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Abstract 

Micromechanical modeling of flow curves of DP500 and DP600 steels in uniaxial tension 

was carried out using the representative volume element (RVE) method. Digimat and 

ABAQUS software were coupled and used to provide the required RVE model 

parameters and to perform simulations. Modeling results were validated using the 

experimental flow curves of the steels.  It was found that the flow curve of DP500 steel 

was accurately predicted from the onset of plastic deformation up to the onset of 

necking. In case of DP600 steel, the numerical flow curve accurately predicted the 

experimental flow curve of steel after 0.07 strain up to necking strain. The RVE size of 

12.7x12.7x12.7 µm and 7.9x7.9x7.9 µm containing 26 martensite islands were found as 

the optimum RVE sizes for DP500 and DP600 steel, respectively. A mesh of C3D4 

elements having a size of 0.050 µm was found to be the optimum element type and 

mesh size. 
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1 

1 Introduction 

1.1 Motivations for Dual Phase Steels 

Most of the current passenger vehicles operate on fossil fuels which tend to create 

economic and ecological challenges. One way to decrease fuel consumption is to reduce 

vehicle weight and this can be done by using stronger and thinner sheets in the vehicle 

body so as not to compromise passenger safety. Reducing the thickness of body parts and 

simultaneously preserving occupant safety requires a grade of sheet metal with an 

excellent combination of strength and formability such as dual phase steels.  

As is shown in Figure  1-1, dual phase steels cover wide ranges of elongation and strength 

which means that there are grades of dual phase steels with varying combinations of 

strength and formability which can be used for different automotive body. The 

designation of dual phase steels includes a prefix DP as an abbreviation for dual phase and 

a number which represents the ultimate tensile strength of the steel. For instance, DP600 

steel is a type of dual phase steel with an ultimate tensile strength that is at least 600 

MPa. DP500, DP600, DP780 and DP980 are the more common industrial grades of dual 

phase steels. 

With their superior and wide range of combination of strength and ductility, dual phase 

steels have gradually increased in market share. For instance, as is shown in Figure  1-2, 

According to World Auto Steel’s Future Steel Vehicle (FSV) program, more than 30% of the 

future electric and hybrid vehicle bodies is expected to be made from three grades of dual 

phase steel.   

In addition to a superior combination of strength and ductility, dual phase steels have 

attracted attention in the sheet metal forming industry due to their specific characteristics 

such as continuous yielding, low yield to tensile strength ratio, high initial work hardening 

rate and remarkably high uniform tensile elongation. 
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Figure  1-1 Total elongation of different steels as a function of (a) yield strength and (b) 

ultimate tensile strength. HSS: high strength steel; AHSS: advanced high strength steel; IF: 

interstitial free; BH: bake hardened; HSLA: high strength low alloy; TRIP: transformation-induced 

plasticity; DP: dual phase; MS: martensitic steel. [1] 

 

 

Figure  1-2 Application of different types of steel in the 2015-2020 electric and hybrid vehicles 

as indicated in the World Auto Steel’s Future Steel Vehicle (FSV) program [2] 
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1.2 Micromechanical Modeling of Flow Behaviour 

Microstructural parameters have a significant influence on the flow behaviour of 

materials; however, microstructural features are not considered in phenomenological 

finite element (FE) modeling of materials. To investigate the influence of microstructural 

features on flow behaviour, microstructure-based finite element models are developed. 

These models are known as micromechanical models. 

In all mechanical modeling, elastic and plastic parameters such as Young’s modulus, 

Poisson’s ratio, yield stress, hardening modulus and hardening exponent are considered. 

In micromechanical models, chemical composition and volume fraction of phases, grain 

size and dislocation-based parameters are also taken into account. Hence, 

micromechanical models are able to predict the effects of solid solution hardening, grain 

size refinement and dislocations on the strength and ductility of sheet metal.  

As it is shown in Figure ‎1-3, depending on the goal, modeling can be carried out at 

different scales. Micromechanical modeling of the flow curve can be carried both at a 

micro and macro-scale. It means that in micromechanical modeling, there is a bridge to 

relate the micro and macro scale flow behaviour of material. The micromechanical 

modeling technique that is used in this research is based on the representative volume 

element (RVE) method which is described in Section ‎2.4. 

 
Figure  1-3 Different scales of characterization and modeling of materials [3] 
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1.3 Objective of the Research 

The objective of this research is to predict the flow behaviour of DP500 and DP600 dual 

phase steels using a micromechanical model. The representative volume element (RVE) 

method was used for micromechanical modeling. Microstructural materials parameters 

such as chemical composition, volume fraction and morphology of phases as well as 

effects of modeling parameters including RVE and mesh size and element type have been 

investigated in this research. 

1.4 Structure of the Dissertation 

A brief description of the contents of each chapter is presented in the following: 

Chapter 2 presents a literature review on the processing, strengthening mechanisms and 

flow behaviour of dual phase steels. Also, fundamentals of micromechanical modeling 

using the RVE method and the key points of micromechanical modeling of dual phase 

steels are described in this chapter. Finally, there is a brief review of the Digimat software 

which was used for micromechanical modeling. 

Chapter 3 describes characterization of as-received DP500 and DP600 steel sheets 

including quantitative metallography, chemical analysis, flow behaviour and analysis of 

voids in the microstructure of deformed specimens. 

Chapter 4 exhibits the general procedure that was used in this thesis for micromechanical 

modeling of dual phase steels using the RVE method. 

Chapter 5 includes the results of this research and discusses the merits of this work. The 

numerical flow curves that were obtained for DP500 and DP600 steels are compared with 

the corresponding experimental flow curves. Also, influences of the RVE size and mesh 

size on the numerical results are discussed in this chapter. 

Chapter 6 presents the conclusions and recommendations for future work. 
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2 Literature Survey 

2.1 Introduction to Dual Phase Steels 

Dual phase steels were introduced in the 1960s [4] and started to be used in the 

manufacturing industry in the 1970s. Their greater combination of strength and ductility 

compared to conventional steels encouraged the industries to support research on 

processing and microstructure-properties relationship of dual phase steels. The 

microstructure of dual phase steels consists of ferrite as the soft matrix and martensite as 

the hard phase, and small amounts of bainite may also be present. Ferrite and martensite 

are responsible for plastic deformation and strengthening of dual phase steels, 

respectively.  

Commercial dual phase steels are produced by an intercritical annealing heat treatment in 

the (α + ϒ) region of the iron-cementite phase diagram followed by rapid quenching to 

room temperature. Quenching must be sufficiently fast to avoid the diffusion and 

formation of other structures such as pearlite and bainite. However, in bainite-assisted 

dual phase steel, the steel is quenched to a certain temperature, an isothermal heat 

treatment is carried out to form bainite and a second rapid quench cools the steel to room 

temperature. The martensite volume fraction varies in different grades of dual phase 

steel. For instance, as it is shown in Figure  2-1, the martensite fraction in a typical DP500 

and DP780 steel is approximately 10 vol% and 20 vol%, respectively; however, in a DP980 

steel, the volume fraction of martensite is more than 30 vol% in order to provide sufficient 

strength to the steel. The martensite content in dual phase steels determines the 

intercritical annealing temperature. According to the lever rule, greater amounts of 

austenite are formed at higher intercritical annealing temperatures which transforms to 

martensite by rapid quenching.   
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Figure  2-1 Microstructure of (a) DP500, (b) DP780 and (c) DP980 steels including ferrite grains 

(dark matrix) and martensite (bright phase) [5]. 

 

During processing of dual phase steels, different alloying elements are used in solid 

solution to increase the strength and hardness of the steel. Silicon, manganese, 

chromium, and molybdenum are the typical alloying elements in dual phase steels. Silicon 

affects the chemical composition of austenite by accelerating the migration of carbon 

atoms from the ferrite to the austenite during intercritical annealing [6]. Manganese is 

used to enhance hardenability of dual phase steels [7]. Chromium and molybdenum 

reduce the critical cooling rate of austenite for martensitic transformation  [8,9]. Other 

elements such as vanadium and titanium may be added to form carbide and nitride 

precipitates that can increase the strength of the steel by precipitation hardening [10]. 

These precipitates limit the movement of the ferrite-austenite interface during quenching 

and enhance the martensite formation [11].  

2.2 Strengthening Mechanisms in Dual Phase Steels 

The microstructure of commercial dual phase steels includes ferrite and martensite. 

Depending on the heat treatment cycle, it may also include same bainite. The influence of 

strengthening mechanisms in ferrite, martensite and bainite on the flow stress of dual 

phase steels is discussed in the following. 
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2.2.1  Ferrite 

Ferrite is the interstitial solid solution of carbon in body centered cubic (BCC) iron. It is the 

predominant phase in most low carbon steels including high strength low alloy steels 

(HSLA) and dual phase steels (DP). The ferrite grain size has a significant influence on the 

yield strength of dual phase steels. The influence of grain size on yield strength is 

described by the Hall-Petch relationship which was successively developed by Hall [12] 

and then Petch [13]:  

2
1

y0y dk+σ=σ  ‎2-1 

where d is the grain diameter, σy is the yield stress, σ0 is the friction stress opposing the 

movement of dislocations in the grains and ky is a constant. The mean ferrite grain size in 

advanced dual phase steels is reduced to less than 10 µm which remarkably enhances the 

flow stress. 

Solid solution hardening is another strengthening mechanism that enhances the flow 

stress of ferrite. In dual phase steels, manganese is the dominant alloying element which 

has a notable influence on strengthening of the steel. Solid solution strengthening 

depends on the solute concentration as follows [14]: 

n
SSS kc=σ  ‎2-2 

where c is the solute concentration, k is a constant, and 0.5<n<0.67. 

2.2.2 Martensite 

During processing of dual phase steels, the steel is quenched from the intercritical 

annealing temperature to room temperature. During this heat treatment, the intercritical 

austenite transforms to martensite by a diffusionless phase transformation. The 

mechanical strength of martensite primarily depends on its carbon content [14][15]. The 

dependence of martensite hardness on the carbon content of the steel is shown in 

Figure ‎2-2. Also, Figure ‎2-3 presents the yield strength of martensite as a function of 

martensite carbon content. Similar to ferrite, solid solution hardening is a strengthening 

mechanism in martensite [14].  
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Figure ‎2-2 Hardness of martensitic steel as a function of carbon content [16] 

 

 

Figure ‎2-3 Dependence of martensite yield strength on martensite carbon content [17]  

 

The mechanical properties of dual phase steels significantly depend on the volume 

fraction [18–22] and morphology [20–22] of martensite. The combination of strength and 
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ductility of dual phase steels improves with a finer dispersion of martensite islands rather 

than a coarse, banded or laminated martensite in the microstructure [20,23]. 

Martensite strength has a crucial role in the strengthening of dual phase steels. Since the 

martensite phase is a hard phase, the external loads are transferred to the martensite 

from the soft ferrite matrix. Hence, by increasing the volume fraction of martensite the 

yield and ultimate tensile strengths of dual phase steel increase [24]; however, it was 

reported that 55 vol% of martensite resulted in the greatest strength but beyond that a 

strength reduction was observed [20]. This behaviour is explained by the decreasing 

carbon content of martensite when its volume fraction increases which leads to softening 

of the martensite. Dependency of martensite strength on the martensite carbon content 

was described by square-root [25] and cube-root [26] equations; however,  it has also 

been simply described by a linear equation by several authors [17,21,27]. In dual phase 

steels with a high-carbon martensite phase, under external loading, the martensite 

remains elastic and only the ferrite phase deforms plastically; therefore, the steel 

deformation is more comparable to that of alloys that are hardened with ultra-high 

strength particles [17].  

2.2.3 Bainite 

As it is shown in Figure ‎2-4, bainite forms by decomposition of austenite at a temperature 

above the martensite start temperature (Ms) and below the pearlite formation 

temperature. As it is presented in Figure ‎2-5, bainite is a combination of plate-shaped 

ferrite and carbides. Bainite is presented in two forms: lower-bainite and upper-bainite. 

Lower-bainite forms at temperatures closer to the Ms while upper-bainite forms at higher 

temperatures. The difference between upper and lower bainite occurs due to the 

dependence of the diffusion rate of carbon on the temperature at which bainite is 

forming. At higher temperatures, carbon diffuses faster from the newly formed ferrite to 

the residual austenite between the ferritic plates and forms large carbides.  At low 

temperatures, diffusion of carbon is slower; hence, carbides precipitate inside the ferrite 

grains before they can leave the ferrite. Bainite with a fine non-lamellar structure usually 
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consists of cementite and dislocation-rich ferrite. The strength of this ferrite with high 

concentration of dislocations is greater than that of ordinary ferrite. The hardness of 

bainite is between that of pearlite and martensite [28].   

 
Figure ‎2-4 Schematic temperature-time-transformation (TTT) diagram showing the different 

domains of transformations in steel [29] 

 

 
Figure ‎2-5 Schematic diagram of the formation of upper and lower bainite [30] 
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2.3 Yielding and Work Hardening Behaviour of Dual Phase Steels 

The yield point is the stress at which a material begins to deform plastically. As is shown in 

Figure  2-6, low carbon steels generally exhibit yield point elongation. The yield point 

phenomenon includes upper and lower yield points in the tensile stress-strain curve 

followed with oscillations of the flow stress. In low carbon steels, dislocations are locked 

by the interstitial carbon atoms. The shear stress required to cause dislocation movement 

inside the grain is less than the shear stress necessary to unlock them, and this causes a 

sharp drop in stress at the yield point.  The following oscillations, known as Lüders bands, 

continue until there are sufficient mobile dislocations to start continuous work hardening. 

 

 

Figure ‎2-6 Schematic presentation of yield point phenomenon in low carbon steels 

 

As it is shown in Figure  2-7(a), the yield point phenomenon is not usually observed in dual 

phase steels and the flow curves of dual phase steels exhibit continuous yielding due to 

the processing of dual phase steels. Austenite and martensite have face centered cubic 

(FCC) and body centered tetragonal (BCT) crystal structures, respectively. Hence, a volume 

expansion occurs during the austenite to martensite phase transformation [31]. This 

volume expansion introduces plastic deformation and therefore, as it is shown in 

Figure  2-7(b), new dislocations are generated at the ferrite/martensite interface. By 
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increasing the volume fraction of martensite the number of the newly generated 

dislocations increases. These dislocations are not locked by the interstitial carbon atoms. 

Hence, at the yield point, they can move immediately thus producing to make a smooth 

flow curve. 

 

Figure ‎2-7 (a) Continuous yield behaviour in dual phase steels and (b) mobile dislocations at the 

ferrite/martensite interface in dual phase steels [32] 

 

Work hardening, also known as strain hardening, is the strengthening of metals by plastic 

deformation.  This strengthening occurs due to the movement and generation of 

dislocations within the crystal structure. Work hardening starts in materials after yielding 

occurs. Figure  2-8 shows that work hardening in dual phase steels significantly depends on 

the volume fraction of martensite. The work hardening rate is reported to be greater in 

dual phase steels with finer martensite islands [33].  
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Figure  2-8 True stress-strain curve of a ferrite-martensite steel with 1.5 wt% Mn and different 

carbon contents annealed at 760 °C [34] 

2.4 Micromechanical Modeling Using the Representative Volume Element 

Method  

In the micromechanical modeling, the microstructural features of a material are 

presented in a finite element (FE) model through a representative volume element (RVE). 

An RVE is a small volume of microstructure that has the general characteristics of the 

whole microstructure and over which modeling of specific characteristics is carried out. 

The results of the RVE modeling investigations should properly describe the 

characteristics of the whole microstructure. As presented in Figure ‎2-9, micromechanical 

modeling of flow behaviour of a material using the RVE method consists of four steps. 

These steps are described in Sections ‎2.4.1 to ‎2.4.4.  

 

 

Figure  2-9 Four steps of micromechanical modeling of flow behaviour using the RVE method 

 Definition of 
the RVE 

 Definition of 
flow behaviour 
of each phase 

Application of 
boundary 

conditions and 
simulation of 
deformation 

Homogenization 
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2.4.1 Definition of the RVE 

The RVE-based micromechanical modeling technique is an approach to predict the 

mechanical behaviour of materials using their microstructural features. An RVE is a small 

volume of microstructure which is able to adequately represent the essential features of 

the whole microstructure. It is expected that the RVE modeling method is able to 

represent the overall macroscopic behaviour of the material which means that the RVE 

acts as a bridge between the micro-scale and macro-scale properties of material.  

A suitable RVE will have an average the same microstructural parameters as the overall 

microstructure, such as volume fraction, morphology and randomness of the phases. 

Hence, an RVE should be sufficiently large to include the essential microstructural 

characteristics. On the other hand, the RVE size should be as small as possible so that the 

states of stress and strain can be approximately considered as homogeneous in the whole 

RVE. Also, a smaller RVE requires less computational resources such as computer memory 

and calculation time to simulate the deformation. An advantage of micromechanical 

modeling using the RVE method is that the RVE provides a detailed description of the 

stress and strain distributions and their evolution in the microstructure during a metal 

forming process [35–37].  

A basic RVE can be defined using a simple cell model or it can be more complicated by 

using a real microstructure. The RVE can also be defined in two dimensions (2D) or three 

dimensions (3D). Al-Abbasi carried out micromechanical modeling of dual phase steels 

using 2D and 3D cell models as the RVEs [38]. Figure ‎2-10 shows three cell models that 

were used by Al-Abbasi. He considered the martensite phase as circles and spheres in the 

2D and 3D RVEs, respectively. The size of the circles and spheres in each cell was 

determined according to the martensite volume fraction in the dual phase steel.  
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Figure  2-10 Two-dimensional cell models: (a) square array, (b) stacked hexagonal array and 

(c) three-dimensional array of stacked hexagonal cylinders [38]. 

 

2D and 3D RVEs can also be generated based on real microstructures. In the case of dual 

phase steels, martensite and ferrite can be clearly distinguished due to the color contrast 

between ferrite grains and martensite islands in a micrograph. The images from the actual 

microstructure, with two different colors for ferrite and martensite, can be converted to a 

2D RVE model using different digitizing techniques. The digitized image is then discretized 

in preparation for the FE simulation of the deformation process. Some examples of 2D 

RVEs based on real microstructures that were generated by Uthaisangsuk et al [35], Paul 

[39] and Ramazani et al [40] are presented in Figure ‎2-11. 

The simplest assumption for generating a 3D RVE of a two phase material is based on 

Mori–Tanaka’s approach [41]. In this approach, the second phase particles are considered 

as inclusions that are distributed in a matrix representing the first phase. As can be seen in 

Figure ‎2-12, Uthaisangsuk et al [35], Paul [39] and Ramazani et al [40] generated cubic 

RVEs of dual phase steels. They considered ferrite as the matrix and martensite as 

inclusions. The numbers of ferrite and martensite cubes were determined according to 

their volume fraction in the dual phase steels. 
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Figure  2-11 2D RVEs based on real microstructures generated by (a) Uthaisangsuk et al [35], 

(b) Paul [39] and (c) Ramazani et al [40].  
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Figure  2-12 3D RVEs based on real microstructures generated by (a) Uthaisangsuk et al [35], 

(b) Paul [39] and (c) Ramazani et al [40] 

 

The 3D RVEs that were just mentioned were generated by different researchers based on 

simplified microstructural features; however, Lewis et al [42] and Brands et al [43] produced 

3D RVEs using the real microstructures as shown in Figure ‎2-13. For this purpose the 3D 

image of the actual microstructure was obtained by assembling multiple 2D images of the 

microstructure taken at different depths. This can be done by grinding and polishing the 

sample over and over and taking an image at each step or by doing a 3D reconstruction of 

microstructure using 3D electron backscatter diffraction (EBSD). Brands et al [43] used the 

3D EBSD technique to produce a 3D RVE of a dual phase steel. They put the sample on a 

tiltable holder inside of a field emission scanning electron microscope (FESEM) equipped 

with a focused ion beam (FIB) cutting system.  During the investigation the sample was 

tilted between two positions: FIB-cutting and the EBSD positions. After taking the EBSD 

image, the FIB system milled thin layers (10 nm - 1µm) from the investigated surface of 

the sample. The 3D RVE of the dual phase steel was generated by assembling the EBSD 

images. 
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Figure  2-13 3D reconstruction of (a) austenite phase in AL-6XN microstructure [42] and (b) 

dual phase steel [43] using EBSD. 

 

There are some advantages and disadvantages for both 2D and 3D RVEs: 

 It is much easier to generate 2D RVEs from real microstructure than to produce 3D 

RVEs, and they are able to take into account the microstructural morphology.  

 Calculation time for 2D RVEs is less than for 3D RVEs. Ramazani et al reported that 

the calculation time for a 2D RVE based on a real microstructure took 30 min 

whereas it took 240 min for a simple cubic 3D RVE [40]. 

 2D modeling has less complexity and lower computational cost compared to 3D 

modeling; however, comparing the experimental and predicted results has shown 

that 2D modeling underestimates the flow behaviour of dual phase steels but 3D 

modeling results correlated very well with experimental results [39][40]. 

2.4.2 Definition of Flow Behaviour of Each Phase 

To determine the flow behaviour of ferrite, martensite and bainite in dual phase steels, a 

dislocation based model was developed by Rodrigues and Gutierrez [44] which has been 

used by many researchers [35–37,39,40,45–49]. The development of this model is 

explained in the following.  

As illustrated by Gil-Sevillano [50], the orientation factor, M, relates the macroscopic flow 

stress, σ, and the critical resolved shear stress, τ, and the plastic strain, ε, to the amount of 

crystallographic slip, ϒ, as shown below:  
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dγdεM

Mτσ




 ‎2-3 

 

From Equation ‎2-3, the macroscopic work hardening rate relates to the microscopic 

material parameters by: 

dε

dM
τ

dγ

dτ
M

dε

dσ 2   
‎2-4 

 

where dγ
dτ  represents the microscopic hardening rate of the crystalline element. The 

effect of strain on orientation variation is presented by the second term in Equation ‎2-4.  

The classic relationship between the flow stress and dislocation density is:  

pαMμbσΔσσσ 00f   ‎2-5 

where α is a constant, M is the Taylor factor, µ [MPa] is the shear modulus, b [m] is the 

Burger’s vector, and p is the dislocation density.  

The first term in Equation ‎2-5 takes into account the contribution of the lattice friction and 

the elements in solid solution. For a series of different steels with microstructures 

containing ferrite, pearlite, bainite and martensite with different levels of carbon content, 

the following expression for σ0 was suggested by Buessler [51]: 

ss0 5000N+11%Mo+60%Cr+45%Ni+80%Cu+60%Si+750%P+80%Mn+77=σ  ‎2-6 
 

All the elements are assumed to be homogeneously distributed in each phase. 

The second term in Equation ‎2-5 is expanded based on dislocation density. Evolution of 

the dislocation density with strain during the deformation can be expressed as [52]: 

pk
bL

1

dγ

dp

dγ

dp

dγ

dp
rrecoverystored 

 

‎2-7 
 

where kr is a constant and L is the dislocation mean free path. From Equation ‎2-7 and 

considering p0 as the initial dislocation density and assuming that L is constant, the 

equation for Δσ will be:  
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‎2-8 
 

So the equation for Δσ can be written as: 

Lk

ε)Mkexp(
bαMμΔσ

r

r--1
  

‎2-9 
 

Since the two terms in the Equation ‎2-5 are defined, the total approach for determination 

of the flow curve of each phase is [44]: 

L×k

ε)Mkexp(1
×b×μ×M×α+Δσ+σ=σ

r

r
c0

--
 

‎2-10 
 

where σ is the true flow stress for a true strain of ε.  

The first term σ0 takes care of the effects of substitutional alloying elements as presented 

in Equation ‎2-6. The second term, Δσc, describes the strengthening due to interstitial 

carbon; however the strengthening effect of carbon in ferrite is not the same as in 

martensite. Therefore Δσc is calculated differently for ferrite and martensite [44]:  

)(%C×5000=Δσ f
SS

f
c

 ‎2-11 

161)(%C×3065=Δσ m
SS

m
c -  ‎2-12 

 
where f

SS%C and m
SS%C  are the carbon wt% in ferrite and martensite, respectively. 

The values of the parameters in the third term of Equation ‎2-10 are presented in 

Table ‎2-1. 
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Table  2-1 The values of the parameters in the third term of Equation ‎2-10 

M: Taylor Factor M=3  

µ: Shear Modulus  µ= 80000 MPa 

b: Burger’s vector  b=2.5×10-10m 

α: constant  α=0.33 

Kr: Recovery Rate For ferrite (
dα

10k
5

r



 ), where dα is the 

ferrite grain size [53]  

For martensite (kr=41) [53] 

For bainite, ( dγ
10k

5

r



 ), where dϒ is the prior 

austenite grain size [46] 

L: dislocation 

mean free path 

For ferrite (L= dα ) [53] 

For martensite (L= 3.8×10-8 m) [53] 

For bainite (L= 2 × 10-7) [46] 

 

For bainite the factor L is assumed to be the average distance between low angle grain 

boundaries measured in random directions. Bainite laths are generally 0.2 µm wide and 

therefore L is considered as the value presented in Table ‎2-1. Kr for bainite is considered to 

relate to the prior austenite grain size as shown in Table ‎2-1. Using the prior austenite 

grain size seems to give a better estimation since using the bainitic ferrite lath width in the 

Hall-Petch equation results in an excessively high strength contribution [46]. Hence, the 

prior austenite grain size needs to be identified to determine the flow behaviour of 

bainite.  

For bainite, the effect of dislocation strengthening is more significant than the 

strengthening effect by carbon solid solution [29]. Δσc for bainite is considered to be a 

function of the prior austenite grain size and transformation temperature. The 

transformation temperature dependency comes from the fact that Δσc depends on 

transformation dislocations. By decreasing the bainite transformation temperature, the 
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amount of dislocation increases. Prior austenite grain size also affects the Δσc of bainite as 

it can affect the bainitic transformation temperature and kinetics [29][46].  

The hardness of bainite grains was reported to be equal to the hardness of ferrite and 

martensite according to the mixture rule [37]: 

m
m
cf

f
c

b
c VΔσ+VΔσ=Δσ  ‎2-13 

 
where V is the volume fraction of phases in the dual phase steel microstructure.  

2.4.3 Application of Boundary Conditions and Solving the Problem 

Kouznetsova [54] described the theory of boundary conditions for micromechanical 

modeling of multi-phase materials in her PhD thesis. A summary of this theory is 

presented in the following. 

Appropriate boundary conditions such as loading and constraints should be applied to an 

RVE to investigate the flow behaviour of RVE in a specific condition. This will define a 

problem in continuum solid mechanics which will be solved by the finite element method.  

The RVE deformation field in a point with initial position vector X


 (in the reference 

domain of V0) and the actual position vector x


 (in the current domain V) is described by 

the deformation gradient tensor:  

c
0mm )x(F


  ‎2-14 

where the gradient operator ∇0m is taken with respect to the reference microstructural 

configuration. Also the RVE is in a state of equilibrium, which mathematically is reflected 

by an equilibrium equation in terms of the Cauchy stress tensor σm. It can be described in 

terms of the first Piola-Kirchhoff stress tensor of Pm which is presented below:  

0σmm


  in V,    or   

0Pc
m0m


  in V0 

‎2-15 

1c
mmmm )(F)σdet(FP   ‎2-16 
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where m is the gradient operator with respect to the current deformation of the 

microstructure. By imposing the macroscopic deformation gradient tensor FM on the 

microstructural RVE through a specific approach, the actual macro-to-micro transition is 

possible. The simplest is to use the Taylor (or Voigt) assumption which assumes that all of 

the microstructure constituents are subject to a constant deformation which is the same 

as the macroscopic deformation. Another assumption is that of Sachs (or Russ) which 

assumed that an identical constant stress is applied to all the components. These 

simplified assumptions do not really reflect the actual deformation of the microstructure. 

Many of the accurate averaging strategies require the solution of the detailed 

microstructural boundary value problem to transfer the given macroscopic variables to 

the microstructural RVE via the boundary conditions. Classically, three types of RVE 

boundary conditions are used, i.e. prescribed displacements, prescribed forces and 

prescribed periodicity.  

In prescribing displacement boundary conditions, the position vector of a point on the RVE 

boundary in the deformed state is defined as:  

XFx M


     with X


 on 0Γ  ‎2-17 

where 0Γ  denotes the undeformed boundary of the RVE and FM the macroscopic 

deformation gradient tensor on the microstructural RVE. This kind of condition prescribes 

a linear mapping of the RVE boundary.  

The traction boundary conditions, are described as: 

0
c

M

m

Γon.PN=p

orΓ,on.σn=t




  
‎2-18 

 

where n


 and N


 are the normal to the current (Γ ) and initial ( 0Γ ) RVE boundaries, 

respectively. 
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Periodic boundary conditions were introduced based on the assumption of 

microstructural periodicity [54]. The periodicity conditions of the RVE are presented in a 

general form in Equation ‎2-19 which represents a periodic deformation:  

)(   XXFxx M


 ‎2-19 

From Equation ‎2-19 and Figure ‎2-14, the parts of RVE boundary 


0Γ and 


0Γ are defined in 

such a way that   NN


 at corresponding points on 


0Γ and 


0Γ .  

The periodic boundary condition can be expressed as:  

14 xxxx BT


  

12 xxxx LR


  

1423 xxxx


  

‎2-20 
 

 

Where Tx


, Bx


, Lx


, and Rx


, are the position vector at the top, bottom, left, and right, 

boundary of the RVE, respectively. ix


 (i= 1, 2, 3, 4) are position vectors of the corner 

points 1, 2, 3, and 4, in the deformed state, respectively. These position vectors are 

described according to: 

iMi XFx

   and i=1,2,3,4 ‎2-21 

 

 

Figure ‎2-14 Schematic of a typical 2D RVE. 
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It has been reported [55][56] that the periodic boundary condition provides a better 

estimation of the overall properties of the microstructure compared to the prescribed 

displacement and prescribed traction boundary conditions.  

2.4.4 Homogenization  

Kouznetsova [54] also described the theory of homogenization  for micromechanical 

modeling of multi-phase materials. A summary of this theory is provided in the following. 

Homogenization is a technique that relates the micro-scale behaviour of a material to its 

macroscopic behaviour. Computational homogenization technique has proven to be a 

valuable tool to establish non-linear micro-macro structure-property relations. In 

homogenization, the material is assumed to be sufficiently homogeneous at the macro-

scale, but heterogeneous at the micro-scale due to the existence of inclusions, grains, 

interfaces, cavities, etc.  

Two approaches are proposed to describe the periodicity of the inhomogeneity in the 

microstructure: global periodicity and local periodicity which are schematically shown in 

Figure ‎2-15. In the global periodicity approach, the same inhomogeneity is assumed to 

repeat itself throughout the whole microstructure. The local periodicity approach is 

preferred since it allows a microstructure to include a variety of inhomogeneities with 

different morphologies that are repeated at individual macroscopic points. Hence, it 

allows the modeling of the effects of a non-uniform distribution of the microstructure on 

the macroscopic response which is more realistic [54].  
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Figure ‎2-15 Schematic representation of a macrostructure with (a) a locally and (b) a globally 

periodic microstructure [54]. 

 

It has been reported that a first order computational homogenization  technique can be 

used for RVE problems [40][54][57]. In a homogenization procedure macroscopic and 

microscopic quantities are shown by “M” and “m”, respectively. As it is designated in 

Figure ‎2-16, the first-order homogenization is carried out in three steps: 

 The deformation tensor, FM, is calculated for every material point, i.e. the 

integration points of the macroscopic mesh in a FE model. 

 FM of a macroscopic point is used to formulate the boundary conditions which are 

imposed on the RVE located on that point which results in the deformation of the 

RVE. 

 The stress tensor, PM, of the initial macroscopic point is obtained by averaging the 

resulting RVE stress field over the volume of the RVE. 

The numerical stress-deformation relationship at the macroscopic point is the result of 

this procedure. Furthermore, the local macroscopic consistent tangent is obtained based 

on the microstructural stiffness and response.  
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Figure ‎2-16 Schematic representation of first-order homogenization  [54] 

 

In first order homogenization, coupling of the macroscopic and microscopic deformation 

and stress is carried out by application of integral averaging theorems. The integral 

averaging expressions were first proposed by Hill (1963) [58] for small deformations and 

developed for large deformation by Hill (1984) [59] and Nemat-Nasser (1999) [60] as 

follows: 

Deformation It is assumed that the macroscopic deformation gradient tensor FM is the 

volume average of the microstructural deformation gradient tensor Fm: 





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‎2-22 
 

where V0 is the undeformed volume of the RVE. The divergence theorem is used to 

transform the volume integral over V0 of the RVE to a surface integral. The validation of 

Equation ‎2-22 for the periodic boundary condition (Equation ‎2-20) is:   
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where x  is position vector of nodes in deformed state and X  is position vector of nodes 

in undeformed state. n


 and N


 are the normal to the current (Γ ) and initial ( 0Γ ) RVE 

boundaries, respectively. 

Stress The averaging relation for the first Piola-Kirchhoff stress tensor is: 

0

0 0

1
dVP

V
P

V

mM   
‎2-24 

 

The macroscopic Piola-Kirchhoff stress tensor PM in the microstructural quantities defined 

on RVE surface is:   

00


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mm P  for microscopic equilibrium 
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)()()( 000 XPXPXPP c
mmmm

c
mmm


  

‎2-25 
 

By substitution of Equation ‎2-25 into Equation ‎2-24 and applying the divergence theorem 

and definition of the first Piola-Kirchhoff stress vector according to Equation 2.14, PM of 

RVE is obtained over the surface: 

c
mPNp 


 ‎2-26 
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By considering the periodicity conditions (Equations ‎2-20 and ‎2-21) for the RVE shown in 

Figure ‎2-14, it can be verified that the external forces are the only applied boundary 

condition which contributes to the boundary integral (Equation ‎2-27) as defined by the 

following expression at the three prescribed corner nodes:  
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where 
if


 are the resulting external forces at the boundary nodes and iX


 are the position 

vectors of these nodes in the undeformed state.  

2.5 Key Points in RVE-based Modeling of Dual Phase Steels  

Several researchers have developed RVE-based micromechanical models to predict the 

flow behaviour of dual phase steels. In 1999, Huper et al [61] modeled the flow behaviour 

of dual phase steel based using an FE model. They found that flow behaviour of dual 

phase steels depended on volume fraction of phases and the shape of the grains. In 2000, 

Ishikawa et al [62] used a body centered cubic (BCC) cell model to investigate the effects 

of volume fraction and morphology of second-phase particles on deformation behaviour 

of ferritic steels. The cell model proposed by Ishikawa et al accurately estimated the 

tensile behaviour of ferrite-pearlite steels. In 2003, Al-Abbasi and Nemes [63,64] studied 

the effects of martensite volume fraction and martensite size on strength and ductility of 

dual phase steel using a cell model. After 2010, the number of publications on 

micromechanical modeling of flow curves of dual phase steels notably increased. 

Uthaisangsuk et al [35] suggested a 3D RVE-based micromechanical model of randomly 

distributed martensite in a ferrite matrix to predict flow curves of a dual phase steel and a 

TRIP steel. Marvi-Mashhadi et al [65] predicted flow curves of dual phase steels with 18-

44 vol% of martensite by development of an RVE-based FE model using the actual 

microstructure of dual phase steels. Sodjit et al [66] modeled the flow curves of dual 

phase steel with 25-90 vol% of martensite by proposing a 2D RVE-based FE model using 

actual microstructures. They also studied the effect of martensite volume fraction on the 

behaviour of the flow curves of dual phase steels. Paul et al [45,67] developed 2D and 3D 

RVE-based models to predict flow behaviour of a dual phase steel. Plastic strain 

localization under tensile loading was studied as a pre-stage of failure. Finally, Ramazani 

et al [40,49] studied the flow behaviour of dual phase steels using 2D and 3D RVE-based 

models. The optimum RVE size was reported. Also, 2D plane strain modeling was found to 
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result in underestimation of flow curve of dual phase steels while 3D modeling provided a 

better description. 

During micromechanical modeling of flow behaviour of dual phase steels using the RVE 

method several parameters must be considered in order to optimize the results. The 

effects of some of the modeling parameters such as RVE size, martensite morphology, 

mesh size and dimension of modeling, i.e. 2D versus 3D, are discussed in the following.  

RVE Size It was mentioned before that the size of the RVE should be carefully selected. A 

too small RVE cannot represent the average characteristics of the whole microstructure 

and a too large RVE significantly increases the complexity and time of calculations. 

Ramazani et al [49] modeled the flow behaviour of a DP600 steel with 35 vol% of 

martensite. They reported that selection of the optimum RVE size in 2D modeling of real 

microstructure image is crucial. To find the optimum RVE size for convergence of results; 

nine different volume elements (VE) were selected and investigated. The VEs sizes which 

were created from the optical micrographs varied between 5x5 and 30x30 μm2. The 

number of martensite islands inside each RVE was quantified. A similar element type with 

the same mesh size was applied in all cases. Figure ‎2-17 shows the volume elements and 

the corresponding modeling results. Although the predictions of VE6, VE7, VE8 and VE9 

converge VE6 with a size of 24×24 μm2 size was chosen as the best RVE size since it could 

predict the proper flow behaviour and also needed less calculation time. Convergence was 

achieved when the RVE included at least 19 martensite particles.  

Morphology of Martensite Determination of the precise morphology and distribution of 

martensite in the microstructure affects the accuracy of the modeling results. The 

morphology of each phase affects the stress and strain partitioning between ferrite and 

martensite in the microstructure which in turn influence the flow behaviour of the dual 

phase steel. Thomser et al [36] studied the effects of distribution of martensite in a 2D 

RVE on flow behaviour of dual phase steels with 42% of martensite. They considered fine 

and coarse distributions of martensite in the microstructure, and the ferrite grain size was 

similar in both microstructures. Figure ‎2-18 presents the numerical and experimental flow 

curves for both fine and coarse microstructures. As can be seen, the stress-strain response 
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of the fine microstructure is higher than that of the coarse microstructure. The 

microstructure with a fine martensite distribution has a narrow martensite phase with 

sharp edges at the martensite-ferrite interface which increases stress concentrations and 

plastic deformation [36]. 

 
Figure ‎2-17 (a) Volume elements VE 1–VE9 in a DP600 with 35% martensite and (b) predicted 

corresponding flow curves from numerical tensile tests [49] 
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Figure ‎2-18 Comparison between experimental and numerical flow curves of a dual phase steel 

with fine and coarse distribution of martensite in the microstructure [36] 

 

Mesh Size The effect of mesh refinement on the stress-strain partitioning in the RVE was 

studied by Uthaisangsuk et al [35]. Different mesh sizes from 100×100 to 260×260 

elements were applied to a 2D RVE of the real microstructure of DP600 steel with 27 vol% 

of martensite. Figure ‎2-19 shows small discrepancies in flow behaviour of the RVEs with 

different mesh sizes. It was also found that the 2D RVE simulation with a mesh size finer 

than 260×260 did not provide different results. Uthaisangsuk et al [35] also investigated 

the influence of mesh size on a 3D RVE of a dual phase steel with 13 vol% of martensite. 

As it is shown in Figure ‎2-20, a coarse mesh and a fine mesh, with double the number of 

elements as the coarse mesh along each side of the RVE, were applied. The martensite 

distribution was similar in both cases. The true stress-strain responses were calculated for 

both RVEs, and as can be seen in Figure ‎2-20, no remarkable discrepancy was observed in 

the flow curves due to the variation in mesh size. 
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Figure ‎2-19 Influence of the mesh size on true stress-strain response of a 2D RVE for DP600 steel 

with 27 vol% of martensite [35] 

 

 
Figure ‎2-20 Influence of mesh size on flow behaviour of a 3D RVE of a dual phase [35] 
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2D versus 3D Modeling 2D and 3D RVEs can be used for micromechanical modeling of 

flow behaviour of dual phase steels. Application of 3D RVEs significantly increases the time 

of calculations and the level of required computational resources. Uthaisangsuk et al [35] 

compared the results of 2D and 3D modeling results for two dual phase steels with 20 and 

45 vol% of martensite, and their results are presented in Figure ‎2-21. As can be seen, in 

both cases, the stress-strain response of the 3D RVEs are closer to the experimental flow 

curves. As it was shown in Figure ‎2-18, Thomser et al [36] reported underestimation for all 

flow curves predicted from the 2D RVEs. Although the flow curves were underestimated, 

the rates of strain hardening were correctly predicted in both cases. The underestimation 

was explained to occur because 2D RVEs were assumed to deform in a mode of plane 

strain. Al Abbasi and Nemes [63] modeled the flow curves of dual phase steels with 32-36 

vol% of martensite using different cell models. They also indicated that the 2D plane strain 

model appeared to underestimate the strain hardening compared to axisymmetric 3D 

model. 

 
Figure ‎2-21 True stress-strain curves of 2D and 3D RVE of two dual phase steels with 20 and 45 

vol% of martensite [35] 
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3 Materials Characterization 

In this research, micromechanical models were developed to predict the flow behaviour of 

commercial DP500 and DP600 dual phase steel sheets in uniaxial tensile test prior to 

necking. The thickness of the DP500 and DP600 steel was 0.65 and 1 mm, respectively. 

Table ‎3-1 shows the chemistry of the as-received steels. The elements found in quantities 

greater than 0.01 wt% are shown in the table. The effects of carbon and the alloying 

elements with amounts greater than 0.1 wt% are considered in the model.  

Table ‎3-1 Chemistry of DP500 and DP600 steels 

 C Mn Mo Cr Si Cu Al Ti Ni 

DP500 0.063 1.83 0.01 0.03 0.02 - - - 0.01 

DP600 0.107 1.497 0.214 0.181 0.175 0.057 0.038 0.025 0.015 

 

Chemical and mechanical characterizations were accomplished to obtain the required 

parameters for the model. The experimental procedures and results are presented in the 

following. 

3.1 Quantitative Metallography of As-received Dual Phase Steels 

For metallography of the as-received DP500 and DP600 steel sheet, samples were cut and 

mounted as shown in Figure ‎3-1. Diallyl Phthalate thermosetting resin powder was used as 

the mounting powder which was cured at 150 °C and 20 MPa for 90 s. BuehlerMet® II 

Abrasive Discs C with a Grit ANSI of 60 to 600 were used to grind the mounted samples. A 

three-step polishing was carried out including: MetaDi® Polycrystalline Diamond 

Suspension of 9 μm, followed by Micropolish® II Deagglomerated Alpha Alumina powders 

of 1.0 and 0.05 μm suspended in water.  

The microstructure of DP500 steel contained ferrite and martensite. The entire 

quantitative metallography procedure for DP500 samples was carried out at the University 

of Windsor. Nital 2% was used for etching of the samples. 
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Sample preparation of DP600 steel was carried out at the University of Windsor. Etching 

and quantitative analysis of the samples were performed at Metallography Lab at 

ArcelorMittal Dofasco. The microstructure of DP600 steel, contained ferrite, bainite and 

martensite. Generally, Nital 2% is used for etching dual phase steels which reveals ferrite 

grains in white and grain boundaries, martensite islands, bainite grain and carbide 

particles in black; however, micromechanical modeling requires accurate quantitative 

metallography data of each constituent. Hence, etching should be performed in a way that 

high contrast exists between the constituents. Consequently, each individual constituent 

can be chosen in the image analysis software to obtain accurate quantitative 

metallography. For this purpose, as it is shown in Table ‎3-2, three different etchant were 

used: Nital 2%, Picral 4% and LePera for observation of ferrite, bainite and martensite, 

respectively. Figure ‎3-3, Figure ‎3-4 and Figure ‎3-5 show the microstructures of DP600 

steels etched by Nital 2%, Picral 4% and LePera, respectively.  

 

Figure ‎3-1 The mounted through-thickness sample of as-received DP600 steel 

 

Table ‎3-2 Etchants used to etch DP600 steel 

Nital 2% nitric acid + Ethanol 
ferrite: light gray 

others: dark gray/black 

Picral 4% 
picric acid (2,4,6-trinitophenol) + 

ethanol 

bainite: black 

others: gray 

LePera 
50 ml Na2S2O5 1% in aqueous dilution, 

50 ml picric acid 4% in ethanol 

martensite: white 

others: gray/black 
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Figure ‎3-2 Scanning electron microscope through-thickness microstructure of as-received DP500 

etched by Nital 2%; ferrite is dark gray and martensite is light gray. 

 

 

Figure ‎3-3 Optical through-thickness microstructure of as-received DP600 etched by Nital 2%; 

ferrite is etched in light gray and the other constituents are in dark gray/black. 
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Figure ‎3-4 Optical through-thickness microstructure of as-received DP600 etched by Picral 4%; 

bainite is etched in black and the other constituents are in gray. 

 

Figure ‎3-5 Optical through-thickness microstructure of as-received DP600 etched by LePera; 

martensite is etched in white and the other constituents are in gray/black.  
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For quantitative metallography, through-thickness micrographs were analyzed using 

Clemex Vision software. In the image analysis procedure, a colour is assigned to the 

constituent which is being analyzed. Also, a different colour is assigned to the other areas 

of the micrograph. For instance, as it is shown in Figure ‎3-6, martensite is coloured in red 

and the other phases in yellow. The volume fraction of martensite will be the ratio of red 

pixels to the total number of pixels (red and yellow). 

 

Figure ‎3-6 Analysis of a micrograph in image analysis software 

original micrographenhancement of contrastimage analyzer 

 

The results of the quantitative metallography which are required for micromechanical 

modeling are presented in Table ‎3-3. These data are obtained from the analysis of more 

than 1200 ferrite grains and 1900 martensite islands in DP500 steel and from 1500 ferrite 

grains, 1100 martensite islands and 300 bainite grains in DP600 steel. To evaluate the 

results, the 95% Confidence Intervals (95% CI) and Relative Accuracy percent (%RA) were 

calculated according to ASTM E112 [68]: 

N

t.s
CI95%   

‎3-1 

 

.100
X

CI95%
%RA   

‎3-2 

 

where s is the standard deviation, N is the number of measured grains, X  is the mean 

grain size, and t is a multiplier that is a function of N, in this case t = 1.960 for N>60. 

According to the standard, a %RA equal to or less than 10 is considered to be an 

acceptable precision for most purposes. The %RA is also reported for the quantitative data 

presented in Table ‎3-3. As it can be seen, all the %RA values are below 10% which 

guarantees the accuracy of the quantitative data. 

. . . 
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Table ‎3-3 Statistical results of quantitative metallography of through-thickness microstructures of 

as-received DP500 and DP600 

Steel Parameter Ferrite Martensite Bainite 

DP500 

Volume Fraction % 91.0 9.0 

- 
Mean Aspect Ratio - 

1.85 

(%RA=±1.8%) 

Mean Grain Size *μm+ 
5.45 

(%RA=±4.5%) 

0.90 

(%RA=±4.8%) 

DP600 

Volume Fraction % 92.0 4.7 3.3 

Mean Aspect Ratio - 
1.78  

(%RA=±1.6%) 

1.87 

(%RA=±1.1%) 

Mean Grain Size *μm+ 
4.0  

(%RA=±8.0%) 

0.56 

 (%RA=±3.4%) 

2.42 

(%RA=±4.3%) 

 

In addition to the “mean grain size” of martensite islands in DP500 and DP600 steels, the 

“distribution of grain size” is required in micromechanical model to produce an 

appropriate RVE. These data are presented in Figure ‎3-7 and Figure ‎3-8 for martensite 

islands in DP500 and DP600 steels, respectively. 

As it was mentioned in Section ‎2.4.2, the prior austenite mean grain size (austenite at the 

intercritical temperature), is needed to determine the flow behaviour of bainite in DP600 

steel. The austenite mean grain size was provided for this research by ArcelorMittal 

Dofasco to be 2.56 µm. To determine the austenite mean grain size, the steel was 

quenched in an icy water bath from the intercritical annealing temperature; thus almost 

the entire austenite grains transformed into martensite. The mean grain size of martensite 

islands was determined according to ASTM E112 [68]. Since there is ≈4% volume increase 

in transformation of austenite to martensite [69], the mean grain size of martensite was 

reduced for 1.59% ( 3 4 ) to obtain the approximate austenite mean grain size.     
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Figure ‎3-7 Distribution of grain size for martensite islands in the DP500 steel 
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Figure ‎3-8 Distribution of grain size for martensite islands in the DP600 steel 
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3.2 Distribution of Alloying Elements in the Microstructure 

Substitutional solid solution hardening has an important role in micromechanical 

behaviour of materials. As it was mentioned in Section ‎2.4.2, σ0 (solid solution hardening 

in the microstructure) can be calculated using Equation ‎2-6, only if alloying elements are 

distributed homogeneously in the microstructure.  

As it indicated in Table ‎3-1, Mn for DP500 steel and Mn, Mo, Cr, and Si for DP600 steel are 

the main alloying elements with amounts greater than 0.1 wt%. Distribution of the main 

alloying elements in the through-thickness microstructures were investigated using Energy 

Dispersive Spectroscopy (EDS) analysis to understand if there was a notable elemental 

segregation inside the ferrite grains, bainite grains or martensite islands. A field emission 

scanning electron microscope FEI Quanta 200 FEG equipped with an EDAX energy 

dispersive spectrometer was utilized for the EDS analysis. A voltage of 30 kV and a dwell 

time of 800 μs was applied.  

Results are presented in Figure ‎3-9 to Figure ‎3-13. According to these results, no notable 

segregation is observable inside each individual constituent. Hence, it can be concluded 

that the main substitutional alloying elements are distributed approximately 

homogeneously within the ferrite grains, bainite grains and martensite islands. This means 

that the mechanical properties of each individual grain can be considered uniform 

throughout the whole grain and Equation ‎2-6 can be used to determine the flow stress of 

each of the ferrite, martensite and bainite phases. 
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F: ferrite, M: martensite 

 
 

  

 

Figure ‎3-9 EDS maps and distribution of Mn (red), Cr (turquoise) and Si (blue) in a through-

thickness microstructure of DP500 steel. 
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F: ferrite, M: martensite, B: bainite 

  
 

 
 

 
 

 
 

  
 

  
Figure ‎3-10 EDS maps and distribution of Mn (red), Mo (yellow), Cr (turquoise) and Si (blue) in a 

through-thickness microstructure of DP600 steel close to the surface of the sheet. 
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F: ferrite, M: martensite, B: bainite 

  
 

 
 

 
 

 
 

 
 

 
 

   
Figure ‎3-11 EDS maps and distribution of Mn (red), Mo (yellow), Cr (turquoise) and Si (blue) in a 

through-thickness microstructure of DP600 steel near the centre of the sheet. 
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F: ferrite, M: martensite, B: bainite 

  
 

 
 

 
 

 
 

  
 

   
Figure ‎3-12 EDS maps and distribution of Mn (red), Mo (yellow), Cr (turquoise) and Si (blue) in a 

through-thickness microstructure of DP600 steel near the centre of the sheet. 
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F: ferrite, M: martensite, B: bainite 

  
 

 
 

 
 

 
 

  
 

   
Figure ‎3-13 EDS maps and distribution of Mn (red), Mo (yellow), Cr (turquoise) and Si (blue) in a 

through-thickness microstructure of DP600 steel near the centre of the sheet. 
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3.3 Distribution of Carbon in Ferrite, Bainite and Martensite 

Carbon interstitial solid solution hardening has a significant role in strengthening steels. As 

it was mentioned in Section ‎2.4.2, Δσc (carbon solution hardening in the microstructure) 

for ferrite, martensite, and bainite can be calculated using Equations ‎2-11, ‎2-12 and ‎2-13. 

For this purpose, the carbon content wt% in the constituents should be determined. 

Due to the small amounts of carbon in both DP500 and DP600 steels, quantitative EDS 

could not accurately measure the amounts of carbon in ferrite grains, bainite grains and 

martensite islands. Hence, a thermodynamic simulation was carried out at CANMET 

Materials, Hamilton, ON, using the Thermo-Calc software. The database TCFE7 was used 

for simulation. The amounts of carbon in ferrite, martensite and bainite phases at the 

intercritical annealing temperature were obtained and are shown in Table ‎3-4.   

Table ‎3-4 Carbon wt% in ferrite, martensite and bainite in DP500 and DP600 steels 

 Ferrite Martensite Bainite 

DP500 0.007 0.265 - 

DP600 0.006 0.116 0.087 

 

3.4 Strengthening Mechanisms and Flow Curves of DP500 and DP600 Steels  

Standard tensile tests were carried out according to ASTM E8/E8M [70]. The 

corresponding true flow curves of DP500 and DP600 steels are presented in Figure ‎3-14 

and Figure ‎3-15, respectively. As it was mentioned in Section ‎2.3, dual phase steels present 

continuous yielding due to the existence of mobile dislocations near the ferrite and 

martensite interface. However, there is only 4.7 vol% of martensite in the microstructure 

of this DP600 steel. Hence, the amount of existing mobile dislocations is not sufficient to 

see a smooth transition from elastic to plastic deformation and prevent the yielding 

phenomenon.   
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Figure ‎3-14 The true flow curve of DP500 steel 

 

 

  

Figure ‎3-15 The true flow curve of DP600 steel 
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The strengthening parameters in DP500 and DP600 steels are indicated in Table ‎3-5. As 

can be seen, strengthening of DP500 steel compared to DP600 steel is based on the 

martensite strengthening. Although the required ultimate tensile stress in DP600 steel is 

greater than that in DP500 steel, it only includes 4.7 vol% of martensite. However, solid 

solution hardening in DP600 steel is stronger than DP500 steel due to the presence of 

more carbon and alloying elements in the microstructure of DP600 steel. Also, the mean 

ferrite grain size in the DP600 steel is smaller than that of the DP500 steel which provides 

more grain size strengthening in the DP600 steel according to the Hall-Petch equation 

(Equation ‎2-1). Furthermore, the existence of bainite in the microstructure of DP600 steel 

increases the strength of the steel; however, it cannot be considered as a major 

strengthening mechanism. The major effect of bainite is to enhance the combination of 

strength-ductility in dual phase steels [71]. The combinations of strengthening 

mechanisms in the DP500 and DP600 steels result in a better combination of strength-

ductility in the DP600 steel; this can also be seen by comparing the flow curves of DP500 

and DP600 steels in Figure ‎3-14 and Figure ‎3-15. The martensite strengthening used in 

DP500 steel is the most influential strengthening mechanism in dual phase steels; 

however, it notably reduces the elongation of the steel. On the other hand, the small 

amount of martensite in DP600 steel results in yield point phenomenon followed by 

Lüders bands which undesirably affects the surface quality of sheet metal after yielding. 

Table ‎3-5 Strengthening parameters in DP500 and DP600 steels 

 Carbon 
Alloying 

Elements 
Mean Ferrite Grain Size 

(Through-thickness) 

Martensite 

Content 

Bainite 

Content 

DP500 0.063 wt% ≈1.90 wt% 5.45 µm 9.0 vol% - 

DP600 0.107 wt% ≈2.21 wt% 4.0 µm 4.7 vol% 3.3 vol% 
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3.5 Void Analysis 

The focus of this research is the micromechanical modeling of flow curves of DP500 and 

DP600 steels in the range of uniform deformation before the onset of necking. However, 

localization of plastic deformation occurs in the microstructure even at low macroscopic 

plastic strains. As a result, microstructural damage such as nucleation of void does occur in 

the microstructure.  

Equation ‎2-10 considers ferrite, martensite and bainite as continuum media and 

determines their flow behaviour. However, the nucleation and growth of voids in the 

microstructure specifically in the martensite phase lead to discontinuities in the 

microstructure. Hence, the nucleation and growth of voids was quantitatively investigated 

in order to estimate the possible level error in the modeling results. 

In order to determine the content of voids in the microstructures of DP500 and DP600 

steels, as-polished samples were slightly etched for 2-3 s just to remove the polished layer 

but not to etch the microstructure. Hence, voids were identified as dark spots in a white 

matrix. Figure ‎3-16 shows the voids in the through-thickness microstructures of the steels 

deformed by the standard uniaxial tensile test close to the necking area. Void area 

fraction was determined in the microstructures according to: 

100×=%
PixelsofNumberTotal

PixelsBlackofNumber
FractionAreaVoid  

 3-3 

As it was shown in Figure ‎3-14 and Figure ‎3-15 necking occurred in DP500 and DP600 steels 

at effective strains of ≈0.14 and ≈0.16, respectively. Quantitative analysis of voids was 

carried out close to the necking points where the greatest amounts of voids were found. 

Results showed that the void area fractions in DP500 and DP600 steels were only 0.18 and 

0.12%. Hence, the effect of voids on the flow behaviour of ferrite, martensite and bainite 

was ignored.     
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Figure  3-16 Voids in the through-thickness microstructures of (a) DP500 and (b) DP600 steels 

close to the necking area deformed by the standard uniaxial tensile test. 
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4 Modeling Procedure and Methodology 

In this research, micromechanical modeling of flow behaviour of DP500 and DP600 steels 

was carried out using the RVE method. The dual phase steels were considered as 

composite materials: ferrite as the matrix and martensite islands as hard particles 

(inclusions). As mentioned in Section ‎2.5, Uthaisangsuk et al [35], Thomser et al [36],  

Ramazani et al [40] and Al Abbasi et al [63] reported that 2D micromechanical models 

underestimate the flow behaviour of dual phase steels. Hence, in this research, 3D 

modeling was carried out to obtain more accurate results. The effects of RVE size and 

mesh refinement were also investigated and are reported in this research.  

The entire modeling procedure was performed using MATLAB, Digimat and ABAQUS 

software. MATLAB and ABAQUS are well-known commercial software. Digimat software is 

described in Sections ‎4.2 to ‎4.6. Micromechanical modeling of flow behaviour of DP500 

and DP600 steels was carried out in six steps: 

Step 1 Calculation of flow curves of constituents in MATLAB 

Step 2 Introducing the flow behaviour of constituents to Digimat-FE 

Step 3 RVE generation in Digimat-FE 

Step 4 Definition of loading and boundary conditions in Digimat-FE 

Step 5 Simulating the loading in ABAQUS and obtaining the flow curve of the RVE in 

Digimat-FE 

Step 6 Homogenization in Digimat-MF 

These steps are illustrated in the following. 
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4.1 Calculation of Flow Behaviour of Constituents 

The flow behaviour of ferrite, martensite and bainite were determined according to:  

ss0 5000N+11%Mo+60%Cr+45%Ni+80%Cu+60%Si+750%P+80%Mn+77=σ  ‎2-6 
(repeated) 

Lk

ε)Mkexp(1
bμMαΔσσσ

r

r
c0




  

‎2-10 
(repeated) 

)(%C×5000=Δσ f
SS

f
c

 ‎2-11 
(repeated) 

161)(%C×3065=Δσ m
SS

m
c -  ‎4‎2-12 

(repeated) 

m
m
cf

f
c

b
c VΔσ+VΔσ=Δσ  ‎2-13 

(repeated) 

The required parameters in the above equations for ferrite, martensite and bainite in 

DP500 and DP600 steels were presented in Table ‎2-1, Table ‎3-1, Table ‎3-3 and Table ‎3-4. 

Calculations are presented in Appendices A1-A5. Hence, the constitutive equations of the 

constituents are: 

Ferrite in DP500 Steel 

5-10

ε)exp(-5.41-1
1.25+261.96=σ

 

‎4-1 

 

Martensite in DP500 Steel 

5-10

)exp(-123-1
1.25+878.19=σ

ε

 

‎4-2 

 

Ferrite in DP600 Steel 

5-10

ε)exp(-7.5-1
1.25+225.71=σ

 

‎4-3 

 

Martensite in DP600 Steel 

6-10×1.56

ε)exp(-123-1
1.25+420.25=σ

 

‎4-4 

 

Bainite in DP600 Steel 

7-10×7.81

ε)exp(-11.72-1
1.25+262.45=σ

 

‎4-5 
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Since necking occurred in DP500 and DP600 steels approximately at strains of 0.14 and 

0.16, respectively, flow curves of the softer constituents were considered up to strains of 

0.15 and 0.20 in DP500 and DP600 steels, respectively. Martensite is reported to behave 

elastically before necking [72]; however, martensite plasticity is possible in case of strain 

localization in the microstructure. Hence, the flow curves of martensite in DP500 and 

DP600 steels were considered up to a strain of 0.015.  

It is assumed that the work hardening behaviour of ferrite, martensite and bainite follow 

the Holloman power-law equation [73]: 

nKε=σ  ‎4-6 

where K and n are the hardening modulus and hardening exponent, respectively. Hence, 

the Curve Fitting application in MATLAB software was used to fit power-law equations to 

the predicted σ(ε) curves of the constituents to determine the hardening modulus and 

hardening exponent of the ferrite, martensite and bainite in the DP500 and DP600 steels. 

Figure ‎4-1 and Figure ‎4-2 show the analytical and fitted flow curves obtained for the 

constituents of DP500 and DP600 steels, respectively. In these figures, coefficients a and b 

are the values of K and n, respectively. 

In case of DP600 steel, if the combination of ferrite (92.0%) and bainite (3.3%) is 

considered as the matrix and only martensite islands (4.7%) as inclusions, the flow curve 

of the matrix can be determined by the mixture rule: 

)(×035.0+)(×965.0=
3.3+92

)(×3.3+)(×92
=)( bbff

bbff
εσεσ

εσεσ
εσ  

‎4-7 
 

The analytical and fitted flow curve of the new matrix is shown in Figure ‎4-3.  
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Figure ‎4-1 Analytical flow curves of (a) ferrite and (b) martensite in DP500 steel 
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Figure ‎4-2 Analytical flow curves of (a) ferrite, (b) martensite and (c) bainite in DP600 steel 
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Figure ‎4-3 Analytical flow curve of combination of ferrite and bainite 

 

4.2 Introducing the flow behaviour of constituents to Digimat-FE  

Micromechanical modeling of materials in Digimat software starts from the Digimat-FE 

module. As it is shown in Figure ‎4-4, this module includes five steps: Materials, 

Microstructures, RVE, Loadings and Results.  

In the first step (i-e. the “Materials” step) the mechanical properties of ferrite, martensite 

and bainite including Young’s modulus, Poisson’s ratio, yield stress, hardening modulus 

and hardening exponent are introduced to the software. Young’s modulus and Poisson’s 

ratio for all the constituents were considered to be 210 GPa and 0.33, respectively. The 

flow stress at ε=0.002 was introduced as the yield stress. The hardening modulus and 

hardening exponent were taken from Section ‎4.1. 

(M
P

a
) 
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Figure  4-4 Digimat-FE analysis tree 

 

4.3 RVE Generation in Digimat-FE 

In this step, for DP500 steel, the ferrite alone is designated as the “matrix” and martensite 

as “inclusions”. For DP600 ferrite and bainite together are designated as the “matrix” and 

martensite as “inclusions”. Also, the combination of ferrite and bainite can be introduced 

as matrix. Since this research does not model the microstructural damage, the interface 

between the matrix and inclusion are defined as “perfectly bonded”. As is shown in 

Figure ‎4-5, after determining the “phase fraction” of each inclusion, there are three 

options for “phase definition” in the RVE:  

(1) “number of inclusions” and “aspect ratio”,  

(2) “inclusion size” and “aspect ratio”  and  

(3) “inclusion size” and “diameter”.  
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The “inclusion size” can be defined as constant or according to uniform distribution (min 

and max size), normal distribution (mean and variance) or user defined. In case of user 

defined, a histogram of the size distributions can be supplied in a text file with a certain 

format and introduced to the Digimat software. Furthermore, the shape of the inclusions 

can be determined as ellipsoid, cylinder and prism. 

 

Figure ‎4-5 Determination of morphological parameters of the inclusion phases in Digimat-FE.  

 

In this work, inclusions were introduced to the Digimat-FE using the “inclusion size” and 

“aspect ratio” method. The actual inclusion size was uploaded in the Digimat-FE using a 

text file including the size distribution histogram of martensite islands which were shown 

in Figure ‎3-7 and Figure ‎3-8. According to the quantitative metallography results 

presented in Section ‎3.1, the closest inclusion shape to the martensite shape is the 

ellipsoid. Hence, as indicated in Table ‎3-3, martensite islands in the microstructures of 

DP500 and DP600 steels were considered as ellipsoids with aspect ratios of 1.87 and 1.78, 

respectively.  
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After defining the morphological features of the microstructure, a random 2D or 3D RVE 

can be generated. As it is shown in Figure ‎4-6, the generated RVE is visualized under the 

“RVE visualization" tab. The information regarding the calculation time and phase 

information, e.g. inclusion numbers in the RVE and effective volume fraction of the 

inclusion(s), is presented under the “RVE global data” tab shown in Figure ‎4-7. More 

details about generated RVE are found in the “RVE phase data” tab which is presented in 

Figure ‎4-8. The RVE size should be sufficiently large to include a sufficient number of 

inclusions inside the RVE otherwise their size distribution will not correspond with that of 

the inclusions in the real microstructure.  

 

Figure ‎4-6 RVE generation in Digimat-FE: “RVE visualization” tab 
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Figure ‎4-7 RVE information in Digimat-FE: “RVE global data” tab 

 

 

 

Figure ‎4-8 RVE information in Digimat-FE: “RVE phase data” tab 
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4.4 Definition of Loadings and Boundary Conditions in the Digimat-FE 

The type of loadings and applied boundary condition should be defined in this step. As is 

shown in Figure ‎4-9(a), the type of boundary condition and loading can be defined in the 

“Mechanical loading” tab. Uniaxial tension, biaxial tension and shear in different 

directions can be selected. Also, it is possible to define cyclic or user-defined loadings. As 

can be seen in Figure ‎4-9(b), the initial and peak strain values of strain can be determined 

in the “Parameters” tab. Furthermore, it is possible to define a quasi-static loading or to 

select a strain rate for the applied load.  

In this research, the periodic boundary condition was chosen as indicated in Section ‎2.4.3. 

Quasi-static uniaxial loading was applied and the peak strain value was determined as that 

at the onset of necking in DP500 and DP600 steels.  

 

  

Figure ‎4-9 Definition of loading Digimat-FE loadings stage, a) definition of mechanical loading 

and boundary condition, b) definition of loading parameters.  

 

(a) (b) 
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4.5 Solving the Problem in ABAQUS and Obtaining the Flow Curve of RVE in 

Digimat-FE  

After the loading type and boundary condition, the time step parameters, meshing 

settings etc. are defined in Digimat-FE, as indicated by the parameters input window in 

Figure ‎4-10. If Digimat and ABAQUS are coupled properly, the complete RVE model 

automatically appears in ABAQUS after it is exported. The problem is submitted in Job 

module in ABAQUS, and following the simulation of the tensile test, the flow behaviour of 

RVE is determined. 

 

 

Figure ‎4-10 Determination of solving parameters in Digimat-FE and exporting the finite element 

problem to ABAQUS 
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Ramazani et al [40] used C3D4 elements for simulations using 3D RVEs. The element types 

C3D4 and C3D10 were also used for finite element analysis of 3D RVEs generated in this 

work. Initial seed sizes of 0.025, 0.05 and 0.075 were applied to investigate the effect of 

mesh size on the results. 

After solving the problem in ABAQUS, post-processing analysis is carried out in Digimat-FE. 

This step is performed in the “Result” section in the Digimat-FE analysis tree presented in 

Figure ‎4-4. The flow curve of the RVE is the result of this step. 

4.6 Homogenization in Digimat-MF 

As indicated in Section ‎2.4.4, homogenization is carried out to relate the micro-scale flow 

curve of the RVE to the macro-scale flow curve of the whole material. After solving the 

problem in ABAQUS and post-processing in Digimat-FE to obtain the flow curve of the 

RVE, homogenization is performed in Digimat-MF.  

Digimat-MF uses the mean-field homogenization method with the aim of predicting 

nonlinear constitutive behaviour of multi-phase materials. This prediction is based on the 

constitutive properties of each constituent and the morphology of the inclusions.  

As it is shown in Figure ‎4-11(a), the analysis type and the homogenization technique are 

chosen in Digimat-MF in “General parameters” tab. Mechanical analysis and first order 

homogenization were applied in this research. Integration parameters are also defined in 

Digimat-MF. As it can be seen in Figure ‎4-11(b), time intervals and tolerances are 

determined for homogenization results. 
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Figure ‎4-11 (a) General parameters and (b)  integration parameters in the Digimat-MF 

 

 

 

 

 

 

  



67 

5 Modeling Results and Discussion 

This chapter describes the results obtained from micromechanical modeling of flow curves 

of DP500 and DP600 steels deformed in uniaxial tension. Effects of RVE size, mesh size and 

element type were investigated to optimize the modeling parameters. The outcome of the 

model is the true flow stress as a function of true plastic strain. The goals of 

micromechanical modeling are to accurately predict the flow curves of the dual phase 

steels and to optimize modeling time (cost). In order to evaluate the accuracy of the 

modeling results, the predicted numerical flow curves were compared to the experimental 

flow curves presented in Figure ‎3-14 and Figure ‎3-15 for DP500 and DP600 steels, 

respectively. The modeling achievements are presented and discussed in the following.  

5.1 Influence of RVE Size on Numerical Flow Curves 

According to the previous reports by Uthaisangsuk et al [35], Thomser et al [36] and 

Ramazani et al [40], 2D RVE-based micromechanical modeling of flow behaviour of dual 

phase steel results in an underestimation of the flow stress. Reports indicated that, 

although both morphology and volume fraction of martensite were taken into account in 

2D modeling only the volume fraction of martensite was considered in 3D modeling, and 

yet 3D modeling resulted in more accurate flow curves. Hence, this research focused on 

3D modeling. As it is shown in Figure ‎5-1(a-c), in the previous work [35,39,40] on 3D 

micromechanical modeling of dual phase steels, the martensite phase was distributed 

randomly in the RVE cube regardless if its morphology. In this research, as it is presented 

in Figure ‎5-1(d), both the morphology and the volume fraction of martensite were 

considered to generate a 3D RVE which is more representative of the actual 

microstructure. Therefore, it is expected that the flow behaviour of the dual phase steels 

will be predicted more accurately in this investigation compared to the work previously 

reported [35,39,40].  

According to the quantitative metallography results presented in Section ‎3.1, martensite 

islands were considered as ellipsoids, and the aspect ratio and size distribution of 

martensite islands were determined. This information was given to the Digimat software 



68 

to generate the 3D RVEs. As can be seen in Figure ‎5-2, after generation of an RVE, Digimat 

provides the size distribution of martensite in the generated RVE (Actual) and compares it 

with the size distribution of martensite in the actual microstructure (Reference). It is 

expected that more accurate modeling results will be achieved when the two size 

distributions are similar to each other. In order to obtain similar size distributions, the RVE 

size should be carefully determined.  

 

Figure ‎5-1 RVEs based on real microstructures generated by (a) Uthaisangsuk et al [35], (b) Paul 

[39], (c) Ramazani et al [40] and (d) Digimat for this research. 

 

 
 

Figure ‎5-2 Size distribution of martensite in the RVE (Actual) and real microstructure (Reference) 
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Modeling results for DP500 and DP600 are presented in Sections ‎5.1.1 and ‎5.1.2, 

respectively. The following items are presented for each simulation: 

(a) The random RVE which was generated by the Digimat-FE according to the volume 

fraction and morphology of martensite in the real microstructure  

(b) Martensite size distribution in the generated RVE (Actual) and the actual 

microstructure (Reference) 

(c) Distribution of von Mises stress in the RVE after simulation was accomplished in 

ABAQUS 

(d) Distribution of equivalent strain in the RVE after simulation was accomplished in 

ABAQUS 

(e) Flow curve of the RVE after post-processing was carried out with Digimat-FE 

(f) Experimental and numerical flow curves of the steel after homogenization was 

completed in Digimat-MF 

Distribution of von Mises stress and effective strain in the RVE is presented in 

Sections ‎5.1.1 and 5.1.2 for initial observation of stress and strain distribution in the RVE. 

A detailed discussion on this subject is presented in Section ‎5.5.  

5.1.1 DP500 Dual Phase Steel 

According to the quantitative metallography results, the martensite volume fraction in 

DP500 steel was 0.090. Based on the martensite content, the aspect ratio of martensite 

islands and the martensite size distribution in DP500 steel presented in Section ‎3.1, 6 RVEs 

with different sizes were generated. Table ‎5-1 shows the specifications of these RVEs.  

Since both the morphology and the volume fraction of martensite were considered in RVE 

generation, all of the 6 RVEs properly presented the overall microstructural characteristics 

of the steel. Hence, as can be seen in Figure ‎5-3 to Figure ‎5-8, the predicted flow curves 

are generally very close to the experimental flow curve.  
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Table ‎5-1 Specifications of the RVEs generated for micromechanical modeling of DP500 steel 

RVE Size 

Cube Side (µm) 

Number of Martensite 

islands inside the RVE 

Effective volume Fraction of 

Martensite inside the RVE 
Modeling Results 

9.5 11 0.090 Figure ‎5-3 

10.3 14 0.089 Figure ‎5-4 

11.6 20 0.091 Figure ‎5-5 

12.7 26 0.090 Figure ‎5-6 

13.2 29 0.090 Figure ‎5-7 

14.2 36 0.096 Figure ‎5-8 

 

As it can be seen in Figure ‎5-6(f), Figure ‎5-7(f) and Figure ‎5-8(f), when the number of 

martensite islands inside an RVE is more than 25, the numerical flow curve practically lies 

on the experimental flow curve. While the ultimate tensile strength (UTS) in the 

experimental flow curve is 648.7 MPa, the RVEs with 26, 29 and 36 martensite islands 

predict an ultimate tensile strength of 649.0, 649.6 and 646.8 MPa, respectively. Hence, 

the error is less than 0.3%.  

When the number of martensite islands in the RVEs was 11, 14 and 20, the numerical flow 

curve underestimated the flow stress of DP500 steel. The predicted ultimate tensile 

strengths by the RVEs including 11, 14 and 20 martensite islands were 637.4, 647.6 and 

632.1 MPa, respectively.  

Compared to the RVEs with more than 25 martensite islands, since the number of 

martensite islands inside of RVEs with 11, 14 and 20 martensite islands was not sufficient, 

the size distribution of martensite in the RVE was not sufficiently similar to the size 

distribution of martensite in the real microstructure. Hence, these smaller RVEs could not 

properly represent the characteristics of the microstructure.  
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(a) (b) 

 

(c) 

 
(d) 

 
(e) 

 
(f) 

 

Figure ‎5-3 Micromechanical modeling results for DP500 steel with 11 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.12, (d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE 

and (f) numerical and experimental flow curves of DP500 steel. 
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Figure ‎5-4 Micromechanical modeling results for DP500 steel with 14 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.12, (d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE 

and (f) numerical and experimental flow curves of DP500 steel. 
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Figure ‎5-5 Micromechanical modeling results for DP500 steel with 20 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.12, (d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE 

and (f) numerical and experimental flow curves of DP500 steel. 
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Figure ‎5-6 Micromechanical modeling results for DP500 steel with 26 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.12, (d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE 

and (f) numerical and experimental flow curves of DP500 steel. 
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Figure ‎5-7 Micromechanical modeling results for DP500 steel with 29 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.12, (d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE 

and (f) numerical and experimental flow curves of DP500 steel. 
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Figure ‎5-8 Micromechanical modeling results for DP500 steel with 36 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.12, (d) distribution of equivalent strain in the RVE at ε≈0.14, (e) flow curve of RVE 

and (f) numerical and experimental flow curves of DP500 steel. 
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In order to determine the accuracy of the predicted flow curves, the experimental and 

predicted tensile toughness of the DP500 steel, i.e. the area below the flow curves, were 

compared. The predicted toughness of the steel was numerically calculated using more 

than 2000 data points. As it is shown in Figure ‎5-9(a), all the RVEs predicted the toughness 

of the steel quite accurately. For a more precise comparison, the results of Figure ‎5-9(a) 

are shown in Figure ‎5-9(b) with a magnified scale. As it can be seen, the RVEs with a size of 

9.5, 10.3 and 11.6 µm3, underestimated the toughness of the steel more than the RVEs 

with a size of equal to or greater than 12.7 µm. 

Comparing the modeling results for the DP500 flow curve, the accuracy of modeling 

results using RVEs with a size of 12.7, 13.2 and 14.2 µm3 and with 26, 29 and 36 

martensite islands, respectively, was almost similar; however, modeling time for the RVEs 

with 29 and 36 martensite islands is notably longer than the required modeling time for 

the RVE with 26 martensite islands. Therefore, an RVE size of 12.7x12.7x12.7 µm3 

containing 26 martensite islands is suggested as the optimum RVE size since it accurately 

predicted the flow curve of this DP500 steel. As can be seen in Figure ‎5-6(b), when the 

number of martensite islands was 26, it was feasible for the Digimat software to generate 

an RVE with a martensite size distribution similar to the martensite size distribution in the 

real microstructure. 
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(a) 

 

 
(b) 

 
Figure ‎5-9 (a) Tensile toughness of the DP500 steel as measured under the experimental flow 

curve and predicted using RVEs of different sizes, and (b) with an enlarged scale. 
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5.1.2 DP600 Dual Phase Steel 

According to the quantitative metallography results, the martensite volume fraction in 

DP600 steel was 0.047. Based on the martensite content, the martensite aspect ratio and 

the martensite size distribution in DP600 steel presented in Section ‎3.1, 6 RVEs with 

different sizes were generated. Table ‎5-2 shows the specifications of these RVEs. Modeling 

results for each RVE is presented in a figure as indicated in Table ‎5-2.  

Table ‎5-2 Specifications of the RVEs generated for micromechanical modeling of DP600 steel 

RVE Size 

Cube Side (µm) 

Number of Martensite 

islands inside the RVE 

Effective volume Fraction of 

Martensite inside the RVE 
Modeling Results 

6.0 11 0.047 Figure ‎5-10 

6.5 14 0.047 Figure ‎5-11 

7.3 20 0.048 Figure ‎5-12 

7.9 26 0.047 Figure ‎5-13 

8.2 32 0.047 Figure ‎5-14 

8.8 36 0.046 Figure ‎5-15 

 

As it was seen in Section ‎5.1.1, the experimental and numerical flow curves of DP500 steel 

were in good agreement and the ultimate tensile strength of steel was predicted with less 

than 0.3% of error. Many attempts were made to predict the flow curve of DP600 steel 

with a negligible deviation from the experimental flow curve similar to DP500 steel; 

however, as can be seen in Figure ‎5-10 to Figure ‎5-15, the prediction of the DP600 steel 

flow curve from the onset of plastic deformation up to uniform elongation was not as 

accurate as it was for DP500 steel.  

When the number of martensite islands in the RVE is 11 and 14, there is a notable 

difference between the predicted and experimental flow curves up to a plastic strain of 

0.08. At greater strains, the numerical and experimental curves almost coincided.  

By increasing the RVE size to 7.9x7.9x7.9 µm3 with 26 martensite islands inside the RVE, 

the predicted flow curve precisely corresponded with the flow curve of DP600 steel at 
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strains greater than 0.07. However, increasing the RVE size to larger than 7.9x7.9x7.9 µm3 

with more martensite islands inside the RVE increased the modeling time but did not 

improve the accuracy of the results. And, the deviation between the numerical and 

experimental flow curves up to plastic strains of 0.07 did not decrease.  

While the experimental ultimate tensile strength (UTS) was 686.2 MPa, the RVEs with 11, 

14, 20, 26, 32 and 36 martensite islands predicted an ultimate tensile strength of 688.4, 

691.3, 685.2, 686.0, 685.3 and 687.9 MPa, respectively. Therefore, an RVE with a size of 

7.9x7.9x7.9 µm3 with 26 martensite islands resulted in the most accurate prediction of the 

flow curve and the predicted tensile strength of DP600 steel had a 0.03% error. 

In order to determine the accuracy of the predicted flow curves, the experimental and 

predicted tensile toughness of the DP600 steel were compared for true plastic strains 

greater than 0.07. The predicted toughness of the steel was numerically calculated using 

more than 2000 data points. As it is shown in Figure ‎5-16(a), the all RVEs predicted the 

toughness of the steel quite accurately. For a more precise comparison, Figure ‎5-16(a) is 

enlarged in Figure ‎5-16(b), and it can be seen that the toughness predicted using RVEs 

with a size of 7.9, 8.2 and 8.8 µm3 are similar to the experimental toughness. Since the 

required modeling time and resources for the RVE with a size of 7.9 µm3 is shorter, it is 

suggested as the optimum RVE size.   
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Figure ‎5-10 Micromechanical modeling results for DP600 steel with 11 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.125, (d) distribution of equivalent strain in the RVE at ε≈0.15, (e) flow curve of 

RVE and (f) numerical and experimental flow curves of DP600 steel. 
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Figure ‎5-11 Micromechanical modeling results for DP600 steel with 14 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.125, (d) distribution of equivalent strain in the RVE at ε≈0.15, (e) flow curve of 

RVE and (f) numerical and experimental flow curves of DP600 steel. 
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Figure ‎5-12 Micromechanical modeling results for DP600 steel with 20 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.125, (d) distribution of equivalent strain in the RVE at ε≈0.15, (e) flow curve of 

RVE and (f) numerical and experimental flow curves of DP600 steel. 
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Figure ‎5-13 Micromechanical modeling results for DP600 steel with 26 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.125, (d) distribution of equivalent strain in the RVE at ε≈0.15, (e) flow curve of 

RVE and (f) numerical and experimental flow curves of DP600 steel. 
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Figure ‎5-14 Micromechanical modeling results for DP600 steel with 32 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.125, (d) distribution of equivalent strain in the RVE at ε≈0.15, (e) flow curve of 

RVE and (f) numerical and experimental flow curves of DP600 steel. 
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Figure ‎5-15 Micromechanical modeling results for DP600 steel with 36 martensite islands inside 

the RVE: (a) RVE, (b) distribution of martensite in the RVE, (c) distribution of von Mises stress in 

the RVE at ε≈0.125, (d) distribution of equivalent strain in the RVE at ε≈0.15, (e) flow curve of 

RVE and (f) numerical and experimental flow curves of DP600 steel. 
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Figure ‎5-16   (a) Tensile toughness of the DP600 steel as measured under the experimental flow 

curve and predicted using RVEs of different sizes, and (b) with an enlarged scale. 
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The optimum RVE size for DP500 and DP600 was 12.7x12.7x12.7 µm3 and 7.9x7.9x7.9 

µm3, respectively, with each RVE containing 26 martensite islands. It can be concluded 

that, the optimum RVE should be sufficiently large to accommodate at least 25 martensite 

islands. And thus, the size distribution of martensite in the RVEs will be sufficiently close 

to the size distribution of martensite in the real microstructure. Since the average 

martensite size in DP500 and DP600 was 0.90 and 0.56 µm, respectively, the RVE in DP500 

steel with 26 martensite islands was larger than the RVE with 26 martensite islands in 

DP600 steel. 

Considering the experimental flow curves of DP600 steel presented in Figure ‎3-15, the 

yield point phenomenon had an influence on the flow behaviour of DP600 steel. During 

yield point elongation, many dislocations become mobile before the steel begins to work 

harden. This effect was not considered in Equation ‎2-10. Therefore, the constitutive 

behaviour of the phases in the microstructure of DP600 steel was not predicted properly. 

As a result, there is a deviation between the numerical and experimental flow curves of 

DP600 steel at lower strains. As can be seen in the numerical flow curves presented in 

Figure ‎5-10 to Figure ‎5-15, in all cases, the initial deviation between the numerical and 

experimental flow curves gradually decreases as deformation increases. Once a strain of 

0.07 has been reached in the optimum RVE, the work hardening has been sufficiently 

increased in the microstructure of DP600 steel and the effect of yield elongation has 

become negligible. Therefore, Equation ‎2-10 is able to precisely describe flow behaviour 

of the constituents in the microstructure of DP600 steel. Eventually, the numerical and 

experimental flow curves become approximately identical.      
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5.2 Influence of Mesh Size on Numerical Flow Curves 

To investigate the influence of mesh size on the numerical flow curves of DP500 and 

DP600 steel, the RVEs with optimum size were meshed with elements having a size of 

0.025, 0.050 and 0.075 µm at the surfaces of the RVE cubes. 

The influence of mesh size on the predicted flow curves is presented in Figure ‎5-17 and 

Figure ‎5-18 for DP500 and DP600 steels, respectively. As can be seen, the mesh size 

caused no notable difference in the flow curves. Only in the case of DP500 steel, as can be 

seen in Figure ‎5-17(b), the RVE with an element size of 0.075 µm slightly overestimated 

the flow curve. This result is in good agreement with the previous results reported by 

Uthaisangsuk et al [35]. They investigated the effects of different mesh sizes from 

100×100 to 260×260 elements on the flow behaviour of RVE of DP600 steel with 27 vol% 

of martensite and found small discrepancies in flow behaviour of the RVEs with different 

mesh sizes. 

In view of the overestimation made by the 0.075 µm mesh in DP500 steel and also since 

ABAQUS performs mesh refinement during the simulation of the RVEs with 0.075 µm 

mesh, 0.050 µm is suggested as the optimum element size on the surfaces of the RVEs.  

The computer which was used to carry out the simulations was a Dell T3600 with Intel® 

Xeon® processor E5-1600 with six cores and 32 GB of 1600 MHz DDR3 memory. The 

modeling time for RVEs with 0.025 µm mesh size was at least 12 times more than that for 

the RVEs with a 0.050 µm mesh size and the accuracy of the results did not improve. 

Figure ‎5-19 to Figure ‎5-24 show the discretization of the RVEs in DP500 and DP600 steels at 

true strains of 0.14 and 0.16, respectively. Cross sections of the RVEs are also presented at 

different depths. 
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Figure ‎5-17 Effect of mesh size on modeling results for DP500 steel with 26 martensite islands 

inside the RVE: (a) flow curves of RVEs and (b) numerical and experimental flow curves of DP500 

steel. 
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Figure ‎5-18 Effect of mesh size on modeling results for DP600 steel with 26 martensite islands 

inside the RVE: (a) flow curves of RVEs and (b) numerical and experimental flow curves of DP600 

steel. 
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Figure ‎5-19 (a) RVE of DP500 with 26 martensite islands, (b) distribution of equivalent strain 

inside the RVE at ε=0.14 with mesh size of 0.025 µm, and (c-f) cross-sections of the RVE at 

different depths. The depths of sections are shown on the RVE. 
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Figure ‎5-20 (a) RVE of DP500 with 26 martensite islands, (b) distribution of equivalent strain 

inside the RVE at ε=0.14 with mesh size of 0.05 µm, and (c-f) cross-sections of the RVE at 

different depths. The depths of sections are shown on the RVE. 
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Figure ‎5-21 (a) RVE of DP500 with 26 martensite islands, (b) distribution of equivalent strain 

inside the RVE at ε=0.14 with mesh size of 0.075 µm, and (c-f) cross-sections of the RVE at 

different depths. The depths of sections are shown on the RVE. 
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Figure ‎5-22 (a) RVE of DP600 with 26 martensite islands, (b) distribution of equivalent strain 

inside the RVE at ε=0.14 with mesh size of 0.025 µm, and (c-f) cross-sections of the RVE at 

different depths. The depths of sections are shown on the RVE. 
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Figure ‎5-23 (a) RVE of DP600 with 26 martensite islands, (b) distribution of equivalent strain 

inside the RVE at ε=0.14 with mesh size of 0.05 µm, and (c-f) cross-sections of the RVE at 

different depths. The depths of sections are shown on the RVE. 
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Figure ‎5-24 (a) RVE of DP600 with 26 martensite islands, (b) distribution of equivalent strain 

inside the RVE at ε=0.14 with mesh size of 0.075 µm, and (c-f) cross-sections of the RVE at 

different depths. The depths of sections are shown on the RVE. 
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5.3 Influence of Element Type on Numerical Flow Curves 

C3D4 and C3D10 are the element types which are available in the Digimat software for 3D 

RVEs. C3D4 and C3D10 elements are shown in Figure ‎5-25. Both C3D4 and C3D10 are 

general purpose tetrahedral elements with one integration point and four integration 

points, respectively. The node numbering follows the convention of Figure ‎5-25. 

 

(a) 

 

(b) 

Figure ‎5-25 Configuration of (a) C3D4 and (b) C3D10 elements 

The effect of element type on the numerical flow curves was investigated by discretizing 

the DP500 and DP600 steel optimum RVEs with a mesh of either C3D4 or C3D10 elements. 

The flow curves that were obtained were practically identical. 

The computer which was used to carry out the simulation was a Dell T3600 with Intel® 

Xeon® processor E5-1600 with six cores and 32 GB of 1600 MHz DDR3 memory. The 

modeling time when using C3D10 elements was at least 24 times greater than that when 

C3D4 elements were used. Modeling the DP600 RVE with 26 martensite islands using 

C3D10 elements and 0.050 µm mesh size required almost 99% of the computer memory; 

hence it was not possible to model larger RVEs with C3D10 elements since this type of 

element required more computer memory compared to C3D4 elements. 

In conclusion, C3D4 is suggested as the best element type for the 3D RVEs. C3D4 elements 

were used by Ramazani et al [40] for 3D RVEs and provided accurate results.  
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5.4 Numerical Flow Curves of Constituents 

During the micromechanical modeling of DP500 steel, ferrite was considered to be the 

matrix and martensite was the inclusion. In DP600 steel, the combination of ferrite and 

bainite was considered as the matrix and martensite islands as inclusions. The Digimat 

software provides separate numerical flow curves for the matrix and the inclusions in a 

RVE.  

Figure ‎5-26 and Figure ‎5-27 show the flow curves of DP500 and DP600 steels and their 

constituents predicted from the optimum RVE. As it can be seen in these figures, ferrite 

was responsible for plastic deformation and martensite was responsible for strengthening 

the steel. In both steels, martensite islands generally experienced elastic deformation or 

small levels of plastic deformation.  

As described in Section ‎3.4, due to stronger solid solution hardening and finer ferrite grain 

size, the strength of the matrix in DP600 steel was greater than the strength of the matrix 

in DP500 steel. Hence, as it can be seen in Figure ‎5-28, the flow curve of the matrix (ferrite 

+ bainite) in DP600 steel lies above the flow curve of the matrix (ferrite) in DP500 steel.  

The ultimate tensile strengths of DP500 matrix and DP500 steel are 572 and 647 MPa, 

respectively. Also, the ultimate tensile strengths of DP600 matrix and DP600 steel are 644 

and 687 MPa, respectively. It is evident that martensite had a greater contribution in 

strengthening the DP500 steel compared to the DP600 steel. Two reasons are attributed 

for the greater contribution of martensitic strengthening in DP500 steel compared to 

DP600 steels:  

 As indicated in Table ‎3-4, since the carbon content of martensite in DP500 steel 

was 0.265 and in DP600 steel was 0.116, the strength of the martensite in DP500 

steel was notably more than that in the DP600 steel.  

 Since the martensite volume fraction in DP500 steel was 9.0 vol% and in DP600 

steel it was only 4.7 vol%, it led to more strengthening in the DP500 steel. 
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Figure ‎5-26 Flow curves of DP500 steel and its constituents as predicted by Digimat software 

 
 

 
Figure ‎5-27 Flow curves of DP600 steel and its constituents as predicted by Digimat software 
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Figure ‎5-28 Flow curves of the matrix: ferrite in DP500 steel and ferrite + bainite in DP600 steel 

as predicted by Digimat software 

 

5.5 Distribution of Stress and Strain in the Microstructure 

To analyze the stress and strain distributions in the microstructures of DP500 and DP600 

steels during a uniaxial tensile test, two 2D RVEs were generated in the Digimat software 

and a tensile test was simulated in ABAQUS. The DP500 and DP600 RVEs are shown in 

Figure ‎5-29. Simulation results are presented in Figure ‎5-30 for DP500 steels at true strains 

of 0.05, 0.09 and 0.14. Also, simulation results are presented in Figure ‎5-31 for DP600 

steels at true strains of 0.04, 0.09 and 0.16.  

 
(a) 

 
(b) 

Figure ‎5-29 2D RVE of (a) DP500 steel contains 42 martensite islands, and (b) DP600 steel 

contains 37 martensite islands. 

Uniaxial 

Tension 
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Considering the figures showing the strain distributions in the microstructures, in both 

DP500 and DP600 steels, the matrix deformed plastically and the martensite islands 

experienced elastic deformation or very small plastic strains.  

As it can be seen, localization of deformation occurred due to the formation of 45ᵒ shear 

bands. Also, localized deformation happened at the ferrite/martensite interface. During 

plastic deformation, while the matrix tends to deform plastically, most of the martensite 

islands remain in elastic condition and resist the deformation of the matrix. Hence, work 

hardening increases at the interface and results in localized deformation. In terms of 

micromechanisms of plastic deformation, dislocations which are located inside ferrite 

grains move toward the grain boundaries. If a martensite island exists at the ferrite grain 

boundary it avoids further movement of dislocations and causes dislocation accumulation 

at the ferrite/martensite interface. Therefore, plastic strain localizes at the interface. As 

can be seen in Figure ‎5-26 and Figure ‎5-27, the difference between the mechanical 

properties of martensite and of the matrix is greater in DP500 steel than in DP600 steel. 

Hence, mechanical incompatibility of ferrite and martensite in DP500 steel is greater than 

in DP600 steel. This causes more localized deformation in the microstructure of DP500 

steel compared to DP600 steel. According to the modeling results indicated in 

Figure ‎5-30(c) and Figure ‎5-31(c), the greatest localized strain in DP500 was 1.914 while it 

was 0.686 in DP600 steel. 

Localized deformation causes microstructural damage. Since DP500 steel contains more 

martensite compared to DP600 steels, microstructural damage prior to necking was 

greater in DP500 steel. As a result, as it was indicated in Section ‎3.5, the void area fraction 

in DP500 and DP600 steels at true strain of 0.14 and 0.16 was approximately 0.18 and 

0.12%, respectively. 

Considering the figures showing the stress distributions in the microstructures of DP500 

and DP600 steels, it can be seen that martensite islands carry the external loading. The 

von Mises stress in the martensite of DP500 and DP600 steels (Figure ‎5-30 and Figure ‎5-31) 

reached to 1.817 and 1.045 GPa, respectively. DP500 martensite islands could carry 
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greater stresses due to their higher strength compared to DP600 martensite. Also, the 

average von Mises stress in the matrix of DP500 and DP600 steels reaches 500-600 MPa 

and 600-700 MPa, respectively. In DP600 steel, the matrix reached greater stresses 

because of its greater strength compared to the DP500 matrix. Comparing the distribution 

of stress in DP600 steel at ε=0.16 and in DP500 steel at ε=0.14, it can be seen that the 

distribution of stress in the microstructure of DP600 steel is more homogenous due to 

better mechanical compatibility of the matrix and the martensite. 
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(a) 

 

(b) 

 

(c) 

Figure ‎5-30 Distribution of strain (left) and stress (right) in DP500 RVE presented in 

Figure ‎5-29(a) at true strains of (a) 0.05, (b) 0.09, and (c) 0.14. 
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(a) 

 

(b) 

 

(c) 

Figure ‎5-31 Distribution of strain (left) and stress (right) in DP600 RVE presented in 

Figure ‎5-29(b) at strains of (a) 0.04, (b) 0.09, and (c) 0.16. 
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When some martensite islands are located close to each other, as it can be seen in 

Figure ‎5-32(a), it causes stress concentration. Such localized stress occurred more 

frequently in DP500 steel compared to DP600 steel due to the greater martensite content. 

As it is shown in Figure ‎5-32(b) and (c) this can lead to the nucleation of voids inside the 

martensite islands or in the matrix. 

 

 
(a) 

 

 
(b) 

 
(c) 

Figure ‎5-32 (a) Stress concentration in the RVE of DP500 steel where martensite islands lie close 

to each other, and nucleation of voids in the microstructure of DP500 steel (b) inside a single 

martensite island and (c) in the vicinity of three martensite islands. M and GB indicate 

martensite particles and grain boundaries, respectively. 
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6 Conclusions and Recommendations for Future Work 

In this research, 3D RVE-based micromechanical modeling was carried out and the flow 

curves of DP500 and DP600 dual phase steels in uniaxial tension, were accurately 

predicted. Modeling was carried out up to the onset of necking.  

RVEs were generated using the Digimat-FE software based on characteristics of real 

microstructures obtained from quantitative metallography. Since distributions of alloying 

element in the microstructure were approximately homogeneous and since void area 

fractions in the microstructure of the steels were negligible, the constitutive behaviour of 

each phase/constituent of DP500 and DP600 steels could be determined using 

Equation ‎2-10. Application of boundary conditions and loading were carried out in 

Digimat-FE and the simulation of a tensile test on the RVE was performed in ABAQUS. To 

obtain numerical flow curves of the dual phase steels, first-order homogenization was 

carried out in Digimat-MF. The effects of RVE size and element type and size on the 

accuracy of modeling results were investigated. The following conclusions can be drawn 

from this research: 

 The flow curve of DP500 steel was accurately predicted up to the onset of macroscopic 

plastic instability and the ultimate tensile strength of the steel was predicted with less 

than 0.3% error.  

 In the case of DP600 steel, the numerical model accurately predicted the experimental 

flow curve of steel after a strain of 0.07. Since this DP600 steel exhibited yield point 

elongation but this was not considered in the constitutive behaviour of the individual 

constituents, it was not possible to accurately predict the flow curve of the steel at lower 

strains. However, at higher strain levels, the effect of yield phenomenon became 

negligible and the flow curve of DP600 steel was accurately predicted. 

 The RVE sizes of 12.7x12.7x12.7 µm3 and 7.9x7.9x7.9 µm3 were found to be the 

optimum RVE sizes for DP500 and DP600 steel, respectively, and precisely predicted the 

flow curves of the steels.  
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 For both predicted flow curves of DP500 and DP600 steels, the optimum RVEs 

contained 26 martensite islands. The size distributions of martensite particles in these 

RVEs were very similar to those in the actual microstructures of DP500 and DP600 steels. 

 The numerical simulation required that each RVE be discretized into a 3D finite element 

mesh. It was found that the optimum element size on the surface of RVE is 0.050 µm both 

in terms of the accuracy of the predicted results and in terms of minimizing the 

computation time. 

 Both C3D4 and C3D10 element types led to similar accuracy of results. However, C3D10 

elements significantly increased the computation time (at least 24 times more) and 

required more computational resources. Therefore, C3D4 elements are recommended as 

the most suitable element type. 

 2D RVE-based models showed that the matrix in DP500 and DP600 steels is responsible 

for plastic deformation and the martensite islands are responsible for carrying external 

loads. This is consistent with the mechanical metallurgy of dual phase steels.  

 The distribution of stress was more homogenous in the microstructure of DP600 steel 

compared to DP500 steel due to greater mechanical compatibility of phases in the 

microstructure of DP600 steel. 

 It was observed that localization of deformation occurred in the microstructures of 

DP500 and DP600 steels due to the formation of shear bands and mechanical 

incompatibility of ferrite and martensite. Interfacial localized deformation was greater in 

DP500 steel since mechanical incompatibility of ferrite and martensite was greater in 

DP500 steel compared to DP600 steel. 

 Localized deformation also occurred in the microstructure of steels when martensite 

islands were located near to each other. This might cause nucleation of voids inside the 

martensite islands or in the matrix. 
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This research had made several contributions to the micromechanical modeling of dual 

phase steels. Nevertheless, further work is recommended in the following areas: 

 The methodology presented in this thesis can be used to predict flow curves of dual 

phase steels with martensite contents less than 10 vol%. In higher strength grades of dual 

phase steels such as DP780 and DP980 steels, the volume fraction of martensite may 

reach 35 vol%. As it was shown in Figure ‎2-1, in this case the martensite is not separated 

into isolated islands but it rather form a continuous network throughout the 

microstructure. Hence, the quantitative metallography procedure which was used in this 

research, i.e. determination of the aspect ratio and size distribution of martensite islands, 

is not applicable to the morphology of martensite in the microstructure of DP780 and 

DP980 steels. Therefore, it is recommended that a quantitative method which can 

determine the morphological features of martensite in higher grades of dual phase steel 

be investigated in order to generate RVEs similar to the actual microstructures of these 

grades of steel. 

 Another recommendation for further studies is to investigate the effect of yield point 

phenomenon on the constitutive behaviour of ferrite, bainite and martensite in dual 

phase steels. 

 The parameters in Equation ‎2-10 can be determined without ambiguity. Therefore it is 

a suitable constitutive equation for predicting flow curves of the different phases under 

quasi-static forming conditions. For industrial metal forming processes that are carried out 

at higher strain rates, it is recommended to develop a similar equation that is dependent 

on strain rate. Hence, it will be applied more precisely for forming processes such as 

electrohydraulic forming.  
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Appendix A 

Calculation of the flow behaviour of ferrite, martensite and bainite in DP500 and DP600 

steels is presented in the following. Results are used in Section ‎4.1. 

A1. Flow Behaviour of Ferrite in DP500 Steel 

(MPa)96.226=11(0.01)+(0.03)60+0.01)(45+)02.0(60+80(1.83)+77=σ0  

(MPa)35=007.0× 5000=Δσf
c

 

5-

6-
6-
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ε)exp(-5.41-1
1.25+261.96=

=
)10×(5.54×)

10×5.54
10(

ε)×)
10×5.54

10(×exp(-3-1
×2.5x10×80000×3×0.33+35+226.96=σ

 

 

A2. Flow Behaviour of Martensite in DP500 Steel 

(MPa)96.226=11(0.01)+(0.03)60+0.01)(45+)02.0(60+80(1.83)+77=σ0  

(MPa)651.23=1610.265×3065=Δσm
c -  
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10-

10

)exp(-123-1
1.25+878.19=

=
)10×(3.8×41

ε)×41×exp(-3-1
×2.5x10×80000×3×0.33+651.23+226.96=σ

ε
 

 

A3. Flow Behaviour of Ferrite in DP600 Steel 

 

(MPa)30=006.0× 5000=Δσf
c

 

(MPa)225.71=11(0.214)+60(0.181)+45(0.015)+80(0.057)+60(0.175)+80(1.497)+77=σ0
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A4. Flow Behaviour of Martensite in DP600 Steel 

 

(MPa)54.941=1610.116×3065=Δσm
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A5. Flow Behaviour of Bainite in DP600 Steel 

 

(MPa)74.36=047.0×54.194+92.0×30=VΔσ+VΔσ=Δσ m
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(MPa)225.71=11(0.214)+60(0.181)+45(0.015)+80(0.057)+60(0.175)+80(1.497)+77=σ0

(MPa)225.71=11(0.214)+60(0.181)+45(0.015)+80(0.057)+60(0.175)+80(1.497)+77=σ0
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