating (Figure 2.24b and 2.2).  The ability to isolate pure trans-1·2CH3CN 

from solutions of as-formed powders of 1 in CH3CN when stored in a freezer (253 K) is 

facilitated by Keq,253 = 0.15 and solubility differences in isomers.  Finally, the limited 

boiling temperature of CH3CN (355 K), the equilibrium constant at that temperature, 

Keq,355 = 2.3, and the larger rate constant of the reverse versus the forward reaction in 

Equation 1, all have hampered the ability to isolate pure cis-1 in the bulk from this 

solvent.   

D. Details of Kinetic and Equilibrium NMR Analysis.   

 

Solutions of known concentration of trans-1·2CH3CN in CD3CN (ca. 0.01-0.04 

M = [trans-1]0) were prepared immediately before inserting into a preheated NMR 

magnetometer (t0 = 0 min, taken to be 100% trans-1 and Temperature = 22, 50, 60, and 

70 oC).   The 1H NMR spectrum acquired after shimming (recorded time, t1 = ca. 5-7 

min).  Then spectra were acquired at designated intervals thereafter (i.e, every 5 min at 

60oC or every 2 min at 70oC, etc.).  At low temperature (295 K), a resonance for cis-1 at 

50.7 ppm (2 H, presumably for one of two sets of resonances for H4 pz* hydrogens; the 

other set appears at H = 48.0 ppm) can be seen growing in next to that at 50.5 ppm (4 H) 

for trans-1.  While these resonances be quantified by deconvolution, they overlap in 

higher temperature spectra.  Thus, the following procedure was used to quantify the 

relative amounts of cis-1:trans-1.  The spectra were processed and were subject to least 

square baseline correction using the Spinworks program (SpinWorks 4.2.0, Copyright © 

2015 Kirk Marat, University of Manitoba).  The integration of the 48.0 ppm resonance 

(295 K, shifting to 43.0 ppm @ 343 K), Int48, was set to 2 H, then the overlapping 

resonances near 50.5 ppm (295 K, shifting to 45.2 ppm @ 343 K), Int51, were integrated 
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together.  The fraction of trans-1, trans, was taken as (Int51 – Int48)/ (Int51 + Int48) while 

the fraction of cis-1, cis, is then (2 Int48)/ (Int51 + Int48) or 1 - trans.  This procedure was 

repeated twice by separate individuals and all three values were averaged to 

minimize/establish errors in data processing procedure.  Then [trans-1]t = trans[trans-1]0 

and [cis-1]t  =  [trans-1]0 - [trans-1]t.  A representative plot of [trans-1]t versus time is 

found in the left of figure 2.25.  The initial rate of trans-1 to cis-1 conversion was taken 

as the best line fit through plot of ln [trans-1] versus time over the first 50 min (right of 

Figure 2.25) where the slope is the negative of the rate constant k.  The equilibrium 

concentration of trans-1, [trans-1]eq, is taken as the average of the [trans-1] values from 

100 to the 180 min. The equilibrium concentration of cis-1, [cis-1]eq, then equals [trans-

1]0 - [trans-1]eq.  The van’t Hoff and Erying plots are found in Figure 2.26. 

 

      

Figure 2.25. Left: Plot of [trans-1] as a function of time at 333 K. Right:  Plot of ln [trans-1] 

versus time with best fit line shown. 

 

Table 2.13. Temperature dependence of rate constants and equilibrium constants. 

T (K) T-1 (K-1) Keq ln Keq k ln k t1/2 (min) 

295 3.390 x10-3 2.230 0.8020 3.166 x10-4 -8.058 2189 

323 3.096 x10-3 1.765 0.5682 7.142 x10-3 -4.942 97.03 
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333 3.003 x10-3 1.270 0.2390 1.420 x10-2 -4.255 48.80 

343 2.915 x10-3 0.650 -0.4308 3.574 x10-2 -3.331 19.39 

 

           

 

 H = +21.53 kJ/mol     Ea = 82.57 kJ/mol  

 S = +69.23 J/mol     A = 1.383x1011 s-1   

Figure 2.26.  Van’t Hoff (left) and Erying (right) Plots for trans-1  ⇄  cis-1. 
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E. DFT Calculations.  To gain further insight into the nature of the electronic ground 

state and relative stability of isomeric dications in 1, theoretical calculations were 

performed using a density functional method, (OPBE/def2-SV(P) (C,H,N), def2-

QZVPP (Fe)/PCM (CH2Cl2), that has been successfully used for other iron complexes 

that undergo spin crossover.90  First, for both isomers DFT calculations predict the 

quintet state to be lowest in energy at 298 K.  This is in line with the experimental 

observation that, in solution, both isomers are paramagnetic HS species.  The singlet 

state was higher energy by 21 and 22 kJ/mol for the trans- and cis- isomers respectively.  

These small values of spin-state splitting are in the range where spin crossover is 

expected.  Finally, the isomers are nearly degenerate, with the trans- isomer being only 

1-2 kJ more stable than the cis- isomer in either the quintet or singlet states.  This slight 

preference may be due to the lower inter-ligand repulsions in the trans- (two pz* 

methyl/pz* methyl clashes) versus the cis- (three pz* methyl/pz* methyl clashes) 

isomer, Figure 2.27.  If the isomers are  

 

Figure 2.27.  DFT calculated geometries of LS form of each isomer of 1 viewed down the H-

Cmethine···Fe vector, showing areas of interligand steric interactions as filled pink circles. 
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degenerate, then one may expect a statistical 2:1 ratio of cis:trans isomers (the value 

achieved in the high temperature solution NMR studies).  Thus, the DFT calculations are 

surprisingly in rather good qualitative agreement with the experimental solution 

isomerization equilibrium despite not accounting for potential electrostatic interactions 

with anions.  As mentioned above, perhaps neglecting these latter interactions in the 

computations is responsible for the discrepancies between calculated and experimental H 

and S values. 

2.3.  CONCLUSIONS 

 

Complex 1, [Fe(HL*)2](OTf)2, was initially prepared to compare electronic and 

magnetic properties with the parent complex [Fe(HL)2](OTf)2, 2, (with a T1/2 near 360 K).  

It was expected that the interligand steric interactions among methyl substituents on the 

pyrazolyl rings in 1 should lower T1/2 (i.e. stabilize the HS state) versus the parent complex.  

Indeed, 1 was found to be HS in solution at room temperature in contrast to the LS complex 

2.  A secondary benefit of adding methyls to the normal pyrazolyl rings, is that 1 enjoyed 

much greater solubility in CH3CN than 2 which greatly facilitated the solution NMR 

studies of the former.  The fairly significant temperature dependence of the solution 

isomerization equilibrium (Equation 1) observed for 1 by NMR was surprising since both 

the enthalpic and entropic contributions to the equilibrium were expected to be minimal 

based on considering only FeN6 cores and, perhaps, the change in point group symmetry.  

It would seem that interactions with the triflate anions play an important role in governing 

the temperature dependence.  The trans- isomer not only has fewer interligand steric 

interactions than the cis- isomer, but if the triflate ions here hydrogen bonded to the acidic 

N-H group in each isomer, then the triflate ions in the trans- isomer would be further apart 
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than in the cis- isomer minimizing anion-anion repulsions making the trans- isomer more 

stable than the cis- isomer.  Regardless, the temperature dependence of the equilibria 

provided insight into conditions that would favor one isomer over another.  Indeed, six 

different crystalline forms of 1 could be prepared; cis-1, co-1, and trans-1 xCH3CN (x = 0, 

1, 2, 4).  It is worth comment that the rich structural chemistry, as observed for 1, was not 

discovered in the parent complex, [Fe(HL)2](OTf)2.  Such behavior was missed due in part 

to the relatively high pseudo-symmetry of the ‘confused’ and ‘normal’ pyrazolyl rings that 

results in crystallographically-disordered dications which prevented definitive 

identification of isomers in the solid state and the low solubility in solution that stymied 

NMR characterization.  It is also of interest that CH3CN solvates of cis-1 have neither been 

isolated nor identified by PXRD.  Perhaps, this is fortuitous consequence of the solution 

equilibrium.  It is also possible that the juxtaposition of the two N-H groups allows for 

chelation of one triflate anion in solution (the other anion being either outer sphere or 

associated with the acidic methine) that outcompetes solvent for hydrogen bonding.  In the 

case of the trans- isomer, only monodentate coordination to the anion or solvent is possible, 

and gives rise to the observed mixture of solvate and solvate-free forms.  Regardless, five 

of the six crystalline forms were HS in the solid state at room temperature with trans-

1·2CH3CN being the LS exception.  The crystal packing of this latter derivative is 

remarkably efficient being denser than co-1 (and only slightly less dense than trans-1 or 

cis-1) despite having two solvate CH3CN molecules included in the lattice.  Four of the 

derivatives (cis-1, co-1, and trans-1 xCH3CN (x = 0, 1) showed SCO by magnetometry and 

only the structure of the latter remains unknown.  It is now clear after examining the 

average pz twist angles of cis-1 (6o), co-1 (cis- component 4o, trans- component 6o), trans-
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1·4CH3CN (10o) and that of [Fe(TsL)2](BF4)2 (8
o) reported earlier, that the empirical ‘11o 

rule’ needs to be amended, at least for N-confused scorpionates, to state: if pz twisting is 

above 11o then SCO will not be observed, but if pyrazolyl ring twisting is less than 11o, 

SCO is not guaranteed.  Clearly other ligand distortions (pz-tilting < 175o) or other crystal 

packing effects are sufficient to prevent SCO of these iron(II) scorpionates.  For three 

derivatives with known structures and that undergo SCO, the triflate anion plays an 

important role in their magnetic behavior.  In all three cases, at least one of the triflate ions 

is disordered and the minor disorder component is responsible for SCO behavior.  The 

ability for the triflate to adopt different geometries thereby giving more room for HS/LS 

interconversions in the dications may be promoted by the incompatibility of the C3v point 

symmetry of the anion with two-fold point symmetry of the dication in most (the observed) 

space groups, forcing the anion to occupy crystallographic general positions (and 

increasing probability for disordered structures). Finally, one of the unique design features 

of these N-confused C-scorpionates is the availability of an N-H moiety on the confused 

pyrazolyl ring that can be involved in hydrogen-bonding interactions with either anions or 

solvent. It remains unclear whether these weak hydrogen bonding interactions have any 

effect on cooperativity, as both abrupt and gradual SCO transitions have been observed 

among the four reported examples.  Future studies will be directed toward developing a 

better understanding of the relationships between symmetry and hydrogen bonding 

capabilities of anions on the cooperativity of SCO in these systems by using judicious 

choices of hydrogen bonding acceptors. 
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CHAPTER 3: SYNTHESIS AND REACTIVITY OF SILVER COMPLEXES OF   

NITROGEN CONFUSED SCORPIONATE LIGANDS 

 

3.1. Introduction 

 

Scorpionate ligands, formerly known as Trofimenko’s tris(pyrazolyl)borates, Tpx, 

are one of the classic and well-developed N-donor ligands in coordination chemistry.101 

The ‘scorpionate’ name has been extended and includes all facially-coordinating tripodal 

ligand analogues such as Reglinski’s tris(thioimidazolyl)borate101b, soft scorpionates 

(TmR),102 C-scorpionates such as tris(pyrazolyl)methane (Tpmx)103, and 

tris(pyrazolyl)methanesulfonate, Tpms.104 The presence of B-H moiety in the first 

generation B-scorpionates ligands had a tendency to reduce silver(I) to the zero valent 

metal Ag(0). The chemistry of silver scorpionates has been widely explored ever since it 

was learnt that silver reduction could be inhibited by removing B-H bonds, or by 

increasing steric bulk on the pyrazolyl ring especially at the 3-position and/or by 

introducing electron-withdrawing groups on the pyrazolyl.105 The first report of a Ag-

catalyzed activation of carbon-halogen bonds through a carbene insertion process 

occurring at mild conditions was from the Dias group. The Dias group106 synthesized a 

highly fluorinated trispyrazolyl ligand, Tp(CF3)2 [HB(3,5-CF3)2Pz)3] which greatly 

stabilizes the AgTp(CF3)2 complex. This AgTp(CF3)2 complex was then also used to 

catalyze carbene insertion into C-H bonds of cyclic and acyclic hydrocarbons and 

aromatic C=C bonds at room temperature. The Perez group developed AgTpx complexes 

which catalyzed the aziridination of alkenes, dienes, amination of alkanes, unexpected N-

N bond formations and recently Perez’s Ag[PhB(CH2PPh2)3](PPh3) catalyzed 

aziridination of styrene but in lower yields than the copper analogues. 13,14,107 
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Compared to AgTpx and other anionic B-scorpionates ligands the reaction 

chemistry of AgTpms or [Agn(Tpmx)m]+ were less explored because of the difficulty in 

their synthesis and isolation.18-19 In 1984, Elguero and coworkers developed an improved 

procedure for the synthesis of these ligands.108 After this breakthrough, the chemistry of 

tris(pyrazolyl)methanes began to receive attention and remarkably grew in the past 

decades.104 Given the efficient aziridination and amination catalysis reported by 

Schomaker, He and Perez groups using silver complexes of charge neutral nitrogen donor 

ligands, similar chemistry might be expected for tris(pyrazolyl)methanes but only a 

handful reports can be found for tris(pyrazolyl)methanes for the silver metal. 109-114 

Our group has recently introduced a new class of tris(pyrazolyl)methanes, the 

nitrogen-confused C-scorpionates, 20 where one of the three pyrazolyl rings is bound to 

the central methine carbon atom via a pyrazolyl ring carbon atom rather than the more 

usual nitrogen atom. Synthesis of new N-confused C-scorpionate ligands with two 

‘normal’ pz* groups (=3,5-dimethylpyrazol-1-yl) and a ‘confused’ pyrazolyl with either 

an N-H, HL*, or an N-Tosyl (Tosyl = p-toluenesulfonyl), TsL*, bound to a central 

methine carbon has been previously described.20 These bulky ligands complement those 

previously described, HL and TsL, that had less-bulky, unsubstituted, ‘normal’ pyrazol-1-

yls. For these four related N-confused scorpionate ligands, the 2:1 and 1:1 ligand:silver 

complexes were prepared and characterized both structurally and spectroscopically. The 

complexes’ stoichiometric reactivity and catalytic activity for aziridination of styrene 

were also reported. However, these silver complexes show lower activity for catalytic 

aziridination compared to the previously reported AgTpx complexes. The purpose of this 

thesis work is to fully investigate if by further increasing the steric bulk on the pyrazolyls 
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these current catalysts can be made more competitive with other previously reported 

catalysts for intermolecular aziridination reactions. In this contribution, the preparation of 

two new N-confused C-scorpionates, TsLipr and HLipr, each with two ‘normal’ 3,5-

diisopropylpyrazolyl groups, and either an N-tosyl or N-H group on the ‘confused’ pz is 

described. Also, described in this chapter are the preparation of the silver complexes of 

these bulky ligands and their potential as catalysts for nitrene transfer reactions. 

3.2. Experimental 

 

General considerations. The compound TspzC(O)H (Ts = p-SO2C6H4CH3) was prepared 

by the literature method.74 PhI(OAc)2, 3,5-diisopropylpyrazole or H(pziPr2), H2NTs and 

styrene were purchased from commercial sources and used as received. Commercial 

anhydrous CoCl2, AgOTf (OTf = trifluoromethanesulfonate), and [Cu(CH3CN)4]PF6 

were stored under argon in a drybox. Commercial solvents ethyl acetate (EtOAc), 

dichloromethane (DCM), methanol (MeOH) were used as received while diethyl ether 

(Et2O), acetonitrile, toluene, and tetrahydrofuran (THF) were dried by conventional 

means and distilled under a nitrogen atmosphere prior to use. The silver(I) complexes 

were prepared under argon using Schlenk-line techniques, however, after isolation, were 

stored and manipulated under normal laboratory atmospheric conditions, unless otherwise 

specified. 

Instrumentation: Melting point determinations were made on samples contained in glass 

capillaries using an Electrothermal 9100 apparatus and are uncorrected. 1H, 13C, 19F 

NMR spectra were recorded on a Varian 400 MHz spectrometer. Chemical shifts were 

referenced to solvent resonances at δH 7.26 and δC 77.23 for CDCl3 or δH 1.94 and δC 

118.26 for CD3CN. Abbreviations for NMR: br (broad), sh (shoulder), m (multiplet), ps 
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(pseudo-), s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), sept (septet), 

‘confused’ pyrazolyl = pzcf, isopropylpyrazolyl = pziPr 

A. Ligands. 

 

TsLiPr2.  Method A.  An argon-purged solution of 3,5-diisopropylpyrazole (4.57 g, 30.0 

mmol) in 20 mL THF was transferred slowly via cannula over 10 minutes to a suspension 

of NaH (0.75 g, 31.0 mmol) in 20 mL THF under argon atmosphere. To ensure 

quantitative transfer, the flask originally containing 3,5-diisopropylpyrazole was rinsed 

with THF (2 × 5 mL) and the washings were transferred to the reaction mixture.  After 10 

minutes of stirring, thionyl chloride (1.1 mL, 15.0 mmol) was added by syringe slowly 

over 5 minutes; a colorless precipitate formed during the addition. The suspension was 

stirred at room temperature for 10 minutes, then CoCl2 (0.065 g, 0.5 mmol) and 

TsPzC(O)H (2.5 g, 10.0 mmol) were added sequentially as solids under an argon blanket. 

The blue suspension was heated at reflux under argon for 12 h, and then was cooled to 

room temperature. Solvent was removed by vacuum distillation and the solid residue was 

dissolved in 200 mL of a 1:1 biphasic mixture of H2O:ethyl acetate.  The organic layer 

was separated, and the aqueous layer was extracted with dichloromethane (2 × 50 mL). 

The organic fractions were combined, dried over MgSO4, and filtered. Solvents were 

removed by rotary evaporation to leave 6.02 g of crude product.  The crude product was 

dissolved in 50 mL of boiling MeOH and the solution was stored at -10 °C for 1 h. The 

colorless crystalline product (4.5 g) was collected by vacuum filtration and was dried at 

room temperature under oil-pump vacuum.  The mother liquor was concentrated to 10 

mL and was stored at -10 °C for overnight to give another 0.3 g of pure product. The 

yield is 4.8 g (91 %). 
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Method B.  Under an argon atmosphere, a solution of 0.975 g (3.28 mmol) of triphosgene 

in 20 mL THF was added dropwise to a solution of 3.00 g (19.7 mmol) of 3,5-

diisopropylpyrazole and 2.75 mL (mmol) NEt3 in 80 mL THF. After stirring 16 h at 

22oC, the insoluble HNEt3Cl was removed by filtration and was washed with THF (2 x 

10 mL).  Solvent was removed from the combined THF fractions by vacuum distillation 

to leave a 95:5 mixture of (Pzipr2)2C=O:H(pziPr2) as a colorless oil that was used directly.  

1H NMR (CDCl3): (Pzipr)2C=O: 6.12 (s, 2 H, H4pziPr), 3.34 (sept, J = 6.8 Hz, 2 H, 

CHMe2), 2.97 (sept, J = 6.9 Hz, 2 H, CHMe2), 1.27 (d, J = 6.8 Hz, 12 H, iPr-CH3), 1.24 

(d, J = 6.9 Hz, 12 H, iPr-CH3), H(pziPr2): 5.95 (s, 1 H, H4pziPr), 3.03 (sept, J = 6.8 Hz, 2 

H, CHMe2), 1.34 (d, J = 6.8 Hz, 12 H, iPr-CH3).  Next, 2.15 g (9.85 mmol) TsPzC(O)H, 

0.0640 g (0.490 mmol) of CoCl2 and 50 mL of toluene were added and the mixture was 

heated at reflux under argon for 16 h.  Then, the resulting blue mixture was cooled to 

room temperature, and the solvent was removed by vacuum distillation.  The residue was 

partitioned between 100 mL of H2O and 100 mL of ethyl acetate. The layers were 

separated, and the aqueous layer was extracted with two 50 mL portions of CH2Cl2. The 

organic fractions were combined, dried over MgSO4, and filtered. Solvents were removed 

by vacuum distillation to leave 4.04 g (76 %) of white solid.  Recrystallization by cooling 

a boiling MeOH solution (50 mL) to -20 oC for 1 h and filtering gave 3.45 g (65% yield) 

of pure TsLiPr2 as colorless crystals after filtration and drying under vacuum.   

Mp: 140-143˚C.  1H NMR (CDCl3): δH 8.03 (d, J = 2.7 Hz, 1 H, H5pzcf), 7.81 (d, J = 8.3 

Hz, 2 H, TsAr), 7.64 (s, 1 H, CHmethine), 7.26 (d, J = 8.3 Hz, 2 H, TsAr), 6.35 (d, J = 2.7 

Hz, 1 H, H4pzcf), 5.85 (s, 2 H, H4pziPr), 3.19 (sept, J = 6.9 Hz, 2 H, CHMe2), 2.85 (sept, J 

= 6.9 Hz, 2 H, CHMe2), 2.40 (s, 3 H, Ts-CH3), 1.17 (d, J = 7.0 Hz, 12 H, iPr-CH3), 0.95 
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(d, J = 6.8, 6 H, iPr-CH3), 0.91 (d, J = 6.8, 6 H, iPr-CH3).  
1H NMR (CD3CN): δH 8.19 (d, 

J = 2.7 Hz, 1 H, H5pzcf), 7.81 (d, J = 8.4 Hz, 2 H, TsAr), 7.62 (s, 1 H, Hmeth), 7.49 (d, J= 

8.4 Hz, 2 H, TsAr), 6.33 (d, J = 2.7 Hz, 1 H, H4pzcf), 5.98 (s, 2 H, H4pziPr), 3.14 (sept, J = 

6.8 Hz, 2 H, CHMe2), 2.80 (sept, J = 6.9 Hz, 2 H, CHMe2), 2.40 (s, 3 H, Ts-CH3), 1.15 

(d, J = 6.9 Hz, 12 H, iPr-CH3), 0.98 (d, J = 6.8, 6 H, iPr-CH3), 0.87 (d, J = 6.8, 6 H, iPr-

CH3).  
13C NMR (CDCl3): δC 158.47 (C5pziPr), 145.99, 134.34, 131.89, 130.00, 128.51, 

109.82 (C4pziPr), 100.20 (C4pzcf), 69.99 (Cmeth), 28.00, 25.52, 23.73, 23.02, 22.98, 22.83, 

21.88 (Ts-CH3).   

 

HLiPr2.  A solution of 20.0 mL of 5.00 M NaOH (aq) (100.0 mmol), 3.50 g (6.52 mmol) 

TsLipr, and 20 mL of THF was heated at reflux for 20 min until completion (as monitored 

by 1H NMR and/or TLC).  After the mixture had cooled to room temperature, the THF 

layer was separated and the aqueous layer was extracted with dichloromethane (2 × 20 

mL).  The combined organic fractions were dried over MgSO4 and filtered.  The organic 

solvents were removed by vacuum distillation to leave 2.42 g (97%) of pure HLiPr2 as a 

white solid.  Mp:  137-138 ˚C.  1H NMR (CDCl3):  δH 7.83 (s, 1 H), 7.50 (d, J = 2.0 Hz, 1 

H, H4pzcf), 6.22 (d, J = 2.0 Hz, 1 H, H4pzcf), 5.89 (s, 2 H, H4pziPr), 3.34 (sept, J = 6.8 Hz, 

2 H, CHMe2), 2.92 (sept, J = 6.9 Hz, 2 H, CHMe2), 1.23 (d, J = 6.9 Hz, 12 H, iPr-CH3), 

1.02 (d, J = 6.8 Hz, 6 H, iPr-CH3), 0.93 (d, J = 6.8 Hz, 6 H, iPr-CH3); N-H not observed.  

1H NMR (CD3CN): δH 11.12 (br, s, 1 H, NH), 7.72 (s, 1 H, Hmeth), 7.56 (d, J = 2.2 Hz, 1 

H, H5pzcf), 6.11 (d, J = 2.2 Hz, 1 H, H4pzcf), 6.00 (s, 2 H, H4pziPr2), 3.33 (sept, J = 6.9 Hz, 

2 H, CHMe2), 2.85 (sept, J = 6.9 Hz, 2 H, CHMe2), 1.19 (d, J = 6.9 Hz, 12 H, iPr-CH3), 

1.07 (d, J= 6.8 Hz, 6 H, iPr-CH3), 1.00 (d, J= 6.8 Hz, 6 H, iPr-CH3). 
13C NMR (CDCl3): 
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δC 158.72 (C5pzcf), 152.37, 142.88, 135.36, 105.88 (C4pzcf), 100.45 (C4pziPr), 69.61 

(Cmeth), 28.06 (CHMe2), 25.34 (CHMe2), 23.86 (iPr-CH3), 23.05 (iPr-CH3), 23.02 (iPr-

CH3), 22.85 (iPr-CH3).   

B. Silver Complexes.  

 

General Procedure. A solution of a given ligand (1 or 2 equiv.) in 10 mL of THF was 

added to a solution of AgOTf in 10 mL of THF by cannula transfer. The flask originally 

containing the ligand was washed twice with 2 mL of THF, and the washings were 

transferred to the reaction medium to ensure quantitative transfer of the reagent. After the 

mixture has been stirred for 2 h, the solvent was removed by vacuum distillation. The 

colorless residue was washed with two 2 mL portions of Et2O and was dried under 

vacuum for an hour. The quantities of the reagents used and of the products obtained and 

characterization data for each of the four new compounds are given below. An alternative 

workup in the case where a precipitate was observed is also described. 

 

[Ag(TsLiPr2)](OTf) (1a). A mixture of 0.502 g (0.935 mmol) of TsLipr and 0.240 g (0.935 

mmol) of AgOTf gave 0.609 g (82%) of 1a as a colorless solid.  Mp: 180-182˚C. 

Anal.Calcd (found) for C30H40AgF3N6O5S2: C, 45.40 (45.43), H, 5.08 (4.95), N, 10.59 

(10.70).  1H NMR (CD3CN): δH 8.20 (d, J = 2.7 Hz, 1 H, H5pzcf), 7.75 (d, J = 8.4 Hz, 2 H, 

TsAr), 7.51 (s, 1 H, Hmethine), 7.39 (d, J = 8.4 Hz, 2 H, TsAr), 6.19 (s, 2 H, H4pziPr), 6.02 

(br s, 1 H, H4pzcf), 3.18 (sept, J = 6.7 Hz, 2 H, CHMe2), 2.73 (br m, 2 H, CHMe2), 2.40 

(s, 3 H, Ts-CH3), 1.20 (d, J = 6.8 Hz, 6 H, iPr-CH3), 1.17 (d, J = 6.7 Hz, 6 H, iPr-CH3), 

1.12 (br s, 12 H, iPr-CH3).  
13C NMR (CD3CN): δC 162.46, 154.91, 154.69, 147.93, 

134.32, 133.96, 131.22, 128.89, 122.16 (q, J = 321 Hz, CF3), 110.02, 100.76, 64.61, 
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29.36, 26.47, 23.54, 22.96, 22.27, 21.71.  19F NMR (CD3CN): -79.33 ppm.  Crystal of 

1a·acetone suitable for single crystal X-ray diffraction were obtained by layering hexanes 

over a solution of 50 mg 1a in 2 mL acetone and allowing solvents to slowly diffuse over 

16 h. 

 

[Ag(TsLiPr2)2](OTf) (1b): A mixture of 0.506 g (0.943 mmol) of TsLipr and 0.121 g (0.472 

mmol) of AgOTf gave a colorless precipitate immediately. If the general procedure is 

followed, then 0.530 g (84%) 1b is obtained as a colorless solid.  If the colorless 

precipitate was collected by cannula filtration after 2h (in a separate experiment of the 

same scale), and the insoluble portion is washed with two 2 mL portions of Et2O and 

dried under vacuum for an hour, then 0.353 g (56%) of 1b is obtained a colorless solid.  

Mp: 128-130˚C.  Anal. Calcd (found) for C59H80AgF3N12O7S3: C, 53.27 (53.49), H, 6.06 

(6.20), N 12.63 (12.39).   1H NMR (CD3CN): δH  8.18 (d, J = 2.8 Hz, 1 H, H5pzcf), 7.75 

(d, J = 8.3 Hz, 2 H, TsAr), 7.53 (s, 1 H, CHmeth), 7.38 (d, J = 8.3 Hz, 2 H, TsAr), 6.11 (s, 

2 H, H4pziPr), 6.01 (br s, 1 H, H4pzcf), 3.18 (sept, J = 6.7 Hz, 2 H, CHMe2), 2.45 (br s, 2 

H, CHMe2), 2.40 (s, 3 H, Ts-CH3), 1.12 (d, J = 6.7 Hz, 12 H, iPr-CH3), 0.95 (br s, 12 H, 

iPr-CH3). 
 13C NMR (CD3CN): 162.26 (br s), 155.32, 154.95 (br s), 147.86, 134.43, 

133.62, 131.21, 128.91, 122.17 (q, J = 321 Hz, CF3), 109.88 (C4pzcf), 100.78 (C4pziPr), 

65.76 (Cmeth), 29.10 (br s), 26.47, 23.74, 23.36, 23.28, 21.89 (br s), 21.69.  19F NMR 

(CD3CN): -79.34 ppm. 

 

[Ag(HLiPr2)](OTf) (2a): A mixture of 0.510 g (1.33 mmol) of HLipr and 0.343 g (1.33 

mmol) of AgOTf gave 0.729 g (86%) of 2a as a colorless solid.  Mp: 113-115˚C. Anal. 
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Calcd (found) for C23H34N6SO3F3Ag: C, 43.30 (42.99), H, 5.35 (5.36), N 13.14 (12.87). 

1H NMR (CD3CN): δH 7.66 (d, J = 2.5 Hz, 1 H, H5pzcf), 7.60 (s, 1 H, CHmethine), 6.25 (br 

s, 1 H, H4pzcf), 6.16 (s, 2 H, H4pziPr), 3.30 (sept, J = 6.7 Hz, 2 H, CHMe2), 2.86 (sept, J = 

6.9 Hz, 2 H, CHMe2), 2.39 (br s, 1 H, N-H), 1.24 (d, J = 6.9 Hz, 12 H, iPr-CH3), 1.18 (d, 

J = 6.7 Hz, 12 H, iPr-CH3).  
13C NMR (CD3CN): δC 161.45, 153.81, 105.99, 100.54, 

64.01, 29.34, 26.43, 23.81, 23.20, 22.90, 22.78, 22.67.  19F NMR (CD3CN): -79.34 ppm. 

 

[Ag(HLiPr2)2](OTf) (2b): A mixture of 0.524 g of (1.37 mmol) of HLipr and 0.176 g (1.37 

mmol) of AgOTf gave 0.559 g (80%) of 2b as a colorless solid after drying under 

vacuum for an hour. 

Mp: 125-127˚C.  1H NMR (CD3CN): δH 7.63 (s, 1 H, CHmethine), 7.61 (d, J = 1.8 Hz, 1 H, 

H5pzcf), 6.14 (s, 2 H, H4pziPr), 5.97 (br d, 1 H, H4pzcf), 5.32 (br s, 2H, N-H), 3.31 (sept, J 

= 6.7 Hz, 2 H, CHMe2), 2.43 (br m, 2 H, CHMe2), 1.23 (m, 12 H, iPr-CH3), 1.00 (d, J = 

6.7 Hz, 6 H, iPr-CH3), 0.99 (d, J = 6.7 Hz, 6 H, iPr-CH3).  
13C NMR (CD3CN): δC 

161.80, 154.25, 148.41, 131.04, 122.11 (q, J = 324 Hz, CF3), 105.68 (C4pzcf), 100.45 

(C4pziPr), 64.95 (Cmeth), 29.20, 26.52, 25.48, 23.66, 23.60, 23.06, 22.24.  19F NMR 

(CD3CN): -79.34 ppm. 

 

C. Catalytic Aziridination.  

 

General Procedure. A 1.00 g sample of activated 4 Å molecular sieves and a Teflon-

coated magnetic stir bar were added to a Schlenk flask under an argon blanket. The flask 

was flame-dried under vacuum, then was backfilled with argon, and allowed to cool to 

room temperature. Next, under an argon blanket, either the pre-formed metal catalyst 
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(0.020 mmol) or, for in-situ formed catalysts, 0.020 mmol metal salt precursor and either 

0.020 mmol or 0.040 mmol ligand, were added to the flask, followed by 0.171 g (1.00 

mmol) of tosylamine, and 0.322 g (1.00 mmol) of PhI(OAc)2. The reaction flask was 

subjected to three evacuation and argon backfill cycles. Next, 4 mL of dry distilled 

CH3CN was added by syringe. The reaction flask was placed in an oil bath maintained at 

80˚C and allowed to equilibrate for 15 min. Then, 0.57 mL (0.52 g, 5.0 mmol) of styrene 

was added by syringe, at which time the solution changed color to orange, or in some 

instances, orange-brown.  After the reaction mixture had been stirred at 80˚C for 16 h, it 

was filtered through a sintered glass frit. The solid residue was washed with two 2 mL 

portions of CH3CN. Next, between 20 and 30 mg (89.9 to 135 mol) of 1,4-

bis(trimethylsilyl)benzene was added to the solvate as a nonvolatile NMR standard, and 

the solvent was removed by rotary evaporation to leave a brown-orange oily residue.  

NMR yields of N-tosyl-2-phenylaziridine (conversion %) in the brown-orange oily 

residue (dissolved in CDCl3) were obtained by relative integrations as follows.  First the 

singlet resonance at δH 0.26 ppm for SiCH3 hydrogens was set to 18 H.  Next the average 

integration value for the resonances at δH 3.78 (dd, J = 7.2, 4.6 Hz, 1 H) and δH 2.98 (d, J 

= 7.2 Hz, 1 H) for cyclopropane hydrogens was taken (the third doublet resonance is 

obscured by the tosyl methyl resonance near 2.4 ppm).  The average integration value is 

then multiplied by the known mol of C6H4(SiMe3)2 and 100% to give the % conversion 

to aziridine.  The average values of three independent runs are collected in Table 3.2. 

 

D. X-ray Crystallography. 
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X-ray intensity data from a colorless plate of [Ag(TsLiPr)(OTf)]·acetone were collected at 

100.0(1) K with an Oxford Diffraction Ltd. Supernova equipped with a 135 mm Atlas 

CCD detector using Cu K radiation,  = 1.54184 Å.  Raw data frame integration and Lp 

corrections were performed with CrysAlis Pro (Oxford Diffraction, Ltd.).84 Final unit cell 

parameters were determined by least-squares refinement of 22190 reflections from the 

data set with I > 2(I).  Analysis of the data showed negligible crystal decay during 

collection in each case.  Direct methods structure solutions were performed with 

Olex2.solve85 while difference Fourier calculations and full-matrix least-squares 

refinements against F2 were performed with SHELXTL.86 Empirical (Gaussian) 

absorption corrections were applied using spherical harmonics implemented in the 

SCALE3 ABSPACK scaling algorithm.  Hydrogen atoms were placed in idealized 

positions and included as riding atoms.  One of the iso-propyl groups is unevenly (63:37 

%) disordered over two nearby positions, affecting C14 (C14a) and C16 (C16a).  A 

summary of crystal data and structure refinement is given in Table 3.1. 
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Table 3.1.  Crystal data and structure refinement for [Ag(TsLiPr)(OTf)]·acetone, 1·acetone  

   

Identification code    1·acetone 

Empirical formula  C33H46AgF3N6O6S2 

Formula weight  851.75 

Temperature/K  100.15(10) 

Crystal system  monoclinic  

Space group  P21/n 

a/Å  9.25935(6) 

b/Å  14.83472(12) 

c/Å  28.0088(3) 

α/°  90  

β/°  96.2408(8) 

γ/°  90  

Volume/Å3  3824.48(6) 

Z  4 

ρcalcg/cm3  1.479 

μ/mm-1  5.804 

F(000)  1760.0 

Crystal size/mm3  0.239 × 0.129 × 0.036 

Radiation  CuKα (λ = 1.54184) 

2Θ range for data collection/°  8.72 to 141.2 

Index ranges  
-11 ≤ h ≤ 11, -18 ≤ k ≤ 

17, -30 ≤ l ≤ 33 

Reflections collected  35576 

Independent reflections  
7254 [Rint = 0.0344,  

Rsigma = 0.0194] 

Data/restraints/parameters  7254/0/502 

Goodness-of-fit on F2  1.038 

Final R indexes [I ≥ 2σ (I)]  
R1 = 0.0259, wR2 = 

0.0675 

Final R indexes [all data]  
R1 = 0.0267, wR2 = 

0.0682 

Largest diff. peak/hole / e Å-3  0.77/-0.45 
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3.3. Results and Discussion 

 

The optimized synthetic route to the new bulky ‘confused’ scorpionate ligands is 

outlined in Scheme 3.1.  The cobalt(II)-catalyzed Peterson rearrangement reaction115 

between N-tosylpyrazole-3-carboxaldehyde and an excess of in-situ formed bis(3,5-

diisopropylpyrazolyl)sulfinyl, O=S(pziPr2)2, gave very high yields (> 90 %) of the N-

tosyl-protected ligand, TsLiPr2.  The use of excess O=S(pziPr2) ensured reproducibly high 

yields.  The ligand TsLiPr2 could be also be obtained 

 

Scheme 3.1.  Optimized route to the new C-scorpionate ligands. 

 

in lower yields (ca. 65%) in a multi-pot reaction using O=C(pziPr2)2 in toluene instead of 

the sulfinyl derivative in THF.  As dipyrazolylcarbonyls are generally more reactive than 

their sulfinyl counterparts,ref the lower yield by this latter route was initially surprising.  It 

is noted, however, that the syntheses of O=C(pziPr2)2 from triphosgene and H(pziPr2) was 

invariable complicated by a small amount (ca. 5%) of the starting heterocycle that is 

difficult to separate and likely interferes with the subsequent rearrangement reaction.  

The N-tosyl group of TsLiPr2 was quickly and quantitatively hydrolyzed under basic 

conditions to give HLiPr2.  The 1H NMR spectrum of each ligand reveals a similar low 

symmetry.  Specifically, there is only one resonance near H = 6 ppm for the ring H4-pziPr 
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hydrogen and two septet resonances near H = 3.3 (J = 6.8 Hz) and 2.9 (J = 6.9 Hz) ppm 

for the CHMe2 groups indicating equivalency of these two pyrazolyl rings, top right of 

Figure 3.1.  However, there are three doublet resonances near H = 1.1, 1.0, 0.9 ppm that 

integrate to 12, 6, and 6 hydrogens for the isopropyl methyl groups.  Moreover, the 13C 

NMR shows 6 resonances for isopropyl group carbons.  The observed number of 

resonances is unusual, since a Cs-symmetric ligand would be expected to give only two 

doublet iPr-CH3 
1H resonances and four singlet 13C isopropyl carbon resonances.  

Alternatively, as illustrated in Figure 3.1, a C1- symmetric species with free rotation of 

isopropyl groups and of  

         

Figure 3.1.  Left:  Line drawing of a possible C1-symmetric ligand geometry (R = Hpz or Tspz) 

with methine carbon and different iso-propyl groups labeled.  Right:  1H NMR spectra of HLiPr in 

CDCl3 at 293 K (top) and 223 K (bottom). The asterisk is for solvent resonance, the ‘cf’ refers to 

the confused pyrazolyl ring hydrogens. 

 

pyrazolyl rings is expected to give four doublet iPr-CH3 
1H resonances and eight singlet 

13C isopropyl carbon resonances (for groups a-d, left of Figure 3.1).   Thus, the unusual 

number of resonances may occur if the local magnetic environment becomes 
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progressively equivalent (pseudo-C2 symmetric) with increasing distance from the 

prochiral methine carbon, , causing the resonances for isopropyl (and H4/C4 pyrazolyl) 

groups (a and b, Figure 3.1) to have coincidental chemical shifts.  An alternate geometry 

with a Cs-symmetric ligand (with eclipsed diisopropyl pyrazolyl rings) and with 5- (but 

not the 3-) isopropyl groups locked into one position seems less likely since such an 

arrangement with overlapping nitrogen lone pairs on adjacent rings is energetically less 

favorable than a geometry like that in Figure 3.1.  Moreover, the unique proton of the 

proposed 5-iPr CHMeMe’ group is expected to appear as a doublet of quartets rather than 

the observed septet.  The low temperature 1H NMR spectrum of the ligands in CDCl3 

shows that the free rotation of the confused pyrazolyl slows into the intermediate 

exchange region near 223 K as the pyrazolyl doublet resonances broaden and shift 

upfield (bottom right Figure 3.1).  Concomitantly, the resonances for the 5-iPr group 

hydrogens (the septet near 3.3 ppm and the two upfield doublets) broaden and shift 

upfield compared those in the high temperature spectrum.  Unfortunately, the slow 

exchange limit is not reached before the solvent freezing point.  The slow exchange limit 

was not even observed in the spectrum for CD2Cl2 solutions on cooling to 183 K.  

Four silver complexes were prepared by direct addition of ligands, Scheme 3.2. Thus, 

both mono- and di-ligated derivatives could be prepared by controlling silver:ligand 

stoichiometry.  The 
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Scheme 3.2.  Bulk preparation of silver complexes of the new scorpionate ligands. 

 

 

yields are generally very good (≥ 80%).  It is noted that [Ag(TsLiPr)2](OTf), 1b, has 

limited solubility in THF and the reaction mixture produces a precipitate, unlike the other 

derivatives which remain soluble.  If the precipitate is collected by filtration and 

subsequent drying, then only 56% yield of 1b is obtained because the remainder of the 

complex remains in the THF soluble portion of the reaction mixture.   

Only one of the four new complexes, namely Ag(TsLiPr)(OTf)·acetone, 1a·acetone, gave 

crystals suitable for single crystal X-ray diffraction.  Figure 3.2 shows the asymmetric 

unit of 1a·acetone. 

 

Figure 3.2.  Structure of Ag(TsLiPr)(OTf)·acetone, 1a·acetone with atom labelling. Hydrogen 

atoms and minor disorder components of C14 and C16 are omitted for clarity. 

 

The main structural features of 1a·acetone are comparable to the related silver 

complex Ag(TsL*)(OTf) reported previously.20 That is, silver center in 1a·acetone is 
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tetracoordinate as a result of bonding to a 3N- ligand and an oxygen (O3) of the triflate 

ion.  The acetone solvate molecule is not bound to silver, rather it occupies channels 

parallel with the a-axis of the crystal. The Ag1-O3 distance of 2.275(1) Å in 1a·acetone 

is longer than the comparable distance of 2.224(2) Å in Ag(TsL*)(OTf).  In 1a·acetone, 

the diisopropyl pyrazolyls form two shorter Ag-N bonds (Ag1-N12 2.366(2), Ag1-N22 

2.335(2) Å; average 2.35(2) Å) than the ‘confused’ pyrazolyl (Ag1-N2 2.415(2) Å).  This 

asymmetric mode of ligand binding is similar to that in Ag(TsL*)(OTf) where Ag-Npz* 

averaged 2.34(1) Å and Ag-N2 was 2.427(2) Å.  The bond angles about silver in the 

AgN3O coordination environment give a τδ parameter20 of 0.63 which puts the 

coordination polyhedron closer to distorted tetrahedral (τδ ~ 0.63 - 0.9) than a distorted 

saw horse (τδ ~ 0.45 – 0.62) as was found for Ag(TsL*)(OTf) (τδ = 0.61). 

  As described extensively in the previous paper regarding silver(I) triflate 

complexes of other N-confused C-scorpionates, the NMR spectra of [Ag(xL)y](OTf) (y = 

1, 2) complexes in CD3CN is deceptively simple because each species has a dynamic 

solution structure and each is also involved multiple dynamic equilibria, including those 

described by Equations 1-3.  Moreover,  

[Ag(xL)](OTf)    Ag(OTf)   +  xL  (Eq. 1) 

[Ag(xL)](OTf)  +  xL   [Ag(xL)2](OTf)  (Eq. 2) 

[Ag(xL)](OTf)   ½ [Ag(xL)2](OTf)   +  ½ Ag(OTf)   (Eq. 3) 

the triflate ion in [Ag(xL)](OTf) displaced by CD3CN but remained in close ion-pair 

contact with the acidic hydrogens of ligands in the complex.  Similar behavior is found 

for the four new complexes reported here.  Thus, the 19F NMR spectrum shows only a 

single resonance at -79.3 ppm that is identical to that of the free triflate ion in NBu4OTf 
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and all metal triflate complexes of other N-confused scorpionate ligands.20  Secondly, 

addition of either excess ligand or AgOTf to solutions of the appropriate complexes 1a/b 

(or 2a/b) gave only one set of resonances showing ligand exchange is fast on the NMR 

timescale.  Fast ligand exchange is also evident in NMR titration experiments such as that 

shown in Figure 3.3 for the addition of AgOTf into solutions of HLiPr (to give either 2a or 

2b).  Next, the NMR spectrum of [Ag(HLiPr)](OTf), 2a, shows that all resonances are 

shifted downfield from those in the free ligand as expected with the exceptions of the 

methine H resonance and the resonances of one of the two sets of isopropyl groups.  

These exceptional resonances are shifted upfield from those in the free ligand by | = 

0.10, 0.03 (CHMe2), and 0.005 (iPr CH3) ppm, respectively.  The anomalous upfield 

shifts are thought to arise from close ion-pair contact with the triflate ion oxygen atoms, 

since similar behavior has  

    

Figure 3.3.  Left: Overlay of a portion of the 1H NMR spectra obtained by titration of a 

concentrated CD3CN solution of AgOTf into to a CD3CN solution of HLiPr.  Molar equivalents of 

AgOTf added to HLiPr:  (a) zero; (b) 0.3; (c) 0.5; (d) 0.8; (e) 1.0; (f) 1.5; (g) 2.0.  The doublet 

resonances for the confused pyrazolyl ring hydrogens and one multiplet resonance for a CHMe2 

group are tracked with orange dashed lines as a visual guide.  The ‘r’ represents residual 

CD2HCN resonance while the asterisk ‘*’ represents residual H2O in CD3CN. Right:  overlay of 

iPr-CH3 region of the NMR spectrum of the free ligand (bottom) and after incremental additions 

of 0.1 equivalents of AgOTf until a 1:1 L:Ag ratio (top). 
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been observed in solutions of other metal complexes20 and because the triflate ion is often 

found to be in close contact with the methine hydrogen of the ligands in the solid state 

structures (including that of 1a·acetone here).20  The 1H NMR spectrum of 1a is similar 

to that of 2a, but the resonance for H4 of the confused ring (nearest to the methine H) 

and the resonances for the tolyl ring hydrogens are also shifted upfield with respect to the 

free ligand; the tolyl CH3 resonance is unchanged.  The 1H NMR spectra of the di-ligated 

complexes 1b and 2b are similar to the mono-ligated cases, but as shown for 2b in 

Figures 3.3c and middle spectrum in the right of Figure 3.3, the H4-pzcf resonance (| = 

0.19 ppm) and one set of isopropyl resonances exhibits quite large shifts (CHMe2 | = 

0.45 ppm; iPr-CH3 | = 0.19 ppm) while that for the methine H resonance (| = 0.19 

ppm) exhibits a modest upfield shift (| = 0.08 ppm) with respect to the free ligand.  

These features are qualitatively in agreement with those observed for previous 

[Ag(xL*)2](OTf) complexes, which were shown to have 2N- ligands with non-bonded 

confused pyrazolyl rings in the solid state and possibly interconverting to 3N- ligands in 

solution.20  Given the greater steric profile of diisopropyl pyrazolyls versus 

dimethylpyrazolyls, it is likely that the current complexes 1b and 2b have 2N- ligands in 

solution. 

 

Nitrene-Transfer Catalysis.  
 

The ability of 1a, 1b, 2a, 2b, and related complexes to catalyze the aziridination 

of styrene by using an in-situ formed N-tosylnitrene (H2NTs and PhI(OAc)2) in CH3CN 

was explored.  A summary of results is provided in Table 3.2.  Anhydrous silver triflate 
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(for in situ reactions) or oven-dried samples of preformed complexes were used to ensure 

both reproducibility and maximum activity. Control experiments showed that activated 

molecular sieves alone have some activity under these conditions (16h at 80˚C). 

Aziridination reactions did not occur at room temperature. The current catalysts [1a-b, 

2a-b] did not perform better than the previously reported catalysts [Entries 3 and 4]. 

Among the current Ag catalysts (1a, 1b, 2a, 2b), 2a performed the best followed by 1b ≈ 

1a and then 2b. The lower activity of the diisopropyl derivatives could be because of 

increased ligand electronics which is causing the [AgL]+ and the [AgL2]
+ to adopt a six 

coordinate (presumably catalytically inactive) silver center in solution. Insitu reactions of 

copper salts (Cu(OTf)2 and [Cu(CH3CN)4](PF6)) with 1 or 2 equivalents of  TsL* and 

TsLipr were also carried out to catalyze the aziridination of styrene. In the case of 

[Cu(CH3CN)4](PF6), the addition of the ligand TsL* and TsLipr did not help the rate of 

aziridination reaction. But in the case of Cu(OTf)2, addition of TsLipr increased the rate of 

aziridination  

Table 3.2.  Results of nitrene transfer reactions.a 

Entry Catalyst % yeld 

1 None 3(2) 

2 Ag(OTf) 3(2) 

3 [Ag(TsL*)](OTf)20 17(6) 

4 [Ag(TsL*)2](OTf)20 34(4), 27(3)b  

5 [Ag(TsLiPr)](OTf), 1a 12(3), 12(2)b 

6 [Ag(TsLiPr)2](OTf), 1b 13(2), 9(2)b 

7 [Ag(HLiPr)](OTf), 2a 15(2) 

8 [Ag(HLiPr)2](OTf), 2b 6(2) 

9 [Cu(CH3CN)4](PF6) 40(5) 

10 Cu(OTf)2 44(2) 

11 [Cu(TsL*)](PF6) 65(4)b 

12 [Cu(TsL*)2](PF6) 59(3)b 
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13 [Cu(TsLiPr)](PF6) 50(3)b 

14 [Cu(TsLiPr)](OTf) 49(3)b 

15 [Cu(TsLiPr)2](PF6) 50(2)b 

a. conditions:  : 5 mmol of styrene, 1 mmol of PhI(OAc)2, 1 

mmol of H2NTs, 0.02 mmol of [Ag], 1 g of 4 Å molecular sieves, 

4 mL of CH3CN, 16 h, 80˚C. b. catalyst formed in-situ. 

 

3.4 Conclusions. 

 

Two new N-confused C-scorpionate ligands , TsLipr and HLipr, each with two 

‘normal’ 3,5-diisopropylpyrazolyl groups, and either an N-tosyl or N-H group on the 

‘confused’ pz have been synthesized. The four new Ag complexes with 1:1 and 2:1 L/Ag 

ratios were spectroscopically characterized. It was possible to structurally characterize 

only one of the four new complexes. In the solid state, the Ag center of 

Ag(TsLipr)(OTf).acetone is four coordinate as a result of bonding to a 3N- ligand and an 

oxygen (O3) of the triflate ion. . The 1H NMR spectra of [Ag(xL)y](OTf) (y =1,2) 

complexes shows a dynamic solution structure and are involved in multiple rapid 

equilibria. In NMR titrations of the addition of AgOTf into solutions of HLiPr, fast ligand 

exchange is also evident. The four new silver(I) C-scorpionates were used as nitrene-

transfer catalysts in the aziridination of styrene. The previously reported Ag(I) 

scorpionates of dimethyl pyrazolyls [Ag(xL*)y(OTf)](y=1,2) showed higher activity in 

aziridination compared to the pyrazolyl derivatives[Ag(xL)y(OTf)](y=1,2). It was 

anticipated that if by further increasing the steric bulk on the pyrazolyls these current 

catalysts can be made more competitive with the AgTpx or other silver catalysts for 

aziridination reactions. However, these diisopropyl pyrazolyl silver(I) complexes did not 

prove to be better catalysts than the previously reported [Ag(xL*)y(OTf)](y=1,2) ones. 
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CHAPTER 4: FUTURE WORK 

 

Our group has recently synthesized new N-confused C-scorpionate ligands with 

two ‘normal’ pz* groups (=3,5-dimethylpyrazol-1-yl) and a ‘confused’ pyrazolyl with 

either an N-H, HL*, or an N-Tosyl (Tosyl = p-toluenesulfonyl), TsL*, bound to a central 

methine carbon. These bulky ligands complement those previously described, HL and TsL, 

that had less-bulky, unsubstituted, ‘normal’ pyrazol-1-yls. For these four related N-

confused scorpionate ligands, the 2:1 and 1:1 ligand:silver complexes were prepared and 

characterized both structurally and spectroscopically. However, these silver complexes 

show lower activity for catalytic aziridination compared to the previously reported AgTpx 

complexes. The purpose of this thesis work is to fully investigate if by further increasing 

the steric bulk on the pyrazolyls these current catalysts can be made more competitive 

with other previously reported catalysts for intermolecular aziridination reactions. In this 

contribution, silver complexes of two new N-confused C-scorpionates, TsLipr and HLipr, 

each with two ‘normal’ 3,5-diisopropylpyrazolyl groups, and either an N-tosyl or N-H 

group on the ‘confused’ pz has been prepared and its catalytic ability compared. 

However, the silver catalysts of the bulkier diisopropylpyrazolyl derivatives did not 

perform better than the dimethylpyrazolyl derivatives. Future experimental and 

theoretical work will be done towards determining the mechanism of nitrene transfer 

catalysis and whether further alteration of ligand sterics and electronics can give more 

competitive catalysts for aziridination reactions. 

Since the bis complexes of the dimethylpyrazolyl ligand derivatives performed 

better, future work would be to synthesize an anionic tetradentate ligand. By 

incorporating a pycolyl appendage to two N-confused C-scorpionates will give us a new 
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tetradentate N4 ligand. Then the silver complexes of this ligand could be prepared and 

characterized both structurally and spectroscopically and its catalytic ability toward 

nitrene transfer could be investigated. 
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