
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

2014 

Effect of grain refiners on squeeze casting of magnesium alloy Effect of grain refiners on squeeze casting of magnesium alloy 

AM60 AM60 

Yanda Zou 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Zou, Yanda, "Effect of grain refiners on squeeze casting of magnesium alloy AM60" (2014). Electronic 
Theses and Dissertations. 5153. 
https://scholar.uwindsor.ca/etd/5153 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F5153&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/5153?utm_source=scholar.uwindsor.ca%2Fetd%2F5153&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


 
 

 

 

EFFECT OF GRAIN REFINERS ON SQUEEZE CASTING 

OF MAGNESIUM ALLOY AM60  

 

By 

Yanda Zou 

 

A Thesis  

Submitted to the Faculty of Graduate Studies  

through the Department of Mechanical, Automotive and Materials Engineering 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Applied Science 

 at the University of Windsor 
 

 

Windsor, Ontario, Canada 

2014 

©  2014 Yanda Zou 



 

EFFECT OF GRAIN REFINERS ON SQUEEZE CASTING 

OF MAGENSIUM ALLOY AM60 

by 

Yanda Zou 

 

APPROVED BY: 

______________________________________________ 

X. Chen 

Department Electrical and Computer Engineering 

 

______________________________________________ 

X. Nie 

Department of Mechanical, Automotive and Materials Engineering 

 

______________________________________________ 

H. Hu, Advisor 

Department of Mechanical, Automotive and Materials Engineering 
 

 

May 13, 2014



 

iii 
 

 

DECLARATION OF ORIGINALITY 
 

 

I hereby certify that I am the sole author of this thesis and that no part of this 

thesis has been published or submitted for publication. 

I certify that, to the best of my knowledge, my thesis does not infringe upon 

anyone’s copyright nor violate any proprietary rights and that any ideas, techniques, 

quotations, or any other material from the work of other people included in my thesis, 

published or otherwise, are fully acknowledged in accordance with the standard 

referencing practices. Furthermore, to the extent that I have included copyrighted 

material that surpasses the bounds of fair dealing within the meaning of the Canada 

Copyright Act, I certify that I have obtained a written permission from the copyright 

owner(s) to include such material(s) in my thesis and have included copies of such 

copyright clearances to my appendix.  

I declare that this is a true copy of my thesis, including any final revisions, as 

approved by my thesis committee and the Graduate Studies office, and that this thesis has 

not been submitted for a higher degree to any other University or Institution. 

 

 

 

 

 

 



 

iv 
 

 

ABSTRACT 

 

The effect of hexachloroethane (C2Cl6) and calcium carbide (CaC2) as grain 

refiners added into the squeeze casting AM60 magnesium alloys was investigated in this 

study. The results of thermal analysis and microstructural analysis indicate the occurrence 

of heterogeneous nucleation of primary magnesium during solidification. The 

microstructural analysis suggests that the nucleation behaviors of C2Cl6/CaC2-treated 

AM60 alloys may be attributed to the increase in nuclei and nucleation rate during the 

solidification of the magnesium alloy. Grain size measurements indicated that both C2Cl6 

and CaC2 have the capability to unify the average grain sizes of squeeze cast magnesium 

alloy AM60 among different section thicknesses. The tensile testing indicate the 

improved tensile properties especially in the thick sections. The corrosion tests showed 

an increase in corrosion resistance as the grain refiners were added into the squeeze cast 

alloy AM60. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Research Background 

With an increasing emphasis on vehicle weight reduction, the demand for light 

weight automotive components continues to grow. Magnesium alloys are one of the 

lightest of all structural materials which makes them very attractive in the automotive 

industry. Aluminum and manganese are two alloying elements that are usually added in 

magnesium to improve the machinability and corrosion resistance behaviours of 

magnesium alloys [1]. Applications of casting magnesium alloys includes engine blocks, 

steering column components, steering knuckles, suspension links and various powertrain 

components.  

Conventional die casting processes are well-developed for the manufacturing of a 

wide variety of aluminum and magnesium automotive parts. They possess many 

advantages such as low manufacturing cost, excellent dimensional accuracy and good 

repeatability. Casting defects, however, has been a major factor that limited the 

performance of die casting products. One of the most common die casting defects is the 

gas and shrinkage porosities, especially in areas with relatively thick cross sections. 

Squeeze casting, on the other hand, is an established process that build upon conventional 

die casting practices. High applied pressure in this process could keep entrapped gases in 

solution and squeeze molten metal from hot spots to incipient shrinkage pores. As a 

result, the porosity in squeeze casting components is almost eliminated. Consequently, 

superior mechanical properties of the casting resulting from the pore-free product can be 

achieved [2].  
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However, components made by squeeze casting usually contain heavy and thick 

cross sections, in which coarse grain structure tends to form. To minimize the 

microstructure inhomogeneity, grain structure in squeeze cast components need to be 

refined. The previous study by Wallace et al [3] showed hexachloroethane (C2Cl6) could 

effectively refined the grain structure of sand cast magnesium alloy AZ91. Calcium and 

its compounds (CaC2) also have been proved to have the ability to stabilize the grain size 

of AZ91 alloys [4, 5]. However, there is almost no studies on solidification behaviour and 

grain structure development of squeeze casting magnesium alloy AM60 refined by C2Cl6 

or CaC2. 

 

1.2 Objectives of this research 

The objectives of this study are: 

1. To investigate the effect of two grain refiners i.e. C2Cl6 and CaC2 on grain 

refinement of squeeze cast magnesium alloy AM60; 

2. To study the effects of section thicknesses on solidification behaviours of refined 

squeeze cast alloy AM60; 

3. To analyze the effects of grain refines on mechanical properties of refined 

squeeze cast alloy AM60; 

4. To characterize microstructures of refined squeeze cast alloy AM60. 

5. To understand the grain refining mechanisms of the tested grain refiner for 

squeeze cast alloy AM60; and 
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6. To evaluate the influence of the grain refiner on corrosion resistance behaviours 

of squeeze cast AM60 alloys. 

 

1.3 Thesis Layout 

The thesis contains six chapters. Chapter 1 provides a general introduction of 

squeeze casting AM60 alloy. Chapter 2 is the literature review on the current 

development of squeeze casting and the grain refinement processes of magnesium alloys. 

The detailed experimental procedures are described in Chapter 3. The experimental 

results and discussion of the thermal analysis, microstructures characterization, 

mechanical testing, corrosion behaviour and fractograply are given in Chapter 4. In 

Chapter 5, the conclusions of the present work are summarized, recommendations for the 

future work are given in Chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Metallurgical Aspects of Magnesium Alloys 

Today’s interest in magnesium alloys for automotive applications is based on the 

combination of high strength and low density. Magnesium is the lightest of all 

engineering structural metals with a density of 1.74 g/cm3 [1]. It is 35% lighter than 

aluminum and over four times lighter than steel [6]. For this reason, magnesium alloys 

are very attractive as structural material in all applications where weight savings are of 

great concern. Meanwhile, magnesium has the highest strength-to-weight ratio of any 

commonly used metals. Many other advantages including good castability, high die 

casting rates, dimensional accuracy and excellent machinability promote the utilization of 

this interesting lightweight metal in the automotive industry [7, 8]. Magnesium is barely 

used for engineering applications without being alloyed with other metals since pure 

magnesium has poor mechanical properties. The most common alloying elements with 

magnesium are aluminum, zinc, manganese and zirconium. The effects of these elements 

are briefly described as follows [9, 10]. 

Aluminum: Al has a maximum solubility of 12.7 wt% at eutectic temperature. It 

helps to increase the alloy strength and refine the grain size. 

Zinc: Zn is a hardening agent which increase the strength of the alloy. It is 

commonly used up to 6.0 wt% with the addition of zirconium. It leads to a finer grain 

structure but also makes the alloy brittle even it is heat treatable. 
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Manganese: Improve the corrosion resistance of magnesium alloys by eliminating 

the iron elements. Up to 2.2 wt% is used with considerably less in conjunction with Al 

and Zn [11]. 

Zirconium: Excellent magnesium grain refiner, provide finer microstructure and 

as a result, increase the material strength.  

The current magnesium components, including instrument panels, steering wheel 

armatures, steering column supports, seats, valve covers, and transfer cases, are mainly 

manufactured by high pressure die casting processes with conventional magnesium 

alloys: Mg-Al-Zn, AZ series and Mg-Al-Mn, AM series. Over 80% of the magnesium 

products are made of these two series [6, 12]. 

Specific strength and specific stiffness of materials are important for the design of 

weight saving components. The specific strength and stiffness of magnesium alloys are 

compared with both aluminum and iron in Figure 2-1. There is little difference in specific 

stiffness between Mg, Al and Fe. In the meantime, the specific strength of Mg is much 

higher than Al and Fe in the ratio of 14% and 67% [6]. 

The applications of magnesium alloys in the automotive industry are limited to 

the low temperature components simply due to the insufficient creep resistance of the 

alloys at temperatures above 130℃ [13]. Softening the unstable phase causes the grain 

boundary sliding which has been observed to be the main creep mechanism in 

magnesium alloys at high temperatures. The idea of adding calcium and lithium into the 

alloys to eliminate the thermal unstable phases has been studied for decades. However, 

until today, very few practical methods have been developed [14]. 
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Figure 2- 1. Comparison of basic structural properties of magnesium with aluminum and 

iron [6]. 

 

2.2 Die Casting Process 

2.2.1 Die Casting 

Die casting is a metal casting process that is characterized by forcing molten 

metal under high pressure into a mold cavity. The mold cavity is usually created using 

two hardened tool steel dies, which have been machined into shape and work similarly to 

an injection mold during the process. The dies, can be designed to produce complex 

shapes with a high degree of accuracy and repeatability. Parts can be sharply defined, 

with smooth or textured surfaces, and are suitable for a wide variety of attractive and 

serviceable finishes [15]. Figures 2-2 and 2-3 schematically show the two types of 

commonly used die casting machines, hot chamber and cold chamber die casting [16]. 
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Figure 2- 2. Schematic diagram of hot chamber die cast machine [16]. 

 

 

Figure 2- 3. Schematic diagram of cold chamber die cast machine [16]. 
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2.2.1.1 Hot Chamber Die Casting 

Hot chamber machines are used primarily for zinc, copper, magnesium and other 

low melting point alloys that do not readily attack and erode metal pots, cylinders and 

plungers. The injection mechanism of a hot chamber machine is immersed the molten 

metal bath of a metal holding furnace. The furnace is attached to the machine by a metal 

feed system called a gooseneck. As the injection cylinder plunger rises, a port in the 

injection cylinder opens, allowing molten metal to fill the cylinder. As the plunger moves 

downward it seals the port and force molten metal through the gooseneck and nozzle into 

the die cavity. After the metal has solidified in the die cavity, the plunger is withdrawn, 

and the die opens and the casting is ejected [17]. 

 

2.2.1.2 Cold Chamber Die Casting 

Cold chamber machine are used for alloys such as aluminum and other alloys 

with high melting points. The molten metal is poured into a “cold chamber”, or 

cylindrical sleeve, manually by a hand ladle or by an automatic ladle. A hydraulically 

operated plunger seals the cold chamber port and forces metal into the locked die at high 

pressure. After the solidification process of the metal, a product is ejected by pins and the 

plunger returns to the original position [17]. 

 

2.2.2 Advantages of Die Casting 

Die casting is an efficient and economical alternative to the other processes. 

When used to its maximum potential it can replace assemblies of a variety of parts 
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produced by various manufacturing processes at significant saving in cost and labor. The 

advantages of die casting are as follows: 

1. The die casting can provide excellent dimensional accuracy and stability; 

2. Secondary machining operations are reduced or eliminated because of the smooth 

surfaces of die casting products; 

3. Die casting provides complex shapes with high levels of tolerance; 

4. The die casting has the ability to accomplish high-speed production; and 

5. Die cast parts are stronger than plastic injection moldings with the same 

dimensions. Thin wall castings are stronger and lighter than other casting methods 

[19, 20]. 

 

2.2.3 Disadvantages of Die Casting 

There are three major disadvantages of die casting which includes: 

1. The cost of dies and other equipment is very high; 

2. It is not economical for a small quantity of casting production; and 

3. Porosity problem such as shrinkage porosity, hydrogen dissolve porosity, 

lubricant vaporization porosity and trapped air porosity [19, 20]. 

 

2.3 Squeeze Casting Process 

2.3.1 Squeeze Casting Concept 

Squeeze casting is a process which involves the solidification of a molten metal in 

a closed die under an imposed high pressure. It is also known as liquid metal forging, 
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extrusion casting and pressure crystallization [2]. The high applied pressure, which is 

several orders of magnitude greater than the melt pressure developed in normal casting 

processes, keeps entrapped gases in solution and squeeze molten metal from hot spots to 

incipient shrinkage pores. As a result, the porosity in a squeeze-cast component is almost 

eliminated. Furthermore, due to the elimination of the air gap at the liquid-mould 

interface by the applied high pressure, the heat transfer across die surfaces is enhanced, 

which increases solidification and cooling rates. Thus, superior mechanical properties of 

the casting resulting from the pore-free fine microstructure are achieved in squeeze-

casting processes [2, 21]. 

 

2.3.2 Squeeze Casting Process 

Generally, the squeeze casting-fabricated engineering components are fine 

grained with excellent surface finish and have almost no porosity [21]. The mechanical 

properties of these products are significantly improved over the conventional castings 

such as sand casting and gravity casting. The process of squeeze casting which is 

schematically in Figure 2-4 involves the following steps: 

1. A pre-specified amount of molten metal is poured into a preheated die cavity, 

located on the bed of a hydraulic press; 

2. The pressure is activated to close off the die cavity and to pressurize the liquid 

metal; 

3. The pressure is applied on the metal shortly until the complete of solidification. 

The adding of pressure can not only increase the rate of heat flow but also 

eliminate the shrinkage porosity; and 
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4. The upper punch returns to the original position and the product is ejected [2]. 

 

 

Figure 2- 4. Schematic diagram of the squeeze casting process [2]. 
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Two basic forms of the process may be distinguished depending on whether the 

pressure is applied directly on to the solidifying casting product via an upper die or the 

applied pressure is exerted through an intermediate feeding system. The two different 

casting techniques are known as “direct” and “indirect” squeeze casting process. 

Schematically illustrates the two modes is showing in Figure 2-5 [22]. 

 

      (a)                                                             (b) 

Figure 2- 5. Schematic diagram of (a) direct, and (b) indirect squeeze casting process 

[22]. 

 

The direct squeeze casting technique is characterized by direct pressure imposed 

on to the casting without any gating system, as shown in Figure 2-5. The heat transfer of 

the product is extremely fast and a fully densified components can be achieved. The 

reason for this is because the pressure is directly applied on to the entire surface of the 

molten metal during solidification. As a result, enhanced mechanical properties are 

attained. In the indirect technique, however, the pressure is exerted on a gate, which 

transmits the load to the component. Since the pressure is imposed at a distance from the 

component, it is difficult to maintain a high pressure on the component throughout its 

solidifying and cooling periods. This indicates that it is difficult to cast long freezing 
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range alloys with the indirect technique. Also, metal yield is much lower than that 

achievable with direct squeeze casting, owing to the necessity of using a gating system. 

The advantage of the indirect technique is that, due to the presence of a gating system, a 

highly accurate external metering system is not necessary. Variation in metal volume are 

adjusted in the gate. Although it seems that the direct technique offers more opportunities 

for a wide range of alloys to be used for the production of high-strength, full-integrity 

metal casting and metal matrix composite components that is the philosophy of squeeze 

casting, more indirect than direct squeeze-casting machines are in operation at present. 

This is probably because the indirect process has successfully been commercialized [2]. 

 

2.3.3 Squeeze Casting vs Die Casting 

Since early 90s, applications of Mg alloys have received significant attention for 

vehicle weight reduction. Recently, the application of Mg alloys in cars has been mostly 

limited to die-cast parts, which are used at room temperature, such as steering-wheel 

cores, brake-pedal brackets, instrument panel and seat frames. The use of magnesium 

alloys in automotive power train has a great potential for further vehicles weight 

reduction of vehicles. The presence of Mg17Al12 phase is accepted to be responsible for 

the poor high-temperature performance of AM and AZ series magnesium alloys since it 

is metallurgically unstable at elevated temperatures (T>130℃) which leads to creep-

induced precipitation causing grain boundary migration. Calcium addition is always a 

solution to this problem since Mg17Al12 can form some new phases with the Ca atoms 

and become the thermal stable Al2Ca or sometimes (Mg,Al)2Ca phases. However, the 

calcium addition adversely affected the die-castability of magnesium alloys due to 
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extensive hot-cracking and die sticking. On the other hand, it has been pointed out that 

the die castings have relatively high gas porosity levels, particularly in an area with 

relatively thicker cross sections. The reason for this is probably due to the entrapment of 

air or gas in the melt during the high speed injection of turbulent molten metal into the 

cavity. And it is obvious that higher porosity levels leads to lower mechanical properties. 

Because of all the unsatisfied defect of die casting process, it is essential to develop 

alternative manufacturing process, such as squeeze casting, for magnesium alloys [23-

26]. 

The comparison of squeeze casting over other casting processes of magnesium 

alloys such as sand casting, gravity casting and high pressure die casting in terms of 

tensile properties was studied by Chadwick and the results are shown in Figure 2-6. In all 

cases, the squeeze casting specimen exhibits the highest values of UTS, yield strength 

and elongations [27]. 

 

(a) 
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(b) 

Figure 2- 6. Mechanical properties of cast AZ91, (a) ultimate and yield strengths, and (b) 

elongation [27]. 

 

The porosity elimination ability of squeeze castings over die casting processes of 

AM50 magnesium alloys was studied and the optical micrograph showing the porosity 

condition of both processes is present in Figure 2-7. It is observed that the squeeze cast 

AM50 alloy has virtually no porosity in the microstructure as shown in Figure 2-7(b). 

However, the typical pores can be easily spotted in the die cast specimen as indicated in 

Figure 7(a). The percentage of the porosity of both squeeze casting and die casting AM50 

alloys based on the density measurements are quantitatively shown in Figure 8. In 

comparison with that (4.00%) of the die casting, the porosity level of squeeze casting is 

only 0.12%. With such a low porosity level, the better mechanical properties of 

magnesium alloys could be easily achieved [28, 29]. 
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 (a) 

 

 (b) 

Figure 2- 7. Optical micrographs showing (a) porosity in die cast AM50 alloy and (b) 

almost porosity-free squeeze cast AM50 alloy [28]. 
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Figure 2- 8. Porosity levels of squeeze cast and die cast AM50 alloy [28]. 

 

2.3.4 Effect of section Thickness on Tensile Properties of Magnesium Alloys 

Since die casting is only suitable for producing thin-walled parts [8], when it 

comes to a relatively thicker part, the squeeze casting seems be to a more preferable 

choice by means of slow filling velocity, semi-solid processing and solidification under 

high pressure [30, 31, 32]. A recent study on the effect of section thicknesses on 

microstructure and tensile properties of squeeze casting magnesium alloys indicated that, 

a step mold was used and the squeeze cast AM60 alloy with three different section 

thickness (6 mm, 10 mm and 20 mm) was obtained [33]. It is obvious that thicker section 

leads to longer solidification time and lower cooling rate. The relationship between 

cooling rate and grain structure stated that the higher cooling rate, the finer the grain 

structure. Figures 2-9 and 2-10 show the cooling rate and the corresponding grain 

microstructure for each squeeze cast section. The cooling rate of 6 mm section is almost 

four times higher than those of 20 mm, as a result, the average grain size increases from 
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16μm to 80μm for each case. As a consequence, the 6 mm section shows better tensile 

properties than the 10 mm and 20 mm sections as shown in Figure 2-11 [33, 34]. 

 

Figure 2- 9. Cooling rates vs. Section thickness of squeeze cast AM60 alloy [33]. 

 

 

(a) 
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(b) 

 

 (c) 

Figure 2- 10. Optical microstructure showing grain size of specimen with (a) 6 mm, (b) 

10 mm, and (c) 20 mm of section thickness [33]. 
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Figure 2- 11. Tensile properties vs section thickness of squeeze cast AM60 alloy [33]. 

 

 

2.4 Grain Refinement of Magnesium Alloys 

2.4.1 Aluminum Free and Aluminum Containing Magnesium Alloys 

The grain refinement of magnesium alloys is reviewed with regards to two board 

groups of alloys: alloys that contain aluminum and alloys that do not contain aluminum. 

The alloys that are free of aluminum are generally very well refined by Zr master alloys. 

On the other hand, the understanding of grain refinement in aluminum contain alloys is 

poor and in many cases confusing probably due to the interaction between impurity 

elements and aluminum in affecting the potency of nucleant particles [35]. 
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2.4.2 Grain Refinement of Aluminum-Free Magnesium Alloys 

Recently, among all the aluminum free magnesium alloys, it has been widely 

accepted that Zr can significantly reduce the average grain size of Mg alloys to 50 μm 

comparing to a few millimetres at normal cooling rate. The addition of Zr in magnesium 

alloys also leads to the formation of near round grain, which further enhanced the 

structural uniformity of the final alloys [36, 37]. It has been reported that Zr can refine 

the grain size of Mg alloys in two ways by both soluble and insoluble contents. For the 

soluble Zr, it has been pointed out by Emley [38] that the grain refinement of magnesium 

alloys is based on the peritectic mechanism. It has been proposed that with the content of 

Zr at around 0.601%, the Zr can naturally form the basis for grain refinement of 

magnesium alloys. However, due to the low alloying efficiency of Zr, an excess of Zr has 

to be introduced to achieve the desired amount of Zr content for the optimum grain 

refinement. Normally, the Zr addition has to be 2.3% in order to ensure the 0.601% Zr 

content [39]. Recently, the solubility of Zr in magnesium alloys at pertectic temperature 

has been re-defined at 0.443% [40], which is almost 30% lower than the previous value at 

0.601%. Further research has to be done to testify the new Zr content and if it can be 

established as a new basis of magnesium grain refinement with zirconium, it would 

largely reduce the cost of Zr refined magnesium alloys. Lee and his team recently show 

an even smaller Zr content at less than 0.32% [41]. In the past, the insoluble Zr such as 

undissolved Zr particles was believed to be irrelevant to grain refinement. Early work by 

Sauerwald [42] suggested that only the dissolved Zr at pouring temperature in 

magnesium alloys is effective for grain refinement. However, most recent research 
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proposed that undissolved Zr also plays an important role in the grain refinement process 

by settling at the grain boundaries and suppress the grain growth [43, 44].  

 

2.4.3 Grain Refinement of Aluminum Contain Magnesium Alloys 

Since the late 1930s, a number of approaches have been developed to obtain grain 

refinement in magnesium alloys that contain aluminum. These are briefly summarized as 

follows. 

2.4.3.1 Superheating 

The concept of superheating was first described in 1931 [45]. Unlike other alloys, 

magnesium alloys trend to benefit from high-temperature treatment since normally the 

elevated temperature leads to oxidation, gas absorption and grain coarsening. The process 

includes heating up the melting metal above the liquidus temperature of the alloy up to 

180℃ to 300℃ for a short period of time, following by a rapid cooling and short holding 

time at pouring temperature. There are five major factors that influence the effect of the 

superheating treatment.  

1) The aluminum content: Aluminum is a key element for successful grain 

refinement by superheating. The superheating does not have noticeable effect on 

magnesium alloys other than the Mg-Al alloys. Also, high aluminum content 

magnesium alloys (Al>8 wt%) are more rapid refined by superheating than low 

aluminum content alloys [36]; 

2) Fe and Mn also play an important role on superheating treatment of magnesium 

alloys. Generally, the superheating trends to have more effect on the high Fe and 
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Mn content magnesium alloys than the low content alloys [46]; 

3) The existence of silicon can also help to refine the grain size of magnesium alloys 

by superheating. However, that only happens on the magnesium alloys with low 

Fe content; 

4) There is a specific temperature range for maximum grain refining efficiency by 

superheating, for instance, according to Tiner, the temperature range is 850℃ to 

900℃ for Mg-9 % Al-2 %-Zn alloys [47]; and 

5) Once sufficient treatment time is given, further increasing the holding time has no 

effect on the grain refinement. Repeating of the superheating treatment has also 

been considered to be no effect on grain refinement [46]. 

Even though the superheating treatment has great potential of refining the grain 

size of magnesium alloys. With the requirement of rapid cooling from the treatment 

temperature to the pouring temperature, grain refinement by superheating is less practical 

for a large pot of melt on a commercial scale [48, 49]. 

 

2.4.3.2 Accumulative Rolling Bonding 

Among all the magnesium alloy grain refinement methods, rolling is the most 

probable technique to be scaled for fabricating large bulk sheet or plate samples. It is 

always combing with suitable superheating to further improve the grain size of the 

magnesium alloys [48]. According to Perez-Prado’s research [51], the magnesium alloys 

(AZ31) were pre-heated to 400 ℃ and hold for 30 min. The original sheets were initially 

cut in 5 x 3 x 10 cm rectangular pieces, then the sheets were rolling using a single rolling 

pass of 80% reduction. Cut off the rolled sheets into five pieces, then stack of five pieces 

together so that the thickness of the stack was equal to the thickness of the original 
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sheets. Reheat the sheets and roll the stack again using the 80% reduction. Then repeat 

the process for the third and fourth time. The schematic diagram illustrate the whole 

process is showing in Figure 2-12. 

 

 

Figure 2- 12. Schematic showing the accumulative roll bonding process [51]. 

 

The microstructure of magnesium alloys processed by accumulative rolling is 

showing in Figure 2-13. After the four accumulative rolling stages, significant grain 

refinement was achieved. The average grain size of the AZ31 alloy after first pass was 

4.2 μm. After subsequent passes, the grain size stabilized around 3 μm. This result 

implied that the grain refinement took place mainly during the first pass. In other words, 

when the minimum grain size was achieved, further rolling passes had limited noticeable 

refining effect. 
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Figure 2- 13. Effect of accumulative roll bonding on the microstructure of AZ31 alloy (a) 

first rolling, (b) second rolling, (c) third rolling, and (d) forth rolling [51]. 

 

2.4.3.3 Native Grain Refinement of Magnesium Alloys 

High purity Mg-Al type alloys have a naturally fine grain size compared to 

commercial purity alloys with the same basic composition. It appears that the native grain 

refinement occurs only in magnesium alloys containing aluminum. This observation was 

first reported by Nelson and recent work by Cao further confirmed Nelson’s result [52]. 

The grain size of a high purity magnesium alloy comparing with a commercial purity 

alloy with different Al contents is showing in Figure 2-14. In all scenarios, the high 

purity alloys consistently demonstrated a finer grain size than commercial alloys. The 

mechanisms of native grain refinement remain unclear. It was assumed that the nucleant 
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particles responsible for native grain refinement in Mg-Al alloys were Al4C3 particles. 

This hypothesis was built by Motegi et al [53] and they provided evidence showing the 

presence of particles that contained Al, C and O in the center of many magnesium grains. 

However, thermodynamically, the Al2OC phase is less favourable than the formation of 

Al4C3. In that case, the nucleant particle for high purity magnesium alloys was more 

likely to be Al4C3. 

 

Figure 2- 14. Effect of source magnesium purity on the grain size of Mg-Al alloy [52]. 

 

2.4.3.4 Agitation Method 

The agitation method simply involves stirring the molten metal with a high speed 

prior to pouring and is relatively successful when conducted at relatively high 

temperature. Even though the optimum process temperature for grain refinement has not 

been determined, Hultgren [54] observed that stirring at a low temperature (<760℃) may 

not coarse the grain size instead of refinement. Tiner [47] found that stirring at the 

superheating temperature could improve the degree of grain refinement achieved by 

superheating method [55]. Due the lack of experimental data and publications about 
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agitation method, the mechanism of this process remains unclear, and further 

investigation is still needed. 

 

2.4.3.5 Grain Refining Additions 

The grain refiner addition method is the most widely used magnesium grain 

refinement process since it is relatively easier to operate. Besides, it requires lower 

operating temperature compared to that of superheating and agitation method provides 

some economic advantage [55]. 

Normally, the grain refiners of magnesium alloys containing aluminum can be 

classified into four groups which includes carbon containing grain refiners, calcium 

containing grain refiners, FeCl3 grain refiners also called the Elfinal process and other 

rare earth elements grain refiners. The mechanisms of each grain refiners are described as 

follows. 

 

2.4.3.5.1 Carbon containing grain refiners 

The addition of carbon containing agents into the melt is a widely accepted grain 

refinement method of Mg-Al alloys in the industrial world. It offers many practical 

advantages because of the lower operating temperature and less fading. In carbon 

inoculation, various kinds of carbon agents, such as C2Cl6, C6H6, MgCO3 and granular 

graphite have been proved to have successful grain refinement effect [56]. To explain the 

mechanism of this carbon addition method, a number of hypotheses have been proposed. 

So far, the most accepted hypotheses is that, Al4C3, was the compound responsible for the 

refining effects. During the mixing process, the active carbon was liberated and then 

reformed as aluminum carbide. To trace the carbon element distribution in the Mg-Al 
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alloys, Jin [55] suggested using the Electron probe micro-analyzer (EPMA) area analysis 

method on as-cast AZ31 alloy and the results is shown in Figure 2-15. It appeared that 

the highest concentration of carbon was in the Al-Mn phase (red particles). This indicates 

that carbon can easily form a stable carbide phase with Al and Mn. However, the study 

by Yano et al [58] revealed that these particles had nothing to do with grain refinement or 

sometimes even deteriorate the refinement effect. Besides the irrelevant Al-Mn phase, the 

eutectic phase (yellow-green) had the highest carbon concentration as shown in Figure 2-

15, followed by the edge of the dendritic arm (blue area) and the central dendritic arm 

(dark area). This observation indicates that segregation of carbon occured during 

solidification and carbon had limited temperature-dependant solubility in magnesium. 

Therefore, during the solidification process, the carbon was ejected to the liquid-solid 

interface and greatly affected the constitutional undercooling at that region. Thus, the 

grain growth was restricted. Meanwhile, the liquid around the crystal was further under-

cooled which allows other crystals to nucleate more easily in this region. The effect of 

0.6 wt% C2Cl6 addition into the as-cast AZ31 alloys is shown in Figure 2-16. The as-cast 

AZ31 alloy shows a typical equiaxed dendritic structure. Due to the non-equilibrium 

solidification, many metastable eutectic particles (appeared as black dots) formed in the 

inter-dendritic region. It is clearly the grain size was significantly reduced from 

approximately 400 μm to less than 120 μm when C2Cl6 is added. 
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Figure 2- 15. Result of EPMA analysis of AZ31 alloy [55]. 

 

 

Figure 2- 16. Optical microstructure of sand casting AZ31 alloy (a) no C2Cl6 and (b) 

0.6wt% C2Cl6 addition [55]. 

 

Recently, the most successful grain refiner of commercial use, C2Cl6, has been 

prohibited in the magnesium industry because it generates dioxins when introduced into 

the melt. Therefore, some other carbon containing grain refiners has to be developed to 

solve this problem. Chloride has almost nothing to do with the grain refinement process 

other than being released in the air and become toxic gas. Yano et al [58] proposed that, 
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instead of C2Cl6, pure carbon powder can be used in the process to obtain a better grain 

size of magnesium alloys. It turns out the result was quit promising. With the help of the 

argon gas, the experiment was simply carried out by blowing the pure carbon powder into 

the melt before pouring.  

 

 

Figure 2- 17. Optical microstructure of AZ91E alloy produced by adding C2Cl6 and 

carbon powder [58]. 
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Figure 2-17 shows the optical micrographs of AZ91 alloy by adding C2Cl6 and 

carbon powder. The same refinement effect can be found that the grain size reached 

approximately 70 μm in both cases. With the EPMA analysis, as shown in Figure 2-18, 

the concentration of Mg, Al, C and O elements were detected qualitatively by analysing 

A-B straight line across one particle. At the center of the particle (the black dot), the Al 

and C elements reached the maximum amount meanwhile Mg becomes the minimum. 

This observation further proved that Al4C3 acts as the nucleation site of magnesium 

alloys. Even though carbon powder could produce as fine grains as C2Cl6 did to the 

magnesium alloys, the process requires a relatively higher operating temperature at 750℃ 

which makes it less attractive on the commercial point view. 
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Figure 2- 18. EPMA line analysis of Mg, Al, C and O elements on the line AB across the 

particle in AZ91E alloy [58]. 
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2.4.3.5.2 Calcium containing grain refiners: 

Calcium is another important grain refiner for magnesium alloys. Numerous 

publications have proved that calcium is just as capable as carbon regarding to the grain 

refinement process of magnesium alloys [59-60]. Meanwhile, calcium is also a solution 

to further develop the Mg-Al alloys for high temperature applications. In the 1960s, the 

calcium was already added into the magnesium alloys in which both creep and oxidation 

resistance were significantly improved by having a chemical reaction with β-Mg17Al12 

phase. Ninomiya et al [61] found out that depending on the mass ratio of Ca to Al, 

calcium atoms could reform to different phases. They proposed that for the Ca/Al ratios 

of less than 0.8, Al2Ca is the only phase that would be formed. Higher value of Ca leads 

to the formation of both Mg2Ca and Al2Ca in the microstructure. As mentioned in the 

previous section, the key to improve the mechanical properties of magnesium alloys 

under high-temperature is the elimination of Mg17Al12 phase. To determine the 

reasonable amount of Ca addition into the magnesium alloys, Kondori and Mahmud [62] 

did a series of experiments and found out that, for AM60 alloys, the addition of 2.0 wt% 

of calcium could fully eliminate the Mg17Al12 phase. The X-ray diffraction analysis 

showing the presence of each phase is listed in Figure 2-19. When the calcium reached 

2.0 wt%, the peak for Mg17Al12 phase vanished and Al2Ca was the only phase detected in 

the XRD pattern. That means, the Mg17Al12 phase was fully suppressed by the calcium 

elements. Because of this β-phase suppressing process, the thermal stability of AM60 

alloys was significantly improved. Figure 2-20 shows the optical micrographs of the 

improvement, in which, comparing to the AM60, significant grain reduction was found in 

the AM60 – 2.0Ca conditions. 
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Figure 2- 19. X-ray diffraction patterns of the AM60 containing different amount of Ca 

[62]. 
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In spite of all the advantages, the die-sticking and hot cracking were still the 

problem that limited the practical use of calcium grain refiners. 

 

 

Figure 2- 20. Optical microstructure of AM60 alloy containing different amount of Ca in 

and annealing conditions [62]. 
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2.4.3.5.3 FeCl3 addition—the Elfinal process:  

The Elfinal process involves the addition of anhydrous ferric chloride (FeCl3) into 

the molten metal at the pouring temperature (750℃). One of the advantages of this 

method is that it allows the melt to be held at pouring temperature for over an hour 

without any loss in grain refinement efficiency. It has been pointed out that this kind of 

grain refinement can only be achieved when Mn and at least 3 wt% of Al is present in the 

alloy. In this case, Emley [36] suggested that Fe-Mn-Al compounds should be the 

nucleation particle of Efinal grain refinement process. However, since Fe is well known 

as detrimental to the corrosion resistance of magnesium alloys and this process releases a 

certain amount of Cl-, this grain refinement approach still stays in the theoretical level.  

 

2.4.3.5.5 Rare earth elements grain refiners:  

Apart from the use of carbon, calcium and FeCl3, many other additives have been 

tried. These includes Sr, RE, Th, B, AlN, TiB2 and TiC. The comparisons of some 

popular grain refiners on sand casting AZ91E alloy have been carried out by Wallace et 

al [3]. It can be found out in Figure 2-21 that C2Cl6 has the best refinement effect 

followed by SiC and CaC2. Other refiners all take effect on the AZ91E alloy but 

apparently not very comparable with C2Cl6 [3]. 
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Figure 2- 21. Grain refinement effect on AZ91 alloy [3]. 

 

2.4.3.5.5 Holding Time 

The holding time of the grain refiners in the melt before pouring is also a critical 

factor that affects the efficiency of the refinement process. The study of several grain 

refiners on AM50A alloy in term of the effect of holding time was carried out by Wallace 

et al [3]. It was pointed out that, at short holding times (in this case 45min), the grain 

diameter remains stable as shown in Figure 2-22. Karlsen et al [63] had the similar result 

when the holding time of wax-CaF2 and C2Cl6 was studied on AZ91 alloys. With a longer 

holding time (more than 2 hours), the efficiency of the grain refiners could be reduced at 

a relatively lower operating temperature. However, the problem could be solved by 

simply increasing the temperature of the molten metal to at least 740℃. The grain size 

was approximately the same at all holding times in the temperature range 740 - 760℃ 

[63].  
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Figure 2- 22. Effect of holding time on AM50 alloy [3]. 

 

2.5 Summary  

The literature on the grain refinement of magnesium alloys was reviewed 

according to whether the alloy contains aluminum. The aluminum free magnesium alloys 

are commonly refined by Zr and this kind of technique has been well established both 

scientifically and commercially. However, due to the high cost and lack of efficiency of 

the Zr addition, further development is still necessary. On the other hand, the 

understanding of grain refinement on aluminum containing magnesium alloys is still 

short of reliable data. Even though a number of grain fining method has been developed, 

they each suffer from different kinds of problems which makes them difficult to be used 

in the automotive industry. Meanwhile, the squeeze casting process has great advantages 

over die casting processes to produce thick casting, in which coarse microstructure is 
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present. To expand the application of the squeeze casting process to aluminum-containing 

magnesium alloys, it is essential to develop a scientific understanding of grain refinement 

mechanisms for squeeze cast magnesium alloys. 

 

Table 2-1 Grain refining method for casting magnesium alloys 

Al-containing 

Mg alloys 

Grain Refiners 
Superheating Hot Rolling References 

C2Cl6 CaC2 FeCl3 

AZ31 Good Good NG Good Good 
[50], [55], 

[64] 

AZ91 Good Good Good Good NG 
[3], [65], 

[66], [67] 

AM50 Good Good NG Good NG [3], [68] 

AM60 Good NG NG Good Good [69], [70] 

Al-free Mg 

alloys 
Zirconium Superheating Hot Rolling  

ZK40 Very Good Good NG [71], [72] 

WE54 Very Good NG NG [73] 

QE22 Very Good NG NG [74] 
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CHAPTER 3: EXPERIMENTAL PROCEDURES 

 

3.1 Materials and Processing 

Commercially-available magnesium alloy AM60 was used as the base alloy for 

the study. The chemical composition of the alloy is given in Table 3-1. Two conventional 

grain refiners for aluminum-containing magnesium alloys, hexachloroethane (99% C2Cl6) 

and calcium carbide (80% CaC2) powders produced by Sigma Aldrich® were selected as 

the grain refiners of the alloy. The chemical properties of each grain refiner are listed in 

Table 3-2. The amount of C2Cl6 and CaC2 addition were both 0.5 wt% at first based on 

the previous studies. Then the amount of CaC2 addition was cut into half (0.25 wt%) due 

to the high inclusion level cause by melt oxidation. Alloy specimens were prepared by 

using a mixing and casting process which was carried out by an electric furnace and a 75-

ton vertical hydraulic press showing in Figure 3-1. Basically, the melt processing of 

C2Cl6/CaC2-refined magnesium alloy AM60 consisted of mixing the pre-heated 

C2Cl6/CaC2 powders with the liquid alloy AM60, and melt stirring. In each batch, 0.5 kg 

of the C2Cl6/CaC2-treated melt was prepared in the electric resistance furnace using a 

steel crucible under the protection of SF6/CO2 gas blend. The melt was held at 700 ℃ for 

half an hour, stirred for 10 minutes, and cast at 700 ℃. The un-refined AM60 was also 

cast at the same condition. 

Table 3-1 Chemical composition of cast alloy AM60 

AM60 Magnesium Aluminum Manganese Zinc 

Content (%) 93.2 6.0 0.38 0.2 
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Table 3-2 Chemical properties of C2Cl6 and CaC2 

 Assay (%) Melting Point (℃) Density (g/ml) 

C2Cl6 99 185 2.091 

CaC2 80 2000 2.220 

 

        

 (a)                                                               (b) 

Figure 3- 1. (a) Electric furnace with SF6/CO2 gas protection, and (b) vertical hydraulic 

press. 

 

3.2 Thermal Analysis 

The DSC test was carried out using a DSC-TGA Q600 analyzer manufactured by 

TA Instrument at a heating rate of 10 ℃ per minute over the temperature range of 50 to 

800 ℃. An argon flow rate of 100 ml/min was used to prevent sample contamination 

from the measurement beams and also the oxidation during and after DSC runs. The 

nitrogen-cooling was also used for all runs after heating. Before each test run, a baseline 
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run was required and the DSC trace was then corrected by subtracting the baseline. 

Figure 3-2 shows the DSC analyzer used in the experiment. 

 

Figure 3- 2. DSC-TGA Q600 analyzer. 

 

For the cooling analysis, about 0.2 kg of melt samples was taken from the well-

stirred alloy melt at 700 ℃ into a steel crucible. A chromel-alumel (K-type) 

thermocouple protected by a thin steel sheath was positioned at a distance of 0.02 m from 

the bottom of the crucible center, and was connected to a computer-based data acquisition 

system to measure the temperature variation. In cooling analysis, the temperature of the 

solidifying AM60 alloy and grain-refined sample was recorded by the data acquisition 

system at a regular interval of 500 ms as they cooled (25 ℃/min) from the completely 

liquid state, through the solidification range, to become fully solid. The melt samples 

were protected with SF6/CO2 gas blend during the entire measurement period. The melt 

temperature (T) vs. time (t) data was processed and cooling curves (T vs. t) were plotted 
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using the Microsoft Excel spreadsheet software. Several duplicate runs on each melt were 

conducted to ensure an uncertainty of ±0.1%. 

 

3.3 Microstructure Analysis 

Specimens were sectioned, mounted and polished from the center of the squeeze 

cast disc and prepared following the standard metallographic procedures. To reveal the 

grain boundaries, a T4 heat treatment was subjected to the as-cast AM60 specimens to 

dissolves the β intermetallics (Mg17Al12). The heat treatment was conducted in an electric 

furnace. In order to prevent the sample oxidation when exposed to the hot air, all samples 

were placed in a steel cup and covered with sand. Before the microstructure analysis, the 

as-cast specimens were etched using a solution of acetic-picral (5 ml acetic acid, 6 g 

picric acid, 10 mm H2O and 100 ml ethanol) for 5 seconds, and the T4 heat treated 

specimens were etched using a solution of acetic-glycol (20 ml acetic acid, 1 ml HNO3, 

60 ml ethylene glycol and 20 ml H2O) for 20 seconds. A Buehler optical image analyzer 

2002 system was used to determine the primary characteristics of the specimens, as 

shown in Figure 3-3 (a). The detailed features of the microstructure were characterized at 

high magnificent using a FEI Quanta 200 FEG scanning electron microscope (SEM) 

which is showing in Figure 3-3 (b). 
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 (a)                                                                         (b) 

Figure 3- 3. (a) Buehler optical image analyzer model 2012, and (b) Scanning electron 

microscopy (FEI Quanta 200 FEG). 

3.4 Tensile Testing 

Tensile testing was carried out to evaluate the effect of grain refiners on the 

mechanical properties of the alloy. Each specimen was polished by grinding paper of grit 

320 to avoid stress concentration and cross-section dimensions were measured for tensile 

testing. The tensile tests were performed at room temperature with a strain rate of 2.00 

mm/min. The outputting data, including displacement measured by extensometer and 

tensile load, were then analyzed. The average 0.2% offset yield (YS) as well as highest 

observed ultimate tensile strength (UTS) and % elongation (Ef) was also determined for 

each heat treatment condition. Figures 3-4 and 3-5 show the dimensions of tensile 

specimens and the Instron tensile machine, respectively. 
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   G: gage length 25 ± 0.1 mm         W: width 6 ± 0.1 mm 

   T: thickness 3 ± 0.1 mm               R: radius of fillet 6 mm 

   L: overall length 100 mm             A: reduced section 32 mm 

   B: length of grip section 30 mm 

Figure 3- 4. Schematic illustration of tensile specimen. 

 

 

Figure 3- 5. Instron tensile testing machine (Model 8562). 
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3.5 Potentiodynamic Polarization Testing 

Potentiodynamic polarization testing was carried out by exposing 0.8 cm2 of 

sample surface area to the electrolytic media. Each sample was tested using 3.5% wt 

NaCl solutions. Two electrodes were submerged in the electrolytic: a counter electrode, 

CE, near the sample surface, and a reference electrode, RE, elsewhere in the solution. 

The set-up shown in Figure 3-6 describes the system. 

 

(a) 

 

 (b) 

Figure 3- 6. (a) Potentiodynamic polarization test set-up, and (b) EC-LAB SP 150 

electrochemical apparatus for corrosion test. 

 

 

electrolyte 

CE RE 

Sample  



 

47 
 

 

The potentiodynamic polarization testing curves were plotted by EC-Lab® 

software. The corrosion current density, icorr, which is equal to corrosion rate, was 

approximated from the curve. Meanwhile, the anodic and cathodic slopes βA and βC were 

calculated. Equation 3-1 expresses the determination of the polarization resistance. 

𝑅 =
𝛽𝑎𝛽𝑐

2.303𝑖𝑐𝑜𝑟𝑟(𝛽𝑎+𝛽𝑐)
                                          (3-1) 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Appearance of Squeeze casting Products 

A squeeze cast cylindrical coupon with a diameter of 100 mm and a height of 25 

mm was shown in Figure 4-1. For all three conditions (un-treated AM60 alloy, C2Cl6-

treated AM60 alloy and CaC2-treated AM60 alloy), tensile testing specimens were cut 

out from the bottom section of the respective coupon. The reason for this is that, the 

bottom section had a direct contact with the piston during the squeeze casing processes, 

which resulted in rapid cooling rate during solidification of the alloys under an applied 

pressure. As a consequence, high quality and enhanced mechanical properties in the 

bottom section were achieved.  

 

Figure 4- 1. Squeeze cast cylindrical coupon. 
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The 5-step shape casting product designed for studying the effect of section 

thicknesse on microstructure of squeeze casting alloys AM60 is shown in Figure 4-2 in 

three views. The 5 steps, from top to bottom, have the respective dimensions of 

100x30x3 mm, 100x30x4 mm, 100x30x6mm, 100x30x10 mm and 100x30x20 mm. In 

this study, the 6 mm, 10 mm and 20 mm sections were extracted from the step casting for 

tensile testing and microstructural analyses. 

     

 (a)                                              (b)                                                 (c)                                            

Figure 4- 2. 5-step squeeze casting with a round-shape gating system. 

 

4.2 Solidification of magnesium alloy AM60 

4.2.1 Cooling Curve Analysis 

To understand the solidification processes of the grain refiner-treated AM60 

alloys, the cooling curves of the materials were measured. Figure 4-3 (a) represents the 

typical result of thermal analysis for AM60 alloy. Two distinct stages during the 

solidification process are easily observed, stage (1), the nucleation of primary magnesium 
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phase at around 614.5 ℃, and stage (2), the eutectic reaction, i.e., L → α-Mg + β-

Mg17Al12 at around 435 ℃. The enlarged stage (1) of the cooling curve given in Figure 4-

3 (b) evidently shows a considerable difference in the degree of supercooling (ΔT = 0.7 

℃) at the liquidus temperature plateau. The cooling curves of C2Cl6 and CaC2-treated 

AM60 alloy are given in Figure 4-4 (a) and Figure 4-5 (a), respectively. Base on the 

cooling curves, no appreciable difference is presented in the liquidus and solidus 

temperatures between AM60 and the grain-refined AM60 alloys. For both C2Cl6 and 

CaC2-treated AM60, however, no apparent supercooling is observed in Figure 4-4 (b) and 

Figure 4-5 (b), which illustrated the enlarged stage (2) of the cooling curve. It was 

reported by Kurfman [75] that supercooling of magnesium and aluminum alloys can be 

correlated to their grain structure. A measurable supercooling is required for the 

solidification process to cause the nucleation reaction to begin. This supercooling, acting 

as the thermodynamic driving force while heterogeneous nuclei is absent, usually appears 

on the cooling curve as a drop in temperature below the equilibrium temperature for the 

nucleation reaction. Once the nucleation reaction commences, the temperature of the 

solidification fronts rises due to evolved latent heat, and the grain growth occurs at the 

temperature close to the normal equilibrium temperature. With the addition of the grain 

refiners, the number of nuclei and the nucleation rates likely increase. Consequently, 

small or no supercooling appear on the cooling curves as the fine grain structures are 

achieved. The difference in supercooling appearance can be directly attributed to the 

mechanism of the primary phase nucleation, and consequently, the extent of grain 

refinement.  
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      (a) 

 

         (b)  

Figure 4- 3. (a) Typical cooling curve, and (b) enlarge liquidus temperature region of 

AM60. 
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       (a) 

 

(b) 

Figure 4- 4. (a) Typical cooling curve, and (b) enlarge liquidus region of C2Cl6-treated 

AM60.           
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          (a) 

 

(b) 

Figure 4- 5. (a) Typical cooling curve, and (b) enlarge liquidus region of CaC2-treated 

AM60. 
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4.2.2 DSC Analysis 

Figure 4-6 presents the typical melting curves for AM60 and C2Cl6/CaC2-treated 

AM60. Upon heating the samples, two typical endothermic peaks at around 615 ℃ and 

435 ℃ were observed. The former peak at 615 ℃ was induced by the melting of primary 

α-Mg phase. The latter one was present to melt the eutectic β-phase (Mg17Al12). It can be 

found out in Figure 4-6 and Table 4-1 that, with the addition of C2Cl6/CaC2 in the AM60 

alloy, the melting temperatures of primary α-Mg phase and eutectic phase were shifted to 

a lower value. This observation should be attribute to the addition of grain refiner C2Cl6 

and CaC2. 

 

Figure 4- 6. DSC trace of squeeze cast AM60 and C2Cl6/CaC2-treated AM60 alloys. 
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Table 4-1 DSC analysis results of AM60 and C2Cl6/CaC2-treated AM60 alloy 

 Liquidus Temperature (℃) Eutectic Temperature (℃) 

AM60 616.8 437.4 

AM60+C2Cl6 615.7 436.2 

AM60+CaC2 613.9 436.5 

 

 

4.3 Tensile Behaviour 

4.3.1 Tensile Behaviour of cylindrical coupon 

The typical engineering stress-strain curves for AM60 and two grain-refined 

AM60 alloys are shown in Figure 4-7. The corresponding tensile properties such as 

ultimate tensile strength (UTS), yield strength (YS) and elongation (Ef) are summarized 

in Table 4-2. It can be seen from Figure 4-7 and Table 4-2 that, the tensile properties of 

both C2Cl6 and CaC2 treated AM60 alloys were raised to a higher level compare to the 

un-treated AM60 specimen. The yield strengths of both C2Cl6 and CaC2 treated 

specimens rose to around 91 MPa on average, which represented an increase of over 14% 

compared to the un-treated AM60 alloy. It is well know that grain size is one of the major 

factors that effects the mechanical properties of metals and alloys. According to Hall-

Patch equation [76]: 

σy = σ0 + Kd-1/2                                                         (4-1) 

where σ0 is the yield stress of a single crystal, K is the constant and d is the average grain 

size. 

The mechanical properties, especially the yield strength of the material increase 

significantly with grain size reduction. In this case, the increase in yield strength of C2Cl6 
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and CaC2 treated AM60 alloys should attribute to the smaller grain sizes cause by the 

addition of the grain refiners. Meanwhile, the comparable yield strength of the two 

treated alloys indicates that the two grain refiners, C2Cl6 and CaC2, are likely to have the 

similar grain refining capability on squeeze cast alloy AM60. 

 

Figure 4- 7. Engineering stress-strain curves of AM60 and C2Cl6/CaC2-refined 

specimens. 

 

Table 4-2 Tensile properties of AM60 C2Cl6-treated and CaC2-treated specimens 

 YS (MPa) UTS (MPa) Ef (%) 

AM60 80.1 ± 4.33 174.9 ± 9.96 5.48 ± 1.59 

AM60+C2Cl6 92.5 ± 1.74 208.7 ± 3.85 7.42 ± 0.62 

AM60+CaC2 90.3 ± 2.82 200.1 ± 5.91 6.45 ± 1.08 

 

The ultimate tensile strength of AM60 alloy was also improved by the addition of 

C2Cl6 and CaC2 powders. The UTS is 208.7 MPa for C2Cl6-treated specimen and 200.1 

MPa for the CaC2-treated alloy, which is an increase of 19.1% and 14.4% over the un-
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treated alloy AM60 (174.9 MPa), respectively. The elongation of C2Cl6-treated specimen 

is 7.42%, which was improved by 35% over the un-treated alloy AM60. However, the 

elongation of CaC2-treated specimen was 6.45%, which is an improvement of only 17%. 

The relatively low elongation level of CaC2-treated alloy should be resulting from the 

high inclusion level cause by the addition of CaC2 powders.  

The true stress-strain curves are given in Figure 4.8 which was generated from the 

engineering stress-strain curves using the following equation: 

σt = σe (1 + εe)                                                         (4-2) 

εt = ln (1 + εe)                                                          (4-3) 

where σt is the true stress, σe is the engineering stress, εt is the true strain, and εe is the 

engineering strain. 

The strain-hardening behaviours of AM60 and two grain-refined specimens can 

be seen in a plot of strain-hardening rate (dσ/dε) versus true plastic strain (εt) during the 

plastic deformation, as shown in Figure 4-9, which was derived from the true stress-strain 

curves from Figure 4.8. The stress-strain curve for metals is usually described by the 

power law relationship for plastic deformation as shown in the following equation: 

σ = K εn                                                            (4-4) 

where K is the strength index, ε is the plastic strain and n is the strain hardening 

exponent. 



 

58 
 

The strain hardening rate (dσ/dε) can be obtained by the differentiation of 

Equation 4-4. The best fit parameters of power law equation for AM60 and grain-refined 

specimens are given in Table 4-3. All three materials shown the same trend that the 

strain-hardening rate decreased with the increase in true strain. It is clear that the strain-

hardening rate during the plastic deformation of both C2Cl6 and CaC2 treated alloy AM60 

were constantly higher than un-treated specimens. The onset of plastic deformation of 

C2Cl6 and CaC2 treated AM60 were 6205 MPa and 5970 MPa, respectively, which were 

both higher with respect to un-treated AM60 at 5495 MPa. The high strain-hardening 

rates implies that, the C2Cl6/CaC2-treated alloys are able to spontaneously strengthen 

themselves to a large extent, in response to extensive plastic deformation prior to 

fracture. 

 

Figure 4- 8. True stress-strain curves of AM60 and C2Cl6/CaC2-refined specimens. 
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Figure 4- 9. Strain-hardening rate versus true strain for plastic deformation of AM60 and 

grain-refined specimens. 

 

Table 4-3 Best fit parameters of power law equation 

 K (MPa) n R2 

AM60 459.04 0.3109 0.9989 

AM60+C2Cl6 501.65 0.3086 0.9873 

AM60+CaC2 527.32 0.3357 0.9831 

 

4.3.2 Tensile behaviour of 5-step casting 

4.3.2.1 Untreated AM60 alloy 

Figure 4-10 shows the representative engineering stress-strain curves for the three 

thicknesses 6 mm, 10 mm and 20 mm for alloy AM60. Typical tensile behaviours can be 

observed from the curves. The curves show that under the tensile loads, the alloy 
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deformed elastically first. Once the yield point is reached, the alloy starts to deformation 

plastically. 

The variation of tensile properties with section thicknesses of alloy AM60 are 

shown in Table 4-4 and Figure 4-11. It is obvious that the ultimate tensile strength, yield 

strength and elongation of the 6 mm thick samples are higher than the thicker 10 mm and 

20 mm sections. It can been see from Table 4-4 that, with the increase in thickness from 6 

mm to 20 mm, the UTS, YS and Ef were reduced from 220.5 MPa, 96 MPa and 9.0% to 

135.3 MPa, 67 MPa and 3.42%, which brings to a decrease of 38.6%, 30.2% and 62.0%, 

respectively. The decrease in tensile properties with the increased thicknesses should be 

attributed to the coarser grain structure. 

 

Figure 4- 10. Engineering stress-strain curves of squeeze cast alloy AM60 with 6 mm, 10 

mm and 20 mm section thicknesses. 
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Figure 4- 11. Ultimate tensile strength (UTS), Yield strength (YS) and Elongation vs 

section thicknesses of alloy AM60. 

Table 4-4 Tensile properties of squeeze casting alloy AM60 in different thicknesses 

Thickness (mm) YS (MPa) UTS (MPa) Ef (%) 

6 96 ± 4.88 220.5 ± 6.28 9.01 ± 0.62 

10 74 ± 7.91 180.3 ± 9.46 6.11 ± 1.35 

20 67 ± 3.21 135.3 ± 5.56 3.42 ± 0.78 

 

 

4.3.3.2 C2Cl6 and CaC2 treated AM60 alloys 

The engineering stress-strain curves of the grain refiner-treated AM60 alloys are 

shown in Figures 4-12 and 4-13, and the respective tensile testing results are given in 

Table 4-4. The tensile curves show similar trends when subjected to the external loads as 

described in the case of untreated AM60 alloy. The tensile properties of the 6 mm 

sections remain higher than those of the 10 mm and 20 mm sections as shown in Figures 

4-14 and 4-15. It appears that the grain refiners were able to reduce the variation in the 
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tensile properties in different sections of alloy AM60. The decrease in UTS, YS and Ef of 

C2Cl6-treated specimens from 6 mm to 20 mm were 1%, 7% and 37%, and in the case of 

CaC2-treated specimens, the decrease were 18%, 9% and 30%, respectively. Compared to 

the un-treated AM60 specimen, the variation in tensile properties of different section 

thicknesses were significantly reduced. 

Meanwhile, it can be found out that, the grain refiners had a relatively higher 

effects on the mechanical properties of the thicker 20 mm sections than 10 mm and 6 mm 

sections. The UTS, YS and Ef of the 20 mm sections were 203.6 MPa, 101.1 MPa and 

6.1% for C2Cl6-treated specimens and 200.1 MPa 80.4 MPa and 6.8% for the CaC2-

treated alloys. Which, resulting an increase of 50.5%, 50.9%, 78.4% and 47.9%, 20.1%, 

98.8% for the respective tensile properties over the un-treated AM60 alloy. This founding 

was supported by the respective strain hardening rates of different section thicknesses 

listed in Figure 4-16. The improvements of strain hardening rates of the 20 mm sections 

were higher than 10 mm and 6 mm sections. Also, it seems that the grain refiners have a 

limited effect on the 6 mm section of alloy AM60. This is probably due to the high 

cooling rate of the thinner 6 mm section during the solidification. The high solidification 

rate might offset the effect of refiners on grain structure development. However, the 

squeeze casting technology is mainly used for relatively thick casting components in the 

industry. The improvement of tensile properties in thick sections is the goal of this work 

instead of refining microstructure in thin sections of castings. 
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Figure 4- 12. Ultimate tensile strength (UTS), Yield strength (YS) and Elongation vs 

section thicknesses of C2Cl6 treated alloy AM60. 

 

 

Figure 4- 13. Ultimate tensile strength (UTS), Yield strength (YS) and Elongation vs 

section thicknesses of CaC2 treated alloy AM60. 
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Table 4-5 Tensile properties of grain refined squeeze casting AM60 in different 

thicknesses 

Thick

-ness 

(mm) 

C2Cl6-treated AM60 CaC2-treated AM60 

YS (MPa) UTS (MPa) Ef (%) YS (MPa) UTS (MPa) Ef (%) 

6 102.5 ± 4.3 222.0 ± 6.1 10.3 ± 0.9 98.8 ± 6.6 220.2 ± 9.6 9.1 ± 1.1 

10 100.6 ± 6.0 215.6 ± 8.6 8.2 ± 1.2 85.7 ± 4.8 206.8 ± 8.3 8.3 ± 0.8 

20 101.1 ± 5.4 203.6 ± 8.3 6.3 ± 1.4 80.4 ± 2.2 200.1 ± 5.2 6.8 ± 0.3 

 

 

 

Figure 4- 14. Ultimate tensile strength (UTS), yYield strength (YS) and Elongation vs 

section thicknesses of C2Cl6 treated alloy AM60. 
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Figure 4- 15. Ultimate tensile strength (UTS), Yield strength (YS) and Elongation vs 

section thicknesses of CaC2 treated alloy AM60. 

 

(a) 
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(b) 

 

(c) 

Figure 4- 16. Strain-hardening rate versus true strain for plastic deformation of (a) 6 mm     

sections, (b) 10 mm sections, and (c) 20 mm sections. 
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4.4 Microstructure Analysis 

4.4.1 Magnesium alloy AM60 

The optical and SEM micrographs of as-cast AM60 alloy are revealed in Figure 

4-17. There were no noticeable casting defects on the surface of the specimen as shown 

in Figure 4-17 (a). The grain boundaries are believed to be disguised by the β-

intermetallics (Mg17Al12) as illustrated in Figure 4-17 (b), which made them invisible in 

the as-cast conditions. A closer examination by SEM and EDS showed three typical 

phases in alloy AM60, which are primary α-Mg phase (dark area labeled A), eutectic β-

Mg17Al12 phase (light grey area labeled B) and Al-Mn intermetallic phase (bright are 

labeled C) as displayed in Figure 4-17 (b). The EDS results of the three phases in the 

alloy were listed in Figure 4-18. 

    

(a)                                                                (b) 

Figure 4- 17. (a) Optical micrograph, and (b) SEM micrograph in SE mode of as-cast 

AM60. 
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(a) 

 

(b) 
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(c) 

Figure 4- 18. EDS analysis of alloy AM60, (a) primary α-Mg, (b) β-Mg17Al12, and (c) Al 

phase. 

 

4.4.2 Grain structure of alloy AM60 cast in cylindrical mould 

Figures 4-19 to 4-21 illustrate the microstructure of AM60 alloy and C2Cl6/CaC2-

treated AM60 alloys in T4 condition. Grain boundaries were revealed after the T4 heat-

treatment process by dissolving the β-Mg17Al12 intermetallics. As can be seen, the grains 

in the C2Cl6 and CaC2 treated AM60 were evidently finer than those of AM60 alloy. 

Figure 4-22 presents the grain size measurements from the heat-treated specimen of 

AM60 alloy in comparison to that of the C2Cl6 and CaC2 treated AM60. It is worth noting 

that the grain size of the AM60 alloy was reduced by almost two times in both C2Cl6 and 

CaC2 treated specimens due to the grain refinement effect of the C2Cl6 and CaC2 addition 
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to the alloys. The grain size of the AM60 alloys was reduced from 70 μm to 35 μm and 

38μm by the addition of C2Cl6 and CaC2 powders. 

 

 

Figure 4- 19. Optical micrograph showing grain structure of squeeze cast AM60 in a 

cylindrical coupon in T4 condition. 
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Figure 4- 20. Optical micrograph showing grain structure of C2Cl6-treated AM60 in a 

cylindrical coupon in T4 condition. 

 

Figure 4- 21. Optical micrograph showing grain structure of CaC2-treated AM60 in a 

cylindrical coupon in T4 condition. 
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Figure 4- 22. Grain size measurement of grain refined AM60 and untreated AM60. 

 

Figure 4-23 shows the optical microstructures of squeeze cast AM60 specimens 

with section thicknesses of 6, 10 and 20 mm, respectively. It can be seen that, the average 

grain size increased from 30 μm for 6 mm specimen to 88 μm for 20 mm specimen. The 

thicker sections contained greater total thermal energy which required more time for 

releasing during the solidification process since the thermal conductivity and the 

temperature of the mold were the same for all sections. As a result, longer cooling time 

was needed for the thicker section, which led to a slower cooling rate and results in a 

coarser microstructure. 

However, with the addition of the grain refiners, the grain sizes were significantly 

refined especially in the 10 mm and 20 mm sections as shown in Figures 4-24 and 4-25. 

Table 4-6 lists the grain size measurements of the un-treated and treated squeeze cast 

magnesium alloy AM60. It can be seen from Figure 4-26 that, the difference in grain 
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sizes between different sections for the refined specimens were largely reduced. In the 

case of C2Cl6-refined specimens, all three sections show the similar grain size at an 

average of 27 μm, which in this case, are even finer than the thinnest section of un-treated 

specimens. This observation indicates the excellent grain refining ability of C2Cl6 

powders on squeeze casting magnesium alloy AM60. For the CaC2-refined specimens, 

the grain sizes were also refined to a noticeable level. The average grain size of 20 mm 

thickness for CaC2-refined specimen was 45 μm, almost cut into half size compared to 

the un-treated AM60 alloy at the same thickness. 

 

 

(a) 
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(b) 

 

(c) 

Figure 4- 23. Optical micrograph showing the grain sizes of squeeze cast AM60 with (a) 

6 mm, (b) 10 mm, and (c) 20 mm of section thicknesses. 



 

75 
 

 

(a) 

 

(b) 
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(c) 

Figure 4- 24. Optical micrograph showing the grain sizes of C2Cl6-treated AM60 with (a) 

6 mm, (b) 10 mm, and (c) 20 mm of section thicknesses. 

 

 

(a) 
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(b) 

 

(c) 

Figure 4- 25. Optical micrograph showing the grain sizes of CaC2-treated AM60 with (a) 

6 mm, (b) 10 mm, and (c) 20 mm of section thicknesses. 
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Figure 4- 26. Grain sizes vs. section thicknesses of AM60 specimens. 

 

Table 4-6 Grain size measurements of the untreated and treated squeeze cast Mg alloy 

AM60 

 AM60 (μm) AM60+C2Cl6 (μm) AM60+CaC2 (μm) 

6 mm 32 27 29 

10 mm 50 28 40 

20 mm 88 29 45 

 

The optical microstructure analysis combining with the outcome tensile testing 

results further suggest that both C2Cl6 and CaC2 have good grain refining capabilities on 

squeeze casting magnesium alloy AM60. 

 

4.4.3 Grain refining mechanisms 

It has been well accepted that aluminum carbide, Al4C3, was the compound 

responsible for the grain refining effects of Mg-Al alloys [77, 78]. The SEM micrograph 
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of Al4C3 acting as the heterogeneous nucleation site is shown in Figure 4-27. EDS line 

analysis was also used to qualitatively analyze the existing elements. The EDS analysis 

was done by drawing line A-B across the particle. Mg, Al and C were detected since they 

all reached the peak value at the particle as shown in Figure 2-28. It can be seen that, Al 

and C reached the maximum concentrations at the particle while the concentration of Mg 

dropped to the minimum level. This finding implied that the compound consisting of Al 

and C could provide heterogeneous nucleation site of squeeze cast magnesium alloy 

AM60. This observation is consistent with the nucleation mechanism proposed by [77, 

78], in which Al4C3 was found to be the nucleation site.  

 

Figure 4- 27. SEM micrograph in BSE mode showing Al4C3 as the heterogeneous 

nucleation site for C2Cl6 refined squeeze cast alloy AM60. 
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(a) 

 

(b) 
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(c) 

Figure 4- 28. EDS line analysis of (a) Mg, (b) C and (c) Al elements on line AB across 

the particle. 

 

It has been reported by Ninoomiya et al [61] and Han et al [79] that, depending on 

the mass ratio of Ca to Al in the Mg-Al alloys, the Ca can form new phases with the β-

intermetallics (Mg17Al12). They claimed that, with the Ca/Al ratio less than 0.8, (Al, 

Mg)2Ca should be the only phase that would be formed. It was also pointed out by 

Kondori [62] and Han et al [79] that, with the addition of 2.0 wt% of Ca into AM60 

alloys (Ca/Al = 0.4), the β-intermetallics could be fully suppressed. In this study, the 

addition of CaC2 was 0.5 wt% and 0.25 wt%, that is to say, the mass ratio of Ca/Al 

should be 0.052 and 0.026, which were smaller than 0.4. Thus, this mass ratio calculation 

suggested that (Al, Mg)2Ca should be the only new phase present in the CaC2-treated 
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alloy, which would be mixed up with the remaining β-intermetallics. This is because 

there was insufficient amount of Ca to fully suppress the Mg17Al12 particles. 

 

Figure 4- 29. High magnification SEM micrograph in SE mode showing the CaC2 refined 

AM60 containing both Mg17Al12 and lamellar Al2Ca phases. 

 

The SEM micrograph of (Al, Mg)2Ca and β-intermetallics phases in as-cast 

AM60 alloy with 0.25 wt% of CaC2 addition is shown in Figure 4-29. The β-

intermetallics were generally well distributed in the interdendritic areas. It can be seen 

that, with the addition of CaC2 particles, the lamellar Al2Ca was easily observed around 

the Mg17Al12 particles. The new formed Al2Ca phase, with a melting temperature of 1079 

℃, which was much higher than the melting temperature of Mg17Al12 at only 437 ℃, was 

able to largely increase the high-temperature stability of the AM60 alloys. Meanwhile, 

when the alloy was subjected to T4 heat treatment, the thermal stable Al2Ca would not be 

dissolved like Mg17Al12 particles, thus restrict the grain growth of the material. 
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4.5 Fracture surface analysis 

Fracture surfaces of the untreated AM60 alloy and the C2Cl6/CaC2 grain refined 

tensile specimens from 10 mm sections were examined by SEM. The fracture surfaces of 

all three specimens with low and high magnifications are illustrated in Figures 4-30 to 4-

32, respectively. It can be found out from the fractographies that, the grain refiners had 

certain effect on the fracture behavior of the squeeze cast AM60 alloys. When comparing 

the three low magnification fracture figures, there were not much noticeable differences. 

The characteristics of cleavage fracture, flat facets covered with river markings and 

dimples were easily observed on all fracture surfaces. The river marking was the result of 

the crack moving through the grain along a number of parallel planes, which formed a 

series of plateaus and connecting ledges. The dimples were caused by the localized 

microvoid coalescence. The river marking combining with dimples indicated the energy 

absorption with local deformation prior to fracture. A close examination of the fracture 

surfaces by high magnifications of all three specimens in Figures 4-30 (b), 4-31 (b) and 

4-32 (b) showed that, the dimple sizes of C2Cl6/CaC2 refined specimen were smaller than 

those in the untreated specimen. Meanwhile, in the fractured surface of the grain refined 

specimens, a great deal of sub-sized dimples were well distributed within each primary 

dimple as shown in Figure 4-31 (b) and 4-32 (b). This could be considered to be an 

enhancement of fracture behaviour since high energy absorption was present to 

considerably extend local deformations which underwent large external loads before 

facture. 
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(a) 

 

(b) 

Figure 4- 30. SEM fractographs in SE mode of the untreated squeeze cast AM60, (a) low 

and (b) high magnification from 10 mm section thickness. 
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(a) 

 

(b) 

Figure 4- 31. SEM fractographs in SE mode of C2Cl6-treated squeeze cast AM60, (a) low 

and (b) high magnification from 10 mm section thickness. 
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(a) 

 

(b) 

Figure 4- 32. SEM fractographs in SE mode of CaC2-treated squeeze cast AM60, (a) low 

and (b) high magnification from 10 mm section thickness. 
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As a result, the SEM fracture surface analysis results agree with the tensile data 

listed in Tables 4-4 and 4-5, where the elongation of grain refined specimens were higher 

than the untreated AM60 alloy. In other words, the ductility of the alloy was improved by 

the grain refiner addition. 

 

4.6 Inclusion analysis 

It has been reported by Hu [4, 8] that, calcium decreased the fluidity of casting 

magnesium alloys which led to poor die castability. As a result, the formation of casting 

defects such as cracks and die sticking are easily found in the casting products. Similar 

problems happened in this study as shown in Figure 4-33. The addition of CaC2 

immediately increase the viscosity of the molten alloy, thus, during the stirring process, 

gas entrapment and more importantly oxidation of the alloy occurred. The present defects 

can easily cause stress concentration during tensile testing which largely deteriorate the 

mechanical properties of casting products. 

To figure out the composition of the entrapped inclusion, the SEM and EDS 

analysis were applied. As shown in SEM image (Figure 4-34), the bright area labeled A 

is the un-contaminated alloy which is confirmed by EDS analysis in Figure 4-35 (a). The 

dark area labeled B, however, has relatively higher content of Al, Ca and O, which 

indicated that, the inclusion was probably consisting of Al2O3, MgO and CaO. Since the 

defect failed the engineering functionality of components such as pressure tightness, 

which hindered the commercialization of the CaC2 refined magnesium alloys. Further 

studies on development of techniques to effectively add Ca into magnesium alloys are 

needed. 
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Figure 4- 33. Oxidation inclusion found in CaC2 treated AM60 specimen. 

 

 

Figure 4- 34. SEM micrograph in BSE mode of inclusion area of CaC2 treated AM60 

specimen. 

 A 

B 

Inclusion
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(a) 

 

(b) 

Figure 4- 35. EDS analysis of (a) un-contaminated alloy, and (b) oxidation inclusions. 
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4.7 Corrosion test 

The corrosion behaviour is always a big issue that limits the applications of 

casting magnesium alloys, since magnesium has the lowest corrosion potential of 2.37 V 

compared to other structural metals with reference to the standard hydrogen electrode 

(SHE). Appearing at the bottom of the galvanic series, it is the most anodic of all metals 

and readily gives up Mg2+ ions. Magnesium is a passive metal which is usually protected 

by a thin film, Mg(OH)2. Unfortunately, such protection films usually cannot be achieved 

since it is only stable in high pH, while most industrial environments are acidic or 

neutral. Once the passive film is damaged, it cannot protect the bare metal beneath, as a 

consequence, lead to severe corrosion damages of the material. The microstructure 

variation between the untreated and C2Cl6/CaC2 treated AM60 alloys are shown in Figure 

4-36. The difference in coarseness of the microstructure between the specimens can be 

easily observed, and the untreated specimen evidently shows coarser structure than the 

grain refined alloys. 

It has been pointed out by Song and Atreus [80] that, the key to corrosion 

resistance of Mg-Al alloys is related to fine microstructure coupled with improved 

intermetallic continuity as shown in Figure 4-37. With the presence of the continuous β-

phase as “β barrier”, the corrosion only happens on the surface of the material and the 

depth of corrosion penetration is largely reduced. Thus, the observation by the SEM 

analysis indicates enhanced corrosion resistance behaviour for the grain-refined 

specimens over the untreated alloys due mainly to the finer microstructure and higher 

area percentage of the continuous β barriers. This was supported statistically by the 
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experimental measurements of the potentiodynamic polarization testing as shown in 

Figure 4-38 and Table 4-6. Both C2Cl6 and CaC2 treated specimens showed low current 

density at 1.51 μA/cm2 and 1.79 μA/cm2 compared to the untreated alloy at 3.16 μA/cm2. 

The polarization resistance (Rp) were obtained by Tafel equation as shown in Equation 3-

1. As shown in Table 4-7 that, the Rp of C2Cl6 treated specimen (11.46 kΩ cm2) increased 

by 282%, and the Rp of CaC2 treated specimen (9.35 kΩ cm2) also increased by 187% in 

comparison with the untreated alloy (5.89 kΩ cm2). This observation evidently indicated 

the corrosion resistance of squeeze cast magnesium alloy AM60 was siginificantly 

improved by the addition of C2Cl6 and CaC2 grain refiners. 

     

(a)                                                      (b) 

 

(c) 

Figure 4- 36. SEM micrographs in SE mode showing the microstructures of (a) C2Cl6 

refiend specimen, (b) CaC2 refined specimen, and (c) untreated AM60. 
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Figure 4- 37. The β-barrier concept showing the microstructure of (a) before and (b) after 

corrosion attack. 

  

Figure 4- 38. Polarization curves for squeeze cast AM60 specimens in 3.5 wt% 

NaCl solution. 

AM60+0.25wt% CaC
2
 

AM60+0.5wt% C
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𝑅 =
𝛽𝑎𝛽𝑐

2.303𝑖𝑐𝑜𝑟𝑟(𝛽𝑎+𝛽𝑐)
                                    (3-1) 

 

Table 4-7 Characteristic values for the polarization curves in Figure 4-37 

 βA (mV/dec) βC (mV/dec) Icorr (μA/cm2) Rp (kΩ cm2) 

AM60+C2Cl6 51.8 172.6 1.51 11.46 

AM60+CaC2 50.5 162.5 1.79 9.35 

AM60 58.6 160.1 3.16 5.89 

 

 

4.8 Summary 

The observation of no apparent supercooling on the cooling curves of the 

C2Cl6/CaC2-treated AM60 alloys imply a significant refinement of the grain structure. 

This implication is evidenced by both optical microstructural study and the grain size 

measurement.  The average grain sizes of AM60 alloy were reduced from 70 μm to 35 

μm and 38 μm by the addition of C2Cl6 and CaC2 in the cylindrical coupon, respectively. 

In the case of 5-step-shaped specimens, the grain refiner trended to unify the grain sizes 

in different section thicknesses caused by different cooling rates. The grain sizes 

differences of the grain-refined specimens were significantly reduced compared with the 

un-refined alloy AM60. As a result, the mechanical properties of the thicker sections 

were largely improved. Meanwhile, the restricted grain sizes increase the corrosion 

resistance of the alloy, due to the well-distributed β-phases, which formed the β barrier to 

block the corrosion attack. 
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CHAPTER 5: CONCLUSIONS 

 

1. The microstructure of squeeze casting magnesium AM60 was studied using both 

optical and SEM analysis. A porosity-free squeeze casting product was confirmed 

by optical micrograph and typical α-Mg, β-Mg17Al12 and Al-Mn phases were 

observed by SEM/EDS. 

2. Section thicknesses had great influence on the microstructures of untreated 

squeeze casting AM60 alloy. The grain size increased with the increase in section 

thickness. 

3. Tensile properties including UTS, YS and Elongation were also significantly 

influenced by different section thicknesses. The tensile properties decreased 

largely with the increase in section thicknesses. 

4. The observation of no apparent supercooling on the cooling curves of both C2Cl6 

and CaC2 refined AM60 alloys indicated a significant refinement of the grain 

structure. 

5. C2Cl6 had a remarkable capability of refining the grain structure of squeeze cast 

magnesium alloy AM60, which was evidently indicated by the grain size 

measurement in the center of a cylindrical AM60 coupon with the addition of the 

C2Cl6 powder. 

6. C2Cl6 was able to unify the average grain sizes of squeeze cast magnesium alloy 

AM60 among different section thicknesses. The grain size of the 20 mm section 

thickness was reduced from 88 μm to an average of 28 μm. 
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7. CaC2 had a great grain refining capability similar to C2Cl6 for squeeze cast 

magnesium alloy AM60. 

8. The CaC2 addition tended to decrease the fluidity of alloy AM60, which led to the 

entrapment of inclusions in the casting coupon. 

9. Tensile properties in the thick sections (10 mm and 20 mm) of C2Cl6 and CaC2 

refined specimens were largely increased compared to those of the un-refined 

AM60 specimens. 

10. Examination of fracture surfaces with SEM revealed that the thick section of grain 

refined specimens fractured in more ductile mode than the un-refined specimens. 

This observation agreesd with the tensile results of which the UTS, YS and 

elongation of the refined specimens were higher than the un-refined AM60 alloy. 

11. The corrosion resistance of squeeze casting AM60 specimens increased with the 

addition of the grain refiners. The improved corrosion resistance should be 

attributed to the well-distributed β-phase which could act as a corrosion barrier to 

block the corrosion attack to the α-Mg matrix. 
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CHAPTER 6: FUTURE WORK 

 

The future work of this study can be classified into two primary research areas: 

I. C2Cl6 as the grain refiner for the squeeze casting Magnesium alloy AM60: 

Even though C2Cl6 exhibited excellent grain refining capability on squeeze cast 

magnesium alloy AM60, especially for the relatively thicker casting sections, the usage 

of this grain refiner in the automotive industry was limited from the environmental and 

health point of view due to the release of toxic dioxins gases when introduced to the 

molten alloys. Therefore, development of new carbon-containing grain refiners to replace 

C2Cl6 is essential. Candidates including carbon powder, C6H6 and MgCO3 are mostly 

likely to fulfill this objective and deserve more attention. 

II. CaC2 as the grain refiner for the squeeze casting Magnesium alloy AM60: 

Compare to C2Cl6, CaC2 is concidered to be an environmental friendly grain 

refiner for squeeze casting magnesium alloy AM60. The ability of improving the thermal 

stability of magnesium alloys by suppress β-phase made it competitive among all Mg 

grain refiners. However, further research is still needed to solve the high tendency of 

inclusion in the CaC2-refined magnesium castings. The optimal amount of CaC2 addition, 

at which, not only suppresses the unstable β-phase, yet limited the introduction of 

inclusions is the subject that should to be studied. 
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(a) 

 

(b) 

Figure Ap- 1. SEM fractographs in SE mode of the untreated squeeze cast AM60, (a) low 

and (b) high magnification from cylindrical coupon. 
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(a) 

 

(b) 

Figure Ap- 2. SEM fractographs in SE mode of the C2Cl6-refined squeeze cast AM60, (a) 

low and (b) high magnification from cylindrical coupon. 
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(a) 

 

Figure Ap- 3. SEM fractographs in SE mode of the CaC2-refined squeeze cast AM60, (a) 

low and (b) high magnification from cylindrical coupon.   
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(a) 

 

(b) 

Figure Ap- 4. SEM fractographs in SE mode of the untreated squeeze cast AM60, (a) low 

and (b) high magnification form 6 mm section thickness. 
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(a) 

 

(b) 

Figure Ap- 5. SEM fractographs in SE mode of the C2Cl6-refined squeeze cast AM60, (a) 

low and (b) high magnification from 6 mm section thickness. 
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(a) 

 

(b) 

Figure Ap- 6. SEM fractographs in SE mode of the CaC2-refined squeeze cast AM60, (a) 

low and (b) high magnification from 6 mm section thickness. 
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(a) 

 

(b) 

Figure Ap- 7. SEM fractographs in SE mode of the untreated squeeze cast AM60, (a) low 

and (b) high magnification form 20 mm section thickness. 
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(a) 

 

(b) 

Figure Ap- 8. SEM fractographs in SE mode of the C2Cl6-refined squeeze cast AM60, (a) 

low and (b) high magnification from 20 mm section thickness. 
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(a) 

 

Figure Ap- 9. SEM fractographs in SE mode of the CaC2-refined squeeze cast AM60, (a) 

low and (b) high magnification from 20 mm section thickness. 
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Figure Ap- 10. Engineering Stress-strain curves for AM60 from cylindrical coupon. 
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Figure Ap- 11. Engineering Stress-strain curves for C2Cl6-refined AM60 from 

cylindrical coupon. 
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Figure Ap- 12. Engineering Stress-strain curves for CaC2-refined AM60 from 

cylindrical coupon. 
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(a) 

 

 

(b)  
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(c) 

Figure Ap- 13. Engineering Stress-strain curves for squeeze cast AM60 in (a) 6 mm 

thickness, (b) 10 mm thickness, and (c) 20 mm thickness. 

 

 

(a)  
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(b) 

 

 

(c) 

Figure Ap- 14. Engineering Stress-strain curves for C2Cl6-refined squeeze cast AM60 in 

(a) 6 mm thickness, (b) 10 mm thickness, and (c) 20 mm thickness. 
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(a) 

 

 

(b) 
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(c) 

Figure Ap- 15. Engineering Stress-strain curves for CaC2-refined squeeze cast AM60 in 

(a) 6 mm thickness, (b) 10 mm thickness, and (c) 20 mm thickness. 

 

 

Figure Ap- 16. SEM micrograph in BSE mode showing Al4C3 as the heterogeneous 

nucleation site for C2Cl6 refined squeeze cast alloy AM60. 
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(a) 

 

(b) 

Figure Ap- 17. (a) Typical cooling curve, and (b) enlarge liquidus temperature 

region of AM60. 
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(a) 

 

(b) 

Figure Ap- 18. (a) Typical cooling curve, and (b) enlarge liquidus temperature 

region of C2Cl6-refined AM60.  
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(a) 

 

(b) 

Figure Ap- 19. (a) Typical cooling curve, and (b) enlarge liquidus temperature 

region of CaC2-refined AM60. 
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