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ABSTRACT 

PHOTOCHEMICAL ELIMINATION REACTIONS THAT PROCEED via TRIPLET 

EXCITED STATE ELECTROCYCLIC RING CLOSURES 

 

Himali Devika Jayasekara, B.Sc.(Hons.) 

Marquette University, 2014 

 

Cage compounds have become an important tool for the study of biological 

processes.  The research focuses on new cage compounds that can unmask functional 

groups present in biologically important molecules such as proteins, peptides, and 

oligonucleosides.  The project focuses on certain functional groups that are often difficult 

to release photochemically.  These are the thiolate groups present in cysteine residues of 

proteins and peptides.  Thiolate groups are fairly basic leaving groups, unlike the more 

labile groups such as the carboxylates that are present in proteins and peptides, or the 

phosphate groups present in nucleosides.  The research takes advantage of the ability of 

zwitterionic intermediates to release basic leaving groups such as the thiolates.  The 

zwitterionic intermediates are generated photochemically by electrocyclic ring closure of 

aromatic carboxamides that has the chromophore attached to the amide nitrogen.  Most 

importantly, the research utilizes a chromophore that absorbs visible light, so as to 

minimize the damaging effects that short-wavelength light has on tissue and cells. 

The research recognizes that triplet energy transfer from triplet excited state of the 

chromophore to the aromatic ring system attached to carboxamide carbonyl group must 

be exothermic in order for the electrocyclic ring closure to occur.  For a thioxanthone 

chromophore (ET = 64 kcal mol
-1

), the aromatic ring system is a naphthothiophene ring 

system (ET = 62 kcal mol
-1

).  The energy transfer would therefore be exothermic.  This 

cage compound was synthesized with a 3-chloro leaving group.  It undergoes 

photochemical electrocyclic ring closure and chloride expulsion in 50% yield after 1.5 h 

photolysis.  The reaction qualitatively appears to be efficient.  In comparison, a 5-

benzoylthiophene aromatic ring system with 3-chloro group undergoes the same 

photoreaction in very low yields over 72 h, even though the triplet energy transfer is 

exothermic.  In this case the photoproduct effectively competes for the incident light with 

the reactant. 

The research shows that the naphthothiophene ring system is a viable solution to 

the triplet energy transfer problem.  It also points to a need to improve the solubility of 

the cage compound by incorporating one or more carboxylate groups into the 

naphthothiophene ring or the thioxanthone ring. 
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CHAPTER 1.  Introduction 

1.1. General Introduction 

 

 

 Photoremovable protecting groups (PPGs) have been known to chemical society 

for a long time.  They differ from classical protecting groups because they do not need 

cleaving reagents.  This can offer major advantages in performing reactions with high 

selectivity when mild reaction conditions are needed.  

 PPGs were introduced to the World of life science by Kaplan
1
 and Engels

2  
in the 

late 1970s.  Since this pioneering work many applications of PPGs in biochemistry, 

physiology, and medicine have emerged.  Their usefulness has led to considerable 

interest in designing new types of PPGs.  PPGs are not only important in biological 

studies, they have also been used in organic synthesis and in photolithography.  A 

number of reviews and books on PPGs in synthesis
1-5 

and mechanistic studies
1,6

, have 

appeared in recent years. 

 Several synonyms can be found in the literature for PPGs.  PPGs have been 

referred to as "phototiggers", "caged compounds" and "photolabile groups".  The term 

"caged compound" is used to describe a biological molecule, whose activity or function is 

masked by chemical modification with a photoremovable protecting group.  Typically 

biomolecules or bioeffectors are covalently bonded to the PPG.  Excitation of a caged 

compound with light results in cleavage of that bond to more or less rapidly liberate the 

biomolecule of interest to trigger some biological processes.  They are very useful in 

biological studies because irradiation with light can be used to control the release in terms 

of time and space.
7,8

  The time period for the release of the bioeffector upon photolysis 
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will need to be fast enough to allow the study of interest.  Such biological studies have 

used caged compounds where the bioeffector is released over minutes, as in the case of 

caged protein kinase A
8a

, or seconds, as in the case of caged tyrosine Ca/calmodulin 

inhibitor
8b

, or milliseconds as with caged ATP
8
, or microsecond as with caged 

neurotransmitters.
7,8d

 

1.2. Drawbacks of Common Photoremovable Protecting Groups and Objectives of 

Proposed Research 

 

 

  Although a number of caged compounds are currently used to release 

biological molecules (Figure 1.1), no universal photoremovable protecting group exists 

that is suitable for all applications.  A major problem to be addressed is the photolysis 

wavelength.  Most currently available caged compounds use UV light for releasing 

biomolecules.

 

Figure 1.1. Common photoremovable protecting groups and biologically important 

leaving groups 
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The use of UV light can cause cell damage and mortality due to unintended side reactions 

of biomolecules.
8b

  In addition, many biological systems involve enzymes in an aqueous 

medium.  So the second problem is the premature release of the bio-effectors in the dark 

under such physiological conditions
8
, as many caged compounds are not stable at high 

ionic strength under aqueous conditions.  Another problem is the limited basicity of 

releasable biological anion with most caged compounds.  Most biological systems 

involve biomolecule like, proteins and peptides and the building blocks of those 

compounds are amino acids.  The amino acid residues contain side chain functionality 

like phenolates and thiolates, as for example cysteine and tyrosine, which are basic and 

difficult to mask. Few satisfactory caged compounds are currently available for thiols, 

including the sulfhydryl group of cysteine residue.  The nitrobenzyl group had been 

thought to be suitable for caging cysteine residues.
9  

In fact, o-nitrobenzyl protected 

cysteine was at one time commercially available from Molecular Probes (Invitrogen).  

However, nitrosoarene is a byproduct of the release of thiols from o-nitrobenzyl protected 

thiol compounds.
3  

Unfortunately nitrosoarene will generally undergo reduction in the 

ground state by released thiol.
10  

Indeed, one of the functions of glutathione(GHS) with 

it's cysteine sulfhydryl group is to reduce toxicity of foreign substances
11

 including 

nitrosocompounds by converting them to less toxic compounds like arylhydroxylamines, 

N-arylsulfenamides, and anilines.
10

  Therefore, o-nitrolbenzyl derivatives are not suitable 

for caging sulfhydryl groups of glutathione (GHS) or cysteine (Cys). p-hydroxyphenacyl-

caged thiols have been reported by Goeldner and co-workers.
12

  The disadvantage is that 

the photolytic wavelength lies deep in the UV.  In addition 30% of the reaction produces 

a thioester byproduct due to nucleophlic attack of thiol on the cyclopropanone 
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intermediate formed in a step of the photoreaction.  Therefore the ability to release more 

basic leaving group anions than carboxylates and phosphates is needed.  Our research 

focuses on developing new caged compounds that overcome the above-mentioned 

problems.  Our aim is to develop caged compounds with high absorption wavelength, 

high stability towards premature release, that are capable of releasing a wide range of 

leaving groups. 

1.3.  Necessary Criteria for Successful Caged Compound. 

 

 The criteria
3, 5 

for successful caged compound for the release of common 

biological substrates has been proposed and included following:  1) The photoprotected 

substrate must be soluble in aqueous buffered media. 2) The caged compound must be 

stable to hydrolysis, especially at high ionic strength. 3) The absorption wave length 

should be >300 nm to avoid photolyzing the biological media. 4) The photochemical 

reaction should have high quantum efficiency, preferably with quantum efficiency > 0.1. 

5) The caged compounds and the photolysis products must be biologically harmless. 6)  

The photoproduct should not absorb light at the same wave length where the caged 

compound absorbs.   

 Even though a caged compound doesn't meet all those criteria, it may still have 

utility.  The proposed criteria can be considered as excellent guidelines for designing and 

developing new caged compounds.  

 

 

 

 



5 
 

1.4.  Applications of Caged Compounds in Biological Studies 

  

 Caged compounds have become an important tool for studying biological 

processes.  The photoreleased bio-effector leaving groups may be small molecules or 

they may be macromolecules such as polypeptides, proteins , DNA or RNA.  There are 

many examples which illustrate the utility of caged compounds in biological studies. 

 A well known example is caged neurotransmitters, in investigations of the 

kinetics of neurotransmitter mediated reactions on cell surfaces.
6
  This broad area of 

research has been covered in several reviews.
13-16

  Activation of synaptic transmission in 

the nervous system occurs on a sub-micron spatial scale and a sub-millisecond time scale, 

so experimental approaches for studying synaptic function ideally require similar 

precision. A useful strategy is the use of a caged compounds to release the 

neurotransmitters. Numerous photoactivatable derivatives of neurotransmitters and 

neurotransmitter antagonists are available.  Glutamate, γ-aminobutyric acid (GABA), 

glycine, aspartate, and kainic acid are the well known examples for the neurotransmitters 

and neurotransmitter inhibitors.  The opening of ion channels takes place directly or 

indirectly when neurotransmitters are binding to their receptors.  The use of caged 

neurotransmitters makes it  possible to monitor the kinetics of this process.  Grewer and 

co-workers
17 

have reported the development of nitrobenzyl protected caged compound, α-

carboxy-2-nitrobenzyl(αCNB) ester of glycine with high quantum efficiency (Φ = 0.38) 

and thermal stability at physiological pH.  The decay of the aci-nitro intermediate 

occurred with biexponential kinetics with lifetimes of 7 and 170 μs.  So this is useful tool 

for investigation of the process associated with channel opening of glycine receptor 

channels and the effect of the mutations of glycine receptor and inhibition of these 
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processes.  Kandler et al.
18 

 has reported on p-hydroxyphenacyl protected glutamate in the 

study of long term potentiation and depression, which are two neural processes that are 

thought to be involved in memory and learning. 

 Another well known area concerns studies of the photorelease of protein and 

peptides.  Peptides have a wide range of biological activities and functions.  Synthetic 

peptides can be used to selectively inhibit or activate protein activity.  Photoactivable 

peptides have the potential for extensive applications.  The design involves identification 

of amino acid substitution patterns which inhibit activity of peptide such as preventing 

the peptide from binding to a target protein.  Walker et al.
8b  

reported the study of 

nitrobenzyltyrosine in RS-20, which is target peptide for calmodulin, which binds Ca
2+

 

and is involved in a number of Ca
2+

 mediated reactions.  Caged RS-20 shows greater 

affinity for calcium-calmodulin than RS-20.  This system was used for studing Ca
2+ 

calmodulin binding activity and  Calmodulin dependent Myosin Light-Chain 

Kinase(MLCK) activity. 

 Chan and co-workers
19

 reported utilization of a benzoin protected protein to 

investigate the kinetics of protein folding.  A subdomain of the protein villin, which folds 

to an α-helical structure in aqueous solution was used.  A small loop was formed by the 

N-terminus of the peptide with cysteine residue on the side chain of one internal amino 

acid using benzoin as the linker (Figure 1.2).  This cross link prohibited folding.  When 

irradiated with light, cleavage of the linker takes place and the protein forms an α-helical 

structure. 

 Another interesting application of caged compounds is light directed synthesis of 

high density arrays of peptides and oligonucleotides(biochips)
20

.  Solid phase synthesis, 
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photoremovable protecting groups, and photolithography have been combined to achieve 

this.  This allows the preparation of thousands of different sequences at specific locations 

on a surface. Application of this was first reported by Fodor and co-workers
20a 

for 

synthesizing an array of 1024 peptides using the 6-nitroveratryloxycarbonyl (NVOC)  

photoremovable protecting group.  In this technique (Figure 1.3), a substrate S bears 

amino groups that are blocked with photoremovable protcting group X.  Irradiation of 

specific regions with UV light through a mask M1leads to deprotection of photolabile 

protecting group X.  Amino group in the exposed area of the substrate are now free to 

couple with building block A containing protecting group X.  The different mask M2 is 

used to photoactivate a different region of substrate.  Then second building block B 

containing protecting group X is added and joined to the newly exposed amino groups

 

 

Figure 1.2.  General strategy for peptide cyclization and photolysis 
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Repetition of irradiation and coupling steps using a mask with variable patterns and 

different compounds leads to the synthesis of a desired biochip.  

 

 

Figure 1. 3.  Light directed synthesis of high density array of peptide 
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1.5.  Previous Studies of Electrocyclic Ring Closure Reactions via Zwitterionic 

Intermediates with the  Expulsion of Leaving Groups 

 

 Photochemical electrocyclic ring closure reactions which involve zwitterionic 

intermediate have long history, and numerous studies have been reported over the past 40 

years.
21

  Most of them involve cyclization of a 6  electron system with an amide 

functional group.  The C-N bond of amide has double bond character.  So it can act as 

two double bond of the 6  electron system, and the electrocyclic ring closure reaction 

takes place to form a zwitterion (Scheme 1.1).  Our research group has been adopting 

these electrocyclization of amide for the purpose of releasing leaving groups (LG
-
) via 

the zwitterionic intermediate generated by photolysis.  The zwitterionic intermediate 

possesses a basic site that, in principle, can be utilized to effect the elimination of leaving 

group anions.  One of the major advantages of such type of intermediates is that they are 

capable of eliminating a wide range of leaving anions.  

Scheme 1.1 

 

 
 George Lenz and co-workers

22
 reported the utilization of electrocyclic ring 

closure and leaving group expulsion reaction in the synthesis of alkaloids (Scheme 1.2 

and Table 1.1).  
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Scheme 1.2 

 

 

Enamide, (LG = )  Product  

(% yield)  

F  85  

Cl  50  

Br  50  

O
2
CCH

3 
 76  

SCH
3 
 55  

 

Table 1.1. Chemical yields for the reaction in Scheme 1.2  

Photochemical electrocyclic ring closure has been previously used in this 

laboratory to generate zwitterionic intermediates that would be capable of 

expelling leaving groups such as carboxylates and phenolates, which are functionality 

present in many biologically important molecules.  Their study used a photochemical 

electrocyclic ring closure to generate zwitterionic intermediates from α, β-unsaturated 

anilide 1,2 bearing leaving groups.  The anilides 1,2 undergo photochemical conrotatory 

electrocylic ring closure reaction with leaving group release from α-methylene lactam  

occurring in 3 or 4 to give 7,8 (Scheme 1.3).
23

  Leaving groups with wide range of 

basicities from carboxylate to phenolate could be expelled under aqueous conditions and 

the efficiency is insensitive to leaving group basicity.  The electrocyclization was 8-10 % 
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efficient with respect to light utilization.  Leaving group expulsion probably doesn't occur 

directly from zwitterionic intermediate 3, but were instead eliminated from enolate 4 

produced by deprotonation of zwitterion 3.  This could account for why the efficiencies 

were insensitive to leaving group basicity.  Formation of minor photoproduct 5, 6 also 

reported by thermally allowed suprafacial sigmatropic 1, 5- H shift.  So leaving group 

expulsion does not represent 100% reaction.  The quantum efficiency for leaving group 

release appeared to be controlled by the competition between deprotonation and 1, 5- H 

shift.  The quenching studies indicate that the photochemistry derived from the singlet 

excited state.
 

Scheme 1.3 

 

In order to increase the competition for the deprotonation pathway they have planned to 

replace acryl amide moiety with aromatic ring system.  Previous study by Witkop and co-

workers
24

 have reported that incorporation of the benzothiophene ring system instead of 
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the acrylic group led to high yield of electrocyclic ring closure reactions (Scheme 1.4) but 

they have not reported the quantum efficiency.  Photochemistry of this reaction has been 

reported tentatively as proceeding via triplet excited state. 

Scheme 1.4 

 

So our research group adapted to use the benzothiophene carboxanilide system which 

incorporates various leaving groups (LG
-
) at the C-3 position of benzothiophene ring 
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system (Scheme 1.5).
25

  They reported that carboxanilide 11 could release various leaving 

groups ( LG
-
) at 310 nm that vary in basicity in essentially quantitative yield to form 14 

and quantum yields decreased with increasing basicity of the leaving group ( LG
-
).  

Quantum yield were over the range 0.23-0.007 (LG
-
 = Cl

-
, PhCH2CO2

-
, PhS

-
, PhCH2S

-
, 

PhO
-
).  Dependence of Φ on LG

- 
basicity is consistent with the formation of ground state 

intermediate 12, which expel leaving group or ring opening to give starting material.  

Quenching studies and heavy atom effect indicated that the reaction takes place through 

triplet excited state.  Even though the photolytic wave length is low, the ability to release 

relatively basic leaving groups such as thiolates and phenolates is advantageous for 

biological studies.   

Scheme 1.5
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 By incorporating a p-benzoyl group onto the benzene ring of anilide 15 (Scheme 

1.6) the photolytic wave length could be extended to 365 nm.  The quantum yield was 

only somewhat lower compared to benzothiophene caboxanilide 11. 

Scheme 1.6 

 

 As given in Scheme 1.7, incorporating thioxanthone as chromophoric group they 

could extend photolytic wave length to 385 nm.
26

  Without any substituent Y (19) in the 

benzothiophene moiety they reported the formation of two products by cyclization at the 

C-1 (20) and C-3 positions (21) of the thioxanthone ring system in a 42:58 ratio in aq. 

phosphate buffer in acetonitrile.  When substituent Y was carboxylic or methyl ester at C-

6 position of benzothiophene (17) system the only product formed  was via cyclization at 

the C-1 position (18).  By incorporating a carboxylic acid group at the C-6 position they 

also were able to increase the aqueous solubility by considerable amount.  Product 

quantum yields for this system are given in Table 1.2.  Decreasing quantum yield with 

oxygen and piperyline indicated a triplet excited state reaction.  Involvement of a triplet 

excited state was further supported by incorporating heavy atom, bromine at C-7 position 

of thioxanthone ring system (Scheme 1.8).  When a heavy atom is in the molecule, it 

increases the quantum yield for the reaction.  
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 Similar to benzothiophene carboxanilide, this system also show decrease in 

quantum efficiency when increasing leaving group basicity.  However, the disadvantage 

of this system is the low quantum yield compare to benzothiophene carboxanilide 11 and 

compound with benzophenone chromophore 15. 

Scheme 1.7 
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Scheme 1.8 

 

Reactant ( Y=) LG
-
 Reaction 

Conditions 

Product % Φ 

-CO2CH3 Cl
-
 N2 saturated 18(99%) 0.039 

Cl
-
 O2 saturated - 0.019 

-CO2CH3 

(Br at C-7 

position of 

thioxanthone) 

Cl
-
 N2 saturated  23(99%) 0.053 

-COOH Cl
-
 N2 saturated 18(98%) 0.034 

PhS
-
 N2 saturated 18(99%) 0.017 

PhCH2
-
 N2 saturated 18(99%) 0.011 

HS
-
 N2 saturated (98%) 0.008 

-H Cl
-
 N2 saturated 20(42%)+21(58%) 0.069 

 

Table 1.2. Quantum yield for the photoproduct 18-23 
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1.6.  Current Approach and Future Studies 

  

 As mentioned in the above section N-(9-oxothioxanthenyl) benzothiophene 

carboxamide (17 and 19) bearing leaving groups (LG
-
 = Cl

-
, PhS

-
, HS

-
, PhCH2S

-
) at the 

C-3 position of the benzothiophene ring system photochemically cyclizes with 98-99% 

yield.
26

 This compound shows low quantum efficiencies for leaving group expulsions.  

Here they studied the molecule where the amide N is attached to the C-2 position of the 

thioxanthone moiety.  When N is at the C-2 position of thioxanthone moiety the 

zwitterion 24 formed by electrocyclic ring closure reaction might be unstable (Scheme 

1.9).  Initially we thought that this could be the reason for the low quantum efficiency for 

the above compound.  Therefore, we initially planned to synthesize N-(9-

oxothioxanthenyl) benzothiophene carboxamide 25, where the amide nitrogen is at the C-

3 position of thioxanthone moiety.  This will be discussed in Chapter 4. 

 Plans changed when DFT calculations 
26

 (Figure 1.1) became available for N-(9-

oxothioxanthenyl) benzothiophene compound 17, 19 which contain N-methyl amide at 

C-2 position of thioxanthone moiety.  The calculations suggest that the reaction takes 

place via the initial triplet excited state where the excitation is localized on the 

thioxanthone ring system.  Energy transfer then takes place to give a triplet excited 

benzothiophene moiety.  Therefore the lower reactivity of the thioxanthone compound 

may be due to the fact that ET =64 kcal mol
-1

 for thioxanthone.
27 

  The energy transfer to 

give the triplet benzothiophene
28

 (ET =69 kcal mol
-1

) is endothermic by 5 kcal mol
-1

.  

This less favorable energy transfer might be account for the lower quantum yield.  

Although it was thought that even though the photolytic wave length could be extended 

to 390 nm, combining thioxanthone and benzothiophene through the amide bond is 
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unsuitable for a caged compound with high quantum efficiency.  This point it was 

planned to modify or replace the benzothiophene ring to facilitate the energy transfer 

from the triplet thioxanthone. 

 Phenyl-2-thienyl ketone, dithienyl ketone
29 

and naphtho[1,2-b]thiophene
30 

have 

triplet exited state with energies of 62 kcal mol
-1

 (Scheme 1.10).  Those triplets are lower 

in energy than the benzothiophene triplet (64 kcal mol
-1

).  It was planned to replace the 

benzothiophene moiety with those molecules. 

Scheme 1.9 
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Figure 1.4.  Relative enthalpies of the stationary points on the ground-state S0 and the 

lowest triplet T1 surfaces relevant for formation of the ring closure product from 17, 19. 

Unpaired spin density isosurfaces are shown for open-shell species. 

  

Therefore, the part of the research studied the expulsion of a leaving group (LG
-
 = Br

-
 ) 

from 5-benzoyl-3-bromothophene-2-carboxylic acid N-methyl-(9-oxo-9H-thioxanthen-2-

yl) amide 26 (Scheme 1.11).  The results are given in the Chapter 2. 
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Scheme 1.10 

 

 The expulsion of a chloride leaving group from 3-chloro-naphtho[1,2-

b]thiophene-2-carboxylic amide 29 is also being studied (Scheme 1.12). The compound 

with Y = H has been synthesized.  To improve aqueous solubility, a derivative with Y =  

-COCH3 and -COOH (32 and 33) are being synthesized.  Preliminary results suggest that 

29 (Y = H) undergoes efficient photoreaction in DMSO.  Therefore, the work on 29 (Y = 

-COOH) seems warranted. So our future plan is to synthesis compound 32 and 33 and 

study their photochemistry.  Future studies of compound 32 and 33 will initially be 

focused on yield and efficiencies with less basic leaving groups and will be extended to 

attach more basic leaving groups like PhO
-
 and RS

-
 and study their photochemistry.  

Further studies will incorporated caged cysteine and tyrosine residues.  This would allow 

further elaboration into other peptides by peptide synthesis.
69, 70  

Conditions will also be 

determined to cage commercially available glutathione (GHS) at the central cysteine 

residue under aqueous conditions. 
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Scheme 1.11

 

Scheme 1.12 
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CHAPTER 2.  Photochemical Electrocyclic Ring Closure and Leaving Group 

Expulsion from 5-benzoyl-3-bromothiophene-2-carboxylic acid N-methyl-(9-oxo-

9H-thioxanthen-2-yl) amide 

 

2.1.  Introduction 

 

 From DFT calculations 
26

 (Figure 1.1) for N-(9-oxothioxanthenyl) 

benzothiophene compound 17, 19 which contain N-methyl amide at C-2 position of 

thioxanthone moiety suggest that the reaction takes place via the initial triplet excited 

state where the excitation  is localized on the thioxanthone ring system.  Energy transfer 

then takes place to give a triplet excited benzothiophene moiety.  Therefore the lower 

reactivity of the thioxanthone compound with the benzothiophene moiety may be due to 

the fact that ET = 64 kcal mol
-1

 for thioxanthone.
27 

  The energy transfer to give the triplet 

benzothiophene
28

 ( ET =69 kcal mol
-1

) is endothermic by 5 kcal mol
-1

.  This less 

favorable energy transfer might account for the lower quantum yield.  Although it was 

thought that even though the photolytic wave length could be extended to 390 nm, 

combining thioxanthone and benzothiophene through the amide bond is unsuitable for a 

caged compound with high quantum efficiency.  At this point it was planned to modify or 

replace the benzothiophene ring to facilitate the energy transfer from the triplet 

thioxanthone. 

 Phenyl-2-thienyl ketone, dithienyl ketone
29 

and naphtho[1,2-b]thiophene
30 

have 

triplet exited state with energies of 62 kcal mol
-1

 (Scheme 1.13).  Those triplets are lower 

in energy than benzothiophene triplet (64 kcal mol
-1

).  It was planned to replace the 

benzothiophene moiety with those molecules. 
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Therefore, this part of our research studied the expulsion of a leaving group (LG
-
 = Br

-
) 

from 5-benzoyl-3-bromothophene-2-carboxylic acid N-methyl-(9-oxo-9H-thioxanthen-2-

yl) amide 26 (Scheme 1.11). 

2.2.  Results  

 

2.2.1.  Synthesis of Photochemical Reactant (26) 

 

 The photoreactant 5-benzoyl-3-bromothophene-2-carboxylic acid N-methyl-(9-

oxo-9H-thioxanthen-2-yl) amide 26 was synthesized by reacting the acid chloride 41 with 

2-methylaminothioxanthen-9-one 40 (Scheme 2.1).  The synthesis of 40 involves 6 steps 

starting with the reaction of thiophenol and 35 to obtain the nitro compound 36.  Initially 

cyclization step was carried out using polyphosphoric acid as reported in literature.
31

 

(Scheme 2.2).  Problems associated with this route are the difficulty in scale up and 

seperation problems when doing workup.  Compared to cyclization with polyphosphoric 

acid, the H2SO4 method has following advantages, such as less time consuming, high 

yield, and ability of scaling up the reaction.  The nitro compound 36 was reduced to the 

amine 37 with iron powder.
31 

 Initially we use magnetic stirrer for the reaction.  So we 

couldn't observe complete reduction because most of the ion powder was stick to stirrer 

bar and it prevented stirring.  By using a mechanical stirrer we could see complete 

conversion of the nitro compound to amine.  Then the amine 37 was converted to amide 

38 by reaction with acetic anhydride.  Then the amide 38 was alkylated using NaH and 

CH3I to obtain 39.
26

  Base hydrolysis of the N-methyl acetamide 39, furnished the 2-

methylaminothioxanthen-9-one 40.  Synthesis of acid chloride 41 involved 6 steps 

starting from commercially available 4-bromothiophene carboxyaldehyde (Scheme 2.3). 
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The Grignard reaction of aldehyde with phenyl magnesium bromide formed secondary 

alcohol 42 which was converted to ketone 43 by oxidation with Jone's reagent.  The 

ketone group was protected by making the acetal 44 before α lithiation.  Then the α 

lithiated compound was treated with dry ice to obtain caboxylic acid 45.  Deprotection of 

the acetal with glacial acetic acid gave the carboxylic acid 46 which was converted to 

compound 41 by refluxing with SOCl2  

Scheme 2.1  
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Scheme 2.2  

 

Scheme 2.3  

 

2.2.2. Crystal Structure of Photochemical Reactant (26) 

 

According to the X-ray crystallographic analysis by Oxford Supernova diffractometer 

using Cu(Kα) radiation, the compound 26 exhibits  folded shape with amide group I a 

cis-configuration.  Both thioxanthone and thiophene moieties are rotated out of 
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conjugation with the amide group because of steric hindrances.  There are some 

deviations from planarity for atom C1 of thiophene ring and some folding of 

thioxanthone along S…O line.  There is some stacking interaction between C21…C26 

benzene rings related by inversion center.  The bond distances from the carbon (C2) 

occupied by the bromide leaving group to two ortho positions of the thioxanthone ring 

system to the amide group are 3.88 Å and 4.90 Å. 

 

Figure 2.1. Crystal structure of photoreactant 26       

2.2.3.  UV spectra for the Photoreactant 26  

 

The compound 26 exhibits absorption maxima at 388 nm in aqueous acetonitrile (Figure 

2.2) with ε = 6270 M
-1 

cm
-1

. 
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Figure 2.2.  Absorption spectra of 1.0 x 10
-4

 M of compound 26 (..........) and 1.0 x 10
-4

 

photoproduct produced from 26 (      ) in 10 % aq. phosphate buffer (pH = 7) in CH3CN. 

2.2.3.  Preparative Direct Photolysis 

 

 For preparative photolysis, Pyrex-filtered light from a Hanovia 450 W medium 

pressure mercury lamp was used.  Photolysis of 10
-2

 M sample of 26 in N2 saturated 10% 

H2O containing 100 mM phosphate buffer at pH 7 in CH3CN resulted in expulsion of the 

bromide leaving group and formation of single regioisomeric photoproduct (Scheme 2.3).  

However, the cyclization and expulsion of leaving group from compound 26 was very 

slow.  After photolysis for three days solid product formed was filtered washed with 

water and dried to obtained 30 mg of photoproduct. The product was identified and 

distinguished from photoreactant by 
1
H NMR as N-methyl peak shifted downfield from δ 

3.55 to 3.93 ppm, and also aromatic region counts for 12 protons instead of 13 protons 

which were counted for photoreactant.  The melting point was found to be 244-245 
o
C for 

the photoproduct, whereas, 132-133 
o
C for the photoreactant. 
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Scheme 2.4 

 

Repeated attempts were done to make crystals for determination of structure using x-ray 

diffraction. But the compound was obtainable only as a powder. The absorption spectra 

of the photoproduct showed a long wave length maximum at 410 nm with ε = 6990 M
-1

 

cm
-1

 in aqueous acetonitrile containing 10%, pH 7 phosphate buffer (Figure 2.2). 

2.2.4. Quantum Yield 

 

 

 The quantum yield for the electrocyclic ring closure reaction of amide 26 was 

determined at 388 nm in N2 saturated 10% phosphate buffer at pH 7 in CH3CN.  The light 

output for the photochemical reaction was 0.034 mE/h.  After 21.5 h photolysis of the 6.3 

x 10
-3 

 M  solution, the quantum yield of the reaction was found to be 0.004.  The 

quantum yield determination was carried out using ferrioxalate actinometry.  The 

quantum yield determinations involved quantifying the photoproduct formed by using 
1
H 
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NMR spectroscopy with DMF as an internal standard.  In addition, attempts were made 

to obtain the quantum yield for a 1.0 x 10
-4 

M solution (A = 0.627), but the photoproduct 

could not be quantified by absorption spectroscopy due to overlap with the 

photochemical reactant absorption spectrum, which could not be adequately 

deconvoluted.  As found, this particular photoreaction is inefficient. 

2.3.  Discussion and Conclusion 

 

 

DFT calculations showed that the crucial step in the electrocyclization of 

benzothiophene amides with attached thioxanthone chromophores involves excitation 

transfer from the initial thioxanthone triplet excited state to the benzothiophene ring.  An 

important structural change that accompanies excitation transfer is the pyramidylization 

of the C-3 carbon bearing the leaving group in the benzothiophene ring.  This structural 

change seems to be important in the conrotatory electrocyclic ring closure step to form 

the triplet excited state of the putative zwitterionic intermediate.  In the case of the 

previously studied benzothiophene amide with attached thioxanthone chromophore, the 

energy transfer from the thioxanthone to the benzothiophene is ca. 5 kcal mol
-1

 

endothermic in the triplet excited state.  The initial triplet excited state energy of 

thioxanthone is 64 kcal mol
-1

, whereas the triplet excited state energy of the 

benzothiophene acceptor is 69 kcal mol
-1

.  Therefore, for the current project the objective 

was to replace the benzothiophene ring with a conjugated thiophene that had a triplet 

energy that would be lower than that of the thioxanthone, in order to facilitate the triplet 

excitation transfer in the critical step of the electrocyclization. 

Two choices were thought to be appropriate for substituting the benzothiophene 

ring system with a thiophene that would have a triplet excitation energy below 64 kcal 
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mol
-1

, which would be favorable for energy transfer from thioxanthone.  The first choice 

which was implemented was to introduce a 5-benzoylthiophene ring system in place of 

the benzothiophene, e.g. see structure 26 (Scheme 2.3).  In structure 26 the 5-

benzoylthiophene ring is estimated to have a triplet energy of 62 kcal mol
-1

 on the basis 

of unsubstituted 2-benzoylthiophene as the model compound.
29

  This choice was also 

considered appropriate, because the electronic configuration of the triplet excited state 

would be 

,*, which would be essentially unchanged from that of the benzothiophene 

system that is being replaced. 

Photophysical and theoretical studies of 2-benzoylthiophene indicate that the 

lowest energy singlet excited state is n,
*
, whereas S2 is ,*.  These assignments can be 

made on the basis of solvent effects on the energies of the corresponding bands in the 

absorption spectrum.  As expected, the ,* bands appear at 256 nm and 284 nm and are 

red shifted with increasing polarity of the solvent.  On the other hand, the longer 

wavelength n,* band at >350 nm is blue shifted with increase in solvent polarity. 

The relative energies of the two singlet excited states are also supported by 

theoretical calculations.  In the ground state, ab initio calculations show the thienyl ring 

to be almost coplanar with the C=O, such that transfer of charge occurs from sulfur to 

oxygen.  S is +0.273 and O is -0.223.  The C=O and the thiophene S are cisoid in the 

ground state, due to the favorable electrostatic interaction.  Thus, sulfur strongly interacts, 

conjugatively, with the C=O in 2-benzoylthiophene.  Moreover, sulfur should have a 

stabilizing effect on the ,* excited state of the compound, but not to the extent that this 

configuration would lie below the n,* state in the singlet excited state manifold. 



32 
 

The phosphorescence spectrum is consistent with a lowest ,* triplet 

configuration, in contrast with the singlet excited states.  This assignment is based on the 

fact that the emission does not show the vibronic progression typical of the carbonyl 

group, which would be the case, if the emissive triplet was n,* in character.  Moreover, 

the lifetime of the phosphorescence is quite long,  > 100 ms at 77 K, which is a 

characteristic of ,* triplets.  The ,* assignment for the configuration of the lowest 

energy triplet excited state is further consistent with the CNDO/S calculation.  Note that 

qualitatively, one would expect that the ,* configuration should be stabilized relative to 

the n,* configuration by the thienyl sulfur, as shown for the singlet excited state.  

Moreover, the large triplet singlet splitting typical of ,* excited states (25-30 kcal mol
-

1
) vs. the small 5-6 kcal mol

-1
 S-T splitting typical for n,* singlet could be responsible 

for the inversion of the ,* and n,* configurations in the triplet excited state manifold. 

The above electronic disposition of n,* and ,* singlet and triplet excited states 

is favorable for spin orbital coupling and intersystem crossing.  The quantum yield for 

intersystem crossing in 2-benzoylthiophene is 0.9, which reflects that the change in 

multiplicity is accompanied by a change in orbital angular momentum in going from the 

n,* singlet to the ,* triplet. 

The above photophysical properties are also manifested in reduced reactivity of 2-

benzoylthiophene towards hydrogen abstraction from 2-propanol.  It is well-known that 

n,* triplet excited states of ketones such as benzophenone undergo efficient 

photoreduction by hydrogen atom abstraction from 2-propanol to produce ketyl radicals 

that recombine to give pinacols. 
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The photolysis of 26 was very slow.  In part, this was seen as due to the strong 

overlap between the absorption spectrum of the product and the photochemical starting 

material.  Whereas in the previously studied benzothiophene amide with thioxanthone 

chromphore, 17, the reactant absorbed at 385 nm, while the photoproduct absorbed at 432 

nm.  In the case of 26 the starting material absorbs at 388 nm and the photoproduct 

absorbs at 410 nm and 425 nm in 10% aqueous phosphate buffer in CH3CN.  Three days 

photolysis gave only a 4% yield of photoproduct with a 450 W Hanovia medium pressure 

mercury lamp. 

The quantum yield of photoproduct was estimated as  = 0.004 for a single 

photolysis.  Another photolysis for a quantum yield is planned.  The quantitative 

determination of the photoproduct was done by NMR spectroscopy using DMF as a 

standard.  The experimental conditions are not optimal for the quantum yield 

determinations, because the absorbance in the 1 cm path cell was A = 39 for the 0.0063 

M solution.  Attempts were made to obtain the quantum yield for a 1.0 x 10
-4 

M solution 

(A = 0.627), but the photoproduct could not be quantified by absorption spectroscopy due 

to overlap with the photochemical reactant absorption spectrum, which could not be 

adequately deconvoluted.  The issue here is that it is potentially important for the incident 

light to penetrate some distance into the sample, so as to avoid forming photoproduct 

within a thin layer at the front face of the cell.  This would lower the observed quantum 

yield due to the internal filter effect of the photoproduct formed early in the photolysis.  

To avoid the effect, the more dilute solution is desirable, but would require an alternate 

analytical method to quantify the photoproduct than NMR spectroscopy.  HPLC analysis 
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might be a suitable alternate method for product quantification.  This is planned for a 

future experiment. 

Although the quantum yield may be low due to the aforementioned experimental 

flaws, it is thought that more likely the compound 26 is inherently and unexpectedly less 

reactive than the benzothiophene system 17.  The initial concern might be the electronic 

configuration might not be similar to that of the benzothiophene, which is expected to be 

,* in both.  Theoretical calculations will be needed to ascertain details of the electronic 

configuration of the triplet excited state of the 5-benzoylthiophene in 26.  Such 

calculations would reveal whether the C-3 position of the thiophene ring is indeed 

pyramidalized, as is the case for the benzothiophene ring system.  One concern with 26 is 

that the triplet excitation is localized in the S-conjugated carbonyl group.  Whether such 

localization of excitation elsewhere in the benzoylthiophene moiety suppresses 

pyramidalization is the question.  The low quantum yield has nothing to do with the low 

chemical yield, which should be 100% regardless, so long as the photoproduct does not 

compete for light with the reactant. 

In the meantime, it was urgent to ascertain whether another choice would be more 

appropriate as a replacement for the benzothiophene ring system.  Efforts therefore 

focused upon testing a naphthothiophene ring system in place of benzothiophene.  In the 

naphthothiophene the triplet excited state is estimated to be a 62 kcal mol
-1

, which would 

lie below the triplet energy of the thioxanthone. 
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2.4.  Experimental 

 

 

The NMR spectra were recorded at 400 MHz or 300 MHz for 
1
H and 100 MHz or 75 

MHz for 
13

C with TMS as the standard.  Oxford Supernova diffractometer using Cu(Kα) 

radiation was used to X-ray crystallographic analysis.  All melting points were 

determined using Fischer-Jones melting point apparatus.  Absorption measurements were 

recorded on an Agilent 8453 UVspectrometer.  

All commercial reagents were used without further purification unless otherwise noted. 

The solvent used for photolysis were CH3CN (99.3+%, HPLC grade, Sigma-Aldrich), 

deionized water, CD3CN (99.8% d, Cambridge), and D2O (99.9% d, Cambridge). 

Solutions required for the actinometry was prepared using the procedure reported by 

Zimmeman
32

.  

Preparation of 5-benzoyl-3-bromothiophene-2-carboxylic acid N-methyl-(9-oxo-9H-

thioxanthen-2-yl) amide (26)  

 

 

 

To a solution of 1.2 g ( 5.0 mmol) of 2-methylaminoxanthen-9-one 40 and 15 mL of 

triethylamine in 30 mL of anhydrous CH2Cl2 was added 2.0 g (6.1 mmol) of 3-bromo-4-

benzoylthiophene-2-carbonyl chloride dissolved in 10 mL of anhydrous CH2Cl2 at 5-8 
o
C 

in an ice bath.  A catalytic amount of DMAP was added.  The reaction mixture was 

warmed to room temperature and stirred for 72 h under nitrogen.  The reaction mixture 
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was filtered to remove trimethylamine hydrochloride, washed several times with 

saturated aqueous NaHCO3  solution, H2O, with 2 M HCl, H2O, and brine.  The CH2Cl2 

solution was then dried over anhydrous Na2SO4  and concentrated in vacuo to obtain 2.30 

g (86 % yield) of a golden yellow solid of 26. Crystallization of the solid material with 

ethanol gave 2.00 g (74.9 %) of yellow coloured powder, mp. 158-159 °C. The spectral 

data were as follows:  
1
H NMR (400 MHz, CDCl3) δ 3.58 (s, 3H), 7.29 (s, 1H), 7.44 (t, J 

= 7.8 Hz, 3H),  7.50 (t, J = 8.0 Hz, 2H), 7.55 (t, J = 5.2, 2H), 7.64 (dt, J = 8.0, 1.75, 1H), 

7.71 (s, 1H), 7.74 (s,1H), 8.52 (d, J = 2.5, 1H), 8.60 (d, J = 8.3, 1H);  
13

C NMR (100 

MHz, CDCl3)  δ 38.5, 111.4, 126.3, 126.9, 127.4, 127.5,  129.0, 129.3, 129.5, 130.0, 

130.1, 130.9, 132.9, 133.2, 136.4, 136.8, 136.7, 137.0, 140.1, 141.0, 144.1, 162.4, 179.35, 

186.9. 

Photolysis of compound (26) 

 

 

A solution of 50 mL of 6.3 x 10
-3 

 M 26 in 10% aqueous phosphate buffer in acetonitrile 

was flushed with N2 for 30 min. Then it was photolyzed using a 450 W medium pressure 

mercury lamp with a pyrex filter for 3 days.  Resultant precipitate was filtered, washed 

with acetonitrile and water, and dried to obtain 30 mg of product 27 or 28 as a yellow 

powder, mp. 244-245 
°
C.  The spectral data were  as follows: 

1
H NMR (400 MHz, 



37 
 

CDCl3) δ 3.93 (s, 3H), 7.53 (d, J = 7.2, 1H), 7.64-7.70 (m, 6H),  7.75 (t, J = 9.3, 1H), 

8.08 (t, J = 9.5 Hz, 1H), 8.10 (s,1H), 8.13 (d, J = 8.1, 1H), 8.28 (d, J = 8.1, 1H); 
13

C 

NMR (100 MHz, CDCl3) δ 30.8, 118.2, 120.2, 125.5, 126.1, 126.7, 127.0, 128.7, 129.12, 

130.1, 132.2, 132.7, 133.3, 135. 7, 135.5, 137.2, 138.0, 138.8, 139.0, 145.7, 157.9, 183.4, 

188.5. 

Preparation of 4-Nitrophenyl Sulphide-2-carboxylic acid (35)
33 

 

To a solution of 21.4 g (105 mmol) of 5-nitro-2-chlorobenzoic acid in 300 mL absolute 

ethanol was added 12.4 g (119 mmol) of thiophenol and 15.7 g (280 mmol) of potasium 

hydroxide dissolved in 300 mL ethanol while stirring. Then trace amount of copper 

powder was added and refluxed overnight under N2.  After two third of the alcohol had 

been removed in vacuo, the residue was diluted with water, acidified with conc. HCl to 

pH=2, filtered and the solid was washed with water.  The crude product was 

recrystallized with 80% aqueous ethanol to obtain 24.1 g (82% yield) of compound 35 as 

dark yellow crystals, mp. 233-234 °C.  The spectral data were as follows: 
1
H NMR (400 

MHz, DMSO-d6) δ 6.87 (d, J = 10.0 Hz, 1H), 7.54-7.68 (m, 5H), 8.19 (dd, J = 9.1, 3.41 

Hz), 8.66 (d, J = 9.5 Hz, 1H); 
13

C NMR (100 MHz, DMSO-d6): δ 126.2, 127.0, 127.2, 

127.5, 130.4, 131.4, 131.0, 136.2. 

Preparation of 2-nitroxanthone (36)
33
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To 185 mL of concentrated sulphuric acid at 100 
o
C was added 21.2 g (77.0 mmol) of 4-

nitrophenylsulphide-2-carboxylic acid 35. The temperature of the mixture was 

maintained at 100-105 °C for one hour.  The reaction mixture was cooled to room 

temperature and poured onto 100 g of ice.  The resultant precipitate was filtered, washed 

with water, sodium bicarbonate solution and water.  After drying in air, gave 18.9 g (95% 

yield) of 36 was obtained as NMR pure yellow-green solid, mp. 225-228 
o
C.  This 

compound was used in the next step without further purification. The spectral data were 

as follows: 
 1

HNMR (400 MHz, DMSO-d6) δ 7.65 (d, J = 7.6 Hz, 1H), 7.84 (t, J = 7.4, 

1H), 7.91 (d, J = 8.0 Hz, 1H), 8.12 (d, J = 9.5 Hz, 1H), 8.42 -8.51 (m, 2H), 9.05 (d, J = 

2.4 Hz, 1H).  

Preparation of 2-Amino-thioxanthen-9-one (37)
 
 

 

The procedure was adapted from a procedure reported by Steinmetz
26

 and Moon.
31

 A 

mixture of 18.8 g (73.4 mmol) of 2-nitroxanthone 36, 800 mL of ethanol, 200 mL of 

water, ammonium chloride 23.6 g (440 mmol), and iron 16.4 g (294 mmol) was refluxed 

5 h while mechanically stirring .  After hot vacuum filtration through silica gel, the silica 

gel was washed with ethanol and combined with the filtrate.  The combined filtrate was 

concentrated in vacuo.  The product was extracted into CHCl3.  The CHCl3 solution was 
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dried over anhydrous sodium sulphate and concentrated in vacuo to give 12.0 g (72% 

yield) of 37 as a dark yellow powder, mp. 226-228 
o
C.  The spectral data were as follows: 

 

1
H NMR (400 MHz, DMSO-d6) δ 5.66 (br, 2H), 7.06 (d, J=8.5, 1H), 7.45-7.51 (m, 2H), 

7.61-7.77 (3H, m), 8.41 (d, J = 8.5 Hz, 1H).  

Preparation of N-(9-oxo-9H-thio-xanthen-2-yl)-acetamide (38)  

 

The procedure was adapted from a procedure reported by Steinmetz.
26

 A mixture of 11.0 

g (48.2 mmol) of amino ketone 37, 200 mL glacial acetic acid, 81.1mL (859 mmol) of 

acetic anhydride was stirred for 5 h at room temperature. After adding 300 g of ice water 

with stirring, the resultant precipitate was filtered, washed with water and 50 mL 

methanol. The precipitate was washed with CHCl3 and dried under vacuum to give 8.12 g 

(63% yield) of acetamide derivative 38 as a light yellow powder, mp. 241-242 
o
C. The  

spectral data were as follows: 
 1

H NMR (400 MHz, DMSO-d6) δ 2.11(s, 3H), 7.59 (t, J = 

7.6 Hz, 1H), 7.71-7.84 (m, 3H), 8.05 (d, J = 8.5 Hz, 1H), 8.46 (d, J = 7.9 Hz, 1H), 8.71 

(s, 1H), 10.35 (s, 1H); 
13

C NMR (100 MHz, DMSO-d6)  δ 24.6, 118.5, 125.1, 127.2, 

127.7, 128.5, 129.4, 129.7, 130.8, 133.5, 133.5, 137.3, 138.9, 148.5, 169.4, 179.3. 

Preparation of N-methyl-N-(9-oxo-9H-thioxanthen-2-yl)-acetamide (39)
26
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The procedure was adapted from a procedure reported by Steinmetz.
26  

To a stirred 

solution of 9.50 g (35.3 mmol) of N-(9-oxo-9H-thio-xanthen-2-yl)-acetamide 38 in 170 

mL of anhydrous THF was added 1.81 g (45.2 mmol) of NaH (60%) under N2.  The 

mixture was stirred for 15 min followed by drop wise addition of 7.56 g (53.3 mmol) of 

methyl iodide.  The reaction mixture was stirred at room temperature for 48 h and then 

concentrated in vacuo to obtain the crude solid residue.  The residue was added CHCl3, 

followed by filtration and concentration in vacuo to obtain 7.5 g (75% yield) of methyl 

amide 39 as a yellow powder, mp 246-248 °C.  The spectral data as follows: 
1
H NMR 

(400 MHz, CDCl3) δ 1.92 (s, 3H), 3.33 (s, 3H), 7.41-7.74 (m, 5H), 8.44 (s, 1H), 8.62 (d, J 

= 8.5 Hz, 1H).  

Preparation of 2-methylaminothioxanthen-9-one (40) 

 

A mixture of 7.00 g (24.7 mmol) of amide 39 and 250 mL of aqueous 2 M NaOH was 

refluxed for 12 h.  The reaction mixture was cooled to room temperature and solid 

material was filtered, washed with water and dried to obtain 4.8 g (81 % yield) of 40 as a 

yellow colour powder, mp. 173-174 °C. The spectral data were as follows: 
1
H NMR (400 

MHz, CDCl3)  δ 2.95 (s, 3H), 3.98 (br, 1H), 6.98 (d, J = 8.7 Hz, 1H ), 7.36-7.48 (m, 2H), 

7.53-7.60 (m, 2H), 7.77 (s, 1H), 8.64 (d, J = 8.1 Hz, 1H); 
13

C NMR (100 MHz, CDCl3) δ 

30.5, 109.2, 119.9, 124.8, 15.6, 125.9, 126.9, 128.7, 129.7, 130.2, 131.8, 137.7, 147.9, 

180.1.  
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Preparation of 2-thiophenemethanol, 4-bromo-α-phenyl (41) 

 

The procedure was adapted from a procedure reported by Alexander.
34

 
  
To 8.17 g of (336 

mmol) of Mg was added to 300 mL anhydrous diethyl ether in dry three neck flask 

attached to a condenser.  Using an addition funnel solution of bromobenzene 49.3 g (314 

mmol) in 15 mL of anhydrous diethyl ether was added slowly.  Reaction mixture was 

stirred until all Mg has dissolved.  Then 30.0 g (157 mmol) of 4-bromobenzene 

carboxyaldehyde in anhydrous ether was added into it slowly.  Reaction mixture was 

refluxed for 3 h.  The reaction mixture was added into cold solution of 3M HCl to quench 

the reaction.  Ether was added to dissolve all compound.  The ether layer was separated, 

dried over anhydrous Na2SO4 and evaporated.  The crude solid material was 

recrystallized from hexane to obtained 37.6 g (89%) of compound 42 as a white solid, 

mp. 81-82 °C.  The spectral data were as follows:  
1
H NMR (400 MHz, CDCl3):  δ 2.47 ( 

s, 1H), 5.97 (d, J = 3.9 Hz, 1H), 6.75 (t, J = 1.46 Hz, 1H),  7.14-7.46 (m, 5H); 
13

C NMR 

(100 MHz, CDCl3):  δ 72.3, 109.2, 122.4, 126.3, 127.2, 128.2, 128.7, 142.1, 149.3. 

Preparation of 2-benzoyl- 4-bromothiophene (43) 
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To prepare Jone's reagent 26.7 g  (268 mmol) of chromic oxide was dissolved in 23 mL 

of conc. H2SO4, diluted with water to 100 mL at 0 °C.  To a solution of 13.5 g ( 50.0 

mmol) of 2-thiophenemethanol, 4-bromo-α-phenyl 42 in 100 mL acetone was added 14 

mL of Jone's reagent previously prepared portionwise while maintaining the temperature 

below 20 °C.  The reaction mixture was stirred further for 3 h.  The liquid in the flask 

was decanted into another flask.  The solid material remaining in the flask was washed 

with ether and combined to the above liquid.  To remove excess Cr(VI) ion, sodium 

bisulphite was added, then washed with water, saturated NaHCO3 and brine.  Then it was 

filtered through Florosil, dried over anhydrous Na2SO4 and evaporated in vacuo to obtain 

10.7 g (87% yield) of 43 as an off white crystals, mp 84-86 °C.  The spectral data were as 

follows: 
1
H NMR (400 MHz, CDCl3) δ 7.5 (m, 3H), 7.6 (t, J = 9.8 Hz, 2H), 7.84 (m, 1H), 

7.85 (m, 1H);  
13

C NMR (75 MHz, CDCl3) δ 110.8, 128.9, 129.4, 131.6, 133.0, 136.7, 

137.4, 144.2, 187.9.  

Preparation of 1,3-Dioxane, 2-(3-bromothienyl)-2-phenyl (44) 

 

The procedure was adapted from the procedure reported by Angibaud.
35 

To a solution of 

21.0 g (78.6 mmol) of 2-benzoyl-4-bromothiophene 43 in 120 mL of anhydrous benzene  

was added 14.4 g (188 mmol) of 1,3-propanediol and catalytic amount of p-toluene 

sulphonic acid.  The reaction mixture was refluxed for 3 days using Dean-Stark apparatus 

to remove water, cooled to room temperature, washed with saturated NaHCO3, water and 
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brine, dried over anhydrous Na2SO4 and evaporated to obtain colourless oil. Upon 

standing for two days it gave 21.9 g (86 % yield) of acetal 44 as colourless crystals, mp. 

61-63 
o
C.  The spectral data were as follows:  

1
H NMR (400 MHz, CDCl3)  δ 1.63 (m , 

1H), 1.91 (m, 1H), 4.02 (m ,4H), 6.75 (s, 1H),  7.12 (s, 1H),  7.27-7.43 (m, 3H), 7.59 (t, J 

= 7.5 Hz, 2H);  
13

C NMR (75 MHz, CDCl3)  δ 25.3, 62.1, 99.4, 108.9, 123.5, 126.8, 

128.4, 128.7, 128.9, 140.5, 149.1. 

Preparation of (45) 

 

Procedure was adapted from the procedure reported by Katritzky.
36  

12.0 g (36.8 mmol) 

of 44 in 60 mL anhydrous diethyl ether was treated with 50 mL of 1M PhLi (Prepared by 

dissolving 0.82 g (118 mmol) Li and 9.24 g (58.8mmol) of bromobenzene in 600 mL of 

anhydrous diethyl ether.  The dark brown mixture was stirred for 5 h at room temperature 

and it was slowly added to the flask which contained dry ice and kept for an overnight at 

room temperature.  Then the compound was extracted with water and washed with ether.  

On acidification with conc. HCl (to pH= 2) the acid was obtain as brown oil.  The oil 

formed was extracted into diethyl ether, dried with anhydrous Na2SO4 and evaporated 

under vacuo to obtain 8.62 g (66% yield) of 45 as brown solid, mp.149-151 
o
C.  The 

spectral data were as follows: 
1
H NMR (400 MHz, CDCl3)  δ 1.64 (m, 1H), 1.91 (m, 1H), 

4.02 (m , 4H), 6.9 (s, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 9.8 Hz ,2H), 7.55 (d,  J= 
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7.6 Hz, 2H); 
13

C NMR (75 MHz, CDCl3):  δ 25.3, 62.0, 99.0, 117.2, 126.6, 127.5, 129.1, 

130.9, 139.8, 154.4, 166.4. 

Preparation of 5-benzoyl-3-bromo-2-thiophenecaboxylic acid (46) 

 

Procedure was adapted from procedure reported by Babler.
37  

To 10.0 g (28.4 mmol) of 

45 was added 100 mL of glacial acetic acid and 25 mL of water.  The reaction mixture 

was heated at 65 
o
C for overnight while stirring.  Then water was added to dilute the 

reaction mixture, and extracted with ether.  The ether layer was dried over anhydrous 

Na2SO4 and evaporated under vacuo.  Remaining CH3COOH was evaporated by vacuum 

distillation to give 7.92 g of brown colour solid.  Recrystallization of brown colour solid 

with aqueous ethanol formed 7.16 g (81% yield) of 46 as off white colour crystals, 

mp176-178
o
C.  The spectral data were as follows:  

1
H NMR (400 MHz, CDCl3  7.55 (t, J 

=7.8 Hz , 2H),  7.62 (s, 1H), 7.68 (t, J = 7.4 Hz, 1H), 7.89 (d, J = 7.0 Hz, 2H);  
13

C NMR 

(100 MHz, CDCl3)  δ 115.8, 129.7, 133.9, 135.4, 136.4, 138.7, 145.0, 161.7, 186.9. 

Preparation of 5-benzoyl-3-bromo-thiophenecarbonyl chloride (41) 
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To a solution of 4.00 g (12.9 mmol) of 46 in 100 mL benzene was added 6.12 g (51.4 

mmol) of SOCl2 and refluxed for 3 h.  Then the reaction mixture was evaporated under 

vacuum.  Remaining SOCl2 was co-evaporated with CH2Cl2 to obtained 41and it was 

used to next step without further purification. 

General Procedure for Product Quantum Yield Determination 

 A semi-micro optical bench was used for quantum yield determinations, similar to 

the method described by Zimmerman.
32

 Light from 200 W high pressure mercury lamp 

was set to 388 nm wavelength and was collimated through a lens.  A fraction of the light 

was diverted 90° by a beam splitter to a 10 x 3.6 cm side quartz cell containing 41 mL of 

an actinometry solution.  The photolysate was contained in 27 mL volume quartz 

cylindrical cell with 10 x 1.8 cm dimensions.  Behind the cell containing photolysate was 

mounted a quartz cylindrical cell 10 x 1.8 cm containing 27 mL of actinometry solution. 

Light output was measured by the ferrioxalate actinometry using the splitting ratio 

method. 

 For compound 26, photolysate was evaporated to remove CH3CN. Then 

anhydrous benzene was added.  Anhydrous sodium sulphate was added to remove water 

and evaporated again under vacuum to remove remaining water and benzene.  The 

residue was dissolved in CDCl3. DMF was added as a standard for NMR analysis. 

Product was analyzed by 
1
H NMR spectroscopy using DMF as the internal standard and 

conversion was 4.3%.  

 

 



46 
 

CHAPTER 3. Photochemical Electrocyclic Ring Closure and Leaving Group 

Expulsion from 3-chloronaptho[1,2-b]thiophene-2-carboxylic acid N-methyl-(9-oxo-

9H-thioxanthen-2-yl) amide 

 

3.1.  Introduction 

 

 As mentioned in the Chapter 2, naphtho[1,2-b]thiophene
30  

has triplet excited state 

with energies of  62 kcal mol
-1

 (Scheme 1.13).  This triplet is lower in energy than 

benzothiophene triplet (64 kcal mol
-1

).  It was planned to replace the benzothiophene 

moiety with napthothiophene ring system in order to facilitate the energy transfer from 

the triplet thioxanthone. 

3.2.  Results and Discussion 

 

3.2.1.  Synthesis of Photochemical Reactant (29) 

 

The synthesis of photoreactant 29 (Scheme 3.1) involved a coupling reaction between 

acid chloride 48 and amine 40.  Reaction of commercially available napthalene-2- 

carboxaldehyde with malonic acid gave 3-(2-napthyl)propenoic acid
38

 47, which was 

converted to 3-chloronaptho[1,2-b]thiophene-2-carbonyl chloride 48 by refluxing for six 

days with SOCl2.
39
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Scheme 3.1 

 

3.2.2.  Photolysis of Compound 29 

 

 One criteria
3, 5 

for the designing of biological important photoremovable 

protecting groups is the solubility in aqueous buffered medium.  Compound 29 is 

insoluble in aqueous buffered media.  We made attempt to dissolve this compound in 

CH3CN.  It was unsuccessful, but it was sparingly soluble in DMSO.  Attempts were 

made to dissolve compound 29 in DMSO-d6 and then filter to obtain a clear solution.  

The resultant clear solution was treated with two drops of pH=7 phosphate buffer.  After 

adding the buffer a turbid solution was produced.  So it was difficult to photolyse 29 

compound in aqueous buffered media due to the solubility problem.  Photolysis of a 

nitrogen saturated sample of 20 mg in 2 mL DMSO-d6 , filtered through a syringe filter 

using Pyrex-filtered light from a Hanovia 450 W medium pressure mercury lamp, 

without added buffer, showed a formation of single photoproduct of 30 or 31 (Scheme 
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3.2) after 30 min.  After 1.5 h it showed about 50% conversion. The product was 

identified and distinguished from photoreactant by 
1
H NMR as N-methyl peak shifted 

downfield from δ 3.64 to 3.98 ppm.  Due to the above solubility problem, the quantum 

yield was not determined.  But the high conversion of reactant to photoproduct in 

DMSO-d6 provided the incentive to use this system with modifications to increase the 

solubility in aqueous buffered media. 

Scheme 3.2 

 

Attention thus was focused upon compounds 32 and 33 Scheme (3.3) by attaching an 

ester group and carboxylic acid at the C-6 position of the naphthalene moiety to increase 

the solubility in aqueous buffered media.  
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3.3.  Synthesis of Photoreactant 32 and 33 

 

 To improve aqueous solubility, a derivative with Y = -COCH3 and -COOH (32, 

33) are being synthesized. The plan for the synthesis of 32 and 33 is given in the Scheme 

3.3.  The compound 32 will be synthesized by a coupling reaction between amine 40 

(synthetic routes given in Scheme 2.1) and acid chloride 53.  Synthesis of 53 involves 5 

steps starting commercially available dimethyl 2,6-naphthalenedicarboxylate. It was 

found that dimethyl 2'6-naphthalenedicarboxylate would be partially hydrolyzed with 

methanolic KOH to form 6-cabomethoxy-2-napthalenecarboxylic acid 49.  The 

carboxylic acid group of 49 was reduced to the alcohol 50 using BH3.THF complex 

followed by PCC oxidation to form aldehyde 51.  This part of the synthesis was 

successful. The remaining steps to obtain 53 should be routine. It is therefore expected 

that 32 and 33 will be obtained in the very near future. 
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Scheme 3.3

 

3.2.4. Experimental 

Preparation of 3-(2-naphthyl)propenoic acid (47)
38

 

 

To a solution of 50 mL pyridine (621 mmol) 11.4 g of malonic acid (110 mmol) was 

added. 14.21 g of naphthalene-2-carboxaldehyde (91 mmol) in little increments.  Then 1 

mL (101 mmol) of piperdine was added at room temperature.  The reaction mixture was 

heated to reflux until evolution of CO2 ceased (1.5 h).  Afterwards, it was cooled to room 

temperature.  The solution was then poured into 50 mL of ice and conc. HCl to form a 
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precipitate. The precipitate was filtered, washed with water and dried.  The solid was 

recrystallized from ethanol to obtained 17.5 g (97% yield) of product 47 as an off white 

solid, mp. 206-208 °C.  
1
H NMR (400 MHz, DMSO-d6) δ 6.64 (d, J = 16.1, 1H), 7.55-

7.59 (m, 2H) 7.72 (d, J = 16.1 Hz, 1H), 7.86-7.96 (m, 4H), 8.19 (s, 1H), 12.42(s, 1H). 

Preparation of 3-chloronaphthol[1,2-b]thiophene-2-carbonyl chloride (48)
39 

 

A mixture of 17.5 g (88 mmol ) of 47, 100 mL of chlorobenzene, 1.6 mL (19.8 mmol) of 

pyridine and 36.4 mL (500 mmol) of thionyl chloride was refluxed for 72 h.  After 

cooling to room temperature and  suction filtration gave 16.5 g (67% yield) of product 48 

as yellow needles, mp. 191-193 
o
C.  

1
H NMR (400 MHz, DMSO-d6)  δ 7.73 (m, 2H), 

7.90 (dd, J = 8.7 Hz, 1.1 Hz,  1H) 8.13 (d, J = 8.7  Hz, 1H),  8.12-8.15 (m, H), 7.25-8.28 

(m, 1H); 
13

C NMR (100 MHz, DMSO-d6)  δ 120.4, 123.8, 126.5, 126.8, 127.0, 128.4, 

28.0, 129.7, 132.3, 134.8, 137.2, 162.2. 

Preparation of 3-chloronaphthol[1,2-b]thiophene-2-carboxylic acid N-methyl-(9-

oxo-9H-thioxanthen-2-yl) amide (29) 
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The procedure was adapted from the procedure reported by Steinmetz.
26  

1.2 g ( 5.0 

mmol) of 2-methylaminoxanthen-9-one 40 and 15 mL of triethylamine in 30 mL of 

anhydrous CH2Cl2 was added 1.7 g (6.1 mmol) of 3-chloronaphthol[1,2-b]thiophene-2-

carbonyl chloride 48 dissolved in 10 mL of anhydrous CH2Cl2 at room temperature.  A 

catalytic amount of DMAP was added.  Then reaction mixture was heated at temperature 

between 40-50 
o
C for 96 h under nitrogen while stirring.  The reaction mixture was 

filtered to remove trimethylamine hydrochloride, washed several times with saturated 

aqueous NaHCO3 solution, H2O and then with 2 M HCl, H2O and brine.  Then dried over 

anhydrous Na2SO4  and concentrated in vacuo to obtain a golden yellow solid containing 

(29).  Recrystallization of solid material from ethanol gave 1.36 g (57% yield) of product 

29 as dark yellow colour powder, mp. 210-212 
o
C.  The spectral data were as follows: 

1
H 

NMR (400 MHz, CDCl3)  δ 3.64 (s, 3H), 7.3-7.59 (m, 7H), 7.62 (d, J  = 8.5 Hz, 1H),  

7.72 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.96 (d, J = 8.5 Hz,  1H), 8.56 (d , J = 

8.5 Hz, 2H);  
13

C NMR (100 MHz, CDCl3) δ 38.5, 111.4, 122.2, 124.4, 126.3, 126.9, 

127.4, 127.6, 128.9, 129.0, 129.4, 129.6, 130.1, 130.2, 130.9, 132.9, 133.2, 136.5, 136.9, 

136.8, 137.1, 139.9, 142.0, 162.9, 171.3, 179.5. 

Photolysis of compound 29 to form 30 or 31 

 

To 50 mL of DMSO 150 mg of compound 29 was added and stirred to dissolve 

compound.  As this compound is slightly soluble in DMSO before photolysis particles 



53 
 

were filtered through syringe filter.  Then the clear solution was flushed with N2 for 30 

min and photolyzed by 450 W medium pressure Hg lamp with Pyrex filter.  After 4 h  the 

compound which was precipitated inside the reaction tube was filtered and dried under 

vacuo to obtain 85 mg of a yellow colour product of 30 or 31 mp. > 300 
o
C.  

1
HNMR 

(400 MHz, CDCl3):  3.98 (s, 3H), 7.60-7.75 (m, 7H), 7.83(d, J = 9.1 Hz, 1H), 7.94 (d, J = 

9.6 Hz, 1H), 8.30 (d, J = 8.7 Hz, 1H), 8.35 (d, J = 7.7 Hz, 1H). 

Preparation of 6-cabomethoxy-2-naphthalenecarboxylic acid (49)
40

 

 

A suspension of 10.0 g (40.9 mmol) of commercially available dimethyl 2,6-

naphthalenedicarboxylate in 60 mL dioxane was heated at 80 
o
C until all solid dissolved. 

The solution of 2.6 g (42 mmol) in 2 mL MeOH was slowly added and stirred for 2 h at 

80 
o
C.  The reaction mixture was cooled to room temperature, filtered and solid residue 

was washed with diethyl ether.  The solid was dissolved in water and treated with 2 M 

HCl to pH =3.  The resultant precipitate was filtered, washed with water, and dried to 

obtain 8.5 g (90% yield) of 49 as a white powder, mp. 248-251
o
C. The spectral data were 

as follows: 
1
H NMR (400 MHz, DMSO-d6) 3.91 (s, 3H), 8.04 (d, J = 8.6 Hz, 2H), 8.22 

(d, J = 8.6 Hz, 2H), 8.66 (s, 1H), 8.68 (s, 1H), 13.25 (br, 1H). 

Preparation of 6-hydroxymethyl-naphthalene-2-carboxylic acid methyl ester (50) 



54 
 

 

To a suspension of 1.5 g (6.5 mmol ) of 49 in 30 mL of anhydrous THF at -15 
o
C was 

added 13 mL of BH3.THF complex slowly.  The reaction mixture was allowed to become 

room temperature while stirring under N2 and further stirred for overnight.  The saturated 

NaHCO3 was added and extracted into ethyl acetate.  The ethyl acetate layer was washed 

several times with water, brine, dried over anhydrous Na2SO4, and evaporated under 

vacuo to give 1.1 g of crude product as a white colour powder. The mixture was purified 

on a silica gel column eluted with ethyl acetate/hexane (50%) to obtain 0.8 g (57 % yield) 

of pure product 50, mp. 125-127 
o
C.  The spectral data were as follows: 

1
HNMR (400 

MHz, CDCl3) 3.91 (s, 3H), 4.84 (s, 2H), 7.54 (d, J = 9.4 Hz, 1H), 7.85 (d, J = 7.7 Hz, 

2H), 7.93 (d, J = 9.4 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 8.61 (s, 1H). 

Preparation of 6-formyl-naphthalene-2-carboxylic acid methyl ester (51) 

 

To a mixture of 3.51 g (16.3 mmol) of PCC in 60 mL CH2Cl2 was added a solution of 1.6 

g (7.4 mmol) of compound 50 in 10 mL of CH2Cl2 and stirred for 3h at room 

temperature.  The solution was decanted into another flask and remaining solid material 

was washed with CH2Cl2 several times and combined to the liquid.  The combined liquid 

was filtered through Florisil until the orange colour of the solution disappeared.   The 
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filtrate was evaporated under vacuo to obtain 1.3 g (82 % yield) of crude product. 
1
H 

NMR gave a peak around 10.18 which corresponds to the aldehyde.  Further purification 

is needed to collect pure product.    
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CHAPTER 4.  Photochemical Electrocyclic Ring Closure and Leaving Group 

Expulsion from N-(9-oxothioxanthenyl)benzothiophene carboxanilide  

 

4.1. Introduction 

 

 This was the first research objective at the beginning of my graduate studies.  At 

that time our research group have been studying photochemical electrocyclic ring closure 

reaction and leaving group expulsion from the 17 and 19 N-(9-

oxothioxanthenyl)benzothiophene compound (Scheme 4.1).  

Scheme 4.1 
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Using this system they were able to release variety of leaving groups by photolyzing at λ 

= 390 nm.  However, they observed that the quantum yields for those reactions were low 

(Table 1.2).  Here they studied the molecule where the amide N is attached to the C-2 

position of the thioxanthone moiety.  When N is at the C-2 position of thioxanthone 

moiety the zwitterion 24 formed by electrocyclic ring closure reaction might be unstable 

(Scheme 4.2).  Initially it was thought that this could be the reason for the low quantum 

efficiency for the above compound.  Therefore, the initial plan was to synthesize N-(9-

oxothioxanthenyl) benzothiophene carboxamide 25, where the amide nitrogen is at the C-

3 position of thioxanthone moiety (Scheme 4.3). 

Scheme 4.2 

 

4.2. Results and Discussion 

 

4.2.1. Synthesis of Photochemical Reactant (25) 

 

The plan for the synthesis of N-(9-oxothioxanthenyl) benzothiophene (25)which has  
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has the N-methyl amide at C-3 position of thioxanthone  ring system would use amine 54 

and acid chloride 55 (Scheme 4.3).   

Scheme 4.3 
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The compound 55 (Scheme 4.4) was prepared by refluxing methyl ester of trans-

cinnamic acid
 
67 with thionylchloride for 6 days.

42
  Acid 67 was produced by a two steps 

process starting form 4-formylbenzoic acid (see Experimental).
43, 44

  

Scheme 4.4  

 

 

Reaction of commercially available 4-methyl-5-nitroaniline with acetic anhydride 

produced 2-methyl-5-nitro-acetanilide 56, which was oxidized by KMnO4 under neutral 

conditions to form carboxylic acid 57.
45

  Hydrolysis of  compound 57 by 1:1 HCl gave 2-

amino-4-nitrobenzoic acid 58
45

 which was diazotized and reacted with thiophenolate to 

form 4-nitro-2(phenylthio) benzoic acid 59.
46

  Initially this reaction was carried out 

without any catalyst and gave a low yield.
46b

  By using silica gel as the catalyst the yield 

could be increased for that reaction.  Reaction of the acid 59 with SOCl2 followed by 

Friedel-crafts acylation reaction produced 3-nitroxanthone 60.
46a

  Reduction of the nitro 

compound with iron gave 3-aminoxanthone 61 which was converted to amide 62 with the 

reaction of pentanoyl chloride. Formation of the amide was first carried out using 

triethylamine in the presence of DMAP as catalyst.
26

  But this reaction did not give a 
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good yield.  In the presence of anhydrous pyridine it gave a 91% yield.  In the previous 

study for synthesizing photoreactant which contain sulphur containing leaving groups 

with a benzophenone chromophore 26
47

 (Scheme 4.5) they observed that incorporation of 

thiolate LG
- 
in place of Cl

-
 in compound 25 encountered a problem due to the instability 

of amide regarding cleavage. Problem was solved by protecting the carbonyl group 

before coupling the acid chloride with amine.  The compound here has a similar type of 

conjugated π electron system.  Therefore, the previous method was adapted involving 

protection of the carbonyl group of the thioxanthone ring system proceeding with the 

coupling reaction.  Protection of carbonyl group of compound 62 used ethylene glycol in 

the presence of toluene and catalytic amount of p-TsOH.
48  

However, acetal formation 

was unsuccessful due to very low yield.
  
Then the plan was changed to reduce carbonyl 

group before coupling with acid chloride and oxidize again after coupling and 

introducing sulphur containing leaving groups. The compound 62 was planned to reduce 

using ZnI2 and NaCNBH3 to obtain compound 65.  This reaction was unsuccessful. 

 At this point plans were changed when DFT calculations
26

 (Figure 1.4) became 

available for N-(9-oxothioxanthenyl) benzothiophene compound 17, 19 which contain N-

methyl amide at C-2 position of thioxanthone moiety.  The calculations showed that the 

reaction takes place via the initial triplet excited state where the excitation is localized on 

the thioxanthone ring system.  Energy transfer then took place to give a triplet excited 

state of the benzothiophene moiety.  Therefore, the lower reactivity of the thioxanthone 

compound may be due to the fact that ET =64 kcal mol
-1

 for thioxanthone.
27 

  The energy 

transfer to give the triplet benzothiophene
28

 ( ET =69 kcal mol
-1

)  is endothermic by 5 

kcal mol
-1

.
26

  This unfavorable energy transfer might be account for the lower quantum 
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yield.  At this point it was planned to modify or replace the benzothiophene ring to 

facilitate the energy transfer from the triplet thioxanthone. 

Scheme 4.5 

 

4.3. Experimental 

Preparation of Methyl 4-formylbenzoate (66)
43 

 

To commercially available 5.0 g (33 mmol) of 4-formylbenzoic acid dissolve in 75 mL of 

anhydrous MeOH was added 5 mL (68 mmol) of thionyl chloride dropwise at 0 
o
C under 

N2.  The reaction mixture was brought to room temperature and stirred for overnight.  The 

solvent was removed in vacuo.  Excess SOCl2 was co-evaporated with dichloromethane 

(2x100 mL) to give 5.4 g (99% yield) of 58 as a pale brown solid, mp. 52-53 
o
C.  The 
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spectral data were as follows: 
1
H NMR (300 MHz, CDCl3) δ 3.96 (s, 3H), 7.95 (d, J = 6.7 

Hz, 2H), 8.20 (d, J = 6.7 Hz, 2H), 10.11 (s, 1H). 

Preparation of 4-Methoxycarbonylcinnamic acid (67)
44

  

 

To a solution of commercially available malonic acid 3.5 g (33 mmol) dissolved 

in 20 mL of anhydrous pyridine was added at room temperature 5.4 g (33 mmol) of 

methyl-4-formylbenzoate 66 dissolved in another 75 mL anhydrous pyridine followed by 

1 mL piperidine (cat. amount) dropwise under nitrogen.  The mixture was then placed in 

a sand bath and slowly stirred while the temperature was increased to 80 -90 
o
C while 

CO2 evolved, and then refluxed until CO2 evolution ceased. After cooling to room 

temperature, the reaction mixture was poured onto ice and conc. HCl to form a 

precipitate. The acid 67 was filtered off, washed with water several times, dried to give 

6.68 g (97% yield) of 67 as a creamy white solid with, mp. 234.5 –236.2 ºC.  The spectral 

data were as follows: 
1
H NMR (400 MHz, CDCl3):  δ 3.84 (s, 3H), 6.67 (d, J =16.10 Hz, 

1H), 7.66 (d, J = 16.1 Hz, 1H), 7.83 (d, J = 8.3 Hz, 2H), 7.97 (d, J = 8.2 Hz, 2H), 12.59 

(s, 1H); 
13

C NMR (100 MHz, CDCl3) δ 52.7, 122.2, 128.7, 130.0, 131.2, 139.5, 142.9, 

166.2, 167.9. 

Preparation of 6-Methoxycarbonyl-3-chlorobenzo[b]thiophene-2-carbonyl chloride 

(55)
42
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To a stirred solution of 10.0 g (50 mmol) of 4-carbomethoxy cinnamic acid 67 in 

52.0 mL (720 mmol) of thionylchloride was added dropwise 0.8 mL of 

pyridine.  The reaction mixture was refluxed for 6 days.  The hot reaction mixture was 

filtered to remove pyridiniumhydrochloride salt.  The filtrate concentrated in vacuo.  The 

residue was triturated with hexane several times, filtered, and dried to give an off white 

solid.  The solid was then used for the next step without further purification. 

Preparation of 2-methyl-5-nitro-acetanilide (56) 

 

 

The procedure was adapted  from the procedure reported by Steiner.
45  

To commercially 

available 1.60 g (10.5 mmol) of 4-methyl-5-nitroaniline was added 3 mL (30 mmol) of 

acetic anhydride and gently boiled for short time with stirring.  Then reaction mixture 

was poured in to ice water while stirring.  The solid product formed was filtered under 

suction and recrystallized with methanol to obtained 1.75 g (90 % yield) of product 56 as 

white crystals, mp. 151-152 °C.  The spectral data were as follows: 
1
H NMR (300 MHz, 

DMSO-d6)  δ 2.09 (s, 3H), 2.32 (s, 3H), 7.46 (d, J = 8.7 Hz, 1H), 7.90 (d, J = 9.3 Hz, 

1H), 8.47 (s, 1H), 9.54 (s, 1H). 

Preparation of 2-acetamino-4-nitrobenzene-1-carboxylic acid (57)
45 
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To 1.5 g (7.7 mmol) of 2-methyl-5-nitro-acetanilide 56 was added 75 mL water and 

heated to 80 °C.  Finely powdered 3.44 g (21.8 mmol) of KMnO4 was added, the 

temperature was increased to 95 °C and stirred for 3 h.  A 5 mL portion of ethanol was 

added to the reaction to remove excess KMnO4, and the hot solution was filtered.  The 

filtrate was acidified with dil. H2SO4 to make precipitate.  The resultant precipitate was 

filtered under suction and dried to obtain 1.62 g (94% yield) of compound 57 as a pale 

yellow colour crystals, mp 215-216 °C. The spectral data were as follows:  
1
H NMR (300 

MHz, DMSO-d6)  δ 2.16 (s, 3H), 7.91 (d, J = 9.39 Hz, 1H), 8.15 (d, J = 8.83 Hz, 1H), 

9.25 (s, 1H), 11.31 (s, 1H). 

Preparation of 2-amino-4-nitrobenzoic acid (58)
45 

 

 

To 1.6 g (8.4 mmol) of 2-acetamino-4-nitrobenzene-1-carboxylic acid 57 was added 1:1 

HCl and refluxed for 4 h.  The solution was adjusted to pH 4-5 using 50% NaOH to form 

an orange precipitate.  The precipitate was filtered under vacuum and recrystallized from 

aqueous ethanol to obtain 1.32 g (87% yield) of an orange colour needle like crystals, mp. 

253-254 
o
C.  The spectral data were as follows:  

1
H NMR (300 MHz, DMSO-d6) δ 7.22 

(dd, J = 1.97Hz, 8.79 Hz, 1H), 7.61 (d, J = 1.97 Hz, 1H), 7.89 (d, J = 8.79 Hz, 1H). 

Preparation of 4-nitro-2(phenylthio) benzoic acid (59) 
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The procedure was adapted by the procedure reported by Turnbull.
46  

1.91 g (10.5 mmol) 

of 2-amino-4-nitrobenzoic acid 58 was dissolved in 15 mL of water and 5 mL conc. HCl 

and cooled in an ice bath. 0.75 g (10.8 mmol) of NaNO2 was dissolved in 2 mL of water 

and kept in an ice bath.  To cold solution of 58 in HCl was added the above NaNO2 

solution gradually.  The reaction mixture was stirred for 30 minutes in an ice bath. 

Sulphamic acid was added to remove excess HNO2 while testing with KI/Starch paper. 

The diazonium salt solution was allowed to reach 3-8 
o
C and it was added to well stirred 

solution of 1.1 g (10.0 mmol) thiophenol, 0.35 g silica gel, and 2 mL of 10 M NaOH in 

50 mL water.  The reaction mixture was stirred at 3-8 
o
C for 2 h and another 1 h at 20 

o
C.  

Silica gel was filtered off and pH of the solution was adjusted to pH 1 using 10 M HCl. 

Resultant yellowish brown colour precipitate was filtered off, washed until it was neutral 

and recrystallized from acetic acid to obtain 2.25 g (77 % yield) of a yellow colour 

powder, mp. 213-215 
o
C.  The spectral data were as follows:  

1
H NMR (300 MHz, 

DMSO-d6):  δ 7.40 (d, J = 1.91, 1H), 7.58-7.77 (m, 5H), 7.99 (d, J = 7.90 Hz, 1H), 8.13 

(d, J = 9.07 Hz, 1H); 
13

C NMR (75 MHz, DMSO-d6):  δ 119.9, 121.3, 127.8, 129.9, 

131.3, 131.9, 133.5,136.5, 145.5, 150.0, 167.1. 

Preparation of 3-nitroxanthone (60)
46a 
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A solution of 1.65 g (5.60 mmol) of 4-nitro-2(phenylthio) benzoic acid 59 in 20 mL 

anhydrous benzene with 1.6 mL (20 mmol) of SOCl2 was refluxed for 3 h.  The benzene 

was evaporated under vacuo and the residue was dissolved in warm nitrobenzene.  A cold 

solution of 1.60 g (11.9 mmol) anhydrous AlCl3 in 20 mL nitrobenzene was added 

dropwise to the above suspension at 0 
o
C.  The reaction mixture was stirred at 45-55 

o
C 

for two days, decomposed by the addition of ice, removed nitrobenzene by vacuum 

distillation.  The residual solution was cooled and the tarry material was collected, dried 

and boiled with 15 mL glacial acetic acid for an hour.  The solution was cooled and the 

yellow colour product was collected by filtration, washed with glacial acetic acid, water , 

and dil. NaOH solution, and then dried to obtain 1.10 g (75 % yield) of a yellow colour 

powder.  Recrystallization with glacial acetic acid formed 0.9 g (62%) of golden yellow 

plates, mp. 252-253 
o
C.  The spectral data were as follows:  1H NMR (300 MHz, DMSO-

d6)  δ 7.63 (t, J = 7.4 Hz, 1H), 7.83 (t, J =7.4 Hz, 1H), 7.93 (d, J = 9.0 Hz, 1H), 8.28 (dd, 

J = 2.0, 9.0 Hz, 1H), 8.47 (d, J = 9.0 Hz, 1H), 8.85 (s, 1H);  
13

C NMR (75 MHz, DMSO-

d6)  δ 121.2, 123.1, 127.4, 128.1, 128.8, 129.9, 131.7, 132.6, 134.3, 137.2, 138.6, 149.8, 

178.7. 

Preparation of 3-aminothioxanthone (61) 
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The procedure was adapted from the procedure reported by Steinmetz.
26  

A mixture of 1.3 

g (5.0 mmol) of 3-nitroxanthone 60, 200 mL ethanol, 60 mL of water, 1.6 g ( 31 mmol) 

of NH4Cl and 0.9 g (16 mmol) iron powder was refluxed for 3 h.  The reaction mixture 

was filtered over silica gel to remove inorganic materials and residue was washed with 30 

mL of ethanol.  The combined filtrate was concentrated under vacuo.  The product was 

extracted with CHCl3 (50 x 3 mL).  The CHCl3 layer was dried over anhydrous Na2SO4 

and evaporated under vacuo to obtain 0.84 g (74%) of 61 as an orange colour powder.  It 

was crystallized from ethanol to give pale-yellow needles, mp. 253-255 
o
C.  The spectral 

data were as follows:  
1
H NMR (300 MHz, DMSO-d6) δ 6.41 (bs, 1H), 6.67 (dt, J =1.8 

Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H); 
 13

C NMR (75 MHz, DMSO-d6)  δ 106.8, 115.1, 118.0, 

126.7, 126.9, 129.3, 129.6, 131.7, 132.1, 136.6, 139.4, 153.7, 177.5. 

Preparation of 3-aminothioxanthone (62) 

 

 

A mixture of 0.62 g (2.7 mmol) of 61 and 0.35 mL (2.8 mmol) of pentanoil chloride was 

refluxed in pyridine for 8 h.  After completion of the reaction, the reaction mixture was 

evaporated. 40 mL water and 100 mL ethyl acetate was added.  The organic layer was 

washed with 5% Na2CO3, water, saturated NaCl solution, dried over anhydrous Na2SO4.  

and evaporated under vacuo to give 0.78 g (91% yield) of product 62 as an orange pink 

colour solid, mp. 201-203 
o
C.  The spectral data were as follows: 

1
H NMR (300 MHz, 

DMSO-d6)  δ 0.91 (t, J = 8.7 Hz, 3H), 1.32 (t, J =8.7 Hz, 2H), 1.59 (qn, J =8.7 Hz, 2H), 

2.39 (t, J = 8.0 Hz, 2H), 7.57 (s, 1H), 7.95 (s, 1H), 7.21-7.86 (m, 2H), 8.23 (d , J= 1.3 Hz, 
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1H),  8.40 ( d, J = 8.8 Hz, 1H), 8.44 (d, J = 8.2 Hz, 1H), 10.48 (br, 1H); 
 13

C NMR (75 

MHz, DMSO-d6)  δ 13.9, 22.6, 27.8, 37.7, 114.9, 118.1, 125.3, 126.5, 126.2, 129.4, 

129.9, 131.2, 132.4, 137.6, 139.7, 141.6, 172.3, 179.0. 

Preparation of 63 

 

 

The procedure was adapted from the procedure reported by Shibasaki.
48  

To a stirred 

solution of 1.56 g (5.00 mmol) of 62 in 30 mL of toluene, 0.85 mL (15 mmol) of ethylene 

glycol and catalytic amount of p-TsOH.  The reaction mixture was refluxed for 7 hours 

by using Dean-Stark apparatus.  The reaction mixture was cooled to room temperature 

and saturated NaHCO3 was added to quench the reaction.  The product was extracted into 

CHCl3, washed with water and brine, dried over anhydrous Na2SO4 and evaporated to 

obtain a little amount of product 63 with some product by hydrolysis of 62. 

Synthesis of compound 65 

 

 

To a solution of 0.20 g (0.65 mmol) of 62 in 5 mL of CH2Cl2 at room temperature was 

added 0.31 g (0.97 mmol) of solid ZnI2 and 0.31 g (4.8 mmol) of NaCNBH3.  The 
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reaction mixture was stirred at room temperature for 20 h at argon environment. It was 

then cooled and poured into an iced-cold mixture of saturated NH4Cl contain 10 % 6N 

HCl.  The mixture was extracted with ethyl acetate, dried over anhydrous MgSO4, filtered 

and evaporated to dryness. The pale pink product converted to dark red colour when 

exposure to air.  This reaction was unsuccessful to obtain compound 65. 
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CHAPTER 5.  Future Plans 

 

1.  For compound 26 another photolysis for quantum yield determination will be planned 

with a more diluted (10
-4

 M) solution using HPLC to quantify the photoproduct in order 

to get more reliable results.  

2. Theoretical calculations will be planned to ascertain details of the electronic 

configuration of the triplet excited state of the 5-benzoylthiophene in 26.  Such 

calculations would reveal whether the C-3 position of the thiophene ring is indeed 

pyramidalized, as is the case for the benzothiophene ring system.
26

  One concern with 26 

is that the triplet excitation is localized in the S-conjugated carbonyl group.  Whether 

such localization of excitation elsewhere in the benzoylthiophene moiety suppresses 

pyramidalization is the question. 

3.  Synthesis of compounds 32 and 33 is in progress.  It is therefore expected that they 

will be obtained near future.  Further studies of 33 will initially focus on products yields 

and efficiencies. Future plans will also include the finding the multiplicity of the reactive 

excited state through quenching studies of 33 with the piperylene and oxygen.   

Quenching studies with piperylene also helpful to find the triplet excited state life time.    

Moreover, studies of 33 will be extended to release more basic leaving groups PhO
-
,  

PhS
-
, PhCH2S

-
.  3-chloro group can be readily substituted by variety of thiols using DBU  

as a base.
48

  The preliminary studies with 33 containing leaving groups Cl
-
, PhO

-
, PhS

-  

and PhCH2S
- 
 will be completed for publication. 

4.  Incorporating cysteine and glutathione into compound 33 and photochemical studies 

will also be planned. This would involve displacing the C-3 chloride in the molecule. The 
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literature route for displacing C-3 chloride by thiols entails stirring both in DMF and 

DBU.
46 

 The caging of simple thiol groups using 33 is straightforward. For example 

compound 33 is stirred with thiol and DBU in DMF.  Similarly, Boc-γ-Glu-Cys-Gly-

OtBu could be introduced. Cysteine could be attached via its thiol group using Boc-Cys-

OtBu (Scheme 5.1).   

Scheme 5.1 

 

 

 

Another approach to attach Cys and GHS would use aqueous basic conditions with water 

soluble caging group 33 (Scheme 5.2).  Thiolate should readily substitute the C-3 chloro 

group of 33, while the amino and carboxylate groups should not react. 
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The product isolation would entail a Sephadex chromatography.   

Scheme 5.2 

 

 

5.  Future work will incorporate protected cysteine caged by compound 33.  This would 

allow further elaboration into other peptides synthesis.
49, 50
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