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Effects of the new Histone Deacetylase Inhibitor, PXD101, 

 in Bladder Cancer 

Hristos Z. Kaimakliotis, Marcia Wheeler, and Robert M. Weiss, Section of Urology, 

Department of Surgery, Yale University, School of Medicine, New Haven, CT. 

 
Histone deacetylase inhibitors (HDACIs) mediate gene expression and chromatin 

assembly, and induce growth arrest and apoptosis of tumor cells, thus representing a new 

strategy for human cancer therapy. Changes in apoptosis signaling pathways and the effect 

on cell growth and cell-cycle arrest of a new HDACI, PXD101, on T-24 bladder cancer 

cells form the basis of this study. 

T-24 cells were incubated with PXD101 at varying concentrations and times, and 

viable cell count and proliferation curves were constructed. Cell cycle analysis was 

conducted with Fluorescent Activated Cell Sorting and changes in apoptosis signaling 

proteins that were previously found to be regulated by survivin-siRNA in T-24 cells were 

assessed by Western blot. 

Treatment of T-24 bladder cancer cells with the HDAC inhibitor PXD101 causes a 

profound decrease in cell growth and viability, a specific G2/M phase arrest and an 

increase in apoptotic cells populations. PXD101 treatment also causes changes in upstream 

mitochondrial apoptosis mediators, including TNFR1 and caspases 2 and 8, and 

downstream apoptosis mediators, such as caspase 3 and survivin. PXD101 treatment of 

tumor cells is associated with a profound decrease in survivin and caspases’ levels, and 

with an increase in TNFR1 protein levels, both changes indicative of induction of apoptosis. 

Therefore, the new HDACI PXD101, alone or in combination with inhibitors of 

other tumor relevant factors and chemotherapies with complementary mechanisms of 

action, shows promise for its use as a suitable new agent for bladder cancer treatment. 
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Introduction 
A multicellular organism functions as a society, with individual cells organizing 

into collaborative assemblies and reproducing by cell division through an elaborate set of 

signals that serve as controls. Each cell rests, divides, differentiates or dies as needed for 

the prosperity of the organism. Molecular disturbances that upset this harmony mean 

trouble for such a society and in animals with countless cells and disturbances, mutations 

are a constant challenge. A single mutation that goes unchecked may give rise to a 

growing mutant clone of cells that will prosper at the expense of neighboring cells and in 

the end, destroy the entire society. 

Such is the recipe for cancer, and to this day, cancer accounts for nearly one-

quarter of deaths in the United States, exceeded only by heart disease.  In 2003, there 

were 556,902 cancer deaths in the US, Figure 1. The risk of an American male 

developing cancer over his lifetime is one in two and approximately one in three women 

in the United States will develop cancer over her lifetime. 

1. Heart Diseases 685,089 28.0

2. Cancer 556,902 22.7

3. Cerebrovascular diseases 157,689 6.4

4. Chronic lower respiratory diseases 126,382       5.2

5. Accidents 109,277 4.5

6. Diabetes mellitus 74,219 3.0

7. Influenza and pneumonia 65,163 2.7

8. Alzheimer disease 63,457 2.6

9. Nephritis 42,453 1.7

10. Septicemia 34,069 1.4 

Cause of Death No. of 
deaths

% of all 
deaths

 
Figure 1: United States Mortality Data, Leading Causes of Death for 2003 [1].  
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Bladder Cancer 
It is estimated that almost 1.4 million new cases of cancer were diagnosed in 

2006.  Of these, 61,420 cases were due to urinary bladder cancer, making it the fourth 

most common and ninth most common site of new cancer diagnoses in men and women, 

respectively. Bladder cancer is the second most common genitourinary tract cancer and 

between 1985 and 2000, the number of bladder cancers diagnosed annually in the United 

States increased by 33% [2, 3]. The incidence in men is nearly three times higher than in 

women [3], and 1.5 times higher in whites than in African Americans. Incidence rates in 

Hispanic Americans of each sex are roughly half those in whites [4]. 

Men
720,280

Women
679,510

31% Breast

12% Lung & bronchus

11% Colon & rectum

6% Uterine corpus 

4% Non-Hodgkin
lymphoma 

4% Melanoma of skin

3%     Thyroid

3% Ovary

2% Urinary bladder

2% Pancreas

22% All Other Sites

Prostate 33%

Lung & bronchus 13%

Colon & rectum 10%

Urinary bladder 6%

Melanoma of skin 5%

Non-Hodgkin 4%                      
lymphoma

Kidney 3%

Oral cavity 3%

Leukemia 3%

Pancreas 2%

All Other Sites 18%

 
Figure 2: 2006 Estimated US Cancer Incidence By Site and Sex. Data exclude basal 

and squamous cell skin cancers [5]. 

It was estimated that in 2000 there were 12,200 bladder cancer deaths, 8100 men 

and 4100 women, making bladder cancer the seventh most common cause of cancer 

deaths in American men [3]. Bladder cancer accounts for 2.9% of all cancer deaths in 
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men and 1.5% in women. Even though mortality rates have decreased since the 1970s 

among African Americans and stabilized since the late 1980s among whites [6], an 

estimated 13,060 deaths occurred in 2006, as shown in Figure 3. The 5-year relative 

survival rate for bladder cancer is 83% for whites and 64% for African Americans. The 

survival rate has improved somewhat since the 1970s, mainly due to earlier detection. 

 
Figure 3: Types of cancers in United States, with incidence and resulting death rate. 
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Findings 

The most common presenting symptom of bladder cancer is painless hematuria, 

which occurs in more than 85% of patients [7]. However, hematuria is often intermittent, 

and the lack of hematuria does not rule out the presence of bladder cancer [8]. If an adult 

has unexplained gross or microscopic hematuria, cystoscopic examination is warranted. 

The symptom complex of bladder irritability and urinary frequency, urgency, and dysuria 

is the second most common presentation and is usually associated with diffuse carcinoma 

in situ or invasive bladder cancer. These symptoms almost never occur without at least 

microscopic hematuria. 

Other signs and symptoms of bladder cancer include flank pain from ureteral 

obstruction, lower extremity edema and pelvic mass. Very rarely, patients present with 

symptoms of advanced disease, such as weight loss and abdominal or bone pain. 

Hepatomegaly and supraclavicular lymphadenopathy are signs of metastatic disease. 

Pyuria may be present, either due to a concomitant infection or inflammation of the 

urothelium around the tumor. Azotemia due to ureteral obstruction or anemia from 

chronic blood loss also may be found. 

Cytologic specimens from bladder washings may allow tumor detection and are 

useful in screening patients or assessing response to treatment. Urine cytology is more 

sensitive in patients with high-grade tumors or carcinoma in situ, but even in patients 

with high-grade tumors, cytology may be falsely negative in as many as 20%of cases. 
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Pathology 

Nearly all bladder cancers are of epithelial origin, with the vast majority being 

transitional cell carcinomas. The urothelium of the normal bladder is three to seven layers 

thick, with a basal cell layer and one or more layers of intermediate cells in between the 

basal layer and the superficial basal layer. The most superficial layer is composed of 

large, flat, umbrella cells and the entire urothelium rests on the lamina propria basement 

membrane. 

Epithelial hyperplasia describes an increase in the number of cell layers without 

nuclear or architectural abnormalities, whereas urothelial metaplasia refers to a non-

transitional epithelial appearance of the bladder lining, with associated squamous or 

adenomatous metaplasia. Atypical hyperplasia is similar to epithelial hyperplasia, except 

that there are also nuclear abnormalities and a partial derangement of the umbrella cell 

layer [9]. The term dysplasia denotes epithelial changes that are intermediate between 

normal urothelium and carcinoma in situ. Dysplastic cells have large, round, notched, 

basally situated nuclei that do not exhibit the normal epithelial polarity. Dysplastic 

epithelium does not have an increased number of cell layers or mitotic figures [7], but a 

large portion of patients with moderate dysplasia tend to develop high-grade urothelial 

cancer [10]. 

Carcinoma in situ may appear cystoscopically as a velvety patch of erythematous 

mucosa, although it may be endoscopically invisible. It consists of a poorly differentiated 

transitional cell carcinoma confined to the urothelium, Figure 4. Carcinoma in situ may 

be asymptomatic or may produce severe symptoms of urinary frequency, urgency and 

dysuria. Urine cytopathology is positive in 80% to 90% of patients with carcinoma in situ 
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[11]. Carcinoma in situ is present in 25% or more of patients with high-grade superficial 

tumors [9],  and between 40 and 83% progress to muscle-invasive cancer[12]. It also is 

present in 20 to 75% of high-grade muscle-invasive cancers [13]. About 20% of patients 

treated with cystectomy for diffuse carcinoma in situ are found to have microscopic 

muscle-invading cancer [14]. 

 
Figure 4: Carcinoma in situ [15]. 

 
Transitional Cell Carcinoma 

The most common bladder cancers are transitional cell (TCC), squamous cell and 

adenocarcinomas. More than 90% of bladder cancers are TCC, which exhibit an 

increased number of epithelial cell layers with papillary foldings of the mucosa, loss of 

cell polarity, abnormal cell maturation with increased nuclear-cytoplasmic ratio, 

prominent nucleoli, clumping of chromatin and increased number of mitoses. TCC 

manifests in a variety of patterns of tumor growth, including papillary, sessile, 

infiltrating, nodular, mixed, and flat intraepithelial growth (carcinoma in situ). 
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Approximately 70% of bladder tumors are papillary, 10% are nodular and 20% are 

mixed. 

No uniformly accepted grading system for TCC exists, but most systems are 

based on the degree of anaplasia of tumor cells [16, 17]. A strong correlation exists 

between tumor grade and stage [18], with most well-differentiated and moderately 

differentiated tumors being superficial and most poorly differentiated tumors being 

muscle invasive. There is a significant correlation between tumor grade and prognosis, 

however, the correlation between tumor stage and prognosis is even stronger. 

 
Nontransitional Cell Carcinomas 

Squamous cell carcinoma accounts for only 5% of bladder cancers in Europe and 

the United States [19, 20], but as much as 75% in Egypt, where Schistosoma 

haematobium cystitis is causally related to the development of squamous cell carcinoma 

of the bladder [21]. Adenocarcinomas account for less than 2% of primary bladder 

cancers [20], and are prevalent in intestinal urinary conduits, augmentations, neobladders 

and bladder exstrophy [22]. About 5% of all cases are mixed, and other epithelial cancers 

include carcinoid, carcinosarcomas and melanomas. Rare nonepithelial cancers of the 

bladder include pheochromocytomas, choriocarcinomas and mesenchymal tumors.  

 
Causes 

Chemical carcinogens have been implicated in the pathogenesis of bladder cancer, 

but there are undoubtedly a large portion of cases with no obvious exposure to such 

agents. Occupational exposure accounts for roughly 20% of bladder cancer cases in the 

United States [23], and the latency period is around 30-50 years, with more intensive 

exposures leading to shorter latency periods [24]. Most bladder carcinogens are aromatic 



 

 

8

compounds. Nevertheless, the list is non-exhaustive, from aniline dyes [25], to 

combustion gases and soot from coal, chlorinated aliphatic hydrocarbons [26], dietary 

nitrites and nitrates [27] and aldehydes used in the rubber and textile industries [28].  

Although the mechanisms of carcinogenesis in the presence of inflammation are 

not understood [29] there appears to be a clear association of inflammation and squamous 

cell carcinoma of the bladder. Chronic cystitis in the form of severe, long-term infections 

leads to an increased risk [30]. There also is an association with the presence of long-term 

indwelling catheters, since 2-10% of paraplegics with long-term indwelling catheters 

develop malignancy.  Cigarette smoking also has been reported to be significantly 

associated with an increased risk of transitional and squamous cell bladder carcinomas 

[31], leading to a fourfold higher incidence of bladder cancer compared to people who 

have never smoked [32, 33], with the risk correlating with the number of pack years. 

Use of cyclophosphamide leads to a ninefold increased risk of developing bladder 

cancer [32], with a relatively short latent period between 6 and 13 years. These are high 

grade and muscle infiltrating tumors at the time of diagnosis, with an equal incidence in 

both sexes [34]. The urinary metabolite acrolein is believed to be the responsible agent 

[35], and mesna, 2-mercaptoethanesulfonic acid, reduces the risk of bladder cancer in 

patients who develop hemorrhagic cystitis [36]. 

Specific genetic associations are still unknown, but are likely to involve activation 

of oncogenes or loss of function of tumor suppressor genes. Some of the most common 

genetic abnormalities identified in bladder cancer include loss of chromosomes 11p or 

17p, which map to the proto-oncogene c-ras and the tumor suppressor gene p53, 

respectively[37]. 
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Natural History 

Malignant transitional cells invading the lamina propria and the muscularis 

propria can gain access to blood vessels and lymphatics. Roughly 5% of patients with 

well-differentiated or moderately differentiated superficial papillary cancer and 

approximately 20% with high-grade superficial disease (including carcinoma in situ) 

ultimately manifest vascular or lymphatic spread, indicating that many patients with 

superficial malignancies have their initial lesion pathologically understaged and already 

harbor muscle-invading disease [38]. 

In the United States, about 60% of all newly diagnosed bladder cancers are well-

differentiated or moderately differentiated, superficial papillary TCC [39]. The majority 

of these patients develop tumor recurrences after endoscopic resection, with up to 25% 

recurring as higher-grade tumors [13]. Approximately 10% of patients with superficial 

papillary tumors subsequently develop invasive or metastatic cancer [11, 12], even after a 

prolonged tumor-free remission of over 5 years [10]. 40% of newly diagnosed bladder 

cancers are high-grade lesions, more than half of which are muscle invading or more 

extensive at the time of diagnosis [39]. High-grade superficial tumors tend to recur and 

develop invasive and metastatic disease far more frequently than low-grade tumors [38]. 

Most patients with occult metastases develop overt clinical evidence of distant 

metastases within 1 year [40]. The common sites of metastases are liver, 38%, lung, 36%, 

bone, 27%, adrenal glands, 21%, and intestine, 13% [15]. High grade disease also spreads 

by implantation in abdominal wounds or denuded urothelium [41]. Despite advances in 

treatment of systemic urothelial cancer, few patients with distant metastases survive 5 

years [42]. 
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Staging and Treatment 
Because tumor stage is important in determining therapy, accurate staging of 

bladder cancer is desirable. The main staging system of bladder cancer, also termed 

Tumor-Node-Metastasis system (TNM), has been revised and developed by the 

International Union Against Cancer and the American Joint Committee on Cancer [43]. 

 
Table 1: TNM Staging System for Bladder Cancer 

 

PRIMARY TUMOR (T) Treatment Option 
Single, low grade, non-
recurrent 

Complete Transurethral resection (TUR) Ta Noninvasive 
papillary 
carcinoma Multiple, high grade, or 

recurrent 
Complete TUR followed by intravesical  BCG 

or chemotherapy 
Tis Carcinoma in situ: flat tumor Complete TUR followed by intravesical BCG 
T1 Tumor invades lamina propria Complete TUR followed by intravesical  BCG 

or chemotherapy 
T2 Tumor invades muscle 
T2a Tumor invades superficial muscle 
T2b Tumor invades deep muscle (outer half) 
T3 Tumor invades perivesical fat 
T3a Microscopically 
T3b Macroscopically (extravesical mass) 
T4 Tumor invades prostate, uterus, vagina, 

pelvic wall, or abdominal wall 
T4a Tumor invades prostate, uterus, vagina 
T4b Tumor invades pelvic or abdominal wall 

 
Radical cystectomy 

or 
Neoadjuvant chemotherapy followed by radical 

cystectomy 
or 

Radical cystectomy followed by adjuvant 
chemotherapy 

or 
Neoadjuvant chemotherapy followed by 

irradiation 
 

NODAL INVOLVEMENT (N) 
N0 No regional lymph node metastasis  
N1 Metastasis in a single lymph node, 2 cm 

or less in greatest dimension 
N2 Metastasis in a single lymph node, more 

than 2 cm but not more than 5 cm in 
greatest dimension, or multiple lymph 
nodes, none more than 5 cm in greatest 
dimension 

N3 Metastasis in a lymph node more than 5 
cm in greatest dimension 

 
 
 

Systemic chemotherapy followed by selective 
surgery or irradiation 

DISTANT METASTASIS (M) 
M0 No distant metastasis  
M1 Distant metastasis Systemic chemotherapy followed by selective 

surgery or irradiation 
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Bladder cancer remains a therapeutic challenge, where cystectomy, systemic 

chemotherapy, radiation, intravesical treatment or a combination of these comprise the 

spectrum of interventions. Treatments begin from transurethral resection and intravesical 

therapy of superficial bladder tumors, as indicated in Table 1, and include selective 

surgical cystectomy procedures, before or after chemotherapy or irradiation for muscle 

invasive disease.  

Intravesical instillation with Bacillus Calmette-Guerin (BCG) has proven to be an 

effective treatment for superficial bladder cancer and for CIS for the last twenty five 

years, even though the exact mechanism of action remains unknown [44]. Mitomycin C, 

an antibiotic that inhibits DNA synthesis, is equivalent to BCG for superficial disease in 

terms of survival rates [45]. Radical cystectomy is the treatment of choice for muscle-

invasive bladder cancer, however, only half of these patients will be cured by cystectomy 

alone [46]. Systemic chemotherapy involves MVAC, methotrexate, vinblastine, 

adriamycin and cisplatin, which has been the standard combination regimen for nearly 

two decades. For locally advanced and metastatic bladder cancer, long-term survival is 

rare. Average survival for patients receiving MVAC is less than 14 months, and 

approximately 4% remain disease-free at 5 years [47]. Newer agents, such as 

gemcitabine, have a single-agent response rate of approximately 25% [48]. 

Even though the mortality rates for bladder cancer have improved over the last 

thirty years, it is estimated that 13,060 patients in 2006 succumbed of the disease. Current 

forms of therapy for invasive tumors are limited and there has been little improvement 

over the last two decades. These daunting statistics beckon for new and better treatment 

modalities [49]. 
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Histone Deacetylase Inhibitors as a New Cancer Treatment 

Evidence for epigenetic events associated with tumorigenesis centers around 

DNA methylation and histone acetylation [50]. Post-translational modifications of 

histones, such as acetylation, phosphorylation and methylation, play an important role in 

chromatin structure and function and in the regulation of gene expression [51]. Histone 

acetylation is regulated by two families of enzymes, histone acetyl transferases (HATs) 

and histone deacetylases (HDACs), which catalyze, respectively, the addition or the 

hydrolysis of acetyl groups to lysine residues of nucleosomal histones [52]. The opposing 

actions of HATs and HDACs allow gene expression to be exquisitely regulated. 

Histone hypo-acetylation is involved in the tumorigenesis of many malignancies, 

and inhibition of HDACs poses as a new strategy in human cancer therapy. To date, 

many HDAC inhibitors (HDACIs) have been developed and have been shown to be 

potent inducers of tumor growth arrest, differentiation and apoptosis of tumor cells in 

vitro and in cancer patients in phase I and II clinical trials [53]. Although the precise 

mechanisms underlying these cellular responses to HDACIs have yet to be characterized, 

HDACI efficacy may be due at least in part to suppression of cancer cell migration, 

invasion, metastasis, blood supply and angiogenesis [53]. 

There are several structurally diverse classes of HDACIs. These include short-

chain fatty acids, cyclic and non-cyclic hydroxamates, cyclic peptides or tetrapeptides, 

benzamides, ketones and hybrids of hydroxamic acid and cyclic tetrapeptide. One of the 

first known HDACI was sodium N-butyrate [54], a potent growth inhibitor and 

differentiating agent for many tumor cell lines. During initial clinical trials, limited 

efficacy was observed with some toxicity and Phase II clinical trials are still on-going. 
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Phenylacetate and phenylbutyrate gave the same results, as well as the anti-epileptic 

agent, valproic acid, which has been reported to delay the growth of primary breast 

cancers and to act against metastases found in the lung [55]. However, all these 

compounds are weak inhibitors, even in high concentrations and non-selective, with 

pleiotropic effects [56]. 

 

Histone Deacetylase Inhibitors and Bladder Cancer 

T-24 cells are poorly differentiated bladder urothelial cells, derived from an 

invasive high-grade bladder tumor with metastatic potential [57]. When treated with 

several HDACIs, such as suberoylanilide hydroxamic acid or Trichostatin A, T-24 cells 

show changes in a core set of genes that are involved in cell cycle progression, DNA 

synthesis and apoptosis [58]. Specific changes include an up-regulation of tumor 

suppressor p21, an accumulation of cells in the G2/M phase of the cell cycle and a 

decrease in survivin levels [59]. p21 is aberrantly expressed in bladder cancer [60] and 

when activated, modulates survivin expression [61, 62]. 

Survivin is a member of the family of inhibitors of apoptosis proteins (IAP), and 

is expressed in nearly all human carcinomas, including TCC, but not in terminally 

differentiated adult tissues [63]. It is highly expressed in bladder cancer and bladder 

cancer cell lines, but not in normal urothelium or in cultured urothelial cells [64, 65], and 

its expression in bladder tumors correlates with abbreviated survival [64]. Furthermore, 

the presence of survivin protein and mRNA in urine [66] correlates with the presence of 

TCC and that when measured in subjects following intravesical BCG or mitomycin C 

treatment, survivin may serve as a marker for recurrent disease [67]. 
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As a pilot study in the Weiss lab, T-24 cells were treated with valproic acid, a 

relatively weak HDACI with inhibitor activity in the millimolar range, to assess effects 

on the IAP survivin (Justin Cohen, unpublished results).  Incubation of T-24 cells with 10 

mM valproic acid for 24 and 48 hrs caused a 65 and 57% decrease in cell proliferation, 

respectively, and reduced survivin protein levels by approximately 50% relative to actin 

protein levels at 0.1 mM (Figure 5).  

 

Figure 5: Effect of Valproic acid on survivin levels in T-24 cells at 24 hours. 

Given the importance of this IAP, the Weiss lab and others have investigated the 

possibility of a new cancer treatment strategy for TCC by reducing the levels of survivin 

using RNA interference [68]. This is a process by which a 20-25 nucleotide small 

interference RNA (siRNA) can lead to specific gene silencing by forming a RNA-

induced silencing complex with double-stranded RNA. Because survivin is important in 

bladder cancer tumorigenesis, this new technique has implications for gene therapy of 

TCC. This led to siRNA-mediated down-regulation of survivin in two bladder cancer cell 
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lines, which was associated with reduced viability, a specific G2/M arrest, the induction 

of apoptosis, the occurrence of multi-nucleated cells and an increase in cytosolic 

cytochrome c, a marker of mitochondrial damage. The Weiss group also investigated the 

effects of survivin-siRNA on T-24 bladder cancer cells using microarray analysis of a set 

of 114 apoptosis related genes. Significant decreases were noted in 14 genes, as shown in 

Table 2. 

Inhibitors of Apoptosis (IAPs) 
Survivin siRNA/ 
Scramble SiRNA ratio 

BIRC5 SURVIVIN 0.02 
TNF receptors & genes related to NF-κB signaling  
TNFRSF25 DR3/Apo-1/cd95 (TNF RECEPTOR SUPERFAMILY MEMBER 25) 0.18 
TNFRSF1A TNFR1  (TNF RECEPTOR SUPERFAMILY MEMBER 1A) 0.40 
LTBR LYMPHOTOXIN β RECEPTOR(TNF RECEPTOR SUPERFAMILY MEMBER 3) 0.46 
TRADD TNFRSF1A-ASSOCIATED VIA DEATH DOMAIN 0.74 
Caspases and related genes  
CARD10 CASPASE RECRUITMENT DOMAIN FAMILY MEMBER 10 0.17 
CASP4 CASPASE-4, APOPTOSIS-RELATED CYSTEINE PROTEASE 0.31 
CASP2 CASPASE-2, APOPTOSIS-RELATED CYSTEINE PROTEASE  ICH-2 0.31 
Akt/PKB & related genes  
 Akt /PKB   Akt / PKB  (v-Akt MURINE THYMOMA VIRAL ONCOGENE HOMOLOGUE 1) 0.14 
ABL1 c-Abl (v-Abl ABELSON MURINE LEUKEMIA VIRAL ONCOGENE HOMOLOGUE 1) 0.20 
Bcl-2 related genes  
BCL2L11       BCL2-LIKE11 (APOPTOSIS FACILITATOR,  BimL) 0.15 
BCL2L13 BCL2-LIKE 13 (APOPTOSIS FACILITATOR) 0.19 
BNIP1 NIP-1 (BCL2/ADENOVIRUS E1B 19 kDa INTERACTING PROTEIN 1) 0.19 
BCL2L12 BCL2-LIKE 12 (APOPTOSIS FACILITATOR) 0.21 
BAK1 Bak (BCL2 -ANTAGONIST/KILLER 1) 0.29 
Housekeeping genes  
GAPD GAPDH 0.85 
ACTB BETA- ACTIN 0.97 

Table 2: Changes in apoptotic gene products after treatment of T-24 cells with 

survivin-siRNA for 72 hours. 

Downregulation of survivin in T-24 cells using survivin-siRNA is associated with a 

decreased cell growth, a specific G2/M arrest, an increase in cytochrome-c release and 

altered production of genes related to apoptosis, including four TNF receptors [69], three 

caspases, and the Bcl-2 related gene, BAK1 [65]. 
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A new Histone Deacetylase Inhibitor, PXD101 
PXD101 is a new hydroxamate HDACI developed by TopoTarget Prolifix in the 

UK and Curagen in the US. PXD101 was found to inhibit HDAC activity in HeLa 

extracts with an IC50 value of 27 nM. It also inhibited HDAC activity in various cell 

lysates from ovary, colon, lung or breast with an IC50 in the 9–100 nM range. Antitumor 

activity at a dose of 10 mg/kg daily was observed in xenografts of the human ovarian cell 

line A2780, with no effect on body weight or apparent toxicity to the mice at ≤40 mg/kg. 

Antitumor activity was also noted [70] in cell lines relatively resistant to current 

cytotoxic drugs. PXD101 is well tolerated in rodents and non-rodents and orally 

bioavailable in dogs. PXD101 entered Phase I clinical trials at the end of 2003 [71]. 

Synergism with cis-platin and 5-Fu has also been reported [72]. 

 

 
Figure 6: Histone Deacetylase Inhibitor, PXD101 

No significant improvement in the treatment of bladder cancer has occurred in the 

past two decades and therefore new modalities of treatment are needed. Survivin is highly 

expressed in TCC, and its down-regulation causes profound changes in mitosis and 

apoptosis, which may be related to changes in TNF receptors. HDAC inhibitors inhibit 

the growth of bladder cancer cells, and also downregulate survivin and other anti-

apoptotic proteins in cancer cells. Therefore, we propose to study the effects of PXD101 

on survivin levels in T-24 bladder cancer cells, as the chemopreventative role of this new 

HDACI may involve down-regulation of survivin and other apoptotic signaling proteins.  
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Statement of Purpose 

Bladder cancer remains a therapeutic challenge as current forms of therapy for 

invasive tumors are limited. Daunting statistics beckon for new and better treatment 

modalities.  HDACIs mediate gene expression and chromatin assembly, and induce 

growth arrest and apoptosis of tumor cells, thus representing a new strategy for human 

cancer therapy. HDACIs inhibit the growth of bladder cancer cells, and also 

downregulate survivin and other anti-apoptotic proteins in cancer cells.  Survivin is 

highly expressed in TCC and down-regulation of survivin causes profound changes in 

mitosis and apoptosis. Therefore, changes in apoptosis signaling pathways and the effect 

on cell growth and cell-cycle arrest of a new HDACI, PXD101, on T-24 bladder cancer 

cells form the basis of this study. 
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Materials and Methods 

All experiments and data analysis were conducted by Hristos Z. Kaimakliotis. 

Materials: Anti-survivin polyclonal antibody was purchased from 

NovusBiologicals, Inc, Littleton, CO. Anti-caspase-8 monoclonal antibodies was 

purchased from Cell Signaling Technology, Beverly, MA. Anti-actin goat polyclonal and 

anti-TNFR1 monoclonal antibodies were purchased from Santa Cruz Biotechnology. 

Anti-caspase-3 polyclonal antibody was purchased from R&D Systems, Inc. Anti-

caspase-2 polyclonal antibody was purchased from BD Pharmingen Bioscience, San 

Diego CA. Anti-Bak polyclonal antibody was purchased from Upstate, Charlottesville, 

VA. Peroxidase-conjugated affiniPure F(ab’)2 fragment donkey anti-rabbit IgG and rat 

anti-mouse antibodies were purchased from Jackson ImmunoResearch Laboratories, 

West Grove, PA. 

Preparation of cells treated with PXD101: T-24 cells were plated on 6 well 

plates in McCoy’s media with serum and glutamate. Cells were treated after 24 hours, 

when they were 30-50% confluent. Cells were incubated with PXD101 for up to 72 

hours, then trypsinized, treated with trypan blue and counted or prepared for Western blot 

or FACS cell sorting. 

FACS of propidium iodide (PI) treated cells: Trypsinized cells were washed 

with PBS and fixed with 95% ethanol. Two hours prior to cell sorting, ethanol was 

removed after centrifugation. Since RNA also binds PI, cells were treated with 400 μg 

RNAse type 1A (Sigma, St. Louis, MO) at 37°C for 30 minutes, followed by PI (50 

μg/ml) for 45 minutes (4°C).  Cells were sorted and analyzed with ModFit to determine 

DNA content. 
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Western blot analysis: After removal of media, 20 mmol/L Tris buffer (pH 7.4) 

containing 1 mmol/L EDTA, 1 mmol/L EGTA, 1% triton X-100, phosphatase and 

protease inhibitors, was added to culture wells to lyse the cells (10 minutes, 4°C). Then, 

2x SDS sample buffer with 5% β-mercaptoethanol was added, cells were scraped and 

collected. Pairs of samples were normalized for each time point and concentration of 

PXD101, based on actin quantification determined after Western blot. To normalize the 

samples, standard loading volumes were used and samples were subjected to Western 

blot analysis and normalized volumes were determined by adjusting loading volumes 

with respect to actin immunoreactivity of the protein bands on the resulting blot.  

For all Western blots, after separation of proteins by SDS-PAGE, proteins are 

transferred to nitrocellulose membranes. After incubation with the appropriate primary 

and secondary antibodies, immunoreactive proteins were detected using 

chemiluminescence (ECL, Amersham Biosciences, Uppsala, Sweden). Band densities 

from photographic film of the blot were quantified using digital image analysis (Eastman 

Kodak Company, Rochester, NY). 

Cell proliferation assay: Cell proliferation in the presence and absence of the 

HDACI, PXD101 was measured by the cleavage of the tetrazolium salt WST-1 to 

formazan by mitrochondrial dehydrogenases (EMD Bioscience, Darmstadt, Germany). 

Statistics: For each experiment a PXD101 concentration curve was constructed, 

using vehicle in control samples. Results of at least 3 different experiments performed in 

duplicate were expressed as a mean % change over control ± SEM. Significance was 

determined by ANOVA (p<0.05). 
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Results 
 
 
Changes in apoptosis signaling pathways and the effect on cell growth and cell-

cycle arrest of the new HDACI, PXD101, on T-24 bladder cancer cells form the basis of 

this study and results are presented below.  

 

Cell Proliferation and Viable Cell Counts 
T-24 cells were incubated with PXD101 at varying concentrations and times, and 

proliferation and viable cell count curves were constructed. In the presence of 5 μM 

PXD101 for 48 hours, T-24 cells exhibited a 56.7% ± 4.2 decrease in proliferation 

(Figure 7). 
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Figure 7: T-24 cell inhibition at 48 hours in presence of PXD101. 
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In the presence of 5 μM PXD101 for 72 hours, T-24 cells exhibited a 64.8% ± 3.2 decrease in 

proliferation (Figure 8). 
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Figure 8: T-24 cell inhibition at 72 hours in presence of PXD101. 

 
Viable cell counts of T-24 cells incubated for 24 and 48 hours with 5 μM 

PXD101 decreased by 30.6% ± 4.8 and 89.0% ± 3.0, respectively. The IC50 of PXD101 

for proliferation and viable cell counts was approximately 1 μM (Figure 9). 
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Figure 9: T-24 viable cell counts in presence of PXD101 for 24 hrs and 48 hrs. 
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FACS Analysis 

Cell cycle analysis was conducted with FACS. Treatment of T-24 bladder cancer 

cells with PXD101 (2 and 5 μM, 48 hrs) increased apoptotic cells (sub-G1 cells) 1.3 and 

2.3 fold, respectively (Figure 10). Apoptotic cells appeared as a distinct population of 

decreased size and cell density, as expected.  

 

Figure 10: T-24 bladder cancer cells FACS scatter plots of control (left) vs. treated 

(right, 5 μM PXD 101 for 48 hours). 

 

The untreated gated control population was used for cell-cycle population analysis 

and comparison, and cell distributions. All changes reported in Table 3 are significant. T-

24 bladder cancer cells treated with PXD101 (1, 2 and 5 μM, 48 hrs) decreased G1 phase 
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cells by 41-54% and increased S and G2/M phase cells 2.5-3.5 fold (Figure 11). No 

significant changes in cell cycle distribution were noted at 12 or 24 hours. 

 Time 
(hr) 

0μM  PDX101 1μM PDX101 2μM PDX101 5μM PDX101 

Cell Cycle Changes over Control 
G0/G1 phase 48  -41.2% + 3.8 -53.7% + 3.1 -53.9% + 0.9 

S phase 48  +287.4%+127.4 +343.0%+125.7 +364.8%+124.3 
G2/M phase 48  +250.5%+29.8 +271.3%+33.3 +321.5%+39.1 

Cell Cycle Distribution 
G0/G1 phase 48 84.2.0%+2.9 49.3%+2.2 40.1% + 2.0 38.9% + 1.9 

S phase 48 5.5% + 1.8 14.4%+0.5 17.5% + 1.4 18.8% + 1.8 
G2/M phase 48 7.9% + 1.3 27.9%+2.7 28.8% + 2.6 33.6% + 3.6 

Table 3: FACS analysis of cell cycle distribution and changes in T-24 bladder cancer 

cells treated with PXD101. 

 
Figure 11 shows a representative FACS cell-cycle histogram, comparing treated 

vs. untreated cells at 48 hours. 

 
Figure 11: T-24 bladder cancer cells FACS cell-cycle histogram of untreated (red) 

vs. treated (green, 5 μM PXD 101 for 48 hours). 
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Western Blot Analysis 

Changes in apoptosis signaling proteins that the Weiss laboratory previously 

found to be regulated by survivin-siRNA in T-24 cells (See Table 2) were assessed by 

Western blot in this study for effects by HDACI PXD101 in T-24 cells. These proteins 

included survivin, caspases 2, 3 and 8, BAK1 and TNFR1. Actin levels were used to 

normalize across varying concentrations, as it remains unchanged during induction of 

apoptosis. Representative blots of each protein assessed are shown in Figure 12 and all 

protein level changes are shown in Figures 14 & 15 and are reported in Table 4. 

Actin
43kDa

Survivin
16kDa

Caspase 2
48kDa

Caspase 3
32kDa

Caspase 8
43kDa     

BAK1
30kDa

TNFR1
55kDa

Conc (μM) 0 0.01 0.05 1.0 2.0 5.0

Figure 12: Representative western blots showing actin, survivin, caspases 2, 3 and 8, 

BAK1 and TNFR1 levels in T-24 bladder cancer cells treated with PXD101 for 48 

hours (experiments were repeated three times for a total n=6). 
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The caspases were analyzed using the higher molecular weight pro-caspase band, 

even though the active protein is the lower molecular cleaved product. One antibody is 

used for each pro-caspase/caspase pair in question, and although directed at the pro-

caspase band, binds both at different rates. The presence of cleaved (activated) caspase 

was visualized for all three caspases, but only at long film exposures, which deterred its 

quantitative analysis due to over-exposure and appearance of non-selective binding  

(Figure 13). Decrease in the levels of pro-caspase with the concomitant increase of 

cleaved activated product indicates up-regulation of caspase pathways and induction of 

apoptosis.  

 
 

Figure 13: Representative western blots of pro-caspases 2, 3 and 8 with their 

respective activated cleaved products in T-24 bladder cancer cells treated with 

PXD101 for 48 hours (experiments were repeated three times for a total n=6).  
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All changes in protein levels are shown in Figures 14 & 15 and are reported in 

Table 4. Incubation of T-24 cells with PXD101 for 24 hours decreased protein levels of 

survivin by 30-60% between 0.5-5 μM, and pro-caspase 2 levels by 43.7 ± 11.9% at 5 

μM. The protein levels of TNFR1 and pro-caspase 8 were increased with low 

concentrations of PDX101 at 24 hours (TNFR1: 112.9 ± 26.1% and 77.9 ± 13.9% at 0.1 

and 0.5 μM; pro-caspase 8: 140.7 ± 1.5%; 0.5 μM), whereas the protein levels of pro-

caspase 3 and of the Bcl2 related protein, BAK1, showed no significant change at 24 

hours (Figure 14). 
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Figure 14: Changes in levels of apoptosis related proteins, survivin, caspases 2, 3 

and 8, BAK1 and TNFR1, in T-24 cells treated with PXD101 at 24 hours (data was 

generated by quantifying Western blots from three separate experiments, n=6). 

 
As in the 24 hour experiment, incubation of T-24 cells with PXD101 for 48 hours 

increased protein levels of TNFR1 by 123.0 ± 62.9% at the low concentration of 0.1 μM. 
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Incubation with higher concentrations of PXD101 for 48 hours decreased the levels of all 

the other proteins tested, as shown in (Figure 15). 
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Figure 15: Changes in levels of apoptosis related proteins survivin, caspases 2, 3 

and 8, BAK1 and TNFR1, in T-24 cells treated with PXD101 at 48 hours (data was 

generated by quantifying Western blots from three separate experiments, n=6). 

Table 4: Relative change in apoptosis proteins survivin, BAK1, TNFR1, caspases 2, 3 and 8, 

in T-24 cells treated with PXD101 at 24 and 48 hours (red indicates significant changes, n=6). 

 Time 
(hr) 

0.1mM 
PDX101 

0.5mM 
PDX101 

1mM 
PDX101 

2mM 
PDX101 

5mM 
PDX101 

BAK1 24 1.7% + 17.4 1.8% + 18.2 -7.8% + 16.1 2.3% + 10.0 -23.9% + 12.2 
Caspase 3 24 5.4% + 15.8 22.3% + 11.1 7.8% + 13.8 1.0% + 10.3 -28.8% + 10.2 
Caspase 2 24 10.0% + 0 0.5% + 0.1 -16.9% + 1.5 -18.3% + 5.4 -43.7% + 11.9 
Caspase 8 24 22.1% + 3.8 140.7%+ 1.5 66.8% + 57.4 17.8%+ 22.6 -36.2% + 15.7 
Survivin 24 1.4% + .08 -30.5% + 1.6 -47.1% + 7.0 -52.6% + 2.1 -59.8% + 5.7 
TNFR1 24 112.9%+ 26.1 77.9% + 13.9 -19.5% + 25.9 0.8% + 26.2 -48.8% + 16.1 
BAK1 48 5.7% + 6.7 5.6% + 7.3 -0.9% + 5.7 -4.3% + 7.0 -38.8% + 8.8 
Caspase 3 48 -9.4% + 7.4 -26.6% + 7.7 -46.8% + 3.8 -50.2% + 9.9 -60.2% + 8.8 
Caspase 2 48 -8.0% + 3.3 -16.0% + 13.7 -38.0% + 17.7 -40.3% + 6.2 -73.1% + 15.6 
Caspase 8 48 10.0% + 7.9 18.5% + 14.7 -20.1% + 14.9 -42.0% +13.5 -79.6% + 11.6 
Survivin 48 -0.5% + 5.6 -2.4% + 15.0 -62.6% + 10.5 -90.2% + 3.2 -94.7% + 3.0 
TNFR1 48 123.0%+ 62.9 75.0% + 47.8 37.0% + 34.3 -4.0% + 35.8 -100% + 1.0 
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Discussion 

Even though the mortality rates for bladder cancer have improved over the last 

thirty years, it is estimated that over thirteen thousand patients succumbed to the disease 

in 2006. Current forms of therapy for invasive tumors are limited and there has been little 

improvement over the last two decades. These daunting statistics beckon for new and 

better treatment modalities [49]. 

Histone deacetylase inhibitors (HDACIs) represent a new strategy for human 

cancer therapy, as they mediate gene expression and chromatin assembly, and induce 

growth arrest and apoptosis of tumor cells. HDACIs also down-regulate survivin, which 

is highly expressed in TCC. The Weiss group has previously shown that down-regulation 

of survivin in T-24 cells using survivin-siRNA is associated with a decreased cell growth, 

a specific G2/M arrest and altered production of genes related to apoptosis, including 

TNF receptors [69], caspases, and Bcl-2 related genes [65]. Cytochrome c release into the 

cytoplasm, the central gate in the activation of apoptosis, was also increased, indicative of 

mitochrondrial damage [65]. 

Many of these apoptosis related changes have been reported by the use of several 

HDACIs in various cancer cell lines. Therefore, changes in apoptosis signaling pathways 

and the effect on cell growth and cell-cycle arrest of a new HDACI, PXD101, on T-24 

bladder cancer cells formed the basis of this study. Western blot analysis of survivin, 

caspases 2, 3 and 8, Bcl-2-antagonist/killer 1 (BAK1) and TNF receptor superfamily 

member 1 (TNFR1) was performed. These proteins were chosen for protein analysis 

because of their high level of gene product expression in T-24 cells and their profound 

down-regulation when T-24 cells are subjected to survivin-siRNA treatment [65]. 
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In the presence of 5 μM of the new HDACI, PXD101 for 48 and 72 hrs, T-24 

bladder cancer cells exhibited 57 and 65% decreases in proliferation, respectively. This 

decrease in proliferation is greater than changes reported with use of other HDACIs, 

including valproic acid and phenylbutyrate, at concentrations in this range [73]. Viable 

cell counts at 24 and 48 hrs (5 μM) were also decreased by 31 and 89% respectively, and 

the IC50 of PXD101 for proliferation and viable cell counts was approximately 1 μM at 

48 hours. This is higher than results found in HeLa extracts with an IC50 value of 0.03 

μM and various cell lysates from ovary, colon, lung and breast with an IC50 in the 0.1 μM 

range [73]. Nonetheless, this relatively low IC50 of PXD101 compared to other agents 

may allow it to be used at lower concentrations, with a lower side effect profile. 

Although no changes in cell cycle distribution were noted at 12 or 24 hours, 

treatment of T-24 cells with PXD101 for 48 hours at 2 and 5 μM increased apoptotic cells 

(sub-G1 cells) 1.3 and 2.3 fold, respectively. Apoptotic cells appeared as a distinct 

population of decreased size and cell density, as expected. These dying cells were 

excluded from analysis of the rest of the cell-cycle phases to provide accurate comparison 

between live cells of treated and control samples. PXD101 at 1, 2 and 5 μM for 48 hrs, 

decreased G1 phase cells by 41-54% and increased S and G2/M phase cells between 2.5-

3.5 fold. This indicates that mitosis is incomplete, with a specific arrest at the G2/M 

phase. These results are consistent with other HDACIs’ activity and is in accord with the 

arrest seen when survivin is down-regulated by treatment with survivin-siRNA in T-24 

cells [65], hepatocellular carcinoma cells, human sarcoma cells [68] and HeLa cells [74]. 

As expected, the protein levels of survivin in T-24 cells treated with PXD101 are 

decreased by 30-60% with 0.5-5 μM PXD101 at 24 hours, and by 62-94% with 1-5 μM 
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PXD101 at 48 hours. These changes are consistent with survivin-siRNA and other 

HDACI induced down-regulation of survivin [65], and lead to the apoptotic changes and 

cell death described earlier, as the IAP is no longer exhibiting its effect in tumor cells. 

On the other hand, the TNFR1 protein is dramatically up-regulated at 24 hours of 

treatment with PXD101 at low concentrations. TNFR1 is increased 113 and 78% with 0.1 

and 0.5 μM at 24 hours, and 123.0% at 48 hours with 0.1 μM PXD101. TNF is tumor 

necrosis factor and increases in TNF receptors and related proteins are considered pro-

apoptotic. Up-regulation of TNFR1 and its ligand TNFα, have been shown to occur when 

apoptosis is induced in leukemic cell with the HDACI, depsipeptide (FK228) [75], 

further demonstrating the efficacy of PXD101 as an anti-tumor agent. 

Activation of the death domain containing receptors, TNF receptor superfamily, is 

associated with activation of the caspase cascade, cytochrome c release, and apoptosis. 

To activate TNF receptors, specific adaptor proteins such as FAS-associated death 

domain (FADD) or receptor-interacting protein [RIP]-associated ICH-1/CED-3-

homologous protein with a death domain (RAIDD/CRADD) bind to ligand-bound 

receptor complexes. Interaction between these adaptor proteins and the prodomain of 

initiator caspases 2, 8 or 10 triggers sequestration-mediated auto-activation of these 

caspases.  These caspases, in turn, cleave and activate downstream caspases 3, 6, and 7 

and trigger apoptosis (Figure 16, page 31). 

Up-regulation of TNFR1 is reversed at higher concentrations of PXD101 and a 

dramatic down-regulation of TNFR1 is observed. Several authors have described 

increases in TNF receptors, ligands and related genes to be associated with induction of 

apoptosis, but there is growing evidence to suggest that TNFα promotes tumor 
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development and growth [76]. In a mouse model of metastatic colon adenocarcinoma, 

TNFα promotes tumor growth [77] and mice deficient in TNFα are resistant to skin 

carcinogenesis [78]. Furthermore, TNFR1 is the major mediator of TNFα-induced tumor 

formation in skin tumors [79] and during liver carcinogenesis [80]. Thus, while the initial 

decrease in TNFR1 induced at low concentrations of PXD101 may be considered as part 

of an activation of apoptotic pathways, the latter increase in TNFR1 at higher PXD101 

concentrations may be pro- or anti-apoptotic in T-24 bladder cancer cells. 

 

Figure 16: Signalling pathways in T-24 bladder cancer cells altered by survivin-

siRNA.  Red lettering indicates that either message or protein levels were modified 

by survivin-siRNA. 
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Similar to TNFR1 protein regulation, pro-caspase 8 levels are up-regulated at low 

concentrations of PXD101 and down-regulated at high PXD101 concentrations.  Caspase 

8 is an upstream caspase associated with a number of apoptotic pathways including 

TNFR1, APO2L/TRAIL and FASL.  It is believed that the TNFR1-induced pro-apoptotic 

signaling pathway requires the formation of two signaling complexes. A rapidly formed 

plasma membrane bound complex is composed of TNFR1, TRADD, RIP, TRAF2, and c-

IAP1 and triggers a NF-κB response, but no apoptosis. A second complex, which lacks 

TNFR1 but includes FADD and pro-caspases 8 and 10, subsequently forms in the 

cytoplasm. The complex containing pro-caspase 8 initiates apoptosis, provided that the 

NF-κB signal from complex I fails to induce the expression of anti-apoptotic proteins 

such as FLIPL.  FLIPL is an inhibitor of caspase 8 [81]. Thus, up-regulation of both 

TNFR1 and caspase 8 may be essential for apoptosis. 

Along with caspase 8, caspase 2 function as an upstream modulator that can 

trigger mitochondrial apoptotic pathways and release of cytochrome c [82]. Caspase-2 is 

required for the translocation of BAX/BAK1 to the mitochondria as well as release of 

mitochondrial proteins, which leads to apoptosis. Caspase 3 is a downstream effector 

caspase and is involved in Fas-mediated apoptosis. Decrease of pro-caspase levels with 

concomitant increase in lower molecular weight activated cleaved product is indicative of 

caspase pathway activation and induction of apoptosis. 

A profound decrease in protein levels of pro-caspases 2, 3 and 8 at higher 

PXD101 concentrations is noted, with a concomitant appearance of respective cleaved 

products, further supporting the induction of apoptosis in tumor cells. The cleaved 

products are only visualized at long film exposures though, deterring quantitative analysis 
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of cleaved products. The initial up-regulation of pro-caspase 8 at low PXD101 

concentration may be due to an initial response by T-24 cells prior to cleavage to the 

activated product, since caspase 8 is an upstream modulator. 

The Bcl-2 family of proteins governs mitochondrial outer membrane 

permeabilisation and can be either pro-apoptotic or anti-apoptotic, and can induce or 

inhibit the release of cytochrome c in to the cytosol, which activates caspase-9 and 

caspase-3, leading to apoptosis. The protein levels of BAK1, a Bcl-2 related protein 

which promotes the release of cytochrome c, are decreased at high concentrations in T-24 

cells after treatment with PXD101. This is similar to our previous results, where 

expression of many Bcl gene products is altered in T-24 cells after treatment with 

survivin-siRNA. Survivin-siRNA treatment down-regulates mRNA of apoptosis 

facilitators, including BCL2-L11, -L12, -L13, BAK1 and BNIP1 (NIP-1, BCL interacting 

protein 1). BAK1 protein is initially up-regulated by survivin-siRNA, but by 72 hours 

BAK1 levels decrease. BNIP3, which induces both apoptotic and necrotic death, is also 

down-regulated in prostate carcinoma cells after treatment with ribosome-mediated 

inhibition of survivin expression. The complex regulation of these pro-and anti- apoptosis 

molecules by PXD101 and survivin-siRNA suggests that the relative concentrations of 

these molecules and the time course of activation or synthesis of these proteins may 

determine if a cell lives or dies [83]. 

In summary, T-24 cells treated with PXD101 are characterized by decreased 

growth and large numbers of cells undergoing apoptosis and arresting in G2/M phase of 

the cell-cycle. PXD101 treatment is also associated with changes in upstream 

mitochondrial apoptosis mediators, including TNFR1 and caspases 2 and 8, and 
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downstream apoptosis mediators, such as caspase 3, BAK1 and survivin. PXD101 

treatment of tumor cells is associated with a profound decrease in survivin and pro-

caspases’ levels, and with an increase in TNFR1 protein levels, both changes indicative 

of induction of apoptosis. BAK1 levels remain unchanged until high concentrations of 

the HDACI. This decrease in BAK1 levels, and in fact of all apoptosis related proteins at 

very high PXD101 concentrations, may be the result of PXD101 treatment or the T-24 

cells’ response to that treatment, such as generalized cell death with decreased protein 

synthesis. The down-regulation of survivin may cause T-24 cells to up-regulate TNF 

receptors and cleave pro-caspases in order to preserve their apoptotic phenotype.  

HDACIs have shown profound results in initiating tumor regression and 

symptomatic improvement in some heavily pre-treated patients at an advanced stage who 

have experienced multiple relapses. This regression has been achieved with a surprisingly 

low side-effect profile and a wide therapeutic index [84]. The impressive anti-tumor 

activity of HDACIs and their lack of toxicity at doses that effectively inhibit tumor 

growth strongly support these agents as a suitable molecular target for anticancer drug 

development. Therefore, the new HDACI PXD101, alone or in combination with 

inhibitors of other tumor relevant factors and with chemotherapies with complementary 

mechanisms of action, shows promise for its use as a suitable new agent for cancer 

treatment. 

This is the second report indicating up-regulation of TNFR1 with the use of any 

HDACI and the first to our knowledge that describes an initial increase in protein levels 

of apoptotic related proteins, only to be followed by a decrease in these levels. Future 

work on this project will involve investigating the effects of this new HDACI, PXD101, 
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using real time RT-PCR to assess mRNA levels of the apoptosis-related proteins 

analyzed above. An ELISA assay of the TNRF1 ligand, TNFα, will also be conducted on 

experiment media, to assess whether there is change in levels of this signaling molecule 

to further support our findings. A manuscript is currently in preparation to report these 

results and an abstract has been accepted to be presented at the national meeting of the 

Society of Genitourinary Surgeons. In addition, our lab has developed transgenic mice 

that over-express bladder specific survivin [85]. These mice demonstrate increased 

bladder inflammation and respond to a bladder carcinogen with accelerated tumor 

formation and shortened survival. The effects of PXD101 in these mice will be tested to 

determine if they have altered susceptibility to HDACIs and increased survival rates. 
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