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ABSTRACT 

 

DEVELOPMENT OF NEW LIGAND SCAFFOLDS FOR THE PREPARATION OF 

HETEROBIMETALLIC COMPLEXES 

 

Alexander R. Treleven 

 

Marquette University, 2016 

 

 There is currently much interest in the development of methods to harness 

sustainable, CO2 neutral, non-fossil fuel based energy sources due to diminishing 

worldwide supply of fossil fuels and concerns over historically high levels of CO2 in the 

atmosphere, which may have a devastating impact on the world’s climate.  One such 

avenue is through the conversion of atmospheric CO2 into useful, high-energy density, 

organic fuel sources.  Photosynthesis is the biological process by which plants convert 

sunlight, water, and CO2 into the reduced organic materials that we extract from the earth 

and burn (completing the cycle back to CO2) to release the energy stored in the bonds of 

the molecules. The development of synthetic methods to mimic the enzymatic processes 

of photosynthesis in order to utilize CO2 as a carbon feedstock for organic fuels would be 

of tremendous benefit. 

 The one electron reduction of CO2 to CO2
- is a highly unfavorable process as 

evidenced by the relatively high reduction potential of -1.9V.  The two electron reduction 

of CO2 via proton assisted electron transfers is a more favorable process.  Noble metals 

are known to undergo 2 electron processes though they are generally quite rare, 

expensive, and toxic to work with.  Efforts have been made to use the more abundant first 

row transition metals (base metals) to mediate 2 electron processes with little success as 

they are more likely to undergo 1 electron redox processes.  One such approach that has 

shown some success in achieving 2 electron processes with base metals is through the use 
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of bimetallic cooperativity where two separate metal centers, each involved in a 1 

electron event, work in tandem to achieve a net 2 electron redox event. 

 This thesis describes investigations into metal complexes of new ligand designs 

involving a hard-soft approach to preferentially bind different metals in a site specific 

manner intended for the production of heterobimetallic complexes.  Two classes of 

ligands are explored and described: (1) a series of P2N3 pincer type ligands and (2) a 

series of N-confused Trispyrazolylmethane (Nc-Tpm’s) ligands. 
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Chapter 1 

 

Introduction 

 

There are two major energy related problems that are expected to impact the 

world over the next 50 years or so.  The first problem is that sources of fossil fuels are 

expected to diminish so significantly that increased worldwide competition over control 

of these sources will lead to higher monetary and political costs.1 The second problem is 

that the historically high levels of CO2 currently in the atmosphere will continue to 

increase which is expected to have devastating impact on the world’s climate.  Also, 

because the ocean is a major sink for atmospheric CO2, these projected impacts could 

also include ocean acidification.2 Finding ways to harness sustainable, CO2-neutral, non-

fossil fuel based energy sources such as solar, wind, geothermal, and nuclear energy are 

of paramount importance to remedy these problems.  Along with the challenges in 

generating sustainable energy are the challenges of transforming the energy produced by 

these sources into forms that can be safely transported, stored, and used on demand.1  

 The source of the carbon found in the fossil fuels and most synthetic organic 

chemicals that is used in our daily lives originates from atmospheric CO2.  Photosynthesis 

is the biological process used by plants to convert sunlight, water, and CO2 into reduced 



2 
 

organic materials that we eventually extract from the earth and burn (completing the 

cycle back to CO2) to release the energy stored in the bonds of the molecules.   

 Over billions of years of evolution, biological systems have developed diverse 

mechanisms for using sunlight to promote the fixation and transformation of CO2 and of 

other small molecules.  There are also multiple enzymes for the reduction of N2 into 

ammonia, the production of H2, and others to oxidize water and reduce oxygen.  All of 

these enzymatic processes involve the storage and releasing of the energy in chemical 

bonds in a controlled and productive manner.  If we are to overcome the looming energy 

challenges of the next few decades, then the development of the abilities to control these 

processes outside of the biological systems is of paramount importance.  Thus by 

studying the metabolic processes observed in nature, we can gain insight into how to 

synthesize catalysts that will enable us to activate and transform CO2 into useful, high 

energy density, organic fuel sources.   

 In order to be able to activate CO2, one must first take a look at the general 

features and properties of the molecule in order to understand the best way to “attack” it.  

CO2 is a linear molecule with relatively short bonds (1.16 Å) that is composed of polar 

C=O bonds though the overall molecule is non-polar due to the geometry of the dipole 

vectors.  The Lewis structure of CO2 is shown in Figure 1.1.  

 

 

 

δ- δ-  δ+  

O C O
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Figure 1.1.  Depiction of the electronic distribution in CO2 illustrating that the carbon 

atom is susceptible to nucleophilic attack while the oxygen atoms are susceptible to 

electrophilic attack.   δ = partial informal charge.  

  

In order to “activate” CO2 by reduction, the bond order of the C-O bonds must be 

decreased and the molecule must be bent.  The lowest unoccupied molecular orbital 

(LUMO) of normal CO2 is centered on carbon, making it susceptible to nucleophilic 

attack and reduction. The highest occupied molecular orbital (HOMO) is mainly centered 

on the oxygen atoms, in accord with the expectations based on the Lewis structure.   The 

frontier molecular orbitals of bent CO2 shown in Figure 1.2 are similar, so will be 

involved in the interactions with nucleophiles and electrophiles.1 

 

 

Figure 1.2.  The wavefunction iso-probability contours for the HOMO (left) and LUMO 

(right) of bent CO2 illustrating the strong charge localization.  Illustration taken from 

reference 1.  

 

As shown in the right side of Figure 1.2, the strongly localized wavefunction 

probabilities on the open side of carbon help to facilitate the transfer of electron density 

from an incoming nucleophile into the LUMO, enhancing the interaction with 
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nucleophiles.  As shown in the left side of Figure 1.2, the localized electron density on 

oxygen of the HOMO (lone pairs) helps to facilitate interactions with electrophiles.  

When these two processes work in tandem, shown in Figure 1.3, the activation barrier to 

overcome the transformation is decreased, evident from the differences in the potentials 

of one-electron and two-electron reductions of CO2, shown below in equations 1 – 6.  

The formation of new O-E and Nu-C bonds also plays a role.   

 

 

Figure 1.3.  The combination of nucleophilic and electrophilic interactions affords a net 

two-electron reduction of CO2.  

 

As can be expected, the sensitivity of the energetic requirements of CO2 reduction 

to pH and the number of electrons involved is very high.  The reduction potentials for 

various half-reactions at pH 7 vs. NHE are shown in equations (1-6).   
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As shown in equation 1, the one-electron reduction of CO2 is highly unfavorable with a 

large negative reduction potential of -1.9 V, due, in part, to the large amount of 

rearrangement energy required to bend the linear CO2 molecule.3 When the multielectron 

and multiproton reactions are coupled together, the overall transformation becomes much 

easier, as indicated by the milder reduction potentials (equations 2-6).  As expected, these 

proton assisted electron transfers are more favorable under more acidic conditions (lower 

pH’s)4 and they are also solvent dependent. 

Nature utilizes a variety of enzymes to activate small molecules.  Gaining a better 

understanding of the reaction chemistry involved in the catalytically active sites in the 

enzymes could allow for experimenters to gain some insight into how these reactions are 

CO2 (aq) + e- → CO2
-● (aq)                                   E◦ = -1.9 V            (1) 

CO2 (g) + 2H+ + 2e- → CO (g) + H2O                    E◦ = -0.52 V          (2) 

CO2 (g) + H+ + 2e- → HCO2
-
 (aq)                          E◦ = -0.43 V          (3) 

CO2 (g) + 4H+ + 4e- → HCHO (aq) + H2O            E◦ = -0.51 V          (4) 

CO2 (g) + 6H+ + 6e- → CH3OH (aq) + H2O           E◦ = -0.38 V          (5) 

CO2 (g) + 4H+ + 4e- → CH4 (aq) + 2 H2O             E◦ = -0.24 V          (6) 
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performed in nature.  This insight would in turn allow for rational and intelligent catalyst 

design for these CO2 reduction reactions.   

One class of enzymes that catalyzes the reduction of CO2 in nature is the CO 

dehydrogenases.  X-ray diffraction studies of these enzymes have been reported at 

sufficiently high enough resolution to gain some insight into the structure of the 

catalytically active sites.  At the heart of one of the active sites is a Fe3S4 cluster that 

affixes terminal Ni and Fe centers in close proximity5, as shown in Figure 1.4.   

 

 

Figure 1.4.  The catalytically active site of a CO dehydrogenase with a [FeNi] cluster 

active site.  Illustration taken from reference 5.   The close proximity of the Ni and Fe 

atoms (2.70 Å) allows for cooperation between both metals to activate the substrate.  

 

In this site, the first coordination sphere of the terminal FeII atom consists of a cysteine, a 

histidine, a μ3- sulfido ligand, and a fourth ligand of light atoms (likely H2O or OH) while 

the first coordination sphere of the coordinatively unsaturated NiII atom consists of 3 S- 
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ligands in an unusual T-shaped geometry that may suggest the presence of a fourth 

hydride ligand.6 

Based on the evidence gathered from single crystal X-ray diffraction, 13C NMR 

experiments that independently provided evidence for the involvement of a CO2 binding 

site and for an internal proton transfer network during catalysis by CO hydrogenase,7 

among other data, a mechanism for the reduction of CO2 to CO by the enzyme was 

proposed (Figure 1.5).  

 

 

Figure 1.5.  The proposed catalytic mechanism for the reduction of CO2 to CO (and 

H2O) by the [FeNi] based enzyme CO dehydrogenase.  Illustration taken from reference 

1.  
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Crystal structures were obtained for three different products of the reaction with CO2.  

Treatment of crystals of the resting state of the enzyme with a reducing agent (TiIII 

citrate) and bicarbonate ion showed the second stage of the catalytic cycle.  This analysis 

showed CO2 bridged across the Ni and Fe centers, as shown in Figure 1.6.   

 

 

Figure 1.6.  The second stage in the catalytic cycle of CO dehydrogenase.  Illustration 

taken from reference 5.  The bent CO2 molecule is shown as a bridging ligand between 

the Ni and Fe sites demonstrating that both metal centers are involved in the mechanism 

of the reduction of CO2 to CO.  

 

The bridged CO2 shown to be interacting with both metal centers simultaneously along 

with the observation that the Ni and Fe centers in the first stage of the cycle (Figure 1.4) 

were in close proximity to one another (2.70 Å) suggests the likelihood of cooperative 

interactions between the two metal centers during catalysis.  

The cooperative behavior such as that found in the natural NiFe system has been 

mimicked in other purely synthetic, abiotic, systems whereby an electron rich center is 

positioned close to an electron poor center.  These abiotic systems may be solid-state 
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compounds used in heterogenous catalysis or solution based compounds used for 

stoichiometric or catalytic transformations.  Thus, there is extensive interest in CO2 

mineralization8 using highly abundant geochemical systems such as in Equations 7-9:  

 

CaO·MgO (dolomitic lime) + CaCl2·MgCl2 (brine) + CO2  2CaCO3 + 2 MgCl2  (7) 

NaAlSi3O8 (alibite) + CO2  NaAl(CO3)(OH)2 (dawsonite) + 3 SiO2  (8) 

H2O + CO2 (g) + M2CO3 (M = Ca, Mg, Fe)   M(HCO3)2 (s)    (9) 

 

Similarly, other metal oxides are implicated as catalysts for methanol synthesis by 

hydrogenation of CO2 (Equation 10).9   

 

CO2 + 3 H2   CH3OH + H2O   (10) 

 

Here, active catalysts are Cu on MgO or Ni on ZnO.  Most recently, it was found that 

Zn/ZnO was found to be an especially effective catalyst system for the reduction of 

NaHCO3 (that can be generated from CO2 and NaOH) to sodium formate, surpassing 

other metal supported systems with contributions from reactions (11 and 12).10 
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Zn + H2O + NaHCO3  ZnO + Na(HCO2) + H2O   (11) 

ZnO + H2 + NaHCO3    ZnO + Na(HCO2) + H2O   (12) 

 

In this system in-situ formed Zn-OH and Zn-H are proximal so as to act cooperatively to 

reduce the bicarbonate ion to formate.10 

One class of soluble homogenous systems for CO2 activation is “frustrated Lewis 

acid-base pairs” (FLP’s).11  FLP’s operate on the concept where steric congestion 

prevents combinations of Lewis acids and bases from forming classical Lewis acid-base 

adducts but instead form close “encounter complexes” that set up a localized electric field 

gradient to help polarize incoming molecules.12  These FLP’s have been shown to 

produce some remarkable reactivity, including reversible activation of H2
13, B-H 

activation14, and N-H activation15, among examples of many others.  Ménard and 

Stephan11 showed an example of an irreversible capture of CO2 by AlBr3 with PMes3 

(Mes = 2,4,6-C6H2Me3) in an unusual acid-base ratio of 2:1, as shown in Figure 1.7. 
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Figure 1.7.    Demonstration of CO2 capture by FLP’s utilizing AlBr3 and PMes3 (Mes = 

2,4,6-C6H2Me3) in a 2:1 acid-base ratio.  X = Br.  Illustration taken from reference 11.   

  

This activated CO2 species reacted with excess ammonia borane (NH3BH3, a hydrogen 

source) at room temperature to give methanol upon quenching with water.11 

 There are a few other types of systems that exploit chemical cooperativity to 

activate small molecules.  One type utilizes metal-ligand cooperativity that features a 

compound with a coordinatively unsaturated metal bound to an electron rich ligand site, 

as shown in Figure 1.8. 
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Figure 1.8.  Metal ligand cooperativity where a coordinatively unsaturated metal bound 

to an electron rich ligand work together to activate a small molecule H-X breaking the H-

X bond and forming two new bonds. 

 

For example, Gusev and coworkers16 showed that an NNP pincer ligand bound to a 

coordinatively unsaturated ruthenium site could activate H2 by utilizing metal ligand 

cooperativity between a vacant ruthenium site and an amido lone pair, as shown in Figure 

1.9. 

 

 

Figure 1.9   Metal ligand cooperativity being utilized to activate H2.  Illustration taken 

from reference 16.  The Ruthenium metal center is coordinatively unsaturated, meaning it 

has an open coordination site available to bind and incoming substrate.  The electron rich 

anionic amine serves as the electron rich ligand bound to the metal center. 

 

Grützmacher and associates17 showed the activation of N-H bonds with their amine based 

diene ligand bound to a coordinatively unsaturated Rhodium center along with a triphenyl 

phosphine ligand, as shown in Figure 1.10. 
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Figure 1.10.  Metal ligand cooperativity in the activation of the N-H bonds of ammonia 

forming two new bonds.  Illustration taken from reference 17.  It is noted that the 

oxidation number of the metal does not change in these types of reactions.     

 

Another similar approach toward the activation of small molecules through 

cooperative effects is through the use of metal-metal cooperativity, as shown in Figure 

1.11. 

 

 

Figure 1.11.  Metal-metal cooperativity utilizes two different metal sites with differing 

electronegativities to activate polar bonds.    

 

Metal-metal cooperativity takes advantage of the polar nature of heterometallic bonds 

(owing to the different electronegativities of the metals).  A complication arises in these 
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compounds because both metals need to be coordinatively unsaturated with one of the 

metals being more electron deficient than the other, inviting coordination by Lewis bases.  

As discussed previously, this motif may be useful toward the activation of small 

molecules with polar bonds (CO2) because electron density can be removed from one 

atom of the molecule (the more electron rich atom in the bond) while donating electron 

density to the more electron deficient atom, reactivity can be increased, as illustrated in 

Figure 1.12. 

 

 

Figure 1.12  The idealized mechanism for the activation of CO2 utilizing metal-metal 

cooperativity.  

  

Among the examples in the literature of the utilization of metal-metal 

cooperativity to activate small molecule substrates, there are generally two types: those 

supported by a bridging ligand and those without a bridging ligand (unsupported), as 

shown in Figure 1.13. 
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Figure 1.13  Supported vs. unsupported heterobimetallic complexes.   

 

The supported complexes (Fig. 1.13, left) features some type of bridging ligand (usually 

an organic linker) to help hold the metals together to facilitate metal-metal bonding.  The 

unsupported variety (Fig. 1.13, right) is held together by the interactions between the 

metal d orbitals of the two metals in the bond exclusively.  The ligand scaffold is only 

there to stabilize the individual metal sites, not to help hold them in close proximity to 

one another.  One of the first examples of a supported heterobimetallic complex that 

showed some activity toward CO2 was developed by Bergman and associates.18 They 

made use of a tert-butyl amido linker to help facilitate bonding between IrCp* and ZrCp2 

fragments in their heterobimetallic complex.  They demonstrated some remarkable 

reactivity with their complex by showing that it could activate a variety of small molecule 

substrates, including the activation of N-H, H-H, O-H, and C=O bonds, as shown in 

Figure 1.14.  
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Figure 1.14.  Substrates and products seen in reactivity studies of the supported 

heterobimetallic Zr/Ir complex including activation of N-H, H-H, O-H, and C=O bonds. 

   

Though this complex showed some remarkable activity and demonstrated the utility of 

this approach, it is far from ideal.  The major disadvantage of this complex is that it 

incorporates Iridium as one of the metals in the complex.  Although it is observed in the 

literature that noble metals are some of the most efficient and useful catalysts, they are 

also relatively scarce and expensive.  Noble metals such as Iridium are also generally 

quite toxic and difficult to work with safely so efforts toward replacing noble metals as 

the active sites in homogeneous catalysts to first row transition metals (less expensive, 

more abundant, less toxic) have been explored. 

 Another problem to this type of complex is that the synthesis was not trivial.  

Another approach to binding two metals with varying degrees of electron density is to 

make use of a hard-soft concept to bind specific metals to specific sites.  The idea is that 

the ligand design will incorporate two different ligand binding sites (a hard and soft site) 
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to preferentially and selectively bind harder or softer metals.  In general, hard metals tend 

to be small, electron deficient cations with large positive charges (e.g. Zr4+, Mg2+) 

whereas softer metals tend to be more electron rich, large polarizable cations (e.g. Ag+).  

Hard ligand donors tend to be nitrogen or oxygen while softer donors tend to be 

phosphorus or sulfur.  

 This hard-soft concept has been utilized by Christine Thomas and coworkers19 in 

their studies of CO2 reduction using the phosphinoamide ligands, shown in Figure 1.15. 

 

 

 

 

Figure 1.15.  Phosphinoamide ligands (L) used by Thomas19 with hard and soft donor 

sites.  R = 2,4,6-trimethylaniline, iPr.  R’ = iPr, Ph.  

 

Through deprotonation of the amine using nbutyl lithium in THF followed by addition of 

ZrCl4 allowed for the isolation of the ZrCl(L)3 metalloligand shown above in Figure 1.15.  

Subsequent treatment of the metalloligand with 1 eq of CoI2 in THF allowed for the 

isolation of the heterobimetallic complex (1) shown in Figure 1.16.  Complex (1) was 

reduced using a 0.5% Na/Hg amalgam in THF to yield the diamagnetic (d10) complex 

that upon exposure to CO2, showed the ability to add CO2 across the metal-metal bond, 

1) 
n
BuLi/

THF 
2) ZrCl

4
 

 
-LiCl 
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breaking one of the C=O bonds, which resulted in a terminal CO and a bridging O 

between the two metal centers, shown in Figure 1.17. 

 

 

 

 

 

Figure 1.16  Heterobimetallic complex developed by Thomas that demonstrates the 

hard/soft binding concept.  The hard ligand donor atoms (N’s) preferentially bind the 

hard metal (Zr4+) while the softer ligand donor atoms (P’s) preferentially bind the softer 

metal center (Co+).  R = 2,4,6-trimethylaniline, iPr.  R’ = iPr, Ph.  

   

 

Figure 1.17  Activation of CO2 by a heterobimetallic Zr/Co complex resulting in a 

terminal CO along with a bridged oxo species from reference 19. 
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The oxo bridged species was characterized in a number of ways including x-ray 

crystallography, infrared absorption spectroscopy (vCO = 1926 cm-1), and magnetic 

studies (S = 1).  All characterization data was consistent with the structure shown in the 

right of Figure 1.17.   

 The authors went on to show that the activated CO2 could be converted to carbon 

monoxide (CO) and methanol through three additional stoichiometric reactions, shown in 

Figure 1.18.  Addition of methyl triflate (MeOTf) to the anionic oxo species resulted in 

formation of corresponding methoxide species (1).  Addition of 1 eq of HCl to the 

methoxide species afforded complex (2). Complex (2) was photolyzed in the presence of 

I2 to regenerate complex (3).  The authors showed through the stoichiometric reactions 

that the process is feasible to return the catalyst to a reactive species, though catalytic 

turnover has not yet been achieved. 
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Figure 1.18.  The stoichiometric conversion of CO2 to carbon monoxide (CO) and 

methanol (MeOH) using Thomas’s bimetallic catalyst.  Illustration taken from reference 

19.    

 

 Another type of ligand design for the development of supported bimetallic 

complexes is the pyrazole derived compartmental ligand, as was demonstrated by Meyer 

and associates20, shown in Figure 1.19.  

 

 

 

Figure 1.19.  Compartmental ligand with hard and soft binding sites.  R = CH2CH2SEt. 

 

The compartmental ligand with different chelating arms in the 3- and 5- positions of 

pyrazole has been shown to be an effective ligand scaffold for the preparation of 

heterobimetallic complexes containing Pd(II) in the soft site (P-N) and Ni(I) in the harder 

site (N2S2).   Treatment of the deprotonated ligand with 1 eq PdCl2 followed by 1 eq 

NiCl·6H2O in sequential order led to isolation of the heterobimetallic complex only, 

without any evidence of the formation of its homobimetallic analogues20, demonstrating 

that the complexation reaction is highly selective.  
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Another approach toward the activation of small molecules utilizing metal-metal 

cooperativity is to use unsupported metal complexes, as was previously shown in Figure 

1.13.  Unsupported metal complexes have been known for some time.  Doyle and 

associates21 made some unsupported Fe – Cu metal cluster complexes that contained two 

distinct metals in close proximity to one another (bound together in this case), as shown 

in Figure 1.20. 

 

 

Figure 1.20   An ORTEP diagram of the structure of the Cu3Fe3(CO)12
3-  anion with 

unsupported metal-metal bonds.  View is perpendicular to the plane containing the six 

metal atoms and only the metal atoms have been labeled for clarity.  Illustration taken 

from reference 21.   

 

A number of other types of unsupported mixed metal clusters are known though their 

reaction chemistry was largely unexplored.21   

 More recently, the Mankad group22 has taken a different approach toward making 

unsupported bimetallic systems.  They have made use of bulky nitrogen containing 

heterocyclic carbenes (NHC’s) to stabilize a Cu metal center and have reacted this copper 
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chloride metalloligand precursor with a variety of anionic metal fragments, whose 

relative nucleophilicities have been measured and tabulated.23 The general scheme 

toward the synthesis of these complexes is shown in Scheme 1.1. 

 

 

 

 

Scheme 1.1.  The general strategy employed by the Mankad group to synthesize a series 

of unsupported bimetallic complexes.  Illustrations taken from references 22 and 23.   

 

Unsupported metal complexes have some unique challenges associated with them if the 

ligands stabilizing the metal centers are not sufficiently bulky enough to prevent ligand 

redistribution to form an ionic pair of dimers, as shown in Figure 1.21.   
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Figure 1.21.  Structure of the ion pair of dimers obtained from equilmolar mixtures of 

(NHC)CuCl and Na[Mn(CO)5].  Bulkier NHC ligands are required to prevent this 

isomerization. Illustration taken from reference 22.  

 

The authors found that when isopropyl groups are used as the R groups shown in Scheme 

1.1, that the metal complexes do not form the ion pair of dimers.   

They then sought out to explore the reactivity of these mixed-metal complexes by 

attempting the C-H borylation of D6-benzene.  The general method of this study is shown 

below in Scheme 1.2.  

 

 

Scheme 1.2  The general reaction method performed on a series of unsupported metal 

complexes.   

 

The reactions were performed under an N2 atmosphere with 5 mg of catalyst and 1 mL of 

D6-benzene.  Ten equivalents of pinacol borane were then added and the reaction vessel 

was irradiated with UV light for 24 hours.  An internal standard (either mesitylene or 

1,3,5-trimethoxy benzene) was added and the products of 3 repeated reactions were 

determined by 1H and 11B NMR spectroscopy.  The experimenters performed the 

previous reaction on the series of metal complexes, as summarized in Table 1.1.  
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Table 1.1.  A summary of the results of the reactions shown in Scheme 1.2.  Table taken 

from reference 22.  BDI stands for β-diketoiminate (not discussed).  IPr stands for the 

isopropyl version of the NHC ligand in Scheme 1 where R = iPr.  IMes stands for the 

mesitylene version of the NHC ligand in Scheme 1 where R = Me. 

 

Through this study, the authors were able to make some conclusions about the catalytic 

activity of their unsupported bimetallic catalysts.  They found that the bulky isopropyl 

NHC’s performed the best under these conditions and that increased catalyst loading did 

not improve the yield, as shown by entries 3 and 4.  They also found that the optimal 

catalyst reacted with a variety of other substrates as well, including catechol borane 

(HBcat) and a pinacol borane dimer (B2Pin2).  Most importantly, the authors found that 

the monometallic analogues, shown in Figure 1.22, did not achieve catalytic turnover, at 

best only observing stoichiometric conversion of substrate to product. 
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Figure 1.22.  Monometallic analogues of bimetallic catalysts for Scheme 1.2.  

Illustrations taken from reference 22.   

 

The above observations demonstrate that both metal centers are required to 

achieve catalytic turnover in this reaction as the addition of either of the monometallic 

analogues did not.  From these data the authors were able to propose a catalytic 

mechanism consistent with their observations, shown in Figure 1.23. 

 

 

Figure 1.23.   The proposed catalytic mechanism of the C-H borylation reaction by the 

heterobimetallic catalyst (NHC)Cu-FeCp(CO)2. Illustration taken from reference 22.   
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As seen in Figure 1.23, the mechanism features three critical steps to achieve catalytic 

turnover: i) bimetallic oxidative addition with metal-metal bond cleavage, ii) 

photochemical C-H borylation by the resulting boryl-iron intermediate, and iii) H-H 

bimetallic reductive elimination with metal-metal bond reformation.  The authors believe 

that bimetallic oxidative addition of HBpin by (NHC)Cu-FeCp(CO)2 is an equilibrium 

process that lies toward the (NHC)Cu-FeCp(CO)2 side and that small concentrations of 

(NHC)Cu-H and FeCp(CO)2 -Bpin account for the observed reactivity.22  

 This study was the first example of the use of 1st row transition metals to catalyze 

a C-H borylation reaction, reactivity previously only observed with the use of noble 

metals such as Rhodium24, as shown in Figure 1.24. 

 

 

Figure 1.24.  The catalytic reaction mechanism of the C-H borylation of toluene by a 

noble metal catalyst (Rh in this case).  L = PiPr3. Illustration taken from reference 24.   
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Noble metals are known to undergo 2 e- redox processes, as was shown in Figure 1.23.  

This can be a challenge for first row transition metals as they tend to undergo 1 e- redox 

processes.  Utilization of the concept of bimetallic cooperativity allows for these first row 

transition metal to work together to net a 2 e- redox event, though each individual metal 

center only undergoes a 1 e- event22, as shown in Figure 1.25.   

 

 

Figure 1.25.   Oxidative addition by a single-site noble metal (left) and by metal-metal 

cooperativity with base metals (right).  Illustration taken from reference 22.   

 

From these experiments, the authors were able to make some general conclusions.  

Bulky heterocyclic carbenes are particularly well suited to stabilize a wide range of 

unsupported Cu-M bonding as well as prevent isomerization through ligand 

redistribution.  Cu-M bond distance in unsupported bimetallic complexes tends to 

decrease with increasing nucleophilicity of the anionic metal fragments bound to them.  

Bimetallic versions of classical oxidative addition and reductive elimination steps have 

been demonstrated with 1st row metals.  Catalytic C-H borylation reactions have been 

demonstrated using 1st row metals by utilizing metal-metal cooperativity, reactivity that 

previously required the use of noble metals.   
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1.1 Goal of research 

 

The overall purpose of this work was to explore the possibility of preparing 

hetero-bimetallic complexes utilizing a hard-soft approach to preferentially bind different 

metals in a site specific manner and to examine the properties of these metal complexes 

toward the activation of small molecules, mainly CO2.  With these concepts in mind, a 

number of target ligand scaffolds were envisioned that might be able to bind two or more 

different metals in close proximity to one another.  The first type is of a series of pincer-

type ligands shown in Chart 1.1.  

 

 

Chart 1.1.  Pincer-type target ligand scaffolds with separate hard and soft binding sites.  
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The next type is another pincer-type ligand that is asymmetrical and contains N-P bonds, 

shown in Chart 1.2. 

 

N
N

HN
NH

Ph2P
PPh2

 

Chart 1.2.  Pincer-type target ligand scaffold with separate hard and soft binding sites.  

 

With these ligands one can envision that the harder metal will chelate to the N3 

portion of the molecule while a softer metal (or two) can bind to the phosphorus atom.  In 

each case, changing substituents near the metal center may provide steric shielding 

necessary to prevent dimer formation, but still allow access to small molecules.  Another 

series of target scaffolds potentially capable of binding two different metals are nitrogen-

confused scorpionate (NC-scorpionate) ligands, shown in Chart 1.3. 
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Chart 1.3   N-confused scorpionate target ligand scaffolds.  R = H, Me, Et. R2 = Ph, iPr. 

R3 = R4 = H, Me.  

 

The NC-scorpionate ligands are named due to the apparent “confused” 

positioning of one of the pyrazole heterocycles compared to traditional 

tris(pyrazolyl)methane (Tpm) scorpionates, where by the C and N atoms of the ring are 

interchanged, as shown in Figure 1.26. 
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Figure 1.26.  Traditional tris(pyrazolyl) methane (Figure 1.26, left) and N-confused 

tris(pyrazolyl) methane (Figure 1.26, right). 

 

NN
N

N
N

N

M2M1

R

NN
N

N
N

N

M3
M2

R

R3
R3

R4
R4

P
R2

M1

NN
N

N
N

N

M2M1

R

R3
R3

R4
R4

R2P

n



31 
 

This nomenclature was clearly inspired by the complimentary NC-porphyrins25, 

shown in Figure 1.27. 

 

 

Figure 1.27.   The structures of freebase tetraphenylporphyrin (left) and the internally 

protonated freebase N-confused tetraphenylporphyrin.  Illustration taken from reference 

25.   

  

None of these ligands have been prepared before.  So the challenge is many-fold.  First, 

the preparation of the ligands is required.  Second, the reactivity toward metals needs to 

be investigated with an aim to prepare mono- and bimetallic derivatives with low 

coordination numbers to ensure reactivity with incoming molecules.  Third, we will 

explore the possibility of forming metal-metal bonded species.  Lastly, the reactivity with 

small molecules H2 and CO2 with highly reactive variants will be pursued. 
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Chapter 2 

 

PREPARATION OF NEW P2N3 PINCER-TYPE LIGANDS AND THEIR METAL 

COMPLEXES. 

 

2.1 INTRODUCTION 

 

 The overall purpose of this work was to explore the possibility of preparing 

heterobimetallic complexes utilizing a hard-soft approach to ligand design intended for 

the preferential, site-specific binding of different metals.  The properties of these metal 

complexes toward the activation of small molecules, mainly CO2, will be explored.   

N3-pincer scaffolds such as shown in Figure 2.1 have been shown to support 

highly reactive metal complexes that are capable of mediating small molecule activation 

reactions and catalytic transformations.  The Chirik group made use of iron complexes of 

a redox-active  
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Figure 2.1.  Generic depiction of a metal complex of a redox-active pyridine(diimine), 

(PDI), N3- pincer ligand. 
 

pyridine(diimine) ligand (PDI) as catalysts for the intermolecular [2+2] cycloaddition of 

unactivated alkenes and cross cycloaddition of alkenes and dienes as regio- and 

stereoselective routes to cyclobutanes.26 Brookhart et al 27 also utilized similar Fe(PDI) 

catalysts that showed excellent selectivity and reactivity for the oligomerization of 

ethylene.  Recently, Bart and coworkers have shown that triply reduced PDI ligands help 

support unusual oxidative addition type chemistry at a uranium IV center, Figure 2.2.28 

 

 

Figure 2.2.  Small molecule activation reactions promoted by uranium complexes of 

triply reduced PDI ligands from reference 29.   

 

In most of the cited work with PDI ligands, bulky aryl groups, such as 2,6-xylyl, 

2,6-diisopropylphenyl, or mesityl are bound to nitrogen to provided steric protection and 

low coordinate metal centers.  We envisioned that replacing these aryls with 

phosphinoaryls would maintain steric bulk but would add the capacity for forming 

heterometallic complexes as in Scheme 2.1.  Unfortunately, ligands such as those in 

Scheme 2.1 are not found in the literature so the initial challenge was to prepare the 



34 
 

ligands.  Then, if successful, prepare and study the reaction chemistry of their metal 

complexes.   

 

 

Scheme 2.1.  Hypothetical Mono- and heterobimetallic complexes of P2N3-pincer ligands 

(Ms = soft metal; Mh = hard metal). 

 

2.2 RESULTS AND DISCUSSION. 

 

A.  P2N3-PDI Type Ligand.   

 

A number of methods were explored in an attempt to make a ligand such as that in 

Scheme 2.1 but most were unsuccessful, as outlined later.  The most promising route to a 

(PDI-P2N3) ligand scaffold is shown in Scheme 2.2.  

 

 

1A 1B 
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(b) 

Scheme 2.2.  The synthetic route toward the preparation of the (PDI- P2N3) ligand. Key: 

i) 0.55 eq Ag2SO4, 1.05 eq I2, EtOH, 4 hrs; ii) 1.1 eq HPPh2, 2 eq Cs2CO3, 35 mol% 

DMED, 0.5 mol% Pd(PPh3)4, toluene, ∆ 15 hrs; (b) Key:  iii) 30% w/w H2O2 in water, 

DCM, 5 minutes; iv) 2 eq SeO2, dioxane, ∆ 4 hrs; 3 eq aniline, 10 mol% p-

toluenesulfonic acid monohydrate, toluene, Dean-Stark conditions, ∆ 16 hrs;  v) 10 mol 

% p-toluenesulfonic acid monohydrate, toluene, Dean-Stark conditions.  

  

Commercially available 4-tert-butylaniline was iodinated at the 2 position to 

afford the iodo aniline precursor (1A) in modest yield that was used as the intermediate in 

the next step.  A palladium(0) catalyzed reaction between HPPh2 and 1A led to the 

isolation of a diphenylphosphino aniline precursor (1B) in good yield.  Oxidation of the 

precursor was found necessary to give a condensation reaction with the known 

diformylpyridine.30 Attempts to directly condense the diphenylphosphino-tert-butyl 

aniline precursor (1B), as well as the iodo aniline precursor (1A), directly onto 2,6-

diformyl or 2,6-diacetylpyridine were unsuccessful.  A summary of the attempted 

reactions of this type are shown in Figure 2.3. 

(PDI- P2N3) 
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Figure 2.3.  Summary of results from condensation reactions between diformyl- or 

diacetyl-pyridine and various anilines.  

 

The condensation of anilines onto the diformyl and diacetyl pyridine derivatives proved 

to be largely successful.  Incorporation of either an iodine or diphenylphosphino 

substituent at the 2 position of the aniline prior to condensation led to re-isolation of 

starting materials.  Condensation of the phosphine oxide version of 1B onto 2,6-

diformylpyridine was met with limited success.  The reported 52% yield was achieved 

once; the product is easily identified by its 1H NMR spectrum by the presence of a 

resonance at 8.3 ppm for the imine proton.  Unfortunately, the synthesis was not 

reproducible, for reasons that are not clear.  Preliminary work aimed at removing the 

oxygen atom from phosphine by various reductive pathways was unsuccessful, as either 

the imine portion of the ligand was also reduced (LiAlH4), or only one oxygen atoms was 

removed, or no reaction occurred.  Future work should be devoted to attempting to 
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reproduce the successful result as well as finding a way to reduce the oxidized phosphine.  

A promising strategy was found on a model system to prepare the phosphorus sulfide 

analogue and deprotect with diisobutylaluminum hydride (DIBAL-H) showing 

approximately 30 % conversion to the desired product.   

 

B.  H2(Fl-P2N3) Type Ligand. 

 

Owing to synthetic difficulties described above and the result of over-reduction, 

we turned our attention on preparing a pincer with saturated organoamine arms or to 

explore other scaffolds altogether.  Thus, for the former, the new ligand H2(Fl-P2N3) was 

prepared as outlined in Scheme 2.3. 
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Scheme 2.3.  The synthetic route toward the development of H2(Fl-P2N3).  Key: i) 0.55 

eq Ag2SO4, 1.05 eq I2, EtOH, 4 hrs; ii) 1.1 eq HPPh2, 2 eq Cs2CO3, 35 mol% DMED, 0.5 

mol% Pd(PPh3)4, toluene, ∆ 15 hrs; iii) 40 wt% KOH (aq), 2 eq p-toluenesulfonyl 

chloride, CH2Cl2, 0
◦C → room temp. 15 hrs; iv) 2.2 nBuLi, THF, 0◦C → room temp. 16 

hrs. 

 

Commercial pyridinedimethanol was converted to the ditosylate precursor (1C) in modest 

yield by a literature method.31  Deprotonation of the diphenylphosphino aniline precursor 

(1B) with nBuLi followed by introduction of the electrophile 1C gave the desired target 

ligand H2(Fl-P2N3) in modest yield after purification via column chromatography.  The 

necessity of column chromatography to purify 1A, 1B, and H2(Fl-P2N3) makes their 

isolation fairly time consuming; alternate purification methods would be beneficial and 

are being explored.    

A monometallic Pt(II) complex of H2(Fl-P2N3) has been successfully prepared 

and characterized.  That is, reaction of H2(Fl-P2N3) with Pt(EtCN)2Cl2 in CH2Cl2 led to 

1A 1B 

1C 

H2(Fl-P2N3) 
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isolation of [(Cl)Pt(H2{Fl-P2N3})]Cl·H2O·CH2Cl2, 2.1·H2O·CH2Cl2, as a pale yellow 

solid.  Complex 2.1·H2O·CH2Cl2 appears to be hygroscopic but otherwise air-stable in 

the solid state as well as in solution and no special precautions were used for its handling.  

X-ray quality single crystals of 2.1 were grown by slow evaporation of a concentrated 

CH2Cl2 solution.  A view of the structure of 2.1 is shown in Figure 2.4.  Here the ligand 

is bound to platinum(II) through two phosphorus and one amino nitrogen atom.  Platinum 

has a square planar geometry (sum of angles about Pt = 359.8◦) where the fourth site is 

occupied by a chloride.  The second chloride is a counter ion  

 

 

Figure 2.4.  The crystal structure of {[H2(κ
 2P, κ N-fl-P2N3)]PtCl}Cl·H2O·CH2Cl2, 2.1.  

Selected Bond distances (Å):  Pt1-P1 2.2138(8), Pt1-P2 2.2505(8), Pt1-N2 2.142(2), Pt1-

Cl1  2.3772(8).  Selected bond Angles (o):  P1-Pt1-P2 100.88(3), P1-Pt1-N2 84.72(7), 

N2-Pt1-Cl1 87.79(7), Cl1-Pt1-P2 86.44(3). 
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and is hydrogen-bonded to a hydrogen on the same amine that is bound to the metal and 

to a water molecule, presumably adventitious from the air or solvent.  There appears to be 

a vacant “pocket” near the two unbound N donors of the ligand that might be accessible 

to another small, hard metal ion.   

The solution characterization seems to parallel expectations based on the solid 

state structure.  The 1H NMR spectrum shows resonances in the normal range between 0 

and 9 ppm indicating that the Pt(II) d8 complex is diamagnetic, as expected.  The number 

of resonances is consistent with an asymmetric solution structure; there are more unique 

signals than would be expected for a symmetrically bound ligand.  In agreement with 1H 

NMR data, the 31P NMR spectrum of 2.1 shows two unique sets of doublet resonances 

(JP-P = 15.6 Hz) for the phosphorus atoms, observed at δP = 25.0 (P1) and -0.3 (P2) ppm 

respectively that have satellite resonances caused by coupling between the 195Pt and 31P 

nuclei with JP-Pt values of 1927 (P1) and 1647 Hz (P2).  The large difference in the 

chemical shifts of the phosphorus resonances (∆ ≈ 25 ppm) suggests that the P atoms are 

in vastly different chemical environments.  The P-P coupling constant of 15.6 Hz is 

consistent with both P atoms being bound to the Pt center in a cis configuration, as seen 

for a similar Pt complex prepared by Tasker et al 32 with asymmetric cis- bound 

phosphorus atoms in a square planar geometry.   

Future directions would involve inserting an additional hard metal into the vacant 

site of the platinum complex.  Future attempts to put Ti and Zr(IV) complexes as hard 

centers, followed by the formation of heterometallic complexes by binding Pt(II) or Ni(0) 

to the softer portion of the ligand would be useful. 
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C.  H2(R-P2N3) Type Ligand 

 

Finally, a different rigid, potentially dianionic P2N3 ligand H2(R-P2N3) was 

prepared (Scheme 2.4) in order to examine its ability to support heterometallic 

complexes.   
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Scheme 2.4.  The synthetic route toward the preparation of the H2(R-P2N3) ligand 

scaffold.  Key:  i) 1 eq N,N’-dimethylformamide dimethyl acetal, DMF, ∆ 3 hrs; ii) 1.1 

eq H2NNH2 ∙ H2O, EtOH, ∆ 2 hrs; iii) 1 eq NaH, 1.8 eq 1-fluoro-2-nitrobenzene, DMF, ∆ 

24 hrs; iv) 12 eq NH4Cl, 6 eq Fe, EtOH, H2O, ∆ 16 hrs; v) 2.2 eq nBuLi, 2 eq 

ClPPh2,THF, -78◦C → room temp. 16 hours.  
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The reaction of commercially available 2-nitroacetophenone and N,N’-

dimethylformamide dimethylacetal in DMF led to the clean formation of 2A in good 

yield.  Heating a solution of 2A and hydrazine monohydrate in EtOH led to a good yield 

of the N heterocyclic product 2B after purification via column chromatography.  

Deprotonation of 2A with NaH followed by heating with 1-fluoro-2-nitrobenzene in 

DMF for 24 hours gave 2C in good yield.  Conversion of the nitro groups of 2C to amino 

groups by treatment with NH4Cl and Fe powder led to isolation of 2D in 80% yield.  

Deprotonation of the amine protons with nBuLi followed by addition of chlorodiphenyl 

phosphine gave the desired ligand H2(R-P2N3) in modest yield after trituration in Et2O 

and subsequent filtration.  The overall yield was 30% over five steps (with the last step 

being the most problematic) and one purification by column chromatography.  Ideally, 

for widespread use in the inorganic community, one would like to decrease the number of 

steps, increase the yield, and eliminate purification by column chromatography 

altogether, which are areas of pursuit in future optimizations. 

Several monometallic (Zr, Pt, and Ag) complexes of H2(R-P2N3) have been 

prepared and partially characterized.  Treatment of H2(R-P2N3) with 1 eq of 

Pt(EtCN)2Cl2 in CH2Cl2 gave [{H2(R-P2N3)}PtCl]Cl·2CH2Cl2, 2.2·2CH2Cl2 as a 

precipitate.  Long colorless X-ray quality needle crystals were grown by mixing CH2Cl2 

solutions of reagents in a vial and leaving the resulting solution undisturbed for 2 days.  

The structure of 2.2·2CH2Cl2 is shown in Figure 2.5. 
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Figure 2.5. The crystal structure of complex 2.2·2CH2Cl2.  Selected Bond distances (Å):  

Pt1-P1 2.2991(8), Pt1-P2 2.3143(8), Pt1-N1 2.019(2), Pt1-Cl1 2.2862(8),.  Selected bond 

Angles (o):  P1-Pt1-P2 172.93(3), P1-Pt1-N1 86.02(8), N1-Pt1-Cl1 178.12(8), Cl1-Pt1-P2 

93.80(3). 

 

The Pt(II) ion has a square-planar coordination and forms a complex cation by binding to 

the ligand through two trans-spanning phosphorus atoms and the central pyrazolyl 

nitrogen that is trans- to the chloride ligand.  The Pt-P, Pt-N, and Pt-Cl bond lengths are 

in accord with expectations.  The terdentate κ2P,κ N binding mode gives a chiral helicoid 

conformation via folding of the two seven-membered chelate rings.  In actuality, the 

structure is disordered in a 2:1 ratio such as to interchange the C3 and N2 atoms (only the 

major component of the disorder is shown in Figure 2.5) giving a pseudo local 2-fold axis 

along the Pt-Cl bond. Hydrogen bonding between the N4-H to the chloride anion leads to 

polymer chains in the crystal packing.  In this complex, there does not appear to be a 

secondary binding pocket for an additional metal.   
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The solution characterization data also seems to agree with expectations based on 

the solid state structure.  The 1H NMR spectrum shows resonances in the normal range 

between 6 and 8 ppm indicating that the Pt(II) d8 complex is diamagnetic, as expected.  In 

agreement with 1H NMR data, the 31P NMR spectrum of 2.2·2CH2Cl2 shows two unique 

sets of doublet resonances (JP-P = 16.9 Hz) for the phosphorus atoms, observed at δP = 

32.6 (P1) and 27.3 (P2) ppm respectively that have satellite resonances caused by 

coupling between the 195Pt and 31P nuclei with JP-Pt values of 1936 (P1) and 1965 Hz (P2).   

A silver(I) complex of H2(R-P2N3) was prepared because it was envisioned that 

such complexes may be useful reagents for other metal derivatives.  Thus, the reaction of 

Ag(OTf) and 2 eq of H2(R-P2N3) in THF led to the isolation of [Ag{H2(R-

P2N3)}2](OTf), 2.3.  X-ray quality crystals were grown by slow vapor diffusion of Et2O 

onto a concentrated dichloroethane solution and the structure of 2.3 is shown in Figure 

2.6.   

 

 



45 
 

Figure 2.6.  The crystal structure of [Ag{H2(R-P2N3)}2](OTf), 2.3.  Selected Bond 

distances (Å):  Ag1-P1 2.5166(6), Ag1-P2 2.5170(6), Ag1-P3 2.5525(6), Ag1-P4 

2.4909(6) etc.  Selected bond Angles (o):  P1-Ag1-P2 113.52(2), P1-Ag1-P3 110.30(2),  

P2-Ag1-P3 96.60(2), P4-Ag1-P1 110.75(2), P4-Ag1-P2 111.84(2), P4-Ag1-P3 113.18(2).  

 

The Ag(I) ion has a tetrahedral AgP4 coordination geometry as a result pf the chelating κ 

2 P-coordination mode of each ligand.  The Ag-P distances are in line with those of 

[Ag(P(p-tolyl)3)2(salH)] (salH = deprotonated salicyclic acid).33 There are four intra-

molecular H-bonds N-H···N although not all of them are equivalent (acceptor atoms N4 

and N2 form one longer and one shorter H-bond each).  Thus, there appears to be binding 

pockets for the insertion of two hard metal ions into the N3 donor positions.  Future work 

should be devoted to attempting to bind additional metal ions into these sites.  Moreover, 

the complete characterization of this complex and of the mono-ligated derivative, 

[Ag{H2(R-P2N3)}](OTf), if it can be prepared, should be obtained. 

 Finally, Zr(NMe2)2(κ 5-R-P2N3), 2.4, was prepared by the combination of 

Zr(NMe2)4 and H2(R-P2N3) in a 1:1 ratio in deuterated benzene under an inert 

atmosphere.  The yield has not yet been quantified because the air-sensitivity of the 

complex complicated an initial attempt (see below).  Nonetheless, X-ray quality crystals 

of 2.4 (the structure is shown in Figure 2.7) precipitated out of an undisturbed reaction 

mixture (over 24 hours).   
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Figure 2.7. The crystal structure of Zr(NMe2)2(R-P2N3), 2.4.  Selected Bond distances 

(Å):  Zr1-P1 2.7387(7),  Zr1-P2 2.7638(7),  Zr1-N1 2.358(2),  Zr1-N3 2.172(2),  Zr1-N4 

2.173(2), Zr1-N5 2.073(2), Zr1-N6 2.063(2).  Selected bond Angles (o):  P1-Zr1-P2 

129.45(2), N1-Zr1-P1 114.96(6), N1-Zr1-P2 115.59(6), N3-Zr1-P1 37.89(6), N3-Zr1-P2 

167.34(6), N3-Zr1-N1 77.07(8). 

 

In this complex, all potential donor atoms are bound to zirconium.  The metal has 

a very distorted pentagonal-bipyramidal ZrN5P2 coordination environment. The 

equatorial pentagonal ZrN3P2 is practically planar (sum of angles = 360.05 o) but the axial 

N5-Zr-N6 unit is bent (135.22 o) where the dimethylimino ligands are inclined toward the 

biggest opening (two cis- P atoms) in the equatorial plane.  The pyrazolyl ring is rotated 

by ~30° out of the plane relative to its neighboring benzene (and the pentagonal ZrN3P2 

plane).  At first glance, this structure suggests that the P donor atoms might not be 

available to bind another metal because they are bound to Zr.  However, Nagashima and 
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co-workers showed through x-ray crystallography and 1H NMR spectroscopy that the 

phosphines in a similar complex, (Ph2PNiPr)3ZrCl, dissociate from the metal center at 

room temperature.34 Treatment of the (Ph2PNiPr)3ZrCl complex with CoI2 led to isolation 

of the bimetallic complex shown previously (Chapter 1, Figure 1.16).  These findings 

give promise that complex 2.4 may serve as a viable metalloligand precursor for the 

assembly of bimetallic complexes.   

The free ligand shows chemical shifts for the P atoms at δP = 31.1 and 29.2 ppm 

in benzene-d6.  These resonances disappear entirely and are replaced by a new set of 

resonances found at δP = 34.7 and 4.8 ppm respectively upon the addition of 1 eq of 

Zr(NMe2)4.  The large difference in the observed chemical shifts suggests that the P 

atoms are in vastly different chemical environments.  It is likely that only one of the P 

atoms is bound to Zr in solution.  As indicated earlier, attempts to isolate this product 

outside of the glovebox without an inert atmosphere led to decomposition as determined 

by the 31P NMR spectrum that was different than the in-situ prepared sample and by the 

presence of an insoluble solid.  Thus despite having such a high coordination number, the 

complex is quite reactive, another observation that provides hope that the ligand arms are 

available for further reaction.  Future work should be devoted to trying to isolate and 

fully characterize the zirconium precursors, this new complex, other heterobimetallics 

outlined in chapter 4, and to explore their reactivity with CO2 and H2.  

  

 2.3 CONCLUSIONS 
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 A number of novel P2N3 pincer type ligands have been successfully prepared and 

characterized including the H2(Fl-P2N3) and the H2(R-P2N3) ligands.  The necessity for 

column chromatography limits the scale that these ligands can be prepared on.  That fact, 

along with the observation that these ligands are sensitive to phosphine oxidation makes 

this class of ligands difficult to work with.   

 A number of monometallic complexes with the P2N3 ligands have been 

successfully prepared and partially characterized.  The metal complexes [(Cl)Pt(H2{Fl-

P2N3})]Cl·H2O·CH2Cl2, [Ag{H2(R-P2N3)}2](OTf), and Zr(NMe2)2(κ
 5-R-P2N3) all appear 

to have additional vacant sites available to bind a 2nd metal and therefore may show 

promise as metalloligand precursors toward heterobimetallic complexes.  Initial attempts 

to prepare bimetallic complexes from these precursors have all been unsuccessful as these 

complexes appear to be quite reactive and sensitive to decomposition.  Great care would 

need to be taken to ensure inert atmosphere conditions throughout the syntheses of these 

complexes in future experiments.   
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Chapter 3 

 

IRON(II) COMPLEXES OF N-CONFUSED TRIS(PYRAZOLYL)METHANE, 

NC-TPM, LIGANDS 

 

3.1 INTRODUCTION 

 

 As stated in Chapter 1 we identified N-confused tris(pyrazolyl)methanes, nc-

Tpms, as candidates for the development of heterobimetallic complexes.  Specifically, 

since iron complexes have shown promise for the activation of CO2 or H2 in both 

synthetic and biological systems, an investigation into iron complexes of nc-Tpms Chart 

3.1 (A and B) was initiated.  Here the  
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Chart 3.1.  (A) Homoleptic and (B) heteroleptic iron(II) complexes of N-confused 

tris(pyrazolyl)methanes, nc-Tpm’s (PG = Protecting group) and comparison of the latter 

with (C) traditional tris(3,5-diorganopyrazol-1-yl)methanes, TPMs.  

 

protecting groups (PG) may be removed before or after iron complexation, as needed, to 

give a second site for metal binding.  Ideally, heteroleptic iron(II) complexes would serve 

as starting materials for heterobimetallics.  However, heteroleptic iron scorpionates (Tpm 

or Tp) can only be isolated if sufficiently bulky groups are located at the R3 position of 

the pyrazolyls.  Otherwise, homoleptic complexes are unwittingly obtained regardless of 

the ratio of reagents.  Of importance, both [Fe(Tpm*)2]
2+ 35 (Tpm* = tris(3,5-

dimethylpyrazol-1-ylmethane) and [Fe(Tpm*)(H2O)3]
2+ 35  have been isolated but Fe(Tp* 

= tris(3,5-dimethylpyrazol-1-ylborate)(H2O)3]
+ is unknown because preparative reactions 

only give Fe(Tp*)2.
36   The nc-TPMs have never been prepared before so it is unknown 

what steric threshold will need to be crossed before heteroleptic derivatives can be 

obtained.  Thus, the first goal of this work was to prepare examples of nc-Tpm’s and 

determine their coordination chemistry with iron(II).  The characterization of homoleptic 

iron(II) complexes will facilitate their identification in reactions designed to prepare 

heteroleptic derivatives.  Secondly, the homoleptic derivatives may also be important for 

advancing the understanding of ligand design on spin-crossover (SCO) behavior, 

common to other scorpionates.35   

Spin crossover (SCO) complexes have received much interest in recent years due 

to their potential applications as molecular switches.37 Useful molecular switches require 

a change in the electronic properties of a material in response to an external perturbation 
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of some kind (thermal, light, pressure, etc…).  Spin-crossover complexes are one such 

example of molecules that exhibit this unique behavior.  SCO behavior may sometimes 

be observed in octahedral transition metal complexes with d4-d7 electron counts (though 

d6 seems to be the most widely studied) if the ligand has an intermediate ligand field 

strength (Δo), comparable to the pairing energy, or the energy penalty of having two 

electrons paired up in the same orbital.  The relatively large number of d6 SCO systems 

versus other electron counts is due in part to the stability of the low spin (LS) form of 

complexes and the maximum change in magnetic moment on transition to the high spin 

(HS) state that gives rise to a large increase in entropy, as shown in Figure 3.1.  The 

difference in magnetic moment between the two states allows for easy  

 

 

Figure 3.1.  For octahedral Fe(II), the low spin (LS) configuration is diamagnetic, or has 

no unpaired electrons while the high spin (HS) configuration has 4 unpaired electrons.  

SCO occurs when an external perturbation causes a switch in the spin state from LS to 

HS or vice versa.  Δ0 = the ligand field strength. 

 

S = 2 S = 0 
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detection of SCO events using a number of methods including the Evans NMR method 38 

or simply using a magnetometer.  Along with a change in the magnetic moment are a 

number of other pronounced differences between the properties of complexes found in 

each state. 

Comparison of the x-ray crystallographic data of HS and LS complexes shows 

that the Fe-N bonds in LS Fe(II) complexes are about 10% shorter (1.8 to 2.0 Å) than 

those observed in HS systems (2.0 to 2.2 Å).  This can be explained by the fact that in the 

high spin state, electrons are populating the eg* antibonding orbitals which decreases the 

overall bond order and leads to longer bond lengths.37   The Mössbauer spectra of each 

state are very different as well due to the differences in the electron density of the nuclei 

of the HS and LS states.  These differences lead to measurable changes in isomer shift 

and quadrupole splitting.39   Infrared (IR) or Raman spectroscopy can also be used to 

observe the differences of the bond vibrations of the two states.40  Electronic 

spectroscopy can be used to distinguish spin states of iron(II) complexes.41  If there are 

no charge transfer bands, then LS complexes have two higher energy d-d bands that gives 

rise to purple or dark red coloration whereas HS complexes have a single low energy d-d 

band in the NIR region rendering the complex colorless or pale blue.  Finally, the 

differences in spin states can also be measured with Differential Scanning Calorimetry 

(DSC).  Heat is taken up upon SCO from the LS to HS state and evolved when returning 

to the LS state.42   DSC can be used to determine the ∆H and ∆S of the SCO event.40 

 A wide range of perturbations can induce spin crossover including light 

irradiation or changes in pressure (increasing pressure favoring the smaller LS state).  

The most common perturbation studied is the effect of inducing a spin transition by a 
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change in temperature.  The low spin state is favored enthalpically due to better bonding 

and higher crystal field stabilization energy so it is more stable at lower temperatures.37   

The high spin state is favored entropically due to greater electronic and vibrational 

contributions so it is more stable at higher temperatures.37  

 As shown in the previous paragraphs, there are many ways to measure the spin 

state of a SCO complex.  For temperature induced spin state transitions, the temperature 

can be followed plotted against the magnetic moment in order to determine the 

temperature of the SCO event, called the T1/2.  The T1/2 is defined as the temperature at 

which the ratio of HS to LS states is 1:1 (or 50/50), shown in Figure 3.2. 

 

 

Figure 3.2.  Schematic illustrations of the 5 main types of SCO events: a) gradual but 

complete  b) abrupt  c) abrupt with thermal hysteresis  d) two-step  e) gradual but 

incomplete.  The x axis is temperature and the y axis is the HS fraction (ϒHS).  T1/2 is the 

temperature at which the ratio of HS to LS states is (1:1).  Illustrations are taken from 

reference 37.  
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SCO complexes exhibit a variety of SCO profiles as shown in Figure 3.2.  The control of 

temperature profiles of the SCO event is currently a hot research topic, including what 

parameters influence the position of T1/2 or the presence and width of a hysteresis loop.43   

It is important to note that SCO behavior can be observed either in the solution (usually 

gradual) or the solid state.  In the solid, different solvents or crystal packing (dictated by 

ion shape, charge, guest molecules, or simply noncovalent interactions in different 

polymorphs) can substantially impact SCO behavior.43 

 Iron(II) scorpionate complexes with Tpm ligands have been shown to exhibit 

SCO behavior.  Reger and associates synthesized the complexes {Fe[HC(3,5-

Me2pz)3]2}(BF4)2 (1) and {Fe[HC(pz)3]2}(BF4)2 (2).35  It was found that (1) is HS in both 

the solid state and in solution at 298 K but rapidly changes over to a 50:50 mixture of HS 

and LS states below 206 K.35  It was noted that the mixture does not continue to change 

its composition as the temperature is lowered below 200 K and no hysteresis was 

observed upon cooling and heating.35 In contrast, (2) was found to be LS at 298 K in the 

solid state and gradually changed over to the HS state upon heating and was found to be 

completely HS at approximately 470 K.  In solution, both HS and LS forms were 

observed between the temperature range of 223-303 K, with the percentage of HS forms 

increasing with the temperature.35 With this in mind, the preparation of nc-Tpms and 

their iron complexes was initiated. 

 

3.2. Results and Discussion. 
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A. Bn-nc-Tpm Type Ligand. 

 

 The synthetic route to the new nc-Tpm ligands is shown in Scheme 3.1. The neat 

 

 

Scheme 3.1.  Synthetic route toward the preparation of the new nc-Tpm ligands.  Key: i) 

N,N’-dimethylformamide dimethylacetal, neat, ∆ at 66◦C, 16 hours; ii) H2NNH2 ∙ HCl, 

10% (w/w) NaOH (aq), 4 hrs; iii) 1.1 eq NaH, 1.1 eq benzyl bromide, THF, 16 hrs; iv) 3 

eq H-Pz (or 3,5-dimethyl-1H-pyrazole), 5 mol % p-toluene sulfonic acid monohydrate, 

toluene, distillation of by product (MeOH), 30 minutes; v) DMSO, KOtBu, O2 (g), 

quenched with HCl and K2CO3, THF, 20 minutes.  R = H, Me.  
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reaction of commercially available methylglyoxal-1,1-dimethylacetal with N,N’-

dimethylformamide dimethylacetal gave the pure acrolein intermediate (3A) after 

distillation in fairly good yield.  This reaction suffered no setback in yield even when 

scaled up to a 200 mmol scale.  A fair yield of pure pyrazole 3B was formed in accord 

with the literature44 by reacting 3A with hydrazine hydrochloride in a 10 % (w/w) 

aqueous NaOH solution for 4 hours.  This product could also be synthesized very easily 

on a large scale (200 mmol) as the only purification necessary is by standard workup 

procedures, extracting with Et2O to give the pure product.  N-protection by deprotonation 

of the pyrazole 3B with NaH in THF followed by reaction with benzyl bromide gives 

impure 3C (after removing solvent and passing through a plug of silica to remove salts) 

that can be used successfully in the next step of the reaction.  If desired, 3C can be 

isolated in modest yield after purification by column chromatography.  Active distillation 

of solvent and methanol from a mixture of 3C, catalytic pTsOH·H2O and either pyrazole 

(H-Pz) or 3,5-dimethyl-1H-pyrazole (H-Pz*) over the course of 30 minutes gave the 

ligands (Bn-nc-Tpm) and (Bn-nc-Tpm*) in good (72 %) to excellent (94 %) yields 

respectively.  Unfortunately, the use of column chromatography was required to purify 

these ligands on this step.  

N-benzyl deprotection to give H-nc-Tpm, has proven more difficult than was 

anticipated.  Deprotection by bubbling O2 through a solution of (Bn-nc-Tpm) in DMSO, 

THF, and KOtBu led to the isolation of H-nc-Tpm in poor yield.  Unfortunately, the yield 

is not high.  Since the starting material seems to be consumed (TLC monitoring), issues 

other than incomplete reaction are responsible for the lower yield of this step.  One 

possible origin of the modest yield arises from the product having partially soluble in 
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water, making it difficult to separate the product from DMSO; much of the product 

appears to be in the water layer.  The method of quenching with HCl, then K2CO3, and 

removal of H2O by vacuum distillation followed by extraction with acetone (to separate 

from KCl) and recrystallization from Et2O (to separate from DMSO) has given the 

highest yield so far.  A few attempts at benzyl-deprotection by using Pd0 catalyzed 

hydrogenation in mixtures of MeOH and HCl (aq) only gave back unaffected starting 

materials.   

 

B. Tos-nc-Tpm Type Ligand. 

 

Due to synthetic difficulties with the deprotection of the benzyl group from the 

Bn-nc-Tpm ligand, another approach toward the isolation of the deprotected H-nc-Tpm 

ligand was initiated.  The use of another protecting group, a tosyl group, was 

investigated, as shown in Scheme 3.2. 
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Scheme 3.2.  Alternative route to H-nc-Tpm ligand.  Key: i) 3 eq NaOH, 1 eq TosCl, 

DCM, 16 hrs; ii) 5 mol% trifluoroacetic acid, THF, H2O, 16 hrs; iii) 3 eq. NaH, 3 eq. H-

Pz, 1.5 eq. SOCl2, 5 mol% CoCl2, THF, 16 hrs; iv) 5M NaOH (aq), THF, 10 min.  

 

The previously described pyrazole precursor 3B was deprotonated by NaOH and 

reacted with p-toluenesulfonyl chloride (TosCl) to give the tosyl protected product 3D in 

fair yield.  The use of column chromotagraphy to purify the product can be avoided by 

triturating with diethyl ether and subsequent filtration, allowing for large scale quantities 

to be produced, albeit in lower yield (51%).  Unfortunately, when the tosyl protected 

pyrazole derivative was subjected to the same conditions used to form the Bn-nc-Tpm 

derivatives described in Scheme 3.1, a mixture of unwanted side products was observed, 

including TsPzCH(Pz)(OMe) and oligo- and polymeric species from the self-

condensation of HPzCH(OMe)2.  To circumvent this problem, the compound 3D was 

treated with trifluoroacetic acid and water in refluxing THF in an acid catalyzed 

3B 
3D 

3E 

3F 
H-nc-Tpm 
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condensation reaction, eliminating methanol and forming the aldehyde precursor 3E in 

good yield and with minimal purification needed (recrystallization from boiling heptane). 

The tosyl protected nc-Tpm derivative can then be prepared by treatment of 3E 

with SOPz2 formed in situ by the reaction of H-pyrazole and sodium hydride followed by 

addition of thionyl chloride (SOCl2) to give compound 3F is good yield and with minimal 

purification needed (recrystallization from boiling heptane).  Tosyl deprotection was 

achieved more readily than was the case with the benzyl group by reacting compound 3F 

with aqueous NaOH in THF to give the target ligand H-nc-Tpm in modest yield.   

 

C. Fe(II) Complexes of Nc-Tpm Ligands. 

 

Homoleptic iron(II) complexes of the various nc-Tpm’s have been prepared by 

mixing THF solutions of a ligand (2 eq) with that containing an iron (II) salt (1 eq) 

followed by recrystallizing the precipitate by vapor diffusion of Et2O into CH3CN 

solutions of the complex.  Scheme 3.3 summarizes the results of the various reactions.  

The reaction between (Bn-nc-Tpm) with either [Fe(H2O)6](BF4)2 or Fe(OTf)2 gave 
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Scheme 3.3.  Preparation of various iron(II) complexes of Nc-Tpm ligands. The solvent 

system for L = H-nc-Tpm in (a) is different, as explained in the main text. 

 

[Fe(Bn-nc-Tpm)2](X)2, (3.1)(X = BF4 or OTf)2, as appropriate.  Similarly, the use of 3,5-

dimethylpyrazolyl variants instead of unsubstituted pyrazolyls gave [Fe(Bn-nc-

Tpm*)2](X)2, (3.1*)(X = BF4 or OTf)2.  The reaction between Tos-nc-Tpm with 

[Fe(H2O)6](BF4)2 gave [Fe(Tos-nc-Tpm)2](BF4)2.  Each of the five above complexes is a 

colorless paramagnetic solid at room temperature.  In contrast, the crystalline complexes 

[Fe(H-nc-Tpm)2](X)2·CH3CN (3.2)(X = BF4 or BPh4)·CH3CN are pink diamagnetic 

solids at room temperature.    

The SCO behavior of the compounds changes with the groups bound to the 

“confused” pyrazolyl, by the substituents on the other pyrazolyls, and with the anion 

type.  For example, the complex [Fe(Bn-nc-Tpm)2](BF4)2·2CH3CN  is colorless at room 

temperature but becomes dark pink upon cooling to 77 K.  In contrast, the complex 
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[Fe(Tos-nc-Tpm)2](BF4)2, (3.3)(BF4)2 remains colorless at all temperatures.  The average 

Fe-N bond distance recorded at 100 K is 2.215 Å, consistent with a high spin iron(II) 

center.   

The solid state structure of [Fe(Bn-nc-Tpm)2](BF4)2·2CH3CN was determined at 

high and low temperature (Figure 3.3) which verified spin crossover behavior.  The 100 

K structure displayed average Fe-N bond  

 

 

Figure 3.3.  Left: View of the structure of (3.1)(BF4)2·2CH3CN  at 100 K. Center: 

Photographs of crystals at 240 K and 100 K and list of bond distances and angles.  Right: 

Overlays of dications at high temperature (purple) and low temperature (pale blue).  

 

distances of 1.984(1) Å, consistent with low-spin iron(II).  For instance, the LS complex 

{Fe[HC(pz)3]2}(BF4)2 prepared by Reger et al 35, has an average Fe-N bond length of 

1.972 Å.  The 240 K structure of (3.1)(BF4)2·2CH3CN  had substantially longer Fe-N 

bonds (2.14(1) Å) and slightly more twisted pyrazolyl rings (FeN-CpzCmeth torsion angle 

3.98o) than the LS structure (3.85o), in line with expectations of a high spin iron(II) 
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center.  For example, the {Fe[HC(pz*)3]2}(BF4)2 complex (pz* = 3,5-dimethylpyrazole), 

also prepared by Reger 35, has an average Fe-N bond length of 2.170 Å at room 

temperature.   

Of further note, the dication is positioned on a crystallographic inversion center so 

that the benzyl groups are oriented outwards in a trans- geometry.  There appeared to be 

two crystal types in the bulk sample, the needles used for X-ray diffraction and thin 

square plates (about 50%) that were too thin for single crystal X-ray diffraction; the 

plates are likely the cis- isomer.  The crystal structure also has channels along the z- axis 

that are filled with the acetonitrile solvate molecules. The relative stability of the crystal 

solvate may be attributed to C-H…F interactions found within the channels though it is 

important to note that elemental analysis confirms that the solvent molecules are removed 

under vacuum.  

Analysis of the 1H NMR spectrum of (3.1)(BF4)2 at room temperature shows that 

the complex is paramagnetic (HS) since broad resonances were observed over a large 

chemical shift range from 50.1 to -41.8 ppm, consistent with other paramagnetic HS 

Fe(II) complexes.35  The solution magnetic moment (μeff) μeff = 7.07 μB measured by the 

Evans method 38 is significantly higher than the expected values (in the 4.9-5.5 μB range) 

for HS species with orbital contribution to magnetic moment. 

In contrast to the above, [Fe(Bn-nc-Tpm)2](OTf)2 , (3.1)(OTf)2, does not change 

color on cooling to 77 K, it remains colorless (or pale yellow).  Single crystal x-ray 

diffraction of (3.1)(OTf)2 at 100 K shows an average Fe-N bond distance of 2.184 Å, 

consistent with HS Fe(II).  This is an interesting result considering that 
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(3.1)(BF4)2·2CH3CN was low spin (Fe-N avg. 1.984 Å) at 100 K.  These data show that 

the identity of the counterion and/or the solvate molecules can have dramatic effects on 

the SCO properties of the complexes.  

Complexes with bulkier ligands, [Fe(Bn-nc-Tpm*)2](X = BF4 or OTf)2, 

(3.1*)(OTf)2, crystallized as paramagnetic, colorless solids without solvate molecules.  

Single-crystal x-ray diffraction data at 100 K show that these complexes are HS 

regardless of temperature with average Fe-N bond distances of 2.171 (X = BF4) and 

2.175 Å (X = OTf).  It is noteworthy that the complex {Fe[HC(3,5-Me2pz)3]2}(BF4)2 was 

HS at 298 K by magnetic, 1H NMR and crystallographic (2.170 Å) studies but gave 50% 

SCO (with half of the metal sites converting to the LS state at low temperature) as a 

result of a phase transition at 206 K.35  As above, there were two types of crystals in each 

sample, one type suitable for single crystal diffraction (which was solved) and one that 

was unsuitable.  As shown in Figure 3.4, the structurally- determined sample had cis-

[Fe(Bn-nc-Tpm*)2]2+ dications.  Presumably, the other half of the crystals contain trans- 

isomers. 
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Figure 3.4.  The structure of a cis-[Fe(Bn-nc-Tpm*)2]2+ dication. 

 

The solvent for the syntheses of iron(II) complexes of (H-nc-Tpm) was slightly 

different than the above four “protected” N-confused scorpionates.  The complex [Fe(H-

nc-Tpm)2](BF4)2 , (3.2)(BF4)2, was prepared by dissolving (H-nc-Tpm) in acetone and 

cannula transferring the contents to an acetone solution of half an equivalent of 

[Fe(H2O)6](BF4)2.  Upon the addition of [Fe(H2O)6](BF4)2 a pink solution instantly 

formed.  After some time, the solvent was removed by vacuum distillation and rinsed 

with acetone to give a pink solid in modest yield.  Exhaustive attempts to grow single x-

ray quality crystals using a variety of solvent systems were unsuccessful, as extremely 

small, twinned, crystals were obtained in all cases.  These crystals turned colorless at 

about 370 K (and back to pink on cooling, similar to the temperature reported for FeTp2
 35 

or [Fe(Tpm)2](BF4)2.
35   In order to gain structural information, the tetrafluoroborate 
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counter ion (BF4) was interchanged with the tetraphenylborate (BPh4) anion by reaction 

of (3.2)(BF4)2 with excess NaBPh4 in water followed by removal of solvent and 

crystallization from Et2O/CH3CN, as above.  In this way, [Fe(H-nc-Tpm)2](BPh4)2, 

(3.2)(BPh4)2, was isolated in low yield as a colorless solid powder that turned pink on 

cooling to 77 K.  However, after recrystallization from CH3CN (Et2O vapor diffusion) x-

ray quality deep pink crystals of (3.2)(BPh4)2·2CH3CN were obtained.  A portion of the 

100 K crystal structure of (3.2)(BPh4)2·2CH3CN is shown in Figure 3.5.  Here, the 

average Fe-N bond distances are found to be 1.962 Å for LS iron(II).  

 

 

 

Figure 3.5.  A portion of the 100 K structure of (3.2)(BPh4)2·2CH3CN showing disorder 

of one of the nc-Tpm units (left).   
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These distances are slightly shorter but comparable to Reger’s 35 LS 

tris(pyrazolyl)methane complex (1.972 Å).  In (3.2)(BPh4)2·2CH3CN one of the nc-Tpm 

units is disordered over three positions such as to give a statistical mixture of cis- and 

trans- isomers in the solid state.  Interestingly, the weakly hydrogen bound CH3CN 

molecule is fully occupied, giving an indication of the weakness of the CN···H 

interactions.  The thermal behavior of these crystals has not yet been investigated but is 

clearly different than the isolated powder presumably due the solvate molecules in the 

latter.  More investigation into this system is warranted.  In CD3CN, the 1H NMR 

spectrum of (3.2)(BPh4)2·2CH3CN gives all resonances in the normal region of the 

spectrum (7.3 – 6.7 ppm) verifying that the complex is diamagnetic (LS) at room 

temperature in solution. 

To gain more information about the magnetic behavior of the Fe(II) Nc-

scorpionate complexes, samples were sent out to be interrogated by SQUID 

magnetometry.  A plot of the variable temperature magnetic behavior of (3.2)(BF4)2 is 

shown below in Figure 3.6.  
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Figure 3.6: Variable temperature magnetic moment for [Fe(H-nc-Tpm)2](BF4)2 from 

SQUID magnetometry measurements. 

 

The plot shows that (3.2)(BF4)2 is completely low spin Fe(II) at 200 K (0.7 µB) and 

gradually begins SCO at higher temperatures.  The sample is nearly fully high spin at 400 

K (high T limit of the instrument) and has an estimated T1/2 (with 50% high spin) at about 

330 K.  The value of T1/2 = 330 K is somewhat lower than that of Reger’s 

[Fe(Tpm)2](BF4)2 
35 with a T1/2 = 380 K. 
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 For comparison, [Fe(Tos-nc-Tpm)2](BF4)2 is high spin at all temperatures so there 

are no SCO events between 0 and 300 K, as shown by the magnetic data of this complex, 

shown in Figure 3.7.  

 

 

Figure 3.7:  Variable temperature magnetic data for [Fe(Tos-nc-Tpm)2](BF4)2. 

 

A plot of the spin crossover behavior of a solid sample of (3.1)(BF4)2 ·2 CH3CN 

(that was crystallized, decanted, and dried under a stream of N2 to prevent solvent loss) 

over the temperature range of 2 to 300 K is shown in Figure 3.8.  
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Figure 3.8: Variable temperature magnetic data for [Fe(Bn-nc-Tpm)2](BF4)2 ·2 CH3CN. 

 

The plot shows that (3.1)(BF4)2 ·2 CH3CN is high spin between the temperature ranges of 

about 175 and 300 K with µeff = 5.1 µB.  The sample undergoes a gradual spin state 

change below 175 K and reaches a minimum effective moment of µeff = 1.67 µB at 60 K.  

The plot clearly demonstrates the SCO behavior, in agreement with the previous 

crystallographic and visual data discussed.   
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D. Future work. 

 

As mentioned earlier, [Fe(Tpm*)(H2O)3}(BF4)2  has been prepared by Reger 35, 

initially observed as a side product in the development of [Fe(Tpm*)2](BF4)2 complexes 

(where they noted that this result was promoted when the Fe(BF4)∙6H2O reagent had been 

exposed to air prior to use).  Reger complexes also showed the heteroleptic complex 

could be fully converted to the homoleptic complex by treating the former with additional 

ligand.35 This observation led the Murray group to make extensive use of the 

tris(aqua)iron(II) Tpm* complex as a starting material for large numbers of mixed 

scorpionate systems.45 The reactions of equimolar ratios of nc-Tpm’s with iron salts will 

be pursued in attempts to make heteroleptic species.  Clearly increasing the steric bulk 

around the pyrazole periphery to iPr, Ph, tBu, or Mes would help this line of investigation 

in determining what level of steric hindrance would be required to prevent to formation 

of the homoleptic complexes. 

  

3.3 CONCLUSIONS 

 

 Two successful routes toward the preparation of the novel H-nc-Tpm ligand have 

been developed.  The first route (Scheme 3.1) utilizes an N-benzyl protecting group that 
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has been found to be difficult to remove under mild conditions.  Harsher conditions were 

required to remove the benzyl group and the product was difficult to separate from the 

reagents needed, leading to low yield of the ligand.  These complications, along with the 

need for column chromatography throughout the synthesis makes this route less than 

ideal for widespread use in the inorganic community. 

 The second route (Scheme 3.2) utilizes a tosyl protecting group that has been 

found (as expected) to be considerably easier to remove under milder conditions.  The 

synthesis of H-nc-Tpm through this route avoids the use of column chromatography 

altogether, allowing for large scale preparation of this ligand with relative ease.  The 

intermediates along the path appear to be air and moisture stable as no special precautions 

were taken while handling them without any signs of decomposition.   

 A number of homoleptic Fe(II) Nc-Tpm metal complexes have been successfully 

prepared and characterized.  The complex [Fe(H-nc-Tpm)2](BF4)2 was shown by various 

methods to have a LS Fe(II) center at low temperatures with gradual but incomplete SCO 

behavior upon warming to 400 K.  In contrast, the complex [Fe(Tos-nc-Tpm)2](BF4)2 was 

shown to be HS Fe(II) regardless of temperature, highlighting that even the addition of a 

single bulky substituent to the Tpm scaffold has a pronounced effect on the SCO 

behavior observed.   

The complex [Fe(Bn-nc-Tpm)2](BF4)2 ·2 CH3CN was shown to undergo SCO 

behavior upon cooling to 77 K by a number of methods.  A search of the literature reveals 

that throughout numerous studies on Fe(II) scorpionates, those with substituents larger 

than methyls have never shown SCO behavior which has recently been summarized 
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nicely “… any substituents in the 3-position that are much larger than a methyl destroy 

any hope of observing spin state crossover behavior and essentially lock the complex into 

the HS form”.46  As far as we know, this is the first example of SCO behavior in a 

scorpionate that has a pyrazolyl substituent larger than a methyl proximal to the metal 

center.  This ligand design may open the door synthetically to a wealth of nitrogen 

protection/deprotection reactions that should alter the electronic and steric properties 

about the metals first and second coordination sphere.    
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Chapter 4 

 

FUTURE WORK 

 

4.1 Future Work 

 

Some target ligand scaffolds containing both hard and soft ligand donor sites for 

the preparation of bimetallic complexes have been prepared and characterized H2[Fl-

P2N3] and H2[R-P2N3]).  Monometallic complexes demonstrating the binding modes of 

both of the sites have been prepared and partially characterized.  A short-term goal would 

be to prepare bimetallic complexes by reacting Zr(NMe2)4 with {[H2(κ2P, κ N-Fl-

P2N3)]PtCl}Cl·H2O·CH2Cl2, (2.1).  

For other systems, one can envision four different approaches to make 

heterometallic derivatives.  The first is to bind a hard metal to the hard N3 donor site and 

isolate the complex before attempting to bind a soft metal to the soft P2 donor site.  The 

second approach is to reverse the order and bind the soft metal before the hard one.  

Another approach would be to attempt the self-assembly of the metals to their respective 

sites.  In other words, both metal reagents would be added to the same pot along with the 

ligand.  A fourth strategy would be to bind the same metal in both sites and then attempt 
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trans-metalation to interchange one of them.  All of these approaches will need to be 

explored.   

The idea behind the ligand scaffold containing hard and soft donors is to bind 

hard and soft metals respectively.  Ideally, these metals would be 1st row transition metals 

as they are cheaper, more abundant, and safer to handle than their 2nd and 3rd row 

counterparts.  Sadighi and coworkers 47 showed that bulky N-heterocyclic carbene 

supported Cu(I) boryl complexes have been known to perform the catalytic reduction of 

CO2 to CO with the addition of stoichiometric quantities of an oxygen acceptor [(Bpin)2].  

As discussed previously in chapter 1, nature is believed to utilize low valent Fe and Ni 

metal ions to facilitate CO2 reduction through bimetallic cooperativity.5  A combined 

theoretical and experimental study performed by Nakamura and associates 48 implicated 

that a Zn hydride intermediate may be responsible for CO2 reduction to formic acid 

(under hydro thermal conditions).  Thomas and coworkers 19 demonstrated the utility of a 

bimetallic Zr/Co catalyst for the reduction of CO2 to MeOH, as was previously discussed 

in chapter 1.  Thus, a good starting point for the formation of bimetallic complexes would 

be with combinations of these metals. 

This next goal would be to prepare metal complexes of the NC-scorpionates with 

metal salts or halides to form MLX complexes where X = counter anion.  

Tris(pyrazolyl)borate complexes are known to form sandwich complexes (ML2, L = 

polypyrazolylborate) which may not be very useful for small molecule activation 

chemistry.  The MLX compounds can be unstable toward ligand redistribution reactions 

to form ML2 and MX2 compounds if steric bulk is insufficient.49  Thompson and 

coworkers 50 studied a series of [HnB(3-Rpz)n-1]
- metal complexes (R = Ph, tBu) and 
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found that it did not appear to be possible to make ML2 sandwich complexes with 1st row 

transition metals when tBu or Ph groups were located at the 3 position of the pyrazoly 

rings.50 The addition of potassium salts of the tris(pyrazolyl)borate ligands with tBu or Ph 

groups at the 3-positions to metal dihalides (MX2, M = Co, Ni, Zn) yielded simple MLX 

compounds without any evidence of the formation of the sandwich complexes.50    

 NC-scorpionate ligands with varying degrees of steric bulk at the 3-position 

would need to be prepared to determine if the same behavior is observed in these 

complexes.  This could be accomplished simply by the reaction of the appropriate 

pyrazole derivative (3,5-di-phenyl-1H-pyrazole, 3,5-di-isopropyl-1H-pyrazole, or 3,5-di-

tert-butyl-1H-pyrazole, all commercially available) onto either the N-benzyl protected 

precursor (3C) or the N-tosyl protected precursor (3E), as shown in Schemes 4.1 and 4.2.  

Our lab has diisopropylpyrazole in stock, so this would be a good place to start.  If the iPr 

derivatives prove to be successful at preventing the formation of the sandwich 

complexes, then the other derivatives (Ph, tBu) may not need to be attempted.  

 

N
N

O

O
N N

N

N

N

N

R
R

RR

3,5-R-pyrazole

catalytic acid

toluene

R = iPr, Ph, tBu  

Scheme 4.1.  Proposed synthetic route toward the preparation of bulky Bn-NC-

scorpionates.   
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Scheme 4.2.  Proposed synthetic route toward the preparation of bulky Tos-NC-

scorpionates.   

 

The next step then would be to combine the ligands and metals in 2:1 and 1:1 ratios to 

determine if: i) the ligands will bind the metals and ii) whether they will bind as sandwich 

complexes (ML2) or as simple MLX complexes.     

 The next step then would be to attempt to bind an additional metal directly to the 

ligand scaffold through deprotection/deprotonation of the nitrogen of the N-confused 

pyrazole ring followed by addition of the appropriate metal reagent.   A few strategies for 

accomplishing this can be envisioned.  The first is to prepare the monometallic complex 

by binding a metal through the tridentate N-donors of the pyrazoles and then attempt to 

deprotect/deprotonate the nitrogen of the N-confused pyrazole followed by addition of 

the 2nd metal.  The second strategy is to deprotect/deprotonate the ligand first, and then 

bind both metals simultaneously or in different sequential orders.  Both of these strategies 

could be attempted.   

 Another goal of this research is to continue to develop the utility of the NC-

scorpionate ligand scaffold by appending a soft donor site (P donor) to the periphery of 

the ligand scaffold to see if it will promote the binding of additional metals.  Two 
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strategies for the syntheses of the new ligands are envisioned.  One strategy is to use the 

tetrahydropyran (THP) protecting group on the nitrogen atom of the NC-scorpionate.  

The THP protecting group has been shown to promote deprotonation/lithiation at the 

pyrazolyl carbon nearest to which it is bound.51 Deprotonation at the 5 position would be 

useful for the attachment of phosphorus donor groups directly (by reaction with 

commercial R2PCl, R = iPr, tBu, Ph) or indirectly via incorporation of methylene spacers 

described in Chapter 1 (Chart 1.3).  Two proposed synthetic routes toward the 

preparation of these ligands are shown in Scheme 4.3.   

 

 

Scheme 4.3.  The proposed synthetic route toward the preparation of P donor containing 

NC-scorpionates.  Key:  i) 3,4-dihydropyran, CF3CO2H, NaOH; ii) nBuLi ; iii) R2PCl, R 

P-NC-TPM 
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= iPr, tBu, Ph; iv) HCl, H2O; v) H2CO, H2O; vi) SOCl2 (X = Cl) or KOH + TsCl (X = 

OTs); vii) Ph2PH, nBuLi. 

 

A potential pitfall of Scheme 4.3 is that similar conditions (nBuLi followed by 

addition of electrophile) are employed for the functionalization of the apical carbon 

position of other known tris(pyrazolyl)methane ligands, as was demonstrated by Breher 

et al.52 Such chemistry is not available for derivatives with bulky groups that “block” the 

methine hydrogen.  Nevertheless, it might be necessary to attach an alkyl substituent of 

some kind (Me, Et, etc…) to the apical carbon position prior to this step to prevent a 

potential side reaction.  Deprotection of the THP protecting group under acidic conditions 

will give the target ligand scaffold shown in Chapter 1 (Chart 1.3). 

The next step then would be to attempt to prepare bimetallic complexes with these 

P-NC-TPM ligands using the previously mentioned metals.  The metals could be 

introduced to the ligands in different sequential orders to determine whether the order of 

addition plays a role in binding, as previously described. 

The final goal of this project would be to explore the reactivity of the bimetallic 

complexes toward the activation of small molecules, mainly CO2.  There are a number of 

known methods for the detection of the products of CO2 reduction (CO, HCO2H, 

CH3OH, CH4).  The presence of formic acid (HCO2H) or methanol can easily be detected 

and quantified by 1H NMR.  A simple method that can be used to detect carbon 

monoxide (CO) or methane is by GC-MS analysis of the reaction headspace.  Another 

method for the detection of CO is the method of CO trapping that was recently used by 

Cummins.53 In this method, the volatile materials are transported to a solution of 
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Cp*RuCl(PCy3).  The presence of CO is then indicated by a dramatic change in color 

from blue to yellow.  Along with the color change, there is a change in the observed 31P 

NMR chemical shift. The chemical shift for Cp*RuCl(PCy3) is found at δP = 40.61 ppm 

and for the CO bound complex Cp*RuCl(CO)(PCy3) is found at δP = 51.74 ppm.  

Integration of these peaks allows for determination of the ratios present. 
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Chapter 5 

 

EXPERIMENTAL SECTION 

 

5.1 General Considerations: 

 

 The compounds I2, AgSO4, 4-tert-butylaniline, Cs2CO3, diphenylphosphine, 

N,N’-dimethylethylenediamine (DMED), pyridine dimethanol, KOH, p-toluenesulfonyl 

chloride, nBuLi (1.6 M solution in hexanes), 2-nitroacetophenone, N,N-

dimethylformamide dimethyl acetal (DMF-DMA), N,N’-dimethylformamide (DMF), 

hydrazine monohydrate, NaH, 1-fluoro-2-nitrobenzene, NH4Cl, Fe powder, EtOH, 

chlorodiphenylphoshine, methylglyoxal-1,1-dimethylacetal, NaOH, H2NNH2 ∙ HCl, 

benzyl bromide, 1-bromo-2-fluorobenzene, phenyl boronic acid, Na2CO3, H-pyrazole, p-

toluene sulfonic acid monohydrate, 3,5-dimethylpyrazole, dimethylsulfoxide (DMSO), 

potassium tertiary butoxide (KOtBu), HCl, K2CO3 were purchased commercially and 

used as received.  The compound Pd(PPh3)4
54 was prepared according to a literature 

procedure.  THF and Et2O were dried over sodium/benzophenone ketyl.  Toluene, 

CH2Cl2, and CH3CN were dried over CaH2.  Solvents used in reactions were distilled 

under argon prior to use.  Any water that was used was deionized.  



81 
 

5.2 Physical Measurements:   

 

 Midwest MicroLab, LLC, Indianapolis, Indiana 45250, performed all elemental 

analyses.  Melting point determinations were made on samples contained in glass 

capillaries using an Electrothermal 9100 apparatus and are uncorrected.  1H, 13C, and 31P 

NMR spectra were recorded on a Varian 400 MHz spectrometer.  Chemical shifts are 

given in parts per million (ppm) and were referenced to solvent resonances at δH 7.26 and 

δC 77.16 for CDCl3, δH 2.05 and δC 29.84 for D6-acetone, and δH 1.94 and δC 118.26 for 

CD3CN.  Abbreviations for NMR: br (broad), m (multiplet), s (singlet), d (doublet), t 

(triplet), q (quartet).  Electronic absorption (UV-Vis/ NIR) measurements were made on a 

Cary 5000 instrument.  Magnetic susceptibility data were collected on a Quantum Design 

MPMS3 SQUID magnetometer. 

 

5.3 Ligand Syntheses. 

 

A. Toward H2(Fl-P2N3)  (1)  

 

1A.  
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NH2 NH2

I
0.55 eq Ag2SO4

1.05 eq I2

EtOH

 

To a 250 mL Schlenk flask charged with I2 (5.33 g, 21 mmol), Ag2SO4 (3.429 g, 

11 mmol), and 100 mL of ethanol, was added 4-tert-butylaniline (3.185 mL, 20 mmol) all 

in one portion, upon which time a white solid (AgI) began to precipitate.  The suspension 

was stirred at room temperature for 4 hours before being filtered through Celite.  After 

removing solvents, the remaining reddish oil was partitioned between 50 mL water and 

50 mL ethyl acetate in a separatory funnel.  The aqueous phase was extracted with two 

more 50 mL portions of ethyl acetate.  The combined organic layers were dried over 

MgSO4, filtered, and solvent was removed in vacuo.  The remaining red oil is purified on 

a column of silica gel by eluting with hexane/dichoromethane (1:1 v/v).  The first fraction 

contains 2,6-diiodo-4-tert-butylaniline as a side product (Rf = 0.73, m = 0.53 g, yield = 

7%).  The second fraction contains the desired product, after concentration of eluent, as a 

red oil (Rf = 0.43, m = 4.02 g, yield = 73%).  1H NMR (CDCl3) δH: 7.62 (d, J = 2.2 Hz, 

1H, Ar-H), 7.17 (dd, J = 8.4, 2.3 Hz, 1H, Ar-H), 6.71 (d, J = 8.3 Hz, 1H, Ar-H), 4.07 (br 

s, 2H, NH2) 1.26 (s, 9H, CH3) ppm. 13C NMR (CDCl3) δC: 144.3, 143.5, 135.8, 126.37, 

114.7, 84.7, 33.9, 31.5 ppm.  

 

1B.  

1A 
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NH2
I

NH2
PPh2

1.1 eq HPPh2

2 eq Cs2CO3

35 mol% N,N'-DMED
0.5 mol% Pd(PPh3)4

toluene

 

 

 A 100 mL Schlenk flask was charged with Cs2CO3 (4.74 g, 14.54 mmol) and a 

stirbar before being evacuated and taken into the glove box.  Diphenylphosphine (1.39 

mL, 8.00 mmol) and Pd(PPh3)4 (0.042 g, 0.036 mmol) were added to the flask and 

removed from the glove box.  Meanwhile, argon gas was bubbled through another 

Schlenk flask containing 1A (2.00 g, 7.27 mmol), DMED (0.26 mL, 2.54 mmol), and 45 

mL toluene.  The toluene solution was then canula transferred into the flask containing 

the Cs2CO3 and the former flask was rinsed two times (5 mL each).  The contents of the 

flask were then heated at reflux for 15 hours, during which time a white precipitate 

formed.  The mixture was brought to room temperature, filtered through Celite, and the 

solvent was removed under reduced pressure.  The remaining brownish solid was 

partitioned between 50 mL water and 50 mL ethyl acetate in a separatory funnel.  The 

aqueous phase was extracted with two more 50 mL portions of ethyl acetate.  The 

combined organic layers were dried over MgSO4, filtered, and solvent was removed in 

vacuo.  The remaining yellowish solid is purified on a column of silica gel eluting with 

hexane/dichloromethane (2:1 v/v) to remove the impurities with higher Rf values before 

switching to pure CH2Cl2 to elute the desired product as a pale yellow solid after solvent 

was removed (Rf = 0.26, m = 2.13 g, yield = 88%).  1H NMR (CDCl3) δH:  7.34 (m, 10H, 

1B 
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PPh), 7.20 (dd, J = 8.3, 2.3 Hz, 1H, Ar-H), 6.79 (dd, J = 6.5, 2.3 Hz, 1H, Ar-H), 6.67 (dd, 

J = 8.3, 5.5 Hz, 1H, Ar-H), 3.25 (br s, 2H, NH2), 1.10 (s, 9H, CH3). 
13C NMR (CDCl3) 

δC:  147.4 (d, J = 19.1 Hz), 141.4 (d, J = 2.4 Hz), 135.8 (d, J = 8.2 Hz), 133.8 (d, J = 18.7 

Hz), 131.5 (d, J = 4.5 Hz), 128.9, 128.7 (d, J = 7.1 Hz), 127.5, 119.0 (d, J = 8.3 Hz), 

115.4 (d, J = 3.0 Hz), 34.1, 31.4 ppm. 31P NMR (CDCl3) δP:  -19.0 ppm. 

 

1C. 31 

N
OHHO

40% (w/w) KOH (aq)
2 eq p-toluenesulfonyl 

chloride

DCM

N
OTsTsO

Ts = S

O

O

 

 

Pyridine dimethanol (m = 2.122 g, 15.25 mmol) was dissolved in 40 mL CH2Cl2 

and poured into a 250 mL round bottom flask containing a KOH solution (40 wt%, 20 g, 

50 mL).  The reaction vessel was cooled to 0◦C and stirred for 30 minutes.  P-

toluenesulfonyl chloride was dissolved in 5 mL CH2Cl2 and added to the KOH solution 

all in one portion.  The contents of the flask were stirred at 0◦C for 1 hour and then at 

room temperature for 15 hours.  A yellow precipitate formed during this time.  An 

additional 50 mL each of CH2Cl2 and water were added to the flask and the contents were 

transferred to a separatory funnel.  The water was extracted with 3 more 50 mL portions 

of CH2Cl2 and the combined organic layers were dried over MgSO4, filtered, and solvent 

was removed in vacuo.  The remaining yellow solid was triturated with methanol, filtered 

1C 
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with a Buchner funnel, and dried for 20 minutes on the funnel to afford the desired 

compound as a white solid (4.44 g, yield = 65%). 1H NMR (CDCl3) δH: 7.80 (m, 4H, 

tosyl H), 7.69 (t, J = 7.8 Hz, 1H, pyridine H), 7.33 (m, 6H), 5.05 (s, 4H, CH2), 2.44 (s, 

6H, CH3).  
1H NMR data matches literature values.31  

 

1D. 55 

N

OH OH

N

O O
SeO2

dioxane
 

SeO2 (8.48 g, 76.0 mmol) was suspended in a solution of pyridine dimethanol 

(5.29 g, 38.0 mmol) in 40 mL dioxane and heated at reflux for 4 hours.  The solution 

turned black after a few minutes.  The flask was cooled to room temperature, then 0◦C via 

an ice bath, and then filtered and solvent was removed from the filtrate to give a yellow 

solid.  The yellow solid was passed through a small plug (SiO2) using CH2Cl2 and solvent 

was removed under vacuum.  The product was recrystallized by layering hexanes on top 

of a concentrated CH2Cl2 solution to give the desired product as a colorless solid (3.86 g, 

75 % yield).  1H NMR (CDCl3) δH: 10.17 (d, J = 0.8 Hz, 2H, CH(O)), 8.18 (dd, J = 7.8, 

0.8 Hz, 2H, Ar-H), 8.08 (m, 1H, Ar-H).  1H NMR data matches literature values. 55 

 

1D 
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1E.  H2(Fl-P2N3). 

NH2
PPh2 N

OTsTsO
+

2.2 eq 
nBuLi

THF
N

HN

Ph2P

NH

PPh2

 Argon was bubbled through a solution of 1B (0.667 g, 2 mmol) in THF (10 mL) 

for about 10 minutes.  After the flask had been cooled to 0°C via an ice bath for 20 

minutes, nBuLi (1.25 mL of a 1.6 M solution in hexanes, 2 mmol) was added dropwise 

and the contents of the reaction vessel were stirred for about 15 minutes at 0◦C.  Then a 

pre-purged (argon) solution of 1C (0.448 g, 1 mmol) in 10 mL THF was transferred to 

the cold lithium anilate solution.  The reaction was allowed to equilibrate to room 

temperature overnight while stirring (about 16 hours), then solvent was removed by 

vacuum distillation.  The contents of the flask were poured into 50 mL water in a 

separatory funnel and were extracted with three 50 mL portions of ethyl acetate.  The 

combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo.  

The remaining yellowish solid is purified on a column of silica gel eluting with 

dichloromethane to remove the impurities with Rf > 0.6 before switching eluents to a 

mixture of hexane/ethyl acetate (4:1 v/v) to give the desired product in the next band (Rf 

= 0.59).  Removal of solvent gave the desired product as a colorless solid (m = 0.77 g, 

yield = 57%).  1H NMR (CDCl3) δH: 7.35 (m, 20H, PPh), 7.20 (dd, J = 8.7, 2.5 Hz, 2H, 

Ar-H), 6.88 (d, J = 7.8 Hz, 2H, Ar-H), 6.82 (dd, J = 6.7, 2.5 Hz, 2H, Ar-H), 6.49 (dd, J = 

8.5, 5.3 Hz, 2H, Ar-H), 5.37 (m, 2H, NH2), 4.39 (d, J = 5.7 Hz, 4H, CH2), 1.08 (s, 18 H, 

CH3) ppm.  13C NMR (CDCl3) δC:  158.6, 148.2 (d, J = 17.2 Hz), 139.9, 137.3, 135.9 (d, J 

H2(Fl-P2N3) 
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= 7.9 Hz), 133.9 (d, J = 19.0 Hz), 131.8 (d, J = 3.9 Hz), 128.9, 128.6 (d, J = 6.9 Hz), 

127.5, 119.1, 118.9 (d, J = 8.1 Hz), 110.3 (d, J = 2.6 Hz), 49.6, 34.0, 31.4 ppm. 31P NMR 

(CDCl3) δP:  -19.5 ppm. 

 

B. Toward H2(R-P2N3).   (2) 

 

2A.  

NO2 NMe2
ONO2 O

1 eq DMF-DMA

DMF
 

 A 100 mL round bottom flask was charged with 2-nitroacetophenone (5.0 g, 

30.28 mmol), N,N-dimethylformamide dimethyl acetal  (3.605 g, 30.28 mmol), and 20 

mL dimethylformamide before being heated to reflux for 3 hours.  The yellow solution 

turns red upon heating.  After cooling to room temperature, the contents of the flask were 

poured into 50 mL water in a separatory funnel and extracted 3 times with 

dichloromethane (50 mL each).  The combined organic layers were washed with water 

twice (50 mL each) and a saturated brine solution once (50 mL).  The organic layer was 

dried over MgSO4, filtered, and concentrated in vacuo.  The product was washed with 

diethyl ether 3 times (10 mL each) and dried under vacuum to afford a yellow solid (5.91 

g, 89% yield).  1H NMR (d6-acetone) δH:  7.89 (d, J = 7.6 Hz, 1H, Ar-H), 7.70 (dt, J = 

2A 
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7.5, 1.2 Hz, 1H, Ar-H), 7.61 (m, 2H), 7.48 (br s, 1H, olefin H), 5.35 (d, J = 12.6 Hz, 1H), 

3.16 (s, 3H, N-CH3), 2.92 (s, 3H, N-CH3). 
13C NMR (d6-acetone) δC: 220.6, 155.6, 149.3, 

139.2, 133.4, 130.5, 129.7, 124.7, 94.8, 45.0, 37.3 ppm. 

 

2B.  

NO2 NMe2
O NO2 N N

H

1.1 eq H2NNH2
 . H20

EtOH
 

A 100 mL round bottom flask was charged with 2A (3.63 g, 16.52 mmol), 65% 

hydrazine monohydrate (1.37 mL, 18.17 mmol), and 20 mL EtOH, then was heated at 

reflux for 2 hours.  The initial yellow solution turned red and then green.  EtOH was 

removed by vacuum distillation and the product mixture was transferred to a separatory 

funnel using ethyl acetate.  50 mL water was added and the mixture was extracted with 

three 50 mL portions of ethyl acetate.  The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo.  The resulting product was loaded onto a 

column containing silica gel and eluted using a hexane/ethyl acetate (1:1 v/v) solution (Rf 

= 0.67) to afford a black solid (2.76 g, 88% yield).  1H NMR (acetone-d6) δH:  12.35 (br 

s, 1H, NH), 7.84 (dd, J = 7.8, 1.3 Hz, 1H, benzene H), 7.81 (d, J = 2.3 Hz, 1H, H3pz), 

7.75 (dd, J = 8.0, 1.1 Hz, 1H, Ar-H), 7.68 (dt, J = 7.7, 1.4 Hz, 1H, Ar-H), 7.56 (dt, J = 

7.5, 1.4 Hz, 1H, Ar-H), 6.54 (d, J = 2.4 Hz, 1H, H4pz).  13C NMR (acetone-d6) δC: 132.5, 

132.3, 131.2, 130.8, 129.3, 129.1, 128.0, 124.2, 104.5 ppm. 

2B 
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2C. 

NO2 N N
H 1 eq NaH

1.8 eq 1-fluoro-2-nitrobenzene

DMF

NO2

N
N

O2N

 

 

A solution of 2B (2.706 g, 14.30 mmol) in 10 mL DMF was transferred via canula 

to a suspension of NaH (0.343 g, 14.30 mmol) in 10 mL DMF.  The flask was rinsed 

twice with DMF (2.5 mL each) to ensure quantitative transfer.  The solution was stirred 

until bubbles (H2) ceased (about 5 minutes).  1-fluoro-2-nitrobenzene (2.72 mL, 25.7 

mmol) was dissolved in DMF (10 mL) was transferred to the reaction mixture and then 

the mixture was heated at reflux for 24 hours.  The reaction progress was monitored by 

TLC (SiO2, Hex/EA [4:1 v/v], Rf = 0.39).  After cooling to room temperature, the 

contents of the reaction vessel were poured into 50 mL water in a separatory funnel and 

were extracted with three 50 mL portions of ethyl acetate.  The organic layer was then 

washed with three 50 mL portions of water to remove DMF.  The combined organic 

layers were dried over MgSO4, filtered, and concentrated in vacuo.  Excess 1-fluoro-2-

nitrobenzene was removed by vacuum distillation to yield the desired product as an 

orange solid (3.92 g, 88% yield).  1H NMR (CDCl3) δH: 7.91 (dd, J = 8.1, 1.3 Hz, 1H, Ar-

H), 7.76 (m, 3H), 7.70 (dd, J = 7.4, 1.4 Hz, 1H), 7.63 (m, 2H), 7.54 (m, 1H), 7.49 (m, 

1H), 6.63 (d, J = 2.6 Hz, Hpz).  13C NMR (CDCl3) δC: 149.8, 149.1, 144.5, 133.3, 133.2, 

132.3, 131.3, 131.2, 129.2, 128.8, 126.8, 126.4, 125.3, 123.8, 107.8 ppm.   

 

2C 
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2D. 

NO2

N
N

O2N
12 eq NH4Cl

6 eq Fe

EtOH, H2O

NH2

N
N

H2N

 

 

A 250 mL round bottom flask was charged with 2C (3.74 g, 12.1 mmol), NH4Cl 

(7.79 g, 146 mmol), and Fe powder (4.06 g, 72.8 mmol) along with water (50 mL) and 

EtOH (175 mL), then was heated at reflux for 16 hours.  The reaction progress was 

monitored by TLC (SiO2, Hex/EA [4:1 v/v], Rf = 0.22).  After the mixture had cooled to 

room temperature, it was filtered to remove Fe2O3.  The solvent was removed by vacuum 

distillation and the brownish solid was partitioned between 50 mL each of water and 

ethyl acetate and the layers were separated.  The aqueous layer was extracted twice more 

with 50 mL ethyl acetate each.  The combined organic layers were dried over MgSO4, 

filtered, and concentrated in vacuo to yield the desired product as a light brown solid 

(2.44 g, 80% yield).  1H NMR (CDCl3) δH: 7.73 (m, 1H), 7.60 (d, J = 7.3 Hz, 1H), 7.19 

(m, 3H), 6.81 (m, 5H), 4.95 (broad s, 4H).  13C NMR (CDCl3) δC:  153.3, 145.0, 141.3, 

130.8, 128.9, 128.8, 128.3, 126.7, 124.6, 118.2, 117.4, 117.1, 116.6, 116.0, 104.5 ppm.   

 

2E.  H2(R-P2N3) 

2D 



91 
 

NH2

N
N

H2N NH

N
N

HN

PPh2Ph2P2.2 eq nBuLi

2 eq ClPPh2

THF

 

  

nButyllithium (1.6 M in hexanes, 7.28 mL, 11.64 mmol, 2.2 eq) was slowly added 

to an argon purged, cold (-78°C) solution of 2D (1.324 g, 5.29 mmol) in THF (20 mL).  

After stirring magnetically for 1 hour, it was transferred to a pre-purged (argon) solution 

of ClPPh2 (2.00 mL, 10.58 mmol) in THF (20 mL).  The cold bath was removed.  After 

the reaction mixture had stirred for 15 hours, solvent was removed by vacuum 

distillation.  The contents of the reaction vessel were partitioned between 50 mL water 

and 50 mL ethyl acetate in a separatory funnel.  The aqueous phase was extracted with 

two more 50 mL portions of ethyl acetate.   The combined organic layers were dried over 

MgSO4, filtered, and concentrated in vacuo to yield a yellow oil.  The oil was triturated 

with Et2O upon which time a white precipitate formed that was collected by filtration and 

dried under vacuum to yield H2(R-P2N3) as a colorless solid (1.77 g, 54% yield). 1H 

NMR (C6D6) δH: 8.78 (d, J = 5.6 Hz, 1H), 7.69 (ddd, J = 8.2, 3.9, 0.9 Hz, 1H), 7.55 (m, 

6H), 7.29 (m, 4H), 7.10 (dt, J = 7.5, 1.5 Hz, 1H), 6.96 (m, 14H), 6.78 (m, 2H), 6.57 (dt, J 

= 7.6, 1.3 Hz, 1H), 6.36 (d, J = 2.5 Hz, 1H, H4pz), 5.98 (d, J = 6.8 Hz, 1H). 13C NMR 

(CDCl3) δC:  154.0, 145.9 (d, J = 16.0 Hz), 142.2 (d, J = 17.9 Hz), 141.4 (d, J = 13.7 Hz), 

140.6 (d, J = 12.7 Hz), 131.6, 131.4, 131.4, 131.3, 131.1, 129.6 (d, J = 1.6 Hz), 129.3 (d, 

J = 1.2 Hz), 129.3, 128.9 (d, J = 1.7 Hz), 128.8, 128.8, 128.7, 125.4, 119.5, 118.7, 117.8 

(d, J = 21.3 Hz), 116.5 (d, J = 23.6 Hz), 105.3 ppm.  31P NMR (C6D6) δP:  31.1, 29.2 ppm. 

H2(R-P2N3) 
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C. N-confused Scorpionates   (3) 

 

3A. 56 

O

O

O

N O

O

+
Neat

O

O

O

N

 

 A mixture of methylglyoxal-1,1-dimethylacetal (23.6 g, 24.2 mL, 200 mmol) and 

N,N-dimethylformamide dimethyl acetal (DMF-DMA)(23.8 g, 26.6 mL, 200 mmol) was 

heated at 66◦C (oil bath) for 30 hours while stirring.  The contents of the flask were 

brought to room temperature and the methanol byproduct was removed by vacuum 

distillation.  The product was then distilled from the crude mixture under vacuum (b.p. = 

104◦C) to yield the desired product as an orange oil (24.57 g, 71% yield).  1H NMR 

(CDCl3) δH: 7.73 (d, J = 12.6 Hz, 1H, olefin H), 5.33 (d, J = 12.6 Hz, 1H, olefin H), 4.58 

(s, 1H, CHOMe2), 3.40 (s, 6H, OCH3), 3.11 (s, 3H, N-CH3), 2.86 (s, 3H, N-CH3) ppm.  

13C NMR (CDCl3) δC:  190.9, 154.3, 104.2, 54.0, 45.0, 37.1 ppm.  NMR data matches 

literature values.56  

 

3B. 44 

3A 
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O

O

O

N
1 eq H2NNH2

 . HCl

10% NaOH in 

H20

N N

O

OH
 

3A (27.37 g, 158.0 mmol) was added to a stirred solution of NaOH (15 g, 375 

mmol) and H2NNH2 ∙ HCl (10.83 g, 158.0 mmol) in H2O (150 mL).  After the resulting 

solution had been stirred for 4 hours at room temperature, it was transferred to a 

separatory funnel and extracted exhaustively with diethyl ether (100 mL, 8x).  The 

combined organic layers were dried over MgSO4, filtered, and concentrated in vacuo to 

yield the desired product as a yellow oil (16.59 g, 116.7 mmol, 74% yield).  1H NMR 

(CDCl3) δH:  12.83 (br s, 1H, N-H), 7.61 (d, J = 2.2 Hz, 1H, H5pz), 6.35 (d, J = 2.2 Hz, 

1H, H4pz), 5.62 (s, 1H, CHOMe2), 3.37 (s, 6H, OCH3). 
13C NMR (CDCl3) δC:  106.4, 

103.5, 98.9, 54.5, 52.5 ppm.  NMR data matches literature values.44  

 

3C. 

 

 

Under argon, 3B (4.32 g, 30.41 mmol) was added to a suspension of NaH (0.803 

g, 33.45 mmol) in THF (100 mL).  The solution was allowed to stir at room temperature 

for 1 hour.  Benzyl bromide (3.98 mL, 33.45 mmol) was added via syringe all at once and 

3B 

3C 
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the contents were stirred at room temperature overnight.  The solvent was removed via 

vacuum distillation and water (75 mL) and ethyl acetate (75 mL) were used to transfer 

the contents of the reaction vessel to a separatory funnel.  The water layer was extracted 

with ethyl acetate a total of 3 times (75 mL).  The combined organic layers were dried 

over MgSO4, filtered, and concentrated in vacuo.  The resulting red oil was loaded onto a 

column containing silica gel and eluted using a hexane/ethyl acetate (1:1 v/v) solution (Rf 

= 0.69, stained with I2, not UV active) to afford the desired product as a yellow oil after 

solvent had been removed (4.04 g, 17.42 mmol, 57% yield).  1H NMR (CDCl3) δH:  7.31 

(m, 4H), 7.19 (m, 2H), 6.33 (d, J = 2.3 Hz, 1H, H4pz), 5.51 (s, 1H, CHOMe2), 5.32 (s, 

2H, CH2), 3.39 (s, 6H, OCH3). 
 13C NMR (CDCl3) δC:  150.1, 136.5, 130.1, 128.9, 128.2, 

127.8, 104.6, 99.8, 56.1, 53.1 ppm.  

 

3D. 

N N

O

O
N N

N N

N N

2 eq H-Pz
5 mol% p-toluene 

sulfonic acid
monohydrate

Benzene

 

A mixture of 3C (0.703 g, 3.03 mmol), H-pyrazole (0.412 g, 6.10 mmol), and p-

toluenesulfonic acid monohydrate (0.029 g, 0.15 mmol, 5 mol %), and 5 mL C6H6 were 

placed in a round bottom flask with a magnetic stirbar.  The flask was connected to a 

distillation apparatus under argon gas and was heated until most of the volatiles (C6H6, 

MeOH) had distilled, as indicated by a drop in distillate temperature (do no overheat!).  

3D 
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Residual solvent was removed via vacuum distillation at room temperature.  Then, water 

(50 mL) and ethyl acetate (50 mL) were used to transfer the contents of the reaction 

vessel to a separatory funnel.  The water layer was extracted with ethyl acetate a total of 3 

times (50 mL each).  The combined organic layers were dried over MgSO4, filtered, and 

solvent was removed in vacuo.  The crude reaction mixture was loaded onto a column 

containing silica gel and eluted using a hexane/ethyl acetate (1:1) solution (Rf = 0.56, 

stained with I2) to afford a yellow oil that solidified under vacuum.  Product was 

recrystallized from hot Et2O to yield a colorless solid (0.66 g, 2.39 mmol, 72% yield).  1H 

NMR (CDCl3) δH:  7.73 (s, 1H, CmethH), 7.67 (d, J = 2.3 Hz, 2H, H3Pz), 7.59 (d, J = 1.8 

Hz, 2H, H5Pz), 7.34 (m, 4H, phenyl H’s), 7.21 (m, 2H), 6.36 (d, J = 2.3 Hz, 1H, H4Pz-

NC), 6.29 (dd, J = 1.8, 2.3 Hz, 2H, H4Pz), 5.31 (s, 2H, CH2) ppm.  13C NMR (CDCl3) δC:  

147.1, 140.8, 135.9, 130.7, 129.5, 128.9, 128.3, 127.9, 106.4, 106.3, 73.3, 56.4 ppm.  

 

3E. 

N N

O

O
N N

N N

N N

3 eq 3,5-dimethylpyrazole
5 mol% p-toluene 

sulfonic acid
monohydrate

Toluene

 

A mixture of 3C (0.657 g, 2.91 mmol), 3,5-dimethylpyrazole (0.838 g, 8.72 

mmol), and p-toluenesulfonic acid monohydrate (0.028 g, 0.15 mmol, 5 mol %), and 5 

mL C6H6 were placed in a round bottom flask with a magnetic stirbar.  The flask was 

connected to a distillation apparatus under argon gas and was heated until most of the 

3E 
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volatiles (C6H6, MeOH) had distilled, as indicated by a drop in distillate temperature (do 

no overheat!).  Residual solvent was removed via vacuum distillation at room 

temperature.  Then, water (50 mL) and ethyl acetate (50 mL) were used to transfer the 

contents of the reaction vessel to a separatory funnel.  The water layer was extracted with 

ethyl acetate a total of 3 times (50 mL each).  The combined organic layers were dried 

over MgSO4, filtered, and solvent was removed in vacuo.  The crude reaction mixture 

was loaded onto a column containing silica gel and eluted using a hexane/ethyl acetate 

(1:1) solution (Rf = 0.29, stained with I2) to afford a yellow oil (0.98 g, 2.72 mmol, 94% 

yield).  1H NMR (CDCl3) δH:  7.61 (s, 1H, CmethH), 7.31 (m, 4H, phenyl H’s), 7.20 (m, 

2H), 6.13 (d, J = 1.9 Hz, 1H, H4Pz-NC), 5.82 (s, 2H, H5Pz), 5.29 (s, 2H, CH2), 2.24 (s, 

6H, CH3), 2.20 (s, 6H, CH3) ppm.  13C NMR (CDCl3) δC :  148.2, 148.0, 140.7, 136.4, 

130.3, 128.9, 128.2, 127.9, 106.9, 106.7, 70.0, 56.3, 14.0, 11.8 ppm.  

 

3F.  

5 mL DMSO

7 eq KOtBu

O2 bubbled through

THF
N NH

N N

N NN N

N N

N N

 

A solution of KOtBu (0.785 g, 7 mmol) in 7 mL THF was added to a solution of 

3D (0.304 g, 1 mmol) in 5 mL DMSO.  Oxygen gas was then bubbled through the 

solution while stirring for 20 minutes, producing a white precipitate.  HCl (3M, 10 mL) 

3F 
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was added to quench and then solid K2CO3 was added until the pH had reached 4-5.  The 

contents of the flask were then filtered and the water and THF solvents were removed by 

vacuum distillation.  The solid was extracted with hot acetone and filtered to remove 

solid KCl.  The filtrate was concentrated and the product was recrystallized from Et2O to 

yield a colorless solid (0.032 g, 0.15 mmol, 15 % yield). M.P. = 138-140°C. 1H NMR 

(acetone-d6) δH: 7.86 (dd, J = 2.4, 0.7 Hz, 2H), 7.83 (s, 1H), 7.77 (d, J = 2.2 Hz, 1H), 7.45 

(dd, J = 1.8, 0.7 Hz, 2H), 6.46 (d, J = 2.4 Hz, 1H), 6.27 (dd, J = 2.4, 1.8 Hz, 2H) ppm.  

13C NMR (acetone-d6) δC:  140.5, 130.7 (br, overlapping signals), 130.2, 106.6, 105.5, 

74.0 ppm.  

 

3G. 

 

3B (2.30 g, 16.21 mmol) was added to a stirred suspension of NaOH (1.95 g, 

48.63 mmol) in DCM (100 mL) and stirred at room temperature for 10 minutes.  The 

reaction vessel was then placed in an ice bath and p-toluenesulfonylchloride (7.42 g, 38.9 

mmol) was added slowly over 10 minutes.  The reaction was stirred at room temperature 

for 15 hours.  Then, the contents of the reaction vessel were transferred to a separatory 

funnel.  The water layer was extracted with DCM a total of 3 times (100 mL each).  The 

combined organic layers were dried over MgSO4, filtered, and solvent was removed in 

3G 
3B 
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vacuo.  The crude reaction mixture was loaded onto a column containing silica gel and 

eluted using a hexane/ethyl acetate (3:1) solution to remove excess TosCl (Rf = 0.57) 

before switching to pure ethyl acetate to elute the desired product as a colorless solid 

(3.57g, 12.05 mmol, 74% yield).  Alternatively, the product can be purified without the 

use of column chromatography by triturating in diethyl ether and filtering to isolate the 

desired product.  This method allows for larger scale preparation albeit in lower yield 

(51% yield).  M.P. = 84-85°C.  1H NMR (CDCl3) δH: 8.05 (d, J = 2.8 Hz, 1H, H4Pz), 7.88 

(d, J = 8.4 Hz, 2H, Ar-H), 7.31 (d, J = 8.4 Hz, Ar-H), 6.47 (d, J = 2.8 Hz, 1H, H5Pz), 5.35 

(s, 1H, CHOMe2), 3.32 (s, 6H, OCH3), 2.41 (s, 3H, CH3) ppm. 13C NMR (CDCl3) δC: 

156.0, 145.9, 134.0, 132.0, 130.0, 128.1, 107.2, 99.3, 53.6, 21.7 ppm.  

 

3H.  

 

          

            3G (16.34 g, 55.13 mmol), trifluoroacetic acid (0.21 mL, 2.76 mmol), THF (150 

mL), and H2O (50 mL) were combined in a round bottom flask and heated at reflux for 

16 hours while stirring.  After cooling to room temperature, 100 mL of a concentrated 

NaHCO3 solution was added to reaction vessel and stirred until bubbles ceased.  THF 

was then removed by vacuum distillation and the contents of the flask were transferred to 

3H

 

3G
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a separatory funnel.  The water layer was extracted with ethyl acetate a total of 3 times 

(150 mL each).  The combined organic layers were dried over MgSO4, filtered, and 

solvent was removed by rotary evaporation.  The resulting solid was dissolved in minimal 

boiling heptane, decanted away from red oil, and slowly cooled to -25°C.  The solids 

were then collected by filtration, washed with ice cold hexane, and dried under vacuum to 

yield a pale yellow solid (10.09 g, 45.4 mmol, 82 % yield).  M.P. = 92-94°C.  1H NMR 

(CDCl3) δH: 9.97 (s, 1H, CHO), 8.15 (d, J = 2.8 Hz, 1H, H5Pz), 7.96 (d, J = 8.4 Hz, 2H, Ar-H), 

7.38 (d, J = 8.4 Hz, 2H, Ar-H), 6.84 (d, J = 2.8 Hz, 1H, H4Pz), 2.45 (s, 3H, CH3) ppm.  13C NMR 

(CDCl3) δC: 186.0, 154.8, 146.9, 132.9, 132.5, 130.3, 128.5, 106.9, 21.8 ppm. 

 

3I.  

 

 A solution of H-pyrazole (3.12 g, 45.8 mmol) in 25 mL THF was transferred 

slowly over 5 minutes via canula to a suspension of NaH (1.10 g, 45.8 mmol) in 40 mL 

THF.  The flask was rinsed twice with THF (2.5 mL each) to ensure quantitative transfer.  

The solution was stirred until bubbles (H2) ceased (about 5 minutes).  SOCl2 (1.67 mL, 

22.9 mmol) was added to the reaction mixture through the septum slowly over 5 minutes 

and then stirred at room temperature for 10 minutes.  A solution of 3H (3.39 g, 15.27 

3I

 

3H
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mmol) and CoCl2 (0.1 g, 0.76 mmol) in 25 mL THF was transferred via canula to the 

reaction mixture.  The flask was rinsed twice with THF (2.5 mL each).  The reaction 

mixture was heated at reflux for 15 hours while stirring before being brought to room 

temperature.  The solvent was removed by vacuum distillation and the contents of the 

reaction vessel were transferred to a separatory funnel with the help of H2O (100 mL) and 

ethyl acetate (100 mL).  The water layer was extracted with ethyl acetate a total of 3 

times (100 mL each).  The combined organic layers were dried over MgSO4, filtered, and 

solvent was removed in vacuo.  The crude reaction mixture was dry loaded onto a column 

of silica gel and the impurities with higher Rf’s (0.6 and 0.37) were eluted using a 

hexane/diethyl ether (1:2) solution.  Pure ethyl acetate was used to elute the desired 

product as a colorless solid (4.65 g, 12.6 mmol, 83% yield).  Alternatively, the product 

can be purified without the use of column chromatography by recrystallization from 

boiling heptane, albeit in lower yield (58% yield).  M.P. = 114-116°C. 1H NMR (CDCl3) 

δH: 8.11 (d, J = 2.8 Hz, 1H, H5Pz-NC), 7.87 (d, J = 8.3 Hz, 2H, Ar-H), 7.66 (s, 1H, 

CHPz2), 7.56 (m, 4H, H3Pz and H5Pz), 7.32 (d, J = 8.3 Hz, 2H, Ar-H), 6.54 (d, J = 2.8 

Hz, 1H, H4Pz-NC), 6.28 (m, 2H, H3Pz), 2.43 (s, 3H, CH3) ppm.  13C NMR (CDCl3) δC: 

152.6, 146.3, 141.0, 133.5, 132.3, 130.1, 129.6, 128.4, 108.8, 106.7, 72.5, 21.8 ppm.  
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3F. (Alternative Route)

 

 3I (0.392 g, 1.065 mmol) was added to a stirred solution of NaOH (0.60 g, 15 

mmol) in H2O (3 mL) and THF (5mL) and heated at reflux for 10 minutes.  THF was 

then removed by vacuum distillation and the contents of the reaction vessel were 

transferred to a separatory funnel using DCM (50 mL) and H20 (30 mL). The water layer 

was extracted with DCM a total of 4 times (50 mL each) and the combined organic layers 

were dried over MgSO4, filtered, and solvent was removed in vacuo.  The product was 

recrystallized from minimal benzene to afford the desired product as a colorless solid 

(0.139 g, 0.65 mmol, 61% yield). M.P. = 138-140°C.  1H NMR (acetone-d6) δH: 7.86 (dd, 

J = 2.4, 0.7 Hz, 2H), 7.83 (s, 1H), 7.77 (d, J = 2.2 Hz, 1H), 7.45 (dd, J = 1.8, 0.7 Hz, 2H), 

6.46 (d, J = 2.4 Hz, 1H), 6.27 (dd, J = 2.4, 1.8 Hz, 2H) ppm.  M.P. = 138-140 13C NMR 

(acetone-d6) δC:  140.5, 130.7 (br, overlapping signals), 130.2, 106.6, 105.5, 74.0 ppm.   

 

5.4 Syntheses of Metal Complexes 

 

3I

 

3F
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A. H2(Fl-P2N3) Complexes 

 

[Pt(Cl){H2(Fl-P2N3)}]Cl   (2.1) 

A solution of H2(Fl-P2N3) (0.063 g, 0.0814 mmol) and Pt(EtCN)2Cl2, (0.031 g, 

0.0814 mmol) in 2 mL CH2Cl2 was stirred under argon at room temperature for 1 hour.  

Hexane (20 mL) was added to precipitate a yellow solid that was collected by filtration 

and dried under vacuum.  The pale yellow solid was recrystallized by layering pentane on 

top of a concentrated CH2Cl2 solution.  X-ray quality crystals were grown by slow 

evaporation of a CH2Cl2 solution.  1H NMR (CD3CN) δH:  8.68 (m, 1H), 7.85 (m, 2H), 

7.75 (m, 3H), 7.47 (d, J = 8.9 Hz, 1H), 7.35 (m, 5H), 7.23 (br t, J = 7.5 Hz), 7.15 (m, 4H), 

6.86 (m, 2H), 6.76 (m, 5H), 6.61 (dd, J = 11.5, 1.9 Hz, 1H), 6.56 (dd, J = 8.6, 6.8 Hz, 

1H),  6.46 (m, 2H), 5.37 (br d, J = 9.3 Hz, 1H), 5.31 (br d, J = 14.0 Hz, 1H), 5.22 (m, 

2H), 4.56 (dd, J = 13.7, 7.6 Hz, 1H), 4.43 (dd, J = 17.7, 9.4 Hz, 1H), 2.86 (d, J = 17.8 Hz, 

1H), 0.79 (s, 18 H).  31P NMR (CD3CN) δP:  25.0 (d, JP1-P2 = 15.8 Hz), satellite Pt 

resonances observed: (JP1-Pt = 1927 Hz), -0.3 (d, JP1-P2 = 15.5 Hz), satellite Pt resonance 

(JP2-Pt = 1647 Hz) ppm.  

 

B. H2(R-P2N3) Complexes 
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[Pt(Cl){H2(R-P2N3)}]Cl   (2.2) 

A solution of H2(Fl-P2N3) (0.051 g, 0.083 mmol) and Pt(EtCN)2Cl2, (0.031 g, 

0.083 mmol) in 2 mL CH2Cl2 was stirred under argon at room temperature for 1 hour.  

Canula filtration was performed to collect the white precipitate, which was washed with 

Et2O and dried under vacuum to afford a colorless solid.  X-ray quality crystals were 

grown by placing the starting materials in a vial along with 1 mL of solvent and not 

mixing or jostling the reaction vessel.  Long colorless needles formed within couple of 

days (0.03 g, 41 % yield). 1H NMR data was collected but difficult to interpret due to 

many overlapping signals. 31P NMR (CD3CN) δP:  32.6 (d, JP1-P2 = 16.9 Hz), satellite Pt 

resonances observed: (JP1-Pt = 1936 Hz), 27.3 (d, JP1-P2 = 16.9 Hz), satellite Pt resonance 

(JP2-Pt = 1965 Hz) ppm.  

 

[Ag{H2(R-P2N3)}2](OTf)   (2.3) 

 A solution of Ag(OTf) (0.026 g, 0.1 mmol) and H2(Fl-P2N3) (0.063 g, 0.1 mmol) 

in 3 mL THF was stirred at room temperature under argon for 12 hours.  Solvent was 

removed under vacuum to give a colorless solid (0.053 g, 35 % yield).  X-ray quality 

crystals were grown by slow vapor diffusion of Et2O onto a concentrated ClCH2CH2Cl 

solution.   

 

Zr(NMe2)2(R-P2N3)   (2.4) 
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 A solution of H2(Fl-P2N3) (0.0155 g, 0.025 mmol) and Zr(NMe2)4 (0.0067 g, 

0.025 mmol) in 1 mL CD2Cl2 in a vial under argon was shaken vigorously for 1 minute.  

The solution turned bright yellow instantly.  NMR data were acquired using the crude 

reaction mixture.  X-ray quality crystals slowly precipitated out of solution.  1H NMR 

(C6D6) δH:  7.85 (m, 3H), 7.77 (m, 5H), 7.61 (m, 2H), 7.28 (br s, 1H), 7.21 (m, 4H), 7.14 

(m, 9H), 6.99 (m, 1H), 6.87 (m, 2H), 6.78 (dd, J = 7.9, 1.6 Hz, 1H), 6.63 (m, 2H) ppm. 

31P NMR (C6D6) δP:  34.67 (br s), 4.80 (br s) ppm.   

 

C.  N-confused Scorpionate Complexes 

 

[Fe(BN-NC-TPM)2](BF4)2   (3.1) (BF4)2    

 Under argon, a solution of 3D (0.66 g, 2.17 mmol) in 10 mL THF was added to a 

solution of Fe(BF4) ∙ 6 H2O (0.366 g, 1.084 mmol) in 10 mL THF.  The former flask was 

washed with 5 mL THF that was transferred to the reaction solution.  A white solid 

precipitated almost instantly.  The suspension was stirred for 1 hour and then was cannula 

filtered.  The solid was washed with two 2mL portions of THF, 2 mL Et2O, and was dried 

under vacuum to give 0.678 g (68% yield) 5 as a colorless solid.  X-Ray quality crystals 

were grown by slow vapor diffusion of Et2O into a concentrated acetonitrile solution of 

the complex and contain 2 solvent molecules (CH3CN).  Crystal structures were solved at 

100 and 240K.  1H NMR (CD3CN) δH:  50.9 (br s), 45.9 (br s), 41.3 (br s), 14.2 (br s), 

11.0 (br s), 10.7 (br s), 10.4 (br s), 7.3 (br s), 3.5 (br s), 2.2 (br s) ppm.  Elemental Anal. 
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Calc. (found) for C34H32N12B2F8Fe: %C 48.72 (48.73), %H 3.85 (3.67), %N 20.05 

(19.85).   

 

[Fe(BN-NC-TPM)2](OTf)2   (3.1) (OTf)2 

 Under argon, a solution of 3D (0.304 g, 1 mmol) in 5 mL THF was added to a 

solution of Fe(OTf)2 (0.177 g, 0.5 mmol) in 5 mL THF.  The former flask was washed 

with 2 mL THF that was transferred to the reaction solution.  A white solid precipitated 

after a few minutes.  The suspension was stirred for 1 hour and then was canula filtered.  

The solid was washed with two 2mL portions of THF, 2 mL Et2O, and was dried under 

vacuum to give 0.43 g (89% yield) 6 as a colorless solid.  X-Ray quality crystals were 

grown by slow vapor diffusion of Et2O into a concentrated acetonitrile solution of the 

complex.  1H NMR (CD3CN) δH:  50.8 (br s), 45.9 (br s), 41.2 (br s), 14.1 (br s), 10.9 (br 

s), 10.6 (br s), 10.3 (br s), 7.1 (br s), 3.4 (br s), 2.2 (br s).  Elemental Anal. Calc. (found): 

%C 44.92 (44.58), %H 3.35 (3.40), %N 17.46 (16.85).    

 

[Fe(BN-NC-TPM*)2(BF4)2   (3.1*) (BF4)2    

 This complex was prepared in a similar manner to the complex 3.1 (BF4)2 except 

that 3E ligand (0.136 g, 0.377 mmol) was used instead of 3D along with the Fe(BF4) ∙ 6 

H2O (0.064 g, 0.189 mmol).  The reaction was stirred at room temperature for 16 hours 

and then was cannula filtered.  The solid was washed with two 2mL portions of THF, 2 

mL Et2O, and was dried under vacuum to give 0.04 g (21% yield) 7 as a colorless solid.  
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X-ray quality crystals were grown by slow vapor diffusion of Et2O into a concentrated 

acetonitrile solution of the complex. 

 

[Fe(BN-NC -TPM*)2(OTf)2   (3.1*) (OTf)2 

 This complex was prepared in a similar manner to the complex (3.1) (OTf)2 

except that 3E ligand (0.189 g, 0.524 mmol) was used instead of 3D along with Fe(OTf) 

(0.093 g, 0.262 mmol).  The reaction was stirred at room temperature for 16 hours and 

then was cannula filtered.  The solid was washed with two 2mL portions of THF, 2 mL 

Et2O, and was dried under vacuum to give 0.1 g (36% yield) 8 as a colorless solid.  X-ray 

quality crystals were grown by slow vapor diffusion of Et2O into a concentrated 

acetonitrile solution of the complex. 

 

[Fe(H-NC-TPM)2](BF4)2       (3.2) (BF4)2            

An acetone solution (5 mL) of 3F (0.264 g, 1.23 mmol) was cannula transferred 

to an acetone solution (5 mL) of Fe(BF4) ∙ 6 H2O (0.122 g, 0.362 mmol) and was stirred 

at room temperature for 15 hours.  The solution turned pink immediately and pink solids 

formed.  The solution was cannula filtered and the pink solid was washed with acetone 2 

times (3 mL each), Et2O (3 mL), and dried under vacuum to afford complex 9 as a pink 

solid (0.385 g, 0.59 mmol, 95% yield).  Attempts to grow x-ray quality crystals of (3.2) 

(BF4)2 proved to be unsuccessful as the crystals were too small and disordered for single 

crystal x-ray diffraction.  The disordered crystals were deep pink.  This complex was then 
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pushed forward in a reaction to swap out the counter ion (BF4) for tetraphenylborate 

(BPh4) in hopes that crystallization of this complex would be more successful.  Elemental 

Anal. Calc. (found) for C20H20N12B2F8Fe: %C 36.51 (36.72), %H 3.06 (3.05), %N 25.55 

(25.54). M.P. = 250+.  1H NMR (CD3CN) δH:  24.6 (v. br. s), 18.6 (v. br. s), 18.4 (v. br. 

s), 17.8 (v. br. s), 17.1 (v. br. s), 16.3 (v. br. s), 15.9 (v. v. br. s), 10.5 (v. br. s), 10.1 (v. 

br. s), 7.6 (v. br. s), 7.4 (v. br. s), 2.16 (s), 2.09 (s), -4.8 (v. br s) ppm.   

 

[Fe(H-NC-TPM)2](BPh4)2∙2 CH3CN  (3.2) (BPh4)2∙2 CH3CN 

 Excess NaBPh4 (0.18 g, 0.53 mmol) was added to a solution of (3.2)(BF4)2 (0.10 

g, 0.15 mmol) in 5 mL water and stirred at room temperature for 16 hours.  A milky 

white suspension formed almost immediately.  Solvent was removed by vacuum 

distillation and the remaining solid was washed with minimal cold water to give 0.026 g 

(4 % yield) of 10 as an off white solid.  X-ray quality crystals were grown by slow vapor 

diffusion of Et2O into a filtered acetonitrile solution of the complex.  It was noted that the 

off white solid yielded an orange solution when dissolved in acetonitrile and that once 

filtered, the solution was pink.  1H NMR (CD3CN) δH:  7.27 (br m, 20H), 6.99 (br m, 

20H), 6.84 (br m, 10 H).  

 

[Fe(Tos-NC-TPM)2](BF4)2       (3.3) (BF4)2 

 This complex was prepared in a similar manner to the complex (3.1)(BF4)2 except 

that the 3I ligand (0.195 g, 0.53 mmol) was used instead of 3D along with the Fe(BF4) ∙ 6 
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H2O (0.089 g, 0.265 mmol).  The reaction was stirred at room temperature for 16 hours 

and then was cannula filtered.  The solid was washed with two 2 mL portions of THF, 2 

mL Et2O, and was dried under vacuum to give 0.22 g (86% yield) 11 as a colorless solid. 

M.P. > 250°C.  X-ray quality crystals were grown by slow vapor diffusion of Et2O into a 

concentrated acetonitrile solution of the complex.  1H NMR (CD3CN) δH:  49.8 (v. br. s), 

8.11 (v. br. s), 3.65 (br. s), 3.25 (v. br. s), 1.81, 1.25 (v. br. s) ppm.  

 

[Fe(Tos-NC-TPM)2](OTf)2       (3.3) (OTf)2 

This complex was prepared in a similar manner to the complex (3.1) (OTf)2 

except that the 3I ligand (0.195 g, 0.529 mmol) was used instead of 3D along with 

Fe(OTf)2 (0.093 g, 0.263 mmol).  The reaction was stirred at room temperature for 16 

hours and then was canula filtered.  The solid was washed with two 2mL portions of 

THF, 2 mL Et2O, and was dried under vacuum to give 0.204 g (71% yield) 12 as a 

colorless solid.  M.P. Decomposition was observed over 201°C.  1H NMR (CD3CN) δH: 

48.9 (v. br. s), 8.0 (v. br. s), 3.65 (br. s), 3.1 (v. br. s), 1.81 (br. s), 1.26 (v. br. s) ppm.  
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