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ABSTRACT 

 

Laser cladding is an additive manufacturing technique involving deposition of 

powdered clad metal in successive 2D layers onto a substrate thereby creating 

surface coatings with enhanced material properties. Process and shape parameters 

contribute in defining the geometry of the clad bead; however, due to the highly 

coupled nature of the process, it is difficult to determine the relationship between 

parameters. This research predicts such parameters through development of a 

cognitive artificial intelligence system using artificial neural networks. A robust 

experimentation design process applying response surface methodology technique 

is adopted to collect the bead geometry data for various process configurations. 

Furthermore, the research identifies the extent of contribution of each factor and the 

impact of their interactions on the model output through ANOVA and sensitivity 

analysis. Lastly, a K-mean clustering algorithm is incorporated to identify optimal 

number of clusters present in the collected dataset on the basis of bead shape 

characteristics.      
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CHAPTER 1 

INTRODUCTION TO ADDITIVE MANUFACTURING 

1.1 Background 

The term “manufacturing”, refers to a method that converts raw materials into 

finished products using manual labor or machines, especially on a large scale [1]. 

Manufacturing is derived from the Latin word “Martus Factus”, which means “made by 

hand” [2].   

In general, manufacturing can be categorized according to the technique or the 

methodology adapted to attain a desired finished product, as follows:  

1) Casting process- this is one of the oldest methods of manufacturing. Sand casting 

is one of the most common examples of the casting process. Here, the molten metal 

is poured into the metal cavity and it is allowed to solidify to produce the final 

product. Other examples of the casting process include: investment casting, 

permanent mould casting, die casting, centrifugal casting etc. 

2) Forming process- this is a process that aids in the modifying the shape of a 

preheated metal. Drop forging is one the most common examples of the forming 

process. Here, the preheated metal (billet) is placed in the die and a hammer is used 

to strike the billet. This allows the shape of the die cavity to be obtained. Other 

examples of the forming process include: press forging, upset forging, wire 

drawing, rolling etc. 

3) Welding process- this process involves joining two or more metallic pieces by 

applying heat and pressure. Gas welding is one of the most common examples of 

the welding process in which molten metal wire (with heat and pressure) is used as 

an adhesive to join metal plates. Other examples of the welding process are: electric 

arc welding, resistance welding, etc. Soldering, brazing are complementary 

processes, but the base material is not melted. 

4) Subtractive manufacturing (SM) process or material removal process- this is a 

process that aids in removing the unwanted material from the work piece. Drilling 

is one of the most common examples of the material removal process in which the 

unwanted material is removed from the work piece by creating a hole in the work 
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piece. Other examples of the material removal process include: milling, grinding, 

broaching, turning etc. 

The casting process and the welding process are a few types of the additive 

manufacturing (AM) processes. On the Contrary, the forming process is a supplemental 

process to the AM operations that helps generate new parts with no addition to material 

(parts generated through deformation process). AM is demarcated by the addition of the 

raw materials to a substrate or a base material. However, SM is demarcated by the removal 

of the material during a manufacturing/ machining process.  

AM defines the future of the manufacturing sector and helps revolutionize the 

industry as it currently stands. AM techniques not only infuse the idea of “on demand 

manufacturing”, but also have various advantages over conventional methods (SM 

techniques). This thesis work incorporates an AM approach (laser cladding), which is a 

budding practice in manufacturing industry today.  

 

1.1.1 Comparison between Additive and Subtractive Manufacturing 

Additive Manufacturing (AM) is a modern manufacturing technique to addition or 

stacking of various successive two-dimensional (2D) layers to form a desired three-

dimensional part [3]. Figure 1, displays two additive manufacturing prototypes (figure1 B, 

source: industry sponsor [4]). 

 

                              (A)                                                                    (B)  

Figure 1: Additive manufacturing prototypes- (A) FDM and (B) laser cladding operations 
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On the other hand, subtractive manufacturing (SM) is a traditional manufacturing 

approach that refers to the process of material removal using various machines such as 

computer-numeric control (CNC), horizontal/ vertical mills, lathe etc. to achieve a desired 

finished end product.  Again, “subtractive”, as the name suggests, refers to loss of material 

while crafting a desired shape from a basic geometrical shape (such as a cube, a cylinder 

etc.) [3].  Figure 2, displays a few subtractive manufacturing processes (figure2 (A) source: 

Gosiger [5]; figure2 (B) source: Florian Schott [6] ). 

  

                              (A)                                                                    (B)  

Figure 2: Subtracting manufacturing processes- (A) milling [5] and (B) lathe [6] 

 

Additive manufacturing (AM) marks a new paradigm shift for the manufacturing 

field of engineering over various traditional approaches. The industrial revolution was 

driven by various subtractive manufacturing approaches which led to vast 

accomplishments in the manufacturing sector. These accomplishments had a major impact 

on the manufacturing industry but had various limitations in regards to manufacturing 

capabilities. AM overcomes various manufacturing limitations set by traditional practices 

and provides better quality and long lasting products [7]. 

 

1.1.2 Additive Manufacturing Process  

Independent of the process adopted for additive manufacturing, the three sub-

components for an additive manufacturing process comprise of: 
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1) The generation of a computer aided design model (CAD model),   

2) The fabrication of a physical layered model, and 

3) Post processing of the layered model 

These additive manufacturing steps can further be decomposed to six simple procedural 

step(s): [8] 

a) Drafting a 2D/ 3D model utilizing a computer aided design software (CAD) 

b) Conversion of a proprietary CAD file to a suitable prototyping file, generally in 

most cases a ‘.STL’ (stereo lithography) format file. 

c)  Slicing the generated model/file into 2D cross sectional surfaces 

d) Generation of a tool path to create the model in the additive manufacturing machine 

e) Creation of the model in real life (physical form) 

f) Finishing and post processing operations, for example, removing support materials, 

cleaning, etching etc. 

 

1.1.3 Additive Manufacturing Applications and Divisions  

The systems that manufacture products using principles of additive manufacturing 

are also known as layered manufacturing (LM) Systems. The prototypes generated by these 

systems are helpful from the concept visualization phase to the functional and analysis 

phase of the desired product. These layered manufacturing systems (LM) fabricate 

components that have applications in diverse fields ranging from manufacturing sector to 

biomedicine.  

The selection of an additive manufacturing process is generally made based on the 

end use of manufactured prototypes/ products. As seen in figure 3 (adapted from [9]), the 

maximum (major) share of market for additive prototypes/ products is most prevalent in 

the consumer products and the automotive industry (approx. 25% each), the second largest 

share is prevalent in the aerospace industry, business machines and medical industry and 

the third largest share is prevalent in sectors such as the military/government and various 

academia institutions. [9]   
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Figure 3: Layered manufacturing division according to sectors adapted from [9] 

It can be noted from figure 4 (adapted from [10]) that the primary application of 

additive manufacturing includes generating functional models, a visual aid tool for 

engineers, patterns for prototype tooling,  and for fit/assembly testing. The secondary 

application includes building patterns for cast metals, visual aids for toolmakers, and 

directing tooling inserts. The tertiary applications include using AM prototypes for 

proposals, ergonomic studies, quoting applications, and others. [10] 
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Figure 4: Layered manufacturing division according to application adapted from [10] 

 

1.1.4 Types of Additive Manufacturing Processes 

 Some of the main AM technologies that exist in today’s market/industry and 

academia are stereo lithography (SLA), selective laser sintering (SLS), fused deposition 

modelling (FDM), 3D printing (3DP), laminate object manufacturing (LOM) and laser 

cladding (LC). [8] 

These technologies have their unique advantages and disadvantages but are much 

similar in their overall manufacturing processes, i.e., AM processes consist of six basic 

fundamental steps to manufacture a component (seen in subsection 1.1.2). Table 1 shows 

the various layered manufacturing technologies subjected to the raw material utilized for 

production purposes. [8] 
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Table 1: Types of layered manufacturing technologies with raw materials  

S. No. Layered Manufacturing technology Raw Material 

1. Stereo lithography (SLA) Photopolymer 

2. Selective laser sintering (SLS) Metal powder, thermoplastics 

3. Fused deposition modelling (FDM) Thermoplastics/ eutectic metals 

(ex. silver-gold alloys that 

transform directly from solid to 

liquid state or vice-versa). 

4. 3D Printing (3DP) Powder(s) 

5. Laminate object manufacturing (LOM) Paper (primary raw material), 

plastics and ceramics 

6. Laser cladding (LC) Powder metal(s) 

 

The focus of this thesis work is on the laser cladding technology. This technology 

is discussed more in detail in chapters 3-6. 

 

1.1.5 Advantages of Additive Manufacturing 

Additive manufacturing has various advantages over conventional machining 

processes, including: 

1) Ability to effectively manage increased part complexity without increased process 

planning time - a major benefit of using an additive approach is the ability to create 

parts that comprise of complex shapes and are difficult or impossible to 

manufacture through conventional subtractive practices.  For example- additive 

manufacturing can produce various complex structures that in the past had 

limitations due to weight or process planning constraints, which are typical 

applications for the aerospace and automotive industries. Figure 5 (source: Ziad, 

Abou [11]), displays one such application of structure created through FDM (fused 

deposition modelling technique), a technique that is extremely challenging to 

produce through conventional machining operations. 
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Figure 5: Complex additive manufacturing specimen [11] 

2) Digital design and ease of manufacturing- the parts manufactured through the 

process of additive manufacturing are generally a bi-product of standardized digital 

files (.STL files).  The level of operator expertise and human interaction through a 

graphic user interface (GUI) required is low as the part is being generated and 

validated within the CAD/ CAM software. This practice promotes an unmonitored 

manufacturing approach leading to an increase in production volume and a decrease 

in lead time. Furthermore, digital manufacturing promotes production through 

customization [7]. 

3) Low production cost due to “free complexity”- in subtractive manufacturing, 

production of a part requires various tool changes along with process planning 

complications that adds to the complexity of the part. On the other hand, additive 

manufacturing is a complexity independent process that promotes manufacturing 

using a single tool for any desired geometry. This proactive approach makes the 

process complexity free with no additional costs or lead times in manufacturing of 

the customized parts [7]. 

4) Instant global production- the products produced with additive manufacturing are 

created initially through a digital .STL file. Due to this digital nature of the part, 

these files can be transferred over the web. Once the file is downloaded, it follows 

the identical process of manufacturing through a compatible production equipment, 

resulting in similar design characteristics of the 3D part manufactured [7]. 

5) Waste reduction- additive manufacturing is done through addition of successive 2D 

layers, hence leading to no wastage of material. In conventional practices, the 
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material removal process leads to bi-products such as material scraps (ex. metal 

chips) and other lubrication fluids (ex. coolants and lubrication oils) which are non-

biodegradable. Hence, additive manufacturing also promotes “green 

manufacturing” [7]. 

 

1.2 Motivation, Objectives, and Limitations 

 

1.2.1 Motivation 

Laser cladding (LC) is an additive manufacturing process that builds a product from 

thin layers of melted powdered metal(s) through a fusion reaction with help of a laser 

system. In a particular case of laser cladding, the part’s geometrical properties depends on 

the material’s deposition orientation, feed rate of the powder (metal), power of the laser, 

focal length of the focusing lens, travel speed of the laser to provide fusion reaction and 

the distance of the nozzle to the workpiece. These factors/ parameters control the meso-

structure characteristics of the bead and influence the overall built of clad bead geometry. 

The dependence of the material’s geometrical properties and meso- characteristics on the 

manufacturing parameters provides the laser cladding (LC) technology an ability to 

optimize the overall build performance. This approach is well established for similar 

process like metal inert gas (MIG) and tungsten inert gas (TIG) welding technology; but 

proves to be a novelty area of research for the laser cladding technology.  

There are three main manufacturing strategies for the clad bead structure built or 

generated by using laser cladding technology: single pass bead, overlapping layers and 

multi- layer orientation (3D part). Each manufacturing strategy has a significantly unique 

use in the industry and hence, it is relevant to study these strategies to generate profits. 

Single bead orientations are generally used in repair work of mold and die sets, overlapping 

layers are generally used to coat a surface of a metal to enhance the metallurgical properties 

of a substrate (such as wear, corrosion, thermal etc.) and multi-layer orientations are 

complex integrations of various overlapping layers which aid in generating a three-

dimensional structure. Figure 6 (source: industry sponsors [4]; figure 6 (C), designer- Mr. 

Syed Saqib), displays uses of each manufacturing strategy.  
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                              (A)                                                                    (B)  

 

 

   (C)                                                                     

Figure 6: Laser cladding operation- (A) single pass, (B) overlap pass, and (C) 3D part [4] – designer Mr. 
Syed Saqib 

 

The excessive time consumed, financial investments and material wastes are 

prominently increased when a part is generated in any of the mentioned (A, B, and C) 

manufacturing strategies due to laser cladding being a novel technology in the additive 

sector. Research has shown that when various manufacturing parameter configurations are 

utilized, dilution levels over a diverse range are generated in bead structures. Also, 

overlapping and multilayer structures tend to possess porosity due to imperfections in the 

manufacturing process and systems involved. Presence of such impurities during 
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production is not desirable since such impurities may lead to instability and various 

structural mishaps. Evidently, it is desirable to standardize the laser cladding process to 

reduce the manufacturing time and the material wastage. The aforementioned action will 

be desirable to characterize and ensure the stability of the structure as well as the 

geometrical behavior for which the desired part is produced.  

The shape or geometrical properties established in a laser cladding process are thus 

governed by the manufacturing parameters. Hence, it is vital to characterize or standardize 

a methodology that can show linear or non-linear topological relationships between the 

structural (shape) properties with corresponding manufacturing parameters.   

 

1.2.2 Thesis Objective 

The key focus of this research is to standardize and optimize a clad bead structure that 

relates to a set of manufacturing parameters for the laser cladding additive manufacturing 

process. This thesis encompasses the following objectives which are necessary to achieve 

the desired goal of standardization. 

1) An experimentation approach for data collection: the objective of defining an 

experimentation strategy for standardizing the laser cladding technology is to 

minimize extensive collection of raw data. This raw data results from generating 

combinations of configurations (manufacturing parameters) that are involved in the 

LC process varied over five levels. Fabrication of the desired clad bead geometry 

for various process configurations is highly expensive, as it involves investment of 

raw materials, financial participation and time resources. Thus, a design of 

experiments (DOE) technique is hereby applied to this thesis work for data 

collection, providing a cost- effective means of solving problems and developing 

new processes.  

2) A cognitive artificial intelligence system: the purpose of developing an artificial 

intelligent cognitive system is to reverse engineer the laser cladding process and to 

commercialize the product (software package). Here, a neural network application 

based off a MATLAB workspace is utilized along with the experimental approach 
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(designed through DOE), to successfully predict manufacturing parameters from 

shape parameters of a generated clad bead and vice-versa. A neural network uses a 

supervised learning technique to confidently predict the output variables in the 

system based on a Levenberg Marquardt (LM) learning algorithm. This prediction 

tool helps reduce experimentation time by generating outputs for various unknown 

input datasets for future use.    

3) Significant interactions between the manufacturing parameters (feed rate, power, 

travel speed, focal length of the lens, and contact tip to workpiece distance) and the 

geometrical shape characteristics (height, width, penetration and percentage 

dilution): laser cladding is a multi-variable, non-linear behavioral process with 

interactions among its parameters. The objective here is to identify the extent of the 

contribution of each variable (parameter) and its impact resulting from interactions 

on the output. This is essential in developing and manipulating confident predictive 

models for desired results. Analysis of variance (ANOVA) and sensitivity analysis 

methodologies are studied through this research to determine the most significant 

process factors that relate to the various shape parameters for a laser cladding 

process configuration. 

4) Optimization of clad bead geometry: optimization is a vital component of 

manufacturing industry in today’s market. This optimization approach is adopted 

in this thesis work to generate the clad bead structures that reduce system instability 

and structural mishaps. To achieve such goals, production impurities, such as 

percentage dilution is minimized as an objective function. The response optimizer 

application based of the MINITAB software workspace is utilized to the generated 

statistical model. The response optimizer also aids in visualizing single and 

multiple objective optimization results that helps optimize single or multiple 

parameters at a particular time in space.     

5) Clad bead shape classification: classification of clad bead shape geometry is 

performed to determine and assign a cluster characteristic to the collected raw data 

points. The objective of classifying the raw data points is to determine various 

shapes a clad bead possesses with changing levels of percentage dilution. These 

shapes will eventually help define a class or cluster and determine the cluster 
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properties to which a bead structure belongs. A combination of MINITAB 

(Euclidean distance) and MATLAB (classification network) packages are used to 

classify the collected experimental data.  

 

1.2.3 Limitations 

The work presented in this thesis focuses on defining a clad bead shape geometry 

with respect to various process configurations i.e. combination of manufacturing 

parameters for a laser cladding operation. This thesis work is limited to the interactions 

between five manufacturing parameters (power of the laser, feed rate of the powdered 

metal, travel speed of the laser, focal length of the focusing lens and contact tip of the 

nozzle to workpiece distance) and four mechanical shape parameters (width of the bead, 

reinforcement height of the bead, penetration of the bead and percentage dilution).  

The thesis work does not incorporate any external mechanical factors (such as heat 

affected zone, metallurgical properties, chemical properties of metals etc.) except the five 

manufacturing parameters and the four shape parameters. This research work uses 420 steel 

(low carbon) clad powder for various single pass and overlap configurations. The overlap 

configurations are limited to 40%, 50 %, and 60 % overlaps with a three pass bead 

formation. The thesis does not contribute any significant in-depth knowledge in 3D part 

production. The equipment used to build the clad samples is selected according to the 

availability of the machine at the industry sponsor facility. The composition of the 420 

steel clad powder used to generate the single pass and the overlap samples is presented in 

table 2 (source: industry sponsor). 
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Table 2: Composition of the 420 steel clad powder 

Elements 420 powder steel (ferrous) 

Carbon (C)  0.25 % 

Manganese (Mn) 0.26 % 

Silicon (Si) 0.52 % 

Chromium (Cr) 13.4 % 

Molybdenum (Mo) 0 % 

Sulfur (S) 0 % 

Phosphorus (P) 0.009 % 

Iron (Fe) 85.541 % 

Nickel (Ni) 0 % 

Cobalt (Co) 0.020 % 

Titanium (Ti) 0 % 

Vanadium (V) 0 % 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Experimentation 

There are several experimental approaches that have been used in the past by 

researchers for sample collection. There is an enormous paradigm shift in the 

experimentation process from conventional methods to a formal ‘design of experiments’ 

approach. Most of the researchers nowadays adopt the design of experiments approach to 

gain a maximum amount of information from a single optimized experiment. In adopting 

a DOE approach, the researchers limit the amount of material wastage, time spent in 

generating a population of samples and long equipment usage hours. These factors directly 

have an impact on the financial contribution towards a research and thus, limiting them is 

the most favorable condition.  This sub-section focuses on various DOE techniques adopted 

by researchers in the past to perform a successful sample collection process.  

  The L9 Taguchi approach is one technique applied by a research team to investigate 

effects of conducting polymers composite sensor compositions on the response to a 

homologous series of alcohol. A 2-4 (2 levels and 4 factors) L9 design is applied to collect 

experimental data. As compared to the conventional DOE approaches, the Taguchi 

prospective involve creating a robust design rather than focusing on an average result level. 

In this research, variation of the raw data is studied and experiments are carried out for 

controllable design factors and disturbing signal factors (2 or 3 levels). Also, this approach 

helps in choosing factor levels that help minimize sensitivity against disturbances and noise 

factors. The Taguchi approach is based on quality loss function by focusing on minimizing 

losses in quality through achieving target values. Through quality loss, Taguchi developed 

a method of extending each experiment with an outer array (also called orthogonal array). 

The outer array helps in simulating the external environment that experiments are exposed 

to. By applying this approach, the sensors were characterized with a view to improve 

sensitivity [12]. The Taguchi method through other research works’ is also considered 

relevant in determining the behavioral changes in the shape parameters of a weld bead with 

fluctuating process parameters. Here, the model is developed using the three basic steps of 
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a robust design i.e. concept design, parameter design and tolerance design with main focus 

being on the parameter design. [13] 

Another approach that has been applied by Buragohain, M. and Mahanta, C. [14] 

focuses on using a full factorial design technique in DOE. The research team applied a full 

factorial design methodology in deciding the size of the input-output data set while 

developing an adaptive network based fuzzy interface system (ANFIS) for the modelling 

and controlling of uncertain systems. The main objective of using a full factorial approach 

is to optimize the number of data points used in the learning process of the network. The 

paper uses the simplest design of 2 levels and n factors i.e. 2n factorial design for generating 

data points. The data points in such a model lie on the corners of an n-dimensional space. 

Hence, in the presented paper the data points lie on the cube points (3 factors making it 8 

experimental points). One of the limitations of this highlighted approach is that in a two 

dimensional factorial design, it is difficult to distinguish between linear and higher order 

interaction effects such as the quadratic and the square interactions between factors. To 

overcome such inabilities, the paper discusses a comparison of a 2-level design with a 3-

level (1), 3-level (2) and a 4-level full factorial design. The number of experimental runs 

for theses designs are defined as 8, 13, 11, and 18 respectively i.e. by calculating a 2n 

experimental run and adding the effect of the factors. [14] 

V. K. Gupta and R. S. Parmar [15] have also approached the problem of optimizing 

welding bead shape parameters with the help of design of experiments (DOE) [15]. The 

paper defines welding processes as a multi- input, multi- output process with various 

process and shape parameters. Various methods for optimizing shape parameters have been 

defined such as factorial, response surface methodology, general algorithm, artificial neural 

network, and Taguchi method. Factorial design in DOE uses a 2n-1 approach with n being 

equal to 5 (process parameters). It is seen through this research that the factorial technique 

with a 2n-1 approach is highly effective in plotting main effects and interactions between 

different welding process parameters. Also, the factorial technique is helpful in generating 

mathematical models that can help predict the shape parameters and the high quality weld 

(when fed into automatic robotic surfacing) in boundary conditions of the factors [15] 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Buragohain,%20M..QT.&searchWithin=p_Author_Ids:37698319400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mahanta,%20C..QT.&searchWithin=p_Author_Ids:37698318500&newsearch=true
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One of the most effective and widely used DOE approaches is a response surface 

methodology (RSM) technique which uses a central composite design (CCD) to define an 

experimental dataset [16]. Zhang Z. [16] has shown the importance of central composite 

designs in defining a response surface. One paper presents a comparison between the three 

CCD’s i.e. central composite circumscribed (CCC), central composite inscribed (CCI), and 

central face centered (CFC) designs. The CCD’s are robust designs and overcome the 

limitations of a full factorial design by studying the interactions of quadratic and squared 

terms along with linear terms.  The advantage of a CCD over any other approach is that the 

CCD design is rotatable (i.e. axial distances help in the selection of a design region) and 

has maximum stability due to generation of center points of a system. It is concluded from 

the paper that the three variations of CCD’s have similar efficiency levels in the degree of 

model but have dissimilarities in terms of the estimation precision, the stability of variance, 

the uniformity in precision, and the robustness of extrapolation. Also, it is concluded that 

the central face centered (CCF) design is the simplest variety of CCD as it requires only 

three levels of each factor. Therefore, it minimizes the deception in the data set due to the 

experimental error in the data setup and collection process [16]. 

Also, another approach adopted by Khawas A., Banerjee A., and Mukhopadhyay 

S. [17] show that D-optimal designs are widely used in a computer generated design of 

experiments. Use of such a design technique helps in the construction of a quadratic 2nd 

order model more efficiently than any other approach. The objective of this design is to 

select the best set of points in an experimental set to maximize the determinant of |𝑋𝑇 ∗ 𝑋|.  

Here, X defines a matrix orientation of the design variables. D-optimal design, therefore, 

helps in minimizing the error of the coefficients of a response model (2nd order model). 

The advantage of using such a design is the availability of extra design points that can be 

incorporated into the system. In papers, this approach has been found to be quite effective 

in analog circuit performance optimization [17]. Another area where the D- optimal 

technique is used as a DOE approach includes wing design for a high- speed civil transport 

[18].  
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Hence, through a detailed literature review a CCD design approach is chosen for 

the purpose of this thesis and a response surface methodology is carried out to optimize the 

input parameters at a later stage.  

 

2.2 Artificial Intelligence system(s) 

Use of artificial neural networks (ANN’s) is one of the few approaches to 

developing a prediction model that can be termed as an artificial intelligence system. From 

one of the research papers, it is noted that this approach was applied in an arc welding 

process to control physical processes. Gas tungsten arc welding (GTAW) experimentation 

was carried out initially to determine the various shape parameters present in a bead 

structure. A neural network architecture was then built and studied using the MATLAB 

toolbox which aided in estimating trends in the shape parameters as well as the errors 

involved in the GTAW process. Various neural network configurations were built and 

tested to reach the best performance configuration (2-by-18 i.e. 2 hidden layers with 18 

neurons/ activation functions was the best indicated configuration). The four inputs to the 

system are defined as voltage, current, electrode travel speed and wire feed rate; and the 

four outputs are defined as the shape parameters (width, penetration, reinforcement height 

and bead cross sectional area). [19] [20] 

Alternatively, Datta S. and Pratihar D. K. [21] approached the similar problem with 

three approaches to establish input- output relationships in metal inert gas (MIG) welding 

process. The three defined approaches were different from one another as approach 1 was 

based on the genetic algorithm (GA) to optimize the radial base function neural network 

(RBFNN); whereas approaches 2 and 3 structure RBFNN according to two different 

clustering techniques i.e. the fuzzy c-means algorithm and the entropy based algorithm. 

The result shows that poor performance was seen while adapting to approach 1 due to 

permutations in genetic algorithms while, approach 3 was the best approach to establish 

the input-output relationship due to a combination of one global and one local optimizer 

approach. Also, it was seen that the entropy based clustering had better fitting and 

performance results than fuzzy c-means algorithm. [21] 
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Determining geometrical dimensions of the clad bead in a laser cladding process 

was adopted by a few researchers. Meriaudeau F., Truchetet F., Grevey D., 

Vannespresented A.B. [22] presented a unique low cost system using two charge-coupled 

device (CCD) matrix cameras, a standard acquisition card and a personal computer to 

gather information on the laser cladding process both in warm-up and actual operational 

state. Here, one of the CCD matrix camera was used to gather temperature measurements 

through the use of a spectral thermometer and the other CCD matrix camera was used to 

gather the shape parameters such as width, length of the tract, power spray distribution etc. 

The aim of the research was to control the cladding process in a closed loop.  The real time 

temperature measurements were performed using algorithms based on statistical 

momentum conservation (Wen’s algorithm) and it was seen that the temperature range for 

the cladding process lies between 0.7 and 15 micrometers (Max Planck’s equation 

derivation). The paper also, envelops different methods of involving CCD sensors for the 

sample collection such as Doppler anemometer, discrete Fourier transform, two or three 

color imaging velocimerty etc. [22].  

Similar research is conducted by Meriaudeau F., Truchetete F., Dumont C., and 

Renier E. Bolland P. [23] where two CCD cameras are used to determine shape parameters, 

surface temperature readings to detect variations in powder feed rate and powder 

distributions. Here, surface temperature is calculated using Beer Lambert’s law. For 

temperature measurements, CCD technology (through Max Planck’s Law) interpolates a 

linear relation between digitalization of optical radiation signal and black body 

temperature. Furthermore, CCD technology used for geometric measurements through 

afore displayed curves predicts change of track section (shape) when variations in 

parameters are introduced. [23] 

Amara E. H., Achab L., Boumiahave O. [24] also developed a dynamic mesh 

method to model the laser cladding process. The major concerns of this study relates to the 

physical (mechanical) properties of the process i.e. the Marangoni thermocapillary flow, 

the powder-melt poll interaction, the mass transfers and diffusion, the laser-powder 

interaction, and the laser work- piece interaction. The aim of the study is to predict various 

shape parameters involved in laser cladding process. A mathematical approach is applied 
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to reach the goal where, the heat conditions and the flow dynamic equations relates to the 

inner and the outer boundary of the clad bead were established. A finite element analysis 

(FEA) approach is then applied to the generated equations for discretization and through 

the user defined function (UDF) deformations in the mesh were studied. Hence, these 

deformations were related as a result/function of the input parameters of laser, substrate 

material and the injected clad material. [24] 

Xiong Z., Zhang Y, and Zeng X. [25] conducted specific experiments using 304 

stainless steel thin plates (substrate plate) and a co-axial nozzle for the powder feed rate to 

demonstrate deformations in the substrate plate through the laser cladding process [25]. 

Parameters that contributed include the power, the scanning speed, and the line energy on 

the bending angle. Initially, it was seen through various experiments that there was a 

significant bending in the substrate plate and the bending was directly proportional to the 

parameters. It was realized later that the bending rate decreased when parameters reached 

their critical values. Also, the value of bending angle is related to yield strength of the heat 

affected zone, the temperature gradient in direction of thickness, and the size of plastic 

zone. Contrary, it was observed that with too small or too large values of the line energy, 

the bending angle was of smaller magnitude, but with a moderate line energy value the 

bending angle was of a larger magnitude [25]. 

Also, Song L. and Mazumder J. [26] presented a control strategy with the input 

constraints to stabilize the temperature possessed by a melt pool during the process of laser 

cladding while forming various clad layers. The instrument used to monitor the temperature 

reading was a dual-color pyrometer. The sub-space method helped device a dynamic model 

relating the laser power to the melt pool temperature. A dSPACE real-time controller was 

implemented to predict the control algorithm with the input constraints. Adjusting the diode 

laser power helped track the melt pool temperature to a reference temperature profile in a 

closed loop cladding process. Instead of a PID (proportional integral derivative), controller 

a generalized predictive controller (GPC) was used to compensate lack of deposition by 

the adjusting laser power during the cladding process. This is because a GPC can deal with 

the input constraints systematically and adapt easily to the (multi input- multi output) 

MIMO system. [26] 
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Various researchers have explored the field of welding, its processes and the shape 

parameters for optimization with help of various specialty tools such as DOE and ANN but 

the field of laser cladding is yet to sprout to its fullest. A few research articles can be found 

on the single bead shape characteristics through the charged couple device cameras or the 

image processing techniques with use of the generalized predictive controller for the laser 

cladding process. No research techniques are developed to tackle the problem of process 

planning using a single bead, an overlap and a layered approach. Furthermore, no error 

analysis model has been developed to correct the predictions generated by MATLAB 

neural network toolbox. Hence, this research should act as a fundamental basis of process 

planning for the laser cladding process. 

 

2.3 Quadratic Model and Optimization 

To optimize the design process Stewart T. and Stiver W.D. [27] have compared the 

one variable at a time (OVAT) technique to a combination approach of DOE 

methodologies in conjunction with the numerical inputs from a computational fluid 

dynamics (CFD) program.  The goal of carrying out an optimization process, is to enhance 

multiple aspects of the thermal performance in this research paper. It is seen through the 

paper that the OVAT technique fails for any real time application due to the fact that as the 

number of experimentation points increase, the adjustment is made to one factor while 

holding other factors as constant. In contrast, the combination approach helps reduce the 

empirical prototype cycles from four to two. Also, there are considerable improvements in 

the experimental cycles of producing a cooling solution for the thermal problem. The DOE 

technique used here is a fractional factorial approach which minimizes the experimentation 

process from 32,768 to 16 in a model with 15 factors and 2 levels; while the CFD program 

used is FOTHERM which aids in providing junction temperatures. Once the design points 

are set for the factors and target values are achieved through the CFD program, an optimizer 

program through a MINITAB (DOE approach) application is run which aids in eliminating 

the factors that are not significant to the process. In addition the optimizer provides optimal 

values for other significant factors (to new design points). Through this technique a rapid 

evolution of design variations is achieved that is necessary to compete with multiple 

competitors [27]. 
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Another approach developed for optimization of response variables by Sreeraj, P.K. 

[28] is use of response surface methodology along with the response optimizer tool. The 

paper presents a mathematical generation of second order model with linear, squared and 

quadratic terms to the weld bead geometry in a gas metal arc welding process (GMAW). 

This model aids in achieving function objectives to predict the bead geometry. Note- the 

objective in the paper is to obtain a good quality bead with a good corrosion resistant 

property to reduce the manufacturing cost along with optimizing the bead parameters. The 

RSM technique uses these predicted results to a construct response surface (surface and 

contour plots) that illustrates interactions between various factors. The optimization 

process through the response optimizer in MINITAB is initiated by providing a starting set 

of points so that an optimal combination of the process factors can be obtained. The 

optimizer tool also provides two solution types i.e. a local solution and a global solution. 

The local solution provides the best combination settings for a particular set of starting 

points whereas a global solution provides the best combination of factor settings for desired 

response variables i.e. an optimal setting for all local points. [28] 

Jahan A., Ismail Y., Noorossana M.R. [29] have presented a novel method of 

optimization of multiple response problems in DOE. The paper proposes a four step 

algorithm for the optimization of nonlinear problems. The first step involves creation of a 

regression model of means and standard deviations for the qualitative responses. The 

second step focuses on converting the qualitative characteristics of the mean and the 

standard deviations to a capability processes index. Step three focuses on determining the 

lower limits of the capability processes according to the desired levels and step four helps 

in selecting the optimization method to solve a non-linear multi-objective problem. In the 

paper, the method chosen for carrying out the optimization process is a bounded objective 

method. This method selects the objective as the main response function and the other goals 

are converted to limitations according to the desirability targets. Due to the simple nature 

of this 4-step approach, this method can be widely applied in industry for finding the 

optimal combinations of parameters for multi response problems. Also, combination of 

means and standard deviations as capability process in step one reduces the number of 

objectives. [29] 
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For the purpose of this thesis work, a combination approach of response surface 

methodology (RSM) for generating second order model along with a response optimizer 

tool in MINITAB application is chosen for solving the multi-objective non-linear problem 

of the laser cladding process. Here, the regression model (2nd order mathematical model) 

along with various contour and surface plots aids in providing the starting points for the 

response optimizer tool. 

 

2.4 Classification 

Clustering of data points is generally performed to distinguish the sub-sets in a data 

population according to similar behavioral properties among the various data points. Many 

research techniques have been adopted by researchers in the past to cluster data points to 

various classes. This allows the elements of that sub-set to be identified according to the 

cluster it belongs too. Some of the major clustering techniques used in the past by 

researchers are explained later in this sub-section.   

Kumar M., Verma S., and Singh P.P. [30] have adopted the fuzzy adaptive 

resonance theory (ART) technique for data clustering in the sensor networks based of the 

neural network application. This research paper presents a resonance based clustering of 

the data points technique. A combination of offline and online techniques has been 

proposed in the research paper. Here, fuzzy ART is used initially to cluster the data points 

to detect various classes as an offline deployment approach. The advantage to using fuzzy 

ART logic is that the approach does not require any knowledge of the data behaviour or 

trends. It only requires knowledge of the parameters or factors (such as range, type etc.) to 

generate data for clustering. The online approach applied in this research paper is 

application of fuzzy adaptive resonance theory of mapping (ARTMAP) through neural 

networks (FAMNN). FAMNN is used to cluster the data points to groups/classes after 

being classified by the fuzzy ART. Also, FAMNN eliminates the need to regroup data as 

it is able to distinguish outliers present in the model or any group generated. This 

combination of offline and online approaches helped researcher’s aggregate data to reduce 

high communication cost at the expense of the low energy computation operations. [30]  
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Abidi S.S.R and Ong J. [31] have adopted a hybrid clustering technique with a 

combination of the self-organizing neural network and k-mean clustering approach. The 

self-organizing neural network help cluster the data points into various classes for 

interpretation. In this paper, a hybrid technique for clustering is used. This is due to the 

non-linearity in the dataset. Hence, the neural networks are not able to cluster the data 

points into distinctive groups. In such cases an additional step of statistical analysis is 

performed for better classification. This approach has been seen more advantageous than 

other clustering techniques as it helps discover similarities among the data points, clusters 

the data into distinctive groups according to cluster properties and aids as a visual tool for 

a better understanding. Note- one of the limitation of using a k-mean clustering approach 

is that it requires the user to input the number of clusters (k value) which is addressed by 

the neural network in this research paper. [31] 

Similar problems relating to clustering large amounts of heterogeneous data are 

tackled by another research group. Alam S., Dobbie G., Koh Y.S., and Riddle P. [32] 

present a novel technique of clustering by introducing a similarity measure between the 

heterogeneous attributes of the data points. The output from the similarity measure is used 

in the particle swarm optimization (PSO) based clustering algorithm. This clustering 

algorithm aids in classifying such complex data by combining the hierarchical and the 

partition clustering approaches. The novel similarity measure approach focuses on the web 

session clustering data. The technique focuses on addressing three basic steps: uneven 

session lengths, determining the intra-cluster and the inter-cluster distances; and weighing 

the similarity attributes among various groups. [32] 

For the purpose of this research, a k-mean clustering algorithm is used in 

conjunction with the MATLAB software based clustering approach that uses a Calinski 

Harabasz algorithm. Also, various dendogram plots and silhouette plots are generated using 

the MINITAB application and the MATLAB application respectively, to visualize the 

decomposition of clusters generated. 
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CHAPTER 3 

LASER CLADDING: AN ADDITIVE MANUFACTURING APPROACH 

3.1 Background 

 “Cladding”, in engineering is defined as, “the process of protecting one metal by 

bonding a second metal to its surface” [33]. It can also be defined as a process of bonding 

dis-similar metals under high pressure and temperature. Therefore, the laser cladding 

technique is “a process that uses a laser beam to fuse another material, which has different 

metallurgical properties to a substrate. A very thin layer of the substrate has to be melted 

in order to achieve metallurgical bonding with minimal dilution of added material and 

substrate to maintain the original properties of the coating material” [34] [35]. This process 

proves to be a potential competition to the “selective laser sintering (SLS)” technique, as a 

three-dimensional process for manufacturing the metallic components with flexibility in 

the material and the size selection. 

 

The clad material is generally powdered in nature, and can possess similar 

metallurgical properties to that of the substrate metal (ex. in case of general repair work) 

or can possess dis-similar metallurgical properties to that of the substrate material to 

achieve new strengths (ex. creation of new parts with enhanced material characteristics). 

The powdered clad material is available in various metallic compositions (ferrous and non-

ferrous) and in various varieties in accordance to the end user application.   

 

With increasing demands for the metallic prototypes and the tools, the introduction 

of the laser cladding technology has opened a new scope for the manufacturers. This 

technology has been well recognized in establishing the repair industry of molds and dies 

but experiences a growing phase for creation of the new parts i.e. creation of a 3D part 

through successive 2D layers. Some of the major industrial applications of the laser 

cladding technique in today’s industry include high-pressure gas turbine blade shroud by 

Rolls Royce (material- triballoy on mimonic) [36]; cylinder and engine valve- Fiat 

(material- on cast iron) and General Motors (material- stellite, triballoy T-800) [37]; 

interlocks- Pratt & Whitney etc. [37]. 
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3.2 Essential Elements of the Laser Cladding Process 

 

3.2.1 Process Types 

Generally, the laser cladding process is carried out with dis-similar metals (different 

clad and substrate metal) to enhance the functional characteristics in manufacturing such 

as corrosion resistance, thermal surface treatments, abrasions and wear. There are two 

essential parts to the laser cladding process, which are as follows: 

1) Melt pool formation and fusion by moving the laser, and 

2) Supply of cladding material to the substrate 

The first part of the process includes a combination of the degree of mixing (i.e. the 

controlled heat input by the laser to achieve a good mix of the melt pool between the 

powdered clad bead and substrate metal) and the dependency on the temperature cycle (i.e. 

the heating and the cooling rates leading to a favorable fine-grained microstructure) to 

control the laser energy and the temperature distribution over the substrate surface. [35] 

The second part of the laser cladding process deals with the addition of the 

powdered metal to the substrate metal. According to the literature review, there are two 

ways (illustrated in figure 7 A & B, source: adapted from Schneider M. [17]) to add or to 

provide the powdered metal to the substrate metal, which are as follows [35]:  

1) Preplacing of the clad metal (2-stage process) – in this case, the formation of the 

melt pool is established on top of the cladding metal which proceeds downwards to 

the substrate metal. In this process, the clad layer can be seen once the substrate is 

melted. Hence, the first stage deals with the application of clad material (through 

plasma spraying, flame spraying or preplacing the material as a solid plate or paste) 

and the second stage deals with the fusion process of melting the clad powder. 

2) Injecting the clad metal (1-stage process) – in this case, the formation of the melt 

pool is established in the substrate metal. In this process, the clad layer forms 

instantaneously while the powdered metal is being fed. This 1-stage process deals 

with the application of the clad powder (through injection process as powder or 

wire) with a simultaneous fusion reaction.  
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(A) (B)  

Figure 7: Laser cladding process- (A) 1-step and (B) 2-step 

The research focus in this thesis work targets the injection of the powdered clad 

metal during the laser cladding process for various two-dimensional and three-dimensional 

applications. The powdered injection is preferred over the wire injection process (and is a 

focus of this thesis), as it is considered robust than the wire cladding. This is due to the fact 

that firstly, there is no direct contact between the clad material (powder) and the melt pool, 

which in the case of a wire feed touches the metal pool; and secondly, the laser beam can 

easily pass through the powdered particles due to its granular nature. Hence, the laser beam 

will not face obstruction as in case of the wire (solid state) feed. [35] 

 

3.2.2 Powder Feeder Types and Principles 

According to the literature, there are three evident powder feeder type principles 

that a powder feeder can be based on, including: 

1) The first powder feeder comprises of a funnel shaped hopper through which the 

powder flows into the slots of a rotating disks by the aid of gravity. This powder is 

then transported to the suction unit, which helps in dispensing the powder onto the 

substrate material with the help of a carrier gas. In this case, the feed rate of the 

powder is dependent on the speed of the disk and the dimensions of the slot. [38] 

2) The second powder feeder comprises of a funnel shaped hopper through which the 

powder is directly transported to the dispensing nozzle with the help of a pneumatic 



 

28 
 

screw. In this case, the feed rate of the powder is dependent on the rotational speed 

of the pneumatic screw and its dimensions [39] [40] 

3) The third powder feeder also comprises of a funnel shaped hopper through which 

the powder is transported to the dispensing nozzle through a combination of the 

pneumatic and the vibrational forces. Here, the vibrational forces are generated 

through a standard ultra-sonic cleaning device. [41] 

For the purpose of this thesis work and for collection of the experimental data, a 

powder feeder that works on the principle of rotating disks (type-1) is chosen. The 

carrier gas chosen to dispense the clad powder onto the substrate metal is the argon 

gas due to its inert nature. 

 

3.2.3 Types of Dispensing Nozzles 

 Once the powder feeder dispenses the metal powder to the dispensing nozzle 

through one of the stated principles, it is seen through literature that the dispensing of this 

metal clad powder can happen through various nozzle types (illustrated in figure 8 A and 

B, source: adapted from Schneider M. [17]) listed as follows: 

1)  Co-axial powder supply- this nozzle (integrated with an optical system) dispenses 

the powdered clad material through the openings co-axially placed with the laser 

beam and the shielding gas. Advantages of using a co-axial nozzle are that the 

powder supply to the nozzle is independent of the direction in which the workpiece 

moves; and secondly that the co-axial nozzle provides a controlled heating 

environment for the clad powder before it is dispensed onto the melt pool, hence, 

maintaining a high powder efficiency. A limitation to using a co-axial nozzle is that 

not all the products (shapes) can be accessed easily with this nozzle type. [17] 

2) Lateral supply of powder- this nozzle incorporates dedicated or separate powder 

nozzles for handling of the part, hence, displaying no limitations. In simple words, 

the lateral nozzles are tubes (straight or curved) which act as separate commodities 

and are not integrated within the optical system. Lateral nozzles can reach any 

geometry for the treatment of parts such as the inner diameters of a tube or the 

surface of a turbine blade. [17]  
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(A) (B)  

Figure 8: Powder supply nozzle- (A) co-axial and (B) lateral 

 

Nozzle type is chosen according to end user application. For the purpose of this 

thesis work and experimentation purposes, a lateral type nozzle is chosen due to its 

advantages over a co-axial nozzle. The importance of choosing a right cladding nozzle is: 

the high efficiency in the powder utilization; the flexibility with the bead/beam size and 

the focal lengths; compatibility with various laser systems; the low maintenance and the 

longer production times. [42] 

3.2.4 Types of Lasers Systems 

A laser system is a device that generates a laser beam for the fusion reaction to 

occur between the clad powder and the substrate metal.  A laser is defined as “a source of 

high- intensity optical, infrared or ultraviolet radiation as a result of stimulated emission 

maintained within a solid, liquid, or gaseous medium. The photons involved in the emission 

process all have the same energy and phase so that the laser beam is monochromatic and 

coherent, allowing it to be brought to a fine focus.” [43]. In other words, a laser is a device 

that uses the process of optical amplification to emit the light. The special coherence 

behaviour of the laser makes it very different from any other light source because unique 

behaviour focuses the beam of light to converge onto a narrow tight spot. This coherence 
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nature enables the laser light to perform applications such as laser cutting, fusion, 

lithography etc. There are many different laser types, such as the solid state laser, the gas 

laser, the semiconductor laser etc. 

 

(A) (B)  

Figure 9: Applications of laser systems- (A) year 2005 and (B) year 2008 

 

The use of laser systems for the industrial operations has increased over the years 

due to their high efficiency. It can be seen from figure 9 A and B (adapted from Optech 

consulting [26]), that over the years (2005-2008), the use of the fiber lasers have increased 

by 4% margin for the material processing operations. This 4% increase has led to increased 

revenue of $195 M for the world markets [44]. Also, it can be seen from figure 10 A, B, 

and C (adapted from Optech consulting [27]), that the amount of market share of the fiber 

lasers over any other laser types has been on an exponential increase from 4% in 2005; 

10% in 2008 and 18% in 2012 [45], hence, presenting a boosting trend for the 

manufacturing sector in terms of economy.  
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                              (A)                                                                    (B)  

 

 

(C) 

Figure 10: Application of fiber laser- (A) year 2005, (B) year 2008 and (C) year 2012 

 

For the purpose of this thesis work and experimentation the two lasers that are studied 

are as follows: 

1) Fiber laser- these are a form of the solid state lasers which work on the principle of 

total internal reflection. Here, the light travels through an optical fiber. The 

advantage of this kind of fiber material is that it provides better cooling conditions 

for the light beam as the light travels longer in the gain medium region. Also, 
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according to the literature it is determined that there is less thermal distortion (of 

the beam) due to the fiber nature.  

 

Some fiber lasers are designed as double-clad fibers i.e. they contains an 

inner core, an inner cladding and an outer cladding.  This design is greatly preferred 

in the industrial applications because the inner core acts as a single mode fiber to 

emit the laser emissions and the outer core acts as a multicore power generator 

(pump) to generate higher levels of power. Figure 11 (adapted from Stiles, Eric 

[29]), shows a visual representation of the double clad fiber laser [46] Note- the 

single pass experiments for the 420 steel clad powder are generated with the fiber 

laser system for this thesis workup. 

 

 

Figure 11: Fiber laser system- schematic diagram 

2) Semiconductor laser (IPG laser)- also known as laser diodes; a semiconductor 

lasers work on the similar principle as the fiber lasers but the power supply for these 

lasers are the diodes that are electrically pumped. Here, the diodes consists of two 

outer semiconductor layers (p-n junction) separated by a middle layer (i junction). 

Due to the interaction between the electrons and the holes generated by (p-i-n) 

junction, an electric current is generated in the semiconductor diode. This electric 

current is unidirectional in nature and travels through the i-juction where the p type 
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silicon (Anode) to the n type silicon (Cathode) meet; similar to a light emitting 

diode (LED). Figure 12 (adapted from Olympus [47]), shows the visual 

representation of a laser diode. [48] [49]   

Note- overlap pass (40%, 50%, and 60%) experiments for 420 steel are generated 

with a semiconductor’s diode laser system for this thesis workup. 

 

Figure 12: Semi-conductor laser system- schematic diagram 

 

In general there are five major components to a laser system that helps to generate 

a laser beam (illustrated in figure 13, adapted from: Aldrich, Robert [28]), presented as 

follows: [50] 

1) A gain medium- this material has a unique characteristic to amplify the light emitted 

through a source by stimulated emission. 

2) Pumping- a process by which the energy is supplied to the gain medium. Generally, 

the energy supplied is either in the form of an electric current or a light with 

different wavelengths.  

3) Optical cavity- a space that occupies the high reflector mirror (opaque) of the laser 

system that holds the gain medium. The other reflector mirror is called the output 

coupler that is transparent (slightly) in nature to allow the laser light to escape form 
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the apparatus setup. The purpose of these mirrors is to reflect the light back and 

forth through the gain medium to amplify it.    

4) Laser beam- this is the final output of the laser apparatus, exiting from the output 

coupler reflector mirror in the form of a narrow beam of light.    

 

Figure 13: Components of a laser system 

 

3.3 Laser Cladding Apparatus 

There are eight basic components to a laser cladding system for industrial 

production.  These components work simultaneously and coherently to form a clad bead 

structure. The eight components are presented in figure(s) 23 and 24 (source: industry 

sponsor [4]), and are as follows: 

1) A laser system- this is a device that generates a laser beam (either through a fiber 

or diode source) for the fusion reaction to occur. This fusion reaction takes place 

between the powdered clad material that is dispensed from the nozzle (carried with 

a carrier gas) and the substrate metal (base metal- onto which the clad bead is 

formed).  

2) A motion control system- this is one of the mechanical components that is involved 

indirectly with the laser cladding operation. As the name suggests, it is a system 

(embedded with a software package by the manufacturer) that controls/ integrates 
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the X-Y-Z Cartesian co-ordinates between the motion control stage (planer X-Y 

Cartesian)/ the rotary table and the vertical motion stage.  

3) A powder feeder- this is a hopper (container) that provides one of the many input(s) 

to the laser cladding system and is directly involved in the cladding process. The 

hopper contains the powdered clad material that is dispensed onto the substrate 

metal for a clad bead formation.   

4) A focusing optics system- this system consists of a set of optical lenses which form 

an optical cavity. Here, the set of optical lenses are held between a gain medium 

and the purpose of the reflecting lenses is to reflect the light back and forth through 

the medium amplifying its effect. The lens towards the output of the laser light is 

called the output coupler and is slightly transparent in nature, providing an escape 

to the laser beam.     

5) An X-Y motion control stage/ rotary table- this is a mechanical component involved 

in the laser cladding process. Generally, the motion control stage is either an X-Y 

Cartesian table or a rotary table for various desirable parts. The purpose of the 

control stage is to act as housing to the substrate metal i.e. the base metal sits onto 

the control stage (through clamps). The motion of this control stage defines the 

motion of the substrate metal on which the clad bead is generated. As mentioned 

earlier, the control stage is operated by the motion control system. 

6) A nozzle- this is a tube that aids in dispensing the powdered clad material onto the 

substrate material along with a carrier gas. There can be multiple nozzles present at 

one particular production time. As mentioned earlier, this nozzle can be either co-

axial or lateral in nature.  

7) A vertical motion stage- this is housing for the optical cavity (i.e. the focusing 

optics system). As mentioned earlier, the vertical motion stage is controlled by the 

motion control system. The purpose of the vertical motion stage is to direct/emit 

the laser beam radiations perpendicularly onto the substrate metal (base metal). 

Note: if the focusing optics system has re-configurability approach (i.e. can be 

moved in degree motion at a pivot point), the laser beam will not be perpendicular 

to the substrate metal.       
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8) A robotic arm- this is an open kinematic chain onto which the laser system, focusing 

optics and nozzle are mounted. This industrial robotic arm is selected according to 

the end user application and the part production. Generally, a 5-axis or 6-axis 

degree of freedom (DOF) robot is chosen for the laser cladding operation. There 

are two ways to define the path of the clad bead either by the movement of the 

motion control stage (on which the substrate metal rests) or by movement of the 

robotic arm (on which the laser system rests). According to the literature, the best 

practice for defining the movement/ path of the clad bead generated is by the 

movement of the robotic arm as it comprises of more degrees of freedom.   

 

 

Figure 14: Laser cladding apparatus setup – real time [4] 
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Figure 15 (adapted from Materialgeeza [51]); displays a schematic view of the laser 

cladding equipment.  

 

Figure 15: Laser cladding apparatus- schematic view 

 

3.4 Laser Cladding Process 

As explained in subsection 3.1, laser cladding is a process in which the metal clad 

material (wire or powdered) is metallurgically bonded on to the substrate metal. This 

metallurgical bonding is done with a laser beam through a fusion reaction. This process is 

performed to enhance the metallurgical properties (such as wear, abrasion, thermal, 

conductivity, toughness etc.) of the substrate metal. A typical single layer laser bead 

thickness ranges from 0.2mm - 7.0 mm (source: industry sponsor), which is generated with 

a low-moderate heat input laser system. According to the literature, the objective of the 

cladding process is to attain a geometrically perfect bead. This perfect geometry can be 
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attained only if the percentage dilution with substrate material is controlled (between 2% - 

5% for best results).  

The cladding process starts with the introduction of the powdered clad metal 

through the powder feeder (pneumatic flow, gravity flow or hybrid i.e. pneumatic and 

vibrational). The next step involves the injection of the powdered clad material onto the 

substrate through a lateral or a co-axial nozzle (presented in figure 26). Once the powder 

is introduced with the carrier gas onto the substrate (base metal), the laser interacts (fusion 

reaction) with the clad powder, resulting in the formation of a melt pool. To protect the 

melt pool (clad area) from interacting with various atmospheric gases, a shielding gas is 

introduced in the system which is injected along with the powdered clad material (one 

example of a shielding gas is ‘argon’). Thus, a melt pool is created onto the substrate metal. 

Movement/ motion of the robotic arm onto which the laser system, the focusing optics and 

the nozzle are mounted helps in creating a metal clad track (single pass). This metal clad 

track (single pass) is a result of the solidification of the melt pool along the movement of 

the laser. The melt pool generated is formed in-between the deposited layer and the re-

melted zone leading to the formation of the heat affected zone (HAZ) on cooling of the 

molten clad bead. The HAZ, refers to the area of the substrate metal that has had its 

microstructure and properties altered due to intensive interaction between the powder clad 

and the laser but has not melted. According to the literature, for a laser cladding operation 

the laser intensity (heat input) is generally selected in a range of low to moderate, to have 

a nominal HAZ [52].  The heat input is generally calculated with the following 

mathematical expression presented in equation (1):  

 

 𝑄 = (
𝑉∗ 𝐼∗ 60

𝑆∗1000
)*E  (1) 

Here, Q is the heat input expressed in kilo joules per millimeter (KJ/mm) 

V is the voltage expressed in volts (V) 

I is the current expressed in amperes (A)  

S is the welding/travel speed of the laser expressed in millimeter per minute (mm/min) 

E is the efficiency of the process used (scale of 0-1)  
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The powder feed system selected for the laser cladding process is generally precise, 

hence, reducing the amount of wastage of the powder itself. The laser cladding process is 

a fully automated process (with CAD/CAM and CNC integration capabilities) with the 

largest selection of clad materials (ferrous and non-ferrous). According to the literature, 

the laser cladding process achieves up to a 10 times higher deposition rate than a tungsten 

inert gas- cold wire (TIG –CW) feeding process [53]. A schematic representation of the 

process is presented in figure 16 A and B. 

 

 

(A) (B)  

Figure 16: Laser cladding- (A) process and (B) melt pool formation 

 

Once the solid clad layers are formed, various properties of this clad bead can be 

studied (classified under four major categories) which are represented in table 3: [35] 
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Table 3: Various Properties for a clad bead 

Geometrical Mechanical Metallurgical Qualitative 

Width Hardness 

distribution 

Microstructure Roughness 

Reinforcement 

height 

Residual stress Dilution  Cracking 

Penetration Fatigue Porosity and voids  

Dilution Wear resistance Grain size  

 Tensile strength Homogeneity  

 Compressive 

strength 

Corrosion resistance  

 Torsional properties   

 Bending strength   

 

This thesis work focuses on understanding the impact of the manufacturing process 

parameters on the geometrical shape parameters (physical structure of a clad bead), 

optimizing the geometrical properties and establishing the effects of interdependencies of 

such properties.  

 

The goals of this research are: (1) to be able to select process parameters with 

confidence that will generate the desired bead geometry, (2) develop a streamlined 

methodology to establish process parameter to bead geometry relationships for a wide 

range of process conditions, (3) develop an error map to illustrate the confidence levels 

with respect to the predictive model, and (4) classification of data points into classes to 

determine the approximate bead shape represented by each of the cluster. Goal (3) is 

especially important for multiple layering scenarios as laser cladding is an open loop 

process.  
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3.5 Geometric Properties 

3.5.1 Physical Shape Properties for Single Pass and Overlaps 

Geometric properties are the properties that define geometry of a structure or shape. 

To determine the geometry of a clad bead for a single or overlap pass, a detailed process 

needs to be carried out which involves various steps, including sample preparation, cutting 

of samples to obtain a cross sectional view, mounting, polishing, and etching. These steps 

will be explained in detail in the following chapters. Once the sample is prepared, it is 

analyzed under a metallurgical microscope to determine the bead’s geometrical 

measurements. Depending on the size of the bead and the manufacturing configuration a 

magnification of 10X or 20X is adjusted in the microscope to get the following shape 

parameters: 

1) Width of the bead (W) – the clad bead width is the maximum width of the clad 

metal deposited. In other words, it can be expressed as the maximum latitudinal 

distance of a cross-sectional bead in the positive X Cartesian co-ordinate space. 

According to the literature for welding or cladding processes, the bead width is 

directly proportional to the current (I), the voltage (V), the diameter of the electrode 

or nozzle and indirectly proportional to the welding speed (welding process) or the 

travel speed of the laser (laser cladding process) [54]. Other researchers have also 

documented that bead width generally increases with an increase in current input 

until a certain critical value and then shows a decreasing trend with the increasing 

current thereafter [55]. Also, it is observed that bead width has no significant affect 

by the type of power source to the system [56].     

2) Reinforcement height of the bead (RH) – the reinforcement height is the maximum 

distance between the substrate metal and the deposited clad material of the bead. In 

other words, it can be expressed as the maximum longitudinal measurement from 

the base metal to the outer boundary of the cross sectional bead in the positive Y 

Cartesian co-ordinate space. The reinforcement height is known to determine the 

strength of the clad bead and is highly dependent on the feed rate of the clad powder 

[54]. According to the literature, the reinforcement height increases with an 

increase in the feed rate (directly proportional) and has no affect due to the current 

(I) [57]. Also, it is documented by some researchers that the reinforcement height 
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is indirectly proportional to the voltage, the travel speed of the laser, and the nozzle 

diameter (thickness). This increase in the height with increase in the feed rate is a 

result of more clad metal being deposited onto the substrate per unit length. 

Decrease in the height due to increase in the voltage is due to the fact that the width 

of the bead increases, hence, spreading out the clad material instead of stacking 

[54]. 

3) Penetration/ depth of the bead (P) – the penetration is the maximum distance 

between the outer boundary of the substrate material and the boundary of fusion 

reaction inside the substrate. In other words, penetration is expressed as the 

maximum longitudinal distance between the top of the base plate to the boundary 

of the cross sectional bead created by a fusion reaction of the laser (i.e. the boundary 

just before the starting of the HAZ, in the negative Y Cartesian co-ordinates space 

[54]. According to the literature, penetration is observed to be directly proportional 

to the current supplied and inversely proportional to the laser travel speed and the 

nozzle diameter [58]. This decrease in the penetration with increasing travel speed 

is due to the fact that the time during which the force is allowed to penetrate 

decreases. Also, the decrease of penetration with an increase of the nozzle diameter 

is due to the fact that the current density increases [59].  

4)  Area of the positive bead (A) – this is the enclosed space between the top boundary 

of base metal and the extent to which the deposited clad material is present. It is 

generally affected by the width of the clad bead and its reinforcement height. 

Hence, it follows similar direct and indirect trends, as the width and the 

reinforcement height parameters.    

5) Area of the negative bead (B) – this is the enclosed space between the top boundary 

of the base metal and the extent to which the fusion reaction occurs within the 

substrate/ base. It is generally affected by the width of the clad bead and its 

penetration. Hence, it follows similar direct and indirect trends, as the width and 

the penetration parameters.    

6) Percentage dilution (%D) – this refers to- “the change in chemical composition of 

a filler material caused by the admixture of the base material or previously 

deposited weld material in the deposited bead. It is normally measured by the 
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percentage or base material or previously deposited weld material in the weld bead” 

[60]. Please refer to sub- section 3.5.2 for more details.   

The above mentioned properties are relevant to a single pass or a single bead 

configuration. In the case of an overlap configuration (3 single bead passes), there are three 

beads/ passes that co-inside with each other; with a 40 %, 50% or 60% layover percentage.  

The sample preparation for the overlaps configuration follows the same parameters as 

described for a single pass, however, there are two new sets of geometrical parameters 

which are as follows: 

1) Reinforcement height between bead 1 and bead 2 (RH12) – this the maximum 

distance between the substrate metal and the intersection area of bead 1 and 2; 

which is created by the deposited clad material of the bead. In other words, it can 

be expressed as the maximum longitudinal measurement from the base metal to the 

outer boundary of the cross sectional bead in the positive Y Cartesian co-ordinate 

at the intersection of bead 1 and 2. It has similar direct and indirect trends as the 

reinforcement height of the bead.  

2) Reinforcement height between bead 2 and bead 3 (RH23) – similarly, the 

reinforcement height between bead 2 and bead 3 is the maximum distance between 

the substrate metal and the intersection area of bead 2 and 3; created by the 

deposited clad material of the bead. In other words, it can be expressed as the 

maximum longitudinal measurement from the base metal to the outer boundary of 

the cross sectional bead in the positive Y Cartesian co-ordinate at the intersection 

of beads 2 and 3. It has similar direct and indirect trends as the reinforcement height 

of the bead. 

It should be noted that, there will be three sets of width (W1, W2, and W3), 

reinforcement heights (RH1, RH2, and RH3), and penetrations (P1, P2, and P3) in an overlap 

sample. This is due to the fact that an overlap sample is simply a three pass single bead 

sample with a layover percentage (40%, 50% or 60%). Hence, six geometrical/ structural 

shape parameters are studied for this thesis with regards to five manufacturing parameters. 

In the case of overlap configurations these geometrical shape parameters increase to a total 

of fourteen.  Figure 17 A and B displays a representation of a sample for a single pass and 



 

44 
 

an overlap pass configuration respectively. The beads presented in the figures 17 A (single 

pass) and B (40% overlap pass) are generated using the manufacturing parameters- FR: 20 

g/min, PW: 2 KW, FL: 400 mm, LS: 10 mm/sec, and CTWD: 23mm.  

 

 

(A) (B)  

Figure 17: Clad bead generation- (A) single pass and (B) overlap pass [4] 

 

3.5.2 Dilution 

As explained in sub-section 3.5.1, dilution is the amount of the base metal that is 

melted due to the fusion reaction of the laser during the laser cladding process [61]. The 

process of laser cladding is performed to attain a strong fusion bond between the cladding 

material and the substrate.  This bond created between the two materials is due to the 

formation of a melt pool in the substrate metal. According to the literature, the depth of the 

melted substrate metal should be minimal in order to obtain a pure surface layer that is not 

diluted by the substrate material [35]. Thus, the quality of the clad bead is dependent on 

the dilution of the substrate metal caused by the clad layer.  

One of the advantages of the laser cladding (LC) process over the laser welding 

technique, the metal inert gas (MIG) or the tungsten inert gas (TIG) techniques is  that the 

percentage of dilution levels are much smaller in magnitude. It is generally seen that for a 

good quality clad bead generation, the percentage dilution should be maintained between 

2%- 5%, while for a good weld bead the dilution percentage lies between a range of 20%- 

40% [61].  
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There are two ways of calculating the percentage dilution: [62]  

1) Clad layer geometry – the first method takes into consideration the overall clad 

geometry of the bead. Here, dilution is defined as the ratio of the penetration (P) of 

the bead in the substrate over the total height, (T) (i.e. summation of reinforcement 

height (RH) and penetration (P)) of the bead. For this method, the distribution of 

geometrical elements over the cross section of the clad bead is assumed to be 

homogenous. A mathematical representation of the expression is presented in 

equation 2 (figure 18- represents a schematic representation for calculation of 

dilution): 

 

Figure 18: Clad bead geometry 

 

 
𝐷 =  (

𝑃

𝑅𝐻 + 𝑃
) =

𝑃

𝑇
 

(2) 

Here, D is the dilution expressed in percentage 

P is the penetration depth expressed in millimeters (mm) 

RH is the reinforcement height expressed in millimeters (mm) 

T is the total height of the bead expressed in millimeters (mm) 

 

2) Material composition in clad layer – the second method takes into consideration the 

material compositions involved in the laser cladding process. Here, a comparison 

is made between the material composition of the pure coating material and the 

composition of the substrate. This method is more widely accepted in the industry 
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and accounts for the variation of dilution over the clad depth. In other words, 

dilution is calculated using the cross sectional melted area of the base metal 

compared to the difference between the total area of the weld metal and the cross 

sectional weld area [63].  A mathematical representation of the expression is 

presented equation 3 (figure 19 represents a schematic representation for 

calculation of dilution): 

 

Figure 19: Percentage dilution calculation method 

 

 
𝐷 =  

𝐵

𝐴 + 𝐵
 

(3) 

Here, D is the dilution expressed in percentage 

B is the area of the negative bead expressed in square millimeters (mm2) 

A is the area of the positive bead expressed in square millimeters (mm2) 
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CHAPTER 4 

RESEARCH METHODOLOGY  

4.1 Proposed Research Methodology 

This research work proposes a five step detailed approach for standardizing the 

laser cladding process. The methodology starts with a detailed literature review that focuses 

on the various approaches for an experimental strategy, strategies to set up predictive 

models to generate outputs (results), classification approaches to clustering bead shape 

according to group (class) characteristics and methodology to determine interdependencies 

among the shape and manufacturing parameters.  

The second step involves selecting an experimental strategy for an effective sample 

collection process. For this thesis work, this process involves a response surface 

methodology with the use of a central composite design. Once the experiments are setup 

and the single pass and overlap beads are generated at the sponsor facility, post processing 

of samples is carried out. The post processing operations aid in retrieving the shape 

measurements of the bead structures created through the laser cladding process. 

The third step involves the development of a cognitive artificial intelligence system 

with the help of artificial neural networks to predict various shape parameters from 

manufacturing parameters and vice versa. Once a successful model is developed and the 

predictions are generated within a high confidence range (90%- 95%), the model is ready 

to simulate future trends in the dataset. Sub-section 4.2 presents a 5-step approach to the 

development of a predictive model.  

The fourth step is a vital component in determining the significance of each 

parameter and their interaction with other parameters. These interactions present in the 

system make the laser cladding process non- linear in nature. Various contour and surface 

plots are generated to provide a visual representation of the non-linear behaviour present 

in the system.  

The final step encompasses of a classification approach for the shape analysis of 

the clad bead structure. Classification of the bead structure aids in determining the group 
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properties of a class to which a bead belongs. Hence, the classification approach is useful 

in standardizing the bead shapes according to the geometrical measurements of the bead. 

A detailed explanation of the stated five steps is provided in the following chapters for a 

better understanding to this approach.    
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Figure 20: Proposed research methodology 
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4.2 Proposed Predictive Model Methodology 

To develop the cognitive artificial intelligence system, a five step novel 

methodology is set up for this research. This methodology is applied to both the single pass 

and the overlap manufacturing configurations. The objective of documenting and devising 

a methodology is to standardize the process of laser cladding to reduce the lead times 

during production. This methodology comprises of a five step process and encompasses 

the five manufacturing parameters and the four shape parameters which are discussed in 

the previous chapter(s). Figure 21, displays a schematic flow of the five step methodology 

 

 

Figure 21: A methodology to development of artificial intelligence system 

The methodology follows the following steps: 

1) Designing experimentation – the design matrix (D) for experimentation is 

generated with the aid of the design of experiments (DOE) technique. Here, a 

response surface methodology approach is applied with a central composite box 

design (CCD) to help set experimental runs/ configurations. 

  

2) Normalization – this is a process by which all independent variables (the 

manufacturing and the shape parameters) are brought to a common range of [-1, 1] 

with a simple ranging scale technique.   

 

3) Neural network training – this incorporates normalized independent parameters and 

divides them into various input and target sets to carry out a supervised learning 

Designing 
Experimentation

Normalizing 
Parameters

Neural Network 
training

Neural Network 
Simulation & 

Prediction
Verification
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process. The input and the target sets help in overall learning and adaptation to the 

linear and the non-linear trends through the aid of the network architecture defined 

for the data points. 

 

4) Simulation and prediction – a test input set consisting of the manufacturing 

parameters is introduced to the trained network and confident predictions for shape 

parameters are derived without actually carrying out the experiment physically at 

the sponsor’s facility.  

 

5) Verification – the confident predictions made by the trained neural network are 

verified both visually and analytically to confirm the level of accuracy. An error 

percentage (error mapping) is generated for any deviations present in the predicted 

values from the actual values (shape parameters). 
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CHAPTER 5 

DESIGN OF EXPERIMENTS  

5.1 Response Surface Methodology 

Response surface methodology (RSM) refers to “a collection of mathematical and 

statistical techniques useful for modelling and analysis of a problem in which a response 

(output variable) of interest is influenced by several variables (input parameters) and the 

objective is to optimize this response variable (output variable)” [64]. In other words, 

response surface methodology is an empirical model building technique that aids in setting 

up an experimentation process.   

One of the major applications of the RSM technique is the design for optimization. 

This design aims at reducing the cost of expensive analysis methods such as the finite 

element analysis technique, the computational fluid dynamics (CFD) technique etc. Here, 

the smooth functions are utilized to improve convergence of the optimization process to 

reduce the effects of noise factors and allow the use of derivative based algorithm. [65] 

In this thesis, the focus is to find optimal levels of manufacturing parameters 

(power- PW, feed rate- FR, laser speed- LS, local length- FL, and contact tip to workpiece 

distance- CTWD),  through a response surface methodology and the objective function(s) 

are our mechanical shape parameters (width- W, reinforcement height- RH, penetration- P 

and percentage dilution- %D). Here, the RSM technique defines an objective function as 

presented in the following mathematical equation: [64] 

 𝑦 = 𝑓(𝑃𝑊, 𝐹𝑅, 𝑇𝑆, 𝐹𝐿, 𝐶𝑇𝑊𝐷) + Є (4) 

Here, y is the objective function 

f is a function of the manufacturing parameters 

Є is a noise/ error observed in the response 

 

Now, if the response is denoted as E(y) then, [64] 

 𝐸(𝑦) = 𝑓((𝑃𝑊, 𝐹𝑅, 𝑇𝑆, 𝐹𝐿, 𝐶𝑇𝑊𝐷) = ŋ (5) 
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Then the surface is represented as ŋ, and is referred to as a response surface. [64] 

 ŋ = 𝑓((𝑃𝑊, 𝐹𝑅, 𝑇𝑆, 𝐹𝐿, 𝐶𝑇𝑊𝐷) (6) 

 

Generally, a response surface (ŋ) is plotted graphically against the different levels 

of the various response variables (PW, FR, TS, FL, and CTWD). Visualizing of such 

responses is best perceived within a three- dimensional space or surface and contour plots, 

which is explained in detail in the following chapters.  

While defining a RSM, the relationship between a response and a response variable 

contained in the system is unknown. Hence, the first step in designing an RSM is to 

determine an appropriate approximation for a true functional relationship between the 

objective function(y) and the response variables. In this case, a low-order polynomial 

function is applied. Once the function is applied and the response seems to be well 

modeled, the function is the first order model, which is mathematically represented as [64] 

 𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + Є (7) 

 

 if, the function is unfit to be modeled i.e. if there is a curvature in the system, a 

second- order model is used, which possess a polynomial function of a higher degree. Note- 

for the purpose of this thesis, a second order model has been applied to generate the 

relations between the objective function and the independent response variables 

(manufacturing parameters) due to the non-linear nature of the laser cladding data. The 

second order model is mathematically represented as: [64] 

 

𝑦 = 𝛽0 +  ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖
2 + ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + Є

𝑖<𝑗

𝑘

𝑖=1

𝑘

𝑖=1

 

(8) 

   

In such a case, the method of least squares is generally used to estimate the 

parameters to approximate the polynomials and the response surface analysis is performed 

(using fitted surfaces) [66]. Analysis of the fitted surface is considered as the analysis of 

the actual system only when the fitted surface is a true approximation of the response 
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function. Note- for effective estimation of the model parameters, a proper experimental 

design should be applied for experimentation process. [64] 

The response surface methodology is considered to be a sequential procedure. The 

objective is to rapidly and efficiently move along the path of improvement to achieve 

optimal results for the independent variables of the system. The process starts with a first-

order model and moves on to a second-order model gradually. The method used to move 

along the path of improvement is the method of steepest ascent (in case of maximizing the 

response variable) or the method of steepest descent (in case of minimizing the response 

variable). Thus, the method of steepest ascent refers to “a procedure for moving 

sequentially in the direction of the maximum increase in the response” [67]. It is always 

assumed that the first-order model can provide an approximation of the true surface. Hence, 

the experiments are conducted along the path of steepest ascent till the time there is no 

further improvement in the value of the response. Once there is no improvement recorded 

for the response value, a second order model is generated (to approximate the response) 

and a new path of steepest ascent is followed until the response is in close proximity to the 

optimal result. This final response point that is in very close proximity to the optimal 

response is generally referred to as the stationary point. [64]   

The original application of the RSM technique was to model experimental 

responses; however, the RSM technique has evolved into a system for modeling numerical 

experiments [66]. By applying the RSM methodology, a series of tests called runs are set 

up, in which many variations (in manufacturing parameters) are introduced in various 

combinations of input parameters to identify the trends/reasons for changes in the response 

variables (outputs) in a non- linear system. 

 

5.2 Design Properties for Selecting a Design Strategy 

For this thesis and research work, the two optimal designs that will be studied are 

the full factorial approach and the central composite design. Once the design approaches 

are understood and documented, a selection of the design approach will be made to start 

the experimentation process at the sponsor’s industrial facility. The selection process of the 

experimentation strategy is solely dependent on two factors- (1) the minimal time and the 
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financial investment for experimentation process (data collection); and (2) the level of 

approximation of response (in comparison to the true optimal value).  

The following are some design properties that are necessary in selecting the design 

technique for a particular process/system: 

1) Orthogonality – a design (D) is said to be orthogonal- if the combination of the 

defined matrix (X’X) is a diagonal matrix i.e. there are values present only in the 

diagonal elements of the matrix (X’X) and the other elements are zero. An 

advantage of such a design property is the presence of the uncorrelated elements, 

hence, making it easier to test the significance of the parameters. The design matrix 

(D) is expressed mathematically as: [68]. 

 

𝐷 = [

𝑥11 𝑥12 … 𝑥1𝑘

𝑥21

⋮    

𝑥22 …

⋮      …

𝑥2𝑘

⋮    
𝑥𝑛1

𝑥𝑛1 … 𝑥𝑛𝑘

] (9) 

Here, D is an n x k design matrix and each row of D defines a design point 

2) Rotatability – a design (D) is said to be rotatable, if the equidistant points from the 

design center have a constant prediction variance. The advantage of such a design 

is that, even on rotation of the co-ordinate axes in a design the prediction variance 

remains unchanged which indeed helps in comparing the designs on the basis of 

rotatability. According to the literature, this property was first introduced by Box 

and Hunter. [69] [68].  

3) Uniform precision – a design (D) is said to possess a uniform precision property, if 

the variance at the center point of a design (origin) is equal to the variance value at 

any other point at a distance from the origin. The advantage of this design property 

is that it helps in making the system (in predicting variance) more stable Again, 

according to the literature, this property was first introduced by Box and Hunter. 

[49] [68]. 

4) Design robustness – a design (D) is said to be robust, if the properties of that design 

are not impacted by the failures of the design. In other words, the failures in design 

should not affect the assumptions of the model and its error distributions, thus 
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displaying a lack of fit. According to the literature, this property was first 

introduced by Box and Draper. [66] [68]. 

5) Design optimality – a design (D) is said to be optimal depending on the closeness 

of the predicted response to the mean response over a certain region of interest. 

These designs are constructed on the basis of a certain optimal criterion such as the 

variance- related criterion. The objective for such a design is to minimize or 

maximize the objective function associated with the estimation of the independent 

factors. [68]. 

 

5.3 Proposed Experimental Designs 

 

5.3.1 Full- Factorial Design 

A factorial experiment is a design strategy in DOE in which multiple variables are 

grouped together, instead of one variable at a time. A full factorial design investigates all 

possible combinations to construct an approximation model that captures interactions 

between various variables. A factorial design is generally considered the most suitable 

design for the screening (pre-processing) process. The objective of the screening process 

is to identify the significant factors relevant to the process being investigated. A factor is 

considered to be significant if the influence of the factor is greater than the error value [70]. 

Here, each variable (factor) has a set number of possible levels.  

In a factorial design, the total experimental runs are defined using equation 10  

 𝑛 =  𝑀𝑁 (10) 

Here, n is the total number of experiments 

M is the total number of levels defined for a variable 

N is the total number of design variables 

Generally, there are two levels (upper bound and lower bound) defined for each of 

the selected design variables.  The total number of experiments can be defined by the 

expression 2N (N is the design variables). In cases where there is a midpoint level (0) in-

between the upper bound (+1) and the lower bound (-1) levels, then according to equation 
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12, the total number of experimental runs are 3N. Figure 22 displays a graphical 

representation of the full factorial design with 3 levels and 3 factors (33 = 27 experimental 

points). [64] 

 

Figure 22: Full factorial design with 3 factors and 3 levels 

It should be noted that while defining the full factorial design, the experimental 

points are always the end points of the cube. According to the literature, a factorial design 

is generally used for 5 or fewer factors. But in the case of factors greater than 5 (N >5), a 

fraction of a full factorial design is applied. The aim of a fractional factorial design is to 

screen only the important design variables that have the maximum influence on the process 

being investigated. Thus, a fractional factorial approach is used to estimate a few vital 

combinations of the full factorial approach. [68]  

For the stated example (in figure 22) with 3 factors and 3 levels, a fractional 

factorial design is created using the mathematical equation presented in equation 11 

 𝑛 = 3𝑁−𝑝 (11) 

Where, n is the total number of fractional factorial design runs 

N is the number of factors 

(1/3)p fraction is constructed, resulting in 3N-p runs/points  
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Hence, if p=1 then 33-1 (9 points for a one third fraction design is generated). A 

visual representation of these nine points is presented in figure 23 A, B, and C with various 

selected combinations. [64] 

 

 

(A)                                                                    (B) 

 

 

(C) 

Figure 23: Fractional factorial orientations 

 

5.3.2 Central Composite Design  

A central composite design (CCD) is developed to find the optimal settings of the 

variables and to plot the response surfaces. On the other hand, the use of a factorial design 

is to provide indications of the significant effects and the interactions between the process 

variables [70].  
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A CCD design is considered as the most superior class of design for fitting a second 

order model [70]. In a CCD, each factor has 5 levels (extreme high, high, center, low and 

extreme low), which are coded between the ranges of -2 to +2. The total number of 

experimental runs for a CCD is defined by the following equation 12-  

 𝑛 =  2𝑁 (12) 

Here, n is the total number of experiments 

N is the total number of design variables 

A CCD consists of end points, axial points and center points. The axial points are 

mathematically calculated as 2*N i.e. twice the number of design variables. The center 

points (nC), according to the literature (with increasing factors), should always be selected 

between 3 and 6 to maintain maximum stability of the system. Therefore, the remaining 

points out of total experimental runs are the end points, and are mathematically calculated 

as n-(2N)-(6). [64] 

A system of N factors for a first order system produces a 2N experimentation set. In 

the case of a second order model system, an alternative 3N design is also available. The 

benefit of such a design for a second order model system is that the total number of 

experimental runs (n) are comparatively less than that of the full factorial approach. For 

example, for a system of 3 factors and 3 levels, the total number of design/ experimental 

runs for a full factorial will be 27 (i.e. 33); while the total number of design runs for a CCD 

will be 15 (23=8 end points, 2*3=6 axial points and 1 center point). [64]    

Figure 24, represents a CCD of N= 3 factors (called a cube experiment), with 8 end 

points, 6 axial points and 1 center point in a three dimensional factor space.  
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Figure 24: A central composite design demonstration 

A CCD experimentation generally shows a lack of fit in a first order model, hence, 

axial runs or points are added to the design to allow quadratic terms to be incorporated in 

the model and avoid the fitness problem. The two parameters that are essential in designing 

a CCD are as follows [64]: 

 

1) The distance α of the axial runs from design center point: a CCD design is made 

rotatable by the choice of an α value. The value of α depends on the number of 

points in the factorial portion of the design. Here α is numerically calculated by the 

expression:   

 𝛼 =  𝑛1/4 (13) 

Here, α is the distance of the axial run from the design center 

n being the number of points in the factorial portion of design 

 

2) Number of center points (nC): according to the literature, the center points are 

repeated 3-6 times to enhance the stability of the model along with providing a 

possibility to calculating standard deviation and exploring the maximum possible 

accuracy of the model. 
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5.4 Design Matrix- Setup 

This thesis work uses a central composite design (CCD) for the experimentation 

process. This is due to the fact that the overall expenditure of material, time and financial 

investment is considerably low for a central composite design over a full factorial 

approach. Table 4 shows a comparison of experimental runs with both the CCD and the 

full factorial approaches (total savings of 9279 experiments).  

Table 4: Comparison between full factorial and central composite design 

 Full Factorial Design Central Composite Design 

Factors 5 5 

Levels 5 5 

Replicates 3 3 

Total Experiments 3* (55) = 9375 3* (25) = 96 

 

The experimental setup for this research work consists of five input factors 

(manufacturing parameters) varied over five levels. These levels are coded over a range of 

-2 to +2, with -2 being extremely low and +2 being extremely high values of the 

manufacturing parameters for the laser cladding process. Also, 0 is coded as a base/ mid-

point for the laser cladding operation. The combinations of the parameters for the mid-

point are chosen with expert advice of the industry partner, the regular production 

parameters and with careful review of the literature (research projects). As mentioned 

before there are a total of 96 experiments (i.e. 32 experiments with 3 replicates) setup with 

a CCD approach. Table 5, represents the design matrix generated for the laser cladding 

process. 

 

 

 

 

 



 

62 
 

Table 5: Design matrix for the laser cladding process 

Design Matrix 

Parameters Units Notations 
Factor Levels 

-2 -1 0 1 2 

Feed rate g/min FR 10 15 20 25 30 

Power KW PW 1 2 2.5 3 4 

Focal length of lens mm FL 380 390 400 410 420 

Laser speed mm/sec LS 5 7.5 10 12.5 15 

Contact tip to work 

distance mm CTWD 21 22 23 24 25 

 

The five manufacturing parameters chosen (after a detailed literature review) for 

the design of a experimentation set are the feed rate of the clad powder (FR), the power of 

the laser (PW), the focal length of the optic lens (FL), the laser speed (LS) and the contact 

tip to workpiece distance (CTWD)  

1) Power (PW) – power refers to the amount of energy consumer per unit time and is 

expressed in watt (joules/sec). It is mathematically derived by the following 

equation 14,   

 𝑃(𝑡) = 𝐼(𝑡) ∗ 𝑉(𝑡) (14) 

Here, P (t) is the instantaneous power and is expressed in watts 

I (t) is the current supplied to the system and is measure in amperes (Amp) 

V (t) is the potential difference in voltage and is expressed in volts (volt) 

 

Hence, power is directly proportional to the current supplied and the voltage drop. 

According to the literature review, the current is one of the most vital factors in 

defining the clad bead’s geometrical structure. It is documented that with an 

increasing current, there is an increase in penetration of the bead. This is due to the 

fact that with an increase in current at a certain travel speed of the laser results in 

an increase in the depth of the fusion reaction. This increase in fusion reaction may 
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lead to more penetration and higher dilution percentage due to a melt through the 

substrate metal [54]. Also, it is noted that with an increase in current, there is an 

increase of bead width until a certain critical point after which the bead width starts 

decreasing [58]. Other researchers have also concluded that with an increase in the 

current, the penetration increases and thus, increases the heat affected zone. Less 

current leads to inadequate penetration and incomplete fusion in other cases [71].  

The shape of the weld bead cross section and the external appearance is determined 

by the voltage. With an increase in the voltage, the constant current, and travel 

speed of the laser, it is noticed that a flatter bead is usually generated. This flatness 

reduces the penetration and there is a less chance of porosity [54]. If the voltage is 

increased excessively, it is noticed that a wider bead is produced. With an increase 

in the bead width and with less penetration there is always a chance of cracking 

failures. But if the voltage is too low, a narrow bead is formed for which slag 

removal as a post-process is highly difficult (especially along the bead edges). [72] 

[73]   

 

2) Laser speed (LS) – laser speed defines the overall pattern of the bead. It is 

documented that with an increase in the speed, the power of the laser decreases. 

This decrease in the power decreases the heat input which effects the reinforcement 

height. As less of the filler material is deposited, the reinforcement height is reduced 

with an increase in speed. Bead penetration is also affected by the laser speed. The 

penetration is low with a higher speed as less fusion power is experienced. This 

excessive speed can result in high porosity and cracking failures in the clad bead. 

High laser speed also leads to a low heat affected zone due to the same reasons (low 

fusion power on high laser speed) [74]. To improve the failure of the porosity, a 

slow laser operations should be performed so that there is enough time for gases to 

escape. Extensively low speed can lead to a rough bead with slags because of a 

large molten pool formation. It is also reported that the laser speed has a slight effect 

on the metal deposition rate as well. [75]   
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3) Feed rate of the clad material (FR) – feed rate of the clad powder with constant 

power and laser speed has a direct effect on the bead shape. It is noted that with an 

increase in the feed rate of the powdered clad there is an increase in reinforcement 

height and a taller bead is generated. The taller the bead, there is more penetration, 

resulting in a higher dilution. Note that the increase in the laser speed with 

considerable decrease in the feed rate leads to either no bead formation (just spurs 

around the laser area) or cracking due to less fusion reaction and no chemical bond 

formation. 

 

4) Focal length of the lens (FL) – for this thesis work, the focal length of the lens refers 

to the distance between the outer focusing optical lens and the workpiece. Generally 

any adjustment to the lens affects the shape of the bead. Focusing lens plays a vital 

role in overlap configurations. Malfunctioning of the lens or improper positioning 

of the lens could lead to incorrect layover percentages in the overlaps. It also affects 

the layering configurations as layers are seen to be disoriented while manufacturing 

(slightly bend towards one side instead of one over the other) with changing lens 

distances. 

 

5) Contact tip to workpiece distance (CTWD) – this is the parameter that defines the 

distance between the nozzle tip and the top of the workpiece (substrate metal). 

Change in this distance affects the overall shape of the bead. It is documented that 

with lesser distance (nozzle closer to workpiece) and constant power, the feed rate, 

and the travel speed; there is an increase in the bead width. On the other hand, if 

the distance is larger (nozzle far from workpiece), an increase in the reinforcement 

height is noticed.     

  

Once the factors are selected and are coded between the [-2, 2] range, the next step 

is choosing a design. As mentioned earlier, a CCD is chosen with the two important 

parameters α (axial distance from center point of the design) and nC (number of center 

points). The value of alpha (α) is computed as the fourth root of the total experiments i.e. 

32 experiments (2 approximately). The number of nC (center points) that are chosen for 
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constructing a stable design are 6.  Figure 25, presents a breakdown of the points in a CCD 

design for this thesis work. 

 

Figure 25: Central composite design specifications 

 

Lastly, a MINITAB 16 software environment with a response surface methodology 

(RSM) application and a central composite design (CCD) approach is used to define the 

various experimental runs. These experimental runs are combinations of manufacturing 

parameters which are used to collect four shape parameters for a single bead configuration 

and 12 shape parameters for an overlap configuration. Table 6 presents the various 

experimental runs developed with the MINITAB software. (Note- runs 13, 17, 22, 23, 24, 

and 29 are all set as midpoint runs- center points of the design to increase the stability of 

the overall system).   

Table 6: Experimental configurations for sample collection 

Runs FR PW FL LS CTD 

1 -1 -1 -1 -1 1 

2 2 0 0 0 0 

3 1 1 -1 -1 1 

4 0 0 0 0 -2 

5 1 -1 -1 -1 -1 

6 1 1 -1 1 -1 

7 -1 -1 -1 1 -1 

8 -1 1 1 -1 1 
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9 0 0 0 0 2 

10 0 0 -2 0 0 

11 0 0 0 -2 0 

12 1 -1 1 1 -1 

13 0 0 0 0 0 

14 1 1 1 1 1 

15 0 2 0 0 0 

16 -1 -1 1 1 1 

17 0 0 0 0 0 

18 1 -1 -1 1 1 

19 1 1 1 -1 -1 

20 -2 0 0 0 0 

21 -1 -1 1 -1 -1 

22 0 0 0 0 0 

23 0 0 0 0 0 

24 0 0 0 0 0 

25 -1 1 1 1 -1 

26 -1 1 -1 -1 -1 

27 -1 1 -1 1 1 

28 1 -1 1 -1 1 

29 0 0 0 0 0 

30 0 0 0 2 0 

31 0 0 2 0 0 

32 0 -2 0 0 0 

 

Once the experiments are set-up, the next step involves the collection of the shape 

parameters for a single layer and overlap configurations. The following subsections 

mention in detail the assumptions, the equipment requirements etc. for the sample 

collection. Also, the post processing procedures are listed to attain the shape characteristics 

from the generated clad bead(s).  



 

67 
 

5.5 Assumptions and Equipment Requirements 

The table 7 incorporates the list of equipment(s) and work procedures that are kept 

constant for collection and post- processing of samples for a single bead or overlap 

configuration.   

Table 7: Constant factors for the laser cladding process 

S. No. Constant Factors Specification/ Manufacturer 

1. Workbench angle 0 (degrees) 

2. Laser torch angle 90 (degrees) 

3. Shielding gas 100 % Argon gas 

4. Shielding gas flow rate 11-35 CFH (cubic feet per hour) 

5. Base material (Substrate) Cold rolled structural steel coupon(4”x2”x0.5”) 

6. Powdered clad material 420 Steel 

7. Laser system Fiber Laser; IPG Semi-conductor diode laser 

8. Powder feeder principle Hybrid  

9. Nozzle type Co- axial nozzle 

10. Tip- size (diameter) 4.3 (mm) grain size 

11. Metallographic microscope  Olympus SZX12 

12. Abrasive cutter Buehler, oscillamet 

13. Robotic arm  IRB 4400 (ABB- Manufactures) 

14. Mounting press Leco, PR-32 

15. Mounting material  EpoMet- hard material with good edge retention,  

16. Flush mount variable Buehler, Ecomet 12 

17. Polisher and grinder Speed grinder & polisher with Automet 3000 

power head 

18. Etching solution- 420 Steel Nitric hydrochloric glycerol (10ml HNO3, 20-50 

ml HCL and 30 ml glycerol); spray with methanol 

19. Gas mask Gas respirator face mask (advantage 3200 full-face 

piece respirator) 

20. Fume hood Lincoln electric mobiflex 200-M fume extractor 

with XFMR- model# K-1653-2 
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The selection of the equipment is done according to the availability of the equipment at the 

sponsor industry partner due to financial constraints.  

Maintaining all assumptions and equipment requirements, the clad bead samples 

are generated using the MINITAB devised experimental runs. The samples generated here 

are incapable of providing the shape characteristics; hence, various post- processing 

operations are required to procure the shape characteristics for each experimental run 

(explained in Appendix). These post- processing operations comprise of the abrasive 

cutting process (to obtain a cross-section of the clad bead), the sample mounting process 

(performed for easy storage and accessibility of multiple samples onto a single mount 

head), the polishing, grinding and etching process (to obtain a reflective surface of the 

sample), and the image processing process (to obtain the geometrical measurements of the 

clad bead under a metallurgical microscope).   
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CHAPTER 6 

A COGNITIVE ARTIFICIAL INTELLIGENCE SYSTEM  

 

6.1 Background 

Neural networks are an emerging and evolving field that has its origin from the 

science of neurobiology.  A neural network imitates the basic information processing 

mechanism or path carried out by a human brain (similar to a neurobiological system). In 

simpler words, neural networks are mathematical models that perform similar functions as 

a human brain to process information. A human brain consists of various neurons that help 

in processing information from one to another. Similarly, a neural network consists of 

various perceptrons (neurons) that help transfer (information and pass) numerical data from 

one to another. Hence, the neural networks are designed to perform complex tasks just like 

the brain [76]. Figure 26 (source: Quasar Jarosz [77]), presents a structure of a neuron of 

the human brain.  

 

Figure 26: A schematic diagram of a human brain neuron [77] 

 

In statistics, a neural network is a compilation of interconnected neurons that learn 

from an external environment (raw data supplied as input and target values to the network). 

These networks adapt to linear and non- linear trends and show incremental change in their 

structures as the data is processed by each activation center. Learning through the external 

environment triggers a training phase for the network and thus predictions and simulations 
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are made accurately according to the fitness (accuracy) of the learning curve. Generally, it 

is noted that a lower learning rate is achieved if the raw data supplied to the neural network 

consists of various noise factors. [76] [78]     

The data processing operation is carried by neurons that act as basic computing 

units. A neural network is “a massively parallel distributed processor that has a natural 

propensity for storing experiential knowledge and making it available for use. It resembles 

the brain in two respects: 1. knowledge is acquired by the network through a learning 

process; 2. interconnection strengths between neurons, known as synaptic weights or 

weights, are used to store knowledge” [79]. In other words, neurons are parallel structures 

whose function is determined by the network architecture, the connection strengths and the 

processing mode.   

 

6.1.1 Capability- Neural Network 

Neural networks can perform various tasks such as classification, clustering, forecasting 

and pattern recognition. Some of these tasks are explained as follows: 

1) Function approximation – neural networks have a capability to fit both linear and/or 

non-linear data to a multidimensional space to achieve the desired accuracy. 

Approximation occurs over a supervised learning set comprising of the known 

input, the output and the target variables. These prediction networks (predictors) 

are called the universal approximators as they help follow a pattern over a data 

range and approximate new data with similar trends. This process of approximation 

can be time consuming if it is done through conventional methods or by numerical 

calculations. In terms of functionality, these networks are addition to multivariate 

techniques for predicting trends such as multiple linear regression and non-linear 

regression [76]. Figure 27 (adapted from: Samarasinghe [76]) displays a graphical 

representation of the functional approximation.  
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Figure 27: Function approximation graph, adapted from [76] 

 

2) Data and signal classification – neural networks are useful in data classification as 

they aid in assigning data to a specific class. Linear, non-linear, complex, and multi-

categorical data consisting of linear or non-linear classification boundaries can be 

classified with the help of such networks. Classification networks are most 

frequently encountered in the manufacturing industry and majorly aid in the 

decision making process. As classification is encountered frequently, it should be 

noted that the data used for training should not be over trained to avoid any over 

fitting circumstances. Over-fitting of data can lead to an undesirable result. Along 

with data classification, these networks help in classifying signals over a time series 

range by assigning the raw data to a specific class. Generally, classification is 

performed by using a pattern recognition tool used for a supervised learning 

environment. In supervised learning, the input and the target data is well known 

before training. This supervised learning technique helps the network categorize 

specific inputs to its target value [76]. Figure 28 A and B (adapted from: 

Samarasinghe [76]), display a graphical representation of the classification.  
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(A)                                                                    (B) 

Figure 28: Classification graphs- (A) data and (B) signal, adapted from [76] 

 

 

3) Unsupervised clustering – neural networks are also capable of classifying 

unsupervised complex data and grouping them into classes according to trend 

similarities. This type of network is generally used in an unsupervised learning 

environment where the data has inputs but the user/software is unaware of the target 

values. This unsupervised learning process makes it difficult for the software for 

meeting convergence criteria. These networks do not include a priori (i.e. no similar 

trends match to the network in any previous work/trial). Therefore, when training 

such networks unknown clusters are formed in a given dataset and the network uses 

internal data properties to discover such clusters.  In functionality, these self-

organizing networks reveal spatial relations between clusters while discovering 

other clusters [76]. Figure 29 (adapted from: Samarasinghe [76]), displays a 

graphical representation of the unsupervised clustering. 
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Figure 29: Unsupervised clustering graph, adapted from [76] 

 

4) Forecasting – in forecasting, the data used is time series driven.  These networks 

help determine future outcomes over a time series range by capturing the past 

memory of the model consisting of various temporal patterns. This past memory 

aids the network forecast future behaviour or trends on a time series scale [76]. 

Figure 30 (adapted from: Samarasinghe [76]), displays a graphical representation 

of the forecasting. 

 

Figure 30: Forecasting graph, adapted from [76] 
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6.2 Network Essentials 

6.2.1 Epoch 

“An Epoch is a single pass of all input patterns in a perceptron during the training phase.” 

[76]. In other words, an epoch is a single iteration carried out through the process of training 

the network. There are two training methods i.e. batch training and example-by-example 

training, which are explained in detail in the following sub-sections. In each epoch run, the 

data set is provided to the network defined, which consists of the input weights. Once the 

training phase starts, these network weights along with their bias values are updated to the 

lowest mean square value (MSE). Once a low value of MSE is reached the epoch is 

terminated and the new set of weights is passed onto the next epoch. Thus, the updated 

weights act as the input weights to the next epoch and the process is carried on until there 

is no more improvement (i.e. lowest MSE error value is obtained). In most cases, several 

epochs are required to train a network dataset to reach a desired result/performance with 

the least mean square value (MSE) [76] [80]. 

 

6.2.2 Training methods 

There are two types of training methods or algorithms that a neural network training phase 

is based upon. Both these methods use training techniques for adaptation of the network to 

the data trend and hence, converge to a common least mean square error value. As 

mentioned earlier, both methods have several epoch runs but the weight updating method 

is very different for the same input data set. A detailed explanation of each of this training 

method is provided as follows [81]: 

1) Example by example training – example by example is a method in which, the input 

weights are adjusted after each appearance of an input pattern (also called the online 

training). Due to such frequent update in the input weights, the input weights 

oscillate back and forth. This oscillation happens because the adjustment required 

by one input vector is cancelled by another input vector. This oscillating 

phenomenon can generally lead to time wastage while learning, training and 

minimizing the value of mean square error. In example by example training, the 

network is trained to minimize error for each example. In most cases the random 
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movement of weights due to oscillation causes instability to the result as well as to 

the network. The error calculations for this method use different weights of each 

input sample for each run [81].  Figure 31 (adapted from: Samarasinghe [76]) 

displays a graphical view of the example by example learning with the trend in 

oscillating weights. 

 

Figure 31: Example- by- example training, adapted from [76] 

 

 

2) Batch training – batch training is a method that is more popular than example by 

example training. This is due to the fact that it provides a stable solution and there 

is no oscillation of the weights. In this method, all input patterns are processed at 

once and later (after each epoch) the weight adjustment takes place in an average 

sequential form. In batch training, the overall error with respect to the training set 

decreases incrementally with the adjusting weights. Here, the error is the least in 

the direction of the greatest descent indicated by a resultant gradient.  As the error 

varies with input, there is always a new error surface leading to new error values 

and gradients with each epoch [81].  The error across each epoch in this learning is 

denoted by the following equation 15 : [76] 

 

𝑀𝑆𝐸 =
1

2𝑁
∑(𝑡𝑖 − 𝑧𝑖)

2

𝑁

𝑖

 

(15) 

Here, MSE is the Mean square error value  
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t is the target value for supervised learning supplied to the network 

z is the network output value 

N is the number of training cases (Input weights) 

 

 The total gradient for an epoch is mathematically expressed as equation 16, [76]   

 

𝑑𝑚 = ∑ [
𝛿𝑀𝑆𝐸

𝛿𝑤𝑚
]

𝑛

𝑁

𝑛=1

 

(16) 

Here, dm is the total gradient 

m is an epoch run 

n is the number of examples of the mth epoch 

MSE is the mean square error value  

wm is the input weight 

 

 Figure 32 (adapted from: Samarasinghe [76]), displays a graphical view of the batch 

learning with gradient descent (no oscillations). 

 

Figure 32: Batch training, adapted from [76] 

 

The direction of steepest descent is always opposite direction to the direction of 

batch gradients in a training set. During the greatest descent, the magnitude of the weights 

decreases to meet the least point of the error surface. Batch learning is an implementation 

of the steepest descent method. [81] 
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6.2.3 Degrees of Freedom 

The degrees of freedom for a network generally refer to total number of 

independent parameters at a certain instance possessed by a system [82].  In the case of 

neural networks, the degrees of freedom available to a neural network are the number of 

weights and the biases in the defined network. The degrees of freedom (value) determine 

the plasticity of the network which is the capability of the system to approximate the 

training set. Increasing the plasticity helps the network reduce the error generated during 

the training phase but it can increase the error during the testing phase of a network. 

Decreasing the plasticity immensely can lead to a large error in testing and training. [83] 

 

6.2.4 Activation Functions 

The network architecture for a neural network consists of three different layers. 

Both the hidden layer and the output layer, contain the activation functions. These 

activation functions are the mathematical functions that help the network update weight 

and corresponding bias values. The update in input values helps in superior learning and 

adaptation to the trends in the data set. The activation functions are non-linear, continuous 

in nature, and are bound between a higher and a lower value. The non-linearity behaviour 

refers to the non- linear outputs of the functions as compared to the network inputs. 

Continuity refers to the sharp peaks or gaps in the function so that the delta rule can be 

applied to adjust the input-hidden and the hidden-output weights through a 

backpropagation technique. [76] 

Activation functions are generally categorized in two categories i.e. as sigmoid 

functions S-shaped functions or as Gaussian functions. For this thesis, the main focus is on 

the sigmoid functions. There are three types of sigmoid functions that are utilized while 

defining the network architecture, which are as follows: 

1) Tan sigmoid activation function – The hyperbolic tan sigmoid function has a lower 

bound of -1 and an upper bound of +1. Hence, the output range is between the [-1, 

+1] boundary. Also, according to the literature, the slope of the hyperbolic tan 

sigmoid function is higher than the log sigmoid function. The mathematical 

representation of a hyperbolic tan sigmoid function is expressed in equation 17.  
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tanh(𝑢) = 𝑓(𝑢) =

1 − 𝑒2𝑢

1 + 𝑒2𝑢
 (17) 

A graphical representation of the hyperbolic tan sigmoid function is seen in figure 

33. 

 

Figure 33: Graphical representation of tan sigmoid function 

 

2) Log sigmoid activation function – The log sigmoid activation function has a lower 

bound of 0 and an upper bound of +1. Hence, the output range is between the [0, 

+1] boundary. The mathematical representation of a log sigmoid function is 

expressed in equation 18. 

 
𝑦 = 𝐿𝑜𝑔(𝑢) =  

1

1 + 𝑒−𝑢
 

(18) 

A graphical representation of the hyperbolic tan sigmoid function is seen in figure 

34. 

 

Figure 34: Graphical representation of log sigmoid function 
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3) Linear activation function – The linear activation function is an unbounded function 

and is present in the output layer of the network architecture. This activation 

function is best suited as an output neuron function because it provides a one-to-

one relationship with the network output. The mathematical representation of a log 

sigmoid function is expressed in equation 19. 

 𝑦 = 𝑓(𝑢) = 𝑢 (19) 

A graphical representation of the hyperbolic tan sigmoid function is seen in figure 

35. 

 

 

Figure 35: Graphical representation of linear function 

 

6.2.5 Learning Algorithm 

There is a wide selection of learning algorithms that a network can adopt for 

training purposes. For the purpose of this research, a Levenberg Marquardt (LM) method 

has been adopted for training purposes. A Levenberg Marquardt method is expressed as “a 

numerical solution to the problem of minimizing a (generally nonlinear) function, over a 

space of parameters for the function” [84]. According to the literature, LM technique is 

considered superior to the gauss-newton method as it adjusts the value of learning rate (Є) 

to unity and adds a new term eλ to the second order equation. This addition of the natural 

logarithmic term (e) along with a damping factor (λ), helps in reaching a minimum MSE 

value. Thus, the lower the MSE value, the better the network performance. The LM 

technique can mathematically be expressed as equation 20. [76] [85] 
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𝛥𝑤𝑚 =

𝑑𝑚

𝑑𝑚
𝑠 + 𝑒𝜆

 
(20) 

Here, m is an epoch run 

dm is the first derivative to the error value 

ds
m is the second derivative to the error value 

e is the natural logarithmic function 

λ is the damping factor 

 

The LM technique uses a gradient descent method, to reach a global minimum error 

value by minimizing all first gradient derivative values to zero. 

 

6.2.6 Network Layers 

There is a wide selection of network architectures that a neural network can adopt 

for the learning and training purposes. The focus of this thesis work is the multi-layer 

perceptron network (with one or multiple hidden layers) architecture that uses a feed 

forward back propagation technique to update the weights and corresponding bias values.  

A multi-layer perceptron (MLP) network refers to a network that possesses various layers 

in a network architecture. The main function of the MLP network is for the pattern 

recognition, classification and approximation. The three layers present in a MLP network 

are as follows [76]: 

1) Input layer – this layer contains the inputs to the network, defining the condition 

for which the network undergoes the training phase. Each input to the network is 

an independent variable that has an influence on the output of the network. This 

layer is connected to the hidden layer which helps in passing the input weights to 

the activation functions for the training (weight adjustment) process. 

 

2) Hidden layer – this layer contains the non-linear activation functions. There could 

be multiple activation functions present in this layer to process information. For the 

purpose of this research, the hidden layer contains sigmoid activation functions to 
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help adapt to the non-linear trends of the input weights supplied by the input layer. 

This layer is connected to the output layer to pass the output weight of the system.   

 

3) Output layer – this layer contains the linear activation function. There could be 

multiple activation functions present in this layer to provide various outputs to the 

system. This layer denotes a second step of weights being fed to the network. The 

updated weights from the hidden layers act as inputs to the output activation 

functions. Here, the linear functions bring together the outputs by computing the 

weighted sum of the updated network weights. Generally, there is a one-to-one 

relation to the network outputs and the linear activation functions present in the 

output layer. 

 

Figure 36 displays a schematic view to a MLP network with various layers.    

 

Figure 36: A schematic diagram of artificial neural network 

 

MLP networks are trained using the supervised learning technique. The supervised 

learning technique refers to the learning adopted by a network when the experimental 
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output results for particular inputs are introduced to the network. These experimental 

output sets are referred to as the target sets. A feed forward back propagation behaviour is 

selected for the MLP networks. Feed forward network behaviour refers to a network in 

which the flow of information is only in one direction i.e. from the input to the output. 

There are no feedback loops present in such a MLP network. Backpropagation, refers to 

the technique of learning from input examples and desired (known) correct output for each 

case. This backpropagation (BP) technique helps the network adapt to the behaviour of the 

data that is expected [86]. 

The weights are updated along with their corresponding bias values using the 

following mathematical formula presented in equation 21,  

 
𝑆 =  ∑(𝑤𝑖 − 𝑥𝑖) + 𝑏

𝑛

𝑖−1

 (21) 

Here, xi is the inputs to the network 

wi is the weight of each input value 

b is the bias value 

n is the total number of variables  

 

6.3 Normalization 

The technique used to normalize raw data for the thesis work the simple ranging 

technique. A simple ranging technique can be bound within two boundary conditions.  

1) Boundary condition [0, +1] - this technique proves to be highly effective according 

to the detailed literature review. This technique limits all input and target values to 

a ranging scale of [0, +1]. Note- the activation function used in the hidden layer is 

a tan sigmoid function with a ranging scale of [-1, +1]. Hence, this technique is best 

suited with a log sigmoid activation function due to similar boundary conditions. 

The mathematical expression of a simple ranging scale is expressed in equation 22,  

 
𝑋𝑖

′ =
𝑋𝑖 − 𝑋𝑖(min)

𝑋𝑖(max) − 𝑋𝑖(min)
 (22) 

Here, i is any defined variable 
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X’
i is a normalized variable 

Xi is the experimental value of the defined variable 

Xi (min) is the minimum value for the variable i 

Xi (max) is the maximum value for the variable i 

2) Boundary condition [-1, +1] - this technique limits all input and target values to a 

ranging scale of [-1, +1]. For the purpose of this thesis, all variables to the network 

are normalized using this boundary condition. Also, this condition holds significant 

for the tan sigmoid activation function due to similar boundary conditions. The 

mathematical expression of a simple ranging scale is expressed in equation 23,  

 
𝑋𝑖

′ = 𝑎 +
(𝑋𝑖 − 𝑋𝑖(min)) ∗ (𝑐 − 𝑎)

𝑋𝑖(max) − 𝑋𝑖(min)
 

(23) 

Apart from the variables explained earlier,  

c is the upper boundary condition (+1) 

a is the lower boundary condition (-1) 

A normalization process proves advantageous as it is highly effective in a condition 

where the variables of larger magnitudes are combined with the variables of smaller 

magnitudes in a design matrix. It is generally observed that while training a network in 

such a condition, the larger magnitude variables mask the effect of the smaller magnitude 

variables which provides an ineffective result. Thus, normalization brings all variables in 

a design matrix to a similar ranging scale [-1, +1] so that a true influence of each of the 

variables can be studied and an effective training result is obtained. [78] [76] 

For the purpose of this thesis work, the input set(s) and the training set(s) are 

initially normalized between the range of [-1, +1] and then fed to the network. It should be 

noted here that all input and target parameters are assumed to be independent (i.e. no 

interactions or interdependencies are assumed). In the case of interdependencies, another 

process called whitening will be utilized over the simple ranging scale.  
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6.4 Network Training 

The training process for a neural network starts with defining the network 

architecture along with its layers. Once the network architecture is developed the next step 

involves normalization of the input and the target parameters followed by division of data. 

The training process is generally referred to as the process of adaptation. During 

this stage, the neurons present in the hidden and the output layers of the network 

architecture perform various steps to align to the pattern of the raw data points presented. 

This adaptation is necessary and is vital in making the future prediction and the simulations 

confidently. The neurons present in the hidden layer during this training phase sums the 

corresponding weighted inputs (denoted as Ʃ) and then passes these summed weighted 

inputs to the non-linear activation functions (denoted as σ). The non-linear functions 

transform the weighted inputs of a neuron to non-linear outputs. The non-linear functions, 

as described in previous sections can either be sigmoid or Gaussian functions in nature. 

The output from each hidden neuron is mathematically expressed as in equation 24 [76] 

 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝜎 (∑ 𝑤𝑗

𝑛

𝑗=1

𝑥𝑗 + 𝑏) 

(24) 

Here, n is the receiving inputs to the hidden neurons 

X1….Xj are the hidden neurons 

σ is the non-linear function 

b is the bias input value (noise factor)  

wj is the weight of each input 

Ʃ is the initial summation of weights 

Once the output is generated by processing the weighted inputs through the hidden 

layers, these outputs from hidden neurons act as inputs to the output layer neurons. The 

second sets of weights generated are passed them through the output neurons by computing 

the weighted sum and then passing through linear functions. The outputs from the linear 

functions are the outputs to the neural network. Once the outputs to the network are 

determined the training phase is terminated. Many results/ graphs are generated for the 

training phase that define the training state and the characteristics of the training process. 
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For the purpose of this thesis a single hidden layer multi-layer perceptron (MLP) 

network is utilized. The network contains the hyperbolic tan sigmoid function (neurons) in 

its hidden layer and the linear output function (neurons) in its output layer to carry out the 

training phase. 

 

6.4.1 Division of Data Points 

As mentioned earlier in this section, the pre- requisite to the training of a network 

is the division of data. This division of data is done in three categories to address the 

training efficiently which are as follows [85] [78]: 

1) Training data – this data is the part of the dataset that is involved in the actual 

training of the network. Here, the neurons along with their activation functions help 

in updating weights based on the mean square value (MSE). Once the lowest MSE 

value is achieved (best performance), the network stops training. The default value 

of this data is set to 70% of the entire data set in the neural network application.    

 

2) Testing data – this data is the part of the dataset that is not involved directly with 

the training phase. However, it provides an independent measure of the network’s 

performance during and after the training has been performed. The default value of 

this data is set to 15% of the entire dataset in the neural network application. Also, 

this dataset aids in examination of the overall performance of the neural network.    

 

3) Validation data –this data is the part of the dataset that helps in determining the 

network generalization. Generalization refers to a state of training where the 

neurons avoid the over fitting or the under fitting of the dataset. The network 

training stops once the generalization value stops improving. This data set is used 

to determine the performance of the network on patterns that are not yet trained 

during the learning state. 

Each data division categories are vital for successful and confident training and 

prediction phases using the artificial intelligence system. The division of data is generally 

set to (70-15-15) %, as default value to the neural network toolbox in MATLAB software.  
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To prove that the default division percentage of data is accurate for this thesis work, 

one of the sample data test is evaluated (420 steel single pass forward network). Here, the 

different division percentages are considered in comparison to the default values set by 

MATLAB. The division that shows the best network performance is thus selected for the 

thesis work. Table 8 shows a comparison between the various data division percentages for 

the network training.   

Table 8: Division of data for the single pass 420 steel forward networks 

Training-Testing-Validation 

Data division 

Fitness Percentage MSE Error 

70-15-15 96.34 0.0172 

60-20-20 86.40 0.0173 

50-25-25 83.93 0.0215 

 

It is clear that the best network performance is achieved at the default division 

values (70-15-15) %. This is due to the fact that at (70-15-15) % division, there is maximum 

fitness of data and a minimum mean square error is encountered. Presence of such trends 

in the dataset helps gain maximum network performance and thus helps in making 

confident predictions. 

 

6.5 Network Architecture for Single Pass 420 Steel 

The following is the forward network architecture (MLP network) developed for a 

single pass for a 420 steel (low carbon) configuration, displayed in figure 37. 

Xinput= [FR; PW; FL; LS; CTWD] 

Toutput= [W; RH; P; D] 

Hidden layer: tan sigmoid activation function (30 neurons) 

Output layer: linear activation function (4 neurons) 

Here, a 70-15-15 (training- testing- validation) division of data is used to obtain the best 

prediction results. 
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Figure 37: Neural network architecture- forward network 420 steel single pass 

 

 

The following is the backward network architecture (MLP network) developed for 

a single pass for a 420 steel (low carbon) configuration, displayed in figure 38. 

Xinput= [W; RH; P; D] 

Toutput= [FR; PW; FL; LS; CTWD] 

Hidden layer 1: tan sigmoid activation function (20 neurons) 

Hidden layer 2: tan sigmoid activation function (20 neurons) 

Output layer: linear activation function (5 neurons) 

 

Note- as compared to the forward network for a single bead generation, the 

backward network uses a multi-layer perceptron network with multiple hidden layers 

carrying tan sigmoid activation functions. Also, a division of 80-10-10 (training- testing- 

validation) in this case provides the best prediction results. 

 

Figure 38: Neural network architecture- backward network 420 steel single pass 

 

 

 6.5.1 Fitness and Accuracy 

The following four plots are generated to display a good fitness of the data points 

resulting in an accurate and precise learning state. Here, the single pass 420 steel forward 
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network data is used as an example to illustrate the visual trends. The first plot is a 

performance plot. A performance plot is a graphical plot constructed between the epoch 

runs and the mean square error values. This plot shows an individual trend in the MSE 

values for each data set (training, testing and validation) with advancing epochs. The best 

validation performance is indicated at a certain epoch, once the validation curve starts 

having a progressive, upward incline trend. While studying a performance plot, it should 

be noted that to achieve the best fit, the training curve and validation cure should follow 

similar trends. Any deviations from this trend would either lead to over fitting or under 

fitting of the data.   

 

Figure 39: Performance plot for the single pass forward network 

It can be seen from figure 39 that the green line (validation curve) starts showing a 

progressive trend at epoch 3 out of 9 epochs. At epoch 3, the best validation performance 

(least mean square error) is recorded as 0.034. Also, the performance plot generated here 

shows that the validation curve and the test curve (red line) are showing a parallel trend 

after epoch 3. This indicates that there is no over fitting or under fitting of data during the 

training phase.  

The second plot is a training state plot. The training state plots shows the deviations 

in the default values of training parameters (such as gradient and mu values), during the 

execution/ training of the neural network. This plot predicts the reason for termination of 
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the network runs/ epoch(s). It is observed that the network training can only stop due to 

one of the following reasons: 

a) Ran all entered Epochs (default setting in training parameter) 

b) The value of Mu/gradient is maxed/minimized out ( set in between a range in 

the training parameter) 

c) The Validation checks are maxed out 

 

 

Figure 40: Training state plot for the single pass forward network 

It can be seen from figure 40 that the reason for termination of the network training 

is due to the training parameter mu. The training parameter mu reaches its maximum value 

of (1030) at epoch 9 and hence terminates the network learning. This plot can generally be 

validated with the training progress window (figure 41), which displays a mathematical 

representation of the train state plot training parameters involved in the process.  
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Figure 41: Training progress view for the single pass forward network 

 

The third plot is an error histogram plot. The error histogram plot predicts the 

frequency of errors concentrated over a range. The x-axis indicates the various error values 

while the y-axis indicates the number of instances the error was predicted by the network. 

For a perfect fit/ well fit, the maximum frequency or the concentration of errors should be 

around the zero value to provide it with a perfect bell shape curve centered at zero. 

 

Figure 42: An error histogram for the single pass forward network 

It can be seen from figure 42 that, the error histogram for a single pass of 420 steel 

data is forming a bell shaped curve near the zero value representing a good fit. Here, an 

individual decomposition of the errors is provided according to the training, validation and 
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testing datasets. The bar graph generated for this case is centered at 0.03 providing a good 

bell shape curve with in the 95th percentile window.  

The fourth plot is a regression plot. The regression plot is a graphical plot between 

the target values and the network output values. When there is a perfect linear relationship 

between the target and the network output values, the value of the regression curve (R) 

becomes equal to 1 indicating a perfect fit. Here, the small circles in the graph indicate the 

data points, the blue line indicates the line of fit and the dotted line (hash line) indicates the 

best fit i.e. 100% accuracy. 

 

Figure 43: Overall regression plot for the single pass forward network 

It can be seen from figure 43 that the overall fitness of the network achieved is at 

0.9634. This fit is considered as a good fit as it helps in predicting values for the unknown 

test data which would be 96.34% accurately trained for future experiments. This plot also 
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provides an individual breakdown of fitness levels for different data sets involved in the 

training phase. Note- the graph is generated between -1 to +1 boundary levels due to the 

normalization process (-1, +1 boundary levels).   

Table 9 presents a summary of results generated for a 420 steel single pass (data) 

laser cladding operation. Note- the mean square error value is the overall performance of 

the training network. A lower value of mean square error indicates a better prediction and 

fit and vice versa. In this case, the average mean square error is stabilized at 0.0045, 

indicating a good prediction and fit.   

Table 9: Network results for the single pass 420 steel forward network 

Results Value 

Overall mean square error (MSE) 0.0180 

Training performance 0.0135 

Testing performance 0.0211 

Validation performance 0.0348 

Overall R value 0.9634 

Best validation performance (epoch) 3 

Error histogram centered at (bell curve) 0.03086 

Total epoch runs 9 

Total validation checks (40 checks) 6 

 

Accuracy of fitness is an important step after the training phase to make sure that a 

similar trend of data values has been predicted by the network as the experimental results. 

To check the accuracy of fitness, the network targets (actual values of shape parameters) 

are plotted individually to the network output (predicted values of shape parameters).  The 

graphs (Appendix B and C), show a comparison plot for shape parameters with red curves 

representing the actual state and blue curves representing the predicted output state. Any 

deviations noticed from the actual values acts an error. A relative error percentage and an 

absolute error window is generated for the process.  
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Figures 44-47 display plots for residual errors present in the shape parameters for 

the forward network single pass network. It can be observed from the figures that there are 

no relevant trends present in the residual errors in the shape parameters.    

 

Figure 44: Residual error plot for the bead width for a single pass 420 steel forward network 

 

Figure 45: Residual error plot of the bead reinforcement height for a single pass 420 steel forward Network 
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Figure 46: Residual error plot of bead penetration for a single pass 420 steel forward network 

 

Figure 47: Residual error plot of bead percentage dilution for a single pass 420 steel forward network 

Similar plots can be generated for the backward network with a single pass. Note- the 

residual errors for the basic shape parameters (W, RH, and P) are expressed in mm, whereas 

the residual error for dilution is expressed in percentage. 
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For a single pass of 420 steel data forward network, table 10 represents the error(s) 

relevant in the system (comparison of target input to network output). The red shaded boxes 

indicate a successful prediction in the output values within a 95th percentile confidence 

level while the green shaded boxes indicate a successful prediction in the output values 

within a 99th percentile confidence level. 

Table 10: Absolute and relative error values for the single pass forward network 

Shape 

Parameters 

Absolute Error Values Relative 

Error 

Percentage Maximum Error Minimum Error Error Window 

Width (W) 0.950000 mm 0.000077 mm 0.949923 mm 0.17% 

Reinforcement 

Height (RH) 0.180000 mm 0.000360 mm 0.179640 mm 0.11% 

Penetration (P) 0.240000 mm 0.000140 mm  0.239860 mm 1.80% 

Percentage 

Dilution (% D) 5.500000 % 0.021000 % 5.479000 % 0.67% 

 

Here, the absolute error (maximum and minimum) is mathematically calculated 

using equation 25 

 Absolute 𝐸𝑟𝑟𝑜𝑟 = 𝑎𝑏𝑠(𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒) (25) 

 

And, the percentage relative error is calculated using the mathematical expression 

presented in equation 26 

 Relative 𝐸𝑟𝑟𝑜𝑟 % = 𝑎𝑏𝑠 (
𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒−𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒
) ∗ 100 (26) 

 

It can be seen that the absolute error in predicting the values of percentage dilution 

is maximum, hence, having an error window of almost 5 %. In the case of relative error 

percentage, the penetration parameter is recoded to be maximum percentage at 1.80%. 

Also, within the three basic shape parameters (width, penetration and reinforcement 
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height), the maximum error is recorded in the bead width parameter (approx. 1mm absolute 

error window) hence, displaying maximum deviations in figure 44.   

6.5.2 Simulation and Verification 

Once the network architecture is developed and the training phase is completed, the 

next step involves making successful predictions through the trained neural network. Here, 

a simulation tab (located in the neural network toolbox), is utilized to input a test raw input 

data set. While inputting the test raw input data set, it should be noted that the 

manufacturing parameters are arranged in the same sequence as the input set was used to 

train the network. Also, it should be noted that the test data set should include values that 

are in the boundary range for each of the target parameters. Table 11 presents the boundary 

conditions for shape parameters for a single pass 420 steel data. 

Table 11: Boundary conditions for the shape parameters 

Target Inputs Maximum Boundary Condition Minimum Boundary 

Condition 

Width (W) 5.2 mm 3.03 mm 

Reinforcement 

Height (RH) 

1.51 mm 0.43 mm 

Penetration (P) 1.06 mm 0.02 mm 

Percentage 

Dilution (D %) 

48.57 % 1.11 % 

 

The test input set is then selected with in the boundary conditions and it is 

introduced to the trained network. The network then makes successful and confident 

predictions for the unknown combination of the test parameters. One such example for the 

single pass 420 steel is presented in table 12 for backward network architecture. 
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Table 12: Simulation data for the single pass 420 steel backward network 

 Known 

Input 
 Predicted 

output 
Actual output 

Relative 

Error % 

FR (g/min) 15 W (mm) 4.01 3.91 
0.25% 

PW (KW) 2 
RH 

(mm) 
0.70 0.67 

2.30% 

FL (mm) 390 P (mm) 0.46 0.47 
3.00% 

LS 

(mm/sec) 
7.5 D (%) 27.54 28.27 

0.85% 

CTD (mm) 24 
    

 

It should be noted that the maximum error is seen in the penetration and the 

reinforcement height parameter(s). The red shaded boxes indicate a successful prediction 

in the output value within a 95th percentile confidence level while the green shaded boxes 

indicate a successful prediction in the output value within a 99th percentile confidence level. 

Hence, the system proves to be a successful method of artificial intelligence.  

6.5.3 Results 

Table 13 summarizes the error values for the single pass 420 steel network(s)  

 

 Table 13: Error analysis for the single pass 420 steel neural networks 

Forward Network Backward Network 

Output 

Parameter (s) 

Relative 

Error 

(Training) 

Relative 

Error 

(Simulation) 

Output 

Parameter (s) 

Relative 

Error 

(Training) 

Relative 

Error 

(Simulation

) 

W 0.17% 0.25% FR 0.36% 2.50% 

RH 0.11% 2.30% PW 0.48% 0.75% 

P 1.80% 3.00% FL 0.08% 0.17% 

D 0.67% 0.85% LS 4.80% 3.60% 

      CTWD 0.51% 0.00% 
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The graphs for the prediction plots and training plots are presented in appendix A. 

It is seen that while training the forward network, the maximum deviation or the error value 

of the output data from the target values is found in the bead penetration (approx. 1.80%). 

A similar trend is observed for the simulation process where an unknown input set is 

introduced to the trained forward network. In this case, the maximum recorded error is 3% 

for the bead penetration value followed by a 2.3% error for the bead reinforcement value. 

The predictions for the bead width and the percentage dilution are made in with a 99 percent 

confidence level as compared to the bead penetration and the bead reinforcement height 

(95 percent confidence). The network performance (MSE overall error) recorded for the 

forward network is 0.0203 (0.0116- training data set; 0.0413 validation data set; 0.0397 

testing data set). 

On the other hand, the maximum error value for the training data set is seen in the 

laser speed data (4.80%) for the backward network. Similar trends are seen in simulating 

an unknown data set to the trained network where the prediction confidence for the laser 

speed and the feed rate values are within 95 percent. For the backward single pass network, 

the predictions for the power, the focal length, and the contact tip to work-piece distance 

values is within a 99 percent confidence. The graphs relating to the training state and the 

simulations are presented in appendix B for the backward network. The presented error 

analysis aids in making adjustments to the final results of the forward and the backward 

single pass network(s) before generating the final output parameters. The network 

performance (MSE overall error) recorded for the backward network is 0.0227 (0.0119- 

training data set; 0.0421 validation data set; 0.0304 testing data set)  

 

6.5.4 Case Study 

In this case study, two cases will be premeditated which are presented in figure 48 

A and B. Both the cases focus on generating the manufacturing process parameter values 

(FR; PW; FL; LS and CTWD). The real time experiment cannot be generated due to 

limitations with the controller and the equipment specifications at the sponsor facility. 

Hence, parameters are generated using the developed artificial intelligence system to 

demonstrate the capabilities of the system.  
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(A)                                                              (B) 

Figure 48: Single pass 420 steel- (A) case study 1 and (B) case study 2 

 

The first case defines a problem in which the bead reinforcement height (RH) plays 

a critical factor while laying a clad bead onto a substrate metal (especially in slopes or 

cavities). To address this issue, the artificial intelligence system predicts the manufacturing 

parameters for positioning the single bead in a way that the width (W) of the bead is 

maintained constant and the reinforcement height (RH) increases incrementally. Table 14 

displays the change in parameter values for a 3 step increase in the value of RH. 
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 Table 14: Case study-1 results 

Step- 1 Step-2 Step-3 

Desired 

Starting 

Shape 

parameters 

Manufacturing 

Parameters 

Shape 

Parameters 

Manufacturing 

Parameters 

Desired 

Ending Shape 

parameters 

Manufacturing 

Parameters 

W= 3.00 FR=12.04 W= 3.00 FR= 21.41 W= 3.00 FR= 29.14 

RH= 0.50 PW=1.58 RH= 0.75 PW= 1.64 RH= 1.00 PW= 2.27 

P= 0.20 FL= 409.25 P= 0.20 FL= 395.31 P= 0.20 FL= 403.76 

D= 3.00 LS= 9.76 D= 3.00 LS= 9.44 D= 3.00 LS=10.95 

 

CTWD= 

23.97  

CTWD= 

23.33  

CTWD= 

22.86 

 

Similarly in the second case, a problem is presented in which the bead width (W) 

plays a critical factor while laying the clad bead onto the substrate metal (especially while 

repairing cracks in the die-sets). To address this issue, the artificial intelligence system 

predicts the manufacturing parameters for positioning the single bead in a way that the 

reinforcement height (RH) of the bead is maintained and the bead width (W) increases 

incrementally. Table 15 displays the change in the parameter values for a 3 step increase 

in value of the RH. 
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Table 15: Case study-2 results 

Step- 1 Step-2 Step-3 

Desired 

Starting 

Shape 

parameters 

Manufacturing 

Parameters 

Shape 

Parameters 

Manufacturing 

Parameters 

Desired 

Ending 

Shape 

parameters 

Manufacturing 

Parameters 

W=3.00 FR=28.27 W=3.25 FR=28.88 W =3.50 FR=29.16 

RH =1.00 PW =2.16 RH=1.00 PW=2.32 RH =1.00 PW=2.35 

P=0.30 FL=401.68 P=0.30 FL=407.79 P =0.30 FL=411.79 

D=3.00 LS =9.25 D=3.00 LS=9.76 D=3.00 LS=9.79 

  

CTWD= 

23.11   

CTWD= 

22.96   

CTWD 

=22.95 

 

6.6 Network Architecture for Overlap Configurations 420 Steel 

The following are the forward network architectures (MLP network) developed for 

an overlap pass (40%, 50%, and 60% overlap) for a 420 steel (low carbon) configuration, 

displayed in figure(s) 49, 50, and 51 Note- the network architectures for 40%, 50% and 

60% are structurally similar but have different values for regression (fitness). Also, a 70-

15-15 (training- testing- validation) division of data is used to obtain the best prediction 

results. 

Xinput= [FR; PW; FL; LS; CTWD] 

Toutput= [W1; W2; W3; P1; P2; P3; RH1; RH2; RH3; RH12; RH23; D] 

Hidden layer: tan sigmoid activation function (40 neurons) 

Output layer: linear activation function (12 neurons) 

 

Figure 49: 40% forward overlap configuration neural network 
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Figure 50: 50% forward overlap configuration neural network 

 

 

Figure 51: 60% forward overlap configuration neural network 

 

The following are the backward network architectures (MLP network) developed 

for an overlap pass (40%, 50%, and 60% overlap) for a 420 steel (low carbon) 

configurations, displayed in figure(s) 52, 53, and 54. 

Xinput= [W1; W2; W3; P1; P2; P3; RH1; RH2; RH3; RH12; RH23; D] 

Toutput= [FR; PW; FL; LS; CTWD] 

 

Hidden layer: tan sigmoid activation function (12 neurons) 

Output layer: linear activation function (5 neuron) 

 
Figure 52: 40% backward overlap configuration neural network 

 

Xinput= [W1; W2; W3; P1; P2; P3; RH1; RH2; RH3; RH12; RH23; D] 

Toutput= [FR; PW; FL; LS; CTWD] 
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Hidden layer: tan sigmoid activation function (20 neurons) 

Output layer: linear activation function (5 neuron) 

 

Figure 53: 50% backward overlap configuration neural network 

 

 

Figure 54: 60% backward overlap configuration neural network  

 

 Note- the accuracy, the fitness and the simulation outputs for the backward 

networks for the various overlap configurations are provided in the appendix for reference.  
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6.6.1 Results 

Figures 55 display plots for residual errors present in the shape parameters for the 

forward network single pass network. It can be observed from the figure that there is no 

relevant trends present in the residual errors in the shape parameters.    

 

 

Figure 55: Residual errors for 40% forward overlap configuration network 

Similar plots can be generated for the forward and backward networks with a 40%, 50%, 

and 60% overlap. Note- the residual errors for the basic shape parameters (W, RH, and P) 

are expressed in mm, whereas the residual error for dilution is expressed in percentage. 
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Table 16 summarizes the error values for the various (40%, 50%, and 60%) overlap 

configuration passes for the forward network(s).  

 

Table 16: Error analysis for the overlap passes for forward networks 

Forward Overlap Network 

Output  

40% Overlap 50% Overlap 60% Overlap 

Relative 

Error 

(Training) 

Relative 

Error 

(Simulation) 

Relative 

Error 

(Training) 

Relative 

Error 

(Simulation) 

Relative 

Error 

(Training) 

Relative 

Error 

(Simulation) 

W1 0.10% 1.60% 0.47% 2.60% 0.83% 2.70% 

W2 0.65% 2.00% 0.40% 1.40% 0.13% 0.34% 

W3 0.43% 1.90% 0.11% 0.12% 0.45% 1.90% 

P1 1.20% 1.00% 1.40% 2.80% 2.10% 4.70% 

P2 0.70% 4.40% 0.13% 5.30% 0.13% 3.10% 

P3 2.80% 4.90% 3.80% 4.30% 0.17% 3.00% 

RH1 2.20% 5.00% 0.27% 4.70% 1.30% 1.60% 

RH2 0.04% 1.10% 0.08% 2.40% 1.80% 2.10% 

RH3 4.30% 4.70% 0.11% 3.70% 0.91% 4.00% 

RH12 0.36% 2.60% 0.62% 3.50% 1.20% 0.48% 

RH23 0.99% 1.90% 0.10% 3.70% 0.46% 0.00% 

D 0.38% 1.40% 1.00% 1.50% 0.58% 2.10% 

 

In the table 16, the green shaded boxes specify the error percentages less than or 

equal to 1% in the training and the simulation process. The red shaded boxes specify the 

error percentage between an error windows of [1% - 5%]. Here, the error percentage 

denotes the relative percentage deviation of the networks output values from the target 

values while training the neural network.  

In the case of the 40% overlap configuration for the 420 steel clad powder, the 

forward network shows a maximum deviation in the values of the reinforcement height 3 

(4.30%) followed by the reinforcement height 1 (2.20%) and the penetration 3 (2.80%) 
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values for the training state. Again, a similar trend is observed in the simulation process 

whereas the maximum deviation from the predicted results is observed in the reinforcement 

height 1 (5.00%) followed by the penetration 3 (4.90%) and the reinforcement height 1 

(4.70%) values. The graphs for the prediction plots and the training plots are presented in 

appendices C, D, and E. In the case of the 50% overlap configuration for the 420 steel clad 

powder, the forward network shows a maximum deviation in the values of the penetration 

3 (3.80%) followed by the penetration 1 (3.00%) values. Similar to this trend, the maximum 

deviation for the predicted results through simulation shows a maximum deviation in the 

bead penetrations (average- 4.13%). The graphs for the prediction plots and the training 

plots are presented in appendices C, D, and E. Finally, in the case of the 60% overlap 

configuration for the 420 steel clad powder, the forward network shows a maximum 

deviation in the values of penetration 1 (2.10%) which is again similar to the trends in the 

simulation phase of the predicted values for calculating the relative errors (4.70% for P1). 

The graphs for the prediction plots and the training plots are presented in appendices C, D, 

and E.  

Table 17 summarizes the error values for the various (40%, 50%, and 60%) overlap 

configuration passes for the generated backward network(s).  

 

Table 17: Error analysis for the overlap passes for backward networks 

Backward Network 

  40% Overlap 40% Overlap 40% Overlap 

Output  

Relative 

Error 

(Training) 

Relative 

Error 

(Simulation) 

Relative 

Error 

(Training) 

Relative 

Error 

(Simulation) 

Relative 

Error 

(Training) 

Relative 

Error 

(Simulation) 

FR 2.20% 4.20% 2.10% 1.00% 2.90% 4.70% 

PW 1.30% 3.80% 0.63% 0.69% 1.90% 2.00% 

FL 0.05% 0.18% 0.04% 0.34% 0.13% 0.37% 

LS 0.98% 3.30% 4.00% 2.20% 2.20% 3.70% 

CTWD 0.31% 0.82% 0.15% 0.31% 0.04% 0.70% 
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As mentioned earlier in the 40%, 50%, and 60% overlap forward model, similar 

trends in relative errors are seen in the training and the simulation phases. Note- the errors 

are relatively higher in the backward networks as the data is discreet and the generalization 

arises due to averaging of the results to newer classes as compared to assigning the data 

points to the predefined classes. The graphs for the prediction plots and the training plots 

are presented in appendices (F, G, and H). 

Once, the error analysis results are determined, the sample cases are presented in 

the next section to show the applications of the artificial intelligence system proposed for 

this thesis. The numerical values for the predictions are generated and are adjusted by the 

network and the true parameters (error adjusted) are presented for the production purposes.  

 

6.6.2 Case Study 

Similar case studies are presented in this section but for the various overlap 

configurations. Instead of the single bead, multiple (3 pass), beads are created through the 

laser cladding operation. The three passes have a defined layover percentage which is 

generally referred to as the overlap percentage.  

 

(A)                                                                    (B) 

Figure 56: Single pass 420 steel- (A) case study 3 and (B) case study 4 
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Note- the predictions made for case 3 and case 4, presented in figure 56, are 

prepared with a 40% overlap configuration. Here, a three step increase in the reinforcement 

height (RH1, RH2, and RH3) and the width (W1, W2, and W3) values for cases 3 and 4 

respectively is carried out. The changes in the manufacturing parameters for the presented 

cases (3 and 4) are listed in table 18 and table 19 respectively. 

Table 18: Case study-3 results 

Step- 1 Step-2 Step-3 

Desired 

Starting 

Shape 

parameters 

Manufacturing 

Parameters 

Shape 

Parameters 

Manufacturing 

Parameters 

Desired 

Ending 

Shape 

parameters 

Manufacturing 

Parameters 

W1=3.00 FR=17.04 W1=3.00 FR=18.75 W1=3.00 FR=19.69 

W2=3.00 PW=2.33 W2=3.00 PW=2.41 W2=3.00 PW=2.41 

W3=3.00 FL=404.99 W3=3.00 FL=402.91 W3=3.00 FL =401.73 

P1=0.20 LS=10.85 P1=0.20 LS=10.20 P1=0.20 LS=9.09 

P2=0.20 CTWD=23.10 P2=0.20 CTWD =22.87 P2=0.20 CTWD=22.81 

P3 =0.20  P3 =0.20  P3 =0.20  

RH1 =0.50  RH1 =0.70  RH1 =0.90  

RH2 =0.70  RH2 =0.90  RH2 =1.10  

RH3 =0.90  RH3 =1.10  RH3 =1.30  

RH12=0.50  RH12=0.70  RH12 0.90  

RH23=0.70  RH23=0.90  RH23=1.10  

D=5.00  D=5.00  D=5.00  
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Table 19: Case study-4 results 

Step- 1 Step-2 Step-3 

Desired 

Starting 

Shape 

parameters 

Manufacturing 

Parameters 

Shape 

Parameters 

Manufacturing 

Parameters 

Desired 

Ending 

Shape 

parameters 

Manufacturing 

Parameters 

W1=2.60 FR=21.48 W1=2.80 FR=20.96 W1=3.00 FR =20.64 

W2=2.10 PW =2.81 W2=2.30 PW=2.53 W2=2.50 PW=2.37 

W3=2.30 FL=401.34 W3=2.50 FL=404.46 W3=2.70 FL=407.15 

P1=0.30 LS=13.59 P1=0.30 LS=13.19 P1=0.30 LS=12.72 

P2=0.30 CTWD =22.02 P2=0.30 CTWD=22.15 P2=0.30 CTWD=22.53 

P3 =0.30  P3 =0.30  P3 =0.30  

RH1 =0.80  RH1 =0.80  RH1 =0.80  

RH2 =0.80  RH2 =0.80  RH2 =0.80  

RH3 =0.80  RH3 =0.80  RH3 =0.80  

RH12= 0.70  RH12= 0.70  RH12=0.70  

RH23=0.70  RH23=0.70  RH23=0.70  

D=5  D=5  D=5  

 

 

6.7 Summary 

Figure 57 displays the process that the artificial intelligence system takes in 

predicting successful and confident results. Here, the blue boxes are the process steps, the 

grey cylinders are the prerequisites for a certain process, the red arrows show the flow of 

data for a training phase and the green dashed arrow shows the flow of data for the 

simulation phase. This model is a schematic representation of the model created through 

MATLAB coding (.mfile). The inputs to the model are the process parameters and the 

target parameters (actual bead geometry data collected at the sponsor facility). The outputs 

to the model are the predicted bead geometry parameters. Design of experiments (DOE) is 

a prerequisite to the model for designing the various process configurations to collect the 

target data for the network using a central composite design technique. Accuracy check, 
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verification and error analysis are the post- processes to the proposed model and are carried 

out once the network outputs are achieved.   

 

 

Figure 57: Summary of artificial intelligence system developed in MATLAB 
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CHAPTER 7 

SIGNIFICANCE OF MANUFACTURING PARAMETERS  

After development of the artificial intelligence system with the aid of the neural 

networks, it is evident that the input manufacturing parameters play a vital role in deciding 

the shape properties of the clad bead. As stated earlier, the laser cladding process is a 

multiple variable process that involves investment of raw material, financial participation 

and time. Hence, the significance of parameters is in fact much needed.  This chapter 

focuses on identifying the extent to which each factor or interaction affects the outputs of 

the predictive system proposed. To study this approach, two separate techniques- 

sensitivity analysis and analysis of variance (ANOVA) are studied and compared to verify 

results. A model summary of statistics for all response variables is generated to stimulate 

confidence in the generated models. Both the contour and the surface plots are created for 

illustrating the difference in effects over a response variable by a single process parameter 

as compared to two or more interacting process parameters. Finally, the optimization solver 

toolbox (response optimizer) with aid of MINITAB is applied to the generated model to 

visualize the single and the multiple objective optimization results that can be obtained for 

the response variables.  

 

7.1 Analytical Model Development 

A response surface methodology (RSM) of a 2nd order model system has been 

utilized to develop an analytical method of the single pass 420 steel laser cladding process. 

The analytical method uses the process of linear regression in making successful 

predictions in terms of the clad bead shape parameters.  

The linear regression model developed helps in optimizing the response variable as 

a function of the input parameters (manufacturing parameters) to the system. The system 

is not only able to show the extent of contribution of each factor (manufacturing parameter) 

but also the influence of the squared and the quadratic terms (various interactions).   A 

response function for a second order equation can be expressed as equation 27: 
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 𝑌 =  𝛽0 + 𝛽1 ∗ 𝐴 + 𝛽2 ∗ 𝐵 + 𝛽3 ∗ 𝐶 + 𝛽4 ∗ 𝐷 + 𝛽5 ∗ 𝐸 +  𝛽11 ∗ 𝐴2

+ 𝛽22 ∗ 𝐵2 + 𝛽33 ∗ 𝐶2 + 𝛽44 ∗ 𝐷2 + 𝛽55 ∗ 𝐸2 + 𝛽12

∗ 𝐴𝐵 + 𝛽13 ∗ 𝐴𝐶 + 𝛽14 ∗ 𝐴𝐷 + 𝛽15 ∗ 𝐴𝐸 + 𝛽23 ∗ 𝐵𝐶

+ 𝛽24 ∗ 𝐵𝐷 + 𝛽25 ∗ 𝐵𝐸 + 𝛽34 ∗ 𝐶𝐷 + 𝛽35 ∗ 𝐶𝐸

+ 𝛽45 ∗ 𝐷𝐸 

(27) 

Here, Y= f (A, B, C, D, E); with Y being the response variable, 

A= Feed Rate (FR)  

B= Power (PW) 

C= Focal Length of the lens (FL) 

D= Laser Speed (LS) 

E= Contact tip to work distance (CTWD) 

β0= free term (constant) of the regression equation 

βi= Coefficients of linear terms 

βii= Coefficients of square terms 

βij= Coefficients of quadratic terms 

 

The coefficients (β values) are calculated using the MINITAB software and the 

following equations 28, 29, 30 and 31 (response variables), are generated for the single 

pass 420 steel laser cladding bead. 

 𝑊 =  4.531 − 0.005 ∗ 𝐴 + 0.646 ∗ 𝐵 + 0.225 ∗ 𝐶 − 0.414 ∗ 𝐷

− 0.116 ∗ 𝐸 +  0.009 ∗ 𝐴2 − 0.098 ∗ 𝐵2 − 0.171

∗ 𝐶2 + 0.289 ∗ 𝐷2 − 0.042 ∗ 𝐸2 + 0.015 ∗ 𝐴𝐵

+ 0.181 ∗ 𝐴𝐶 − 0.200 ∗ 𝐴𝐷 − 0.212 ∗ 𝐴𝐸 + 0.296

∗ 𝐵𝐶 + 0.115 ∗ 𝐵𝐷 − 0.229 ∗ 𝐵𝐸 − 0.185 ∗ 𝐶𝐷

+ 0.033 ∗ 𝐶𝐸 + 0.120 ∗ 𝐷𝐸 

(28) 
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  𝑅𝐻 =  1.020 + 0.277 ∗ 𝐴 − 0.051 ∗ 𝐵 + 0.025 ∗ 𝐶 − 0.277 ∗ 𝐷

+ 0.133 ∗ 𝐸 +  0.217 ∗ 𝐴2 − 0.086 ∗ 𝐵2 − 0.134

∗ 𝐶2 − 0.032 ∗ 𝐷2 − 0.246 ∗ 𝐸2 − 0.135 ∗ 𝐴𝐵

+ 0.068 ∗ 𝐴𝐶 + 0.000 ∗ 𝐴𝐷 − 0.138 ∗ 𝐴𝐸 + 0.107

∗ 𝐵𝐶 + 0.145 ∗ 𝐵𝐷 − 0.137 ∗ 𝐵𝐸 − 0.098 ∗ 𝐶𝐷

+ 0.130 ∗ 𝐶𝐸 + 0.181 ∗ 𝐷𝐸 

(29) 

  𝑃 =  0.558 − 0.243 ∗ 𝐴 + 0.349 ∗ 𝐵 − 0.033 ∗ 𝐶 − 0.263 ∗ 𝐷

− 0.107 ∗ 𝐸 +  0.064 ∗ 𝐴2 − 0.0010 ∗ 𝐵2 − 0.040

∗ 𝐶2 + 0.142 ∗ 𝐷2 − 0.094 ∗ 𝐸2 − 0.047 ∗ 𝐴𝐵

+ 0.061 ∗ 𝐴𝐶 + 0.115 ∗ 𝐴𝐷 − 0.090 ∗ 𝐴𝐸 − 0.020

∗ 𝐵𝐶 − 0.050 ∗ 𝐵𝐷 − 0.137 ∗ 𝐵𝐸 − 0.040 ∗ 𝐶𝐷

− 0.033 ∗ 𝐶𝐸 + 0.115 ∗ 𝐷𝐸 

(30) 

  %𝐷 =  24.730 − 21.635 ∗ 𝐴 + 20.420 ∗ 𝐵 − 1.633 ∗ 𝐶 − 2.336

∗ 𝐷 − 0.489 ∗ 𝐸 +  12.418 ∗ 𝐴2 − 1.286 ∗ 𝐵2

+ 2.488 ∗ 𝐶2 + 5.921 ∗ 𝐷2 + 8.844 ∗ 𝐸2 − 4.661

∗ 𝐴𝐵 + 0.151 ∗ 𝐴𝐶 + 4.706 ∗ 𝐴𝐷 − 2.731 ∗ 𝐴𝐸

− 3.135 ∗ 𝐵𝐶 + 4.848 ∗ 𝐵𝐷 − 0.045 ∗ 𝐵𝐸 + 0.426

∗ 𝐶𝐷 − 6.387 ∗ 𝐶𝐸 + 1.794 ∗ 𝐷𝐸 

(31) 

Here, W, RH, P and % D are the response functions 

And the boundary constraints are defined as: 

10≤ A ≤30 (g/min)  

1≤ B ≤4 (KW) 

380≤ C ≤420 (mm) 

5≤ D ≤15 (mm/sec) 

21≤ E ≤25 (mm) 

Similar models are generated for overlap configurations (attached to the appendix) 

for validating the influence of the single, the squared and the quadratic terms of the 

manufacturing parameters over the shape parameters (response variables). Later the above 

generated equations are run through an optimizer tool based off the MINITAB software to 

find the optimum results for the desired single or multiple responses.  
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7.2 Significant Factor Assessment Techniques 

The significance of the factor in a mechanical process is vital in making the 

decisions for future trends. Thus, understanding of uncertainty in a process is important. 

Uncertainty is generally a behaviour of a parameter when the conditions are unfavorable 

to generate a desired shape.  Conditions here refer to the surrounding factors, interactions 

among parameters etc.  

For the purpose of this thesis work, the significance of each manufacturing 

parameter is evaluated over its shape parameters. There are two techniques discussed in 

this chapter (later sub-sections) to illustrate the significance concept namely: sensitivity 

analysis and analysis of variance (ANOVA).  Once the significant factors are discovered, 

it is easy to manipulate the shape of a clad bead structure by manipulating the most relevant 

manufacturing parameter to the shape characteristic.  

Studying the influence of the manufacturing parameters on the clad bead shape 

parameters, it is determined that the major influence is due to the linear manufacturing 

parameters over the squared and the quadratic interactions. A summary of results is 

provided in table 20, to prove the similarity in both the adopted approaches.  

Table 20: Most significant linear factors - sensitivity vs ANOVA 

 Most Significant Linear Factors 

Response Variable (Y) ANOVA  Clamping Technique Sensitivity Index 

Percent Dilution (%D) FR, PW FR, PW FR, PW 

Width (W) PW, LS PW,LS PW, LS 

Reinforcement Height 

(RH) 
FR, LS FR, LS FR, LS 

Penetration (P) 
FR, PW, LS, 

CTWD 
PW, FL PW, FL 
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7.2.1 Sensitivity Analysis 

Sensitivity analysis refers to a technique that aids in determining the uncertainty in 

the output of a system. This ambiguity noticeable in the system arises due to change in the 

input parameters.  Thus, the sensitivity analysis helps in measuring the change in the output 

parameters of a system with respect to the change in its input parameters. 

For the purpose of this thesis work, analysis from two of the sensitivity techniques 

is compared and the similarities are driven to verify results. The two techniques that are 

evaluated are the clamping technique and the sensitivity index technique. Each of these 

techniques are discussed later in this sub-section and the graphical results are generated 

using the line plot chart.  

1) Clamping technique (CT) – this technique is a measure of change in the output with 

change in its input parameters. The clamping technique provides an uncertainty in 

the output value of the model with an incremental change in its input parameters. 

Note- the increment in the input parameter is performed one at a time with keeping 

all the other input parameters as constants [85] [78]. To calculate the clamping 

effect, the first order partial derivatives are studied which are mathematically 

represented in equation 32 

 
𝐶𝑇 =

𝛿𝑦

𝛿𝑥
 

(32) 

Here, x and y are the input and output parameters respectively 

δ defines the incremental change. 

CT is the slope of the curve 

Note: the determination of the sensitivity value for the clamping technique should 

always be done with normalized parameters to obtain a true value that can be 

compared at a later stage.  

 

2) Sensitivity index (SI) –   sensitivity index is a measure of the change in the output 

value of the model over the output’s maximum value. This change in the output 

value is a computation of the range of the output.  This method is computationally 
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inexpensive over the clamping technique [85] [78]. The mathematical expression 

for calculation of the sensitivity index is presented in equation 33, 

 
𝑆𝐼 =

𝑀𝑎𝑥(𝑦) − 𝑀𝑖𝑛(𝑦)

𝑀𝑎𝑥(𝑦)
 

(33) 

Here, y is the output to the system  

Note: The determination of the sensitivity value for sensitivity index should always 

be done with normalized parameters.  

 

For the purpose of this thesis, a validation is presented to display similarity in 

results for both the sensitivity techniques using a single pass 420 steel as an example. 

Similar results can be generated for the overlap models as well. Note- to obtain true 

influence of each parameter, the parameters are normalized between the ranges of 0 to +1. 

Table 21 shows a summary of all the mathematical calculations for the clamping technique 

and the sensitivity index technique [85] [78].  

Table 21: Sensitivity ratios for clamping technique and sensitivity index  

 Clamping Technique Sensitivity Index 

 W RH P % D W RH P % D 

FR 0.16 0.98 0.37 0.99 0.16 0.89 0.31 1.00 

PW 0.78 0.63 0.69 0.92 1.00 0.80 0.80 0.95 

FL 0.06 0.27 0.65 0.07 0.09 0.37 1.00 0.37 

LS 0.36 0.76 0.29 0.32 0.41 0.79 0.28 0.42 

CTWD 0.07 0.21 0.14 0.24 0.10 0.41 0.20 0.49 

Here, FR, PW, FL, LS and CTWD are the manufacturing parameters (inputs) 

W, RH, P and %D are the mechanical shape parameters (outputs) 

 

The following line plot graphs (figure(s) 57, 58, 59, 60 and 61) can be generated 

using the values from table 21, to prove similarity of both the sensitivity techniques and to 

verify the results for the significant factors. Note- numeric digits 1, 2, 3, and 4 displayed 

on the graphs represent the W, RH, P, and % D respectively.  



 

117 
 

 

Figure 58: Sensitivity analysis comparison for the feed rate 

From figure 58, it can be determined that the feed rate (FR) is the most significant 

factor for determining the reinforcement height (RH) and percentage dilution (%D) for 

the clad bead generated with a single pass of 420 steel.     

 

Figure 59: Sensitivity analysis comparison for the power 

From figure 59, it can be determined that the power (PW) is the most significant 

factor for determining the width (W) and the percentage dilution (%D) for the clad bead 

generated with a single pass of 420 steel. 
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Figure 60: Sensitivity analysis comparison for the laser speed 

From figure 60, it can be determined that the laser speed (LS) is the most significant 

factor for determining the reinforcement height (RH) for the clad bead generated with a 

single pass of 420 steel. 

 

Figure 61: Sensitivity analysis comparison for the focal Length of the lens 

From figure 61, it can be determined that the focal length (FL) is the most 

significant factor for determining the penetration (P) for the clad bead generated with a 

single pass of 420 steel.  
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Figure 62: Sensitivity analysis comparison for the contact tip to work-piece distance 

From figure 62, it can be determined that the contact tip to workpiece distance 

(CTWD) is the significant factor for determining the reinforcement height (RH) and the 

percentage dilution (%D) for the clad bead generated with a single pass of 420 steel. 

However, it should be noted that the numerical value of the parameters (CTWD and % D) 

is less than 0.5 (50%), hence CTWD is not the most significant factor in determining RH 

and %D. 

 

7.2.2 Analysis of Variance 

The second approach utilized for finding the significant factors for the laser 

cladding process for this thesis work is the analysis of variance (ANOVA) technique. The 

analysis of variance technique refers to a technique that helps study the effects of the 

parameters and their interactions prevalent in a system. The ANOVA analysis is performed 

to test the goodness of fit and validate the model developed using the neural network 

approach.  

The ANOVA test is performed to evaluate the statistical significance of the fitted 

second order quadratic model. The factors (responses) involved in this model are the width, 

the penetration, the reinforcement height, and the percentage dilution. According to the 

ANOVA analysis, “if the F – ratio values of the developed models do not exceed the 

standard tabulated values for a desired level of confidence (95%) and the calculated p-
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values of the developed model exceed the standard values for a desired level of confidence 

(95%) then the models are said to be adequate within the confidence limit” [28] [87] [88].  

In other words, if the calculated p-value is less than 0.05, the factor is observed to 

be significant in the model. On the other hand, if the calculated p-value is greater than 0.05, 

it indicates that the impact of the factor is really insignificant to the model. The testing 

hypothesis set up for the ANOVA model, for the purpose of this thesis is as follows [89]: 

H0=there is no interactions between process parameters and shape parameters 

H1=there is significant/relevant interactions between process parameters and shape 

parameters 

Note- the ANOVA analysis does not provide a detailed mathematical evaluation of 

how much or which interactions between means differ. Some of the assumptions that are 

put in place while setting up the ANOVA analysis are as follows [90]: 

1) Each group defined for ANOVA analysis is normal – this assumption is checked 

by generating the histogram plots or the normal quantile plots, and thus proving 

that the groups are normally distributed in the dataset. 

2) The standard deviation and/or the variance of each group is approximately equal – 

this assumption is checked by calculating the ratio of the largest to the smallest 

factor standard deviation. This ratio is less than 2:1 which hold the assumption 

valid. 

3)  The errors generated are independent – this assumption is checked by graphing an 

interaction plot among the error values to prove that there are no inter- 

dependencies among manufacturing and shape parameters. 

4) The expected values of the errors are zero- this assumption is check by calculating 

the error values.  

 

ANOVA works on the principle of measuring the sources of variation in the sample set and 

hence, comparing the group sizes. The two variations that are measured are as follows [90]: 
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1) Variation between groups –this is a mathematical calculation of the difference 

between the group mean in comparison to the overall mean. It is mathematically 

calculated using equation 34, 

 𝑉 = (𝑋𝑖 − 𝑋)2 (34) 

Here, Xi is the mean of the group 

X is the overall mean  

i is the group 

 

2) Variation within groups –this is a mathematical calculation of the difference 

between the values in comparison to the group mean. It is mathematically 

calculated using equation 35,  

 𝑉 = (𝑋𝑖𝑗 − 𝑋𝑖)
2
 (35) 

Here, Xij is the value of the numerical data 

Xi is the mean of the group 

i is the group, j is the value for individual component 

Hence, the F-ratio is the comparison of variation between the groups to variation 

within the groups. The greater the value of the F-ratio, the greater the difference in the 

means of the groups. Thus, indicating a failed null hypothesis. For the purpose of this thesis 

work, an ANOVA analysis for shape factors W, RH, P and % D are presented in tables 15, 

16, 17, and 18, which display the significant manufacturing parameters relative to the shape 

characteristics for a single pass of 420 steel. Similar ANOVA analysis can be generated 

for the various overlap configurations. Table 22, displays an ANOVA analysis for the 

width (W). 

 

Table 22: Analysis of variance for the bead width 

Source DF Seq SS Adj SS Adj MS F P Significance 

Regression 20 12.4823 12.4823 0.62412 9.05 0.000  

Linear 5 10.2727 5.1618 1.03237 14.97 0.000  
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FR 1 0.0975 0.0002 0.00016 0.00 0.962  

PW 1 6.5597 4.0030 4.00301 58.05 0.000 Significant* 

FL 1 0.5828 0.4832 0.48319 7.01 0.010 Significant 

LS 1 3.0299 1.0743 1.07431 15.58 0.000 Significant* 

CTWD 1 0.0028 0.0843 0.08431 1.22 0.273  

Square 5 0.8748 0.8748 0.17495 2.54 0.036 Significant 

FR*FR 1 0.0020 0.0005 0.00045 0.01 0.936  

PW*PW 1 0.1365 0.0931 0.09311 1.35 0.249  

FL*FL 1 0.2699 0.2825 0.28251 4.10 0.047 Significant 

LS*LS 1 0.4571 0.4287 0.42868 6.22 0.015 Significant 

CTWD*CTWD 1 0.0091 0.0091 0.00914 0.13 0.717  

Interaction 10 1.3349 1.3349 0.13349 1.94 0.055  

FR*PW 1 0.0008 0.0008 0.00075 0.01 0.917  

FR*FL 1 0.1764 0.1764 0.17642 2.56 0.114  

FR*LS 1 0.1210 0.1210 0.12100 1.75 0.190  

FR*CTWD 1 0.1355 0.1355 0.13547 1.96 0.165  

PW*FL 1 0.4701 0.4701 0.47005 6.82 0.011 Significant 

PW*LS 1 0.0403 0.0403 0.04025 0.58 0.447  

PW*CTWD 1 0.1576 0.1576 0.15755 2.28 0.135  

FL*LS 1 0.1838 0.1838 0.18377 2.67 0.107  

FL*CTWD 1 0.0059 0.0059 0.00585 0.08 0.772  

LS*CTWD 1 0.0438 0.0438 0.04380 0.64 0.428  

Residual Error 69 4.7577 4.7577 0.06895    

Lack-of-Fit 4 1.1485 1.1485 0.28713 5.17 0.001  

Pure Error 65 3.6092 3.6092 0.05553    

Total 89 17.2400      

Here, total factors- 20 

Significant factors- 7 (P- value <0.05) 

Most significant factors- 2 (P-value =0.000) 

Linear- PW, LS  
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Square- N/A 

Interaction- N/A 

 

Table 23, displays an ANOVA analysis for the reinforcement height (RH) 

Table 23: Analysis of variance for the bead reinforcement height 

Source DF Seq SS Adj SS Adj MS F P Significance 

Regression 20 5.26521 5.26521 0.263260 28.47 0.000  

Linear 5 3.97716 1.12200 0.224400 24.27 0.000  

FR 1 1.86889 0.48261 0.482609 52.19 0.000 Significant* 

PW 1 0.00196 0.02513 0.025134 2.72 0.104  

FL 1 0.06378 0.00630 0.006304 0.68 0.412  

LS 1 1.81134 0.48261 0.482609 52.19 0.000 Significant* 

CTWD 1 0.23120 0.11130 0.111304 12.04 0.001 Significant 

Square 5 0.73676 0.73676 0.147352 15.94 0.000  

FR*FR 1 0.17341 0.24252 0.242517 26.23 0.000 Significant* 

PW*PW 1 0.06921 0.07196 0.071962 7.78 0.007 Significant 

FL*FL 1 0.18432 0.17246 0.172458 18.65 0.000 Significant* 

LS*LS 1 0.00006 0.00546 0.005464 0.59 0.445  

CTWD*CTWD 1 0.30976 0.30976 0.309760 33.50 0.000 Significant* 

Interaction 10 0.55128 0.55128 0.055128 5.96 0.000  

FR*PW 1 0.05467 0.05468 0.054675 5.91 0.018 Significant 

FR*FL 1 0.02521 0.02521 0.025208 2.73 0.103  

FR*LS 1 0.00000 0.00000 0.000000 0.00 1.000  

FR*CTWD 1 0.05741 0.05741 0.057408 6.21 0.015 Significant 

PW*FL 1 0.06163 0.06163 0.061633 6.67 0.012 Significant 

PW*LS 1 0.06308 0.06307 0.063075 6.82 0.011 Significant 

PW*CTWD 1 0.04813 0.04813 0.048133 5.21 0.026 Significant 

FL*LS 1 0.05201 0.05201 0.052008 5.62 0.021 Significant 

FL*CTWD 1 0.09013 0.09013 0.090133 9.75 0.003 Significant 
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LS*CTWD 1 0.09901 0.09901 0.099008 10.71 0.002 Significant 

Residual Error 69 0.63802 0.63802 0.009247    

Lack-of-Fit 4 0.34900 0.34900 0.087249 19.62 0.000  

Pure Error 65 0.28903 0.28903 0.004447    

Total 89 5.90323      

Here, Total Factors- 20 

Significant factors- 15 (P- value <0.05) 

Most Significant factors- 5 (P-value= 0.000) 

Linear- FR, LS 

Square- FR, FL, CTWD 

Interaction- N/A 

 

Table 24, displays an ANOVA analysis for the penetration (P) 

Table 24: Analysis of variance for the bead penetration 

Source DF Seq SS Adj SS Adj MS F P Significance 

Regression 20 5.23570 5.23570 0.26178 52.12 0.000  

Linear 5 4.86596 2.68319 0.53664 106.85 0.000  

FR 1 1.04401 0.37262 0.37262 74.19 0.000 Significant* 

PW 1 2.89441 1.49353 1.49353 297.37 0.000 Significant* 

FL 1 0.00492 0.01043 0.01043 2.08 0.154  

LS 1 0.90900 0.43530 0.43530 86.67 0.000 Significant* 

CTWD 1 0.01361 0.07207 0.07207 14.35 0.000 Significant* 

Square 5 0.15590 0.15590 0.03118 6.21 0.000  

FR*FR 1 0.00623 0.02102 0.02102 4.19 0.045 Significant 

PW*PW 1 0.00463 0.00102 0.00102 0.20 0.653  

FL*FL 1 0.01322 0.01604 0.01604 3.19 0.078  

LS*LS 1 0.08651 0.10382 0.10382 20.67 0.000 Significant* 

CTWD*CTWD 1 0.04531 0.04531 0.04531 9.02 0.004 Significant 

Interaction 10 0.21384 0.21384 0.02138 4.26 0.000  

FR*PW 1 0.00677 0.00677 0.00677 1.35 0.250  
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FR*FL 1 0.02042 0.02042 0.02042 4.07 0.048 Significant 

FR*LS 1 0.04025 0.04025 0.04025 8.01 0.006 Significant 

FR*CTWD 1 0.02475 0.02475 0.02475 4.93 0.030 Significant 

PW*FL 1 0.00227 0.00227 0.00227 0.45 0.504  

PW*LS 1 0.00775 0.00775 0.00775 1.54 0.218  

PW*CTWD 1 0.05672 0.05672 0.05672 11.29 0.001 Significant 

FL*LS 1 0.00880 0.00880 0.00880 1.75 0.190  

FL*CTWD 1 0.00585 0.00585 0.00585 1.17 0.284  

LS*CTWD 1 0.04025 0.04025 0.04025 8.01 0.006 Significant 

Residual Error 69 0.34655 0.34655 0.00502    

Lack-of-Fit 4 0.09453 0.09453 0.02363 6.09 0.000  

Pure Error 65 0.25203 0.25203 0.00388    

Total 89 5.58225      

Here, Total Factors- 20 

Significant factors- 12 (P- value <0.05) 

Most Significant factors- 5 (P-value= 0.000) 

Linear- FR, PW, LS, CTWD 

Square- LS 

Interaction- N/A 

 

Table 25, displays an ANOVA analysis for the percentage dilution (D %) 

Table 25: Analysis of variance for the bead percentage dilution 

Source DF Seq SS Adj SS Adj MS F P Significance 

Regression 20 16941.2 16941.2 847.06 130.69 0.000  

Linear 5 15214.4 7772.5 1554.51 239.85 0.000  

FR 1 6743.3 2930.6 2930.62 452.17 0.000 Significant* 

PW 1 7886.4 3993.5 3993.47 616.16 0.000 Significant* 

FL 1 102.3 25.3 25.30 3.90 0.052  

LS 1 432.8 34.2 34.19 5.28 0.025 Significant 

CTWD 1 49.7 1.5 1.50 0.23 0.632  
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Square 5 1221.5 1221.5 244.30 37.69 0.000  

FR*FR 1 610.4 789.4 789.38 121.79 0.000 Significant* 

PW*PW 1 27.6 15.9 15.87 2.45 0.122  

FL*FL 1 71.3 59.4 59.41 9.17 0.003 Significant 

LS*LS 1 111.8 179.5 179.48 27.69 0.000 Significant* 

CTWD*CT

WD 

1 400.4 400.4 400.35 61.77 0.000 Significant* 

Interaction 10 505.3 505.3 50.53 7.80 0.000  

FR*PW 1 65.2 65.2 65.18 10.06 0.002 Significant 

FR*FL 1 0.1 0.1 0.12 0.02 0.891  

FR*LS 1 66.5 66.5 66.46 10.25 0.002 Significant 

FR*CTWD 1 22.4 22.4 22.38 3.45 0.067  

PW*FL 1 52.4 52.4 52.43 8.09 0.006 Significant 

PW*LS 1 70.5 70.5 70.53 10.88 0.002 Significant 

PW*CTWD 1 0.0 0.0 0.01 0.00 0.976  

FL*LS 1 1.0 1.0 0.97 0.15 0.700  

FL*CTWD 1 217.6 217.6 217.58 33.57 0.000 Significant* 

LS*CTWD 1 9.7 9.7 9.66 1.49 0.226  

Residual Error 69 447.2 447.2 6.48    

Lack-of-Fit 4 214.3 214.3 53.58 14.96 0.000  

Pure Error 65 232.9 232.9 3.58    

Total 89 17388.4      

Here, Total Factors- 20 

Significant factors- 12 (P- value <0.05) 

Most Significant factors- 6 (P-value= 0.000) 

Linear- FR, PW  

Square- FR, LS, CTWD 

Interaction- FL*CTWD 

 

A summary of the number of significant factors for the shape characteristics are 

provided in table 26,  
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Table 26: Summary of significant factors through ANOVA analysis 

Response 

Variable (Y) 

Total 

Factors 

Number of Significant 

Factors (P- value<0.05) 

Number of Most Significant 

Factors (P- value=0.000) 

Percent 

Dilution (%D) 
20 12 6 

Width (W) 20 7 2 

Reinforcement 

Height (RH) 
20 15 5 

Penetration (P) 20 12 5 

 

 

7.2.3 Validation of ANOVA 

The significant factors determined by the sensitivity analysis clamping technique 

are validated using the sensitivity index technique (through attaining similar results). To 

validate the ANOVA analysis technique a model statistic summary is presented in table 

27, for the various response variables (shape parameters). Here, the statistical summary is 

generated for a single pass of 420 steel and similar results can be generated for the overlap 

model configurations.  
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Table 27: Statistical summary of ANOVA analysis for model verification 

Model Summary : Bead Width (W) 

Std Dev. 0.440123 (R2) 92.40 

Mean 4.159222 Adjusted (R2) 94.40 

% C.V. 10.58186 Predicted (R2) 94.58 

Model Summary : Bead Reinforcement Height (RH) 

Std Dev. 0.257543 (R2) 89.19 

Mean 0.864556 Adjusted (R2) 86.06 

% C.V. 29.78908 Predicted (R2) 91.97 

Model Summary : Bead Penetration (W) 

Std Dev. 0.250443 (R2) 93.79 

Mean 0.428333 Adjusted (R2) 91.99 

% C.V. 58.46928 Predicted (R2) 89.57 

Model Summary: Bead Percentage Dilution (%D) 

Std Dev. 13.97769 (R2) 97.43 

Mean 21.46451 Adjusted (R2) 96.68 

% C.V. 65.11999 Predicted (R2) 95.84 

 

From the presented statistical summary, it can be concluded that the coefficients of 

correlations (R2) for all response variables possess a value in excess of 90% (0.90 approx.), 

which stimulates confidence in the generated ANOVA models. Also, the predicted and 

adjusted (R2) values for respective response variable(s) are in agreement with the R2 value, 

which again validates the fitness of the model developed. [88] 

In the presented statistical summary, mean refers to the overall average of the 

individual shape parameter (response variable) for each of the model and is mathematically 

calculated through equation 36, 

 
𝜇 =

1

𝑛
∗ ∑ 𝑥𝑖

𝑛

𝑖=1

 
(36) 

Here, μ denotes the average of each response variable 
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n is the number of terms/specimens collected for that variable 

xi is the value of individual term  

 

The standard deviation refers to the root mean square error (square root of pure 

experimental error) and is mathematically expressed as equation 37 

 𝑆𝑡𝑑. 𝐷𝑒𝑣 = 𝑆𝑞𝑟𝑡(𝑀𝑆𝑃𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟) (37) 

 

Here, the square root of pure experimental error is mathematically computed 

through equation 38,  

 
𝑀𝑆𝑃𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 =

𝑆𝑆𝑃𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟

𝐷𝐹𝑃𝑢𝑟𝑒 𝐸𝑟𝑟𝑜𝑟
 

(38) 

Here, SSPure Error is the sum of squares of pure experimental error (ANOVA analysis) 

DFPure Error is the degree of freedom of pure experimental error (ANOVA analysis) 

 

Finally, the percentage C.V. or otherwise referred to as the coefficient of variation, 

is the measurement of the error in each of the analysis model. The value of the percentage 

C.V. is mathematically generated by the following mathematical equation 39  

 
% 𝐶. 𝑉. =

𝑆𝑡𝑑. 𝐷𝑒𝑣

𝑀𝑒𝑎𝑛
∗ 100 

(39) 

 

It is observed that the lower the value of percentage C.V., the lower the chance of 

error in the system. In other words, the experimentation performed at the sponsor facility 

holds precise and reliable with a lower value of percentage C.V. Through the statistical 

analysis summary, it is determined that the error due to any experimental noise factor is 

less than 10 percent. 

 

7.3 Contour and Surface Plots 

“To fit a regression model using two or more continuous predictors (shape 

parameters), it is always useful to generate a graphical visualization of the fitted surface. 

The terms contour plot and surface plot refer to generation of specialized surface plot(s) 

which are utilized in the analysis of the response surface methodology experimental design. 

The contour and the surface plots are generally plotted between two factors. In the case of 
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more than two factors, a series of plots are generated with a multiple combination of factors 

(two at a time). The application of such plots is to determine the optimal settings that aid 

in maximizing or minimizing the desired response variable of design. Also, these plots help 

in determining the settings (for factors) that can result in the response variables hitting a 

pre-determined target value. [91]. Note- while plotting the contour plots, the z (Cartesian 

axis) is kept constant for representing a two dimensional format. 

Through the development of the analytical method for a 2nd order equation, it can 

be observed that the individual manufacturing parameters and the interactions affect the 

shape geometry of the clad bead either directly or indirectly. The purpose of generating the 

contour and surface plots is to illustrate the effect of these combination and interactions of 

the manufacturing parameters on the shape parameters. A contour plot provides a two-

dimensional view in which all points that contain the same responses are connected. This 

connection of response points aids in generating the contour lines that form boundaries to 

the constant surfaces. On the other hand, a surface plot provides a three-dimensional view 

which provides a more accurate (real-time) representation of the response surface. [92]  

For the purpose of this thesis work, figure 63 presents various contour plots for 

percentage dilution (response variable). These plots display linear and non-linear trends 

among the five interacting manufacturing parameters (FR, PW, FL, LS, and CTWD). The 

contour plots are generated using the MINITAB software workspace with the following 

constant values (table 28). 

Table 28: Constant factors for generating contour and surface plots 

Manufacturing Parameters Constant Values 

Feed rate (FR) 20 g/min 

Power (PW) 3 KW 

Focal length of the lens (FL) 405 mm 

Laser speed (LS) 10 mm/sec 

Contact tip to workpiece distance(CTWD) 23 mm 

The constant values are generally the center values of the system (as designed in 

the RSM experimentation technique). Note- the constant value of power (PW) is chosen as 
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3 KW over 2.5 KW (center value RSM); due to the fact that there is no physical clad bead 

generation at 2.5 KW power.  
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Figure 63: Contour plots for the percentage dilution objective function 

These contour plots are interpreted for the response on percentage dilution using 

the following legend, presented table 29. A clear co-relation to the significant factors 

calculated using the ANOVA analysis and the sensitivity analysis is observed with the 

generated plots.  

Table 29: Legend for contour & surface plots for the percentage dilution  

Percentage Dilution 

(%D) 

Colour 

< 0   

0 – 20   

20 – 40   

40 - 60   

60 – 80   

>80   

 

Similarly, figure 64, presents surface plots for the percentage dilution (response 

variable). Again interaction among the five manufacturing parameters (FR, PW, FL, LS, 

and CTWD) generates a response surface that relates to the results derived from the 
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ANOVA analysis as well as the sensitivity analysis earlier. The surface plots are also 

generated using the MINITAB software workspace with the same constant values as the 

contour plots.  
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Figure 64: Surface plots for the percentage dilution objective function 

All the generated plots (surface and contour) presented in this sub-section are 

created for a single pass of 420 steel for the laser cladding operation. Similar plots 

predicting interactions among the various manufacturing parameters can be created for the 

overlap configurations.”  [89]: 

 

7.4 Single and Multi Variable Optimization 

“The final step after determining the contour and surface trends is to quantify the 

optimal settings for the laser cladding process. This section focuses on using an 

optimization tool to determine the optimal settings for the single objective and the multi 

objective optimization processes. The single objective optimization process refers to 



 

135 
 

finding the optimal setting of the manufacturing parameters (factors) that aid in achieving 

a single objective (i.e. targeting a single shape characteristic at one time). On the other 

hand, in the multi objective optimization process, the optimal settings for the various 

manufacturing parameters are achieved with satisfying multiple objectives present in the 

system (i.e. targeting multiple shape parameters at one time).  

For the purpose of this thesis, a response optimizer application is used based off the 

MINITAB workspace. The response optimization tool aids in identifying a certain 

combination of input variable settings that help in targeting a single response or multiple 

responses. MINITAB, helps in calculating the optimal input variable parameters and 

presents a visual plot of the deviation from an initial solution. This visual tool thus allows 

an interactive change of the input variable settings to perform the sensitivity analysis and 

the improvement of the initial solution. [92] 

The optimization process through the response optimizer in MINITAB is initiated 

by providing a set of starting points so that an optimal combination of process factors can 

be obtained. The optimizer tool presented here provides two solution types i.e. a local 

solution and a global solution. The local solution is defined as the best combination factor 

settings for particular set of starting points while the global solutions is the best 

combination of factor settings for the desired response variables i.e. the optimal setting for 

all the local points. [28] 

As an example, the dataset of a single pass of 420 steel (for the laser cladding operation) 

is used to optimize the following single objective response variable.  

1) Objective: minimize percent dilution (%D) 

Optimum process parameters (results):  

FR=10 g/min 

PW=2 KW 

FL=390 mm  

LS=5 mm/sec   

CTWD=21 mm 
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Figure 65: Single objective optimization to minimize percentage dilution 

 

2) Objective: maximize bead width (W) 

Optimum process parameters (Results):  

FR=30 g/min 

PW=4 KW 

FL=420 mm  

LS=5 mm/sec   

CTWD=21 mm 

 

Figure 66: Single objective optimization to maximize width 
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3) Objective: minimize bead penetration (P) 

Optimum process parameters (Results):  

FR=15.65 g/min 

PW=2 KW 

FL=420 mm  

LS=15 mm/sec   

CTWD=21.36 mm 

 

Figure 67: Single objective optimization to minimize penetration 

 

4) Objective: maximize reinforcement height (RH) 

Optimum process parameters (Results):  

FR=30 g/min 

PW=2 KW 

FL=405.15 mm  

LS=5 mm/sec   

CTWD=21.68 mm 
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Figure 68: Single objective optimization to maximize reinforcement height  

Also as an example, the dataset of the single pass of 420 steel (for the laser cladding 

operation) is used to optimize the multi objective response variable.  

Objective: minimize percent dilution (%D); maximize bead width (W); minimize bead 

penetration (P); and maximize reinforcement height (RH) 

Optimum process parameters (results):  

FR=29.39 g/min 

PW=2 KW 

FL=406.06 mm  

LS=8.23 mm/sec   

CTWD=22.93 mm 
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Figure 69: Multiple objective optimization representation 

 

The visual representations (figures 65, 66, 67, 68, and 69), show deviation of the 

manufacturing parameters from an initial solution (constant values kept at center point of 

the RSM experimentation). These graphs can further be generated for the various overlap 

configurations and their interactions to attain the optimal setting of parameters for the 

desired objective functions.”  [89]: 
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CHAPTER 8 

CLASSIFICATION OF THE LASER CLADDING DATASET  

Classification is a process that refers to categorizing or grouping of the data points 

from a vast data population so that different classes or sub-categories can be identified 

according to the group features or common traits. For the process of classification, a K-

mean clustering technique is applied to this research and various clusters are generated to 

determine the bead shape structure of each sub-category. In clustering, the common traits 

are shared among the data points in each sub-set. The clusters are separated using a distance 

measure. The distance measure generally determines the shape of the cluster according to 

the similarity between two elements of the dataset. 

There are many approaches to finding the distance measure, but the distance 

measure approach applied for this thesis is the Euclidean distance approach (also called 2- 

norm distance). In simple terms, the Euclidean distance is the distance between the two 

vectors defined by a Pythagorean Theorem [93]. The mathematical expression for 

calculating the Euclidean distance is present in equation 40, 

 

𝑑(𝑥, 𝑦) = ∑|𝑥𝑖 − 𝑦𝑖|

𝑝

𝑖=1

 

(40) 

Here x, y are two points and the Euclidean distance is the line segment that joins x and y.  

The position of a point in the Euclidean n-space is known as the Euclidean vector. 

For such a case, x and y are the two vectors starting from the origin of the defined space. 

The tips of these vectors indicate the points x and y respectively. 

K-mean clustering algorithm partitions the dataset into k-clusters based on common 

attributes. Note- it assumes that all (k) clusters exhibit Gaussian distributions. The 

objective of performing a k-cluster classification is to minimize the intra-cluster variance. 

The intra cluster variance is minimized by reducing the squared errors of data points in all 

the present clusters [94]. The mathematical expression for minimizing the squared errors 

is presented in equation 41, 
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𝐸 = ∑ ∑|𝑝 − 𝑚𝑖|
2

𝑝Є𝐶𝑖

𝑘

𝑖=1

 

(41) 

Here, E is the defined sum of square errors of all data points 

P is the given element 

mi is the mean of the cluster  

Ci is the defined cluster 

K is a positive integer 

 

8.1 K- Mean Clustering 

Figure 70 shows the working of a k-mean clustering algorithm.  

 

 

Figure 70: K-mean clustering approach- schematic diagram 

As defined earlier, the algorithm follows a basic four step approach which is 

presented as follows [94]: 

1) Defining k clusters – this is the first step in the clustering of the data through k-

mean clustering algorithm. This step involves making a decision on the number of 

clusters involved in the data set according to the mean values. 

2) Assigning centroid – once the numbers of clusters are defined, the first k training 

sample is taken as the single element cluster. Also, each of the remaining samples 
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(N-k) are assigned to the cluster with the nearest centroid. Finally, re-computation 

of the centroid of gaining cluster is performed once the training sample is added to 

the cluster. 

3) Determine distance of the data points from the centroid – this step involves 

calculating the distance of the training sample from the centroid of each cluster. 

Note – if the training sample is not in the cluster with the smallest distance (closest 

centroid), the training sample is moved to the closest centroid cluster. After 

movement of the training sample, the centroid of both clusters (losing sample and 

gaining sample) are updated. 

4) Clustering based on minimum distance- step 3 is repeated until all the training 

samples are assigned to the cluster with the minimum distance to the centroid of 

that cluster i.e. convergence is achieved and no new switch of the training samples 

are possible.  

For the purpose of this thesis work, the MINITAB software application is used to 

perform the k-mean clustering of the data points according to the various shape parameters 

(width, reinforcement height, penetration and percentage dilution). There are five sets of 

clusters defined in the dataset indicating the different ranges of the shape parameters 

calculated from the bead’s geometrical structure. To demonstrate the clustering process, 

the training samples (data points) of a single pass of 420 steel are utilized. Table 30 shows 

the statistical summary of the five clusters defined along with the minimized sum of 

squared error values. 
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Table 30: Statistical summary for (k=5) clusters 

 

Number of 

Clusters 

Number of 

Observations 

Sum of Squares 

(within a cluster) 

Average 

Distance 

from 

Centroid 

Maximum 

Distance from 

Centroid 

Cluster1            16       45.480     1.469     2.753 

Cluster2            18        51.877      1.517      2.818 

Cluster3            18      119.025     2.200     5.278 

Cluster4            23       85.994      1.603    4.440 

Cluster5            15       34.300      1.358    2.700 

   

Table 31 provides a breakdown of the various clusters along with their centroid 

values (mean values) for the various shape characteristics.  

Table 31: A summary of centroid distances for (k=5) clusters 

Response 

Variable 

Cluster1 Cluster2 Cluster3 Cluster4 Cluster 5 Grand 

Centroid 

W (mm)      4.1813    4.3156    4.4783    4.0065    3.7993    4.1592 

RH (mm)     0.8250    0.9472    0.6661    0.8765    1.0273    0.8646 

P (mm)      0.5225    0.4456    0.7783    0.2761    0.1207    0.4283 

D (%)      26.4322   19.3785   45.0653   12.9739    3.3667   

21.4645 

   

It can be observed that the five clusters have different centroids (mean values) for 

the observations in those clusters. Table 32, displays the distances between the various 

cluster centroids for the clustering algorithm.  
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Table 32: A summary of intra-cluster distances for (k=5) clusters 

            Cluster1  Cluster2 Cluster3  Cluster4 Cluster5 

Cluster1    0.0000    7.0565   18.6379   13.4618   23.0731 

Cluster2    7.0565    0.0000   25.6910    6.4146   16.0236 

Cluster3   18.6379   25.6910    0.0000   32.0995   41.7109 

Cluster4   13.4618    6.4146   32.0995    0.0000    9.6119 

Cluster5   23.0731   16.0236   41.7109    9.6119    0.0000 

 

A silhouette plot is presented (figure 71) to provide the measure of closeness of the 

data points from one cluster to another. This graph is plotted within the ranges of [+1, -1]. 

Here, the closeness of data points to (+1) indicates that they are very distant from the 

neighboring cluster points. A measure of (0) indicates that the points are not distinctly 

observed in a cluster and a measure of (-1) indicates that the points are assigned to a wrong 

cluster due to interactions or interdependencies between the response variables. 

 

Figure 71: Silhouette plot for (k=5) clusters 

The table 32 aids in visualizing the proximity of the clusters from one another. 

Note- the distance from a cluster to another is always repeated twice in the table for correct 

classification i.e. distance from cluster 1 to 2 should be the same as the distance of cluster 

2 to 1.  
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For a visual representation of cluster classification, a dendrogram is generated 

according to the average linkage (mean) and the Euclidean distance between the centroids 

of the five clusters. A dendrogram (also known as the hierarchical cluster) is a cluster plot 

that provides a visual representation of spot co-relation data. The spot clusters are created 

by joining the spots with the help of the joint points (also known as the nodes). Each node 

has a right and a left branch for a spot cluster.  The height of the node is the Euclidean 

distance between the right and left sub spot clusters. The y-axis of the graph indicates the 

distance values between the spots or clusters while the x- axis possesses the spot points 

[95]. The distance measure between two spot clusters is calculated using the mathematical 

expression presented in equation 42, 

 𝐷 = 1 − 𝐶 (42) 

Here, D is the Euclidean distance value 

C is the co-relation value 

If the clusters have a high co-relation value (i.e. close to 1), then the distance value 

is closer to the zero value. Thus, creating highly correlated clusters near the bottom of the 

dendrogram plot. Similarly, the lower the co-relation value the greater the distance value 

between the spot clusters. A larger distance value relates to a larger cluster. It should be 

noted that it is difficult to interpret the distance of spot points with large cluster sizes [95]. 

Figure 72, displays the dendrogram generated for the 420 steel single pass spot points (i.e. 

division of data in 5 groups). 
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Figure 72: Dendrogram plot for (k=5) clusters 

After studying the dendrogram plot and the MINITAB software analysis, table 33 

is generated to help identify and classify the clad bead’s shape according to the bead 

geometry/ structure.  

Table 33: Standardization table for shape parameters (K=5) 

Shape Cluster Points W (mm) RH (mm) P (mm) D (%) 

      Max Min Max Min Max Min Max Min 

A 1 16 5.13 3.77 1.27 0.61 0.79 0.38 29.18 24.04 

B 2 18 5.20 3.69 1.51 0.61 0.71 0.26 22.17 16.97 

C 3 18 5.04 4.00 0.91 0.43 1.06 0.60 48.57 39.79 

D 4 23 4.39 3.59 1.16 0.43 0.39 0.10 16.16 8.57 

E 5 15 5.08 3.03 1.36 0.73 0.31 0.02 6.04 1.11 

The shapes (A-J) are presented in appendix K, for reference. 
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8.2 Optimal K Clusters 

According to the literature, the optimal number of clusters (k) is generally defined 

using the clustering algorithm function through the k-mean clustering approach. The 

clustering algorithm used to determine an optimal number of cluster(s) is the Calinski- 

Harabasz criterion algorithm. The Calinski Harabasz algorithm (also known as the variance 

ratio criterion), is defined as the ratio between the overall between cluster variance to the 

overall within cluster variance [96]. The algorithm can be mathematically expressed as 

equation 43 

 
𝑉𝑅𝐶𝑘 =

𝑆𝑆𝐵

𝑆𝑆𝑊
∗

(𝑁 − 𝑘)

(𝑘 − 1)
 

(43) 

Here, VRCk is the variance ratio criterion 

SSB is the overall between cluster variance 

SSW is the overall within cluster variance 

K is the number of optimal clusters 

N is the total number of observations/ data points 

 

The overall between cluster variance is mathematically calculated as (equation 44) 

 

𝑆𝑆𝐵 = ∑ 𝑛𝑖

𝑘

𝑖=1

‖𝑚𝑖 − 𝑚‖2 

(44) 

Here, k is the number of clusters 

mi is the centroids of each cluster i 

m is the overall mean of the data set 

||mi-m|| is the Euclidean distance between two vectors 

While the overall within cluster variance is calculated as (equation 45)  

 

𝑆𝑆𝑊 = ∑ ∑ ‖𝑥 − 𝑚𝑖‖
2

𝑥=𝑐𝑖

𝑘

𝑖=1

 

(45) 

Here, k is the number of clusters 

X is the data point 

ci is the ith cluster 

mi is the centroid of each cluster i 
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||x-mi|| is the Euclidean distance between two vectors 

Note- to obtain a well-defined cluster, the VRC ratio criterion should have a large 

between cluster variance and a small within cluster variance. The optimal clusters are 

obtained by maximizing the VRC ratio with respect to the k clusters [96]. A graph plot is 

generated to determine the optimal number of clusters (k), and the highest index point that 

(largest Calinski- Harbasz value) corresponds to in optimal cluster conditions. For the 420 

steel single pass data, it can be observed that 10 clusters are optimal from the graph plot 

presented in figure 73.  

 

Figure 73: Calinski- Harbasz Scree Plot 

Re-division of the data points into 10 clusters provides the following information 

presented in table (s) 34, 35, and 36. 
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Table 34: Statistical summary for (k=10) optimal clusters 

Number of 

Clusters 

Number of 

Observations 

Sum of Squares 

(within a cluster) 

Average 

Distance from 

Centroid 

Maximum 

Distance 

from 

Centroid 

Cluster1 4 0.6851 0.4075 0.4761 

Cluster2 12 16.0262 1.0713 1.6942 

Cluster3 15 34.2997 1.3581 2.7003 

Cluster4 10 7.5926 0.7484 1.6503 

Cluster5 9 10.7929 1.0457 1.4448 

Cluster6 19 28.5351 1.0958 1.9910 

Cluster7 3 1.6882 0.6936 1.0227 

Cluster8 4 1.1459 0.4853 0.8205 

Cluster9 12 17.3055 1.1135 1.9441 

Cluster10 2 0.1736 0.2946 0.2946 

Table 35: A summary of centroid distances for (k=10) optimal clusters 

Response 

Variable 

Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 

W (mm)   3.9725 4.2508 3.7993 4.0530 4.5611 4.0395 3.8333 

RH 

(mm)  

0.6650 0.8783 1.0273 0.8590 1.0478 0.8974 0.7133 

P (mm)   0.4900 0.533 0.1506 0.3780 0.5044 0.2895 0.1833 

D (%)    28.7396 25.6631 3.3667 17.7983 20.7767 13.3968 9.2336 

Response 

Variable 

Cluster8 Cluster9 Cluster10 Grand 

Centroid 

W (mm)   4.7375 4.3942 4.4650 4.1592 

RH 

(mm)  

0.7300 0.6625 0.5600 0.8646 

P (mm)   0.7750 0.8050 0.6250 0.4283 

D (%)    42.8316 46.6439 40.0608 21.4645 
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Table 36: A summary of intra-cluster distances for (k=10) clusters 

           CL1 CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9 CL10 

CL1 0.00 3.09 23.37 10.94 7.99 15.34 19.50 14.11 17.91 11.33 

CL2 3.09 0.00 22.30 7.86 4.89 12.27 16.43 17.17 20.98 14.40 

CL3 25.37 22.03 0.00 14.43 17.43 10.03 5.87 39.48 43.28 36.70 

CL4 10.94 7.86 14.43 0.00 3.02 4.40 8.57 25.04 28.85 22.26 

CL5 7.99 4.89 17.43 3.02 0.00 7.40 11.57 22.05 25.87 19.29 

CL6 15.34 12.27 10.03 4.40 7.40 0.00 4.17 29.44 33.25 26.67 

CL7 19.50 16.43 5.87 8.57 11.57 4.17 0.00 33.61 37.41 30.83 

CL8 14.11 17.17 39.48 25.04 22.05 29.44 33.61 0.00 3.82 2.79 

CL9 17.91 20.98 43.28 28.87 25.87 33.25 37.41 3.82 0.00 6.58 

CL10 11.33 14.40 36.70 19.29 19.29 26.67 30.83 2.79 6.58 0.00 

 

Figure 74 presents the various scatter plots to represent the optimal clusters (k=10) 

for the single pass 420 steel data points. Note: as there are 10 clusters and 4 shape factors, 

the plots cannot be represented in a 3D format due to a 4D nature, hence, multiple 2D plots 

are presented. Also, the values are normalized between ranges of [-1, +1] for a true 

representation of clusters according to the bead’s geometry structures.  
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Figure 74: Graphical representation of the optimal (k=10) clusters  

 

A silhouette plot is again presented (figure 75) to provide a measure of the closeness 

of the points from one cluster to another. This graph is plotted within the ranges of [+1, -

1]. Here, the closeness of the data points to (+1) indicate they are very distant from the 

neighboring cluster points. A measure of (0) indicates that points are not distinctly in a 

cluster and a measure of (-1) indicates that points are assigned to a wrong cluster due to 

interaction or interdependencies between the response variables. In case of 10 optimal 

cluster the silhouette plot shows the greatest closeness to a +1 measure as compared to the 

5 cluster case illustrated earlier. This indicates the clusters are distinctively away from each 

other. The values close to -1 are considered skewed points of the data sets.  
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Figure 75: Silhouette plot for (k=10) optimal clusters 

The visual representation of the dendrogram plot is displayed in figure 75 for re-

classification of the data points in 10 clusters.  

 

  

Figure 76: Dendrogram plot for (k=10) optimal clusters 
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After studying the dendrogram plot and the MINITAB software analysis, table 37 

is generated to help identify and classify the clad bead shape according to the bead 

geometry/ structure.  

Table 37: Standardization table for shape parameters (K=10) 

Shape Cluster Points W (mm) RH (mm) P (mm) D (%) 

      Max Min Max Min Max Min Max Min 

A 1 4 4.15 3.77 0.68 0.65 0.52 0.47 29.18 28.27 

B 2 12 5.13 3.80 1.27 0.61 0.79 0.38 27.33 24.04 

C 3 15 5.08 3.03 1.36 0.73 0.31 0.02 6.04 1.11 

D 4 10 4.58 3.69 0.98 0.61 0.61 0.26 18.81 16.16 

E 5 9 5.20 3.90 1.51 0.77 0.71 0.38 22.17 19.52 

F 6 19 4.39 3.63 1.16 0.43 0.39 0.10 15.20 11.41 

G 7 3 4.12 3.59 1.12 0.49 0.30 0.11 10.12 8.57 

H 8 4 4.97 4.38 0.88 0.51 0.84 0.62 43.39 42.14 

I 9 12 5.04 4.00 0.91 0.43 1.06 0.60 48.57 45.13 

J 10 2 4.58 4.35 0.56 0.56 0.65 0.60 40.33 39.79 

 

The Shapes (A-J) are presented in Appendix L. The table 37, can be used to identify 

the bead shape according to the multi-objective responses (shape characteristics). To utilize 

this novel standardized procedure, the user would start off by selecting the value for the 

percent dilution as the first option and then moving on to defining the three basic shape 

parameters within a boundary condition.  
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CHAPTER 9 

DISCUSSION 

This thesis work presents eight different artificial neural network (ANN’s) models 

for prediction of the bead’s geometry from the manufacturing parameters and vice versa.  

Out of the eight proposed models, two of the models are focused on the single pass bead 

generation process with a 420 steel clad powder. Whereas the other six models pay much 

closer attention to the overlap bead generation (40%, 50%, and 60%) process with a 420 

steel clad powder. The error in the system for all eight models is minimal (within a 5 

percent window), hence, confident predictions for the desired parameters can be made for 

production purposes. 

It is observed that the target values supplied to the various neural networks (for a 

supervised learning) superimpose the network output values when plotted, hence, this trend 

provides a confidence in the model developed. Although, it should be noted that the 

network generalization is lower for the backward networks created (shape parameters to 

manufacturing parameters). This is basically due to the nature of data being mapped while 

training the backward networks.  

Training backward networks involves mapping of continuous data to discreet data.  

The continuous data comprises of various shape parameters (unique in nature), that are 

mapped to the five classes of manufacturing parameters coded between the [-2, 2] range. 

When a set of unique shape parameters are mapped to a class, the network assigns that 

class to those shape parameters. If while training a similar set of shape parameters are 

noticed by the network, instead of assigning the data to either of the five classes, the 

network introduces a new class by averaging the results. This averaging of results causes 

decrease in the overall accuracy of the network and increases the generalization errors. It 

is recognized that the averaging condition for this thesis work occurs due to the closeness 

of numerical values for the continuous data set (inputs- shape parameters) giving rise to 

network errors. 

Generalization of the network plays a vital role in making successful predictions 

during a simulation process. This is due to the fact that generalization avoids conditions 
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for over fitting of the data points. Over fitting occurs if the error value in the data set while 

training is forced to be a small numerical value. In such a case, the network performs 

exceptionally well for the training set as it memorizes the set as a training example. 

However, once an unknown test data set (simulation process) within the input parameter 

range is introduced to the trained network, it becomes difficult for the network to adapt to 

the new conditions. Hence, making the network brittle and not generalized. To avoid such 

over fitting conditions, one of the listed techniques in this sub-section can be utilized [97]. 

1) Defining a large network architecture – the goal is to define a network that can 

encompass the entire training process and provide an adequate fit. This is generally 

the most recommended process out of the two solutions listed in this sub-section. 

A drawback to this solution is that the adequate number of neurons for a particular 

application that can provide an acceptable fit should be known. As the network 

architecture is developed with a trial and error method for the best fit, it is very 

difficult to find the exact number of neurons that can provide the best fit [97].  

 

2)  Regularization – this solution involves improving the overall performance 

algorithm of the network architecture to avoid over fitting of a dataset. For the 

networks defined in this thesis work the performance function used is a mean square 

error (MSE) function. Regularization process enforces a smoothness factor to the 

mean square error function to decrease generalization errors. The smoothness factor 

may vary for various network architectures such as fixing the number of parameters 

in a model, blocking the parameters or improving the algorithm. One example of 

improving algorithm is presented in equation 46 [97]. 

 𝑀𝑆𝐸𝑅𝐸𝐺 = (𝑔 ∗ 𝑀𝑆𝐸) + (1 − 𝑔) ∗ 𝑀𝑆𝑊 (46) 

 Here, MSEREG is the new performance function 

g is the improved performance ration  

MSW is the mean sum of squares of the network weights and bias values 

MSE is the performance function with high generalization errors 
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 CHAPTER 10 

CONCLUSIONS 

The laser cladding process is a non-linear multi-variable process relevant to the additive 

manufacturing technique. Both the process and shape parameters play an important role in 

defining the geometry of the clad bead; however, due to the highly coupled nature of the 

process there are many interdependencies among the parameters giving rise to the non-

linearity behaviour in the overall bead structure.  The presented research proves effective 

in setting up a methodology and proposing a meta-structure (artificial intelligence model) 

for predicting the bead shape parameters with the manufacturing parameters and vice- 

versa. This goal is achieved through accomplishing the following vital steps and 

methodologies:  

1) Establishment of an experimental approach for a time efficient and financially 

viable data collection for the key bead shape parameters through the response 

surface methodology (DOE tool). Therefore, subsequent experimental work should 

follow this methodology. 

2) Development of a cognitive artificial intelligence system for confident predictions 

for a single pass and an overlap pass configuration through the artificial neural 

networks (MATLAB tool). More experimental work needs to be performed prior 

to determining whether a general ANN model can be used for multiple materials, 

or whether there needs to be ANN-material-system sets. 

3) Proof of the relative interactions between the manufacturing parameters and the 

geometrical properties of the clad bead structure through the sensitivity analysis 

(CT, SI) and analysis of variance (ANOVA) techniques. Therefore, non-linear 

relationship between the shape and the process parameters are determined which 

aids in manipulating the bead structure through ANN network designed.   

4) Optimization of the manufacturing parameters to obtain the desired clad bead 

geometry through the response optimizer (MINITAB tool). Therefore, optimal 

process parameters are determined for the desired bead geometry for obtaining 

higher yield levels.  
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5) Classification of the clad bead structure (shape analysis) as a means of 

standardizing the clad beads to exhibit the class characteristics through K- mean 

clustering approach. Therefore, determining similar trends within a defined class to 

which the beads belong. This helps in overall decision making while selecting a 

class to manipulate the bead dimensions.  
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CHAPTER 11 

FUTURE WORK 

The thesis work presented provides a standard to improvise an experimental 

strategy for the data collection process towards the laser cladding process. It uses a design 

of experiments (DOE) approach to design an experimentation set with the help of a 

response surface methodology (RSM) central composite design. Furthermore, an artificial 

intelligence system is established to successfully predict the shape parameters or the 

manufacturing parameters (according to network architecture) within a 95th percentile 

confidence range for a single pass as well as overlap configurations of the 420 steel clad 

powder. Through the use of the response surface methodology approach, various relations 

between the shape and the manufacturing parameters are also determined. These relations 

are verified using various sensitivity analysis approaches to determine the significant 

factors relevant to the laser cladding process. The relations among parameters are then 

visualized using the surface and the contour plots for their respective objective functions. 

An optimization resolver tool is adopted to provide optimized results for the various single 

objective and multi objective functions for both single and overlap passes. Lastly, a k-mean 

clustering approach is applied to the manufacturing operations (single pass and overlap) to 

determine an optimal number of clusters in each data set. This clustering approach helps 

categorize the bead shape according to the various cluster characteristics and aids in 

standardizing the laser cladding process for shape parameters.  

To expand the scope of the knowledge in the additive manufacturing (AM) sector, the 

future work should involve: 

1) Other experimentation strategies (such as Taguchi) and development of artificial 

intelligence systems for a layered manufacturing approach. Figure 77 (source: 

industry sponsor. [4]; designer- Mr. Syed Saqib), displays an image of the layered 

manufacturing technique using the laser cladding operation. 

 

2) This research helps in determining the relations between the shape and the  

manufacturing parameters, but various mechanical and material properties such as 

the heat affected zones (HAZ), the strength of the generated bead (tensile and 
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compressive strengths), the finite element analysis (yield points of materials) etc. 

should be studied for several manufacturing configurations for the laser cladding 

process. 

 

3) The research presented in this thesis uses a single material i.e. the 420 steel clad 

powder (low carbon ferrous material). Other materials with high carbon (such as 

H13 steel) and non-ferrous (such as tungsten carbide) characteristics should be 

studied to incorporate a re-configurability principle in the overall manufacturing 

system to be able to adapt to different materials. 

 

4) Various fill strategies (such as 45degrees, zig-zag, orthogonal, or honey comb) 

while positioning the beads should be thoroughly studied to obtain the desirable 

properties while generating a layered three dimensional part.  

 

5) The artificial intelligence model should be overextended by including the various 

constant parameters such as the nozzle angle or the shielding gas type etc.to 

confidently predict more settings for the manufacturing parameters relevant to the 

laser cladding process. 

 

Figure 77: A 3-dimensional part generation by laser cladding operation [4] 
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Appendix B: Single pass forward network results 
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Figure 78: Training results for the single pass forward network 
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Figure 79: Training output vs network output plots for the single pass 420 steel forward network 
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Figure 80: Test output vs predicted output plots for the single pass forward network 

 



 

179 
 

Appendix C: Single pass backward network results 
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Figure 81: Training results for the single pass backward network 
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Figure 82: Training output vs network output plots for the single pass 420 steel backward network 
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Figure 83: Test output vs predicted output plots for the single pass backward network 
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Appendix D: 40% overlap configuration forward network results 
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Figure 84: Training results for the 40% overlap pass forward network 
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Figure 85: Training output vs network output plots for the 40% overlap pass forward network  
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Figure 86: Test output vs predicted output plots for the 40% overlap pass forward network 
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Appendix E: 50% overlap configuration forward network results 
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Figure 87: Training results for the 50% overlap pass forward network 
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Figure 88: Training output vs network output plots for the 50% overlap pass forward network 

 



 

193 
 

 



 

194 
 

 
Figure 89: Test output vs predicted output plots for the 50% overlap pass forward network 
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Appendix F: 60% overlap configuration forward network results 
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Figure 90: Training results for the 60% overlap pass forward network 
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Figure 91: Training output vs network output plots for the 60% overlap pass forward network 
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Figure 92: Test output vs predicted output plots for the 60% overlap pass forward network 
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Appendix G: 40% overlap configuration backward network results 
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Figure 93: Training results for the 40% overlap pass backward network 
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Figure 94: Training output vs network output plots for the 40% overlap pass backward network  
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Figure 95: Test output vs predicted output plots for the 40% overlap pass backward network 
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Appendix H: 50% overlap configuration backward network results 
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Figure 96: Training results for the 50% overlap pass backward network 
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Figure 97: Training output vs network output plots for the 50% overlap pass backward network  
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Figure 98: Test output vs predicted output plots for the 50% overlap pass backward network 
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Appendix I: 60% overlap configuration backward network results 
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Figure 99: Training results for the 60% overlap pass backward network 
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Figure 100: Training output vs network output plots for the 60% overlap pass backward network  
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Figure 101: Test output vs predicted output plots for the 60% overlap pass backward network 
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Appendix J: Significant factors overlap configuration 

Table 38: Analysis of variance results for the 40% overlap configurations  
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From table 38, the following table 39 presents’ results for the most significant factors 

relevant to the 40% overlaps for the 420 steel operating processes. (Note- most significant 

factors are the factors with P-value =0.00; other significant factors are factors with P-value 

< 0.05). 
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Table 39: Most significant factors for the 40% overlap configurations 

Shape 

Parameter 

Linear Significance Squared Significance Quadratic Significance 

W1 LS, CTWD N/A FR*FL 

W2 N/A N/A N/A 

W3 PW N/A FR*FL; FR*CTWD; 

PW*FL; FL*LS  

P1 PW; LS FR2; FL2  FR*PW; FR*FL; FR* 

CTWD; PW* FL; LS 

*CTWD 

P2 FR; PW; FL; LS FR2; FL2 FR*PW; FR*FL; 

PW*FL; LS*CTWD 

P3 FR; PW; FL FL2 FR*PW; FR*FL; 

PW*FL; LS*CTWD 

RH1 FR; LS LS2 N/A 

RH2 FR; LS N/A N/A 

RH3 FR; LS LS2 N/A 

RH12 FR; LS FR2; LS2 FR*LS 

RH23 FR; LS FR2; LS2 N/A 

D FR; PW; FL; LS; 

CTWD 

FR2; FL2 FR*FL; FR*LS; 

FR*CTWD; PW*FL; 

LS*CTWD 

 

Similarly, most significant factors are generated for 50% and 60% overlap configurations 

(table 40 and 41), for the 420 steel clad powder  

Table 40: Most significant factors for the 50% overlap configurations 

Shape 

Parameter 

Linear Significance Squared Significance Quadratic Significance 

W1 FR; LS LS2 FR*FL;  PW*LS 

W2 N/A N/A N/A 

W3 N/A N/A FR*FL 

P1 FR; PW; LS FL2 FR*PW; FR*FL; 

PW*FL; LS*CTWD 

P2 FR; PW; FL; LS; 

CTWD 

LS2 FR*FL; PW*FL; 

LS*CTWD 

P3 FR; PW; FL N/A FR*FL; LS*CTWD 

RH1 PW; LS N/A FR*FL 

RH2 FR; LS N/A FR*LS 

RH3 FR; LS LS2 FR*LS 

RH12 FR; LS N/A FR*FL 

RH23 FR; LS LS2 FR*FL; FR*LS 

D FR; PW; FL FR2 FR*FL; PW*FL; 

LS*CTWD 
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Table 41: Most significant factors for the 60% overlap configurations 

Shape 

Parameter 

Linear Significance Squared Significance Quadratic Significance 

W1 LS, CTWD N/A FR*FL 

W2 N/A N/A N/A 

W3 PW N/A FR*FL; FR*CTWD; 

PW*FL; FL*LS  

P1 FR; PW; FL; LS N/A FR*FL; PW*FL; 

LS*CTWD 

P2 FR; PW; FL FL2 FR*FL; 

PW*FL;LS*CTWD 

P3 FR; PW; FL; CTWD FL2 FR*FL; FR*LS; 

PW*FL; PW*CTWD; 

LS*CTWD 

RH1 FR; PW; FL; LS; 

CTWD 

FL2; LS2 PW*LS; FL*CTWD 

RH2 FR; FL; LS; CTWD FL2; LS2 FR*LS 

RH3 FR; PW; FL; LS; 

CTWD 

FL2; LS2 PW*LS; FL*CTWD 

RH12 FR; LS FR2 FR*PW; FR*LS; 

PW*FL 

RH23 FR; PW; FL; LS; 

CTWD 

FR2; FL2; LS2 PW*LS; FL*CTWD 

D PW; FR FR2; CTWD2 PW*FL; LS*CTWD 
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Appendix K: Surface, contour & optimization results: overlap configuration 

The figure(s) 102 and 103 represent contour and surface plots respectively for percentage 

dilution (response variable) among five manufacturing parameters (FR, PW, FL, LS, and 

CTWD) for a 40% overlap configuration. The contour plots are generated using MINITAB 

software workspace with constant values.  

 

Figure 102: Contour plots:  percentage dilution for 40% overlap pass  
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Figure 103: Surface plots:  percentage dilution for 40% overlap pass  

Similar plots are generated for 50% and 60% overlap configurations. 

A multi-objective function plot is presented in figure 104which represents the optimal 

values of the manufacturing parameters according to the shape parameters for the 40% 

overlap configurations. The objective of this function is to maximize all widths (W1, W2, 

W3); minimize all penetrations (P1, P2, P3), Maximize all reinforcement heights (RH1, 

RH2, RH3, RH12, RH23) and minimize percentage dilution (D%). 
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Figure 104: Multiple-objective optimization plot for 40% overlap pass  

Multiple- single objective optimized results can be also generated using the MINITAB 

tool. It should be noted that the optimal results for the single objective optimization for the 

process parameters will be different from the multi objective optimization results. 

Similarly, optimization plots (single and multi-objective) can be generated for 50% and 

60% overlap configurations.  
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Appendix L: Cluster (K=5) - shape analysis 

 

(A)                                                                    (B) 

 

(C)                                                                    (D) 

 

 

(E)                                  

Figure 105: Bead shapes (A-E) for k=5 clusters                                    
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Appendix M: Cluster (K=10) - shape analysis 

 

(A)                                                                    (B) 

 

 

(C)                                                                    (D) 

 

  

(E)                                                                    (F) 
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(G)                                                                    (H) 

 

 

(I)                                                                    (J) 

 

Figure 106: Bead shapes (A-J) for k=10 optimal clusters                                    
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