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Abstract 

 

Finite element models of the vehicle for crashworthiness have traditionally included 

simplified representations of isolators intended to improve noise and vibration. However, 

the low stiffness of the hyperelastic material employed in such components allows for 

large deformations under impact conditions with a significant effect upon the 

accelerations experienced by the occupant. Modeling these components is challenging 

due to the non-linear behaviour of the material and the large deformations. The purpose 

of this research was to identify practices for developing accurate and efficient finite 

element models of chassis components incorporating hyperelastic materials. To maximize 

the comprehensiveness of this process, this research included quasi-static and dynamic 

material characterization; material model selection and implementation; finite element 

modeling techniques; quasi-static and dynamic component characterization; and model 

validation. Conclusions included the importance of comprehensive material 

characterization, material model selection, variation in results due to solver updates, and 

methodologies for model validation through component characterization. 
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Chapter 1: Introduction 

 

From 2011 to 2020 the United Nations General Assembly has instituted a Decade of 

Action for Road Safety.  This initiative seeks to save 5 million lives over this ten year 

period (WHO, 2011).  It is estimated that over 1 million fatalities and 50 million injuries 

occur each year worldwide as a result of motor vehicle incidents (WHO, 2004).  Over the 

next 20 years these figures are projected to increase by 65%.  In the USA motor vehicle 

incidents are the leading cause of death in the 5-34 age group (CDC, 2010) with over 2.3 

million motor transport incident related admissions to emergency departments in 2009 

(CDC, 2011).  Crash related fatalities in 2005 cost an estimated $41 billion in medical 

costs and work loss. 

Vehicle collisions are the second leading cause of death in Canada and the third leading 

cause of both hospitalizations and disabilities (SMARTRISK, 2009).  The economic 

impact of transportation incidents is staggering at approximately $4 billion each year.  

Additionally, injuries resulting from transportation incidents are the leading cause of 

economic losses in the form of reduced productivity.  Consistent with North America, in 

the European Union road traffic incidents are the leading cause of death for the 

population under 45 years of age (Genta G, 2009).  Government crashworthiness 

standards dictate impact performance requirements and are consistently updated to ensure 

improved protection of the occupant.  Additionally, in the USA the new car assessment 

program (NCAP) and the insurance institute for highway safety (IIHS) rate vehicles on 

their impact performance and this data is provided to consumers to consider when 

purchasing a vehicle. 

Safety may be one of the more important vehicle characteristics for consumers 

considering the purchase of a new vehicle.  A study in Europe found that European New 

Car Assessment Program (EuroNCAP) ratings and safety related features were the 

highest priorities among consumers that had recently purchased a new vehicle (Koppel S, 

2008).  This study was completed using questionnaires in Sweden, a European country 

with a low number of fatalities resulting from transport incidents, and telephone 

interviews in Spain, a European country with a high number of deaths from transport 
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incidents.  In Sweden potential participants with a recent new vehicle purchase were 

identified through insurance records.  A consulting group in Spain conducted telephone 

interviews.  Eligibility criteria for the telephone interviews were defined by the 

demographics of the Swedish participants. 

Other important considerations for consumers are ride quality and levels of noise, 

harshness, and vibration (NVH).  A variety of elastomeric materials are used in vehicles 

as isolators, dampers, and mounts between body and frame, on the engine cradle, etc.  

These flexible isolators are mainly made of rubber and other polymeric materials.  They 

are usually enclosed in a metallic tube to protect and contain the flexible elements.  These 

components are critical components of modern vehicles because of their effect on the 

perceived quality in terms of ride and NVH.  

The term crashworthiness originated in the aerospace industry in the 1950s.  In the 

automotive industry this term refers to the design of a vehicle’s structure to deform in a 

controlled manner in a crash and absorb energy to protect the occupants.  There are 

several requirements in designing a vehicle for crashworthiness.  The passenger 

compartment must be stiff to prevent harmful intrusions.  However, there must be zones 

where structural elements, crash boxes for example, can dissipate energy through 

progressive deformation reducing accelerations experienced by the occupant to tolerable 

levels.  Additionally, the fuel system must be protected and the roof must be structurally 

sound in rollover type events. 

The connections between the car body and subframe may have a significant effect on the 

impact performance of modern vehicles.  These connections consist of a bolt in a rubber 

bushing which is commonly contained in a metal tube.  As an example of the importance 

of these connections, the occupant compartment, as part of the automotive body, may be 

connected to a front subframe by connections of this type.  By allowing relative 

displacement between the occupant compartment and the front subframe, which is 

designed to manage energy in a frontal crash, the accelerations experienced by the 

occupant may be influenced by these connections.  However, the rubber components are 

difficult to implement in computer models of the full vehicle. 
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Similar rubber components can also be found in the engine mounts and chassis 

suspension connections.  Researchers at Ford Motor Company have documented the 

importance of suspension lower control arm bushings on the impact performance of the 

vehicle (Eguia M H. M., 2005).  In many computer models the suspension connections 

are rigid body joints (e.g. spherical, revolute, and cylindrical joints).  Another common 

technique to model these rubber components replaces the component with discrete spring 

and damper elements (Park S, 2004).  However, these approaches result in a model that 

may not be suitable for the complex loading resulting from an impact.  Additionally, the 

resulting models are poor predictors of failure modes and may give misleading results in 

the design phase.  Airbag deployment strategies for low speed impacts may also be 

affected. 

However, modeling the mechanical behaviour of rubber is difficult due to the nonlinear 

properties of the material and the large deformations that are commonly encountered with 

rubber components.  The structural finite element (FE) method solves partial differential 

equations of motion coupled with mechanical material behaviour over a discretized 

domain (elements).  For nearly incompressible materials (e.g. rubber) a problem known 

as element locking can introduce error into the model in the form of increased element 

stiffness reducing the level of deformation for a given load. 

The purpose of this research was to develop methodologies for modelling components 

employing hyperelastic materials.  A primary consideration was the application: full 

vehicle models for crashworthiness assessment and design.  These methodologies were 

developed through extensive parametric studies of modelling techniques.  Furthermore, 

material characterization was performed to obtain suitable, high quality material data and 

to start from the most fundamental stage of the modeling process to have a thorough 

understanding of the many factors and their interdependence.  Ultimately, this research 

concluded with quasi-static and dynamic experimental characterization of a Chrysler 

engine mount and model validation. 
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This thesis documents this research as follows. A literature review summarizes 

fundamental knowledge for the completion of the methodology of this work as well as 

recent or important contributions to scientific and engineering literature on the topic of 

the crash performance influence of rubber noise and vibration isolators. This is followed 

by a detailed description of the methodology for this research. The corresponding results 

are presented for each step of the methodology. Finally, these results are discussed and 

conclusions are stated. Appendices for important but verbose data and resources are 

provided at the end of the document. 
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Chapter 2: Literature Review 

 

2.1 Powertrain Suspension 

The most important chassis isolators for noise and vibration may be those supporting the 

powertrain.  These components may also have critical roles to play in vehicle 

crashworthiness.  The frequency range of the dynamic excitation of the chassis by the 

powertrain is directly proportional to the range of possible engine speeds (Morello L, 

2011).  These frequencies for the engine and transmission are functions of the number of 

cylinders, the cylinder configuration, and the gear ratios in the transmission.  The 

suspension of the engine is designed considering two relatively simple considerations: 

minimize transmission of dynamic forces to the chassis and minimize engine 

displacement with respect to the chassis.  If the suspension of the engine is simplified to a 

one degree of freedom mass-spring-damper system a simple analysis of this system can 

aid in its design.  If the chassis is assumed to be stationary the forces acting upon the 

engine and the chassis and the force transmissibility transfer function can be defined as 

shown in Equations 1 through 4. 

 

Figure 1: One degree of freedom, mass-spring-damper model of the engine suspension 
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The force transmissibility function can be non-dimensionalized to consider damping ratio 

rather than damping and by normalizing the Laplace variable with respect to the natural 

frequency.  The resulting form of this equation is given by Equation 5.  This transfer 

function is plotted with respect to excitation frequency and damping ratio in Figure 2.  For 

any amount of damping the engine suspension reduces the transmitted force when the 

ratio of excitation frequency to natural frequency is greater than the √2.  Therefore, for 

the minimum excitation frequency (directly proportional to the minimum engine speed) a 

maximum suitable natural frequency may be calculated.  Since the mass of the engine is 

essentially fixed it is the stiffness of the engine mount that is the primary design variable.  

To reduce the transmissibility the natural frequency of the engine suspension should be 

minimized which is achieved by minimizing the stiffness.  However, if the stiffness is 

excessively low large displacements of the powertrain will be possible.  It is clear that 

displacements must be within reasonable limits to avoid undesirable contact between the 

engine and surrounding components and structures. 
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Figure 2: Engine suspension (under-damped 2
nd

 order system) frequency response 

(MasterHD, 2008). 

Many engine support structures are designed with a non-linear force-displacement 

response to minimize stiffness for low displacements but with a marked increase in 

stiffness after sufficient displacement.  Elastomers are often used for their low stiffness 

and internal damping.  After sufficient displacement internal contact may occur within 

the engine mount such that small additional displacements result in relatively large 

compressive strains.  The incompressibility of the rubber further increases the stiffness.  

As shown in Figure 2 the damping is a more complex characteristic.  At low frequencies, 

particularly close to the natural frequency, damping should be maximized to reduce 

transmissibility.  However, at high frequencies increased damping increases 

transmissibility.  Elastomers used for such components exhibit varying internal damping 

with respect to frequency but many high end vehicles may use hydraulic mounts which 

allow near ideal damping characteristics to be achieved. 
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2.2 Review of Research on Automotive Chassis Components Incorporating 

Hyperelastic Materials 

 

Rubber bushings, isolators, and dampeners for automotive applications commonly consist 

of a hollow elastomer cylinder between two metal cylindrical sleeves.  Many are of the 

mold bonded type which is manufactured using injection molding to inject the elastomer 

between the metal sleeves where it then cures and bonds with the metal.  This may be 

followed by a process known as swaging where the outer sleeve is compressed to 

eliminate residual tensile stresses in the elastomer due to shrinkage during the curing 

process.  Researchers in the USA at Rowan University (NJ) and the University of 

Michigan performed experimental tests and numerical simulations (FEM) of this type of 

bushing under several types of loading (Kadlowec J, 2003).  Radial loads were applied by 

loading the internal sleeve normal to the axis of the bushing and fixing the outer sleeve.  

Torsional loading was applied to the internal sleeve about the axis of the bushing with the 

outer bushing again fixed.  For the combined radial and torsional loading the bushing was 

loaded in torsion to a pre-set angle after which the radial load was applied.  Test 

specimens were subjected to several loading cycles to precondition the material before 

running the tests against which the finite element models would be compared. 

The finite element modeling was completed using ABAQUS.  It was not indicated how 

the material model parameters were obtained.  The cooling and swaging manufacturing 

processes were first simulated to capture the prestress in the material.  The resulting 

model correlated well with experimental data for radial and torsional loading applied 

separately.  However, the model did not correlate well with the combined radial and 

torsional loading.  It was proposed that through more extensive material testing better 

material model data could be obtained which may improve the finite element model. 

Morman and Pan (Morman K, 1988) modeled the mechanical behaviour of several 

elastomeric automotive components.  The simplest model was a bonded cylindrical 

block: a rubber cylinder bonded to two steel end plates.  The authors of this publication 

also modeled a specific automotive rubber bushing known as a Silentbloc.  With this type 

of bushing the metal sleeves are pressed around/into an oversized rubber bushing with 
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draft angles using lubricant and severe deformation of the rubber occurs.  The rubber is 

not bonded to the metal of the sleeves.  Morman and Pan created finite element models of 

the assembly process, axial loading, and radial loading.  The FE model was compared 

with experimental data and simple analytical models.  The FE model did not correlate 

well with the experimental data but the response of the FE model was improved by 

modeling the preload.  The lack of accuracy may partially be the result of the use of a 

very simple, 2 parameter material model. 

 

Figure 3 - Chrysler rubber bushing CAE model and experimental validation. 

Researchers at Daimler Chrysler presented a paper at the 8
th

 International LS-DYNA 

Users Conference in 2004 on their models of a rubber vehicle mount (Park S, 2004).  

Their model used the Mooney-Rivlin rubber material model (MAT_27) and included 

preloading of the bolt holding the assembly together as shown in Figure 3.  The bolt was 

preloaded by dividing the bolt into upper and lower halves and applying forces to draw 

these two components together thereby compressing the rubber bushing.  When the 

proper preload had been reached a tied contact algorithm was used to connect the two 

halves of the bolt.  Stress-strain behaviour for the rubber material were provided by the 



10 
 

supplier.  The steel bolts and the plates connected by the isolator used the piecewise 

linear plasticity material model (MAT_24).  An impact test, as shown in Figure 3, was 

used to validate the model which exhibited a strong correlation with the experimental 

results (Figure 4). 

 

Figure 4: Force-displacement responses of Chrysler body mount CAE models validated 

with respect to mechanical characterization of a physical component. 

Researchers at the University of Iowa compared analytical, numerical, and experimental 

load-deflection responses for rubber bushings subjected to several different types of 

loading (Chen J, 1997).  Two rubber material models are used for the finite element 

modelling: the Mooney-Rivlin model and a Cubic model proposed by Yeoh (Yeoh, 

1990).  A comprehensive review of the Mooney-Rivlin material model is presented in a 

later section of this thesis.  The finite element modelling was completed using the 

pressure projection method which avoids volumetric locking.  The bushing was loaded 

axially, in torsion, and radially (each type of loading was applied separately).  The 

authors compared their models with analytical 2D plane stress and plane strain solutions. 

Their conclusions include that for very short bushings a 3D analysis is necessary for 

accurate predictions of behaviour of the mechanical characteristics of the isolator. 
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In a more recent investigation Dharwadkar and Adivi investigated the modelling of 

engine suspension components for crash simulations (Dharwadkar N, 2011).  The authors 

of this thesis modeled the left hand side engine suspension mount (the connection 

between the gearbox and chassis structural members) used in most Volvo vehicles.  The 

mount is manufactured by Trelleborg Automotive in Germany.  This engine mount 

consists primarily of rubber and aluminum. Modelling was completed using LS-DYNA.  

The rubber components used MAT_77 (MAT_HYPERELASTIC_RUBBER).  The 

aluminum components used a user defined material model (MAT_48).  This rubber 

material model cannot consider strain rate effects.  

The model was validated with respect to bench testing of an engine mount with strong 

correlation between the numerical model and the experimental results.  The validated 

engine mount model was utilized in a full vehicle model of a Volvo V60 and simulations 

of full width frontal impacts and offset frontal impacts were completed.  In experimental 

full vehicle crash testing there was a failure in the aluminum of the engine mount.  The 

authors tuned their aluminum material model to obtain a similar failure.  The effects of 

the revised model of the engine mount on the crash pulse or response of the occupant 

were not considered at the time of publication. 

Engineers at Ford Motor Company published a technical paper with SAE in 2003 on their 

efforts to model body mounts in body on frame (BOF) configuration vehicles (Chen Y, 

Dynamic Testing and CAE Modeling of Body Mount - An Application in the Frontal 

Impact Analysis of a Body-on-Frame Vehicle, 2003).  This publication contains a great 

deal of information on experimental testing carried out by Ford engineers.  There are 

many interesting observations.  Connections between the body and frame were found to 

fail due to failure of the body mount itself or due to floor pan rupture.  Preloading of the 

body mounts as is completed during vehicle assembly was accounted for in component 

level testing.  Preloading due to the weight of the body was also considered.  Neither was 

found to be significant.  Additionally, the elastomer portion was not found to have a 

significant effect on the structural behaviour.  However, the unloading behaviour of the 

mount was deemed important.  In a related publication Ford engineers modeled an engine 

mount and a body mount using non-linear spring elements (Chen Y, Dynamic Testing 
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and CAE Modeling of Engine Mounts and the Application in Vehicle Crash Analysis, 

2003) (Li M, 2005). 

Researchers at Ford Motor Company have extensively studied suspension lower control 

arm structure behaviour in impact conditions (Eguia M H. M., 2005).  Rubber bushings 

are used at the connections between the lower control arm and structural elements of the 

sprung mass of the vehicle.  It was observed that these bushings allow for significant 

relative movement between the lower control arm and the frame for degrees of freedom 

normally constrained by the suspension mechanism.  The lower control arm assembly can 

be critical in achieving optimal energy absorption since the lower control arm reinforces 

the vehicle frame and may prevent or influence plastic deformation of this critical region. 

In one of many related publications the same researchers from Ford Motor Company 

document their investigations into the impact performance of lower control arms using 

numerical simulation (Huang M, 2005).  The authors modeled the rubber bushings using 

beam elements with customized properties.  One challenge highlighted by the authors 

was the need to complete physical testing to obtain data to accurately model the bushings 

using the beam element technique.  A specific challenge was the press fit between the 

bushings and the lower control arm. 

These researchers at Ford Motor Company also investigated the mechanical performance 

of suspension bushings experimentally (Eguia M T. T., 2006).  These investigations 

considered lower control arm bushings from two vehicles loaded axially, radially, and in 

bending about axes running radially.  The loads were applied by an impact using a form 

of sled test at speeds of 6, 8, 10, 15, and 17 mph (10, 13, 16, and 24 km/h).  The 

publication documents deficiencies in their apparatus (plastic deformation of the fixtures) 

yielding invaluable advice for further research on this topic. Bushing stiffness varied 

considerably for the different types of bushing and the direction in which the load was 

applied.  The highest stiffness encountered was 100 000 lbf/inch (17500 N/mm) for a 

bushing loaded axially.  Another bushing recorded the lowest stiffness, also in the axial 

direction, of 5200 lbf/inch (910 N/mm).  The peak load reached in testing, resulting in 

bushing failure, was 42 000 lbf (187 000 N). 
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2.3 Structural, Transient Finite Element Method 

In the transient structural finite element method the momentum equation, coupled with 

material stress-strain relationships, is solved to obtain displacements, velocities, and 

accelerations for all nodes of a structure.  The coupling equations between stress (force in 

the momentum equation) and strain (calculated from displacements) are known as 

constitutive equations or, more commonly, the material model.  For each node the mass 

(m), dampening (c), and stiffness (k) is determined by the material surrounding each node 

(the elements).  External forces are denoted Fext.  A node can be connected to several 

elements, each of which will contribute to the nodal mass, damping, and stiffness.  The 

mass, stiffness, and dampening contributions of elements to nodes are determined using 

the finite element (FE) method. 

  ̈    ̇                                                             

This equation is solved numerically with respect to time using a central difference 

scheme to numerically approximate derivates with respect to time.  Two types of time 

integration are commonly employed: explicit time integration and implicit time 

integration.  With explicit time integration the solution marches forward in time with the 

solution at each timestep calculated using existing information (e.g. nodal displacements 

and velocities and stiffness and damping of the structure at the beginning of the time 

step).  The numerical algorithm can be found in section 24 of the LS-DYNA Theory 

Manual (Hallquist, 2006).  The maximum timestep is restricted to the transit time for the 

stress wave propagation speed across the smallest element.  For a beam element this 

speed depends on the modulus of elasticity (E), the density of the material (ρ), and the 

characteristic length of the element (L).  The function is given in Equation 7.  Similar 

relationships are given by Equations 8, 9, and 10 for discrete, shell, and solid elements 

(positive, nonzero strain rates) respectively (v is Poisson’s ratio).  For solid elements the 

minimum time step of equation 10 assumes a constant bulk modulus.  The implicit time 

integration scheme does not have such a limitation on the time step but is iterative at each 

time step due to a dependence on future (unknown) nodal displacements (section 34 of 

the LS-DYNA Theory Manual). 
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By default the explicit time integration solver in LS-DYNA finds the element with the 

smallest minimum time step.  This time step is then adjusted depending upon a time step 

scaling factor (TSSF) that can be modified by the user.  The explicit time integrator can 

be forced to use larger time steps if mass scaling is used.  The solver will add mass to the 

model to allow a specified larger time step without instabilities.  For quasi-static analyses 

mass scaling has little effect on the results.  However, the ratio of kinetic energy to total 

energy should be monitored to ensure this approach is reasonable.   

The discrete element critical time step (Equation 8) is significant due to the use of 

discrete elements in modelling contact between entities.  The nodal masses at either end 

of the element are denoted M1 and M2.  Contact algorithms search for entities with node 

through segment penetrations and insert discrete elements (springs and dampers) to 

model the contact phenomenon.  The critical time steps for all contact related discrete 

elements are not calculated at each time step.  However, the LS-DYNA solver will 

display a message upon starting a simulation estimating the minimum time step for stable 

contact and will suggest to the user that a smaller explicit time integration time step be 

used. 
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2.4 Hyperelastic Materials 

Rubber originally referred to the compound obtained from latex of the Hevea Braziliensis 

tree.  This natural rubber is a hydrocarbon with the chemical formula (C5H8)n (Treloar L. , 

2009).  The typical molecular weight is approximately 350 000 u.  Natural rubber is in 

the form of small particles (0.1 to 1 µm) in a water-based solution with rubber accounting 

for approximately 35 percent.  The rubber particles would aggregate if not for a protein 

coating.  The rubber is obtained from the latex by removing the water or by acid 

precipitation; the latter produces a more pure rubber.  Elastomer generally refers to 

synthetic materials with properties similar to rubber. 

The properties of rubber stem from the molecular structure of the material.  As an 

example, double bonds between carbon atoms in the continuous hydrocarbon chain react 

with sulfur or other reagents during vulcanization.  This process creates links between the 

hydrocarbon chains.  The double bonds are also the sites at which material degradation 

initiates.  A raw rubber that has not been vulcanized may exhibit mechanical properties 

similar to vulcanized rubber for short time duration deformations as a result of 

entanglements in the hydrocarbon chains.  If a non-vulcanized rubber is loaded for an 

extended period of time the entanglements will break down resulting in stress relaxation 

and creep. 

Rubber and similar elastomeric materials are capable of large deformations before 

ultimate failure.  Ultimate strain can be as high as 500 to 1000 percent.  Stress-strain or 

force-displacement curves for rubber specimens are generally quite non-linear with no 

constant value for Young’s modulus.  A constant Young’s modulus may be applied for 

very small deformations in which case the value can be 5 orders of magnitude smaller 

than Young’s modulus for steel.  Rubber and similar elastomers also exhibit interesting 

thermodynamic properties.  There are two thermoelastic effects observed by Gough and 

Joule in the 19
th

 century: 1) rubber contracts upon heating when under a constant tensile 

load and 2) rubber emits heat when loaded (Treloar L. , 2009).  This heat emission is 

associated with the hysteresis effects rubber exhibits with cyclic loading. 

There are two contributors to the mechanical behaviour of rubber materials: elastic and 

hysteresis (non-reversible) effects.  If hysteresis effects are observed the stress-strain 
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curve will be different for loading and unloading.  The earliest strain energy density 

phenomenological rubber material models did not account for hysteresis effects 

commonly observed for rubbers with additional ingredients like sulfur or black carbon 

(Charlton D, 1993).  However, natural gum rubbers have less significant hysteresis 

effects and can be better modelled using a strain energy density function.  Ingredients like 

sulfur or black carbon can significantly alter the molecular structure.  These changes in 

the molecular structure can result in a relatively high sensitivity to temperature, 

environment, strain rate, loading history, and strain magnitude.  When material samples 

are tested to failure the data may not be reproducible due to the variability in defects. 

Two methods are commonly used to model the mechanical characteristics of rubber 

materials.  The statistical thermodynamics method arises from the observation that rubber 

in a natural state is highly irregular but as it is deformed in tension the rubber molecular 

networks become more structured and the entropy is reduced (Charlton D, 1993).  

However, this approach is only accurate up to approximately 50% strain (Shaw M, 1988).  

Most rubber material models are based on the phenomenological approach: observation 

and mathematical description of mechanical behaviour.  In these models rubber is 

assumed to be isotropic with random orientation of molecules in the non-deformed 

condition.  These assumptions of isotropy allow the use of the strain energy density 

function.  This approach, the use of a strain energy density function, is used due to its 

capability to model non-linear elastic deformation.  Rubber material models commonly 

formulate this energy as a function of strain tensor invariants or stretch ratios.  Stretch 

ratios are calculated as shown by Equation 11 where L0 is the original length of the 

specimen and L = L0 + δ where δ is the elongation. 
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Mooney (Mooney, 1940) developed a phenomenological material model based on 

assumptions that rubber is incompressible (ie. constant volume), isotropic when 

unstrained, and consistent with Hooke’s law for simple shear.  The Mooney strain energy 
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function is given by Equation 12 where C1 and C2 are constants.  Rivlin (Rivlin, 1956) 

extended Mooney’s work by considering the symmetry of the strain energy function with 

respect to the stretch ratios as required by isotropy. Many implementations of this 

material model use the strain energy function given in Equation 16 where Cij are 

constants. 
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A particularly important characteristic of rubber is the near incompressibility.  The 

assumption of incompressibility results in a value of unity for the third stretch ratio 

invariant (Equation 15).  Incompressible materials undergo no change of volume when 

loaded and correspondingly have a Poisson’s ratio of approximately 0.5, the upper limit 

on Poisson’s ratio.  This upper limit can be observed for isotropic elastic materials by 

considering Hooke’s law as shown by Equation 17.  A Poisson’s ratio of 0.5 results in 

singularities when using the stress-strain constitutive equations for isotropic elastic 

materials as shown in equation 18. 
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Finney and Kumar (Finney R, 1988) have published a guide to finding the parameters of 

the Mooney-Rivlin, Ogden, Peng, and Peng-Landel material models.  They show that the 

Mooney-Rivlin material strain energy density function can be manipulated to obtain a 

relationship between engineering stress and stretch ratio for material in simple tension 

(Equation 19).  This relationship can be rearranged as shown to obtain the equation of a 

straight line where c2 is the slope and c1 is the y-intercept.  These quantities can be 

obtained from a simple tensile test provided the linear relationship is a suitable 

representation.  Similar expressions for the Ogden material model (Equation 21) are 

shown below in Equations 22, 23, and 24. 
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The principal stretch ratios, as shown in Equations 25 - 27, can be derived by considering 

the volume of a body to be constant.  For a simple shape like a cube uniaxial tension will 

result in elongation (δ1) along one axis while along the other principal axes the 

dimensions of the body (initial edge length is denoted L) will decrease by equal amounts 

(δ2).  Therefore, the volume, which is constant, is equal to L
3
 or (L+δ1) ∙ (L-δ2) ∙ (L-δ2).  

Taking the quotient of these two alternative expressions for the (constant) volume must 

yield unity.  The relationship λ∙λ2∙ λ2 =  λ∙ λ2
2
=1 or λ2 = λ3 = λ

-0.5
 is then obtained where λ 

is the stretch ratio along the axis of loading and λ2 and λ3 are the stretch ratios for the 
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other 2 orthogonal axes.  Different values for the variable ‘a’ yield the principal stretch 

ratios for different material characterization processes.  For simple tension or 

compression a=0.5.  For planar tension (pure shear) a=0 and for equibiaxial tension a=1.  

 

                                                                  

                                                                 

                                                             

 

2.5 Mullins’ Effect 

The Mullin’s effect is the asymptotic softening of vulcanized polymers observed with 

cyclic loading (Mullins, 1969).  Depending upon the specific material and the application 

it may be important to consider this material behaviour. One of the earliest publications 

on this phenomenon was by Holt (Holt, 1931) in which it was found that a vulcanized 

natural rubber exhibited a progressive decrease in stiffness with cyclic loading as well as 

a lack of complete recovery. Mullins advised that after three or four loading and 

unloading cycles of tire tread rubber decreases in stiffness were not significant. 

Additionally, this researcher observed that material recovery was more rapid at higher 

temperatures. Hysteresis is also affected by cyclic loading with findings by Hock & 

Bostroem (Hock L, 1926) that energy absorption decreased with cyclic loading to a 

constant level of stress with increasing strains due to material softening. 

 

2.6 Temperature Dependency 

The theory that the deformation of rubber consists of rearranging long, tangled molecules 

(known as the kinetic theory) implies that the stress at a given strain is proportional to the 

absolute temperature (Treloar L. , 2009).  For large strains this is generally observed but 

for small strains the opposite can occur (up to the thermoelastic inversion point).  

Hysteresis is also predicted by the kinetic theory since external work does not increase 
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internal energy as a result of straining. At sufficiently low temperatures molecular motion 

is inhibited such that the material is very stiff and brittle and can be considered a glass 

(Dick, 2001). 

 

2.7 Hyperelastic Material Models in LS-DYNA 

There are several material models for hyperelastic materials in LS-DYNA ranging in 

complexity and capability.  Several hyperelastic material models in LS-DYNA require 

only uniaxial stress-strain or force-displacement data to determine material model 

parameters (MAT 027, 031, 077, 181, & 183).  However, it is generally recommended 

(Kadlowec J, 2003) (Charlton D, 1993) that material model parameters be determined by 

several different types of mechanical testing including tension, compression, and pure 

shear testing.  The accuracy of any material model is highly dependent on the quality of 

the material model data.  Finney and Kumar (Finney R, 1988) tested four material models 

(Mooney-Rivlin, Ogden, Valanis and Landel, and Peng-Landel) and found that the Ogden 

material model (MAT 077_O in LS-DYNA) was the most accurate model performing 

well over a large range of strains (0 to 500%).  However, a superior choice within LS-

DYNA may be MAT_181 which uses a tabulated Ogden strain energy function and can 

replicate experimental data essentially verbatim since it fits the strain energy function 

piecewise.  It also simplifies the modeling of strain rate sensitivity.  Additionally, there 

are options with this model which can account for hysteresis and failure. 

MAT_006 (MAT_VISCOELASTIC) models viscoelastic behaviour and can be applied 

to beams, shells, and solids (viscoelasticity is the dependency of stress and strain on time) 

(LSTC, 2007).  The term viscoelasticity is derived from considering the material to be a 

combination of a Hookean elastic solid and a Newtonian viscous fluid.  In MAT_006 the 

deviatoric stress tensor is a function of time.  Inputs to the material model that control 

this time dependency are the short and long time shear moduli and a decay constant.   

MAT_007 (MAT_BLATZ-KO_RUBBER) is a simple two parameter (shear modulus and 

density) model for rubber.  Poisson’s ratio is fixed at 0.463. Stress is a function of the 

shear modulus, Poisson’s ratio, and change in volume. 
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MAT_027 (MAT_MOONEY-RIVLIN_RUBBER) is a four parameter model for rubber. 

Inputs to the model include mass density, Poisson’s ratio (between 0.49 and 0.5 

recommended), and two parameters A & B.  This material model is based on the 

phenomenological material models of Mooney and Rivlin in which the constitutive 

equations consist of a function where strain energy is dependent on strain invariants.  In 

MAT_027 the constants A and B can be input directly or load displacement data from a 

uniaxial mechanical test can be input from which the solver will determine the constants 

A and B.  However, the low number of parameters will limit the response that can be 

captured.  This may limit the usefulness of this material model. 

MAT_031 (MAT_FRAZER_NASH_RUBBER_MODEL) is a 10 parameter rubber 

material model.  These parameters consist of mass density, Poisson’s ratio (between 0.49 

and 0.50 suggested), and 8 coefficients of a strain energy density function dependent on 

strain invariants.  These coefficients can be input directly.  Alternatively, load-

displacement data from a uniaxial test can be input from which the solver will determine 

the coefficients.  Other options in this material model include maximum and minimum 

strain limits. The strain energy function is given in Equation 28. 

 

(Equation 28) 

MAT_076 (MAT_GENERAL_VISCOELASTIC) is a viscoelastic material model which 

can account for the effects of temperature on viscoelasticity through Arrhenius and 

Williams-Landau-Ferry shift functions.  The time dependency of the stress is 

implemented through a 6 term Prony series where each term consists of an exponential 

where the units are determined by a shear modulus and the exponent is dependent on time 

which is scaled by a decay factor.  A similar Prony series exists for defining volumetric 

stress relaxation. MAT_175 (MAT_VISCOELASTIC_THERMAL) is another form of 

this model that can be combined with a thermal material model. 

MAT_077_H (MAT_HYPERELASTIC RUBBER) is based on a Mooney-Rivlin type 

material model where the constitutive equations for stress and strain are a function of the 
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strain energy density which is dependent on strain invariants.  The LS-DYNA 

implementation adds a linear viscoelasticity model.  The strain energy density function is 

a polynomial with 6 coefficients that can be input directly or determined by the solver 

through input of load-displacement data from mechanical material testing (uniaxial only). 

MAT_077_O (MAT_OGDEN_RUBBER) is similar to MAT_077_H but uses the Ogden 

form of the strain energy density function. 

MAT_127 (MAT_ARRUDA_BOYCE_RUBBER) is an Ogden strain energy functional 

based model which only requires the user to specify the bulk modulus, the shear modulus, 

and the number of statistical links between hydrocarbon chains.  The LS-DYNA 

implementation includes an optional linear viscoelasticity model. 

MAT_181 (MAT_SIMPLIFIED_RUBBER/FOAM) is a material model for rubbers and 

foams which is unique (among rubber models) in allowing multiple load-displacement 

curves (at different strain rates) to be input directly to account for strain rate effects. 

These load-displacement curves must be uniaxial stress-strain or force-displacement data.  

If this material model is used with foams a Poisson’s ratio must be provided by the user.  

Other material model parameters include: mass density, linear bulk modulus, shear 

modulus for frequency independent damping, limit stress for this damping, and material 

failure parameters. MAT_183 (MAT_SIMPLIFIED_RUBBER _WITH_DAMAGE) is 

similar to MAT_181 but allows unloading curves to be specified which allows for the 

modeling of hysteresis due to internal energy dissipation. 

 

2.8 Solid Element Formulations in LS-DYNA 

The finite element code LS-DYNA offers the user a wide-ranging selection of element 

formulations. For this research solid hexahedron element formulations 1, 2, 3, and 41 

may be suitable.  Element formulation 1 is an under-integrated constant stress element. 

Element formulation 2 is a fully integrated element but with selectively reduced 

integration for shear stresses.  Element formulation 3 is fully integrated with 8 nodes 

visible to the user as well as rotational degrees of freedom.  Internally to the software this 

element has mid-span nodes from which the nodal rotations are calculated.  Element 
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formulation 41 is a mesh-free or element free Galerkin (EFG) formulation.  Element 

formulation 41 may also be used with an initial mesh of tetrahedrons. 

Additionally, there are a number of element formulations specifically for tetrahedron 

elements available to a user of LS-DYNA.  Formulations potentially suitable for this 

research include: 4, 10, 13, 16, and 17.  Element formulation 4 is a selectively reduced 

integration element with nodal rotations (mid-span nodes internal to the code and not 

visible to the user).  Element formulation 10 is a one point integration element.  A similar 

element specifically designed for nearly incompressible materials is element formulation 

13.  Element formulations 16 and 17 are tetrahedron element formulations with 10 nodes 

visible to the user. The number of integration points can be controlled by the user through 

the keyword *CONTROL_SOLID. 

 

2.9 Locking 

The structural finite element method can suffer from a problem known as locking which 

commonly appears as two types: shear locking and pressure locking.  Shear locking arises 

with certain element formulations and large aspect ratios whereas pressure locking occurs 

with nearly incompressible materials.   Shear locking can be easily demonstrated for an 

Euler-Bernoulli beam element (Reddy, 1993).  If Lagrange interpolation is used 

(Equations 29 and 30) the displacement and rotation fields are of the form in Equations 

31 and 32 where xA denotes the axial position (x axis) of the left end of the element, xB 

denotes the right end, and h is the length of the element.  Considering the left and right 

ends of the element (x=xA and x=xB, Equation 33) it can be shown that the rotation field 

is constant.  However, if the rotation field is constant the bending energy is zero as shown 

in Equation 34. 
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Pressure locking is associated with Poisson’s ratio approaching 0.5 and the use of solid 

elements.  Under these conditions the number of constraints is equal to the product of the 

number of elements and the number of Gauss (integration) points used for each element 

(Cook, 1995).  A penalty matrix (relatively large stiffnesses associated with violating 

constraints) can be separated from the element derived stiffness matrix.  If the penalty 

matrix is not singular pressure locking occurs. 

 

2.10 Oberkampf-Trucano (OT) Error Metric 

Researchers in the Uncertainty Estimation Department of Sandia National Laboratories 

have proposed error metrics to be used to validate numerical models with respect to 

experimental data (Oberkampf W, 2002).  These error metrics, given in Equations 29 and 

30, ideally compare two sets of data over a domain rather than simply comparing discrete 

data points such as peak load or peak displacement.  These specific error metrics 

approach zero when the relative error is large and approach unity with minimal relative 

error. 
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2.11 American Society for Testing and Materials (ASTM) Standards 

There are several ASTM standards relevant to mechanical testing of hyperelastic 

materials.  Procedures for measurement of dimensions for rubber specimens are outlined 

in standard D3767-03 (ASTM International, 2008).  Standard D3183-10 (ASTM 

International, 2010) covers standard practices for preparation of rubber specimens for test 

purposes.  Standard D575-91 (ASTM International, 2012) consists of standard test 

methods for obtaining rubber properties in compression.  Standard D412-06a (ASTM 

International, 2009) covers standard simple tension test methods for vulcanized rubber 

and thermoplastic elastomers. Each standard is discussed in greater detail below. 

ASTM standard D3767-03 (measurement of dimensions) consists of 7 procedures: A 

through E. Specimens with length, width, thickness, or diameters less than 30mm (1.2in) 

are measured with a micrometer as per procedure A.  A suitable device is depicted in 

procedure A in Figure 1 of standard D3767.  One important aspect of the device depicted 

and described is the ability to control the forces applied to the specimen (and therefore 

the deformation) by the measuring device.  Secondary procedures (within procedure A) 

provide guidance for measuring specimens with irregular, convex, or concave surfaces 

and flexible cellular materials.  Procedure B applies to specimens with dimensions of 

length, width, thickness, diameter, and circumference from 30 to 100mm (1.2 to 4in).  

Specimens with dimensions of length, width, thickness, diameter, and circumference over 

100mm can be measured with a rule or tape graduated to the nearest 1mm as per 

procedure C.  Procedure D applies to soft, thin materials measured optically.  Procedure 

E is used to measure inner diameter/circumference using a plug gage. 

Standard D3183-10 provides guidance for preparation of specimens for material testing.  

If specimens cannot be obtained from the product being tested and rubber sheets can be 

molded, standard thicknesses are suggested.  Processes and equipment are also suggested 

for cutting and buffing the material.  Standard D575-91 (test methods for rubber 

properties in compression) consists of two test methods: A and B.  With test method A 

the standard specimen is 12.5±0.5mm thick with a diameter of 28.6±0.1mm.  

Compressive forces are applied and removed in three successive cycles where the first 

two cycles condition the specimen.  Sandpaper is to be placed between the platens of the 
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testing machine and the specimen.  The deflection rate should be 12±3 mm/min (0.5±0.1 

in/min).  Test method B is intended for material characterization with a constant force 

testing apparatus.  The force is applied for 3 seconds at which time the displacement is 

measured. 

Standard D412-06a (standard test methods for rubber – tension) covers procedures used 

to evaluate the tensile properties of vulcanized rubbers.  The standard consists primarily 

of two test methods: A & B.  The geometry of the specimen may be of the dumbbell 

shape (test method A), straight pieces of uniform cross section (A), or rings (B).  It is 

noted that straight specimens tend to fail in the grips.  Testing to failure may require 

specimens of the dumbbell shape.  The tensile testing machine employed should be 

capable of a displacement rate of 500±50 mm/min (20±3 in/min) for a total displacement 

of at least 750mm (30in).  For materials with low yield strains the loading rate can be 

reduced to as low as 5±0.5 mm/min.  The specimens are cut from rubber sheets of a 

thickness between 1.3 and 3.3mm using dies, designs of which are provided for the 

dumbbell geometry. 

 

Figure 5: ASTM tensile specimen die (ASTM International, 2009). 
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Table 1: Standard ASTM D412 Dumbbell Dies. 

Dimension Tolerance Die A Die B Die C Die D Die E Die F 

A (mm) ± 1 25 25 25 16 16 16 

B (mm) Max 40 40 40 30 30 30 

C (mm) Min 140 140 115 100 125 125 

D (mm) ± 6 32 32 32 32 32 32 

E (mm) ± 1 13 13 13 13 13 13 

F (mm) ± 2 38 38 19 19 38 38 

G (mm) ± 1 14 14 14 14 14 14 

H (mm) ± 2 25 25 25 16 16 16 

L (mm) ± 2 59 59 33 33 59 59 

W (mm) ± 0.05 12 6 6 3 3 6 

Z (mm) ± 1 13 13 13 13 13 13 

 

2.12 Split-Hopkinson Pressure Bar (SHPB) Material Testing 

In 1914 Bertram Hopkinson (Hopkinson, 1914) proposed a method to determine the 

pressure resulting from the impact of a projectile or by the detonation of explosives.  If a 

projectile is directed to impact the end of a metal bar a pressure (stress) wave is induced 

to travel through the bar.  Over the very brief duration of the impact the stress changes 

with time.  For a perfectly elastic bar the stress wave travels through the bar without 

being altered.  On the first pass through the bar this stress wave is purely compressive.  

As it reaches the end of the bar it is reflected back as a tensile wave and the stress state at 

a given point in the bar can be a combination of the compressive stress wave and the 

reflected tensile stress wave.  If the end of the bar is cut off and replaced with a thin film 

of grease to hold it in place the compressive stress wave will be transmitted across this 



28 
 

joint.  However, a significant tensile stress wave will not be transmitted.  The cut off end 

will be propelled away from the original bar and can be caught to measure its momentum.  

In the original method proposed by Hopkinson the cut off end of the bar varies in length 

to capture multiple data points. 

However, there are serious deficiencies of the Hopkinson method that outweigh the 

advantages stemming from the simplicity.  It is assumed that the pressure wave is evenly 

distributed over the cross section of the bar.  However, this is often not the case when the 

pressure bar method is used to determine pressure time data for a bullet impacting the end 

of the bar where the diameter of the bullet is considerably smaller than the diameter of 

the bar (Davies, 1948).  The original method by Hopkinson gives a pressure-time integral 

for each length of cut off bar.  Additionally, these integrals are taken with respect to 

different, random time intervals for each length of cut off bar (Kolsky, 1949).  With 

Hopkinson’s original method the quantities obtained were: 1) maximum amplitude of the 

pressure and 2) the time duration over which pressure exceeded a certain magnitude.  

However, the original method also assumes that the stress wave is not significantly 

distorted as it travels through the bar.  This is only true when the pulses have a large 

wavelength with respect to the diameter of the bar and there are no sudden changes in 

pressure.  The joint also introduces error and prevents measurement of small pulses. 

Davies (Davies, 1948) refined the Hopkinson pressure bar by using a continuous bar and 

measuring the displacement of the free end using a parallel plate condenser (condenser 

microphone).  The use of the condenser allowed continuous pressure-time data to be 

acquired. Kolsky (Kolsky, 1949) was one of the first researchers to use an apparatus 

based on a Hopkinson pressure bar to study the mechanical behaviour of materials at high 

rates of strain.  As shown in Figure 6 the specimen is a thin disk placed between two 

sections of the pressure bar (the term split Hopkinson pressure bar originates with the 

work of Kolsky) within a close fitting steel collar.     
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Figure 6: Kolsky pressure bar apparatus. 

Other notable publications in the history of the split Hopkinson pressure bar (SHPB) 

include a publication by Bancroft (Bancroft, 1941) on wave dispersion in a cylinder and a 

publication by Hauser (Hauser, 1966) on the use of strain gauges rather than condenser 

microphones.  Strain gauges are now the most common sensors used in acquisition of 

data with a SHPB apparatus.  A third bar, known as a momentum bar, may be found after 

the transmission bar and is used in conjunction with a momentum trap to dissipate the 

kinetic energy of the apparatus.  Loading is sometimes achieved with a hydraulic cylinder 

by clamping the end of the input bar, deforming the bar with the hydraulic cylinder, and 

quickly releasing the clamp.  One method is to use a sintered metal clamp which is 

designed to fracture at a specific load thereby relieving the clamping force very rapidly. 

In a SHPB the loading of the input bar results in a longitudinal stress (or strain) wave that 

travels through the bar at the speed of sound (for the material from which the bar is 

made).  Three separate waves are referred to in the analysis of a SHPB: the incident pulse 

(generated by the impact and transmitted through the input bar essentially unaltered), the 

transmitted pulse (the portion of the incident pulse that is transmitted through the 

specimen and not reflected, measured in the output or transmission bar), and the reflected 

pulse (a portion of the incident pulse reflected back due to the difference in the 

impedance between the input bar and the specimen, measured at the input bar) (Weinong 

W Chen, 2011).  The impedance of the bar is given by Equation 31 where ABar is the 

cross sectional area of the bar, CBar is the speed of sound in the bar, ρBar is the density, 
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and EBar is the elastic modulus.  The pulse is again transmitted and reflected as it reaches 

the interface between the specimen and the output (transmission) bar.  However, the 

length of the specimen is very small when compared to the other longitudinal dimensions 

of the system.  The strain gauge on the input bar measures the reflected pulse and the 

strain gauge on the transmission (output) bar measures the transmitted pulse. 

                          √
    

    
     √                         

The most common implementation of the SHPB uses a striker bar propelled by a gas gun.  

This is the method employed in loading the SHPB for compressive material testing at the 

Politecnico di Torino campus in Vercelli, Piemonte, Italy.  The time duration of the pulse 

is determined by the material and length of the striker bar as shown by Equation 32 where 

TIncident is the time duration of the pulse, LStriker is the length of the striker bar and CStriker 

is the wave speed of the striker bar material.  The magnitude of the incident pulse, in 

terms of both stress and strain, can be calculated as shown in Equations 33 and 34 where 

vst is the speed of the striker bar immediately prior to impact.  These formulae can be 

used to design the SHPB material testing experiment as they impose an upper limit on the 

stress and strain in the specimen. 
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Figure 7: Split Hopkinson pressure bar. 

If it is assumed that there is no wave dispersion in the bar (the strain measured by each 

strain gauge is identical to the strain at the respective bar-specimen interface) the velocity 

at each end of the specimen can be related to the strains measured.  These Equations (35 

and 36) are given below where εIncident is the magnitude of the incident pulse in terms of 

strain, εReflected is the magnitude of the reflected pulse in terms of strain, εTransmitted is the 

magnitude of the transmitted pulse in terms of strain, v1 is the velocity at the input bar-

specimen interface, and v2 is the velocity at the specimen-output bar interface. 

       (                    )                                  

                                                            

The average engineering strain and engineering strain rate in the specimen can be 

calculated as shown in Equations 37 and 38 where ε is the average engineering strain and 

LSpecimen is the length of the specimen.  These equations also assume there is no wave 

dispersion.  The stresses at each end of the specimen can be calculated as shown in 

Equations 39 and 40 where σ1 is the stress at the input bar-specimen interface and σ2 is 

the stress at the specimen-output bar interface.  The SHPB method for high strain rate 

material testing assumes that the stress is uniform throughout the specimen.  With this 

assumption (σ1 = σ2) the incident pulse, reflected pulse, and transmitted pulse strains are 

related by Equation 41. 
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2.13 Split Hopkinson Pressure Bar Testing of Soft Materials 

Many publications exist on the subject of SHPB testing of soft materials including 

different hyperelastic materials.  W. Chen et al. (Chen W L. F., 2002) used an aluminum 

SHPB and a range of specimen aspect ratios and materials to study the feasibility of 

testing soft materials with a SHPB.  Their analysis began with a traditional SHPB with 

aluminum bars with diameters of 19mm.  The lengths of the striker, input, and output 

bars were 305, 1802, and 762 mm respectively.  Strain gauges were located 560mm from 

the input bar – specimen interface and 203 mm from the specimen – output bar interface.  

The diameter of the specimen was 12.7 mm.  A high speed camera was used to observe 

the deformation of the specimen and conclude that the specimen deformation was not 

homogeneous.  Furthermore, a very low load was transmitted through the specimen as 

determined by the minimal amplitude of the transmitted strain pulse.  Additionally, 

specimen failure occurred in the form of a large fracture.  Further experiments were 

performed with quartz crystal force transducers at the input bar – specimen and specimen 

– output bar interfaces.  The forces observed at the ends of the specimen were of 

significantly different magnitudes for all aspect ratios.  The error was reduced as the 

specimen length was reduced but still remained significant. 



33 
 

The authors then introduced pulse shaping.  Pulse shaping likely originated with Duffy et 

al. (Duffy J, 1971).  Duffy et al. used pulse shaping to smooth pulses generated by 

explosive loading of a torsional SHPB.  Pulse shaping is used to control the rate of 

change of the incident pulse.  A gradual build-up of the incident pulse aids in achieving 

stress equilibrium (or force equilibrium as studied by W. Chen et al.) and the reduction in 

high frequency components of the incident pulse limits the effects of wave dispersion.  

Pulse shapers can also assist in obtaining a constant strain rate.  Using pulse shaping and 

a specimen with a small aspect ratio (1.53 mm thickness, 12.7 mm diameter) W. Chen et 

al. (Chen W L. F., 2002) observed near perfect force equilibrium across an RTV 630 

silicon rubber specimen at a strain rate of 3200 s
-1

.  A low density polyurethane foam 

specimen was also utilized with force equilibrium observed at a strain rate of 1000 s
-1

. 

In another publication W. Chen et al. (Chen W Z. B., 1999) document the development of 

a SHPB for testing of low impedance materials.  This apparatus consisted of aluminum 

bars (identical dimensions to previously discussed publication) with a hollow 

transmission (output) bar (inner diameter: 16 mm) thereby increasing the magnitude of 

the transmitted strain.  Pulse shaping was also used to more gradually develop strain in 

the incident bar and in the specimen to aid in developing stress equilibrium across the 

specimen.  A small aluminum end cap was positioned between the specimen and the 

hollow transmission bar.  The specimen consisted of RTV 630 silicon rubber with an 

initial diameter of 12.7 mm and thickness ranging from 1.54 to 6.34 mm.  The strain rate 

varied with specimen thickness, strain rates of 7960, 6380, and 4480 s
-1

 were observed.  

The largest specimen did not produce satisfactory results as a result of poor dynamic 

stress equilibrium.  The 1.54 and 3.14 mm thickness specimens yielded similar, 

satisfactory results. 

Collaboration between researchers in Canada and China (Chen R, 2009) has produced a 

modified SHPB for soft materials at intermediate strain rates.  This apparatus consists of 

an 800 mm long, 25 mm diameter steel striker bar; a 12.5 mm diameter, 2.5 mm thick 

rubber pulse shaper; and 25 mm diameter 7075 aluminum input and output bars.  To 

achieve low strain rates the incident pulse length must increase such that incident and 

transmission bars must be very long to avoid overlapping pulses.  If the bars are not 
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sufficiently long and the pulses overlap, multiple strain gauges can be used to separate 

the pulses.  To avoid these difficulties the authors used a laser based device to measure 

the length of the specimen directly and from this data calculated the specimen strain.  To 

determine the stress in the specimen quartz crystal force transducers were positioned at 

both ends of the specimen.  The specimen consisted of a silicon foam rubber purchased 

from McMaster-Carr. Stress-strain curves were obtained for strain rates of 29, 63, 94, and 

177 s
-1

.  

Nie et al. at Purdue University (Nie X, 2009) have developed a split Hopkinson tension 

bar for dynamic tensile characterization of soft materials.  Their apparatus consists of a 

tubular striker concentric to a flanged incident bar.  The momentum of the striker is 

transferred to the incident bar when the striker impacts the flange.  To ensure 

repeatability the impact speed was higher than necessary: a momentum diversion bar was 

located adjacent to the incident bar (opposite the specimen) to immediately absorb a 

portion of the energy transferred to the incident bar by the striker.  The specimen 

(ethylene-propylene-diene monomer (EPDM) rubber) consisted of a tubular sample, 

shown to reduce inertial effects, clamped to the incident and transmission bars.  The 

stress-strain response of the tubular sample was compared with solid and hollow samples 

and a significant difference was observed in favour of the tubular sample.  Quartz crystal 

force transducers were used to ensure dynamic stress equilibrium of the sample.  Stress-

strain curves were obtained for strain rates of 1000 and 2000 s
-1

. 

Song et al. at Purdue University in Indiana (Song B S. C., 2008) have developed a long 

split Hopkinson pressure bar (LSHPB) for characterizing soft materials at intermediate 

strain rates. The LSHPB consists of 7075-T6 aluminum bars 19.05 mm in diameter with 

an overall length of 27.4 m including the 4.6 m gas gun.  Manufacturing limitations 

required the incident and transmission bars to each be separated into three segments each 

with a length of 3.66 m.  The overall length of the bars allows loading pulses with a long 

duration required for low to intermediate strain rates without pulse overlap.  Multiple 

strain gauges on the incident and transmission bars, which were not necessary since the 

pulses do not overlap, were used to assess wave propagation disturbances resulting from 

the joints.  Additionally, pulse shaping was used to eliminate the need for wave 
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dispersion correction and to benefit from other advantages of this technique including a 

more constant strain rate.  The apparatus was validated with a polymeric isocyanate 

(PMDI) rigid foam, the mechanical characteristics of which were also evaluated with a 

conventional material testing system (MTS).  The two apparatuses for material 

characteristic evaluation produced comparable results for similar strain rates. 

Song et al. (Song B G. Y., 2007) have also thoroughly investigated the effects of radial 

inertia in soft materials on the results of SHPB material testing.  When using a SHPB 

apparatus to investigate the mechanical properties of soft materials a significant local 

maximum with short duration occurs early in the stress time history.  The authors provide 

strong evidence that this stress spike is due to the radial inertia of the specimen and 

several methods to reduce this systematic error are discussed in the publication.  It was 

observed that radial inertia effects can be controlled through specimen geometry and 

initial acceleration.  Solid disk and annular ring specimen geometries were investigated 

with significant reductions in inertial effects with use of an annular ring.  Pulse shaping 

was also successfully used to limit the initial acceleration.  Another important topic in 

this publication, although not featured prominently, is the discussion of interface friction.  

With numerical simulation the authors found that interface friction did not affect the 

specimen response significantly.  All further numerical analyses assumed that the 

interfaces were frictionless.  

Zhao et al. (Zhao H, 1997) have documented the use of viscoelastic materials (polymers) 

in the construction of a SHPB.  Polymeric materials, with their reduced stiffness, density, 

and wavespeed with respect to metals are well suited for SHPB apparatuses for soft 

materials.  The authors recommend that polymeric SHPBs use bars with a large diameter 

due to the decreased stiffness of the material which may permit buckling of bars with a 

small diameter.  It is also noted that a striker bar consisting of a material with a higher 

impedance than the input bar would produce an incident pulse similar in profile to a 

staircase.  A striker bar with low impedance rebounds and produces an incident pulse 

with a low magnitude.  A polymeric striker bar will produce an incident pulse with a long 

wavelength with respect to the length of the striker and can therefore be shorter in length. 
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Chapter 3: Scope of Research 

 

The contribution of NVH isolators to the crash performance of the automobile has clearly 

been a topic of interest for Ford, Volvo, and Chrysler engineers. In the case of Ford 

existing research has focused on studying this contribution experimentally. Their 

published research is also dated and focuses on the development of methodologies for 

idealizing these isolators as a combination of springs and dampers. Consistent with key 

findings from Ford, publications by Chrysler engineers focused on the bolted connections 

between these isolators and the vehicle body. However, as this research evolved issues 

with numerical instabilities were observed as a result of the large deformations of the 

hyperelastic material. 

This research consisted of a thorough development of methodologies for finite element 

modeling of automotive noise and vibration isolators with a focus on the crashworthiness 

application. To ensure the comprehensiveness of this research every step in the modeling 

process including material characterization, material model selection, the development of 

finite element models, and experimental validation was included. At each step the 

crashworthiness application and its requirements were also considered. 
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Chapter 4: Methodology 

 

The methodology employed in this research consisted of three fundamental processes: 

material characterization, finite element modeling of a Chrysler powertrain suspension 

component, and model validation with respect to data from experimental characterization 

of this component.  This process is depicted in Figure 8.  Material characterization 

consisted of quasi-static and dynamic material characterization completed primarily by 

Chrysler engineers working with AXEL Products Physical Testing Services in Michigan.  

To have a thorough understanding of this process additional quasi-static material 

characterization was completed in a FIAT polymer laboratory.  To optimize the process 

of using the acquired material data, finite element models of the material characterization 

processes were developed to complete extensive parametric studies of modeling 

techniques including, but not limited to, material model selection and implementation.  

Once a thorough understanding of the fundamentals of hyperelastic material modeling 

had been developed, finite element models of a Chrysler powertrain suspension 

component were built and further parametric studies were completed to consider 

additional modeling parameters.  This research was concluded by experimental 

mechanical characterization of the powertrain suspension component under quasi-static 

and dynamic conditions and model validation with respect to the data acquired. 

 

Figure 8: Methodology roadmap. 
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4.1 Quasi-Static Material Characterization 

Static material characterization was completed in the FIAT Mirafiori polymer laboratory 

under the supervision of Paolo Chiappero and with the assistance and guidance from 

other staff in this laboratory.  The static material characterization process consisted of 

three test configurations: tensile, compressive, and shear testing.  Simple tension material 

characterization was completed consistent with ASTM standard D412 and simple 

compression consistent with D575.  Material testing specimens were extracted from three 

Chrysler RT platform engine/transmission mounts supplied by Chrysler (part number 

05273996AE).  Three ASTM D412 die D tensile testing specimens (dumb-bell type) 

were extracted from one engine/transmission mount.  This was consistent with ASTM 

standard D412 which recommends each test be completed three times to assess and 

ensure repeatability. 

Static and dynamic material characterization was also completed by Chrysler Technical 

Center (CTC) engineers in conjunction with AXEL Products Physical Testing services in 

Ann Arbor Michigan.  AXEL’s procedures included tensile, compression, pure shear, and 

equibiaxial tension material testing.  The data from this testing was compared to the data 

obtained in the FIAT laboratory with the goal of producing consistent results.  However, 

procedures may have varied particularly for the shear testing since there is no standard 

for this method of material characterization.  For tensile and compression testing non-

standard specimen sizes were used in the FIAT laboratory due to the geometrical 

restrictions resulting from the extraction of specimens from the Chrysler 

engine/transmission mount. 
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Figure 9: Removal of rubber segments to prepare quasi-static material characterization 

specimens (simple compression specimen preparation shown). 

The procedure for extracting specimens consisted of 5 steps: removal of the stamped steel 

brackets with a hacksaw (Figure 9); division of rubber portion to improve accessibility 

for future steps; removal of rubber with a sharp knife with a long, thin, and flat blade; 

dissection of rubber into pieces suitable for extracting the given specimen size; accurately 

reducing section thickness prior to specimen extraction; use of a die and a press to cut 

specimens.  As rubber segments were removed from the engine mounts the position of 

each piece of rubber was tracked by marking each piece and taking photographs as shown 

by Figure 9.  In this figure rubber is being extracted to prepare specimens for simple 

compression testing.  The notation indicated that this was engine mount #2 and 

compression specimens 1 through 4.  The thicknesses of rubber pieces extracted from the 

mount were finely controlled using a Fortuna leather scarfing or skiving machine (Figure 

10).  A piece of rubber with a non-uniform cross section was run through this device 

which reduces the irregular thickness to a highly controlled uniform thickness with a 

good surface finish.  This machine can also be used to extract slabs of a precise but 

minimal thickness; on each pass of a piece of material through the machine a thin layer is 

removed.  The thickness of this layer can be controlled and any material removed after 

the first pass through the machine is of a reasonably consistent thickness. 
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Figure 10: Fortuna leather skiving machine in FIAT Mirafiori polymer laboratory. 

All specimen dimensions were identified using an optical measurement system (optical 

comparator) in the FIAT polymer laboratory developed by Microtechnica (Figure 12).  

Specimens were placed on a platen directly between a lens and a light source.  The 

shadow is projected upon a screen with an increase in size due to the magnification of the 

lens.  There were 3 lenses to select from: 5X, 10X, and 20X.  The projected image was 

then measured using a ruler or a digital position readout similar to those found on milling 

machines.  The platform on which the specimen was placed could be translated and a 

point on the projection tracked to determine dimensions.  The specimen was also traced 

upon tracing paper so that it might be studied or digitized later.  Apparatuses consistent 

with Figures 2, 4, and 5 of ASTM standard D3767, an example of which is shown in 

Figure 11, were also used to quickly assess specimen thickness but with less precision.  

The nature of the projected image and the contact area of the device in Figure 11 make it 

difficult to clearly identify which is more accurate. 
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Figure 11: Mitotoyo measuring device consistent with ASTM standard D3767 for 

measuring thickness of rubber components with a specified force of compression. 

 

 

Figure 12: Microtechnica optical metrology system. 

Tensile, compression, and pure shear tests were performed with a Zwick/Roell Z020 

testing machine.  This testing machine is equipped with two cameras which were used to 

optically measure strain during tensile tests.  The strain is automatically calculated by 

Zwick Roell TestXpert proprietary software which is included with the testing apparatus.  
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Two different load cells were used in the course of this research, one for tensile tests and 

another for compression tests due to the different force magnitudes expected.  For tensile 

testing a Zwick Roell Xforce HP load cell with a nominal force capacity of 500 N was 

used (S/N 753 066).  For compression tests a Zwick Roell Xforce K load cell was used 

(nominal force of 20 kN, S/N 752 780). 

Planar tension (pure shear) and equibiaxial tension material characterization was 

completed by Chrysler engineers in conjunction with AXEL Products Physical Testing 

Services. The pure shear test is depicted in Figure 13. The specimen consists of a long 

and thin rectangular prism of material. In the undeformed state the specimen width must 

be at least 10 times the height and thickness which are commonly identical or determined 

by sample dimensions from which specimens are extracted. Pure shear specimens were 

prepared at the FIAT Mirafiori polymer laboratory but the testing was not completed. 

Specimens were 50mm x 5mm x 5mm. The equibiaxial tension test is shown in Figure 14 

followed by a drawing of the specimen in Figure 15. 

 

 

Figure 13: Pure shear (planar tension) material characterization. 
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Figure 14: Equibiaxial tension material characterization. 

 

 

Figure 15: Equibiaxial tension specimen dimensions. 



44 
 

4.2 Dynamic Material Characterization 

Dynamic material characterization was completed by AXEL Products Physical Testing 

Services. This material characterization consisted of simple tension and simple 

compression processes at different loading rates and using different specimen geometries 

to obtain desired strain rates. Split Hopkinson Pressure Bar material characterization was 

also partially completed at the DYNLab in the Vercelli campus of the Politecnico di 

Torino in Italy. The difficulties presented in the literature review for SHPB testing of soft 

materials resulted in challenges in obtaining high quality data. 

 

4.3 Finite Element Modeling of Quasi-Static Material Characterization 

Finite element models of the quasi-static material characterization procedures were 

developed as a simple assessment of modelling parameters including but not limited to 

material models.  These finite element models also ensured that the material data was 

implemented into the finite element code correctly both by the user and internally within 

the software.  Finite element models were developed for simple tension, simple 

compression, planar tension (pure shear), and equibiaxial tension material 

characterization procedures.  This process was critical in assessing the capabilities of 

various material models to accurately capture the response of a hyperelastic material with 

different loading configurations. 

 

4.3.1 Single Element Models 

The modeling portion of this research began with the creation of very simple models of 

single element in pure tension.  These models consisted of a single element with 

boundary conditions consisting of three planes of symmetry on three faces of a perfect 

cube sharing a vertex and prescribed displacement of one of the other faces in the normal 

direction.  Three different material models were compared: MAT 181 (Simple 

Rubber/Foam), MAT 77H (Hyperelastic), and MAT 77O (Ogden).  The engineering 

stress-strain input to these models was from simple tension tests completed at the FIAT 

polymer laboratory with ASTM standard D412 type D specimens and from material 
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testing completed for Chrysler by AXEL Products Physical Testing Services.  A critical 

analysis compared models with material model inputs of solely tensile engineering stress-

strain data or with uniaxial (tension and compression) stress-strain input. 

 

4.3.2 Simple Tension Finite Element Models 

After the very simple analyses of a single element more complex models of common 

material testing processes were developed.  The simple tension models consisted of 

specimen type D from ASTM standard D412.  Coarse and fine discretizations were 

constructed using both hexahedron and tetrahedron elements.  The coarse meshes had an 

approximate average element edge length of 2.5 mm; the respective length for the fine 

meshes was 1 mm.  Hexahedron element formulations 1, 2, and 3 in LS-DYNA were 

compared as were tetrahedron element formulations 4, 10, 13, 16, and 17.  Formulations 

1, 10, and 13 are under-integrated; formulations 2, 4, 16, and 17 use selectively reduced 

integration; and formulation 3 is fully integrated with additional degrees of freedom: 

nodal rotations.  Initially MAT 181 Simple Rubber/Foam was employed with stress-strain 

data obtained by Chrysler through AXEL Physical Testing Services.  As shown in Figure 

16, one end of the specimen was fixed using nodal constraints applied with the keyword 

*BOUNDARY_SPC_SET.  A node set was used to create a nodal rigid body at the 

opposite end of the specimen using the keyword 

*CONSTRAINED_NODAL_RIGID_BODY_SPC. This rigid body was translated using 

*BOUNDARY_PRESCRIBED_MOTION_RIGID_BODY.  Meshing was completed, 

where possible, consistent with Chrysler protocols which can be found in Table 3 in 

which the mesh quality of the models is also tabulated.  The quality of each mesh was 

assessed in ANSA. In this software the warping metric is calculated for each face of a 

solid element and the least optimal value is assigned to the element. 
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Table 2: Chrysler meshing guidelines and simple tension model quality, tetrahedron 

meshes. 

Mesh Characteristic Limit Coarse mesh Refined mesh 

Critical length (mm) N/A 1.41 0.570 

Aspect ratio 8 (max) 6.99 5.21 

Skewness 0.5 (max) 0.971 0.808 

Min. angle, tetrahedrons 30° 14.20° 20.90° 

Max. angle, tetrahedrons 120° 156.7° 141.4° 

 

 

Table 3: Chrysler meshing guidelines and simple tension model quality, hexahedron 

meshes. 

Mesh Characteristic Limit Coarse mesh Refined mesh 

Critical length (mm) N/A 1.5 0.57 

Aspect ratio 8 (max) 3.8 3.8 

Warping 10 0.0065 0.0065 

Jacobian 0.6 0.662 0.648 

Min. angle, pentahedrons 30° 50.4° N/A 

Max. angle, pentahedrons 120° 90.0° N/A 

Min. angle, hexahedrons 30° 48.4° 57.7° 

Max. angle, hexahedrons 140° 126.1° 132.1° 
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Figure 16: Simple tension (ASTM D412 Type D) finite element model, coarse mesh. 

 

 

Figure 17: Engineering stress-strain input to MAT 181 for finite element models of quasi-

static material characterization processes. 
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4.3.3 Simple Tension Finite Element Models with Automatic Tetrahedron 

Remeshing 

In an attempt to use the automatic 3D solid tetrahedron remeshing capabilities of LS-

DYNA, models of the simple tension material characterization process were developed 

compatible with the requirements of this tool.  Building a model compatible with 

automatic tetrahedron remeshing can be challenging since node and element numbering 

change. Contact algorithms must use part numbers or part sets and data output is 

restricted since node sets cannot be used for nodes for which the node numbers may 

change.  The methodology employed for this model was to use rigid bodies to apply 

boundary conditions (constraints and prescribed motion).  As shown in Figure 18, a 

single deformable element was a separate part and remeshing for this part was not 

activated allowing the output of nodal displacements and/or element stress and strain.  

The rigid bodies and deformable parts were connected using a tied contact algorithm 

(*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_ TIEBREAK) with the 

default OPTION=1 for which nodes initially tied by contact are permanently connected. 

Table 4: Chrysler meshing guidelines and mesh quality for simple tension model with 

automatic re-meshing 

Mesh Characteristic Limit Coarse mesh 

Critical length (mm) N/A 1.41 

Aspect ratio 8 (max) 6.99 

Skewness 0.5 (max) 0.971 

Min. angle, tetrahedrons 20° 14.2° 

Max. angle, tetrahedrons 120° 156.7° 

 



49 
 

 

Figure 18: Simple tension finite element model compatible with automatic tetrahedron 

remeshing. 

 

4.3.4 Simple Compression Finite Element Models 

Simple compression models were based upon the specimen in ASTM standard D575: a 

cylinder with a diameter of 28.8 mm and a thickness of 12.5mm.  Fine and coarse meshes 

of hexahedron and tetrahedron elements were constructed with average element edge 

lengths of 5 mm for coarse meshes and 1 mm for the fine discretizations.  The same 

element formulations employed for the simple tension models were used in these 

analyses.  As shown in Figure 19, three planes of symmetry were considered to increase 

the computational efficiency and provide constraints.  If planes of symmetry were not 

considered and the specimen was not constrained, rigid body translation in a radial 

direction occurred.  Hourglass control type 7 (QM = QB = QW = 0.01) was used with 

element formulation 1.  Nodal rigid bodies were not used here since this would restrict 

the lateral expansion of the specimen. 
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Figure 19: Simple compression finite element model, coarse mesh. Three planes of 

symmetry labeled 1, 2, and 3. 

 

Table 5: Chrysler meshing guidelines and simple compression model quality, tetrahedron 

meshes. 

Mesh Characteristic Limit Coarse mesh Refined mesh 

Critical length (mm) N/A 3.64 1.18 

Aspect ratio 8 (max) 3.02 4.38 

Skewness 0.5 (max) 0.506 0.760 

Min. angle, tetrahedrons 30° 32.5° 19.0° 

Max. angle, tetrahedrons 120° 126° 148° 
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Table 6: Chrysler meshing guidelines and simple compression model quality, hexahedron 

meshes. 

Mesh Characteristic Limit Coarse mesh Refined mesh 

Critical length (mm) N/A 3.64 1.18 

Aspect ratio 8 (max) 1.29 1.77 

Warping 10 ~ 0 ~ 0 

Jacobian 0.6 0.817 0.794 

Min. angle, pentahedrons 30° 52.0° 47.7° 

Max. angle, pentahedrons 120° 90.0° 90.0° 

Min. angle, hexahedrons 30° 67.8° 61.5° 

Max. angle, hexahedrons 140° 118° 126.2° 

 

4.3.5 Planar Tension (Pure Shear) Finite Element Models 

The planar tension (pure shear) specimen was modeled based upon the specimen used in 

the FIAT Mirafiori polymer laboratory.  This specimen is a 5 mm x 5 mm x 50 mm 

rectangular prism bonded (using an adhesive) on two opposite 5 mm x 50 mm faces to 

aluminum blocks through which a tensile load is applied.  A state of pure shear exists in 

this specimen on a plane at 45 degrees to the bonded surfaces.  The finite element model 

of this material characterization procedure was very similar to the simple tension model 

with the exception of the geometry.  All of the nodes on one of the faces adhered to an 

aluminum fixture were fixed to not permit translation or rotation.  The nodes on the 

opposite face were specified to be a nodal rigid body with only one degree of 

translational freedom.  A prescribed motion was then applied to this nodal rigid body.  A 

model with a coarse mesh is depicted in Figure 20.  Nodal displacement data was 

extracted for two nodes of the specimen to approximate the laser displacement transducer 

used by AXEL to acquire the strain/time data.  This model was validated with respect to 

data provided by AXEL; correspondingly the method of acquiring the numerical 

strain/time history was chosen to be consistent with their testing methodology.  The 

specimen geometry was chosen to be consistent with the FIAT procedure due to 

familiarity with their methodology. 
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Figure 20: Planar tension (pure shear) finite element model, coarse mesh. 

 

Table 7: Chrysler meshing guidelines and planar tension (pure shear) model quality, 

tetrahedron meshes. 

Mesh 

Characteristic 
Limit 

Coarse 

mesh 

1
st
 level of 

mesh 

refinement 

2
nd

 level of 

mesh 

refinement 

3
rd

 level of 

mesh 

refinement 

Critical length 

(mm) 
N/A 1.77 0.783 0.457 0.195 

Aspect ratio 8 (max) 4.24 4.25 6 5.49 

Skewness 
0.5 

(max) 
0.863 0.736 0.929 0.848 

Min. angle, 

tetrahedrons 
30° 20.8° 18.8° 17.5° 16.1° 

Max. angle, 

tetrahedrons 
120° 139° 147° 153° 154° 
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Table 8: Chrysler meshing guidelines and planar tension (pure shear) model quality, 

hexahedron meshes. 

Mesh 

Characteristic 
Limit 

Coarse 

mesh 

1
st
 level of 

mesh 

refinement 

2
nd

 level of 

mesh 

refinement 

3
rd

 level of 

mesh 

refinement 
Critical length 

(mm) 

N/A 2.5 1.25 0.625 0.3125 

Aspect ratio 8 (max) 1 1 1 1 

Warping 10 0 0 0 0 

Jacobian 0.6 1 1 1 1 

Min. angle, 

pentahedrons 

30° N/A N/A N/A N/A 

Max. angle, 

pentahedrons 

120° N/A N/A N/A N/A 

Min. angle, 

hexahedrons 

30° 90° 90° 90° 90° 

Max. angle, 

hexahedrons 

140° 90° 90° 90° 90° 

 

4.3.6 Equibiaxial Tension Finite Element Models 

The finite element model of the biaxial tension material characterization procedure was 

constructed to be consistent with the testing completed by AXEL.  This method of 

material characterization was not completed in the FIAT polymer laboratory.  One 

challenge would have been the extraction of a suitable specimen from the engine mounts 

supplied by Chrysler.  The finite element model is depicted in Figure 21.  Similar to 

previous models nodal rigid bodies were created where boundary conditions were 

prescribed to the model.  These rigid bodies were constrained to not allow translation in 

the z-direction or any rotation.  Rigid body displacements in the x and y directions were 

calculated for each nodal rigid body to obtain purely radial translations of each rigid 

body.  Strains were measured near the origin where the two planes of symmetry met by 

outputting the displacements of two neighbouring nodes.  This is consistent with the laser 

displacement transducer used by AXEL. 
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Figure 21: Equibiaxial tension finite element model, coarse mesh. 

Table 9: Chrysler meshing guidelines and equibiaxial tension model quality, tetrahedron 

meshes. 

Mesh 

Characteristic 
Limit 

Coarse 

mesh 

1
st
 level of 

mesh 

refinement 

2
nd

 level of 

mesh 

refinement 

Critical length 

(mm) 
N/A 1.23 0.591 0.283 

Aspect ratio 8 (max.) 4.09 4.59 6.71 

Skewness 

0.5 

(max.) 
0.751 0.793 0.929 

Min. angle, 

tetrahedrons 
30° 24.9° 22.6° 13.6° 

Max. angle, 

tetrahedrons 
120° 132° 148.6° 157° 
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Table 10: Chrysler meshing guidelines and equibiaxial tension model quality, hexahedron 

meshes. 

Mesh 

Characteristic 
Limit 

Coarse 

mesh 

1
st
 level of 

mesh 

refinement 

2
nd

 level of 

mesh 

refinement 

Critical length 

(mm) 
N/A 1.23 0.591 0.283 

Aspect ratio 8 (max.) 2.34 1.92 2.30 

Warping 10 (max.) ~ 0 ~ 0 ~ 0 

Jacobian 0.6 0.457 0.591 0.543 

Min. angle, 

pentahedrons 
30° N/A 47.1° N/A 

Max. angle, 

pentahedrons 
120° N/A 90° N/A 

Min. angle, 

hexahedrons 
30° 39.8° 42.6° 41.2° 

Max. angle, 

hexahedrons 
140° 161° 140.1° 138° 
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4.3.7 Single Element Models to Validate Strain Rate Sensitivity Capabilities of  

MAT 181 

Single element models were used to assess the capability of MAT 181 to model the strain 

rate sensitivity of the material.  This capability requires uniaxial stress-strain data be 

input in a tabular format with each stress-strain data set associated with a strain rate.  This 

strain rate can be an engineering strain rate or a true strain rate. As shown in Figure 22 

and Figure 23 the strain rate sensitivity data provided by AXEL contained 

inconsistencies.  In tension the behaviour of the material was reasonable with the only 

slight discrepancy at a strain of approximately 125% where the stress, at this strain, was 

higher for the two lowest strain rates with respect to the stress associated with the 3
rd

 

largest strain rate (1 1/s).  The simple compression data was less ideal.  The stiffest 

response (and the highest stress for a given strain) at large strains (>70% compressive) 

was associated with the 2
nd

 lowest stain rate (0.1 1/s).  For strains less than 70% this 

stress-strain curve was also unexpectedly stiff.  The stress-strain curve associated with 

the lowest strain rate (0.01 1/s) was also surprisingly stiff but only at very large strains. 

 

 

(a) 
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(b) 

Figure 22: AXEL simple tension data, rubber C0E, strain rate sensitivity analysis,            

(a) small strains, (b) complete stress-strain response. 

 

 

(a) 
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(b) 

Figure 23: Simple compression AXEL data, strain rate sensitivity analysis, (a) small 

strains, (b) full stress-strain curves. 

 

The relatively small increase in stiffness with increasing strain rate and the inconsistent 

results resulted in a decision to select two stress-strain curves, one at a low strain rate and 

the other at a high strain rate.  The lowest and highest strain rate data sets were selected 

(0.01 and 100 1/s). However, to eliminate the intersection between the two curves, stress 

strain data for compressive strains larger than 70% were eliminated for both sets of data.  

At this level of strain there is an approximately constant offset between the two curves.  

The input data for LS-DYNA is shown in Figure 24. 
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Figure 24: LS-DYNA uniaxial stress-strain input. 

Single element models were developed to validate the material model’s ability to capture 

strain rate sensitivity.  Single element models were used since the strain rate of 0.01 1/s 

requires a termination time on the order of 100 seconds to achieve a strain of 100 %.  A 

specimen of realistic dimensions would require elements with an average edge length on 

the order of 1 mm with a critical time step of approximately 2E-5 seconds. Therefore, the 

number of time steps required is approximately 5 million.  While a larger element size 

could be used the approach taken was to use a reasonable element size and one element. 

Previous work modelling ASTM specimens and using single element models did not 

reveal an especially significant difference in the capability of capturing a uniaxial state of 

stress. 

 

 

 

 



60 
 

4.4 Finite Element Modeling of Quasi-Static Material Characterization with MAT 

77O (Ogden) 

Several approaches were taken to implementing the Ogden material model.  As shown 

previously with single element models, MAT 77O was specified with material stress-

strain data input directly.  LS-DYNA internally determined the coefficients for the Ogden 

strain energy density function.  However, the LS-DYNA user’s manual suggests that the 

curve fit should be investigated by the user by extracting the Ogden strain energy 

function coefficients identified by LS-DYNA and output to the d3hsp file.  The function 

should be plotted in a suitable software package and a comparison drawn with the input 

data.  A similar approach was taken using MATLAB.  However, to aid in this process 

and provide a concomitant method, a student version of the finite element software 

package MARC-Mentat was used. MARC-Mentat features a simple interface for plotting 

several types of material characterization data, determining material model coefficients, 

and plotting the material model alongside the material data for comparison.  A similar 

interface exists in ABAQUS CAE but is more restrictive.  As an example, MARC-Mentat 

permits any data (ie. pure shear, equibiaxial tension, uniaxial, or any combination) to be 

used to determine Ogden material model coefficients.  ABAQUS CAE requires a certain 

minimum amount of data, for example, uniaxial and pure shear, to determine material 

model coefficients.  In any case the documentation available for these student software 

packages may not provide the level of detail necessary to be certain that the coefficients 

have been obtained correctly.  A greater familiarity with the software from experience 

would be valuable. 

The use of MARC-Mentat may be beneficial in obtaining material model coefficients that 

will yield a stable model.  There are options to obtain only positive Ogden model 

coefficients and to perform mathematical checks.  It is unknown what these mathematical 

checks are but positive coefficients may be beneficial in obtaining a stable model since 

they will prevent negative derivatives (with respect to strain or stretch ratio) of the strain 

energy functional.  To be certain that MARC-Mentat was being used correctly, 

calculations were completed using MATLAB starting with the most basic concept of 

strain energy density.  Hyperelastic material models like the Ogden model are based upon 
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strain energy density functions that relate the strain energy density to the strain.  

However, principal stretch ratios often replace principal engineering strain.  The 

relationships between the principal stretch ratios for the material characterization 

processes are given in Table 11 where λ is the stretch ratio obtained from the engineering 

strain measured during the characterization process. 

 

Table 11: Relationships between principal stretch ratios for common material 

characterization processes. 

 λ1 λ2 λ3 

Simple tension or 

compression 
λ             

Pure shear (planar 

tension) 
λ 1     

Equibiaxial tension λ λ     

 

These relationships are simple to derive as they are based on the near incompressibility of 

rubber and the boundary conditions of the material characterization specimen.  With 

these conditions the Ogden strain energy functional can be greatly simplified to obtain a 

simplified form only valid for specific boundary conditions.  Additionally, when the 

definition of strain energy density is considered one can obtain relationships between 

stress and stretch ratio.  As an example, for a simple tension test the strain energy density 

is the integral of the stress-strain curve.  By taking the derivative of the strain energy 

function with respect to the stretch ratio (see Equations 42 and 44) one obtains stress as a 

function of the stretch ratio.  This yields the simplified form of the Ogden model in 

Equation 45.  Similarly, relationships between stress and stretch ratio can be derived for 

pure shear (planar tension) and equibiaxial tension.  These equations were derived after 

identification in a publication (Finney R, 1988). 
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Using these relationships Ogden material model coefficients identified in MARC-Mentat 

were used to compute the Ogden predicted stresses associated with the strains of the 

stress-strain curves from AXEL.  Experimental curves and Ogden models were plotted 

for comparison with each other and with the Ogden model in MARC-Mentat and in 

MATLAB (see Figure 25).  The Ogden model plotted in MATLAB was identical to the 

model plotted in MARC-Mentat. 
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(a) 

 

 

(b) 
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(c) 

 

 

(d) 

Figure 25: Comparison between AXEL material characterization data and Ogden model 

(6 terms), coefficients determined using MARC, (a) pure shear (planar tension), (b) 

simple tension, (c) simple compression, (d) equibiaxial tension. 
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Table 12: 6 term Ogden model obtained using MARC-Mentat. 

c1 0.000222631 b1 1.96928 

c2 0.000199656 b2 1.13113 

c3 6.38978E-5 b3 3.13473 

c4 0.000294451 b4 2.1394 

c5 0.000143757 b5 4.20627 

c6 0.000719426 b6 1.32728 

 

Table 13: Oberkampf-Trucano validation metrics for 6 term Ogden model from MARC-

Mentat. 

Simple tension 0.91892 

Simple compression 0.80931 

Pure shear (planar tension) 0.86574 

Equibiaxial tension 0.79863 

 

These six coefficients were implemented into the Ogden material model in LS-DYNA 

which was added to the quasi-static material characterization finite element models 

previously developed. There were no other changes to these finite element models.  

However, the determination of Ogden material model coefficients was further considered 

since the use of MARC-Mentat may not be acceptable since it is possible Chrysler 

engineers may have limited access to MARC-Mentat.  In any case it would be ideal to 

have an independent solution for determining the material model parameters.  Therefore, 

an algorithm in MATLAB was developed with the secondary goal of compatibility with 

Octave, an open source MATLAB clone.  Using the relationships between stress and 

stretch ratio given in Equations 42 through 44, a least squares non-linear regression 

scheme was developed to determine Ogden material model coefficients to minimize the 

error between the Ogden model and the material characterization data from AXEL. The 

MATLAB code can be found in Appendices A through C. 
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The form of the error metric (last segment of MATLAB code in Appendix C) resulted 

from an attempt to weight the error metric contribution for each type of testing completed 

by AXEL.  As an example, compressive stresses were considerably larger than any other 

stresses, which were quite small since the unit system resulted in stresses in GPa.  As a 

result, the non-linear regression algorithm would find Ogden model coefficients that 

would accurately capture simple compression stresses with mixed results for simple 

tension, pure shear, and equibiaxial tension.  One may also observe the use of absolute 

value functions which were used to replace the need to square error terms to prevent 

positive and negative error cancellation.  This was employed as it may be more 

computationally efficient and reduced the change in magnitude associated with the use of 

exponential operations. Normalizing each error contribution (i.e. pure shear, simple 

tension, etc.) would be a logical further step. 

An eight term Ogden model is shown in Figure 26.  An attempt was made to force the 

MATLAB algorithm to find positive coefficients but the resulting Ogden model (not used 

for the results documented in this thesis) was not a significant improvement on the 6 term 

model with positive coefficients from MARC-Mentat.  The algorithm designed to 

identify positive Ogden coefficients was very sensitive to the initial estimate of the 

Ogden model parameters with respect to the earlier MATLAB functions that did not 

exhibit such behaviour.  This may be behaviour that would be expected since the 

methodology to obtain positive coefficients included a discontinuity: when the 

optimization process identified one or more negative coefficients the error metric was 

increased by an order of magnitude. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 26: 8 Term Ogden Material Model (coefficients identified using MATLAB), (a) 

pure shear (planar tension), (b) simple tension, (c) simple compression, (d) equibiaxial 

tension. 
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Table 14: 8 term Ogden model, coefficients identified using MATLAB. 

c1 -0.00914727 b1 -0.72655344 

c2 0.001202727 b2 -1.78726458 

c3 -0.00161635 b3 -2.27110004 

c4 0.001172715 b4 -0.03172023 

c5 0.003519742 b5 -1.59542126 

c6 0.000116893 b6 4.749009080 

c7 0.000214484 b7 0.337388949 

c8 0.001347245 b8 -0.34671495 

 

Table 15: Oberkampf-Trucano validation metric, 8 term Ogden model, MATLAB 

coefficients. 

Simple tension 0.90459 

Simple compression 0.902785 

Pure shear (planar tension) 0.97863 

Equibiaxial tension 0.91012 

 

 

4.5 Development of Finite Element Model of Chrysler RT Platform Transmission 

Mount 

Dr. Sae Park at Chrysler Tech Center (CTC) provided computer aided design (CAD) data 

and finite element models of a transmission mount (part number P05273883AD).  A new 

finite element mesh was developed from the provided CAD data using the Hypermesh 

workbench in Altair’s Hyperworks software package.  Material model data from the 

Chrysler supplied finite element models was used for preliminary analyses prior to the 

completion of material characterization in the FIAT polymer laboratory and by AXEL 

Products Physical Testing Services.   
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Initial models assumed that the aluminum ‘inner pipe’ (so-named in the Chrysler supplied 

CAD data) or ‘hub’ and other metallic components were rigid as shown in Figure 28.  

Therefore, the type of elements and mesh quality were only considered for contact 

purposes where contact with these components was to be modelled.  Many initial 

analyses disregarded aspects of contact to study the stability of various modelling 

techniques.  These simplifications to the model allowed extreme deformation of the 

rubber to be studied.  Such deformation would be impossible in the physical component.  

Many aspects of finite element modelling were studied including solver version (R3.2.1 

and R5.1.1), element size (minimum critical length ranging from approx. 1 mm to 8 mm), 

element formulation (LS-DYNA formulations 1, 2, 3, 10, 13, 16, and 17), and hourglass 

energy control (LS-DYNA types 1, 3, 5, 6, 7, and 9).  

The material model for the rubber was MAT_Simplified_Rubber/Foam (MAT 181). This 

hyperelastic material model is unique within LS-DYNA in that it does not globally fit one 

strain energy density function to model the constitutive relationship between stress and 

strain for the material. All other hyperelastic material models in LS-DYNA, and in many 

other finite element codes, will exhibit some error due to this curve fitting process.    

MAT 181 fits a pre-tabulated function piecemeal to replicate input data with minimal 

error. The use of a tabulated function may increase the stability of the model. This 

material model is also very suitable for this model with its ability to model strain rate 

sensitivity, hysteresis (MAT 183, a further development of MAT 181), and failure. For 

all studies of modelling parameters and stability using the model of the engine mount the 

stress-strain input data was provided by Chrysler in the initial stages of this research 

project (included in an ANSA CAE model). For many models the metallic elements were 

assumed to be rigid and therefore used MAT_RIGID (MAT 020).  
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(a) 

 

(a) 

Figure 27: (a) 2mm and (b) 1 mm average element edge length tetrahedron element mesh, 

finite element model of Chrysler RT platform transmission mount. 
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Figure 28: 1mm average edge length hexadron mesh, finite element model of Chrysler 

RT platform transmission mount. 

 

The first models to be built consisted of a very fine mesh of solid elements (Figure 27 & 

Figure 28). In separate models hexahedron and tetrahedron elements were used.  With 

hexahedron elements many simplifications of the geometry (i.e. removing fillets) were 

required to simplify the meshing process. Tetrahedron elements had a significant 

advantage in this regard, for a given element critical length far fewer simplifications had 

to be made and the meshing process was therefore highly automated. However, a mesh 

consisting of tetrahedron elements requires approximately twice as many elements for the 

same average element size.  Summaries of the quality of the various meshes are provided 

in Table 17 and Table 18.  After running a simulation LS-DYNA provides the user with 

data on the usage of CPU time.  As shown in Table 16, which is a typical breakdown for 

an engine mount model, element processing is the most significant consumer of CPU 

time.  A model with under-integrated hexahedron elements (1-point Gaussian quadrature) 

will generally have a lower computational expense than under-integrated tetrahedron 

elements with the same average element size. 
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Table 16: CPU time breakdown, FIAT computing cluster, MPP solver. 

 

 

Table 17: Chrysler meshing guidelines and simple compression model quality, 

tetrahedron meshes of the Chrysler powertrain suspension component. 

Mesh Characteristic Limit Coarse mesh 

Coarse 

mesh, 

cleaned 

geometry 

Refined 

mesh 

Critical length (mm) N/A 0.527 0.945 0.342 

Aspect ratio 8 (max) 12.1 5.37 13.4 

Skewness 0.5 (max) 0.994 0.844 0.999 

Min. angle, 

tetrahedrons 
30° 8.31° 14.3° 7.32° 

Max. angle, 

tetrahedrons 
120° 158° 147° 162° 
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Table 18: Chrysler meshing guidelines and simple compression model quality, 

hexahedron meshes of the Chrysler powertrain suspension component. 

Mesh 

Characteristic 
Limit 8 mm mesh 4 mm 

mesh 

2 mm 

mesh 

1 mm 

mesh 

Critical length (mm) N/A 3.25 1.61 0.839 0.334 

Aspect ratio 8 (max) 2.81 2.54 3.33 3.01 

Warping 10 27.6 51.9 47.1 32.6 

Jacobian 0.6 0.459 0.465 0.479 0.492 

Min. angle, 

pentahedrons 
30° 32.5° 38.5° 26.8° 29.7° 

Max. angle, 

pentahedrons 
120° 143° 109° 153° 97.6° 

Min. angle, 

hexahedrons 
30° 41.9° 35.3° 25.7° 38.1° 

Max. angle, 

hexahedrons 
140° 149° 148° 163° 157° 

 

The use of tetrahedron and hexahedron elements also allowed the effect of geometrical 

simplifications to be assessed.  While tetrahedron elements allowed for fewer geometrical 

simplifications, these types of elements were also used to mesh a geometry simplified for 

hexahedron meshing.  The resulting mesh is shown in Figure 29.  For tetrahedron 

meshing two element formulations were used: tetrahedron element formulation 10 

(under-integrated) and 4 (selectively reduced integration).  Selectively reduced 

integration reduces element locking (excessive stiffness), a phenomenon that is more 

problematic for tetrahedron elements than hexahedron.  Initially, three hexahedron 

element formulations were used: element formulation 1 (under-integrated), formulation 2 

(selectively reduced integration), and formulation 3 (fully integrated). Element 

formulation 41 was not used as it was not compatible with MAT 181. 
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Figure 29: 2mm average edge length tetrahedron mesh from hexahedron-meshing 

simplified geometry. 

 

A series of coarser meshes were also developed to identify the coarsest level of 

discretization that would yield reasonable results.  This model replaced thin regions of 

rubber, previously modelled with solid elements, with shell elements.  This provided a 

significant advantage with respect to computational efficiency since the critical timestep 

for a shell element is not dependent on the thickness of the shell element. An example of 

this model is shown in Figure 30. Finally, a very coarsely meshed model provided by 

Chrysler, shown in Figure 31, was modified to have similar boundary conditions 

providing another level of discretization for comparison. 
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Figure 30: Coarse mesh using a combination of shell and solid element to represent the 

rubber regions. 

 

Each model was loaded such that the outer steel sleeve was fixed and the inner hub (also 

known as the inner pipe) translated linearly (24 mm in the x-direction or 12 mm in the y 

or z-directions) or rotated about axes parallel to those of the global axes but passing 

through the center of mass of the hub. All rotations were limited to 90 degrees. Physically 

such a rotation is likely impossible for rotations about the local y and z axes since the 

inner aluminum hub would contact the outer steel sleeve. Contact between these two 

components was not modelled to assess the level of deformation of the mesh of the 

rubber regions permissible by the solver prior to severe instabilities. Contact was 

accurately modeled for loading by hub translation. All simulations had a termination time 

of 20 ms and used a loading curve specified using the keyword 

*DEFINE_CURVE_SMOOTH with a start time of 0.01 ms, an end time of 20ms, and a 

rise time of 4ms. This method of specifying load curves was assumed to minimize 

instabilities due to discontinuities that may exist with a manually specified curve. 
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Figure 31: Comparison between two of the coarsest meshes used in this research, (a) 4 

mm average element edge length, (b) Chrysler supplied mesh, 8 mm average element 

edge length. 

 

4.5.1 Tied Contact 

As part of an effort to use automatic tetrahedron re-meshing the use of tied contact was 

studied. With the use of a combination of shell and solid elements there often arises a 

need to connect parts with these two different types of elements. The simplest connection 

was to merge nodes. However, the only hexahedron (solid) element with nodal rotational 

degrees of freedom is element formulation 3. This element formulation has been found to 

be particularly poorly suited for modeling near incompressible materials. An alternative 

to merging nodes is to use a tied contact. The revised model to use tied contact is shown 

in Figure 32. 
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Figure 32: Contact interfaces for model with tied contact replacing merged nodes. 

 

4.6 Component Level Testing – Chrysler Engine Mount 

4.6.1 Fixture Design 

Force-displacement characteristics for the Chrysler engine mount were obtained in the 

DYNLab (Impact and high strain rate testing laboratory) at the Politecnico di Torino 

campus in Vercelli, Italy. After determining suitable equipment to be used, a fixture was 

developed to mount the Chrysler engine support.  The fixture was designed to use 

standard steel structural shapes available from the Italian steel producer the Beltrame 

Group which has facilities near Torino, Italy.  An initial design is shown in Figure 33.  

Finite element models of the fixture were developed with the engine mount modeled as 

rigid through which an estimated peak load was applied.  The finite element models of 

the fixture were significantly different than models of the engine mount due to the 

different applications.  The engine mount finite element models were designed to be 

computationally efficient and capable of capturing the force-displacement response.  Low 

computational cost was achieved through reduced integration element formulations and 

coarse discretizations.  This resulted in a model poorly suited for identifying the stress 

state in the material. Alternatively, the fixture models were designed to accurately capture 
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the stiffness of the structure and the state of stress.  This required a much finer mesh 

which is not suitable for use with explicit time integration. Implicit time integration was 

used to complete a static analysis of the structure with a minimal number of intermediate 

steps between the unloaded and fully loaded conditions. 

To reduce the computational expense of the fixture/engine mount combined models the 

rubber portion of the engine mount was removed since MAT 181 Simple Rubber/Foam is 

not implemented at this time in the implicit LS-DYNA solver.  The stamped steel sheet 

metal brackets of the engine mount were modeled as rigid and were connected to each 

other using the keyword *CONSTRAINED_RIGID_BODIES.  Contact between the rigid 

bodies of the engine mount and the fixture was carefully designed to ensure the infinite 

stiffness of the rigid bodies did not improperly affect the design of the fixture.  Bolt 

preloading was accomplished by applying forces to the nodes of the deformable washers.  

 

Figure 33: Initial fixture design and finite element model. 

 

As shown in the results section the initial fixture design was found to have deficiencies.  

It was assumed that the yield strength of structural steel is approximately 250 MPa, a 

figure obtained from the Canadian industrial supplier McMaster Carr (McMaster-Carr).  

The 90 degree equal angle selection was revised to use a more substantial piece of 

material.  This necessitated a revision of the design as shown in Figure 34.  The modified 
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design could no longer use shell elements for the steel sections since not all holes were 

through holes.  Linear tetrahedron and quadratic tetrahedron solid elements were used to 

simplify the meshing process.  In addition to mesh refinement the element formulation 

was enhanced to assess the mesh dependency. 

 

Figure 34: Revised fixture design and finite element model. 

 

4.6.2 Quasi-Static Component Characterization 

Quasi-static component characterization was completed under the supervision of Lorenzo 

Peroni and other researchers in DYNLab at the Politecnico di Torino campus in Vercelli, 

Piemonte, Italy.  A Zwick/Roell Z100 testing machine with a GTM Series K 100 kN load 

cell was used to obtain the quasi-static force-displacement response of the Chrysler 

engine mount. Zwick/Roell TestXpert software was used for data acquisition.  The 

characterization process was displacement controlled with the displacement profile 

shown in Figure 35.  Each engine mount was loaded and unloaded in tension (4 mm 

displacement of the hub of the engine mount) and loaded and unloaded in compression 

(22 mm displacement of the hub of the engine mount) with this process repeated for a 

total of five cycles for each test.  Four separate tests were completed.  Two complete 

component characterization processes were completed with engine mount specimen #1.  

Specimens #2 and #3 each underwent one complete characterization process. High 

resolution images were captured every 2 seconds for the duration of each test 

(approximately 5 minutes) with a PixeLINK 5 megapixel (MP) camera. 
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Figure 35: Quasi-static component characterization displacement profile. 

 

4.6.3 Dynamic Component Characterization 

Dynamic component characterization of the Chrysler engine mount was also completed 

in DYNLab at the Politecnico di Torino campus in Vercelli using a DARTEC servo-

hydraulic testing machine.  Force and displacement data were obtained using a Kistler 

120 kN (model 9371B) piezoelectric load cell and a Keyence laser displacement 

transducer (LK-G402) both of which were connected to a PC with a National Instruments 

(NI) high speed USB hub (NI USB-9162). DARTEC software was used to specify 

loading conditions and acquire data. To provide data for digital image correlation (DIC) a 

Citius Imaging C100 Centuri high speed video camera was employed. This camera 

features a resolution of 1280 x 1024 with a maximum frame rate of 424 frames per 

second at full resolution increasing to 111111 frames per second at a resolution of 64 x 

10.  Three specimens were characterized with each specimen characterized twice for a 

total of 6 sets of data. Each characterization process consisted of loading and unloading 
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the specimen in a configuration consistent with the compressive loading of the quasi-

static component characterization process. 

To dynamically load the engine mount, the structure was bolted to the piston of a 

hydraulic cylinder using a fixture. To apply a dynamic load a velocity-time profile was 

input to the DARTEC software for the hydraulic cylinder. As shown in Figure 36 the 

engine mount was loaded by impacting the upper half of the fixture, a relatively rigid 

entity with respect to the mount itself, against a relatively rigid platen of the testing 

machine. The displacement and velocity of the hydraulic cylinder, for both the actual and 

the prescribed conditions, are shown in Figure 37. As shown in Figure 36, a small initial 

gap between the upper half of the fixture and the fixed platen of the testing machine was 

included to allow the hydraulic cylinder to reach a relatively constant velocity prior to 

impact. Specimen #3, one of the specimens used for quasi-static characterization, was 

used to adjust the gains of a proportional-integral-derivative (PID) closed feedback loop 

controller in the DARTEC apparatus to obtain an actual velocity profile with minimal 

deviation from the prescribed profile. Two sets of force-displacement data for each of 

engine mount specimens 4, 5, and 6 were obtained. 

 

Figure 36: Dynamic characterization apparatus. 
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(a) 

 

(b) 

Figure 37: (a) Prescribed and actual displacement and (b) velocity of the hydraulic 

cylinder over time, specimen #4. 

4.7 Finite Element Model Validation 

4.7.1 Quasi-Static Force-Displacement Response 

To validate the finite element models of the Chrysler engine mount, models were 

developed which included the stamped steel brackets. It was observed during the 

experimental component characterization that although the deformation of the rubber was 

the most significant contributor to the measured displacement there was a contribution 

associated with deformation of the steel brackets. The resulting models were developed 

in Hypermesh with minimal alterations to the methodology for meshing and modelling 

the rubber regions. Tied contact was used to model any bonding between rubber and 

another material and any press fits. The material model was also updated to include rate 
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effects, consistent with the single element finite element models to investigate strain rate 

sensitivity modelling with MAT 181. 

 

Figure 38: Finite element model of engine mount including steel brackets. 

 

Several models were used for validation with respect to the data from the quasi-static 

component characterization process. The data from the quasi-static component 

characterization process was divided into loading and unloading in tension and 

compression. The complete loading and unloading in tension and in compression of the 

quasi-static component characterization process were not simulated together since the 

material model was not selected to be capable of capturing hysteresis effects. Another 

version of MAT 181 (MAT 183, Simple Rubber/Foam With Damage) is capable of 

modelling hysteresis but requires stress-strain data for the unloading behaviour.  

One of the most significant alterations to the engine mount model, required due to the 

addition of the steel brackets, was the use of nodal rigid bodies. These rigid bodies may 

result in an excessive stiffness contribution. An attempt was made to use tied contact for 

all connections but the approximately perpendicular orientation of tied elements 

presented difficulties. A better solution may be to use merged nodes. 
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4.7.2 Dynamic Force-Displacement Response 

A separate finite element model was developed to be validated with respect to the 

dynamic component characterization data obtained at the DYNLab at the PdT in Vercelli, 

Italy using a Zwick/Roell DARTEC servo-hydraulic mechanical testing system. The 

model included portions of the fixture which it was thought might contribute significant 

inertia forces. Significant time scaling was employed with a time step of -4.5E-4 ms 

specified. If the steel brackets of the engine mount were modeled as deformable the 

increase in mass was significant (70%).  However, the ratio of kinetic energy to internal 

energy was less than 1%.  Modeling the steel brackets as rigid resulted in a negligible 

increase in mass with this time step (<1%). 

 

Figure 39: Finite element model of dynamic component characterization process. 
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Chapter 5: Results 

 

5.1 Quasi-Static Material Characterization 

AXEL Physical Testing Services completed extensive material characterization on two 

types of rubber for Chrysler.  Comparisons between data from AXEL and the FIAT 

polymer laboratory are shown in Figure 40.   There was notable variation between the 

results for simple compression when comparing results from FIAT and AXEL.  There is 

also significant variation between different tests completed in the FIAT polymer 

laboratory.  A significant amount of time was spent to try to identify the most important 

contributing factors to this variation. 

Simple tension stress-strain data obtained from the three ASTM D412 type D specimens 

cut from engine mount #1 are shown in Figure 40 (a).  For simple tension there was near 

ideal consistency between the data obtained in the FIAT Mirafiori polymer lab and from 

AXEL Testing Services.  However, there was significant variation for the simple 

compression data as is shown in Figure 40 (b).  For all FIAT simple compression tests the 

specimen was 24 mm in diameter with a nominal thickness of 8.8 mm (ratio consistent 

with ASTM D575 specimen).  More accurate dimensions were input to the data 

acquisition and processing software accompanying the Zwick-Roell testing apparatus.  

For tests 1 through 5 the specimens were extracted from Chrysler engine/transmission 

mount #1.  The general orientation and position from which the specimens were extracted 

was noted (the radial ‘arms’ of the engine mount) but of the four specimens (specimen 

number 3 was tested twice, tests 3 and 4) it was not known precisely where each 

specimen had been extracted from. 

Additionally, it was noted that two specimens were prepared several hours prior to testing 

while two specimens were prepared immediately prior to testing. (two specimens were 

extracted from each radial arm of the engine mount).  Specimen 3 was tested twice to 

assess the effect of varying the amount of lubricant applied.  After noting the significant 

variation between these four specimens further testing was conducted with greater 

attention to detail.  As shown in Figure 41 the precise positions of specimens 1 through 4 

for engine mount #2 were documented.  It was found that within each radial arm the 
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material properties were reasonably consistent but between the two radial arms of each 

engine mount there can be significant variation but this was not always observed.  The 

time between specimen preparation and specimen testing was not identified to be 

associated with any trend in the data. 

 

(a) 
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(b) 

Figure 40: Quasi-static uniaxial stress-strain data. Sources: FIAT polymer laboratory and 

AXEL Testing Services, (a) simple tension, (b) simple compression. 
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Figure 41: Specimen tracking methodology. 

 

AXEL Physical Testing Services completed additional types of material characterization: 

planar tension (pure shear) and equibiaxial tension.  The planar tension test is essentially 

a simple tension test but with a very wide specimen.  In the FIAT Mirafiori polymer 

laboratory this material characterization procedure uses a rectangular prism specimen that 

is 5mm x 5mm x 50mm with the load applied through two aluminum fixtures adhered to 

two opposite 5 mm x 50 mm faces.  The aspect ratio of this cross section results in 

essentially no strain in one principal direction.  The constant volume due to 

incompressibility results in a simple relationship between the other two strains.  This 

arrangement yields a state of pure shear with the proper stress transformation.  The data 

for this test from AXEL, which is obtained using the same methods used for a simple 

tension test, is shown in Figure 42. 
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Figure 42: AXEL planar tension (pure shear) and equibiaxial tension stress-strain data, 

rubber C0E, 0.01 1/s. 

 

The equibiaxial tension test completed by AXEL can be used to assess the 

characterization of material using simple compression testing.  The radial stress strain 

data provided by AXEL for rubber C0E is shown in Figure 42.  As studied by Day and 

Miller (Day JR, 2000) friction can significantly affect the ASTM D575 simple 

compression method of material characterization. Simple stress and strain 

transformations, shown in Equations 48 and 49, allow for the conversion of the radial 

stress and strain from the equibiaxial test to an ideal stress-strain curve for simple 

compression.  A comparison between the experimental simple compression data and the 

converted AXEL equibiaxial data is shown in Figure 43. 
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Figure 43: Comparison between simple compression material characterization and 

equibiaxial tension with stress transformation. 
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 5.2 Finite Element Modeling of Quasi-Static Material Characterization with        

MAT 181 (Simple Rubber/Foam) 

 

5.2.1 Single Element Models (MAT 181, MAT 77H, & MAT 77O) 

The first models developed were a single element with three planes of symmetry sharing 

a vertex.  A displacement (translation) was prescribed to the nodes of a face (segment) 

opposite one of the symmetry boundary conditions.  Three material models were 

compared: MAT 77H which uses a strain energy density function of the form given by 

Equation 11, MAT 77O where the O denotes Ogden and the strain energy density 

function is of the form of Equation 21, and MAT 181 Simple Rubber/Foam.  MAT 31 

(Frazer Nash Rubber Model) was also considered but performed poorly with error 

terminations at small strains (input to model was the same uniaxial stress-strain data used 

with MAT 181 and MAT 77).  For these simple models the material models were defined 

by including a uniaxial simple tension stress strain curve in the input file and fitting a 

curve automatically and internally by the LS-DYNA solver.  Referring to Figure 44, the 

simple tension stress-strain response was from the first ASTM D412 tensile test 

completed in the FIAT polymer laboratory.  An error metric was calculated (Oberkampf 

W, 2002) to quantify the performance of the material model and other modelling 

parameters studied.  Similar models were created using data from the other simple 

tension tests completed in the FIAT laboratory and using data from AXEL.  The different 

data sets had no pronounced effect on the results; other modelling parameters were of 

greater importance with the material model likely being the most critical. 
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Figure 44: One element simple tension model, FIAT data. 

 

Table 19: Single element models, material model comparison, Oberkampf-Trucano 

validation metrics. 

Material model Validation metric 

MAT 181 Simple Rubber/Foam 0.91863 

MAT 77H 0.98003 

MAT 77O 0.98164 

 

In a surprising result the inclusion of compressive stress strain data significantly 

improved the performance of MAT 181 in simple tension while, as expected, it reduced 

the performance of the other material models studied.  These results are given in      

Figure 45.  The next models developed represented the ASTM D412 type D dumb-bell 

simple tension specimen.  The simple one element model had confirmed expectations that 

MAT 181 would outperform other material models for simple compression and tension.  

Therefore, MAT 181 became the focus of further studies.  However, other material 

models were still assessed to provide a thorough analysis of modelling techniques. 
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Figure 45: Material model performance in simple tension with uniaxial tension-

compression input data. 

 

Table 20: Oberkampf-Trucano validation metrics for single element models to compare 

material models with uniaxial stress-strain input. 

Material model Validation metric 

MAT 181 Simple Rubber/Foam 0.99511 

MAT 77H 
Error termination, out of range nodal 

velocities 

MAT 77O 0.96090 
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5.2.2 Simple Tension Finite Element Models (MAT 181) 

Two sets of simple tension finite element models were developed. One set used 

hexahedron formulations 1, 2, and 3.  The other set of models used tetrahedron element 

formulations 4, 10, 13, 16, and 17.  Element formulations 1, 10, and 13 are under-

integrated.  Element formulations 4, 16, and 17 employ selectively reduced integration.  

Element formulation 3 is fully integrated.  For each type of element different levels of 

mesh discretization were studied.  It was attempted to identify reasonable limits for the 

optimal average element critical length to yield acceptable results with an efficient 

model.  These models were run on a workstation with a dual core Intel Xeon CPU with a 

clock speed of 2.5 GHz and 12 GB of RAM.  The default solver version was a single 

precision R3.2.1 solver for AMD64 processors.  Studies of the solver version included 

the use of a double precision solver and a release 6.0.0 double precision solver. 

A coarse hexahedron element mesh of the ASTM D412 type D specimen is shown in 

Figure 16. The three hexahedron element formulations for this mesh are compared in 

Figure 46.  The error metric is the Oberkampf-Trucano metric.  Element formulation 3 

performed very poorly with respect to the input stress-strain data and element 

formulations 1 and 2.  At this relatively coarse level of discretization element formulation 

2 performed quite well.  With a refined mesh the performance of element formulation 1 

exceeded that of formulation 2 quantified using the error metric, and, as expected, the 

CPU time of formulation 1 was much lower.  Element formulation 3 again performed 

quite poorly with an error termination and a large CPU time.  The error termination 

occurred after the maximum strain of the experimental data against which the model was 

validated.  However, all models were identical in terms of the displacement of the nodal 

rigid body.  Error terminations may therefore provide evidence of modeling parameters 

with reduced capabilities of modeling large deformations. 
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Figure 46: Coarse hexahedron mesh, ASTM D412 Type D specimen. 

 

Tetrahedron element formulations 4, 10, 13, and 16 were similarly compared.  Element 

formulation 17 was also employed but performed very poorly.  Element formulation 4 

terminated with an error.  The post-processing technique, which used the open source 

Matlab clone Octave, extrapolated the stress-strain response in this particular case. The 

normal operation is to interpolate the LS-DYNA model results to determine the stresses 

computed by the models corresponding to the entries in the strain vector of the material 

model input.  The engineering stress was calculated from an output of boundary condition 

force from LS-DYNA (BNDOUT) and the initial cross sectional area of the specimen. 

These calculated stresses were then compared to the stresses of the input material model 

data through the calculation of the Oberkampf-Trucano metric.  The Octave script can be 

found in the appendices. Element formulations 10 and 13 exhibited comparable and 

relatively accurate responses.  Formulation 13 performed slightly better which may be 

associated with the specialization of this formulation for incompressible materials.  

Formulation 16 produced the most accurate response but was much more 

computationally expensive.  This is to be expected since these 10 point tetrahedron 

elements have sub-elements which approximately halve the critical timestep.  Element 
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formulation 17 exhibited an interesting erroneous response whereby the volume was not 

near-constant but instead increased drastically (~5000%) with deformation. With a 

refined mesh all models terminated normally with very accurate results. 

 

5.2.3 Simple Compression Finite Element Models (MAT 181) 

Similar analyses to those performed for simple tension were completed for the models of 

simple compression.  Figure 47 shows the engineering stress strain responses with a 

coarse hexahedron mesh for element formulations 1, 2, and 3.  Element formulation 1 

exhibited an instability that may be associated with hourglassing, a conclusion reached 

considering the energy balance (shown in Figure 48).  With a refined mesh element 

formulation 1 still exhibited the instability also observed with the coarse mesh.  Element 

formulation 2 also terminated with an error but this was studied and found to be 

associated with a reduction in initial element quality.  It should be noted that the 

discretization quality was very high with near unity aspect ratios and Jacobians. 

 

 

Figure 47: Model of simple compression test, coarse hexahedron mesh. 
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Figure 48: Energy balance for element formulation 1, coarse discretization. 

 

Models were also developed with a coarse tetrahedron mesh. Element formulation 10 

exhibited increased stiffness at large compressive strains which may be associated with 

the locking of the element. Element formulation 13, which is similar to formulation 10 

but specialized for incompressible materials, was slightly less stiff.  Instabilities were 

encountered with the 10 node tetrahedron elements (formulations 16 and 17).  The model 

using element formulation 16 exhibited non-uniform deformation such that while some 

elements collapsed driving the critical timestep to a very small value, other elements 

remained essentially undeformed.  The simulation did not terminate with an error but was 

manually terminated due to the extremely small time step.  Element formulation 17 

exhibited an interesting response akin to its erroneous behaviour in tension.  The volume 

of material decreased significantly eventually resulting in an error termination.  These 

results were dependent on the version of the solver. With release 3.2.1 of LS-DYNA the 

simulation would terminate immediately after initialization.  A release 6.0.0 solver would 
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achieve 50% of the termination time but with the loss of volume noted.  A refined mesh 

significantly increased the accuracy of elements 4, 10, and 13 and eliminated the error 

terminations.  The refined mesh had no effect on models using element formulations 16 

and 17. 

 

5.2.4 Planar Tension (Pure Shear) Finite Element Models (MAT 181) 

The planar tension models were the first models that provided a valuable analysis of the 

capabilities of MAT 181 simple rubber/foam.  This material model accepts a uniaxial 

stress-strain input and is capable of performing with high accuracy with respect to this 

data.  However, it cannot accept pure shear data as an input.  Other material models, such 

as the Ogden material model (MAT 77O), allow the analyst to determine a best fit of the 

Ogden strain energy density function for all available material data.  The stress-strain 

response of the LS-DYNA planar tension (pure shear) model utilizing MAT 181 with a 

coarse hexahedron element mesh is shown in Figure 49.  Element formulation 3 generally 

performed quite poorly.  Element formulation three required several levels of mesh 

refinement to exhibit a reasonable response. 

 

(a) 
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(b) 

 

(c) 

Figure 49: Planar tension (pure shear) model, hexahedron elements, (a) coarse mesh, (b) 

coarse mesh, response of element formulation 3 removed, (c) 3
rd

 level of mesh 

refinement. 
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Coarse tetrahedron meshes of the planar tension (pure shear) material characterization 

process with MAT 181 performed very poorly as shown in Figure 50.  A refinement of 

the mesh did not improve the performance of the model in this respect as shown in Figure 

51.  A 2
nd

 level of mesh refinement yielded fairly accurate results with element 

formulation 13 (Figure 52).   These particular models potentially demonstrated the 

significant advantage of element formulation 13 over element formulation 10 for near 

incompressible materials.  With another level of refinement of the mesh there was a slight 

reduction in the accuracy of formulation 13.  The computational cost was also very high 

which necessitated the use of the FIAT computing cluster and a massively parallel 

processing (MPP) solver.  The performance of element formulation 10 was improved but 

only marginally.  The refinement of the mesh to this level also yielded a model for which 

element formulation 4 would terminate normally. 

 

 

Figure 50: Poor performance of a coarse mesh of tetrahedron elements of the planar 

tension (pure shear) material characterization process with MAT 181. 
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Figure 51: Lack of improvement of results with 1 level of refinement of the tetrahedron 

mesh of the planar tension (pure shear) material characterization model with MAT 181. 

 

 

(a) 
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(b) 

Figure 52: Stress-strain response of model employing tetrahedron elements, model of 

planar tension (pure shear) material characterization process, MAT 181, (a) 2nd level of 

mesh refinement, (b) 3
rd

 level of mesh refinement. 

 

5.2.5 Equibiaxial Tension Finite Element Models (MAT 181) 

The equibiaxial tension models provided another excellent method for assessing the 

capabilities of MAT 181. Equibiaxial tension data cannot strictly be used as an input to 

the material model although it can be transformed to simple compression data.  This is 

useful for assessing or eliminating the effects of friction on simple compression material 

characterization data.  As shown in Figure 53, with a relatively coarse mesh of the 

equibiaxial tension material characterization specimen all three hexahedron element 

formulations performed quite well although element formulation 1 exhibited an 

instability identified through the D3PLOT animation and also indicated by the 

oscillations of the stress-strain curve at large strains.  Although insignificant with respect 

to internal and total energy, there was an increasing amount of hourglass energy despite 

the use of hourglass control.  The exact cause of the oscillations is unknown.   
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Another observation is that the thickness of the specimen decreases significantly due to 

the biaxial stretching.  The aspect ratios of many elements become quite large over time.  

Despite normal termination of the model LS-PrePost indicates that the maximum aspect 

ratio approaches 4000 but this is likely associated with what appear to be element 

inversions.  The lack of an error termination does not agree with this observation.  With a 

refined mesh much lower frequency oscillations were observed in the response of the 

model employing element formulation 3.  A clear cause for these oscillations is unknown.  

As with all models of this material characterization process, large element aspect ratios 

were observed but the oscillations begin early in the strain history.  Element formulation 

3 is in theory stiffer than formulations 1 or 2 but this is not apparent considering the 

stress-strain responses of these models.  However, an increased stiffness may explain the 

oscillations since for a given amount of damping increasing the stiffness would decrease 

the damping ratio.   In terms of accuracy the coarser mesh with element formulation 3 

resulted in the most optimal validation metric but considering the CPU time element 

formulation 2 with a relatively coarse mesh may be the most reasonable combination. 

 

 

(a) 
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(b) 

Figure 53: Equibiaxial tension, MAT 181, (a) coarse hexahedron mesh, (b) 1
st
 level of 

refinement. 

 

The engineering stress-strain responses for tetrahedron element meshes are shown in 

Figure 54.  Even a relatively coarse mesh resulted in a high level of accuracy.  The only 

tetrahedron element formulation which did not produce an accurate result was element 

formulation 16, one of the ten node, five point, selectively reduced integration 

tetrahedron element formulations.  The energy balance for this element formulation was 

very poor.  Internal energy and total energy were essentially identical as they should be 

for the quasi-static condition but external work was much lower.  Element formulation 

17, another 10 node tetrahedron element, would terminate with an error immediately after 

initialization. 
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Figure 54: Equibiaxial tension models, coarse tetrahedron mesh. 

 

 

5.3 Finite Element Modeling of Dynamic Material Characterization by AXEL 

Products Physical Testing Services 

 

5.3.1 Single Element Models to Validate Strain Rate Sensitivity Capabilities of  

MAT 181 

The capability of MAT 181 to capture strain rate sensitivity by simply providing stress-

strain curves at different strain rates is a significant advantage of this material model.  

While other material models like MAT 77O may be able to capture strain rate sensitivity 

it would involve more curve fitting with associated error.  As shown by Table 22, MAT 

181 appears to be capable of essentially perfect replication of each and every stress-strain 

curve input to the model with an associated strain rate.  Mass scaling was necessary to 

obtain reasonable CPU times. The increase in mass was quite significant but the energy 

balance showed that kinetic energy was negligible as shown by the energy balance in 

Figure 55. 
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Table 21: Mass scaling, single element model, strain rate of 0.01 1/s 

Scaled mass 1.2567E-4 

Physical mass 1.4125E-7 

Ratio 8.8973E2 

 

Table 22: Oberkampf-Trucano validation metric, single element models to assess strain 

rate sensitivity modeling with MAT 181. 

Simple tension, 100 1/s 0.98034 

Simple tension, 0.01 1/s 0.99326 

Simple compression, 100 1/s 0.96213 

Simple compression, 0.01 1/s 0.99116 

 

 

Figure 55: Energy balance, simple tension, strain rate of 0.01 1/s. 
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5.4 Finite Element Modeling of Quasi-Static Material Characterization with MAT 

77O Ogden 

The Ogden material model (MAT 77O) was also implemented for the finite element 

models of the material characterization processes.  The material model coefficients were 

the six coefficients determined using MARC-Mentat. A MATLAB code was later 

developed that could find any number of coefficients.  However, temporal restrictions 

strongly favoured of the use of the MARC-Mentat coefficients to enhance progress.  The 

MARC-Mentat coefficients may also be advantageous since MARC-Mentat has options 

to require that all coefficients be positive and perform unknown mathematical checks on 

the identified coefficients.  These steps may result in a more stable model. 

 

5.4.1 Simple Tension Finite Element Models (MAT 77O, 6 Terms) 

Figure 56 is the energy balance for element formulation 1.  With a very coarse mesh of 

hexahedron elements and the Ogden material model, LS-DYNA terminated with an error 

for hexahedron element formulations 2 and 3 (out of range nodal velocities).  The 

instability is visualized in Figure 57 and may be associated with the large element aspect 

ratios (maximum of approximately 17).  The energy balance for the coarse discretization 

with element formulation 1 is given in Figure 56.  Shown in Figure 58 is the stress strain 

response for a refined mesh.  With the refined mesh element formulations 2 and 3 also 

terminated with an error.  The use of a release 6.0.0 solver (the standard solver was 

R3.2.1) the model using element formulation 2 would terminate normally but exhibited a 

very poor energy balance beginning at the time at which solver R3.2.1 would terminate 

with an error. 
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Figure 56: Energy balance plot for element formulation 1, simple tension model, coarse 

hexahedron element mesh. 

 

(a) 

 

(b) 

Figure 57: Element formulation 1, (a) immediately prior to instability, (b) after instability 

associated with poor energy balance. 
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Figure 58: Simple tension model, hexahedron element formulation 1, refined mesh. 

 

The use of tetrahedron elements was much more successful with the Ogden material 

model (MAT 77O).  Element formulations 10 and 13 were found to be accurate, very 

computationally efficient, and exhibited no significant instabilities as is covered in the 

Discussion section.  A refined mesh marginally reduced the accuracy of the solution.  

This may be associated with the Ogden model curve fitting. Formulations 4, 16, and 17 

terminated with errors. This result was not entirely unexpected for formulations 16 and 

17 given their poor performance with MAT 181. However, the essentially complete 

incompatibility that was observed between element formulation 4 and MAT 77O was 

surprising. 
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5.4.2 Simple Tension Finite Element Models (MAT 77O, 8 Terms) 

The implementation of the Ogden LS-DYNA material model with 6 terms utilized 

coefficients obtained with a student version of the finite element software MARC-

Mentat.  The simple tension, simple compression, planar tension (pure shear), and biaxial 

tension material data from AXEL was input to MARC-Mentat.  This software package 

offered two options that were assumed would yield a model that would be stable for large 

strains/deformations.  One option was to find Ogden strain energy density function 

coefficients that are all positive.  Since the Ogden strain energy density function is 

differentiated to obtain stresses, negative coefficients may yield a function that predicts 

decreasing stress with increasing strain for certain ranges of strain.  An increasing applied 

force may cause the strain to reach this range at which the internal forces would decrease 

and be unable to match any increase in the applied force.  In this case, force equilibrium 

would not be attained and if viscous forces are not considered the deformation would not 

be limited. Material failure would be unintentionally modelled.  Another option in 

MARC-Mentat to perform mathematical checks was also used to find the coefficients for 

the 6 term Ogden model.  If more terms were requested MARC-Mentat was not able to 

find a solution with these two options enabled.  Even with the positive coefficients 

requirement disabled MARC was unable to determine coefficients for an 8 term Ogden 

model. 

To avoid the use of a proprietary piece of software and to gain experience and familiarity 

with the Ogden model and curve fitting a MATLAB function was developed to find 

Ogden model coefficients.  This simple function, discussed in the methodology section, 

was capable of finding positive coefficients but did not calculate the mathematical checks 

of MARC-Mentat.  However, this MATLAB function was able to find coefficients for an 

Ogden model with any number of terms which allowed the largest number of terms for 

LS-DYNA to be used (eight) which resulted in a model with high accuracy.  It was 

assumed that there existed a distinct possibility that this Ogden model, implemented in 

LS-DYNA, would not be as stable, in terms of large deformations/strains, as the MARC 

model.  
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Figure 59 is an example of the engineering response of the 8 term Ogden model (in LS-

DYNA) for simple tension with a coarse mesh of hexahedron elements.  With this coarse 

discretization no hexahedron element formulation employed was capable of modeling 

large deformations. Shown in the figure is element formulation 41, an element free 

Galerkin (EFG) formulation.  This formulation is at present not compatible with MAT 

181 (a Windows Intel64 SMP R6.0.0 solver was used as well as a similar R3.2.1 solver).  

The response is typical of all hexahedron element formulations employed with this model 

in that the maximum strain was limited by an error (negative volume) to approximately 

125%.  With element formulation 1 and R3.2.1 & R6.0.0 solvers were used, the R3.2.1 

solver would terminate with an error at a strain of approximately 125%, the R6.0.0 solver 

would terminate normally but with a very poor energy balance subsequent to the time at 

which the strain was measured to be 125%. 

 

Figure 59: MAT 77O (8 Terms), simple tension finite element model, coarse hexahedron 

mesh, element formulation 41 (EFG). 

 



113 
 

With a refined mesh models using hexahedron element formulations 1, 3, and 41 would 

terminate successfully.  Element formulation 1 and 41 were similar in terms of accuracy 

but element formulation 41 was much more computationally expensive (10X).  Element 

formulation 3 exhibited a high amplitude, high frequency response at large strains which 

may indicate a potential instability at larger strains. The energy balance for the model 

using element formulation 3 indicated a significant error approximately midway through 

the simulation as shown in Figure 60.  Figure 61 is a visualization of the model at the 

time of the initiation of this instability. 

 

Figure 60: Energy balance of simple tension model using the Ogden material model with 

8 terms and element formulation 3. 
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Figure 61: Instability encountered with the 8 term Ogden simple tension model and 

element formulation 3. 

 

Models using tetrahedron element formulations 4, 10, 13, and 16 with a coarse mesh 

were compared.  The accuracies of element formulations 10, 13, and 16 were consistent 

with the Ogden model as calculated in MATLAB.  Element formulation 16 was very 

expensive computationally which is to be expected since it is uses 5 point selectively 

reduced integration.  More details on accuracy and computational efficiency are provided 

in the discussion section.  A consistent trend with respect to solver R6.0.0 was observed: 

for models for which other solvers would terminate with an error R6.0.0 will terminate 

normally but with poor energy balance initializing at the time at which other solvers 

terminate abnormally.   

 

5.4.3 Simple Tension Finite Element Models with Automatic Tetrahedron 

Remeshing (MAT 77O, 8 Terms) 

Automatic tetrahedron remeshing may not be practical for use in a model from which 

nodal or element output quantities are desired.  Small oscillations in the nodal 

displacements used in calculations yield a strain that is non-monotonic over time.  

Potentially in correspondence with these vibrations is high amplitude high frequency 

content in the force output shown in Figure 62.  The resulting stress-strain output was of 

very poor quality. Improving this may be challenging.  Oscillations in the force and nodal 

displacement outputs are almost certainly associated with remeshing.  The output of 

strain directly from the one non-remeshed element was possible but the strain was found 

to reset to zero with each re-mesh. 
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A significant error was observed with this model.  Despite no input to re-mesh the one 

element used for nodal displacement output this element was often altered (node and 

element renumbering).  One factor that influenced whether or not this element was 

remeshed was the penalty stiffness scaling factor (PSSF) of the tied contact 

(*CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIEBREAK) used to 

connect this element to the surrounding deformable elements.  Additionally, over the 

course of many remeshes the nodes of this element would move away from the nodes of 

surrounding elements until eventually the tied contact failed to tie the nodes together.  

This is likely another contributor to the reduced quality of the solution over time/strain. 

 

(a) 
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(b) 

 

(c) 

Figure 62: (a) Force output from simple tension model employing automatic tetrahedron 

re-meshing, (b) Nodal displacement output (to calculate strain) from simple tension 

model employing automatic tetrahedron re-meshing, (c) Stress-strain response of simple 

tension model employing automatic tetrahedron re-meshing. 
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5.4.4 Simple Compression Finite Element Models (MAT 77O, 6 Terms) 

The performance of hexahedron element formulations 1, 2, and 3 with a coarse 

discretization were studied.  All simulations terminated with an error.  Element 

formulation 1 exhibited hourglassing even with hourglass control (Figure 63).  Element 

hourglassing associated with this hourglass energy is shown in Figure 64.  Element 

formulations 2 and 3 may have terminated with an error due to the large maximum 

compressive strain and the associated large aspect ratios.  These topics were studied in 

more detail by employing a more recent solver release (R6.0.0) and a double precision 

solver. Neither resulted in a normal termination of the simulation or an increase in the 

time at which termination occurred. 

 

Figure 63: Simple compression finite element model, hexahedron element formulation1 

energy balance. 



118 
 

 

Figure 64: Element hourglassing, simple compression model, element formulation 1, 

Ogden material model (6 terms). 

 

Refining the mesh did not improve the performance of the model but this should be 

expected so long as the mesh is refined such that the initial element aspect ratios remain 

unchanged.  As shown in Figure 65, by developing the initial mesh with a relatively poor 

aspect ratio that would be improved (up to a limit) by compression, normal termination 

was achieved.  The stress-strain response was not particularly accurate due to the Ogden 

model curve fitting. 

 

Figure 65: Simple compression model, revised mesh, coarsened through the thickness. 
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The use of tetrahedron elements improved the stability of the model for coarse and fine 

meshes. As shown in Figure 66, with a coarse mesh formulations 10 and 13 (identical 

results, formulation 13 shown) terminated normally and were quite accurate considering 

the limitations of the Ogden model curve fitting.  It can be noted here and for all Ogden 

models that the computational cost is much lower than MAT 181 Simple Rubber/Foam 

(see Discussion).  Consistent with all models employing the Ogden material model (MAT 

77O), element formulation 4 terminated with an error.  No significant improvement was 

observed in the stress-strain responses for element formulations 10 and 13 with a refined 

mesh. 

 

Figure 66: Simple compression finite element models, coarse tetrahedron mesh (MAT 

77O, 6 terms), element formulation 13. 

 

5.4.5 Simple compression finite element models (MAT 77O, 8 Terms) 

The stress-strain responses for finite element models of the simple compression material 

characterization process with the Ogden material model (MAT 77O) with 8 terms and 

coarse meshes of hexahedron elements are shown in Figure 67.  Element formulations 2 

and 41 were consistent in terms of accuracy and computational cost and were the only 

two models which terminated normally.  Element formulation 1, consistent with the 6 
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term Ogden model and MAT 181, terminated with an error.  Significant hourglass energy 

and visible hourglassing were observed.  Element formulation 3 also terminated with an 

error at a strain only slightly lower than the maximum of the AXEL experimental simple 

compression data.  With the coarse discretization the accuracy of element formulation 3, 

not considering the error termination, was very poor.  Consistent with the integration 

scheme this element formulation was also very computationally expensive. 

 

 

(a) 
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(b) 

Figure 67: Simple compression finite element models, MAT 77O (8 Terms), hexahedron 

element formulations, (a) coarse discretization, (b) refined mesh. 

 

When the mesh was refined significant hourglassing was still observed with element 

formulation 1.  All simple compression models employing element formulation 1 used 

type 7 hourglass control with the coefficients QM, QW, and QB equal to 0.01.  However, 

of element formulations 2, 3, and 41 the model utilizing element formulation 3 was the 

only model to terminate normally.  The accuracy was significantly improved with respect 

to the coarse discretization used in the previous set of models.  

With a coarse discretization and tetrahedron element formulations only element 

formulation 13 combined with solver release 6.0.0 terminated normally.  Element 

formulation 10 was capable of reaching a relatively large compressive strain of 75%.  

Refining the mesh did not greatly affect the results.  The models utilizing element 

formulations 10 and 13 terminated normally with solver release 3.2.1.  A slight increase 

in accuracy was accompanied by a significant increase in CPU time. 
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5.4.6 Planar Tension (Pure Shear) Finite Element Models (MAT 77O, 6 Terms) 

Figure 68 includes stress strain curves for finite element models using hexahedron 

element formulations and MAT 77O (Ogden).  The levels of mesh discretization were 

consistent with the finite element models using MAT 181.  Consistent with the MATLAB 

calculations, the accuracy of these models was reasonable although the coarsest meshes 

were deformed excessively with corresponding instabilities and loss of accuracy.  An 

increasingly refined discretization was required to obtain reasonable performance with 

hexahedron element formulation 3.  At the 2
nd

 level of refinement the stress-strain 

response of formulation 3 became reasonably accurate but with increasing error over the 

duration of the simulation.  A corresponding increasing energy imbalance was observed. 

 

(a) 
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(b) 

 

(c) 

Figure 68: Planar tension (pure shear) finite element model, (a) coarse hexahedron mesh, 

(b) first level of mesh refinement, (c) 2
nd

 level of mesh refinement. 
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Stress-strain responses for finite element models of the planar tension (pure shear) 

material characterization process using tetrahedron element formulations are shown in 

Figure 69.  With a very coarse discretization element formulation 4 exhibited an 

instability and element formulations 10 and 13 performed very poorly.  With one level of 

mesh refinement essentially the same behaviour was observed.  Two further refinements 

of the discretization were required to obtain a reasonable degree of accuracy. 

 

(a) 
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(b) 

Figure 69: Stress-strain response of finite element models of the planar tension (pure 

shear) material characterization process (MAT 77O, 6 terms), tetrahedron element 

formulations, (a) coarse discretization, (b) 2
nd

 level of mesh refinement. 

 

5.4.7 Planar Tension (Pure Shear) Finite Element Models (MAT 77O, 8 Terms) 

Figure 70 provides stress-strain responses of finite element models of the planar tension 

(pure shear) material characterization process with the 8 term Ogden model (MAT 77O).  

The models in this figure employed hexahedron element formulations.  Element 

formulation 1 was very accurate, consistent with the theoretical performance of the 

Ogden model, and had an extremely low computational cost.  Element formulation 2 

exhibited poor accuracy with a very coarse discretization.  This coarse discretization also 

resulted in minor inconsistencies in the D3PLOT animation but the energy balances were 

ideal. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 70: Planar tension (pure shear) finite element models, MAT 77O (8 Terms), 

hexahedron element formulations, a) coarse discretization, b) 1
st
 level of mesh 

refinement, c) 2
nd

 level of mesh refinement, d) 3
rd

 level of mesh refinement. 
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With one level of mesh refinement there was a significant improvement in the 

performance of element formulation 2.  Element formulation 41 (EFG) also terminated 

normally and exhibited an accurate stress-strain response.  With another refinement of the 

mesh the results improved considerably with very accurate responses for all element 

formulations with the exception of element formulation 3 which exhibited a diverging 

energy balance and high amplitude, high frequency content in the stress-strain response.  

Refining the mesh once more yielded no significant improvement in the accuracy despite 

the significant increase in computational expense.  Additionally, element formulation 2 

terminated with an error. 

Stress strain responses for finite element models using tetrahedron element formulations 

are shown in Figure 71.  Element formulations 4, 10, and 13 exhibited poor accuracy with 

a very coarse discretization.  Element formulation 16 was more accurate than 4, 10, or 13 

but with respect to the AXEL experimental data the accuracy was poor.  With one level 

of mesh refinement all models exhibited improved accuracy but only element formulation 

16 can be referred to as accurate.  With another level of refinement of the mesh element 

formulations 4 and 16 terminated with errors but the performance, in terms of accuracy, 

of element formulations 10 and 13 became reasonable.  With one more refinement of the 

mesh the accuracy of element formulations 10 and 13 approached the theoretical 

accuracy limit for the Ogden model as calculated in MATLAB. Element formulations 4 

and 16 again terminated with errors. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 71: Planar tension (pure shear) finite element models, MAT 77O (8 Terms), 

tetrahedron element formulations, (a) coarse discretization, (b) 1
st
 level of mesh 

refinement, (c) 2
nd

 level of mesh refinement, (d) 3
rd

 level of mesh refinement. 



131 
 

5.4.8 Equibiaxial Tension Finite Element Models (MAT 77O, 6 Terms) 

Stress-strain responses for finite element models of the equibiaxial tension material 

characterization process with hexahedron element formulations are shown in Figure 72. 

With a coarse discretization the accuracy was very poor even considering the limitations 

due to the curve fitting of the Ogden model.  With one level of mesh refinement the 

model became consistent with the Ogden material model calculations completed in 

MATLAB. 

 

(a) 
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(b) 

Figure 72: Stress-strain responses of finite element models of the equibiaxial tension 

material characterization process (MAT 77O, 6 terms), hexahedron elements, (a) coarse 

discretization, (b) 2
nd

 level of mesh refinement. 

 

Figure 73 includes stress-strain responses of finite element models of the equibiaxial 

tension material characterization process (MAT 77O) employing several tetrahedron 

element formulations.  The response was not particularly accurate but was consistent with 

the MATLAB analysis of the 6 term Ogden model (Figure 25).  Mesh refinement did not 

significantly improve the accuracy of the results although it did eliminate small amplitude 

vibrations present in the response of the coarse mesh. 
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(a) 

 

(b) 

Figure 73: Stress-strain responses of finite element models of the equibiaxial tension 

material characterization process, MAT 77O (6 terms), tetrahedron element formulations, 

(a) coarse discretization, (b) 2
nd

 level of mesh refinement. 



134 
 

5.4.9 Equibiaxial Tension Finite Element Models (MAT 77O, 8 Terms) 

Stress strain responses for finite element models of the equibiaxial tension material 

characterization process with MAT 77O (8 terms), hexahedron element formulations, and 

a coarse discretization are shown in Figure 74.  The use of element formulations 3 and 41 

resulted in a very accurate model even with a relatively coarse mesh.  With one level of 

refinement element formulations 2 and 41 terminated with errors.  The accuracy of 

formulation 1 was greatly improved but formulation 3 exhibited high frequency content 

with the amplitude increasing with time/strain.  Another refinement of the mesh did not 

significantly affect accuracy. 

 

(a) 
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(b) 

Figure 74: Stress-strain responses of finite element models of the equibiaxial material 

characterization process, MAT 77O (8 terms), hexahedron element formulations, (a) 

coarse discretization, (b) 2
nd

 level of mesh refinement. 

 

Similar models were developed with tetrahedron elements.  The stress-strain responses 

for a coarse discretization are shown in Figure 75.  Formulations 10 and 13 were quite 

accurate.  The poor accuracy of element formulation 16 was unexpected.  With one and 

two levels of mesh refinement there were no significant increases in accuracy. Errors 

were encountered with element formulation 16 in addition to a very high computational 

cost associated with the halving of the critical time step since the critical length of an 

element is so reduced by the use of mid-length nodes. 
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(a) 

 

(b) 

Figure 75: Stress-strain responses of finite element models of the equibiaxial material 

characterization process (MAT 77O, 8 terms), tetrahedron element formulations, (a) 

coarse discretization, (b) 2
nd

 level of mesh refinement. 
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5.5 Finite Element Models of Chrysler RT Platform Transmission Mount 

The first finite element model of the engine mount developed used hexahedron elements 

with an average element edge length of approximately 1mm. However, this model had a 

very high computational cost. It was later found that the number of elements was 

excessive. The resulting CPU time was unreasonable at over 2 hours on 12 CPUs with a 

massively parallel processing (MPP) single precision (SP) solver. The mesh was 

coarsened to reduce the number of elements but retained the critical length of 1mm where 

thin layers of rubber were meshed with solid elements. The use of thick shell elements 

was discussed but since it offered no benefit in terms of the timestep, and the bonding of 

the rubber to the metal would prevent bending, this change was never implemented. The 

most significant effect of including this thin rubber region is likely the effect on local 

contact stiffness. 

 

 

Figure 76: 1mm, 2mm, and 3mm solid hexadron meshes, element formulation 2, solver 

R5.1.1, hub translation in z-direction. 
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As shown in Figure 76, the force displacement and external work were not significantly 

affected by increasing the average element size from 1 mm to 3 mm.  These models used 

element formulation 2.  Figure 77 is a comparison of element formulations 1, 2, and 3 for 

the 2mm solid hexahedron mesh with the hub translating 12 mm in the positive z-

direction.  Element formulations 2 and 3 exhibit an extremely stiff response with respect 

to element formulation 1. Only with element formulation 1 does the simulation terminate 

normally.  With formulations 2 and 3 severe element distortions result in an error 

termination.  Solver version was found to be a critical factor, as shown in Figure 78, 

which essentially eliminates the option of using solver release 5.1.1 with MAT 181. 

 

 

Figure 77: 2mm solid hexahedron mesh, z-translation of hub, study of element 

formulation (solver R5.1.1). 



139 
 

As shown in Figure 79 the combination of solver version and element formulation is of 

vital importance.  Element formulation 1 with MAT 181 predicted essentially the same 

response with solvers R3.2.1 and R5.1.1.  However, element formulations 2 and 3 

combined with MAT 181 were much stiffer with solver release 5.1.1.  Other loading 

configurations were similarly investigated with identical conclusions for, as an example, 

translation of the hub in the y-direction as shown in Figure 80.  For further analyses 

solver version R5.1.1 was no longer used with MAT 181 for elements of formulations 2 

and 3.  Another interesting result was observed when y-translation of the hub was 

modeled.  Element 3 exhibited remarkable stiffness with respect to element formulations 

1 and 2 even with solver R3.2.1.  This is shown in Figure 80 and Figure 81.  

 

 

(a) 
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(b) 

 

(c) 

Figure 78: Study of solver version and element formulation for the 2mm solid 

hexahedron mesh loaded in the positive z-direction, (a) element formulation 1, (b) 

element formulation 2, (c) element formulation 3. 
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Figure 79: Analysis of solver version, element formulation, and level of discretization 

with translation of the hub in the x-direction. 

 

Figure 80: Analysis of element formulation, level of discretization (hexahedron mesh) 

and solver version with translation of the hub in the y-direction. 
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Figure 81: Comparison of element formulation 3 with solvers R3 and R5 for translation 

of the hub in the y-direction (2mm mesh). 

 

With no significant variation in the force-displacement response of the model with 

alterations to the level of discretization (1, 2, and 3mm average element edge lengths) 

further coarsened meshes were developed to identify a limit on the maximum element 

size.  As shown in Figure 82, a mesh using a combination of shell and solid elements 

with an average element size of 4mm exhibited a force-displacement response similar to 

the 2 mm hexahedron mesh.  The observation of relatively significant increase in the 

stiffness of models using element formulation 3 continued.  Referencing the LS-DYNA 

theory manual (Hallquist, 2006) it was found that fully integrated hexahedron elements (8 

point Gaussian quadrature) exhibit significant locking for constant volume bending 

modes with incompressible materials.  For further analyses element formulation 3 was 

not considered. 
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Figure 82: Force-displacement comparison between a 2 mm hexahedron mesh and a 4 

mm shell-solid mesh, translation of hub in x-direction. 

 

The discretization supplied by Chrysler, with an average element edge length of 8mm 

was compared to the 4 mm mesh shown previously.  The use of a mesh coarser than 4mm 

requires additional simplifications to the geometry which is clearly observed comparing 

the 4mm and 8mm discretizations (shown side-by-side in Figure 31).  As shown in Figure 

83, for translation of the hub in the x-direction the force-displacement response of the 

structure is quite different when comparing the 4mm and 8mm meshes with all other 

modelling parameters as similar as possible.  The 4mm mesh may represent an upper 

limit on element size although depending upon the accuracy required an intermediate 

mesh size may produce acceptable results.   
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Figure 83: Force-displacement response, 4mm and 8mm meshes, x-translation of hub. 

 

Although a 4mm global average element edge length may be suitable it was found that 

local refinement is critical to obtain results consistent with globally refined meshes.  

Figure 84 and Figure 86 are the load-displacement responses with a global average 

element edge length of 4 mm and with a locally refined mesh respectively where the hub 

is translated in the z-direction (radially, axis defined by intersection of two planes of 

symmetry).  Mesh refinement is potentially undesirable since the critical timestep is 

determined by the smallest element. However, local refinement will limit the added mass 

if mass scaling were used. 
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Figure 84: 4 mm global average element edge length, hexahedron solid mesh with shell 

elements for thin rubber regions, evidence of the need for local refinement of the mesh. 

 

 

Figure 85: Local refinement of the mesh. 
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Figure 86: Local mesh refinement yields a force-displacement response more similar to a 

globally refined mesh. 

 

5.5.1 Hourglass control 

The z-direction of loading yielded a region of material distinctly under compression.  As 

observed with the models of simple compression as part of the modelling of the material 

characterization processes, element formulation 1 exhibits significant deformation in the 

hourglass deformation mode.  Since the chronological progress of this project resulted in 

the developing of finite element models of the Chrysler transmission mount prior to 

material characterization and associated modelling, hourglass control was studied using 

the model of the Chrysler engine mount with the hub displaced radially in the z-direction.  

Figure 87 provides a comparison of a model identical in all but the method of hourglass 

control. Hourglass control coefficients were set to the default values.  Hourglass control 

type 7 yielded the least hourglass energy. 
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Figure 87: Comparison of different types of hourglass control. 

Hourglass control type 7 in LS-DYNA is only valid for solid elements and was developed 

for visco-elastic materials. It may be ideal for hyperelastic materials since under cyclic 

loading it returns to the original shape without permanent deformation (LSTC, 2007).  

Another set of models were developed to identify optimal hourglass control coefficients 

for hourglass type 7.  The results of this parametric study are shown in Figure 88.  An 

interesting result was observed: with decreasing hourglass coefficients and, presumably, 

decreased hourglass control forces, the hourglass energy is reduced.  The external work 

performed was also reduced which is likely indicative of reduced additional stiffness due 

to hourglass control. 
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Figure 88: Study of hourglass control coefficients for hourglass control type 7. 

 

Figure 89: External work, hourglass control type study. 
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5.5.2 Tetrahedron element formulations and geometry simplifications 

Another set of results affected by the chronological completion of the different tasks of 

this project were associated with the tetrahedron element.  This schedule was 

advantageous in that tetrahedron meshes could be created from the simplified geometry 

used to create the hexahedron meshes as well as the original geometry (sufficiently 

defeatured if the tetrahedron mesh was relatively coarse).  As shown in Figure 90 all 

tetrahedron element formulations employed were considerably stiffer than the 

hexahedron element formulations that were used.  Using element formulation 10, two 

tetrahedron meshes were compared.  One mesh was developed using the original 

unmodified geometry with automatic defeaturing in Hypermesh based upon element size.  

The other tetrahedron mesh was also built using an automated mesher but the geometry 

was that used to create the finest hexahedron meshes (models without shell elements).  

The force displacement responses of these two models were not identical but the 

difference was much less significant than the difference between the average response of 

models using tetrahedron elements and the average response of models built from 

hexahedron elements.  It was later realized that there is a special 1 point tetrahedron 

element for near-incompressible materials, element formulation 13.  As shown in Figure 

91, this element exhibited a stiffness significantly reduced from that exhibited by element 

formulations 10 and 4. The response appears to approximate hexahedron element 

formulation 3. 
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Figure 90: Comparison between hexahedron and tetrahedron meshes from the original 

unmodified geometry and geometry simplified for meshing with hexahedron elements. 

 

Figure 91: Comparison between tetrahedron element formulations 4, 10, and 13 (2mm 

element size, mesh generated from unmodified CAD data provided by Chrysler). 
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5.5.3 Tied Contact 

Use of the same mesh that was used with merged nodes (by creating duplicate nodes at 

the previously merged locations) was the initial approach for implementation of tied 

contact. The general trend of the force-displacement response was not significantly 

affected as shown in Figure 92 but significant high frequency content was observed. 

However, as shown in Figure 93, the energy balance was very poor (element formulation 

1 shown, formulations 2 & 3 were similar). This is presumably caused by the shell 

element thickness causing initial penetrations (equal to half the shell thickness) at every 

tied node. The poor energy balance was resolved by eliminating the initial penetrations as 

shown in Figure 94 and employing the contact interfaces shown in Figure 32. An 

additional tied contact was also found to be necessary. The high frequency content was 

still present, as shown in Figure 95, but the energy balance was greatly improved Figure 

96 (element formulation 1 shown, 2 & 3 were similar). 

 

Figure 92: Tied contact implemented with mesh which previously used merged nodes 
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Figure 93: Energy balances for models with tied contact implemented with mesh that had 

previously used merged nodes, element formulation 1. 

 

Figure 94: Revised model to improve energy balance with tied contact. 
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Figure 95: Force displacement response for revised mesh to eliminate initial penetrations 

of tied contact interfaces. 

 

Figure 96: Energy balances for models with tied contact and revised mesh to eliminate 

initial penetrations, element formulation 1. 
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5.6 Component Characterization 

5.6.1 Fixture Design 

Von Mises stresses were considered for the finite element model of the steel equal angle 

extrusions of the initial fixture design.  Peak stresses were on the order of 1000 MPa, 

considerably higher than the design restriction of the 250 MPa yield strength.  Relative 

motion was also observed between the two steel extrusions bolted together which 

fundamentally comprise the fixture.  These results are reasonably consistent with manual 

calculations of stress shown below.  These calculations make significant assumptions and 

it was unknown if the predictions of these calculations should be considered reasonable. 

A bending stress was calculated for the lower equal angle extrusion, the base of the 

fixture and the component in direct contact with the lower platen of the testing apparatus.  

This calculation assumed a simplified model of a cantilever beam with a width of 160 

mm and a thickness of 10 mm.  It was assumed that this component should be designed to 

carry the peak load transmitted through the engine mount without yielding.  The peak 

load was estimated from the finite element models of the engine mount. The stress was 

calculated for an outer surface in the region near the radius. 

          
  

 
  

               

                                  (Equation 56) 

Increasing the thickness of the equal 90 degree angle extrusions was limited by the 

geometry of the engine mount.  Even with the initial design bolt holes were in close 

proximity to the radius of the 90 degree bend.  It was considered that washers would be in 

contact with the material surrounding the holes which would need to be relatively planar. 

Thicker pieces of steel required the design be revised, the resulting modified design is 

shown in Figure 34.   

The very large von Mises stresses in the upper half of the base of the fixture, even with 

the revised design, suggested that the finite element model may have been producing 

misleading results.  The first modification to the finite element model, in an attempt to 

discover the source of these results and eliminate the misleading output, was to radius 

sharp edges.  Sharp edges may lead to infinite stresses. If one considers stress 
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concentration factors a sharp edge may be equivalent to a fillet with a radius of zero. 

Some stress concentration factors approach infinity for edges with a null radius. 

Radiusing sharp edges where peak von Mises stresses were located reduced the 

magnitude of the peak von Mises stresses considerably but did not result in stresses 

considerably lower than the assumed yield strength of the steel (250 MPa).  The next 

modification to the model was to use a 10 node Tetrahedron element formulation 

(previous models used a 4 node tetrahedron element formulation). The use of 10 node 

tetrahedrons in place of 4 node tetrahedrons reduced the peak von Mises stress to 280 

MPa (from 350 MPa).  However, this was still larger than the assumed yield strength. 

The very large stresses in the locations at which there was contact between the washers 

and the steel brackets of the fixture was unexpected.  Additionally, the clearance between 

the bolt and the holes in the fixture should result in reduced stresses through stress 

relaxation in the physical part.  The washers at the locations of the peak stresses were 

eliminated as were the loads representing the bolt preload.  The corresponding washers 

for the opposite end of the bolted connections represented remained with their load in 

place.  An unbalanced force on the assembly does not result since the entire fixture is 

bolted in place.  These connections carry a greater load.  Overall, the unbalanced bolt 

preload loading should more severely stress the steel plate of the fixture.  Figure 97 

depicts the changes made to the model. 
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Figure 97: Modifications to finite element model of revised fixture design: removal of 

washers and corresponding bolt preload. 

 

Von Mises stresses were also considered for the steel fixture plates with the one pair of 

washers (and corresponding loads) removed (at the previous location of peak von Mises 

stress).  The removal of the two washers (and any loads applied to the nodes of the 

removed elements) resulted in a significantly different stress state at this location.  The 

stress was reduced from 280 MPa to 34 MPa.  The location of the peak von Mises stress 

was significantly altered.  The maximum von Mises stress was also significantly reduced 

from 280 MPa to 108 MPa. 

The last finite element model of the fixture which was developed included all washers but 

featured a refined mesh and smaller radiuses for filleted edges. The smaller radius was 

permitted by the use of smaller elements. The reduced fillet radiuses for the edges of the 

holes with washers increased the area of material of the steel brackets in contact with the 
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washers. The refined mesh did not result in a significant change in the location or 

magnitude of the maximum von Mises stress. 

 

Figure 98: Refined mesh of loading fixture. 

 

5.6.2 Quasi-Static Component Characterization 

The quasi-static force-displacement responses of specimens 1 and 2 are shown in Figure 

99. Characterization of specimen #1 was completed twice with a delay of approximately 

5 minutes. Since there was minimal variation in the force-displacement response during 

the repeated characterization of specimen #1 only three loading cycles were completed. 

For all other quasi-static component force-displacement characterizations five loading 

cycles were completed. Significant variation between the first and second loading cycles 

was observed. The last four loading cycles were very similar for a given specimen. 

Shown in Figure 100 is the first loading cycle separated into tensile loading and 

unloading and compression loading and unloading. A Mullin’s effect was observed as 

shown in Figure 101, plots of the tensile and compression loading for the first and second 

cycles. 
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(a) 

 

(b) 
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(c) 

Figure 99: Quasi-static force displacement response of specimens 1 through 3, (a) test #1 

of specimen #1, (b) test #2 of specimen #1, (c) test #1 of specimen #2.. 
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(a) 



161 
 

 

(b) 

Figure 100: First loading and unloading cycle, quasi-static component characterization, 

(a) tension, (b) compression. 
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(a) 
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(b) 

Figure 101: Tensile and compression loading, first and second cycles, (a) tension, (b) 

compression. 
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High resolution photographs of the specimens during the characterization process 

resulted in important observations. As shown in Figure 102 (undeformed and maximum 

displacement in compression), the steel brackets of the engine mount deformed such that 

the measured displacement should either be corrected or finite element models should 

include the steel brackets. This was consistently observed for all specimens. Another 

potential source of error was identified for one set of data as shown in Figure 103. A pair 

of bolts was installed with sufficient torque to provide the necessary clamping force to 

prevent movement between the two steel plates of the fixture. However, the relative 

displacement between these plates is minimal. 

 

Figure 102: Bracket deformation, specimen #1, test #1. 

 

 

Figure 103: Separation of fixture plates, specimen #1, test #1. 
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5.6.3 Dynamic Component Characterization 

The data acquired during the dynamic characterization process is shown in Figure 104: 

the displacement over time of the hydraulic cylinder and the force from the load cell. The 

time displacement profile was essentially identical for all specimens. By identifying the 

time at which the load cell began registering a load, the data for the position of the 

hydraulic cylinder could be used to calculate a displacement of the inner hub of the 

engine mount with respect the base of the metal fixture. This accounted for the initial 

gap, shown in Figure 36, between the upper half of the fixture and the relatively rigid 

entity of the DARTEC testing machine against which it was impacted. The resulting 

dynamic force-displacement responses are shown in Figure 105. 

 

(a) 

 

(b) 

Figure 104: (a) Displacement of the hydraulic cylinder and (b) force (from load cell) over 

time. 
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Figure 105: Dynamic force-displacement response of the Chrysler engine mount. 

 

The quasi-static and dynamic force-displacement responses of the Chrysler powertrain 

suspension component are compared in Figure 106.  This component did not exhibit 

significant strain rate sensitivity under loading.  However, the energy dissipation of the 

component may have significantly increased under dynamic conditions.  An alternate 

explanation for the increased energy absorption is the increased level of deformation.  A 

superposition of these two effects is, accordingly, another possibility. 
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Figure 106: Quasi-static and dynamic force-displacement responses of Chrysler 

powertrain suspension component. 

 

5.7 Finite Element Model Validation 

5.7.1 Quasi-Static Force-Displacement Response 

The first validation of the finite element model of the engine mount considered the 

component characterization data for quasi-static tensile loading of the engine mount. An 

estimate was made for a termination time sufficiently large to obtain a quasi-static 

response. A first estimate of this termination time was 20 ms as shown in Figure 107. 

However, to ensure this termination time was sufficiently large another simulation was 

completed with a termination time of 40 ms (curve B, the time has been scaled in the 

figure). The strain rate effects were also removed in another alteration to this model by 

using only the 0.01 s
-1

 strain rate AXEL data in MAT 181 in place of the tabular input 

which also included stress-strain data for a strain rate of 100 s
-1

. 
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Figure 107: Quasi-static force-displacement characteristics in tension (finite element 

model). 

The quasi-static force displacement response of a finite element model and the tensile 

quasi-static component characterization data are shown in Figure 108. Force data for all 

models was filtered in LS-PrePost using a Butterworth filter with a channel frequency 

class (CFC) of 1000 to remove very high frequency content likely associated with the 

numerical computation of derivatives. The significant variation between the finite 

element model and the experimental data led to many alterations to the model in an 

attempt to improve the accuracy. The reduction in time scaling was not completed to 

enhance the accuracy since reduced loads would be expected since inertial forces would 

be reduced. The elimination of strain rate sensitivity modelling was also unrelated to the 

accuracy concerns. The use of element formulation 2 for element modeling rubber and 

the alteration of the tied contact interfaces were attempts to increase the accuracy of the 

model. 



169 
 

 

Figure 108: Engine mount finite element model validation, tensile loading, quasi-static 

characterization 

A notable increase in the accuracy of the model resulted from the replacement of tied 

contact with merged nodes. The process employed in developing the tied contact 

interfaces was to use *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_TIED 

and remove the option Tied to activate the contact checking tool in LS-PrePost. Without 

the use of this tool contact may have worked well in terms of constraints between nodes 

but the preloading would result in a significant initial internal energy and a poor energy 

balance. However, optimal modeling of tied contact without excessive energy imbalance 

was never achieved. A quick inspection of the D3PLOT output for the models shown in 

Figure 108 seemed to indicate that the tied contact interfaces were reasonable in terms of 

nodal constraints and energy balance. However, the force-displacement response and 

more extensive investigations of the model (in particular considering von Mises stresses 

at contact interfaces) indicated that the modelling methodology may not be optimal. 

As shown in Figure 109, the use of merged coincident nodes greatly increased the 

stiffness consistent with the observations that the tied contact was not tying many of the 

nodes. The resulting significant increase in stiffness was not expected. Data set E in 
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Figure 108 represents a removal of one tied contact interface and replacement with the 

merging of coincident nodes. The resulting increase in stiffness was not significant. 

However, as shown in Figure 109, the replacement of all tied contact interfaces with 

merged nodes yielded a very accurate model. The relative simplicity of this technique 

(merging nodes) and the presumed reduction in computational cost suggest this 

methodology may be of considerable benefit. The Oberkampf-Trucano error metric was 

calculated to be 0.9675. 

 

Figure 109: Engine mount finite element model validation, tensile loading, quasi-static 

characterization, tied contact replaced with constraints. 

Excellent correlation between the experimental component characterization data in 

compression and the finite element model of the engine mount was observed as shown in 

Figure 110. The Oberkampf-Trucano metric was calculated to be 0.9070 using a slightly 

modified version of the MATLAB/Octave script in the appendix for validation of simple 

tension models. The most significant modification to the script was to use the option 

‘pchip’ with the interp1 command in MATLAB rather than the Octave option ‘extrap’ 

(which does not exist in MATLAB). This model worked well with tied contact which 

likely resulted from the nature of the compressive loading and contact modelling with the 

default penalty stiffness method. 
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Figure 110: Finite element model validation, compressive loading, quasi-static 

characterization. 

 

 

Figure 111: Finite element model of compressive loading and high resolution image. 
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5.7.2 Dynamic Component Force-Displacement Response 

Shown in Figure 112 is the force data captured by the load cell on the Zwick/Roell 

DARTEC material testing system in DYNLab and the equivalent results from the finite 

element model shown in Figure 39. The displacement profile for the boundary condition 

in the finite element model (displacement of the steel brackets of the engine mount) was 

taken from the data acquired during the first characterization (test #1) of specimen. 

Correspondingly the force profile in Figure 112 is from this same specimen and test. The 

time or displacement at which contact between the upper half of the fixture and the upper 

platen of the DARTEC MTS is consistent between the model and the experimental test. 

However, the peak load of the numerical model is erroneous with too large a magnitude. 

 

Figure 112: Force-time profile, dynamic component characterization, model validation 
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Chapter 6: Discussion 

 

6.1 Quasi-Static Material Characterization 

Simple tension material characterization was originally proposed to use ASTM D412 

Type D specimens and ISO 37 type 2 specimens.  The ISO specimens were not used.  

However, the ASTM specimens are of ideal dimensions whereas the ISO specimens are 

excessively short and lateral contraction as the specimen is elongated (and volume is 

essentially constant) is constrained. Shorter specimens can be used for dynamic material 

characterization since the shorter length assists in achieving higher strain rates.  The 

shorter length also reduces the variation in strain rate since one end of the specimen is 

fixed and the other is displaced.  A more practical reason for using for shorter specimens 

may be the limitations imposed by the dimensions of the source material. 

It was hypothesized that AXEL obtained their material testing specimens from rubber 

slabs and not directly from components as was done in the FIAT polymer lab.  This is 

based upon the completion of the equibiaxial tension test which requires a large specimen 

that could not be extracted from an engine mount and their use of stacked discs for simple 

compression.  Simple compression specimen thickness was not limited by the extraction 

of specimens from the Chrysler engine mount in the FIAT polymer laboratory.  The use 

of stacked discs may explain the discrepancy between the FIAT and AXEL simple 

compression material data but the excellent correlation between the simple compression 

data and the converted equibiaxial tension data (Figure 43) suggests that the simple 

compression data from AXEL is of high quality. 

The significant variation in simple compression results in the FIAT laboratory was 

considered with no adequate solution found.  The poor specimen dimensional accuracy 

was considered as a possible contributor to the variation.  It may be a combination of 

factors difficult to account for. It may be worthwhile to develop finite element models of 

specimens with poor dimensional accuracy (i.e. out of roundness, non-parallel faces, etc.) 

and determine the effects of these factors on the stress-strain response.  A previous study 

(Day JR, 2000) considered friction and found its affects to be significant with shear 

strains that may be greater than the compressive strains. 
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Planar tension (pure shear) testing was originally planned to be completed in the FIAT 

Mirafiori polymer laboratory.  The procedure used by FIAT is different from that of 

AXEL Products Physical Testing Services.  FIAT uses an adhesive to attach rubber 

specimens to aluminum fixtures. AXEL clamps the rubber specimen in a manner similar 

to that used for simple tension. With the AXEL methodology, as a result of the 

significant deformation, the material flows in the clamps.  Finite element models of the 

planar tension (pure shear) material characterization process were based upon the FIAT 

models which greatly simplified the application of boundary conditions.  The theoretical 

conditions for the planar tension characterization process, an element strained in one 

direction, no strain in an orthogonal direction, and no stress in the other mutually 

orthogonal directions may be more similar to the FIAT process. 

 

6.2 Finite Element Modeling of Quasi-Static Material Characterization 

6.2.1 Single Element Models 

The superior accuracy of MAT 77O (Ogden) and MAT 77H with respect to MAT 181 

was unexpected since (Kolling S, 2005) states that MAT 181 can very accurately 

represent any input stress-strain data.  This is dependent upon the model being quasi-

static but this condition was easily met with the single element models.  In other single 

element models, not presented here, it was found that the bulk modulus, one of the 

material model inputs for MAT 181, significantly influenced the uniaxial stress state 

accuracy of MAT 181.  This may be explained by the influence of volumetric change on 

the stress-strain relationship of the material model. The material model may also have 

fundamental assumptions that the volume of each element is constant (Equation 15), a 

condition that is not true unless the bulk modulus is infinite.  Correspondingly, increasing 

the bulk modulus increased the accuracy of MAT 181.  However, the bulk modulus is not 

infinite for any material and, at least for rubber, is commonly measured in the laboratory 

to determine a finite value that may or not be used in the material model. For this 

research the bulk modulus was provided by Chrysler engineers. 
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The increase in accuracy of MAT 181 with the addition of compressive data to the input 

to the material model (for a simulation of an element in pure tension) was unexpected.  

The decrease in performance of MAT 77 is sensible since the curve fitting was completed 

internally by LS-DYNA not considering that the model would be in a state of pure 

tension and the compressive portion of the stress-strain curve was of less importance.  

Therefore, since the same expression was required to be fit to a curve with a larger 

domain with a more complex response, a decrease of the accuracy in pure tension was 

expected.  It may be noted that the decrease in accuracy was essentially insignificant.  

This is likely due to the use of a large number of terms which is sufficient to not only 

accurately capture a uniaxial stress strain curve but also to represent reasonably well the 

characteristics of the material for equibiaxial tension and pure shear. 

 

6.2.2 Simple Tension Finite Element Models 

Table 23 compares the simple tension finite element models employing MAT 181 and 

MAT 77O (6 Terms). MAT 77H was not used since the strain energy function upon 

which is it based is a subset of the Ogden strain energy function of MAT 77O (Equation 

16 and Equation  21). The most and least accurate models using each material model are 

highlighted as are the models that are most and least computationally expensive.  MAT 

181 was consistently more accurate and more stable as judged by the many models that 

ran to termination with MAT 181 but terminated with errors when the material model 

was changed to different implementations of MAT 77O (with no other alterations). MAT 

77O (Ogden) was much more computationally efficient.  The internal procedures that 

allow MAT 181 to essentially perfectly replicate input uniaxial stress strain curves likely 

resulted in this relatively high computational expense.  
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Table 23: Comparison between simple tension models using MAT 181 and MAT 77O   

(6 terms). 

MAT 181 

    

MAT 77O 

Ogden         

6 terms 

   

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

16 2.5 0.98041 32 

 

4 1 - - 

1 1 0.98008 12 

 

1 1 0.90454 4.333 

2 1 0.97986 68 

 

16 1 0.90383 330 

10 1 0.97893 48 

 

10 2.5 0.89845 1 

13 2.5 0.97674 7 

 

13 2.5 0.89845 1 

13 1 0.97665 54 

 

10 1 0.89264 9 

10 2.5 0.96868 3 

 

13 1 0.89264 9 

16 1 0.95305 301 

 

16 2.5 0.88319 8 

4 1 0.95019 30 

 

1 2.5 0 0.3 

4 2.5 0.9323 7 

 

2 2.5 0 - 

3 1 0.92681 51 

 

3 2.5 0 - 

2 2.5 0.8428 1 

 

2 1 0 - 

1 2.5 0.61712 0.3 

 

3 1 0 - 

3 2.5 0.50203 2.3 

 

4 2.5 0 - 

 

A similar comparison is given in Table 24 where the coefficients of the Ogden material 

model have been increased (8 term model, 16 coefficients).  These coefficients were 

identified in MATLAB as discussed in the methodology section.  It was expected that the 

6 term model would be capable of modeling larger deformations since the coefficients 

were found using MARC.  More specifically, this behaviour was expected since the 

option, within MARC, to find positive coefficients was utilized.  Additionally, an option 

within MARC to perform mathematical analyses of potential coefficients was also 

activated.  Considering Table 23, for many models the 6 term Ogden material model 

terminated with an error while the corresponding models employing MAT 181 

terminated normally (shown by the reduced number of entries in the columns for MAT 
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77 with respect to the entries for MAT 181).  Considering Table 24, the 8 term Ogden 

model had fewer models which terminated normally but the difference is not especially 

significant.  One final observation: the accuracy and computational efficiency of the 6 

term and 8 term Ogden models are comparable. 

 

Table 24: Comparison between simple tension models using MAT 181 and MAT 77O   

(8 terms). 

MAT 181 

    

MAT 77O Ogden 8 

Terms 

  

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

16 2.5 0.98041 32 

 

10 2.5 0.90729 0.383 

1 1 0.98008 12 

 

13 2.5 0.90729 0.417 

2 1 0.97986 68 

 

16 1 0.90365 89 

10 1 0.97893 48 

 

16 2.5 0.90319 3.6 

13 2.5 0.97674 7 

 

13 1 0.90287 9.8 

13 1 0.97665 54 

 

10 1 0.90274 7 

10 2.5 0.96868 3 

 

1 1 0.89173 4.633 

16 1 0.95305 301 

 

41 1 0.89105 0.867 

4 1 0.95019 30 

 

3 1 0.88978 72 

4 2.5 0.9323 7 

 

        

3 1 0.92681 51 

     2 2.5 0.8428 1 

     1 2.5 0.61712 0.3 

     3 2.5 0.50203 2.3 
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6.2.3 Simple Compression Finite Element Models 

Table 25 compares MAT 181 and MAT 77O (6 terms, determined using MARC) in 

simple compression with hexahedron and tetrahedron element formulations.  Many 

discretizations which, with MAT 181, terminated normally without unrealistic behaviour 

or poor energy balance would not successfully reach the termination time (and associated 

level of deformation) successfully when the material model was changed to MAT 77 

Ogden.  No other changes were made to the model, solver, or computer used to run the 

models.  As was expected with the ability of MAT 181 to replicate uniaxial stress-strain 

input data, MAT 181 was more accurate than this 6 term implementation of MAT 77O.  

However, MAT77O was considerably less computationally expensive than MAT 181.  If 

it were not for the reduced ability to model large deformations, MAT 77O might be worth 

considering for use in this crashworthiness application. 

 

Table 25: Comparison between simple compression finite element models using MAT 

181 and MAT 77O (6 terms) 

MAT 181 

    

MAT 77O Ogden, 6 terms (MARC) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

10 2 0.98387 3 

 

10 2 0.79086 1 

13 2 0.98364 3 

 

13 2 0.79086 1 

4 2 0.98267 14 

 

10 5 0.7813 0.033 

13 5 0.97613 0.117 

 

13 5 0.7813 0.033 

2 5 0.97548 0.167 

 

2* 5 0.78126 0.1 

4 5 0.97494 0.417 

 

* Revised mesh to reduce peak aspect ratio. 

10 5 0.97456 0.117 

     3 2 0.95116 9 

     2 2 0.9496 2 

     3 5 0.93275 0.433 

     1 2 0.8697 0.917 

     1 5 0.85099 0.133 
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Table 26 is a similar comparison between the MAT 181 and the 8 term Ogden model 

with coefficients identified in MATLAB.  The 8 term model was not particularly less 

stable than the 6 term model but was significantly more accurate. This is consistent with a 

comparison of the curve fitting as analyzed in MATLAB.  However, even with 8 terms 

the Ogden model was not as accurate as MAT 181.  The significantly decreased 

computational cost of MAT 77O with respect to MAT 181 was still observed. 

Table 26: Comparison between simple compression finite element models using MAT 

181 and MAT 77O (8 terms). 

MAT 181 

    

MAT 77O Ogden, 8 

terms 

  

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

10 2 0.98387 3 

 

10 2 0.87854 0.933 

13 2 0.98364 3 

 

13 2 0.87854 0.95 

4 2 0.98267 14 

 

2 5 0.86772 0.083 

13 5 0.97613 0.117 

 

41 5 0.86758 0.117 

2 5 0.97548 0.167 

 

13 5 0.86737 0.033 

4 5 0.97494 0.417 

 

3 2 0.78655 5 

10 5 0.97456 0.117 

     3 2 0.95116 9 

     2 2 0.9496 2 

     3 5 0.93275 0.433 

     1 2 0.8697 0.917 

     1 5 0.85099 0.133 

       

6.2.4 Planar Tension (Pure Shear) Finite Element Models 

Table 27 compares finite element models of the planar tension (pure shear) method of 

material characterization using MAT 181 and the 6 term implementation of MAT 77 

Ogden both with hexahedron elements. A consistent trend with previous results for 

simple tension and compression was observed: increased accuracy with MAT 181 but 

decreased computational cost with MAT 77O.  The reduced ability to model large 
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deformations with MAT 77O was not as significant for the deformation mode of this 

model.  For very fine meshes there was also a possible trend towards MAT 77O 

becoming more accurate which would be reasonable since the coefficients of the Ogden 

strain energy function were determined considering the planar tension (pure shear) AXEL 

data. 

Table 27: Comparison between planar tension (pure shear) models using MAT 181 and 

MAT 77O (6 terms), hexahedron element formulations. 

MAT 181 

    

MAT 77O Ogden 6 terms (MARC) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

2 1.25 0.85958 19 

 

2 1.25 0.82534 210 

2 0.625 0.81518 214 

 

1 0.625 0.80645 10 

1 0.625 0.81389 20 

 

2 0.625 0.80546 40 

1 0.3125 0.80375 480 

 

1 0.3125 0.80106 50 

2 0.3125 0.79853 2400 

 

1 1.25 0.77759 0.667 

1 1.25 0.79286 5 

 

3 0.3125 0.76392 1680 

3 0.3125 0.71481 7200 

 

1 2.5 0.72622 0 

1 2.5 0.71154 0.3 

 

3 0.625 0.65614 130 

3 0.625 0.43938 337 

 

2 2.5 0.47143 0.333 

2 2.5 0.31677 2 

 

3 2.5 0 - 

3 1.25 0.10673 86 

 

3 1.25 0 - 

3 2.5 0 6 

 

2 0.3125 0 - 

  

Table 28 is a similar comparison between MAT 181 and MAT 77O (6 terms) but for 

tetrahedron elements.  Coarse discretizations yielded poor results with either material 

model. MAT 77O did not accurately capture the engineering stress-strain response of the 

specimen even with a very fine discretization.  With MAT 181 the potential advantage of 

element formulation 13 over element formulation 10 for modeling rubber may be 

observed.  Element formulations 10 and 13 are both 4 node, 1 point integration 

tetrahedron elements.  However, element formulation 13 is less prone to volumetric 

locking and is more suitable for incompressible and near incompressible materials. 
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Table 28: Comparison between planar tension (pure shear) models using MAT 181 and 

MAT 77O (6 terms), tetrahedron element formulations. 

MAT 181 

    

MAT 77O Ogden 6 terms (MARC) 

 Element  

Formulatio

n 

Element  

Size 

(mm) 

Validatio

n  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulatio

n 

Element  

Size 

(mm) 

Validatio

n  

Metric 

CPU 

Time  

(min) 

4 2.5 

All element 

formulations exhibited 

instabilities in planar 

tension for coarse 

discretization. 

 

10 0.3125 0.75453 240 

10 2.5 

 

13 0.3125 0.75453 240 

13 2.5 

 

10 0.625 0.51901 43 

4 1.25 

 

13 0.625 0.51901 43 

10 1.25 

 

10 1.25 0.05571 5 

13 1.25 

 

13 1.25 0.05571 5 

4 0.625 

 

4 2.5 0 - 

13 0.625 0.85893 150 

 

10 2.5 0 0.333 

13 0.3125 0.78443 440 

 

13 2.5 0 0.833 

4 0.3125 0.41877 3600 

 

4 1.25 0 - 

10 0.3125 0.18182 440 

 

4 0.625 0 - 

10 0.625 0.001 150 

 

4 0.3125 0 - 

 

Comparable tables for the 8 term Ogden model are given in Table 29 and Table 30.  For 

these models, since the Ogden material model coefficients were obtained taking directly 

into consideration the AXEL planar tension (pure shear) data the accuracy of MAT 77O 

with 8 terms was generally superior to that of MAT 181.  However, for reasonable 

modeling parameter selections the accuracy of MAT 181 was quite good.  The 8 term 

implementation of MAT 77O was also consistent with the 6 term model in terms of the 

poor accuracy with coarse tetrahedron meshes.  One may also note, for all models, that 

element formulations 16 (10 node, 5 point integration tetrahedron) and 41 (element free 

Galerkin) were considered for the 8 term Ogden model.  Neither formulation worked well 

with MAT 181 (EFG is essentially completely unsupported).  Neither was particularly 

impressive, especially in terms of capability to model large deformations. This may be a 

limitation imposed by the material model. 
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Table 29: Comparison between planar tension (pure shear) models using MAT 181 and 

MAT 77O (8 terms), hexahedron element formulations. 

MAT 181 

    

MAT 77O Ogden 8 

terms 

  

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

2 1.25 0.85958 19 

 

1 0.625 0.91562 2 

2 0.625 0.81518 214 

 

1 0.3125 0.91437 40 

1 0.625 0.81389 20 

 

2 0.625 0.91433 11 

1 0.3125 0.80375 480 

 

41 0.3125 0.91288 300 

2 0.3125 0.79853 2400 

 

3 0.3125 0.90409 960 

1 1.25 0.79286 5 

 

41 0.625 0.90024 14 

3 0.3125 0.71481 7200 

 

2 1.25 0.8963 0.75 

1 2.5 0.71154 0.3 

 

1 2.5 0.89325 0 

3 0.625 0.43938 337 

 

1 1.25 0.84575 0.1 

2 2.5 0.31677 2 

 

3 0.625 0.82117 27 

3 1.25 0.10673 86 

 

41 1.25 0.69281 0.95 

3 2.5 0 6 

 

2 2.5 0.5083 0.05 
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Table 30: Comparison between planar tension (pure shear) models using MAT 181 and 

MAT 77O (8 terms), tetrahedron element formulations. 

MAT 181 

    

MAT 77O Ogden 8 

terms 

  

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

4 2.5 

All element 

formulations exhibited 

instabilities in planar 

tension for coarse 

discretization. 

 

16 1.25 0.94784 50 

10 2.5 

 

10 0.625 0.89565 195 

13 2.5 

 

13 0.3125 0.89565 195 

4 1.25 

 

10 0.625 0.67445 9 

10 1.25 

 

13 0.625 0.67445 9 

13 1.25 

 

16 2.5 0.59701 0.4 

4 0.625 

 

10 1.25 0.09239 1 

13 0.625 0.85893 150 

 

13 1.25 0.09238 1 

13 0.3125 0.78443 440 

 

10 2.5 0 0.067 

4 0.3125 0.41877 3600 

 

13 2.5 0 0.167 

10 0.3125 0.18182 440 

 

        

10 0.625 0.001 150 

     

 

6.2.5 Equibiaxial Tension Finite Element Models 

Table 31 compares finite element models (hexahedron element formulations) of the 

equibiaxial tension material characterization process employing MAT 181 and MAT 77O 

(6 terms).  This is another clear example of the increased accuracy of MAT 181 at the 

expense of computational cost.  The high accuracy of MAT 181 was surprising since the 

input to this material model is nothing more than a uniaxial engineering stress-strain 

curve.  This material model (MAT 181) is based upon the Ogden strain energy functional 

(Kolling S, 2005) which in theory has the capability to model the equibiaxial tension 

stress state quite accurately as shown by the 8 term Ogden model developed in 

MATLAB. 
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Table 31: Comparison between equibiaxial tension models using MAT 181 and MAT 

77O (6 terms), hexahedron element formulations. 

MAT 181 

    

MAT 77O Ogden 6 

terms 

  

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

3 2 0.96035 8 

 

2 1 0.82534 3.5 

2 0.5 0.92599 720 

 

1 0.5 0.80645 10 

1 0.5 0.9256 120 

 

2 0.5 0.80546 40 

3 0.5 0.92555 1800 

 

1 1 0.77759 0.667 

2 2 0.9246 4 

 

1 2 0.72622 0 

2 1 0.91616 43 

 

3 0.5 0.65614 130 

1 1 0.91518 8 

 

2 2 0.47143 0.333 

3 1 0.91222 80 

 

3 2 0 - 

1 2 0.89263 1 

 

3 1 0 - 

  

 

Table 32 is a similar comparison of equibiaxial tension finite element models using 

tetrahedron elements.  The models which use MAT 181 were fairly consistent in 

producing accurate results.  The response of MAT 77 Ogden was much less accurate but 

this was a limitation imposed by the curve fitting.  The Oberkampf Trucano validation 

metric is limited to the value calculated in MATLAB (0.79863, see Table 13) when the 

coefficients for this 6 term Ogden model were identified using MARC.  
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Table 32: Comparison between equibiaxial tension models using MAT 181 and MAT 

77O (6 terms), tetrahedron element formulations. 

MAT 181 

    

MAT 77O Ogden 6 

terms (MARC) 

  

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

4 2 0.964 26 

 

10 1 0.7742 23 

10 2 0.95785 5 

 

13 1 0.7742 23 

10 1 0.951 60 

 

4 1 0.77165 110 

10 0.5 0.94681 690 

 

10 2 0.76822 2 

13 1 0.93734 60 

 

13 2 0.76822 2 

13 2 0.93272 5 

 

10 0.5 0.7637 300 

13 0.5 0.924 690 

 

13 0.5 0.7637 300 

4 1 0.86856 372 

 

4 0.5 0.75998 690 

16 1 0.4926 7200 

 

4 2 0 - 

16 2 0.40952 52 

 

        

4 0.5 0 - 

      

Similar tables for the 8 term implementation of MAT 77O are given in Table 33 

(hexahedron elements) and Table 34 (tetrahedron elements). Even with 8 terms (the 

maximum for LS-DYNA) implemented in MAT 77O, MAT 181 was more accurate in 

equibiaxial tension.  Consistent with previous results, MAT 181 was significantly more 

expensive computationally but if only a small portion of a full vehicle model consists of 

rubber components this should not be significant.  The finer mesh that may be necessary 

with MAT 77O may be more problematic if the critical timestep for the entire model was 

dictated by one of the rubber elements. 
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Table 33: Comparison between equibiaxial tension models using MAT 181 and MAT 

77O (8 terms), hexahedron element formulations. 

MAT 181 

    

MAT 77O Ogden 8 

terms 

  

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

3 2 0.96035 8 

 

3 2 0.89381 1.45 

2 0.5 0.92599 720 

 

41 2 0.8925 3 

1 0.5 0.9256 120 

 

3 0.5 0.85815 675 

3 0.5 0.92555 1800 

 

1 0.5 0.85569 46 

2 2 0.9246 4 

 

3 1 0.85467 62 

2 1 0.91616 43 

 

1 1 0.84165 3.35 

1 1 0.91518 8 

 

2 2 0.49997 15 

3 1 0.91222 80 

 

1 2 0.42099 2.3 

1 2 0.89263 1 

 

        

  

Table 34: Comparison between equibiaxial tension models using MAT 181 and MAT 

77O (8 terms), tetrahedron element formulations. 

MAT 181 

    

MAT 77O Ogden 8 

terms 

  

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

 

Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

4 2 0.964 26 

 

13 2 0.89367 1.9 

10 2 0.95785 5 

 

10 2 0.89366 1.867 

10 1 0.951 60 

 

10 1 0.89115 20 

10 0.5 0.94681 690 

 

13 1 0.89115 20 

13 1 0.93734 60 

 

10 0.5 0.86354 240 

13 2 0.93272 5 

 

13 0.5 0.86354 240 

13 0.5 0.924 690 

 

16 1 0.59326 185 

4 1 0.86856 372 

 

16 2 0.44216 15.25 

16 1 0.4926 7200 

 

        

16 2 0.40952 52 

     4 0.5 0 - 
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6.3 Finite Element Model of Chrysler Engine Mount 

For many of the force displacement results presented there are obvious dynamic effects at 

small and large displacements due to the use of the *DEFINE_CURVE_SMOOTH 

keyword (ie. Figure 82 and Figure 83). While this keyword may be advantageous since 

the derivative of this curve is smooth it also results in relatively rapid changes in the 

dependent variable if the rise time is not sufficiently large as was the case for some 

models. However, all models presented use identical load-displacement curves defined 

using this keyword. Therefore, comparing different models to identify trends should be 

reasonable despite the less than optimal use of this keyword. 

An important consideration when meshing was that the clearances between different 

surfaces which may come into contact should be accurate with respect to the physical 

component. This is especially important if experimental validation is performed by 

obtaining load-displacement data for the physical component. A numerical validation 

metric is significantly affected by an offset of two sets of data that are compared. The 

very coarse 8 mm mesh may be problematic in this regard since the geometrical 

simplifications are extensive. 

A brief analysis of the computational expense of meshes using tetrahedron and 

hexahedron elements was presented. Considering the models of the material 

characterization process it is possible to estimate the respective accuracy. Considering 

Table 23 and Table 24 for simple tension the coarsest hexahedron mesh is generally less 

accurate than the coarsest tetrahedron mesh but the computational expense is greatly 

reduced. In simple compression (Table 25 and Table 26) the accuracy and computational 

expense are similar. For planar tension (Table 27, Table 28, Table 29, and Table 30) the 

combination of large deformations and significant constraints results in poor performance 

of the tetrahedron elements with coarse discretizations. Drawing conclusions here is 

difficult. For equibiaxial tension (Table 31, Table 32, Table 33 and Table 34) both types 

of elements are quite accurate but the models using tetrahedron elements have a slight 

advantage. Hexahedron elements were generally less expensive computationally. 
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6.3.1 Hourglass control 

An additional study of hourglass control may be worthwhile. Significant hourglass 

energy and error terminations were observed for the finite element models of the simple 

compression material characterization process with element formulation 1. These models 

used the optimal hourglass control method identified using the model of the Chrysler 

transmission mount. It would be interesting to complete an additional study of hourglass 

control with the simple compression models. The hourglass control method study with 

the engine mount produced odd results: reduced hourglass energy with reduced hourglass 

control. Such an inconsistency warrants further consideration. 

 

6.3.2 Tetrahedron element formulations and geometry simplifications 

A significant increase in stiffness with tetrahedron elements was only clearly observed 

for some material characterization finite element models with very coarse discretizations. 

Nevertheless, when tetrahedron elements were used to model the Chrysler transmission 

mount the response was very stiff for element formulation 4, which features selectively 

reduced integration, and element formulation 10. It was also stiffer than element 

formulation 13 for the refined tetrahedron model of the planar tension (pure shear) 

material characterization process, a model which was a particularly valuable assessment 

of modelling techniques including element formulation. Element formulation 13 performs 

quite well which is consistent with the general performance of this element formulation 

for the models of material characterization processes. 

 

6.3.3 Tied Contact 

Tied contact was challenging to implement. A larger study of modelling parameters 

related to this modelling tool may be very worthwhile. It was found that the use of tied 

contact required a high quality mesh with careful attention at very preliminary stages to 

ensure the CAD data upon which the mesh was created was precise with consistent 

offsets between tied surfaces. While tied contact may function with lower quality models 

the energy balance was entirely unreasonable. The inability to assess the validity of the 
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model through the energy balance was not acceptable. One limitation that was 

encountered was associated with the massively parallel processing (MPP) solvers on the 

FIAT computing clusters. *CONTACT_TIED contact algorithms are not supported with 

these solvers. Share memory parallel (SMP) solvers were available on FIAT computing 

clusters but the selection of releases was greatly reduced (the selection of MPP solver 

release versions is already not especially extensive). The reduced efficiency in parallel 

execution and limited computational resources may have made use of SMP solvers 

impractical. 

The problems associated with tied contact are likely the result of the different magnitudes 

of force when rubber is loaded in tension or in compression. In an attempt to find a 

solution to this problem two contact algorithms were used at each interface, one a tied 

contact algorithm and the other a normal penalty based contact algorithm. If the tied 

contact could be specified to be capable of modeling relatively small tensile loading the 

larger loads associated with compressive loading could be resolved by the penalty 

stiffness algorithm. However, a balanced pair of contact algorithms as proposed could not 

be found that avoided the previous issues of insufficient or excessive stiffness and poor 

energy balance. 

 

6.4 Component Characterization 

6.4.1 Fixture Design 

Significant assumptions were made in the initial design of the fixture to complete simple 

manual calculations of maximum stresses.  Stress concentrations due to radiused edges or 

holes were not considered.  Additionally, stresses resulting from the contact between 

different components (e.g. steel brackets and washers) were not considered.  Simple 

assumptions could also have been made to obtain approximations of these contributions 

to the stress state at critical locations in the fixture material.  Such simple calculations 

were later completed to assess the results from finite element models.  As an example, 

two similar models predicted very different stress states.  One model included washers 
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through which bolt preloading was applied.  The other model removed these washers and 

directly associated bolt preloading. 

With the washers and associated bolt preloading loads removed, the peak von Mises 

stress due to the loading of the engine mount was 34 MPa.  With the washers and bolt 

preloading the respective von Mises stress was approximately 280 MPa.  If the 

contribution to the stress state due to the washer bolt preload is calculated assuming a 

direct normal stress the resulting von Mises stress should be less than 105 MPa.  Even if 

the area of contact between a particular washer and a steel bracket is significantly less 

than the surface area of one side of the washer (assumed to be the area below, annular 

ring with an inner diameter of 10 mm and an outer diameter of 20 mm) the resulting 

maximum stress should be less than 200 MPa (assuming the surface area is 50% of   

235.6 mm
2
). 

              
             

               
               

  
 

       

         
                          

A potential source of error in the process of designing the fixture with finite element 

models may exist.  While mesh dependency was assessed by reducing the average 

element size the geometry of the model was also altered by reducing the radius of filleted 

edges.  Ideally, the model should not have been altered in any way other than the use of 

smaller, on average, elements.  However, stress concentration factors generally increase 

with sharper edges.  Since the objective of the finite element modeling process was to 

ensure maximum von Mises stress was less than the yield strength of the material, the 

observed reduction in maximum von Mises stress with decreased element size (and edge 

radius) suggests that the design is acceptable. 

 

6.4.2 Quasi-Static Component Characterization 

The quasi-static component characterization process included five loading cycles of each 

engine mount since it was relatively easy to complete such a testing procedure. For the 

current application this data may not be particularly useful but a single loading and 

unloading cycle may be relevant for crashworthiness performance. The data for a larger 
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number of cycles may, however, be valuable considering the loading cycles due to 

normal use. It is interesting to observe that after one loading cycle the remaining loading 

cycles are essentially identical. A second characterization of specimen #1 did not reveal 

significant variation between the first and second cycles which may indicate that the 

material was damaged due to the relatively large strains during the first cycle.  

If the variation between cycles was due to a Mullin’s effect it was expected that the 

variation between the first and second cycles would have been observed.  However, the 

time between the repeated tests of a specimen may not have been sufficient for complete 

material recovery.  Another significant observation was the clearly identifiable hysteresis. 

In an informal discussion with Lorenzo Peroni at the DYNLab at the PdT in Vercelli this 

researcher indicated that the hysteresis may be indicative of a moderately strain rate 

sensitive material. This is an interesting hypothesis since very little strain rate sensitivity 

was observed with the material characterization completed by AXEL Products Physical 

Testing Services. 

 

6.4.3 Dynamic Component Characterization 

The essentially identical displacement profiles but variation in force (Figure 104) may be 

associated with unnoticed changes of the initial gap shown in Figure 36. This hypothesis 

was generated considering the variation in the time at which a non-zero load was 

registered by the load cell. The significant variation between the characterizations of 

specimen #5 may have been the result of human error: improper usage of the DARTEC 

software resulted in a significant error in the initial position of the hydraulic cylinder. 
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6.5 Finite Element Model Validation 

6.5.1 Quasi-static component characterization model validation 

With minor alterations to some models the force-displacement responses of the finite 

element models of the Chrysler engine mount were very accurate as quantified with the 

Oberkampf-Trucano error metric. It may have been very valuable to obtain force-

displacement data at larger displacements to better assess contact between internal 

regions of the rubber of the engine mount. An interesting observation was that the use of 

significant time scaling, thereby significantly increasing the loading rate, did yield a 

significant increase in stiffness even though the material model considered strain rate 

sensitivity. This may be the result of the relatively small increase in stiffness observed in 

the material characterization completed by AXEL. An analysis of kinetic, total, and 

internal energy, shown in Figure 113, confirmed that kinetic energy was very low and a 

quasi-static loading was modeled. 

 

Figure 113: Energy balance, model of quasi-static component characterization, 

significant time scaling. 
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6.5.2 Dynamic component characterization model validation 

Dynamic loading of the engine mount was accurately modeled. However, the transition to 

unloading and unloading process was much less accurate. It was expected that the 

unloading process would not be modeled with great accuracy since the material model 

did not account for hysteresis effects. Stress-strain data for uniaxial unloading processes 

would have allowed the hysteresis modeling capabilities of MAT 183 to be investigated. 

Another option may be to use the damping coefficient parameter. An iterative process 

may allow this modeling parameter to be determined. 
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Chapter 7: Conclusions 

 

7.1 Quasi-Static Material Characterization 

Material characterization processes for the purposes of developing finite element models 

can depend upon the type of material, the finite element software, the material model, 

loading condition, and the application, in this case crashworthiness.  Quasi-static material 

characterization for this research was completed consistent with the recommended 

process of AXEL Products Physical Testing Services.  The material model to be used was 

unspecified, identifying an optimal material model was an objective.  While some models 

are able to use simple tension, simple compression, planar shear, and equibiaxial tension 

data rather directly some material models may only use a portion of this data set. 

However, additional data may be used to provide a valuable assessment of the 

capabilities of the model. 

Material characterization was completed in two separate laboratories (SHPB testing at the 

PdT in Vercelli not included).  Ideally, there would be overlap between the data obtained 

from each lab which would allow comparison of data from the different sources.  This 

would provide a strong assurance that high quality data had been obtained.  It may also 

be useful for the laboratories so they might consider the procedures they employ. 

Unfortunately, material characterization was not completed in sufficient detail to allow 

such validation of collected data or to be particularly useful for the laboratories.  Simple 

tension and simple compression characterization processes were completed at both the 

FIAT Mirafiori polymer laboratory and by AXEL Products Physical Testing Services. 

There was excellent correlation between simple tension data from both laboratories. 

However, there was variation in the simple compression data.  The data from AXEL was 

used since the simple compression data was consistent with a transformation of the radial 

stress-strain data from equibiaxial tension material characterization. 
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7.2 Dynamic Material Characterization 

Dynamic material characterization was completed by AXEL Products Physical Testing 

Services.  The dynamic material characterization completed by AXEL consisted of 

simple tension and simple compression material characterization processes completed at 

elevated loading rates with the specimen geometry modified to provide further control 

over the strain rate.  The SHPB may be a better apparatus for studying strain rate 

sensitivity.  Some of the data from AXEL may support this, for some data sets very high 

stiffness was observed at low strain rates. 

 

7.3 Finite Element Modeling of Quasi-Static Material Characterization 

Finite element models of quasi-static material characterization processes were developed 

to assess hyperelastic material models available in LS-DYNA and ensure proper user 

input of data and parameters.  Two material models were investigated: MAT 77O (Ogden 

strain energy function) and MAT 181 (Simple Rubber/Foam).  The Ogden strain energy 

function is of a general format which can be simplified to yield other models including 

Mooney-Rivlin type strain energy functions.  MAT 77O allows the user to provide a 

uniaxial stress-strain curve and automatically determines the parameters of the strain 

energy function or allows these parameters to be input directly.  The latter course of 

action may be superior since the coefficients can be determined for a set of material 

characterization data which may include planar tension (pure shear) and equibiaxial 

tension stress-strain data.  MAT 181 only accepts a uniaxial stress-strain curve as input 

but can replicate this response with minimal error by piecemeal curve fitting.  MAT 181 

is also capable of modeling strain rate sensitivity, material failure, and hysteresis. 

The internal (to the LS-DYNA solver) curve fitting of MAT 77O was not utilized 

extensively.  A MATLAB/Octave program was developed to determine Ogden strain 

energy function parameters from a given set of data.  As a concomitant method the finite 

element preprocessor Mentat (associated with the FE solver MARC) was also used to 

find Ogden model parameters.  Mentat was unable to determine coefficients if restricted 

to finding positive coefficients and if it was specified that unknown mathematical 

analyses were to be completed (and produce acceptable results).  The MATLAB/Octave 
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script was advantageous in that it would always identify coefficients although the result 

was not always highly accurate.  Additionally, it should be considered that the accuracy 

of the curve fitting becomes an upper limit on the accuracy of the model.  A coarse 

discretization could further reduce the accuracy. 

Models were developed for the simple tension, simple compression, planar tension (pure 

shear), and equibiaxial tension material characterization processes with two versions of 

each model: one using MAT 77O and the other using MAT 181.  These models yielded a 

great number of important observations which are summarized in Table 23 through Table 

34 which are collectively presented in Appendix D.  In Appendix D the results are 

arranged by the magnitude of the validation metric.  It may be noted that every model 

with a validation metric in excess of 0.95 (maximum of 1) uses MAT 181.  MAT 181 

was, however, fairly computationally expensive (only 20% of models with a CPU time of 

less than 1 minute employed MAT 181, see Appendix E in which the results are sorted by 

CPU time).  However, if only a small portion of a full vehicle model, as an example, 

consists of components requiring a hyperelastic material model the relative computational 

cost between these two material models may not be especially important. Another critical 

observation was the relative stability of MAT 181. For many models solely changing the 

material model from MAT 181 to MAT 77O resulted in a termination due to an error 

(e.g. negative speed of sound or out of bound velocity) at a rather high level of 

deformation of the mesh. 

Other conclusions include: with MAT 77O the selectively reduced integration tetrahedron 

element formulation 4 performed very poorly. This element formulation did not exhibit 

any particular problems with MAT 181.  However, element formulation 10 (one point 

integration tetrahedron) performed poorly in some cases with MAT 181.  This was not 

entirely unexpected.  There exists an alternative element formulation (formulation 13) 

which is essentially identical to 10 but designed for near incompressible materials. The 

use of this formulation in place of 10 yielded an improved performance of MAT 181. For 

hexahedron elements formulation 3 (fully integrated) should not be used with 

incompressible materials since the element will lock up in constant volume bending 
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modes.  Hourglassing was also found to be problematic with under-integrated hexahedron 

elements (formulation 1) in compression.  

One of the most important findings may be that the advantages of MAT 181 may 

simplify the experimental material characterization that should be completed.  If this 

material can only accept uniaxial stress-strain (or force-displacement) data any additional 

data is not necessary (although it can be beneficial for model validation).  With sufficient 

experience with this model it might be found that the tabulated Ogden model 

implementation is a reasonable representation for hyperelastic materials under other 

loading conditions. 

 

7.4 Finite Element Modeling of the Chrysler Engine Mount 

Finite element models of the Chrysler engine mount were initially developed prior to 

obtaining material stress-strain data.  A preliminary estimate of the stress-strain 

behaviour data was provided by Chrysler engineers as well as CAD data and a 

preliminary finite element mesh.  Finite element meshes were built using the Altair 

Hyperworks package Hypermesh.  Several models were developed with different average 

element sizes and element types.  The first models developed used solid hexahedron or 

tetrahedron elements.  Tetrahedron elements were advantageous in that meshing could be 

automated and fewer geometrical simplifications were required.  However, for a given 

volume and average mesh edge length a greater number of tetrahedron elements are 

generally required which may increase computational cost.  LS-DYNA tetrahedron 

element formulations 4 and 10 were found to be significantly stiffer than element 

formulation 13 with material model MAT 181. 

Several meshes were developed using hexahedron elements with different densities with 

varying average element edge lengths.  One of the first meshes used elements with 1 mm 

average element edge lengths.  A progressive coarsening of the mesh did not yield any 

significant changes in the stiffness of the model until the average element edge length 

increased to 4 mm. However, a mesh this coarse required shell elements to model regions 

with rubber of a thickness of approximately 1 mm.  Shell elements were required to 
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eliminate  this dimension as a constraint on the explicit time integration critical time step. 

Local refinements to the mesh were also necessary to accurately model contact internally 

within the engine mount between different regions of the rubber at large levels of 

deformation. 

Investigations of other modeling parameter/techniques were completed using the engine 

mount models and yielded important observations.  Hourglass control type 7 was found 

to minimize hourglass energy with element formulation 1.  Additionally, small hourglass 

control coefficients yielded minimal hourglass energy and internal energy for a given 

level of deformation.  This may indicate that the stiffness of the structure decreased with 

decreasing hourglass control coefficients.  This is a surprising result since it seems to 

indicate that less hourglass control better controlled hourglassing and avoided excessive 

artificial stiffening of the structure.  Further investigation of this topic may be 

worthwhile.  Another important observation was the significant variation in stiffness of 

the model when different releases of the LS-DYNA solver were used with specific model 

parameters.  The material model may be a critical factor. LS-DYNA solver release R3.2.1 

(v971) did not yield any unexpected significant increases in stiffness.  However, release 

5.1.1 (MPP solvers on a FIAT computing cluster were used) yielded erroneous increases 

in stiffness with MAT 181 and element formulations 2 and 3. 

 

7.5 Component Characterization 

Quasi-static and dynamic component characterization was completed in the DYNLab at 

the PdT campus in Vercelli, Italy under the supervision of Lorenzo Peroni.  A fixture was 

designed using an implicit LS-DYNA solver to adapt the Chrysler engine mount to 

equipment in this laboratory.  Quasi-static force-displacement data for 5 loading and 

unloading cycles was acquired as well as a single dynamic loading and unloading cycle. 

A significant Mullin’s effect was not observed.  A reduction in force from the first to the 

second cycle was observed but further cycles did not yield a reduced load. 
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7.6 Validation of Finite Element Models of the Chrysler Engine Mount 

A finite element model of the Chrysler engine mount, including steel brackets, was 

developed from earlier models and validated with respect to the data from component 

characterization in the DYNLab at the PdT Vercelli campus.  The quasi-static force 

displacement response of the finite element model was very accurate (Oberkampf-

Trucano validation metric of 0.9675 for tensile loading and 0.9070 for compressive 

loading) with only minor revisions to the model, the most significant of which was the 

removal of tied contact and replacement with merged nodes.  Unloading behaviour was 

not investigated since the material model was not specified to be capable of modeling this 

phenomenon.  The loading behaviour of the model under dynamic conditions was 

accurate but a significant improvement may be possible at large levels of deformation 

and for unloading. Investigations of these topics may continue. 
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Appendix A 

 

MATLAB/Octave script to compute Oberkampf-Trucano error metric for LS-

DYNA model of ASTM D412 simple tension material characterization process 

 

Line wrapping may need to be corrected if this script is copied to be used in Octave. 

% read in material stress strain curve 

mat_data=dlmread('set2_tension.csv',',',1,0); 
  
% plot material stress strain curve 

figure(1) 

plot(mat_data(:,1),mat_data(:,2)) 

title('Material stress strain curve, tensile specimen D412 #1') 

xlabel('Strain (mm/mm)') 

ylabel('Stress (GPa)') 
  
% read in force and displacement data from LS-DYNA 

force_LS-DYNA=dlmread('set2_force.csv',',',1,0); 

force_LS-DYNA(:,2)=-force_LS-DYNA(:,2); % reference frame results in negative x-

force for specimen in tension 

disp_LS-DYNA=dlmread('set2_disp.csv',',',1,0); 

disp2_LS-DYNA=dlmread('set2_disp2.csv',',',1,0); 

  

% plot force over time 

figure(2) 

plot(force_LS-DYNA(:,1),force_LS-DYNA(:,2)) 

title('Force vs time, LS-DYNA') 

xlabel('Time (ms)') 

ylabel('Force (kN)') 

  

% plot disp over time 

figure(3) 

plot(disp_LS-DYNA(:,1),disp_LS-DYNA(:,2),'r',disp2_LS-DYNA(:,1),disp2_LS-

DYNA(:,2),'r') 

title('Displacement of two neighbouring nodes vs time, LS-DYNA') 

xlabel('Time (ms)') 

ylabel('Displacement (mm)') 

legend('Node 1','Node 2') 
  
% calculate engineering stress from load from LS-DYNA bndout data 

Stress_LS-DYNA=force_LS-DYNA(:,2)/(3*1.5); % stress in GPa 

 % calculate engineering strain from LS-DYNA nodout data 
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L0=4.125; % initial length of LS-DYNA model in mm 

Strain_LS-DYNA=abs(disp_LS-DYNA(:,2)-disp2_LS-DYNA(:,2))/L0; % (mm/mm) 
  
% plot stress-strain curves 

figure(4) 

plot(mat_data(:,1),mat_data(:,2),'g',Strain_LS-DYNA,Stress_LS-DYNA,'--r') 

title('Stress-strain curves') 

xlabel('Strain (mm/mm)') 

ylabel('Stress (GPa)') 

legend('Material data','LS-DYNA ASTM D412 Type D model') 
  

% interpolate LS-DYNA data to obtain equal number of data points 

Stress_LS-DYNA_int=interp1(Strain_LS-DYNA,Stress_LS-

DYNA,mat_data(:,1),'extrap'); 
  
% plot interpolated data 

figure(5) 

plot(mat_data(:,1),mat_data(:,2),'g',mat_data(:,1),Stress_LS-DYNA_int,'--r') 

title('Stress-strain curves') 

xlabel('Strain (mm/mm)') 

ylabel('Stress (GPa)') 

legend('Material data','LS-DYNA ASTM D412 Type D model') 
  
% calculate Oberkampf-Trucano metric 

for i=1:length(mat_data(:,2)) 

    if mat_data(i,2)==0 

        if i>(length(mat_data)-3) 

        mat_data(i,2)=(mat_data(i-1,2)+mat_data(i-2,2))/2; 

        else 

        mat_data(i,2)=(mat_data(i+1,2)+mat_data(i+2,2))/2; 

        end 

    end 

end 

OTmetric=1-1/length(mat_data(:,1))*sum(tanh(abs((Stress_LS-DYNA_int-

mat_data(:,2))./mat_data(:,2)))) 
  

% compare element formulations 1, 2, and 3 

Elform2SS=dlmread('Elform2StressStrain.txt'); 

Elform3SS=dlmread('Elform3StressStrain.txt'); 
  

figure(6) 

plot(mat_data(:,1),mat_data(:,2),'r',mat_data(:,1),Stress_LS-DYNA_int,'--

g',Elform2SS(:,1),Elform2SS(:,2),'--b',Elform3SS(:,1),Elform3SS(:,2),'--k') 

title('Stress-strain curves') 

xlabel('Strain (mm/mm)') 

ylabel('Stress (GPa)') 

legend('Material data','LS-DYNA El. form. 1','LS-DYNA El. form. 2','LS-DYNA El. 

form. 3') 
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Appendix B 

MATLAB/Octave script to determine Ogden material model coefficients 

 

close all 
clear all 
  
% This first section imports and plots AXEL data 
  
% read in biaxial tension data 
BT=dlmread('ChryslerC0EBT0.01Cleaned.txt'); 
BT(:,2)=BT(:,2)/1000; % convert MPa to GPa 
BT2=BT(:,1)+1; % convert engineering strain to stretch ratio 
  
% read in planar tension (pure shear) data 
PT=dlmread('ChryslerC0EPT0.01Cleaned.txt'); 
PT(:,2)=PT(:,2)/1000; % convert MPa to GPa 
PT2=PT(:,1)+1; % convert engineering strain to stretch ratio 
  
% import AXEL simple tension results 
ST=dlmread('set2_tension.csv'); 
ST2(:,1)=ST(:,1)+1; % convert strain to stretch ratio 
  
% import simple compression AXEL data 
SC=dlmread('set2_compression.csv'); 
SC2=SC(:,1)+1; % calculate stretch ratio from strain 
  
% % plot biaxial tension and planar tension data 
% figure(1) 
% plot(BT(:,1),BT(:,2),'r',PT(:,1),PT(:,2),'g') 
% title('Equibiaxial tension and planar tension test data from AXEL') 
% xlabel('Strain') 
% ylabel('Stress (MPa)') 
% legend('Equibiaxial tension','Planar tension') 
%  
% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
% % calculate strain energy density for planar tension 
SED_PT=cumtrapz(PT(:,1),PT(:,2)); 
% % In planar tension along the axis of loading there is stress and strain 
% % For the other two orthogonal axes, for one there is stress but no strain 
% % For the other there is strain but no stress 
% % An integral of the loading axis stress strain curve is therefore the 
% % strain energy density? 
%  
% % plot strain energy density vs strain for planar tension 
% figure(2) 
% plot(PT(:,1),SED_PT) 
% title('Strain energy density for planar tension') 
% xlabel('Strain') 
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% ylabel('Strain energy density') 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  
% % Pure shear (planar tension) data was imported into MARC and coefficients 
% % for the Ogden material model (4 terms) was found 
%  
% % MARC-Mentat Ogden model (only planar shear data) 
% mu1=7.74217E-10; 
% mu2=0.00115883; 
% mu3=1.25757E-5; 
% mu4=2.86218E-10; 
% alpha1=2.29459; 
% alpha2=3.32686; 
% alpha3=2.35069; 
% alpha4=3.61581; 
lambda=PT(:,1)+1; 
%  
% % calculate the strain energy density for these coefficients to compare to 
% % the cumulative integral of the AXEL data 
%  
% SED_MARC=mu1/alpha1*(lambda.^alpha1+lambda.^-alpha1-

2)+mu2/alpha2*(lambda.^alpha2+lambda.^-alpha2-2)+... 
% mu3/alpha3*(lambda.^alpha3+lambda.^-alpha3-2)+mu4/alpha4*(lambda.^alpha4+lambda.^-alpha4-2); 
%  
%  
% % plot cumulative integral of AXEL pure shear stress strain data and Ogden strain energy function with 

MARC 
% % coefficients 
% % plot MATLAB-MARC Ogden model 
% figure(3) 
% subplot(2,1,1) 
% plot(PT(:,1),SED_PT,'r',PT(:,1),SED_MARC,'g') 
% title('Strain energy density - Ogden model') 
% xlabel('Strain') 
% ylabel('Strain energy density') 
% legend('Integral of stress-strain curve (AXEL planar shear)','Ogden model computed in Matlab with 

MARC coefficients (AXEL data)') 
%  
% % calculate stress with publication formula using the MARC coefficients 
% Stress=mu1*((PT(:,1)+1).^(alpha1-1)-(PT(:,1)+1).^(-1-alpha1))+mu2*((PT(:,1)+1).^(alpha2-1)-

(PT(:,1)+1).^(-1-alpha2))+... 
% mu3*((PT(:,1)+1).^(alpha3-1)-(PT(:,1)+1).^(-1-alpha3))+mu4*((PT(:,1)+1).^(alpha4-1)-(PT(:,1)+1).^(-

1-alpha4)); 
%  
% % plot this calculated stress over strain and the AXEL pure shear stress 
% % strain curve 
% subplot(2,1,2) 
% plot(PT(:,1),PT(:,2),'r',PT(:,1),Stress,'g') 
% title('Stress strain curve') 
% xlabel('Strain') 
% ylabel('Stress') 
% legend('AXEL data','Ogden model, coefficients from MARC') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% % Use a Matlab optimization function to find Ogden coefficients for pure 
% % shear data (to avoid using MARC) 
%  
% % Initialize coeff vector for finding Ogden coeff. 
% coeffGuess=1.0*[0.001 0.001 0.001 0.001 1 1 1 1]; % initial guess 
% [goodcoeff FVEC]=fminsearch(@Ogden4th,coeffGuess) 
%  
% % Matlab/Octave solution - pure shear 
% StressOctave=goodcoeff(1)*((PT(:,1)+1).^(goodcoeff(5)-1)-(PT(:,1)+1).^(-1-

goodcoeff(5)))+goodcoeff(2)*((PT(:,1)+1).^(goodcoeff(6)-1)-(PT(:,1)+1).^(-1-goodcoeff(6)))+... 
% goodcoeff(3)*((PT(:,1)+1).^(goodcoeff(7)-1)-(PT(:,1)+1).^(-1-

goodcoeff(7)))+goodcoeff(4)*((PT(:,1)+1).^(goodcoeff(8)-1)-(PT(:,1)+1).^(-1-goodcoeff(8))); 
%  
% % plot Ogden (Matlab curve fit) to input data 
% figure(4) 
% plot(PT(:,1),PT(:,2),'r',PT(:,1),StressOctave,'g') 
% title('Stress strain curve') 
% xlabel('Strain') 
% ylabel('Stress') 
% legend('AXEL data','Ogden model, coefficients from Matlab') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Input all AXEL data to MARC and find best fit for Ogden model 
% coefficients 
  
% MARC-Mentat Ogden model (all data: uniaxial, shear, biaxial) 
mu1_2=0.00123168; 
mu2_2=2.95657E-6; 
mu3_2=8.77739E-5; 
mu4_2=0.000230026; 
alpha1_2=1.76178; 
alpha2_2=2.20847; 
alpha3_2=4.57289; 
alpha4_2=2.45609; 
  
% Calculate strain energy density 
SED_MARC_2=mu1_2/alpha1_2*(lambda.^alpha1_2+lambda.^-alpha1_2-

2)+mu2_2/alpha2_2*(lambda.^alpha2_2+lambda.^-alpha2_2-2)+... 
mu3_2/alpha3_2*(lambda.^alpha3_2+lambda.^-alpha3_2-

2)+mu4_2/alpha4_2*(lambda.^alpha4_2+lambda.^-alpha4_2-2); 
  
% Calculate stress for pure shear test 
Stress_2=mu1_2*((PT(:,1)+1).^(alpha1_2-1)-(PT(:,1)+1).^(-1-

alpha1_2))+mu2_2*((PT(:,1)+1).^(alpha2_2-1)-(PT(:,1)+1).^(-1-alpha2_2))+... 
mu3_2*((PT(:,1)+1).^(alpha3_2-1)-(PT(:,1)+1).^(-1-alpha3_2))+mu4_2*((PT(:,1)+1).^(alpha4_2-1)-

(PT(:,1)+1).^(-1-alpha4_2)); 
  
% plot MATLAB-MARC Ogden model (plot strain energy density for pure shear) 
figure(5) 
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subplot(3,2,1) 
plot(PT(:,1),SED_PT,'r',PT(:,1),SED_MARC_2,'g') 
title('Strain energy density - Ogden model') 
xlabel('Strain') 
ylabel('Strain energy density') 
legend('Integral of stress-strain curve (AXEL planar shear)','Ogden model computed in Matlab with MARC 

coefficients (AXEL data)') 
  
% plot Ogden (MARC curve fit) to input data 
% compare AXEL stress to stress derived from Ogden model with MARC best fit 
% coefficients for all AXEL data 
subplot(3,2,2) 
plot(PT(:,1),PT(:,2),'r',PT(:,1),Stress_2,'g') 
title('Pure shear stress-strain curve') 
xlabel('Strain') 
ylabel('Stress') 
legend('AXEL data','Ogden model, coefficients from MARC') 
  
% calculate simple tension response of MARC curve fit 
Stress_tensile=mu1_2*(ST2(:,1).^(alpha1_2-1)-ST2(:,1).^-

(1+0.5*alpha1_2))+mu2_2*(ST2(:,1).^(alpha2_2-1)-ST2(:,1).^-(1+0.5*alpha2_2))+... 
mu3_2*(ST2(:,1).^(alpha3_2-1)-ST2(:,1).^-(1+0.5*alpha3_2))+mu4_2*(ST2(:,1).^(alpha4_2-1)-

ST2(:,1).^-(1+0.5*alpha4_2)); 
  
% plot AXEL tensile data and MARC Ogden curve fit 
subplot(3,2,3) 
plot(ST(:,1),ST(:,2),'r',ST(:,1),Stress_tensile,'g') 
title('Comparison - AXEL simple tension and Ogden curve fit') 
xlabel('Strain') 
ylabel('Stress (GPa)') 
legend('AXEL simple tension','4 term Ogden model') 
  
% calculate simple compression for Ogden model 
Stress_compression=mu1_2*(SC2(:,1).^(alpha1_2-1)-SC2(:,1).^-

(1+0.5*alpha1_2))+mu2_2*(SC2(:,1).^(alpha2_2-1)-SC2(:,1).^-(1+0.5*alpha2_2))+... 
mu3_2*(SC2(:,1).^(alpha3_2-1)-SC2(:,1).^-(1+0.5*alpha3_2))+mu4_2*(SC2(:,1).^(alpha4_2-1)-

SC2(:,1).^-(1+0.5*alpha4_2)); 
  
% plot and compare simple compression 
subplot(3,2,4) 
plot(SC(:,1),SC(:,2),'r',SC(:,1),Stress_compression,'g') 
title('Simple compression comparison, AXEL and Ogden model') 
xlabel('Engineering strain') 
ylabel('Engineering stress (GPa)') 
legend('AXEL data (0.01 1/s)','Ogden model, 4 terms') 
  
% import biaxial tension AXEL data 
BT=dlmread('ChryslerC0EBT0.01Cleaned.txt'); 
BT2=BT(:,1)+1; % calculate stretch ratio from engineering strain 
BT(:,2)=BT(:,2)/1000; % convert MPa to GPa 
  
% calculate radial stress-strain from Ogden coefficients 
Radial_stress=mu1_2*(BT2.^(alpha1_2-1)-BT2.^-(1+2*alpha1_2))+mu2_2*(BT2.^(alpha2_2-1)-BT2.^-

(1+2*alpha2_2))+... 
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mu3_2*(BT2.^(alpha3_2-1)-BT2.^-(1+2*alpha3_2))+mu3_2*(BT2.^(alpha3_2-1)-BT2.^-(1+2*alpha3_2)); 
  
% plot to compare AXEL biaxial stress-strain and Ogden curve fit derived stress-strain 
subplot(3,2,5) 
plot(BT(:,1),BT(:,2),'r',BT(:,1),Radial_stress,'g') 
title('Radial stress-strain, AXEL experimental and Ogden model') 
xlabel('Engineering strain') 
ylabel('Engineering stress (GPa)') 
legend('AXEL data','Equibiaxial tension - 4 term Ogden model') 
  
% OT metric for simple tension 
for i=1:length(ST(:,2)) 
    if ST(i,2)==0 
        if i>(length(ST)-3) 
        ST(i,2)=(ST(i-1,2)+ST(i-2,2))/2; 
        else 
        ST(i,2)=(ST(i+1,2)+ST(i+2,2))/2; 
        end 
    end 
end 
OTmetric_simple_tension_4=1-1/length(ST(:,2))*sum(tanh(abs((Stress_tensile-ST(:,2))./ST(:,2)))) 
  
% OT metric for simple compression 
for i=1:length(SC(:,2)) 
    if SC(i,2)==0 
        if i>(length(SC)-3) 
        SC(i,2)=(SC(i-1,2)+SC(i-2,2))/2; 
        else 
        SC(i,2)=(SC(i+1,2)+SC(i+2,2))/2; 
        end 
    end 
end 
OTmetric_simple_compression_4=1-1/length(SC(:,2))*sum(tanh(abs((Stress_compression-

SC(:,2))./SC(:,2)))) 
  
% OT metric for planar tension (pure shear) 
for i=1:length(PT(:,2)) 
    if PT(i,2)==0 
        if i>(length(PT)-3) 
        PT(i,2)=(PT(i-1,2)+PT(i-2,2))/2; 
        else 
        PT(i,2)=(PT(i+1,2)+PT(i+2,2))/2; 
        end 
    end 
end 
OTmetric_pure_shear_4=1-1/length(PT(:,2))*sum(tanh(abs((Stress_2-PT(:,2))./PT(:,2)))) 
  
% OT metric for equibiaxial tension 
for i=1:length(BT(:,2)) 
    if BT(i,2)==0 
        if i>(length(BT)-3) 
        BT(i,2)=(BT(i-1,2)+BT(i-2,2))/2; 
        else 
        BT(i,2)=(BT(i+1,2)+BT(i+2,2))/2; 
        end 
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    end 
end 
OTmetric_equibiaxial_tension_4=1-1/length(BT(:,2))*sum(tanh(abs((Radial_stress-BT(:,2))./BT(:,2)))) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
% 6 term Ogden model fit to all AXEL data (using MARC) 
mu1_3=0.000222631; 
mu2_3=0.000199656; 
mu3_3=6.38978E-5; 
mu4_3=0.000294451; 
mu5_3=0.000143757; 
mu6_3=0.000719426; 
alpha1_3=1.96928; 
alpha2_3=1.13113; 
alpha3_3=3.13473; 
alpha4_3=2.1394; 
alpha5_3=4.20627; 
alpha6_3=1.32728; 
  
% pure shear stress 
Stress_shear_6=mu1_3*((PT(:,1)+1).^(alpha1_3-1)-(PT(:,1)+1).^(-1-

alpha1_3))+mu2_3*((PT(:,1)+1).^(alpha2_3-1)-(PT(:,1)+1).^(-1-alpha2_3))+... 
mu3_3*((PT(:,1)+1).^(alpha3_3-1)-(PT(:,1)+1).^(-1-alpha3_3))+mu4_3*((PT(:,1)+1).^(alpha4_3-1)-

(PT(:,1)+1).^(-1-alpha4_3))+... 
mu5_3*((PT(:,1)+1).^(alpha5_3-1)-(PT(:,1)+1).^(-1-alpha5_3))+mu6_3*((PT(:,1)+1).^(alpha6_3-1)-

(PT(:,1)+1).^(-1-alpha6_3)); 
  
% plot Ogden (MARC curve fit) to input data 
figure(6) 
subplot(2,2,1) 
plot(PT(:,1),PT(:,2),'r',PT(:,1),Stress_shear_6,'g') 
title('Pure shear stress-strain curve') 
xlabel('Strain') 
ylabel('Stress') 
legend('AXEL data','6 term Ogden model') 
grid on 
  
% calculate simple tension response of MARC curve fit 
Stress_tensile_6=mu1_3*(ST2(:,1).^(alpha1_3-1)-ST2(:,1).^-

(1+0.5*alpha1_3))+mu2_3*(ST2(:,1).^(alpha2_3-1)-ST2(:,1).^-(1+0.5*alpha2_3))+... 
mu3_3*(ST2(:,1).^(alpha3_3-1)-ST2(:,1).^-(1+0.5*alpha3_3))+mu4_3*(ST2(:,1).^(alpha4_3-1)-

ST2(:,1).^-(1+0.5*alpha4_3))+... 
mu5_3*(ST2(:,1).^(alpha5_3-1)-ST2(:,1).^-(1+0.5*alpha5_3))+mu6_3*(ST2(:,1).^(alpha6_3-1)-

ST2(:,1).^-(1+0.5*alpha6_3)); 
  
% plot AXEL tensile data and MARC Ogden curve fit 
subplot(2,2,2) 
plot(ST(:,1),ST(:,2),'r',ST(:,1),Stress_tensile_6,'g') 
title('Comparison - AXEL simple tension and Ogden curve fit') 
xlabel('Strain') 
ylabel('Stress (GPa)') 
legend('AXEL simple tension','6 term Ogden model') 
grid on 
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% calculate simple compression for Ogden model 
Stress_compression_6=mu1_3*(SC2(:,1).^(alpha1_3-1)-SC2(:,1).^-

(1+0.5*alpha1_3))+mu2_3*(SC2(:,1).^(alpha2_3-1)-SC2(:,1).^-(1+0.5*alpha2_3))+... 
mu3_3*(SC2(:,1).^(alpha3_3-1)-SC2(:,1).^-(1+0.5*alpha3_3))+mu4_3*(SC2(:,1).^(alpha4_3-1)-

SC2(:,1).^-(1+0.5*alpha4_3))+... 
mu5_3*(SC2(:,1).^(alpha5_3-1)-SC2(:,1).^-(1+0.5*alpha5_3))+mu6_3*(SC2(:,1).^(alpha6_3-1)-

SC2(:,1).^-(1+0.5*alpha6_3)); 
  
% plot and compare simple compression 
subplot(2,2,3) 
plot(SC(:,1),SC(:,2),'r',SC(:,1),Stress_compression_6,'g') 
title('Simple compression comparison, AXEL and Ogden model') 
xlabel('Engineering strain') 
ylabel('Engineering stress (GPa)') 
legend('AXEL data (0.01 1/s)','Ogden model, 6 terms') 
grid on 
  
% calculate radial stress-strain from Ogden coefficients 
Radial_stress_6=mu1_3*(BT2.^(alpha1_3-1)-BT2.^-(1+2*alpha1_3))+mu2_3*(BT2.^(alpha2_3-1)-BT2.^-

(1+2*alpha2_3))+... 
mu3_3*(BT2.^(alpha3_3-1)-BT2.^-(1+2*alpha3_3))+mu4_3*(BT2.^(alpha4_3-1)-BT2.^-

(1+2*alpha4_3))+... 
mu5_3*(BT2.^(alpha5_3-1)-BT2.^-(1+2*alpha5_3))+mu6_3*(BT2.^(alpha6_3-1)-BT2.^-(1+2*alpha6_3)); 
  
% plot to compare AXEL biaxial stress-strain and Ogden curve fit derived stress-strain 
subplot(2,2,4) 
plot(BT(:,1),BT(:,2),'r',BT(:,1),Radial_stress_6,'g') 
title('Radial stress-strain, AXEL experimental and Ogden model (6 terms)') 
xlabel('Engineering strain') 
ylabel('Engineering stress (GPa)') 
legend('AXEL data','6 term Ogden model') 
grid on 
  
% OT metric for simple tension 
for i=1:length(ST(:,2)) 
    if ST(i,2)==0 
        if i>(length(ST)-3) 
        ST(i,2)=(ST(i-1,2)+ST(i-2,2))/2; 
        else 
        ST(i,2)=(ST(i+1,2)+ST(i+2,2))/2; 
        end 
    end 
end 
OTmetric_simple_tension_6=1-1/length(ST(:,2))*sum(tanh(abs((Stress_tensile_6-ST(:,2))./ST(:,2)))) 
  
% OT metric for simple compression 
for i=1:length(SC(:,2)) 
    if SC(i,2)==0 
        if i>(length(SC)-3) 
        SC(i,2)=(SC(i-1,2)+SC(i-2,2))/2; 
        else 
        SC(i,2)=(ST(i+1,2)+SC(i+2,2))/2; 
        end 
    end 
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end 
OTmetric_simple_compression_6=1-1/length(SC(:,2))*sum(tanh(abs((Stress_compression_6-

SC(:,2))./SC(:,2)))) 
  
% OT metric for planar tension (pure shear) 
for i=1:length(PT(:,2)) 
    if PT(i,2)==0 
        if i>(length(PT)-3) 
        PT(i,2)=(PT(i-1,2)+PT(i-2,2))/2; 
        else 
        PT(i,2)=(ST(i+1,2)+PT(i+2,2))/2; 
        end 
    end 
end 
OTmetric_pure_shear_6=1-1/length(PT(:,2))*sum(tanh(abs((Stress_shear_6-PT(:,2))./PT(:,2)))) 
  
% OT metric for equibiaxial tension 
for i=1:length(BT(:,2)) 
    if BT(i,2)==0 
        if i>(length(BT)-3) 
        BT(i,2)=(BT(i-1,2)+BT(i-2,2))/2; 
        else 
        BT(i,2)=(BT(i+1,2)+BT(i+2,2))/2; 
        end 
    end 
end 
OTmetric_equibiaxial_tension_6=1-1/length(BT(:,2))*sum(tanh(abs((Radial_stress_6-BT(:,2))./BT(:,2)))) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% % Use a Matlab optimization function to find Ogden coefficients for all AXEL data (to avoid using 

MARC) 
%  
% % Initialize coeff vector for finding Ogden coeff. 
% coeffGuess8=1.0*[0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 1 1 1 1 1 1 1 1]; % initial guess 
% % coeffGuess8=goodcoeff8; 
% options=optimset('MaxFunEvals',10^6,'MaxIter',10^6,'TolFun',0.001); 
% [goodcoeff8 FVEC8 exitflag]=fminsearch(@(coeff)Ogden8th(coeff,PT,SC,ST,BT),coeffGuess8,options) 
%  
% mu1_5=goodcoeff8(1); 
% mu2_5=goodcoeff8(2); 
% mu3_5=goodcoeff8(3); 
% mu4_5=goodcoeff8(4); 
% mu5_5=goodcoeff8(5); 
% mu6_5=goodcoeff8(6); 
% mu7_5=goodcoeff8(7); 
% mu8_5=goodcoeff8(8); 
% alpha1_5=goodcoeff8(9); 
% alpha2_5=goodcoeff8(10); 
% alpha3_5=goodcoeff8(11); 
% alpha4_5=goodcoeff8(12); 
% alpha5_5=goodcoeff8(13); 
% alpha6_5=goodcoeff8(14); 
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% alpha7_5=goodcoeff8(15); 
% alpha8_5=goodcoeff8(16); 
%  
% % Matlab/Octave solution - pure shear 
% StressOctave8=mu1_5*((PT(:,1)+1).^(alpha1_5-1)-(PT(:,1)+1).^(-1-

alpha1_5))+mu2_5*((PT(:,1)+1).^(alpha2_5-1)-(PT(:,1)+1).^(-1-alpha2_5))+... 
% mu3_5*((PT(:,1)+1).^(alpha3_5-1)-(PT(:,1)+1).^(-1-alpha3_5))+mu4_5*((PT(:,1)+1).^(alpha4_5-1)-

(PT(:,1)+1).^(-1-alpha4_5))+... 
% mu5_5*((PT(:,1)+1).^(alpha5_5-1)-(PT(:,1)+1).^(-1-alpha5_5))+mu6_5*((PT(:,1)+1).^(alpha6_5-1)-

(PT(:,1)+1).^(-1-alpha6_5))+... 
% mu7_5*((PT(:,1)+1).^(alpha7_5-1)-(PT(:,1)+1).^(-1-alpha7_5))+mu8_5*((PT(:,1)+1).^(alpha8_5-1)-

(PT(:,1)+1).^(-1-alpha8_5)); 
%  
% % Matlab Octave solution - simple tension 
% Simple_tension8=mu1_5*(ST2.^(alpha1_5-1)-ST2.^-(1+0.5*alpha1_5))+mu2_5*(ST2.^(alpha2_5-1)-

ST2.^-(1+0.5*alpha2_5))+... 
% mu3_5*(ST2.^(alpha3_5-1)-ST2.^-(1+0.5*alpha3_5))+mu4_5*(ST2.^(alpha4_5-1)-ST2.^-

(1+0.5*alpha4_5))+mu5_5*(ST2.^(alpha5_5-1)-ST2.^-(1+0.5*alpha5_5))+... 
% mu6_5*(ST2.^(alpha6_5-1)-ST2.^-(1+0.5*alpha6_5))+mu7_5*(ST2.^(alpha7_5-1)-ST2.^-

(1+0.5*alpha7_5))+mu8_5*(ST2.^(alpha8_5-1)-ST2.^-(1+0.5*alpha8_5)); 
%  
% % compute simple compression stress for Ogden model 
% Simple_compression8=mu1_5*(SC2.^(alpha1_5-1)-SC2.^-

(1+0.5*alpha1_5))+mu2_5*(SC2.^(alpha2_5-1)-SC2.^-(1+0.5*alpha2_5))+... 
% mu3_5*(SC2.^(alpha3_5-1)-SC2.^-(1+0.5*alpha3_5))+mu4_5*(SC2.^(alpha4_5-1)-SC2.^-

(1+0.5*alpha4_5))+mu5_5*(SC2.^(alpha5_5-1)-SC2.^-(1+0.5*alpha5_5))+... 
% mu6_5*(SC2.^(alpha6_5-1)-SC2.^-(1+0.5*alpha6_5))+mu7_5*(SC2.^(alpha7_5-1)-SC2.^-

(1+0.5*alpha7_5))+mu8_5*(SC2.^(alpha8_5-1)-SC2.^-(1+0.5*alpha8_5)); 
%  
% % calculate radial stress-strain from Ogden coefficients 
% Radial_stress8=mu1_5*(BT2.^(alpha1_5-1)-BT2.^-(1+2*alpha1_5))+mu2_5*(BT2.^(alpha2_5-1)-

BT2.^-(1+2*alpha2_5))+... 
% mu3_5*(BT2.^(alpha3_5-1)-BT2.^-(1+2*alpha3_5))+mu4_5*(BT2.^(alpha4_5-1)-BT2.^-

(1+2*alpha4_5))+... 
% mu5_5*(BT2.^(alpha5_5-1)-BT2.^-(1+2*alpha5_5))+mu6_5*(BT2.^(alpha6_5-1)-BT2.^-

(1+2*alpha6_5))+... 
% mu7_5*(BT2.^(alpha7_5-1)-BT2.^-(1+2*alpha7_5))+mu8_5*(BT2.^(alpha8_5-1)-BT2.^-

(1+2*alpha8_5)); 
%  
% % plot Ogden (Matlab curve fit) and input data (pure shear) 
% figure(7) 
% subplot(2,2,1) 
% plot(PT(:,1),PT(:,2),'r',PT(:,1),StressOctave8,'g') 
% title('Stress strain curve') 
% xlabel('Strain') 
% ylabel('Stress') 
% legend('AXEL data - planar tension (pure shear)','Ogden model, coefficients calculated in Matlab') 
%  
% subplot(2,2,2) 
% plot(ST(:,1),ST(:,2),'r',ST(:,1),Simple_tension8,'g') 
% title('Stress strain curve') 
% xlabel('Strain') 
% ylabel('Stress') 
% legend('AXEL data - simple tension','Ogden model, coefficients calculated in Matlab') 
%  
% subplot(2,2,3) 
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% plot(SC(:,1),SC(:,2),'r',SC(:,1),Simple_compression8,'g') 
% title('Stress strain curve') 
% xlabel('Strain') 
% ylabel('Stress') 
% legend('AXEL data - simple compression','Ogden model, coefficients calculated in Matlab') 
%  
% subplot(2,2,4) 
% plot(BT(:,1),BT(:,2),'r',BT(:,1),Radial_stress8,'g') 
% title('Stress strain curve') 
% xlabel('Strain') 
% ylabel('Stress') 
% legend('AXEL data - equibiaxial tension','Ogden model, coefficients calculated in Matlab') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% generalized Ogden model coefficient identifier 
  
% how many terms? 
n=8; % eight terms (16 coefficients) 
  
% Initialize coeff vector for finding Ogden coeff. 
for i=1:1:n 
coeffGuessn(i)=0.0005; % initial guess 
end 
  
for i=n+1:1:2*n 
coeffGuessn(i)=1; 
end 
  
coeffGuessn=[0.001430401833915,0.000984372703989,-

0.001111333343152,0.001509515368452,0.000750418628958,0.000036961648425,0.000859486995073,0

.002028371017567,... 
-0.730528305376716,-1.635323159935653,-2.208012055364714,1.008884805631591,-

1.496740689986303,5.656411001322061,0.975554388605357,0.759739009642598]; 
  
% coeffGuess8=goodcoeff8; 
optionsn=optimset('MaxFunEvals',10^5,'MaxIter',10^5); 
[goodcoeffn FVECn 

exitflagn]=fminsearch(@(coeff)Ogdennth(coeff,n,PT,SC,ST,BT),coeffGuessn,optionsn) 
  
% compute planar tension stress for Ogden model  
Stress_pure_shearn=0; 
for i=1:n 
Stress_pure_shearn=Stress_pure_shearn+goodcoeffn(i)*(PT2.^(goodcoeffn(i+n)-1)-PT2.^-

(1+goodcoeffn(i+n))); 
end 
  
% compute simple compression stress for Ogden model 
Simple_compressionn=0; 
for i=1:n 
Simple_compressionn=Simple_compressionn+goodcoeffn(i)*(SC2.^(goodcoeffn(i+n)-1)-SC2.^-

(1+0.5*goodcoeffn(i+n))); 
end 
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% compute simple tension stress for Ogden model 
Simple_tensionn=0; 
for i=1:n 
Simple_tensionn=Simple_tensionn+goodcoeffn(i)*(ST2.^(goodcoeffn(i+n)-1)-ST2.^-

(1+0.5*goodcoeffn(i+n))); 
end 
  
% calculate radial stress-strain from Ogden coefficients 
Radial_stressn=0; 
for i=1:n 
Radial_stressn=Radial_stressn+goodcoeffn(i)*(BT2.^(goodcoeffn(i+n)-1)-BT2.^-(1+2*goodcoeffn(i+n))); 
end 
  
% plot Ogden (Matlab curve fit) and input data (pure shear) 
figure(8) 
subplot(2,2,1) 
plot(PT(:,1),PT(:,2),'r',PT(:,1),Stress_pure_shearn,'g') 
title('Stress strain curve') 
xlabel('Strain') 
ylabel('Stress') 
legend('AXEL data - planar tension (pure shear)','Ogden model, coefficients calculated in Matlab') 
grid on 
  
subplot(2,2,2) 
plot(ST(:,1),ST(:,2),'r',ST(:,1),Simple_tensionn,'g') 
title('Stress strain curve') 
xlabel('Strain') 
ylabel('Stress') 
legend('AXEL data - simple tension','Ogden model, coefficients calculated in Matlab') 
grid on 
  
subplot(2,2,3) 
plot(SC(:,1),SC(:,2),'r',SC(:,1),Simple_compressionn,'g') 
title('Stress strain curve') 
xlabel('Strain') 
ylabel('Stress') 
legend('AXEL data - simple compression','Ogden model, coefficients calculated in Matlab') 
grid on 
  
subplot(2,2,4) 
plot(BT(:,1),BT(:,2),'r',BT(:,1),Radial_stressn,'g') 
title('Stress strain curve') 
xlabel('Strain') 
ylabel('Stress') 
legend('AXEL data - equibiaxial tension','Ogden model, coefficients calculated in Matlab') 
grid on 
  
% OT metric for simple tension 
for i=1:length(ST(:,2)) 
    if ST(i,2)==0 
        if i>(length(ST)-3) 
        ST(i,2)=(ST(i-1,2)+ST(i-2,2))/2; 
        else 
        ST(i,2)=(ST(i+1,2)+ST(i+2,2))/2; 
        end 
    end 
end 
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OTmetric_simple_tension_n=1-1/length(ST(:,2))*sum(tanh(abs((Simple_tensionn-ST(:,2))./ST(:,2)))) 
  
% OT metric for simple compression 
for i=1:length(SC(:,2)) 
    if SC(i,2)==0 
        if i>(length(SC)-3) 
        SC(i,2)=(SC(i-1,2)+SC(i-2,2))/2; 
        else 
        SC(i,2)=(ST(i+1,2)+SC(i+2,2))/2; 
        end 
    end 
end 
OTmetric_simple_compression_n=1-1/length(SC(:,2))*sum(tanh(abs((Simple_compressionn-

SC(:,2))./SC(:,2)))) 
  
% OT metric for planar tension (pure shear) 
for i=1:length(PT(:,2)) 
    if PT(i,2)==0 
        if i>(length(PT)-3) 
        PT(i,2)=(PT(i-1,2)+PT(i-2,2))/2; 
        else 
        PT(i,2)=(ST(i+1,2)+PT(i+2,2))/2; 
        end 
    end 
end 
OTmetric_pure_shear_n=1-1/length(PT(:,2))*sum(tanh(abs((Stress_pure_shearn-PT(:,2))./PT(:,2)))) 
  
% OT metric for equibiaxial tension 
for i=1:length(BT(:,2)) 
    if BT(i,2)==0 
        if i>(length(BT)-3) 
        BT(i,2)=(BT(i-1,2)+BT(i-2,2))/2; 
        else 
        BT(i,2)=(BT(i+1,2)+BT(i+2,2))/2; 
        end 
    end 
end 
OTmetric_equibiaxial_tension_n=1-1/length(BT(:,2))*sum(tanh(abs((Radial_stressn-BT(:,2))./BT(:,2)))) 
  
% identify optimal initial guess for finding `n` Ogden coefficients 
% [goodcoeffn_ig FVECn_ig 

exitflagn_ig]=fminsearch(@(guess1)OgdenInitialGuess(guess1,n,PT,SC,ST,BT,optionsn),goodcoeffn) 
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Appendix C 

MATLAB/Octave function used with a minimization function (in the previous 

script) to determine Ogden material model coefficients 

 

function errmetric=Ogdennth(coeff,n,PT,SC,ST,BT) 
  
% n is the desired number of terms for the Ogden model 
  
% this function is fed to the Matlab function fminsearch to minimize 'err metric' 
% fminunc in Octave may also work 
  
% read in planar tension (pure shear) AXEL data 
% PT=dlmread('ChryslerC0EPT0.01Cleaned.txt'); 
% PT(:,2)=PT(:,2)/1000; % convert MPa to GPa 
PT2=PT(:,1)+1; % calculate stretch ratio from engineering strain 
  
% import simple compression AXEL data 
% SC=dlmread('set2_compression.csv'); 
SC2=SC(:,1)+1; % calculate stretch ratio from strain 
  
% import AXEL simple tension results 
% ST=dlmread('set2_tension.csv'); 
ST2(:,1)=ST(:,1)+1; % convert strain to stretch ratio 
  
% import biaxial tension AXEL data 
% BT=dlmread('ChryslerC0EBT0.01Cleaned.txt'); 
BT2=BT(:,1)+1; % calculate stretch ratio from engineering strain 
% BT(:,2)=BT(:,2)/1000; % convert MPa to GPa 
  
% optimization function only accepts one input but it can be a vector 
% de-vectorize Ogden material parameters: 
% mu1=coeff(1); 
% mu8=coeff(8); 
% alpha1=coeff(9); 
% alpha8=coeff(16); 
% this is just sort of notes to make the following easier, vestigial from 
% when this function had a specific version to get a specific number of 
% terms for the Ogden model 
  
% compute planar tension stress for Ogden model  
Stress_pure_shear=0; 
for i=1:n 
Stress_pure_shear=Stress_pure_shear+coeff(i)*(PT2.^(coeff(i+n)-1)-PT2.^-(1+coeff(i+n))); 
end 
  
% compute simple compression stress for Ogden model 
Simple_compression=0; 
for i=1:n 
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Simple_compression=Simple_compression+coeff(i)*(SC2.^(coeff(i+n)-1)-SC2.^-(1+0.5*coeff(i+n))); 
end 
  
% compute simple tension stress for Ogden model 
Simple_tension=0; 
for i=1:n 
Simple_tension=Simple_tension+coeff(i)*(ST2.^(coeff(i+n)-1)-ST2.^-(1+0.5*coeff(i+n))); 
end 
  
% calculate radial stress-strain from Ogden coefficients 
Radial_stress=0; 
for i=1:n 
Radial_stress=Radial_stress+coeff(i)*(BT2.^(coeff(i+n)-1)-BT2.^-(1+2*coeff(i+n))); 
end 
  
% least squares error metric 
% if coeff>0 
errmetric=4*sum(abs(Stress_pure_shear-PT(:,2)))+2*sum(abs(Simple_compression-

SC(:,2)))+sum(abs(Simple_tension-ST(:,2)))+... 
4*sum(abs(Radial_stress-BT(:,2)))+... 
4*sum((Stress_pure_shear-PT(:,2)).^2)+2*sum((Simple_compression-SC(:,2)).^2)+sum((Simple_tension-

ST(:,2)).^2)+... 
4*sum((Radial_stress-BT(:,2)).^2); 
% else errmetric=10*(4*sum(abs(Stress_pure_shear-PT(:,2)))+2*sum(abs(Simple_compression-

SC(:,2)))+sum(abs(Simple_tension-ST(:,2)))+... 
% 4*sum(abs(Radial_stress-BT(:,2)))+... 
% 4*sum((Stress_pure_shear-PT(:,2)).^2)+2*sum((Simple_compression-

SC(:,2)).^2)+sum((Simple_tension-ST(:,2)).^2)+... 
% 4*sum((Radial_stress-BT(:,2)).^2)); 
% end 
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Appendix D 

 

Summary of material characterization models parametric studies – sorted by 

validation metric 

 

Element 

Type 

Material 

Characterization 

Process 

Material Model 

Element  

Formula

tion 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

Tetrahedron 
Simple 

compression 

MAT 181 10 2 0.98387 3 

Tetrahedron 
Simple 

compression 

MAT 181 13 2 0.98364 3 

Tetrahedron 
Simple 

compression 

MAT 181 4 2 0.98267 14 

Tetrahedron Simple tension MAT 181 16 2.5 0.98041 32 

Hexahedron Simple tension MAT 181 1 1 0.98008 12 

Hexahedron Simple tension MAT 181 2 1 0.97986 68 

Tetrahedron Simple tension MAT 181 10 1 0.97893 48 

Tetrahedron Simple tension MAT 181 13 2.5 0.97674 7 

Tetrahedron Simple tension MAT 181 13 1 0.97665 54 

Tetrahedron 
Simple 

compression 

MAT 181 13 5 0.97613 0.117 

Hexahedron 
Simple 

compression 

MAT 181 2 5 0.97548 0.167 

Tetrahedron 
Simple 

compression 

MAT 181 4 5 0.97494 0.417 

Tetrahedron 
Simple 

compression 

MAT 181 10 5 0.97456 0.117 

Tetrahedron Simple tension MAT 181 10 2.5 0.96868 3 

Tetrahedron Equibiaxial tension MAT 181 4 2 0.964 26 

Hexahedron Equibiaxial tension MAT 181 3 2 0.96035 8 

Tetrahedron Equibiaxial tension MAT 181 10 2 0.95785 5 

Tetrahedron Simple tension MAT 181 16 1 0.95305 301 

Hexahedron 
Simple 

compression 

MAT 181 3 2 0.95116 9 

Tetrahedron Equibiaxial tension MAT 181 10 1 0.951 60 

Tetrahedron Simple tension MAT 181 4 1 0.95019 30 
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Hexahedron 
Simple 

compression 

MAT 181 2 2 0.9496 2 

Tetrahedron Planar tension MAT 77O 8 terms 16 1.25 0.94784 50 

Tetrahedron Equibiaxial tension MAT 181 10 0.5 0.94681 690 

Tetrahedron Equibiaxial tension MAT 181 13 1 0.93734 60 

Hexahedron 
Simple 

compression 

MAT 181 3 5 0.93275 0.433 

Tetrahedron Equibiaxial tension MAT 181 13 2 0.93272 5 

Tetrahedron Simple tension MAT 181 4 2.5 0.9323 7 

Hexahedron Simple tension MAT 181 3 1 0.92681 51 

Hexahedron Equibiaxial tension MAT 181 2 0.5 0.92599 720 

Hexahedron Equibiaxial tension MAT 181 1 0.5 0.9256 120 

Hexahedron Equibiaxial tension MAT 181 3 0.5 0.92555 1800 

Hexahedron Equibiaxial tension MAT 181 2 2 0.9246 4 

Tetrahedron Equibiaxial tension MAT 181 13 0.5 0.924 690 

Hexahedron Equibiaxial tension MAT 181 2 1 0.91616 43 

Hexahedron Planar tension MAT 77O 8 terms 1 0.625 0.91562 2 

Hexahedron Equibiaxial tension MAT 181 1 1 0.91518 8 

Hexahedron Planar tension MAT 77O 8 terms 1 0.3125 0.91437 40 

Hexahedron Planar tension MAT 77O 8 terms 2 0.625 0.91433 11 

Hexahedron Planar tension MAT 77O 8 terms 41 0.3125 0.91288 300 

Hexahedron Equibiaxial tension MAT 181 3 1 0.91222 80 

Tetrahedron Simple tension MAT 77O 8 terms 10 2.5 0.90729 0.383 

Tetrahedron Simple tension MAT 77O 8 terms 13 2.5 0.90729 0.417 

Hexahedron Simple tension MAT 77O 6 terms 1 1 0.90454 4.333 

Hexahedron Planar tension MAT 77O 8 terms 3 0.3125 0.90409 960 

Tetrahedron Simple tension MAT 77O 6 terms 16 1 0.90383 330 

Tetrahedron Simple tension MAT 77O 8 terms 16 1 0.90365 89 

Tetrahedron Simple tension MAT 77O 8 terms 16 2.5 0.90319 3.6 

Tetrahedron Simple tension MAT 77O 8 terms 13 1 0.90287 9.8 

Tetrahedron Simple tension MAT 77O 8 terms 10 1 0.90274 7 

Hexahedron Planar tension MAT 77O 8 terms 41 0.625 0.90024 14 

Tetrahedron Simple tension MAT 77O 6 terms 10 2.5 0.89845 1 

Tetrahedron Simple tension MAT 77O 6 terms 13 2.5 0.89845 1 

Hexahedron Planar tension MAT 77O 8 terms 2 1.25 0.8963 0.75 

Tetrahedron Planar tension MAT 77O 8 terms 10 0.625 0.89565 195 

Tetrahedron Planar tension MAT 77O 8 terms 13 0.3125 0.89565 195 
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Hexahedron Equibiaxial tension MAT 77O 8 terms 3 2 0.89381 1.45 

Tetrahedron Equibiaxial tension MAT 77O 8 terms 13 2 0.89367 1.9 

Tetrahedron Equibiaxial tension MAT 77O 8 terms 10 2 0.89366 1.867 

Hexahedron Planar tension MAT 77O 8 terms 1 2.5 0.89325 0 

Tetrahedron Simple tension MAT 77O 6 terms 10 1 0.89264 9 

Tetrahedron Simple tension MAT 77O 6 terms 13 1 0.89264 9 

Hexahedron Equibiaxial tension MAT 181 1 2 0.89263 1 

Hexahedron Equibiaxial tension MAT 77O 8 terms 41 2 0.8925 3 

Hexahedron Simple tension MAT 77O 8 terms 1 1 0.89173 4.633 

Tetrahedron Equibiaxial tension MAT 77O 8 terms 10 1 0.89115 20 

Tetrahedron Equibiaxial tension MAT 77O 8 terms 13 1 0.89115 20 

Hexahedron Simple tension MAT 77O 8 terms 41 1 0.89105 0.867 

Hexahedron Simple tension MAT 77O 8 terms 3 1 0.88978 72 

Tetrahedron Simple tension MAT 77O 6 terms 16 2.5 0.88319 8 

Tetrahedron 
Simple 

compression 

MAT 77O 8 terms 10 2 0.87854 0.933 

Tetrahedron 
Simple 

compression 

MAT 77O 8 terms 13 2 0.87854 0.95 

Hexahedron 
Simple 

compression 

MAT 181 1 2 0.8697 0.917 

Tetrahedron Equibiaxial tension MAT 181 4 1 0.86856 372 

Hexahedron 
Simple 

compression 

MAT 77O 8 terms 2 5 0.86772 0.083 

Hexahedron 
Simple 

compression 

MAT 77O 8 terms 41 5 0.86758 0.117 

Tetrahedron 
Simple 

compression 

MAT 77O 8 terms 13 5 0.86737 0.033 

Tetrahedron Equibiaxial tension MAT 77O 8 terms 10 0.5 0.86354 240 

Tetrahedron Equibiaxial tension MAT 77O 8 terms 13 0.5 0.86354 240 

Hexahedron Planar tension MAT 181 2 1.25 0.85958 19 

Tetrahedron Planar tension MAT 77O 6 terms 13 0.625 0.85893 150 

Hexahedron Equibiaxial tension MAT 77O 8 terms 3 0.5 0.85815 675 

Hexahedron Equibiaxial tension MAT 77O 8 terms 1 0.5 0.85569 46 

Hexahedron Equibiaxial tension MAT 77O 8 terms 3 1 0.85467 62 

Hexahedron 
Simple 

compression 

MAT 181 1 5 0.85099 
0.133 

Hexahedron Planar tension MAT 77O 8 terms 1 1.25 0.84575 0.1 

Hexahedron Simple tension MAT 181 2 2.5 0.8428 1 

Hexahedron Equibiaxial tension MAT 77O 8 terms 1 1 0.84165 3.35 
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Hexahedron Equibiaxial tension MAT 77O 6 terms 2 1 0.82534 3.5 

Hexahedron Planar tension MAT 77O 6 terms 2 1.25 0.82534 210 

Hexahedron Planar tension MAT 77O 8 terms 3 0.625 0.82117 27 

Hexahedron Planar tension MAT 181 2 0.625 0.81518 214 

Hexahedron Planar tension MAT 181 1 0.625 0.81389 20 

Hexahedron Planar tension MAT 77O 6 terms 1 0.625 0.80645 10 

Hexahedron Equibiaxial tension MAT 77O 6 terms 1 0.5 0.80645 10 

Hexahedron Planar tension MAT 77O 6 terms 2 0.625 0.80546 40 

Hexahedron Equibiaxial tension MAT 77O 6 terms 2 0.5 0.80546 40 

Hexahedron Planar tension MAT 181 1 0.3125 0.80375 480 

Hexahedron Planar tension MAT 77O 6 terms 1 0.3125 0.80106 50 

Hexahedron Planar tension MAT 181 2 0.3125 0.79853 2400 

Hexahedron Planar tension MAT 181 1 1.25 0.79286 5 

Tetrahedron 
Simple 

compression 

MAT 77O 6 terms 10 2 0.79086 1 

Tetrahedron 
Simple 

compression 

MAT 77O 6 terms 13 2 0.79086 1 

Hexahedron 
Simple 

compression 

MAT 77O 8 terms 3 2 0.78655 5 

Tetrahedron Planar tension MAT 77O 6 terms 13 0.3125 0.78443 440 

Tetrahedron 
Simple 

compression 

MAT 77O 6 terms 10 5 0.7813 0.033 

Tetrahedron 
Simple 

compression 

MAT 77O 6 terms 13 5 0.7813 0.033 

Hexahedron 
Simple 

compression 

MAT 77O 6 terms 2* 5 0.78126 0.1 

Hexahedron Planar tension MAT 77O 6 terms 1 1.25 0.77759 0.667 

Hexahedron Equibiaxial tension MAT 77O 6 terms 1 1 0.77759 0.667 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 10 1 0.7742 23 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 13 1 0.7742 23 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 4 1 0.77165 110 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 10 2 0.76822 2 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 13 2 0.76822 2 

Hexahedron Planar tension MAT 77O 6 terms 3 0.3125 0.76392 1680 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 10 0.5 0.7637 300 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 13 0.5 0.7637 300 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 4 0.5 0.75998 690 

Tetrahedron Planar tension MAT 77O 6 terms 10 0.3125 0.75453 240 
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Tetrahedron Planar tension MAT 77O 6 terms 13 0.3125 0.75453 240 

Hexahedron Planar tension MAT 77O 6 terms 1 2.5 0.72622 0 

Hexahedron Equibiaxial tension MAT 77O 6 terms 1 2 0.72622 0 

Hexahedron Planar tension MAT 181 3 0.3125 0.71481 7200 

Hexahedron Planar tension MAT 181 1 2.5 0.71154 0.3 

Hexahedron Planar tension MAT 77O 8 terms 41 1.25 0.69281 0.95 

Tetrahedron Planar tension MAT 77O 8 terms 10 0.625 0.67445 9 

Tetrahedron Planar tension MAT 77O 8 terms 13 0.625 0.67445 9 

Hexahedron Planar tension MAT 77O 6 terms 3 0.625 0.65614 130 

Hexahedron Equibiaxial tension MAT 77O 6 terms 3 0.5 0.65614 130 

Hexahedron Simple tension MAT 181 1 2.5 0.61712 0.3 

Tetrahedron Planar tension MAT 77O 8 terms 16 2.5 0.59701 0.4 

Tetrahedron Equibiaxial tension MAT 77O 8 terms 16 1 0.59326 185 

Tetrahedron Planar tension MAT 77O 6 terms 10 0.625 0.51901 43 

Tetrahedron Planar tension MAT 77O 6 terms 13 0.625 0.51901 43 

Hexahedron Planar tension MAT 77O 8 terms 2 2.5 0.5083 0.05 

Hexahedron Simple tension MAT 181 3 2.5 0.50203 2.3 

Hexahedron Equibiaxial tension MAT 77O 8 terms 2 2 0.49997 15 

Tetrahedron Equibiaxial tension MAT 181 16 1 0.4926 7200 

Hexahedron Planar tension MAT 77O 6 terms 2 2.5 0.47143 0.333 

Hexahedron Equibiaxial tension MAT 77O 6 terms 2 2 0.47143 0.333 

Tetrahedron Equibiaxial tension MAT 77O 8 terms 16 2 0.44216 15.25 

Hexahedron Planar tension MAT 181 3 0.625 0.43938 337 

Hexahedron Equibiaxial tension MAT 77O 8 terms 1 2 0.42099 2.3 

Tetrahedron Planar tension MAT 77O 6 terms 4 0.3125 0.41877 3600 

Tetrahedron Equibiaxial tension MAT 181 16 2 0.40952 52 

Hexahedron Planar tension MAT 181 2 2.5 0.31677 2 

Tetrahedron Planar tension MAT 77O 6 terms 10 0.3125 0.18182 440 

Hexahedron Planar tension MAT 181 3 1.25 0.10673 86 

Tetrahedron Planar tension MAT 77O 8 terms 10 1.25 0.09239 1 

Tetrahedron Planar tension MAT 77O 8 terms 13 1.25 0.09238 1 

Tetrahedron Planar tension MAT 77O 6 terms 10 1.25 0.05571 5 

Tetrahedron Planar tension MAT 77O 6 terms 13 1.25 0.05571 5 

Tetrahedron Planar tension MAT 77O 6 terms 10 0.625 0.001 150 

Tetrahedron Planar tension MAT 77O 8 terms 10 2.5 0 0.067 

Tetrahedron Planar tension MAT 77O 8 terms 13 2.5 0 0.167 
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Hexahedron Simple tension MAT 77O 6 terms 1 2.5 0 0.3 

Tetrahedron Planar tension MAT 77O 6 terms 10 2.5 0 0.333 

Tetrahedron Planar tension MAT 77O 6 terms 13 2.5 0 0.833 

Hexahedron Planar tension MAT 181 3 2.5 0 6 

Tetrahedron Simple tension MAT 77O 6 terms 4 1 0 - 

Hexahedron Simple tension MAT 77O 6 terms 2 2.5 0 - 

Hexahedron Simple tension MAT 77O 6 terms 3 2.5 0 - 

Hexahedron Simple tension MAT 77O 6 terms 2 1 0 - 

Hexahedron Simple tension MAT 77O 6 terms 3 1 0 - 

Tetrahedron Simple tension MAT 77O 6 terms 4 2.5 0 - 

Hexahedron Planar tension MAT 77O 6 terms 3 2.5 0 - 

Hexahedron Planar tension MAT 77O 6 terms 3 1.25 0 - 

Hexahedron Planar tension MAT 77O 6 terms 2 0.3125 0 - 

Tetrahedron Planar tension MAT 77O 6 terms 4 2.5 0 - 

Tetrahedron Planar tension MAT 77O 6 terms 4 1.25 0 - 

Tetrahedron Planar tension MAT 77O 6 terms 4 0.625 0 - 

Tetrahedron Planar tension MAT 77O 6 terms 4 0.3125 0 - 

Tetrahedron Equibiaxial tension MAT 181 4 0.5 0 - 

Hexahedron Equibiaxial tension MAT 77O 6 terms 3 2 0 - 

Hexahedron Equibiaxial tension MAT 77O 6 terms 3 1 0 - 

Tetrahedron Equibiaxial tension MAT 77O 6 terms 4 2 0 - 
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Appendix E 

 

Summary of material characterization models parametric studies – sorted by CPU 

time 

 

Element 

Type 

Material 

Characterization 

Process 

Material Model 
Element  

Formulation 

Element  

Size 

(mm) 

Validation  

Metric 

CPU 

Time  

(min) 

Hexahedron Planar tension 
MAT 77O 8 

terms 

1 2.5 0.89325 0 

Hexahedron Planar tension 
MAT 77O 6 

terms 

1 2.5 0.72622 0 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

1 2 0.72622 0 

Tetrahedron 
Simple 

compression 

MAT 77O 8 

terms 

13 5 0.86737 0.033 

Tetrahedron 
Simple 

compression 

MAT 77O 6 

terms 

10 5 0.7813 0.033 

Tetrahedron 
Simple 

compression 

MAT 77O 6 

terms 

13 5 0.7813 0.033 

Hexahedron Planar tension 
MAT 77O 8 

terms 

2 2.5 0.5083 0.05 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

10 2.5 0 0.067 

Hexahedron 
Simple 

compression 

MAT 77O 8 

terms 

2 5 0.86772 0.083 

Hexahedron Planar tension 
MAT 77O 8 

terms 

1 1.25 0.84575 0.1 

Hexahedron 
Simple 

compression 

MAT 77O 6 

terms 

2* 5 0.78126 0.1 

Tetrahedron 
Simple 

compression 

MAT 181 13 5 0.97613 0.117 

Tetrahedron 
Simple 

compression 

MAT 181 10 5 0.97456 0.117 

Hexahedron 
Simple 

compression 

MAT 77O 8 

terms 

41 5 0.86758 0.117 

Hexahedron 
Simple 

compression 

MAT 181 1 5 0.85099 0.133 

Hexahedron 
Simple 

compression 

MAT 181 2 5 0.97548 0.167 
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Tetrahedron Planar tension 
MAT 77O 8 

terms 

13 2.5 0 0.167 

Hexahedron Planar tension MAT 181 1 2.5 0.71154 0.3 

Hexahedron Simple tension MAT 181 1 2.5 0.61712 0.3 

Hexahedron Simple tension 
MAT 77O 6 

terms 

1 2.5 0 0.3 

Hexahedron Planar tension 
MAT 77O 6 

terms 

2 2.5 0.47143 0.333 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

2 2 0.47143 0.333 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

10 2.5 0 0.333 

Tetrahedron Simple tension 
MAT 77O 8 

terms 

10 2.5 0.90729 0.383 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

16 2.5 0.59701 0.4 

Tetrahedron 
Simple 

compression 

MAT 181 4 5 0.97494 0.417 

Tetrahedron Simple tension 
MAT 77O 8 

terms 

13 2.5 0.90729 0.417 

Hexahedron 
Simple 

compression 

MAT 181 3 5 0.93275 0.433 

Hexahedron Planar tension 
MAT 77O 6 

terms 

1 1.25 0.77759 0.667 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

1 1 0.77759 0.667 

Hexahedron Planar tension 
MAT 77O 8 

terms 

2 1.25 0.8963 0.75 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

13 2.5 0 0.833 

Hexahedron Simple tension 
MAT 77O 8 

terms 

41 1 0.89105 0.867 

Hexahedron 
Simple 

compression 

MAT 181 1 2 0.8697 0.917 

Tetrahedron 
Simple 

compression 

MAT 77O 8 

terms 

10 2 0.87854 0.933 

Tetrahedron 
Simple 

compression 

MAT 77O 8 

terms 

13 2 0.87854 0.95 

Hexahedron Planar tension 
MAT 77O 8 

terms 

41 1.25 0.69281 0.95 

Tetrahedron Simple tension 
MAT 77O 6 

terms 

10 2.5 0.89845 1 

Tetrahedron Simple tension 
MAT 77O 6 

terms 

13 2.5 0.89845 1 
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Hexahedron Equibiaxial tension MAT 181 1 2 0.89263 1 

Hexahedron Simple tension MAT 181 2 2.5 0.8428 1 

Tetrahedron 
Simple 

compression 

MAT 77O 6 

terms 

10 2 0.79086 1 

Tetrahedron 
Simple 

compression 

MAT 77O 6 

terms 

13 2 0.79086 1 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

10 1.25 0.09239 1 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

13 1.25 0.09238 1 

Hexahedron Equibiaxial tension 
MAT 77O 8 

terms 
3 2 0.89381 1.45 

Tetrahedron Equibiaxial tension 
MAT 77O 8 

terms 
10 2 0.89366 1.867 

Tetrahedron Equibiaxial tension 
MAT 77O 8 

terms 
13 2 0.89367 1.9 

Hexahedron 
Simple 

compression 

MAT 181 2 2 0.9496 2 

Hexahedron Planar tension 
MAT 77O 8 

terms 

1 0.625 0.91562 2 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

10 2 0.76822 2 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

13 2 0.76822 2 

Hexahedron Planar tension MAT 181 2 2.5 0.31677 2 

Hexahedron Simple tension MAT 181 3 2.5 0.50203 2.3 

Hexahedron Equibiaxial tension 
MAT 77O 8 

terms 
1 2 0.42099 2.3 

Tetrahedron 
Simple 

compression 

MAT 181 10 2 0.98387 3 

Tetrahedron 
Simple 

compression 

MAT 181 13 2 0.98364 3 

Tetrahedron Simple tension MAT 181 10 2.5 0.96868 3 

Hexahedron Equibiaxial tension 
MAT 77O 8 

terms 
41 2 0.8925 3 

Hexahedron Equibiaxial tension 
MAT 77O 8 

terms 
1 1 0.84165 3.35 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

2 1 0.82534 3.5 

Tetrahedron Simple tension 
MAT 77O 8 

terms 

16 2.5 0.90319 3.6 

Hexahedron Equibiaxial tension MAT 181 2 2 0.9246 4 

Hexahedron Simple tension 
MAT 77O 6 

terms 

1 1 0.90454 4.333 
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Hexahedron Simple tension 
MAT 77O 8 

terms 

1 1 0.89173 4.633 

Tetrahedron Equibiaxial tension MAT 181 10 2 0.95785 5 

Tetrahedron Equibiaxial tension MAT 181 13 2 0.93272 5 

Hexahedron Planar tension MAT 181 1 1.25 0.79286 5 

Hexahedron 
Simple 

compression 

MAT 77O 8 

terms 

3 2 0.78655 5 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

10 1.25 0.05571 5 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

13 1.25 0.05571 5 

Hexahedron Planar tension MAT 181 3 2.5 0 6 

Tetrahedron Simple tension MAT 181 13 2.5 0.97674 7 

Tetrahedron Simple tension MAT 181 4 2.5 0.9323 7 

Tetrahedron Simple tension 
MAT 77O 8 

terms 

10 1 0.90274 7 

Hexahedron Equibiaxial tension MAT 181 3 2 0.96035 8 

Hexahedron Equibiaxial tension MAT 181 1 1 0.91518 8 

Tetrahedron Simple tension 
MAT 77O 6 

terms 

16 2.5 0.88319 8 

Hexahedron 
Simple 

compression 

MAT 181 3 2 0.95116 9 

Tetrahedron Simple tension 
MAT 77O 6 

terms 

10 1 0.89264 9 

Tetrahedron Simple tension 
MAT 77O 6 

terms 

13 1 0.89264 9 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

10 0.625 0.67445 9 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

13 0.625 0.67445 9 

Tetrahedron Simple tension 
MAT 77O 8 

terms 

13 1 0.90287 9.8 

Hexahedron Planar tension 
MAT 77O 6 

terms 

1 0.625 0.80645 10 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

1 0.5 0.80645 10 

Hexahedron Planar tension 
MAT 77O 8 

terms 

2 0.625 0.91433 11 

Hexahedron Simple tension MAT 181 1 1 0.98008 12 

Tetrahedron 
Simple 

compression 

MAT 181 4 2 0.98267 14 

Hexahedron Planar tension 
MAT 77O 8 

terms 

41 0.625 0.90024 14 
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Hexahedron Equibiaxial tension 
MAT 77O 8 

terms 
2 2 0.49997 15 

Tetrahedron Equibiaxial tension 
MAT 77O 8 

terms 
16 2 0.44216 15.25 

Hexahedron Planar tension MAT 181 2 1.25 0.85958 19 

Tetrahedron Equibiaxial tension 
MAT 77O 8 

terms 10 1 0.89115 20 

Tetrahedron Equibiaxial tension 
MAT 77O 8 

terms 
13 1 0.89115 20 

Hexahedron Planar tension MAT 181 1 0.625 0.81389 20 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

10 1 0.7742 23 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

13 1 0.7742 23 

Tetrahedron Equibiaxial tension MAT 181 4 2 0.964 26 

Hexahedron Planar tension 
MAT 77O 8 

terms 

3 0.625 0.82117 27 

Tetrahedron Simple tension MAT 181 4 1 0.95019 30 

Tetrahedron Simple tension MAT 181 16 2.5 0.98041 32 

Hexahedron Planar tension 
MAT 77O 8 

terms 

1 0.3125 0.91437 40 

Hexahedron Planar tension 
MAT 77O 6 

terms 

2 0.625 0.80546 40 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

2 0.5 0.80546 40 

Hexahedron Equibiaxial tension MAT 181 2 1 0.91616 43 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

10 0.625 0.51901 43 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

13 0.625 0.51901 43 

Hexahedron Equibiaxial tension 
MAT 77O 8 

terms 
1 0.5 0.85569 46 

Tetrahedron Simple tension MAT 181 10 1 0.97893 48 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

16 1.25 0.94784 50 

Hexahedron Planar tension 
MAT 77O 6 

terms 

1 0.3125 0.80106 50 

Hexahedron Simple tension MAT 181 3 1 0.92681 51 

Tetrahedron Equibiaxial tension MAT 181 16 2 0.40952 52 

Tetrahedron Simple tension MAT 181 13 1 0.97665 54 

Tetrahedron Equibiaxial tension MAT 181 10 1 0.951 60 

Tetrahedron Equibiaxial tension MAT 181 13 1 0.93734 60 



231 
 

Hexahedron Equibiaxial tension 
MAT 77O 8 

terms 
3 1 0.85467 62 

Hexahedron Simple tension MAT 181 2 1 0.97986 68 

Hexahedron Simple tension 
MAT 77O 8 

terms 

3 1 0.88978 72 

Hexahedron Equibiaxial tension MAT 181 3 1 0.91222 80 

Hexahedron Planar tension MAT 181 3 1.25 0.10673 86 

Tetrahedron Simple tension 
MAT 77O 8 

terms 

16 1 0.90365 89 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

4 1 0.77165 110 

Hexahedron Equibiaxial tension MAT 181 1 0.5 0.9256 120 

Hexahedron Planar tension 
MAT 77O 6 

terms 

3 0.625 0.65614 130 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

3 0.5 0.65614 130 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

13 0.625 0.85893 150 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

10 0.625 0.001 150 

Tetrahedron Equibiaxial tension 
MAT 77O 8 

terms 
16 1 0.59326 185 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

10 0.625 0.89565 195 

Tetrahedron Planar tension 
MAT 77O 8 

terms 

13 0.3125 0.89565 195 

Hexahedron Planar tension 
MAT 77O 6 

terms 

2 1.25 0.82534 210 

Hexahedron Planar tension MAT 181 2 0.625 0.81518 214 

Tetrahedron Equibiaxial tension 
MAT 77O 8 

terms 
10 0.5 0.86354 240 

Tetrahedron Equibiaxial tension 
MAT 77O 8 

terms 
13 0.5 0.86354 240 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

10 0.3125 0.75453 240 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

13 0.3125 0.75453 240 

Hexahedron Planar tension 
MAT 77O 8 

terms 

41 0.3125 0.91288 300 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

10 0.5 0.7637 300 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

13 0.5 0.7637 300 

Tetrahedron Simple tension MAT 181 16 1 0.95305 301 
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Tetrahedron Simple tension 
MAT 77O 6 

terms 

16 1 0.90383 330 

Hexahedron Planar tension MAT 181 3 0.625 0.43938 337 

Tetrahedron Equibiaxial tension MAT 181 4 1 0.86856 372 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

13 0.3125 0.78443 440 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

10 0.3125 0.18182 440 

Hexahedron Planar tension MAT 181 1 0.3125 0.80375 480 

Hexahedron Equibiaxial tension 
MAT 77O 8 

terms 
3 0.5 0.85815 675 

Tetrahedron Equibiaxial tension MAT 181 10 0.5 0.94681 690 

Tetrahedron Equibiaxial tension MAT 181 13 0.5 0.924 690 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

4 0.5 0.75998 690 

Hexahedron Equibiaxial tension MAT 181 2 0.5 0.92599 720 

Hexahedron Planar tension 
MAT 77O 8 

terms 

3 0.3125 0.90409 960 

Hexahedron Planar tension 
MAT 77O 6 

terms 

3 0.3125 0.76392 1680 

Hexahedron Equibiaxial tension MAT 181 3 0.5 0.92555 1800 

Hexahedron Planar tension MAT 181 2 0.3125 0.79853 2400 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

4 0.3125 0.41877 3600 

Hexahedron Planar tension MAT 181 3 0.3125 0.71481 7200 

Tetrahedron Equibiaxial tension MAT 181 16 1 0.4926 7200 

Tetrahedron Simple tension 
MAT 77O 6 

terms 

4 1 0 - 

Hexahedron Simple tension 
MAT 77O 6 

terms 

2 2.5 0 - 

Hexahedron Simple tension 
MAT 77O 6 

terms 

3 2.5 0 - 

Hexahedron Simple tension 
MAT 77O 6 

terms 

2 1 0 - 

Hexahedron Simple tension 
MAT 77O 6 

terms 

3 1 0 - 

Tetrahedron Simple tension 
MAT 77O 6 

terms 

4 2.5 0 - 

Hexahedron Planar tension 
MAT 77O 6 

terms 

3 2.5 0 - 

Hexahedron Planar tension 
MAT 77O 6 

terms 

3 1.25 0 - 



233 
 

Hexahedron Planar tension 
MAT 77O 6 

terms 

2 0.3125 0 - 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

4 2.5 0 - 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

4 1.25 0 - 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

4 0.625 0 - 

Tetrahedron Planar tension 
MAT 77O 6 

terms 

4 0.3125 0 - 

Tetrahedron Equibiaxial tension MAT 181 4 0.5 0 - 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

3 2 0 - 

Hexahedron Equibiaxial tension 
MAT 77O 6 

terms 

3 1 0 - 

Tetrahedron Equibiaxial tension 
MAT 77O 6 

terms 

4 2 0 - 
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