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ABSTRACT 

 

Plasma electrolytic oxidizing (PEO) is an advanced technique that has been used to deposit 

thick and hard ceramic coatings on aluminium (Al) alloys. This work was however to use the 

PEO process to produce thin ceramic oxide coatings on an A356 Al alloy for improving 

corrosion and wear resistance of the alloy. Effects of current density and treatment time on 

surface morphologies and thickness of the PEO coatings were investigated. The improvement 

of galvanic corrosion properties of the coated A356 alloy vs. steel and carbon fibre were 

evaluated in E85 fuel or NaCl environments. Tribological properties of the coatings were 

studied with comparison to the uncoated A356 substrate and other commercially-used engine 

bore materials. The research results indicated that the PEO coatings could have excellent 

tribological and corrosion properties for aluminium engine applications.      
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CHAPTER 1  

INTRODUCTION 

Recently, environmental problems caused by fuel emissions and limited fuel supplies force 

the automotive industry to use new lightweight materials. The need to improve fuel economy 

and safety performance, reduce exhaust emissions and provide customers with new features have 

caused new renovations in components design including reduced friction, weight, and higher 

engine operating temperatures for improved efficiency. To achieve such an objective, 

aluminium (Al) alloys are noted for their unique combination of desirable characteristics 

including their high strength-to-weight-ratio, good castability, low thermal expansion and high 

corrosion resistance. These properties have led to their increase sufficiently in the use of 

automotive besides aircraft and aerospace industry. Aluminum-silicon (AlSi) alloys such as Al 

356 [1] have been commercially used to produce engine blocks because of its high strength 

over weight ratio. The engine block cylinder works under thermal and mechanical cyclic 

stresses in relative motion with piston rings. It is shown that good wear resistance is a critical 

property to engine block's working life.  Although aluminum  alloys are becoming increasingly 

important, and more widely used in the automobile  industry due to their excellent  

properties, including high  strength  to  weight  ratio,  good  castability  and  machinability 

their corrosion resistance is relatively poor because of the presence of non-corrosion resistant 

elements and phases (Cu, Si, Mg, etc) and microstructural  defects (such as pores) in these 

alloys. Many industral approaches to improving corrosio resistance have been taken 

including the development of new alloy systems, the use of inhibitors, and surface 

modification to change the chemistry, composition and properties of the alloy surface [2]. 
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A356 series cast aluminium-silicon alloys have been increasingly applied as lightweight 

components especially using for all types of internal combustion engines as pistons, cylinder 

blocks and cylinder heads. In this kind of alloys, silicon is added to aluminium and can be used 

to form a second phase in order to improve wear resistance for tribological applications. 

However, compared with steel and iron, aluminium alloys such as A356 are relatively soft and 

have poor wear properties especially against scuffing wear under conditions of dry lubrication 

such as those which exist during starting engines period. It is one of the failure mechanisms 

affecting the useful life of engines. [3-5] Also the National  Ethanol  Vehicle  Coalition   (NEVC)  

and  the  Petroleum Equipment  Institute  have  pointed out  that  aluminum alloy is  sensitive  to  

corrosion  from ethanol. The use of corrosive ethanol such as E85 can be accommodated through 

the use of appropriate coatings, valve seat materials, adhesives, and fuel additives [6]. 

 

Surface coating can be used to minimize the possibility of sever wear by lowing friction and 

hardening the surface. Various coatings have been developed to improve wear properties of the 

alloys. Titanium nitride and diamond-like carbon (DLC) coatings are deposited by vacuum 

vapour deposition (PVD and CVD) methods which need high vacuum in vacuum chambers [7-8]. 

Electroplating and electroless plating-Nickel based ceramic composite coatings (NCC) have a 

function to increase the wear resistance but could be corroded when sulphur-contained fuel is 

used [9]. Thermal spraying technology can produce Fe-based or stainless steel-Ni-BN coatings. 

However, thermal spraying only make mechanical adhesion of coatings to base materials, and 

precise process control (including surface pre-treatment) is hard for good adhesion between 

coating and Al samples [10]. Manufacturing  challenges still exist in producing spraying-coated 



3 
 

Al cylinder interior surfaces in terms of economical manufacturing process, reproducible and 

reliable processing. Hard anodizing is an effective and equipment simple method used to produce 

hard ceramic coatings on aluminium alloys. Since alloying elements such as copper and silicon 

do not anodize during the process, leaving microscopic voids in the aluminum oxide coating, the 

coating exhibits a low peeling resistance and high friction coefficient. In general case, hard 

anodic coatings are not suitable to be used to high Si (containing >8% silicon) alloys. [11]  

 

For corrosion application, several surface modification and coating techniques have been 

developed to enhance the corrosion resistance of Al alloys. These techniques are sol-gel coatings 

[12-13], ion implantation [13-15], conversion coatings [16], physical vapor deposition (PVD) 

[l7-20] chemical vapor deposition (CVD), and thermal spraying [21]. However,  most  of these  

methods  involve  high  temperatures  during  processing  (CVD,  PVD  and  thermal spray) or 

post-treatment  (sol-gel), which may damage the coating and /or substrate [22]. In addition, 

sol-gel processing has been of limited use due to poor interfacial adhesion, shrinkage and 

oxidation of the substrate [23]. Conversion coatings are mainly based on chromium 

compounds that exhibit good corrosion resistance, but have also been reported to be highly 

toxic and carcinogenic [23]. Ion implantation has found limited success in increasing the 

pitting potential of coatings. 

 

Plasma electrolytic oxidation (PEO) is a relatively new plasma-assisted electrochemical 

treatment which is considered as a cost-effective and environmentally friendly surface 

engineering technique and can be broadly applied to metal surface cleaning, metal-coating [24], 

carburizing, nitriding [25], and oxidizing [26-29].  



4 
 

 

A PEO process in a silicate solution can produce Al-Si-O ceramic coatings with a high adhesion, 

hardness, and thickness on Al-based materials. Also, the PEO process combining with other 

processes such as CVD [30] and electrophoretic deposition (EPD) [31] can be used in producing 

super hard, low friction, and biomedical compatible coatings.  

 

Several studies have been involved in the coating formation mechanisms [32-34], characteristics 

of the coating deposition including tribological properties [27-29] of the ceramic oxide coatings 

deposited using PEO on various Al alloy substrates. However, most of those works focused on 

2xxx and 6xxx series, i.e., low silicon (<1.5% Si) content Al alloys, and characterized thick 

oxide coating (i.e., >100 m in thickness). Little studies focus on the initial stage of the PEO 

coating formation and properties of the thin PEO coatings (i.e.,< 50 m ). Due to the rapid 

growth in applications of high silicon cast Al-Si alloys, the applications of the PEO on the cast 

Al-Si alloys have been paid more attention since recently [35, 36]. However, to our knowledge, a 

detailed investigation of the effects of silicon content in Al-Si alloys such as A356 alloy on the 

PEO coating formation and morphology has not been conducted yet. 

 

The global fuel crises in the 1970s triggered awareness in many countries of their vulnerability 

to oil embargoes and shortages. Considerable attention was focused on the development of 

alternative fuel sources, in particular, the alcohols [37]. Because it is a renewable bio-based 

resource and is oxygenated, ethyl alcohol is considered an attractive alternative fuel to reduce 

both the consumption of crude oil and environmental pollution. If ethanol from biomass is 

used to drive a light-duty vehicle, the net CO2 emission is less than 7% of that from the 
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same car using reformulated gasoline [38]. Currently, ethanol is blended with gasoline to 

form an E10 blend (10% ethanol and 90% gasoline by volume), but it can be used in 

higher concentrations s u c h  as E85 or E95. In the past few years, automotive manufacturers 

have developed flexible fuel vehicles (FFVs) that can run on E85 fuel or any other 

combination of ethanol and gasoline [6]. 

 

Carbon fibers which will be used as commercial vehicle’s bodies in the future years and 

aluminum alloys which can be used as chassis on future vehicles have created considerable 

interest as structural engineering materials and in many applications carbon fiber composite 

materials are connected to aluminum metals. When carbon fibers in a polymer based matrix 

composite are used as a structural component, it should be noted that carbon fiber is a very 

efficient cathode and very noble in the galvanic series. Therefore, contact between carbon fiber 

composites and metals in an electrolyte such as rain or seawater will be extremely undesirable if 

the metal is highly active and low in the galvanic series. If galvanic coupling occurs, galvanic 

corrosion of the metal may occur. Additional possibilities of corrosion related to raising the 

galvanic potential, particularly for passive metals such as aluminum alloys include: initiation of 

pitting corrosion and extensive crevice corrosion. [39, 40]  

 

Thus, in this thesis, low voltages (<500V) were adopted to produce thin PEO coating with 

thickness less than 50 um. The PEO process on aluminium alloys A356 (~7%Si) was 

investigated in terms of electrical and electrolytic parameters on formation, morphology, 

composition of the PEO coatings. Potentiodynamic polarization and Zero Resistance Ammetry 

(ZRA) corrosion testing methods were used to evaluate the corrosion properties of coated and 
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uncoated Al alloys (A356) in an alternative fuel. Effects of the current modes on the coating 

morphologies and anti-corrosion performance were particularly discussed in one of the chapters 

in this thesis. Also, the galvanic corrosion between metals and a carbon fiber sheet were 

investigated. In order to investigate the possibility and intensity of galvanic corrosion, not only 

potentiodynamic polarization but also zero resistance ammeter (ZRA) testing methods were used 

to evaluate the corrosion properties of a steel and a titanium alloy as well as coated and uncoated 

Al alloys (A356) in 3.5% NaCl solutions. As a result of this study, a better understanding of the 

galvanic corrosion behavior of the carbon fiber-metal system can be achieved. 

 

For improved friction and anti-wear properties, PEO coatings plus MoS2 particles has been 

applied to the A356 alumina alloy through the electrophoretic deposition of MoS2 particles. The 

alkaline electrolyte solution containing suspension of MoS2 particles was used to prepare a 

composite film of MoS2 and Al2O3. The resulting microstructural and tribological properties 

were examined via optical microscopy, scanning electron microscopy (SEM) and tribotests. A 

reciprocating sliding tribometer was used to investigate the tribological and wear behavior of the 

PEO coatings and counterface materials, compared with plasma transferred wire arc coating, 

Alusil
@ 

and Casting Iron samples, under dry and lubricated conditions.  
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Objective and contents of this study 

The objectives of this study were to: 

1. Develop plasma electrolytic oxidation (PEO) coatings on an A356 aluminium alloy for its 

corrosion and wear prevention.   

2. Investigate the possibility and intensity of galvanic corrosion of coated and uncoated Al alloys 

A356 vs. steel valve seats in E85 fuels and 3.5% NaCl solutions; investigate the galvanic 

corrosion behavior of the carbon fiber against coated A356 compared to uncoated A356, steel 

and Ti alloy; study the effects of the current modes on the coating morphologies and 

anticorrosion performance. 

3. Optimize the PEO process for improved friction and anti-wear properties; investigate the 

tribological and wear behavior of the PEO coatings and counterface materials, compared with 

plasma transferred wire arc coating, Alusil
@

 and casting iron samples, under dry and lubricated 

conditions. 

Organization of the thesis 

This thesis contains eight chapters. Chapter 1 gives introductory information on the usage of 

A356 aluminium alloy in automotive applications and the need for improved corrosion and wear 

resistance. Following this introduction, the relevant literatures regarding PEO coating technology 

on Al alloys and previous research on the PEO coating formation and properties are reviewed in 

Chapter 2. Chapter 3 describes the experimental instruments and procedures. Chapter 4 reports 

investigation results of corrosion property of plasma electrolytic oxidation coatings tested in an 

ethanol gasoline fuel (E85) medium. Chapter 5 presents the results and discussion of the 

corrosion property of contacts between carbon fiber cloth materials and typical metal alloys with 
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and without PEO coatings. In chapter 6, a new Al2O3/MoS2 composite coating was developed, 

and its tribological properties were investigated under dry and lube conditions. Chapter 7 

presents wear and friction properties of the PEO coating on engine bores, compared with 

commercial engine block materials. Chapter 8 is to summarize the research results of this thesis 

and also provide suggestion of future work. 
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CHAPTER 2 

LITERATURE REVIEW 

Plasma Electrolytic Oxidation (PEO), also called Micro-arc oxidation (MAO), is a plasma-

chemical and electrochemical process. The process combines electrochemical oxidation with a 

high voltage spark treatment in an alkaline electrolyte, resulting in the formation of a physically 

protective oxide film on the metal surface to enhance wear and corrosion resistance as well as 

prolonging component lifetime. It is suitable for the surface oxidation and pigmentation of 

aluminum, titanium, niobium, zirconium, magnesium and their alloys. The treated components 

are used in the building, mechanical, transportation and energy sectors. The technology is simple 

and energy saving and offers high throughput, low cost, high film quality, wide range of color 

pigmentation as well as environmental friendliness.  

This advanced anodizing process started to be developed by Russian scientists in the mid-1970, 

G.A. Markov and G.V. Markova [1, 2]. They did research on investigating wear resistant 

property of coatings for lightweight metals. The technology has later become to be known as 

‘micro-arc-oxidation’ (MAO) process [3]. In the 1980s, ‘micro-arc’ or ‘electrical discharges’ in 

the oxide deposition process were attempted to apply on various metals  in Russia by Snezhko 

[4-9], Markov [10-12], Fyedorow [13], Gordienko, [13-16] and their coworkers. In Germany 

early industrial applications were introduced by Kurze and coworkers [17-25]. In recent years, 

researchers in United Kingdom, North America and China were also involved in this field. 

Owing to the relatively sparse information on process phenomenology and, sometimes, a short of 

understanding, different (and not always physically correct) terminology has been used in much 

of the above studies for that is, essentially, the same technique: ‘micro-plasma oxidation’, ‘anode 

spark electrolysis’, ‘plasma electrolytic anode treatment’ (anode oxidation under spark 
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discharge), being typical examples of descriptions common to ‘plasma electrolytic oxidation’ 

(PEO). 

The process can make dense, very hard - nearly as hard as corundum - tenacious coatings on 

aluminum and aluminum alloy surface. An important characteristic of this coating is that the 

hard oxide layer actually grows inward from the aluminum substrate surface. Thus, good 

adhesion and dimensional stability of the part is possible and the parts in the nearly finished, 

machined condition can be coated. Unlike other superhard coatings (PVD, CVD coatings or hard 

anodizing alumina coatings), the coating is compliant for thicknesses up to 100um. Because of 

those attractive properties, recently the PEO coatings were investigated for automotive 

applications, in particular, powertrain parts. 

1. The PEO equipment 

Plasma electrolytic oxidation (PEO) or micro-arc oxidation (MAO) changed from the 

conventional anodizing process. Thus, the processing equipment for PEO is relatively similar to 

that for the anodizing process except for the higher voltage power source. Fig. 2.1 shows the 

typical treatment unit for PEO process [26]. The treatment unit consists of an electrolyser (Fig. 

2.1 (b)) and a high power electrical source. The electrolyser is usually a water-cooler bath placed 

on a dielectric base and confined in a grounded steel frame, which has an insulated current 

supply and a window to observe the process in operation. A stainless steel plate is immersed in 

the base which serves as the counter-electrode. In some examples, the electrolyser incorporates 

electrolyte mixing, recycling, and gas exhausting arrangements, as well as some safety interlocks. 
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Fig. 2.1 (a) Typical arrangement of the equipment used for PEO treatment (1. window, 2. mixer, 

3. connecting wires, 4. exhaust/ventilation system, 5. grounded case, 6. power supply unit, 7. 

workpiece, 8. cooling system, 9. bath, 10 insulating plate). (b) Electrolyte bath [26]. 

 2. Deposition procedure 

After simple pre-treatment consisting of degreasing and cleaning, samples are attached to the 

current supply of the unit and typically immersed in the bath at a depth of 40mm to 50mm 

beneath the electrolyte surface. After the electrolyte cooling, mixing and gas exhaust are 

activated, the working voltage can be applied to the electrolyser terminal and adjusted at the  

(a) 
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power supply in accordance with the selected treatment regime. For the different purpose, the 

PEO treatment is typically carried out for between 3 and 180min at current densities of 500-

2000Am-2 and voltages of up to 800V. 

Phenomena during the PEO process 

 

 

 

 

 

 

 

 

Fig. 2.2 Current-voltage diagram for the processes of plasma electrolysis: discharge phenomena 

are developed in the dielectric film on the electrode surface [26]. 

A.L. Yerokhin and X. Nie (1999) et. al. [26] discovered electrical plasma process and described 

the current-voltage characteristics during the PEO process. Fig. 2.2 represents the current-voltage 

characteristics of a system where oxide film formation occurs during the PEO process. Step 1, 

the passive film previously created starts to dissolve at point U4, which, in practice, relates to the 

corrosion potential of the material. Step 2, in the region of repassivation U4-U5, a porous oxide 
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film stars to grow, across which most of the voltage drop occurs. Step 3, at point U5, the electric 

field strength in the oxide film reaches a critical value at which the film is broken through due to 

impact or tunnelling ionisation. Step 4, at point U6, the mechanism of impact ionisation is 

supported by the onset of thermal ionisation processes and larger, slower arc-discharges arise. 

Step 5, in the region U6-U7, thermal ionisation is partially blocked by negative charge build-up in 

the bulk of the thickening oxide film, resulting in discharge-decay shorting of the substrate. After 

the point U7, because of negative charge blocking effects can no longer occur, the arc micro-

discharges occurring throughout the film penetrate through to the substrate and transform into 

powerful arcs, which may cause damage effects such as thermal cracking of the film coating. 

3. PEO coating structure 

 

Fig. 2.3 Illustrates the structure of the PEO coating [27].  

Al substrate 

Porous outer layer 

 Intermediate dense layer 

Thin inner dense layer 
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SEM investigations show that alumina coatings, produced on Al alloys by the PEO technique, 

have three layers, from top to bottom, a porous outer layer, intermediate dense layer and thin 

inner dense layer. The porous outer region consists predominantly of the low temperature 

modification of Al2O3 (γ- Al2O3/η- Al2O3) and X-ray amorphous phases. A dense inner region is 

formed by mixture high temperature α, γ-Al2O3 modifications of Al2O3 and complex Al-X-O 

phases (X is the element from electrolytes), whereas complex phases of the substrate alloying 

elements are observed in a thin, interfacial region below the dense layer. The relative sizes of the 

regions, their structure and composition are substantially affected by substrate composition, 

electrolyte composition and treatment regime. Comprehensive studies of these effects have been 

carried out for the treatment of Al-alloys in silicate solution [28, 29]. In those researches, 

different current density, treatment time, and concentrations of Na2SiO3 (10-30g/l) with addition 

of 6-8g/l of KOH solution were used to produce coatings with different ratios of Al2O3 and SiO2 

fractions. It has been discovered that the increase of the silicon content in the electrolyte results 

in a higher growth rate by the formation of composite coatings and an extension of the inner 

dense layer. The relative proportion of the harder α-alumina is increased by raising the current 

density. 

4. Tribological properties of PEO coatings 

The PEO technology can produce superhard and thick ceramic coatings which generally have 

outstanding load-support characteristics. Its tribological applications have attracted much 

attention.  Several studies have been reported on the tribological properties of the PEO coatings. 

X. Nie [30] reported the effect of coating thickness on the tribological properties. The properties 

of the coatings with thickness from 100µm to 250µm were tested using a “ball-on-plate” 
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reciprocating-sliding test with a load of 10N over 5000 cycles, at a frequency of 2Hz. The length 

of sliding path was 10mm with temperature and humidity controlled to 25±1°C and 45±5%. The 

friction coefficients (c.o.f) of the PEO coating against bearing steel (BS) and tungsten carbide 

(WC) balls lay in the ranges 0.64-0.68 and 0.68-0.86, respectively, which is higher than the 

steady-state values for the uncoated substrate, however those coatings all showed  excellent wear 

resistance. The dry wear rates were in the range 10
-8

-10
-9

mm
3
/Nm, which compares favourably 

with the untreated alloy substrate at ~10
-4

mm
3
/Nm. It was found that the PEO coatings of 

intermediate thickness (150µm) showed relatively poor wear resistance relative to their thicker 

and thinner counterparts. In addition, for the intermediate thickness samples the wear rate against 

the BS counterface was larger than that against WC. The reason could be that the wear 

mechanism changed from adhesive and fatigue wear to abrasive wear as well as adhesive and 

fatigue. 

In Ref. 31, PEO were applied in SAE 6061 aluminum alloy cylinder liners of a 4.6L-V8 

aluminum block engine. The coating surface was honed and material removal during honing to 

obtain finished bore diameter specified. Friction properties of the PEO coatings along with a 

production engine cast-iron liner were evaluated in a cylinder bore/piston ring test rig (Fig. 2.4) 

capable of testing cast iron and the PEO specimens simultaneously under low speed-maximum 

load engine operating condition which represents the most severe boundary friction condition 

that the cylinder bores are subjected to.  PEO coatings showed much lower friction than the cast-

iron liner, and with high density PEO coatings, lower wear result can be achieved. 
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Fig. 2.4 Segmented Ring/Bore Liner test rig is an apparatus for accurate and direct comparative 

friction measurements between cast iron and coated bore and ring samples and oil viscosity at 

speeds from 100 to 600rpm [31]. 

 

Although the PEO coatings have excellent wear resistance, for sliding wear applications, such 

alumina coating often exhibit relatively high friction coefficients against many counterface 

materials. Thus, there are also many prospects for the improvement of the PEO coatings with 

low friction and high counterface compatibility. 
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5. General corrosion characteristics of Al alloys 

Neutral or nearly neutral (pH from 5 to 8.5) solutions of most inorganic salts cause negligible or 

minor corrosion of Al alloys at room temperature. Any attack that occurs in such solutions is 

likely to be highly localized (pitting) with little or no general corrosion. Solutions containing 

chlorides are more active than other solutions. Distinctly acid or distinctly alkaline salt solutions   

are generally somewhat corrosive. The rate of attack depends on the specific ions present. In acid 

solutions, chlorides, in general, greatly stimulate attack. In alkaline solutions, silicates and 

chromates greatly retard attack [32, 33]. 

Al alloys are not appreciably corroded by distilled water even at elevated temperatures (up to 

180°C at least). Most commercial  Al alloys show little or no general attack when exposed  to  

most  natural  waters  at  temperatures  up  to  180°C  [34]. However, a small amount of water 

can drastically affect resistance to certain anhydrous organic solutions, particularly halogenated 

hydrocarbons. Water  vapor  in  the  air  is  sufficient  to  cause staining upon condensation,  and 

to support SCC (spell out??) [33]. Al alloys that do not contain Cu as a major alloying 

constituent are resistant to unpolluted seawater. Among the wrought alloys, those of 5xxx series 

have the highest resistance to seawater; among the casting alloys, those of the 356.0 and 514.0 

types are used extensively for marine applications. Corrosion of AI alloys in seawater is mainly 

of the pitting type, as would be expected from its salinity and enough dissolved oxygen as a 

cathodic reactant to polarize the alloys to their pitting potentials [34]. 

Since  one  of  the many  applications of  Al  alloys  is  in  the  automotive industry,  as  pistons,  

cylinder liners and valve seats,  a knowledge of  their  corrosion behavior in  the  corrosive 

ethanol-gasoline fuel media  is necessary.  A group  in Brazil  [35]  have  studied  the corrosion 
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behavior of both a Al-Si-Cu hypereutectic  alloy and grey cast iron in ethanol automotive fuels.   

The corrosion test medium they used was pure ethanol and ethanol with small additions (lmM) 

of sulphuric acid and lithium chloride. The results showed that in pure ethanol and acid 

containing ethanol, the Al-Si-Cu alloys had a higher corrosion resistance than grey cast iron, 

especially in pure ethanol. However, the addition of acid to alcohol, even in small quantities, 

causes dissolution of the initial oxide present on the alloy surface and impeded its formation 

when immersed in the environment. Moreover, in environments containing chlorides, the Al-Si-

Cu alloys exhibited localized corrosion characteristics. 

Corrosion of AI alloys can be prevented by many different methods, including the appropriate   

alloy selection and system design, environment control, and the use of inhibitors and protective 

coatings. The  latter  approach  has  led  to  the development  of various  surface  modification   

an coating techniques for AI alloys to enhance theircorrosion resistance, such as ion implantation,  

sol-gel coatings, conversion coatings, CVD, PVD and thermal spraying [36-45]. Although each 

of these techniques possesses its own advantages, their limitations and disadvantages are also 

quite obvious.  Most of these methods involve high temperatures during processing (CVD, PVD 

and thermal spray) or post-treatment (sol-gel), which may damage the coating and /or substrate 

[46]. In addition, sol-gel processing has been of limited use due to poor interfacial adhesion, and 

shrinkage and oxidation of the substrate. Ion implantation has found limited success in increasing 

the pitting potential of coatings. Conversion coatings are mainly based on chromium compounds 

that exhibit good corrosion resistance, but have also been proven to be highly toxic and 

carcinogenic [47, 48-53]. Since these processes have recently been reviewed, they are only 

briefly mentioned here [48-53]. The following subsections concentrate on a conventional surface 

modification technique, anodizing, together with the relatively new PEO technique. 
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The corrosion resistance of the PEO coatings on aluminum alloys was studied by X. Nie and 

coworkers [54]. Fig. 2.5 shows the polarization curves of the alumina coated alloy (with coating 

thickness of 250µm) and the untreated Al alloy substrate. Both types of sample were immersed 

in 0.5M NaCl solution for 1h, 1day and 2 days before corrosion tests. A stainless steel AISI 316L 

sample was also used in the corrosion test for comparison. The poor corrosion protection 

property of the uncoated Al substrate resulted from the fact that the corrosion resistance 

considerably decreased after the thin protective oxide film on the uncoated aluminium substrate 

surface was broken down by the corrosion processes. The PEO-coated Al alloys possessed 

excellent corrosion resistance in the solution-considerably better even than the stainless steel.  

 

Fig. 2.5 Potentiodynamic polarization curves of untreated substrate materials and PEO alumina 

coatings in 0.5M NaCl solution after different immersion times [54]. 
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6. Summary of literature review 

Plasma electrolytic oxidation (PEO) of metals is a complex process combining concurrent partial 

processes of oxide film formation, dissolution and dielectric breakdown. The ultimate stage of 

the PEO treatment is a quasi-stationary stage of persistent anodic microdischarges, which exhibit 

a progressive change in characteristics during the electrolysis. The electrolysis is always 

accompanied by intensive gas evolution and localised metal evaporation due to the plasma 

thermochemical reactions in the microdischarges. 

Four different stages of the PEO process have been identified, characterised by various formation 

mechanisms: (i) anodizing, (ii) anodizing film melted and broken down, (iii) micro-arc discharge 

and oxide coating formation, and (iv) coating composition fused and re-crystallized. The PEO 

coating has a three layers structure, i.e., porous outer layer, dense layer and very thin inner dense 

layer. 

The PEO process can greatly increase hardness and corrosion resistance for Al, Mg and Ti alloys. 

However, there is not much research that has been done on A356 Al casting alloy for both wear 

and corrosion prevention in engine applications which E85 fuel or deicing salt may get involved. 

The PEO coating usually has high coefficient of friction. There is a need of development of a 

low frictional oxide composite coating. Therefore, the research in thesis was to develop PEO 

coatings on A356 Al alloy which would have high wear and corrosion resistance and low friction 

potentially for engine applications.          
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Chapter 3 

EXPERIMENTAL PROCEDURES 

1. Pin-on-disc/reciprocating tribological test 

The wear tests were carried out on PEO coatings, A356 Ingot substrate and  oxide coating  by 

use  of  a  Sciland  Pin/Disc  Tribometer  PCD-300A (see  Fig.  3.1) at room temperature.  Only 

one mode was used: reciprocating mode (sliding speed: 0.08 m/s) for the curved samples. The 

tribological behavior of the coatings under dry and lubrication conditions were studied at a 

normal load of 15N against an steel pin (AISI 52100, hardness HRC 59-60). A 1000m sliding 

 

Fig. 3.1 Sliding tribotester attached on (a) Sciland Pin/Disc Tribometer PCD-300A (b) load 

cell and cantilever beam, (c) sample holder for reciprocating mode (d) sample holder plus load 

a 

c d 

b 
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distance was used for all PEO coatings. The same test conditions were used for the engine block 

coating but the test was used at oil condition (5W20). However, only a 250m sliding distance 

was used for the coating and substrate under the dry condition, and its surface profile was 

measured across the wear track to study its width and depth. 

2. Potentiodynamic polarization testing 

Potentiodynamic polarization is a technique where the potential of the electrode is monitored at a 

selected rate by application of a current through the electrolyte. By using the DC polarization 

technique, information on the corrosion rate, pitting susceptibility,  passivity,  as  well  as  the  

cathodic  behavior  of  an  electrochemical system may be obtained. 

In a potentiodynamic experiment, the driving force such as the potential voltage for anodic or 

cathodic reactions is controlled, and the net change in the reaction rate such as current is 

observed. The potentiostat (SP-150, Bio-logic brand instrument used for this research) measures 

the current which must be applied to the system for achieving the desired increase in driving 

force, known as the applied current. As a result, at the open circuit potential the measured or 

applied current should be zero. [1, 2] 

A typical schematic anodic polarization curve is shown in figure 3.2. The scan starts from point 1 

and progresses in the positive (potential) direction until termination at point 2. The open circuit 

potential is located at point A. At this point, the sum of the cathodic and anodic reaction rates on 

the electrode surface is zero. The active region is the region B where metal oxidation is the 

dominant reaction at this area. Point C is the passivation potential, and after the applied potential 

increases above this value the current density decrease with increasing potential (region D), until 

a passive, low current density is achieved (passive region‐ region E). When the potential 
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reached a sufficiently positive value (point F, also called as breakaway potential) the applied 

current rapidly increases (region G). This increase is depending on the alloy/environment 

combination.   For some systems such as aluminum alloys in salt water this sudden increase in 

current cause the pitting corrosion. [1-3] 

 

Figure 3.2 Typical polarization curve [1]. 

 

A schematic cathodic polarization scan is shown in Figure 3.3. In a cathodic potentiodynamic 

scan, the potential is changed from point 1 in the negative direction to point 2. The open 

circuit potential is located at point A. Region B represents the oxygen reduction reaction which 

depending on the pH and dissolved oxygen concentration in the solution. Because this reaction 

is limited by how fast oxygen may diffuse in solution there will be an upper limit on the rate 

of this reaction which is called limiting current density. Further decrease in the applied 

potential result in no change in the reaction rate which causes the measured current remains 

the same (region C). Eventually, the applied potential becomes sufficiently negative for 

another cathodic reaction to become operative as illustrated at point D. As the potential and 

driving force becomes increasingly large, this reaction may become dominant, as illustrated in 
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region E. This additional reaction is typically the reduction of other species in the environment 

such as the hydrogen evolution reaction which called the water reduction reaction. [1] 

 

Figure 3.3 Theoretical cathodic  polarization scan. [1] 
 

For reactions which are essentially activation controlled, the current density can be expressed as 

a function of the overpotential, η, which is expressed in equation [3] 

                                                     
 

  
                                                Eq.3.1                                                                 

Equation (3.1) is known as the Tafel equation, where β is the Tafel slope, i is the 

applied current density, and i0 is the exchange current density. 

 

Figure 3.4 Tafel slope calculation.[3] 
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3. Zero Resistance Ammetry 

A zero resistance ammeter is a current to voltage converter that produces a voltage output 

proportional to the current flowing between its to input terminals while imposing a ’zero’ voltage 

drop to the external circuit. By using this electrochemical technique, galvanic currents between 

dissimilar electrode materials are measured with a zero resistance ammeter.  This technique can 

be used to nominally identical electrodes in order to find changes occurring in the corrosive 

environment and thus act as an indicator of changing corrosion rates.[2] 

The main principle of the technique is that differences in the electrochemical behavior of two 

electrodes exposed to a process stream give rise to differences in the redox potential at these 

electrodes. When the two electrodes are externally electrically connected, the more noble 

electrode becomes predominantly cathodic, then the more active electrode becomes 

predominantly anodic and sacrificial. After the anodic reaction is relatively stable the galvanic 

current monitors the response of the cathodic reaction to the process stream conditions. When the 

cathodic reaction is stable, it monitors the response of the anodic reaction to process fluctuations. 

[2] 

Measurements of galvanic currents between silver and platinum coupled metals are based on the 

use of zero resistance amperometry (ZRA). A potentiostat controlled with asoftware were setup 

as a ZRA. The working electrode wire and the reference electrode wire combined to one served 

as working electrode. The counter electrode wire was not used. The ground wire connected to 

pure platinum served as working electrode.  

Pictures in Fig. 3.5 show a setup of electrochemical corrosion test instrument. 
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Fig. 3.5 (a, b) View of three-electrode cell and electrochemical corrosion testing equipment. 

(c) General galvanic corrosion test and (d) ZRA test cells arrangements.  

RE : reference electrode; WE: working electrode  CE: counter electrode 
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CHAPTER 4 

CORROSION PROPERTIES OF PLASMA ELECTROLYTIC 

OXIDATION CERAMIC COATINGS ON AN A356 ALLOY TESTED IN 

AN ETHANOL-GASOLINE FUEL (E85) MEDIUM 

 

1. INTRODUCTION 

Government organizations and automotive manufactures have been trying to find alternative 

fuels to substitute for gasoline and diesel fuels because of low accessibility of energy resources 

and environmental issues. Ethanol which acts as a bio-based energy resource and renewable 

chemical can reduce both crude oil consumption and the effect of environmental pollution. The 

use of ethanol blended gasoline as an alternative fuel has recently shown promising results in 

several countries [1, 2]. The problem of ethanol blended fuel is that associated with corrosion of 

the materials used in vehicles. In addition, the corrosiveness of the fuel depends on the content 

and kind of contaminations [3, 4]. Water is expected to be present as a contaminant in small 

amounts in commercial fuels such as ethanol-gasoline [5, 6] and could cause the corrosion 

problems to the materials which come into contact with. When dissimilar materials are involved, 

the galvanic corrosion becomes even more problematic. Aluminium (Al) casting alloys have 

widely been used in automotive engine heads and cylinder blocks where a number of Al and 

steel couplings exist. To protect the Al from corrosion, a PEO coating technique has been used, 

which operates at potentials above the breakdown voltage of an oxide film growing on the 

surface of a passivated metal anode (i.e. Al in this case) and is characterized by multiple arcs 

moving rapidly over the treated surface. Complex compounds can be synthesized inside the high 

voltage breakthrough channels formed across the growing oxide layer. Plasma thermochemical 

interactions in the multiple surface discharges result in a coating growing in both directions from 
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the substrate surface. At a particular combination of electrolyte composition and current regime 

the discharge modifies the microstructure and phase composition of the substrate from a metallic 

alloy to a complex ceramic oxide. As a result, an oxide coating with excellent adhesion can be 

achieved on aluminium alloy components [7, 8]. 

In this study, PEO oxide coatings were prepared under different current modes. Potentiodynamic 

polarization and Zero Resistance Ammetry (ZRA) [9] corrosion testing methods were used to 

evaluate the corrosion properties of coated and uncoated Al alloys (A356) in an alternative fuel. 

Effects of the current modes on the coating morphologies and anti-corrosion performance were 

particularly discussed in this paper. 

2. Experimental Details 

Circular coupons (20×20×5mm) cut from an A356 alloy were ground and polished before 

washing in water and then drying in air. The composition of the alloy is 0.25 Cu max, 0.20 to 

0.45Mg, 0.35 Mn max , 6.5 to 7.5 Si, 0.6 Fe max, 0.35 Zn max, 0.20 Ti max, 0.05 other (each) 

max, 0.15 others(total) max, bal Al. A PEO coating preparation system as described in Ref. [10] 

was used to produce the oxide ceramic coating on the coupon samples. The coatings were 

prepared in an alkaline electrolyte (KHPO4, 12g/l) using different current modes [11]. Four 

coating samples were prepared: Sample A was coated by using unipolar current mode for 10 

minutes, Sample B by using bipolar current mode for 10 minutes, Sample C by using combined 

unipolar (for 5 min) and bipolar (for 5 min) current mode for 10 minutes in total, and Sample D 

by switching the sequence for unipolar and bipolar compared with Sample C. All samples were 

treated under the same current density 500A/m2. 

Potentiodynamic polarization corrosion tests were conducted on the coatings as well as on the 
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uncoated A356 alloy and a steel (SAE 52100) in an ethanol (85%)-gasoline(15%) alternative fuel 

medium (i.e., E85). ZRA corrosion tests were also conducted to simulate galvanic corrosion 

between the steel and the coated/uncoated Al alloys. Scanning electron microscopy (SEM) was 

used to observe morphologies of the coupons before and after the tests. 

3. Results 

Fig.4. 1 shows the cross-sectional SEM micrographs of the sample A-D coatings. The thickness 

of the coatings was in the range of 4-7µm. The coatings A and C were slightly thicker than the 

coatings B and D. The thinner coatings might be due to the bipolar current mode where negative 

currents were involved and would reduce the efficiency of coating growth. Such an effect seems 

more obvious when the coating process started with a bipolar mode. When the duplex treatments 

by combination of uniploar and bipolar current modes were used, the interfaces between coatings 

and substrates became less distinguishable, indicating a denser inner layer or thicker diffusion 

layer in coatings C and D. 

Fig.4. 2 shows the potentiodynamic polarization curves for coatings A-D and uncoated A356 as 

well as steel in the E85 medium. The corrosion potential (Ecorr), current density (icorr) and 

polarization resistance (Rp) obtained by Tafel calculations for uncoated and coated samples are 

given in Table 1. 

The (Rp) values were calculated using the relationship [12, 13]: 

   
     

                
                                                                                        Eq.4.1 
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Fig.  4.1 Crossion sectional SEM micrographs of sample A-D coatings. 

The corrosion resistance in the E85 medium increased in the order of steel < sample B < A356 < 

sample A < sample D < sample C. Compared with the uncoated A356 coupon, coated simples C 

and D exhibited a higher polarization resistance, a lower corrosion current density and a higher 

corrosion potential. Sample C with thickness 6-7µm appeared to have the best corrosion 

properties among the coated A356 coupons. 

Table4.1 Potentiodynamic polarization parameters of uncoated/coated A356 and steel in E85. 
 
 

 βa (mV/dec) βc (mV/dec) Ecorr (mV) icorr (µAcm
-2

) Rp (Ω cm
2
) 

A356 196 223.8 -491.171 0.010 4543.04 

Steel 537.0 142.3 -89.865 0.050 978.18 

Sample A 314.8 239.9 -664.87 0.007 8456.31 

Sample B 101.5 478.2 -612.17 0.011 3309.42 

Sample C 116.3 170.6 -431.388 0.003 10022.57 

Sample D 221.9 286.3 -433.272 0.006 9058.68 

 

Fig.4.3 depicts the galvanic corrosion current density vs. time curves of studied couples: the steel 

and uncoated or coated A356 samples. The plots presents that the corrosion current tremendously 

decreased when the A356 samples had been coated with PEO oxide coatings. The positive 

current density values registered in the Figure indicated that those coated and uncoated A356 

acted as the anodic member of the pairs (i.e., steel vs. each of the tested samples); therefore, the 

steel remains protected [14, 15], unlike the highest corrosion current (i.e., corrosion rate) shown 
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in the potentiodynamic polarization corrosion tests. 

 

Fig. 4.2 Potentiodynamic polarization corrosion curves of the samples in an E85 medium. 

 

 

A general tendency for the galvanic current density to decrease with time was observed for all 

coated samples. For sample A, the current density decreased during the first 11000 seconds, and 

then it stabilized at around  0.025 µA/cm
2
. The sample B had a situation similar to sample A but 

started with a lower current, and it decreased not as sharp as Sample A. Samples D and C 

showed a slight increase in the anodic current density during the first 12000 seconds then 

became stable and finally reached 0.005 and 0.008 µA/cm2 at the end of the test. In general, 

Samples C and D both showed a lower current density than Samples A and B. The reason for 

that could be the thicker dense inner layers for samples C and D which made the corrosion 

voltages (Ecorr in Table 4 .1) closer to Ecorr of the steel and provided a better insulator between 



39 
 

the corrosion medium and Al substrates. Thus, the ZRA test results also suggested that the 

coatings C and D had the best anti-corrosion performances, similar to the results obtained using 

potentiodynamic polarization corrosion tests. 

 

 

Fig. 4.3 The galvanic corrosion current density of the test samples in the E85 medium 

Fig. 4.4 is the SEM micrographs of the surface morphologies of the tested materials after ZRA 

corrosion tests in E85. Apparently, all the samples suffered corrosion to different degrees. The 

uncoated A356 sample was experienced not only a general corrosion which left scattered circular 

staining on the surface (Fig. 4a) but also a localized corrosion (Fig. 4b) during the testing in E85 

medium. There was no obvious corrosion observed on the surfaces of samples C and D as shown 

in Fig.4.4 (c, d). 
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Fig. 4.4 SEM micrographs of (a, b) uncoated A356, (c) Sample C and (d) Sample D after ZRA 

corrosion tests. 

 

4. Conclusions 

(1) Different current modes during the PEO process were used to produce ceramic oxide coatings 

on an aluminium A356 substrate. The unipolar current mode would make the coating thicker 

than the bipolar mode. The coatings prepared using duplex uniploar and bipolar treatments had a 

dense inner layer or thick diffusion layer. 

(2) The potentiodynamic polarization corrosion test results showed that ceramic PEO coatings 

significantly affected the polarization characteristics of A356 alloy. The ranking for corrosion 

resistance in E85 medium was sample B < A356 < sample A < sample D < sample C. 

(3) Galvanic corrosion was studied under open circuit conditions using a zero-resistance 

ammeter (ZRA). The ZRA tests showed that in the E85 medium, coated samples all had a lower 

corrosion current density than uncoated A356 alloy. Samples C and D prepared using combined 

bipolar and unipolar current modes could perform a better galvanic corrosion resistance than 

other samples. 
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(4) Therefore, PEO ceramic coatings would provide an efficient protection to A356 alloy from 

the E85 corrosion. 

 

Acknowledgement: 

This research is supported by Natural Sciences and Engineering Research Council of Canada, 

Collaborative Research and Development Program. 

 

References: 
 

[1] Identification, repair, and mitigation of cracking of steel equipment in fuel ethanol 

service, Technical Report No. 939-E. American Petroleum Institute. 2008. 

[2] AC Hansen, Q Zhang and PW Lyne: Ethanol–diesel fuel blends – a review, Bioresour 

Technol 96 (2005) 277–85 

[3] P Österreicher-Cunha, JRD Guimarães, Jr EDA Vargas and MIPD Silva: Study of 

biodegradation processes of BTEX–ethanol mixture in tropical soil, Water Air Soil Pollut 

181 (2007) 303–17. 

[4] N Krings, J Abel, A Hebach, H Ochs, A Reitzle and S Virtanen: Corrosion in ethanol 

containing gasoline, In: 214th ECS Meeting. Oct 12–17; Honolulu, HI, 2008 

[5] CS Brossia, E Gileadi and RG Kelly: The electrochemistry of iron in methanolic 

solutions and its relation to corrosion, Corros. Sci. 37 (1995) 1455–71. 

[6] X Lou and PM Singh: Role of water, acetic acid and chloride on corrosion and 

pitting behavior of carbon steel in fuel-grade ethanol, Corros. Sci. 52 (2010) 2303–15 

[7] X Nie, X Li and D Northwood: Corrosion behavior of metallic materials in 



42 
 

ethanol–gasoline alternative Fuels, Mater Sci Forum 546-549 (2007) 1093–1100. 

 

[8] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey: Plasma 

electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73 

[9] M.T. Montañés, R. Sánchez-Tovar, J. García-Antón and V. Pérez-Herranz: 

Influence of the Flowing Conditions on the Galvanic Corrosion of the Copper/AISI 304 

Pair in Lithium Bromide Using a Zero-Resistance Ammeter, Int. J. Electrochem. Sci., 5 

(2010) 1934 - 1947 

[10] R.O. Hussein, X. Nie, D. Northwood, A.L. Yerokhin and A. Matthews: J. Phys. D 

Appl. Phys. 43 (2010) 105203. 

[11] R.O. Hussein, X. Nie and D.O. Northwood: Influence of process parameters  on 

electrolytic plasma discharging behaviour and aluminum oxide coating microstructure, 

Surf. Coat. Technol. 205 (2010) 1659–1667 

[12] P. Zhang, X. Nie and D.O. Northwood: Influence of coating thickness on the 

galvanic corrosion properties of Mg oxide in an engine coolant, Surf. Coat. Technol. 203 

(2009) 3271–3277 

[13] X. Nie, E.I. Meletis ,J.C. Jiang, A. Leyland, A.L. Yerokhin and A. Matthews: Surf.                 

Coat. Technol.149 (2002) 245-251 

[14] H. Jafari, MH. Idris, A.Ourdjini, H Rahimi and B Ghobadian: EIS study of corrosion 

behavior of metallic materials in ethanol blended gasoline containing water as a 

contaminant, Fuel 90 (2011) 1181-1187 

[15] H.P. Hack. Corrosion: Fundamentals, Testing, and Protection, Vol 13A, ASM 

Handbook, ASM International, USA (2003) 

 



43 
 

                                                                      

                                                                         CHAPTER 5 

GALVANIC CORROSION PROPERTY OF CONTACTS BETWEEN 

CARBON FIBER CLOTH MATERIALS AND TYPICAL METAL 

ALLOYS IN AN AGGRESSIVE ENVIRONMENT 

 

                                                         

1. INTRODUCTION 
 

The relationship between a vehicle's mass (weight) and its fuel economy is well known. 

Materials and techniques for cutting weight from vehicles are a part of routine automotive 

engineering practice. Large reductions in weight  while maintaining  size and  enhancing 

vehicle utility, safety, performance, ride and handling are often thought of as requiring 

radical changes, such as the all-aluminum bodies or carbon-fiber composites sometimes 

featured in concept vehicles [1,2]. A carbon fiber is a long, thin strand of material about 

0.005-0.010 mm diameter composed mostly of carbon atoms. The graphite basal planes 

oriented parallel to the axis of the fiber make the carbon fiber incredibly strong for its size. 

Several thousand carbon fibers are twisted together to form a yarn, which may be used by itself 

or woven into a fabric. The yarn of fabric is combined with epoxy and wound or molded into 

shape to form various composite materials. Carbon fiber-reinforced composite materials are 

used to make aircraft and spacecraft parts, racing car bodies, golf club shafts, bicycle frames, 

fishing rods, automotive springs, sailboat masts, and many other components where light 

weight and high strength are needed [3]. 

 Aluminum and its alloys are widely used in a large number of industrial applications due to   

their excellent combination of properties, such as relatively good corrosion resistance, excellent  
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thermal conductivity, high strength to weight ratio, easy to deform, and high ductility. 

Aluminum alloys have generally been used in manufacturing automobile and aircraft 

components in order to make the moving vehicle lighter, which results in saving fuel 

consumption [4]. Aluminum is an active metal whose resistance to corrosion depends on the 

formation of the protective oxide film on its surface. For these reasons, a number of 

investigations in its electrochemical behavior and corrosion resistance have been carried out in a 

wide variety of media. 

Carbon fibers and aluminum alloys have created considerable interest as structural engineering 

materials and in many applications, carbon fiber composite materials are connected to aluminum 

metals. When carbon fibers in a polymer based matrix composite are used as a structural 

component, it should be noted that carbon fiber is a very efficient cathode and very noble in the 

galvanic series [5-7]. Therefore, contact between carbon fiber composites and metals with 

similar properties in an electrolyte such as rain or seawater will be extremely undesirable. If 

galvanic coupling occurs, galvanic corrosion of the metal may occur. Additional possibilities of 

corrosion related to raising the galvanic potential, particularly for passive metals such as 

aluminum alloys, include: initiation of pitting corrosion and extensive crevice corrosion [8, 9]. 

Plasma electrolytic oxidation (PEO) coatings are much harder than anodized coatings and can be 

used to protect a variety of light metals (Ti, AI and Mg) and their alloys [10, 11]. The PEO 

process typically uses a dilute alkaline solution, which is not harmful to the environment. The 

coatings are typically five to a few hundred microns in thickness, with crystalline and amorphous 

phases containing both metal substrate and electrolyte chemical components [12, 13]. As the 

coating thickness increases, the PEO coating forms a porous and rough out-layer on the top of a 

dense layer. Depending on the current mode as well as the current pulse timing, the thickness of 
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the outer layer can be reduced. The improved surface performance obtained yields numerous real 

and potential applications for the PEO technology in the aerospace (fasteners, landing gear, 

blades, discs and shafts of aircraft engines), the automotive (seat frames, doors, pistons and 

cylinder liners), the gas and oil (gears and rotary pumps) and the biomedical industries [14, 15]. 

In this study, the galvanic corrosion between metals and a carbon fiber sheet were investigated. 

PEO oxide coatings on aluminum alloys were prepared under different current modes.  In order 

to investigate the possibility and intensity of galvanic corrosion, not only potentiodynamic 

polarization test but also zero resistance ammeter (ZRA) testing methods were used to evaluate 

the corrosion properties of a steel and a titanium alloy as well as coated and uncoated Al alloys 

(A356) in 3.5% NaCl solutions. Effects of the current modes on the coating morphologies and 

anti-corrosion performances are extensively discussed in this paper. As a result of this study, a 

better understanding of the galvanic corrosion behavior of the carbon fiber-metal system can be 

achieved. 

2.  Experimental details 

Circular coupons (20x20x5 mm) cut from steel ASTM A1018 an A356 alloy and a Ti6Al4V 

alloy were ground and polished before washed in water and then air-dried. The composition of 

the ASTM A1018 steel is 98.81-99.26 Fe, 0.18 C, 0.6-0.9 Mn, 0.04 max P and 0.05 max S. The 

composition of the A356 aluminum alloy is 0.25 Cu max, 0.20-0.45 Mg, 0.35 max Mn, 6.5-7.5 

Si, 0.6 max Fe, 0.35 max Zn, 0.20 max Ti, 0.05 max others  (each), 0.15 max others  (total), and 

bal AI. The composition for Ti6Al4V is 6.0 AI, 4.0 V, 0.25 max Fe, 0.2 max 0, and the 

remainder Ti. A PEO coating preparation system as described in Ref. [16] was used to produce 

the oxide ceramic coatings on the aluminum coupon samples. The coatings were prepared in an 
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alkaline electrolyte (KHP04, 6 g/1) plus sodium silicate powder (Na2SiO4, 6g/l) using different 

current modes [17]. For the A356 alloy, four coating samples were prepared: Sample A was 

coated by using the bipolar current mode with +5 positive and -2.5 mA/mm2 negative current 

densities for 20 minutes. Sample D was coated by using the unipolar current mode (current 

density: +5 mA/mm2, 80% duration time) for 20 minutes, Sample B by using combining 

unipolar (for 10 min) and bipolar (for 10 min) current modes for 20 minutes in total, and Sample 

C by switching the sequence of unipolar and bipolar modes used with Sample B. For Ti6Al4V 

samples, Sample TB was coated by using the bipolar current mode for 20 minutes and Sample 

TU was coated by using the unipolar mode for 20 minutes. 

Potentiodynamic polarization corrosion tests (SP-150, Bio-logic@, Bandwidth: 5) were 

conducted on the coatings as well as on the uncoated A356 alloy, Ti6Al4V and steel ASTM 

A1018 in a 3.5% NaCl solution. ZRA corrosion tests [18] were also conducted to simulate 

galvanic corrosion between the carbon fabric and the testing samples, where the testing sample, 

Ag/AgCl/KCl electrode and carbon fabric (instead of Pt) were used as the working, reference, 

and auxiliary electrodes, respectively. During the test, galvanic corrosion was monitored under 

open circuit conditions using a zero-resistance ammeter for 5 minutes per cycle for 50 cycles. 

The total duration time was 4 hours. The probe Positector 6000 series coating thickness gauge 

was used for coating thickness measurement. Scanning electron microscopy (SEM) FEI Quanta 

200 FEG microscope, operating at 15 kV, was used to observe morphologies of the samples 

before and after the tests. 
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3. Results and discussion 

Table 5.1 shows the thickness of the aluminum coatings, deter­ mined by the probe through 

averaging 10 data measurements. The thickness of the coatings is in the range of 10-20 µm. The 

coatings of Sample A and Sample B were slightly thicker than the coatings of Sample C and 

Sample D. For these coating treatment cases, the thicker coatings may be due to the bipolar 

current mode where negative currents were involved and would enhance the efficiency of 

coating growth. Such an effect seemed more obvious when the coating process started with a 

bipolar mode. When the duplex treatments by combination of uniploar and bipolar current modes 

were used, the interfaces between coatings and substrates became less distinguishable, indicating 

a denser inner layer or thicker diffusion layer in coatings of Sample A and Sample B [19, 20]. 

  

Coating   

thickness 

(µm) 

βa (mV/dec) βc (mV/dec) 
Ecorr 

(mV) 

         Icorr  

   (μAcm
-2

) 

Rp 

(kΩ cm
2
) 

Steel N/A 190.6 133.3 -770.0 80.0 0.43 

A356 N/A 80.4 95.6 -836.5 8.0 2.37 
Sample A 

-Bipolar 21.8 342.4 221.1 -942.1 0.8 77.88 
Sample B 

- Unipolar/ Bipolar   17.5 150.0 150.0 -366.9 0.4 81.52 
Sample C 

- Bipolar/ Unipolar   15.9 958.4 164.5 -1145.6 7.0 8.69 
Sample D 

-Unipolar 12.2 247.7 215.6 -987.5 1.0 50.12 

 

Table 5.1 Potentiodynamic polarization parameters of uncoated/coated A356 and steel in a 3.5% 

NaCl solution and thickness of alumina coatings. 

Fig.5.1 shows the optical images for the steel ASTM A1018 and the aluminum alloy A356 after 
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corrosion tests. It can be seen from the pictures that the general and pitting corrosions occurred 

on each sample. Fig. 5.2 shows the potentiodynamic polarization curves for coating samples A-D 

and uncoated A356 as well as the steel in the 3.5% NaCl solution. The corrosion potential 

(Ecorr), current density (icorr) and polarization resistance (Rp) obtained by Tafel calculations for 

uncoated and coated samples are given in Table 1. The (Rp) values were calculated using the 

relationship [21]: 

 

 

Fig. 5.1 Optical images of (a) ASTM Al018 steel and (b) aluminum alloy A356 and (c) Ti6Al4V 

alloys after corrosion tests  in (a). (b) and (c) showed  the corroded areas  at a low magnification. 
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Fig. 5.2 Potentiodynamic polarization corrosion curves of the samples in a 3.5% NaCl solution. 

Treatment modes for samples: A- bipolar, B- unipolar/bipolar, C-bipolar/unipolar, D­ unipolar. 

   
     

                
                                                                                            Eq.5.1 

 

From Table 1, the steel had the highest corrosion current, even higher than uncoated aluminum 

A356. Samples A and D had a similar corrosion current density and corrosion resistance. Sample 

B, prepared by unipolar followed by bipolar current treatments, possessed the lowest corrosion 

current and highest corrosion resistance. However, Sample C, which was prepared by bipolar and 

unipolar current modes, presented a low corrosion resistance although it was better than the 

uncoated aluminum sample. The results indicated that the coating process greatly influenced the 

coating performance. The aluminum sample (Sample B), treated first using unipolar then bipo­ 

lar modes, outperformed other samples. The corrosion resistance in the 3.5% NaCl solution 
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increased in the order of steel <A356< Sample C< Sample D < Sample A< Sample B. Compared 

with the uncoated A356 coupon, coated Samples A and B exhibited a higher polarization 

resistance, a lower corrosion current density and a higher corrosion potential. Sample B with 

thickness 17.5 µm appeared to have the best corrosion properties among the coated A356 

coupons. 

Fig. 5.3 depicts the galvanic corrosion current density vs. time curves of studied couples: the 

carbon fiber and uncoated or coated A356 samples and steel. The plots present that the corrosion 

current tremendously decreased when the A356 samples had been coated with PEO oxide 

coatings. The positive current density values registered in Fig.5.3 indicated that the coated and 

uncoated A356 acted as the anodic member of the pairs (i.e., carbon fiber vs. each of the tested 

samples). Therefore, the coated aluminum remains with a tendency to be corroded, but the 

corrosion rate was much lower than the uncoated aluminum, unlike the very high corrosion 

current (i.e., corrosion rate) shown by the A356 in the potentiodynamic polarization corrosion 

tests. 

A general tendency for the galvanic current density to decrease with time was observed for all 

coated samples. For Sample A, the current  increased during the first 12,000 s, and then it 

stabilized at around 0.025 mA/cm
2 

  Sample D had a situation similar to Sample A but started 

with a higher current, then decreased at 8000 s, which is not as sharp as Sample A, but ended at 

0.08 µa/cm
2
. .Samples B and C showed a slight smoothed curve in the anodic current density 

during the first 12,000 s then became stable and finally reached 0.001 and 1.1µa/cm 
2
 at the end 

of the test, respectively. In general, Samples A and B both showed a lower current density than 

Samples C and D. The reason for that could be the thicker dense inner layers for Samples A and 

B which made the corrosion voltages (Ecorr in Table 1) closer to the corrosion voltages of the 
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carbon fiber and provided a better insulator between the corrosion medium and the tested 

samples. Thus, the ZRA test results also suggested that the coatings of Samples A and B had the 

best anti-corrosion performances, similar to the results obtained using potentiodynamic 

polarization corrosion tests. 

Fig. 5.4 is the SEM micrographs of the surface morphologies of the tested materials which are 

the uncoated A356 and the aluminum coated A356 after ZRA corrosion tests in 3.5% NaCl 

solutions. Apparently, the ASTM A1018 steel sample suffered severe corrosion as shown in 

Fig.5.1 while the Ti sample showed no sign of corrosion. The uncoated A356 sample 

experienced not only a general corrosion which left scattered circular staining on the surface (Fig. 

5.4a) but also a localized corrosion (Fig.5.4b) during the testing. There was no obvious corrosion 

observed on the surfaces of coated A356 samples as shown in Fig. 4 for Samples B ( Fig.5. 4c) 

and C (Fig. 5.4d). Sample B in Fig. 5.4c presented a very dense coating surface with a minimum 

number   of   pores,   which   was   attributed    to   the   very   good anticorrosion properties as 

shown in both potentiodynamic polarization corrosion and ZRA corrosion tests. Therefore, the 

coating process operation combined with first the unipolar current mode and then the bipolar 

current mode would provide the best coating performance for the aluminum alloy in the 

corrosion tests. 
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Fig.5.3. The galvanic corrosion current density curves of the test samples in the 3.5% NaCl 

solution for (a) all samples and (b) samples A, Band Data magnified scale. A -bipolar, B - 

unipolar/bipolar, C - bipolar/unipolar, D - unipolar. 
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Fig. 5.4 SEM micrographs of (a. b) uncoated A356. (c) Sample Band (d) Sample C after ZRA 

corrosion tests. 

Fig.5. 5 shows the optical micrographs and galvanic corrosion current density curves of coated 

(TU and TB) and uncoated Ti-6AI-4V alloy in the 3.5% NaCl solution. There were no changes 

of surface morphologies before and after the corrosion tests.  Therefore, the Ti-6Al-4V alloy 

showed an excellent anti-corrosion property, which was also supported by the negligible ZRA 

current density value. The results indicated that the carbon fiber would not cause corrosion 

effects on Ti-6AI-4V. After the PEO treatment, the corrosion current of coated Ti-6AI-4V alloys 

were also extremely low; there were almost no difference between the coated and uncoated Ti 

samples. Thus, both coated and uncoated Ti alloys exhibited superior galvanic corrosion 
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resistance than steel and alumina when coupled with carbon fibers in salt corrosion media. 

 

Fig. 5.5 The optical micrographs and galvanic corrosion current density of the test samples in the 

3.5% NaCl solution for Ti6Al4V alloys: (a) un coated. (b) treated by a bipolar current mode (TB) 

and (c) treated  by a unipolar mode. 

It should be noted that making a uniform and adhesive PEO oxide coating on the steel for 

corrosion protection is still underway. More work is needed in the future to solve the non-

uniformity issue of the coating. On one hand, the uncoated steel would have a corrosion problem 

when it is coupled with carbon fibers. On the other hand, it was not found that the uncoated Ti 

alloy had any corrosion concern under the testing environment, thus a PEO coating may not be 

 

 

 

  (a) 

    1 mm 

 (b) 

    1 mm 

 (c) 

    1 mm 



55 
 

necessary for the Ti case. However, a PEO coating is much needed for the A356 aluminum alloy. 

 4. Conclusions 

Different current modes during the PEO process were used to produce ceramic oxide coatings on 

an aluminum A356 sub strate. For the studied treatment conditions, the bipolar current mode 

would make the coating thicker than the unipolar mode. The potentiodynamic polarization 

corrosion test results showed that the ceramic PEO coatings significantly affected the corrosion 

polarization characteristics of the A356 alloy. The coatings prepared using duplex unipolar and 

bipolar treatments had a dense surface and as a result, showed the lowest corrosion current and 

highest corrosion resistance in the potentiodynamic polarization corrosion tests. The ranking for 

corrosion resistance in a 3.5% NaCl solution was steel<A356<Sample C<Sample D<Sample 

A<Sample B. 

The ZRA test results suggested that when coupled with carbon fiber in the 3.5% NaCl solution, 

the steel and A356 aluminum alloys were severely corroded while the titanium alloy was almost 

intact. The ZRA tests also showed that all the coated samples had a much lower corrosion 

current   density than the uncoated A356 alloy. Among the PEO ceramic coatings which could 

provide an efficient protection to the A356 alloy from corrosion of the 3.5% NaCl solution, 

Sample B, prepared using combined unipolar and bipolar current modes, had the best 

performance in galvanic corrosion tests. For the Ti-6AI-4V cases, both coated and uncoated 

samples exhibited excellent galvanic corrosion resistances in the test environment. 
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CHAPTER 6 

MOS2/AL2O3 COMPOSITE COATINGS ON A356 ALLOY FOR 

FRICTION REDUCTION 

 

1.  INTRODUCTION 

In order to reduce the fuel consumption and pollution, automotive companies are developing 

aluminum-intensive components. However, due to the low wear resistance of the aluminum (Al) 

alloys, Al cylinder bores are vulnerable to the sliding wear attack. Plasma electrolytic oxidation 

(PEO) is a promising surface modification technique for the improvement of the tribological 

properties of metals, such as Al, Mg, Ti and their alloys [1, 2, 3]. 

The PEO process is based on the interaction between the oxide film growing on the anodic metal 

and spark arc micro-discharges. PEO resembles anodizing, but it is significantly different 

because it makes much harder, thicker layers while using environmentally less harmful 

electrolytes [4]. PEO coatings have been studied for various applications, including those for 

which wear resistance, corrosion resistance and thermal protection are being sought. While PEO 

treatment imparted excellent features such as wear and corrosion resistance on aluminum and 

magnesium [5], there is still a huge challenge in how to reduce coefficient of friction for the 

tribological applications.   

The inorganic solid lubricant molybdenum disulfide (MoS2) is a kind of solid lubricant, which 

has extensively been applied to reduce friction for a long time. Its crystalline microstructures, 

tribological properties and anti-friction mechanisms have been studied deeply. There are lots of 

techniques for preparing a MoS2 film, such as magnetron sputtering,[6, 7] ion beam assisted 
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deposition, anode oxidation combined with heat treatment, chemical reaction and high 

temperature annealing, as well as sol-gel method. The above techniques are useful, but obviously 

have the disadvantages such as inaccurate atomic ratio between sulfur and molybdenum and low 

deposition efficiency, or oxidation after high temperature annealing, or poor bonding strength 

with substrate.[8] While there are a number of published papers on PEO coatings on aluminum, 

reporting e.g. process characterization, physical and mechanical properties, tribological 

properties and thermo-optical properties, however, there has not been any concerted attempt PEO 

with MoS2 coatings in relation to friction reduction and wear resistance. 

In the present research, Plasma Electrolytic Oxidation (PEO) coating plus MoS2 particles has 

been applied to the A356 alumina alloy through the electrophoretic deposition of MoS2 particles. 

The alkaline electrolyte solution containing suspension of MoS2 particles was used to prepare a 

composite film of MoS2 and Al2O3. The resulting microstructural and tribological properties 

were examined via optical microscopy, scanning electron microscopy (SEM) and tribotests.  

2. Experimental procedure 

The material used in this study was cast A356 plates of 5 mm thickness, diameter was 2.6cm, 

with a nominal composition of 7.22 Si, 0.45 Mg, 0.15 Fe balance Al (in wt percent). MoS2 

powder (99% pure and 3um average particle size) was used in this study. In this work, an 

electrolyte was prepared from a solution of sodiumsilicate (2-10 g/l) in distilled water with 

addition of KOH (1-2g/l) to adjust PH value and conductivity. A uniploar or bipolar pulsed DC 

voltage pulsed at a frequency of 50 Hz was selected in the range of 400 V in the positive half 

cycle and 100V in the negative half cycle; and a predefined current density (400 mA/cm
2
) at the 

coating surface was maintained during the process. 
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There were five samples adopted for this experiment. There was sample 1 to sample 5. Sample 1 

was coated without MoS2 for 10 minutes after reaching the peak voltage (unipolar 430V). Time 

to reach this Peak Voltage was 9.05 minutes. Sample 2 was coated with MoS2 at first 5 minutes 

by 0.4A/cm
2
. After that, the circuit current density was decreased by half (0.2A/cm

2
) and 

continue for another 5 minutes. Sample 3 was coated with MoS2 at first 5 minutes and switch + 

and – pole (bipolar mode) and also the current was decreased by half for another 5 minutes. 

Sample 4 was coated with MoS2 at first 5 minutes and then, switch + and – pole (bipolar) but 

keep the same current (0.4A/cm
2
) to another five minutes. For sample 5, the sample was coated 

in the electrolyte containing MoS2 powders, after the voltage reached the peak voltage (unipolar 

430V), the coating process was continued to another 10 minutes. 

A pin-on-disc tribometer was occupied to evaluate tribological properties of those samples at dry 

and lubricated conditions with 1 N and 2 N normal loads, and 50 m sliding distance with steel 

balls (AISI 52100) as counter pins. For lubricant testing conditions, small amount of 5W10-30 

engine oil was applied on the testing sample surfaces to simulate a boundary lubricant condition. 

Scanning electron microscopy (SEM), FEI Quanta 200 FEG microscope, operating at 20 keV, 

with an energy dispersive x-ray analysis system (EDX) was used to analyze the coated samples. 

The  profilometer was used to provide areas of cross-sections of wear tracks from which the wear 

rate k can be defined as the volume loss per unit sliding distance and normal load, which be 

calculated and determined by the expression:[9] 

  
           

                             
 

   

   
                                                             Eq. 6.1 

A and L are the cross-sectional area and length of wear track, respectively. N is the load, I the 

sliding distance.   
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3. Result and Discussion 

The coefficients of friction of those samples were acquired and calculated. The result showed on 

Fig. 1. after smoothed. The substrate and Samples 1-4 all exhibited a high coefficient of friction 

during the tests at the first 10-15 m sliding distance (around 1000 revolutions). However, 

unlikely the substrate S1 and Sample 1 (without MoS2),   Samples 2, 3, 4 and 4 had a lower 

ramped up friction, which may be caused by a small amount of MoS2 in their coatings.   

 

Fig. 6.1. C.O.F. curves of (a) A356, S1 and S2 and (b) S3, S4 and S5 at 2N & 50m dry test 

conditions. 

Sample 5 exhibited the lowest C.O.F (0.18-0.28) among all samples during the initial 10m dry 

pin-on-disc test, indicating that more MoS2 likely existed in the PEO coating and acted as a solid 

lubricant. It can be found in Fig 1 that at the end of the wear test, the C.O.Fs had a similar value 

under the 2N load. The reason for this is that the coating layers had been broken due to the high 

load. To further investigate the wear performance improved by adding MoS2, Sample 1 and 

Sample 5 were chosen to do another run of pin-on-disc tests under 1N load for 50m, Fig. 6.2. 

After the tests, both Al2O3 (Sample 1) coating and composite MoS2/Al2O3 (Sample 5) coating 

samples were investigated by using SEM and EDX, Fig. 6.3. From the SEM and EDX results, it 
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can be seen that although the wear track widths for Sample 1 and Sample 5 were almost the same, 

the compositions for wear tracks were different. Fe oxides were found in both sample’s wear 

tracks. A higher brightness of transferred materials on Sample 1 should indicate the Fe was 

oxidized to a larger degree than the transferred Fe on Sample 5. The EDX analysis result also 

showed that the percentage of Mo/S element was around 0.3%-1.75%. The MoS2 and the less 

oxidized Fe (may being FeO) can reduce coefficient of friction for Sample 5 [10-11]. As a result, 

Sample 5 had a lower C.O.F than Sample 1, Fig.6. 2. 

 

Fig. 6.2. C.O.F. curves of (a) S1 and (b) S5 at 1N and 50m dry test conditions. 
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Fig. 6.3 SEM micrograph and EDX spectra of coatings on (a, b) Sample 1 (without MoS2) and (c. 

d) Sample 5 (with MoS2) 

 

Fig. 6.4 (a) Wear rates of samples S1 and S2 under the pin-on-disc dry test conditions for both 

2N and 1N (labeled with*) loads, and (b) Tribological behaviours of A356 and coated samples 

under lubricant test conditions at a 2N load for 50m (4000 revolutions). 

Fig. 6.4(a) shows the wear rates of samples S1 and S5 under the pin-on-disc dry testing 

conditions at 2N (labeled as S1 and S5) and 1N (labeled as S1* and S5*) loads. The 2N load test 

conditions caused both coatings on S1 and S5 failed while the coatings were still intact under 1N 

a b 

c 

a b 

a 

d 
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load conditions as shown in Fig. 6.3. When the coating surfaces were broken, the Al2O3 particles 

from the broken coatings would be attached on the surfaces of the steel ball and substrate and 

formed third body abrasive wear which caused the high wear rate. However, when the load 

changed to 1N, the wear rate of Sample 5 was obviously lower than that of Sample 1. It 

suggested that MoS2 played a significant role in this experiment. 

SEM observations also showed that both coatings consisted of a porous surface layer, which may 

be useful as lubricate oil retaining dimples during lubricate tests. Fig. 6.4(b) shows the C.O.F.s 

under the lubricant testing conditions where the MoS2-coated samples (Samples 2-5) had a 

significantly lower C.O.F. (by 0.11) than the aluminum substrate. Sample 5 showed the lowest 

C.O.F. Thus, the coatings with MoS2 again performed better than the uncoated and Al2O3 only 

coated substrates under lubricant test conditions. In terms of both friction coefficient and wear 

resistance, the benefit from the MoS2 seems become more obvious in the lubricant than in dry 

test conditions. 

4. Conclusions 

Al2O3 and MoS2/ Al2O3 coatings were prepared using a Plasma Electrolytic Oxidation (PEO) 

process at both unipolar and bipolar pulsed-DC modes. All samples coated with Al2O3 plus 

MoS2 showed a lower C.O.F. than the uncoated substrate. While the Al2O3 coating without MoS2 

exhibited a high coefficient of friction, C.O.F = 0.5-0.6, the MoS2 incorporating with the Al2O3 

coating would reduce the C.O.F to 0.18-0.28 before the coatings failed. The MoS2/Al2O3 coating 

appeared to have a longer wear life than Al2O3-coated and uncoated A356 alloys. Under the 

lubricant testing condition, the MoS2/Al2O3 composite coatings also had a significantly lower 

C.O.F. than the uncoated and Al2O3-coated aluminum substrates. Therefore, the solid lubricant 
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MoS2 demonstrated its role in the composite coatings with respect to a lower friction coefficient 

and wear rate than both original and Al2O3-coated alumina alloys.   
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                                                   Chapter 7 

EFFECT OF PLASMA ELECTROLYTIC OXIDATION COATINGS ON 

FRICTION AND WEAR BEHAVIOR OF ALUMINUM ENGINE 

CYLINDER BORES 

 

1. Introduction 

Aluminum casting alloys which contain silicon show great potential for engine cylinder 

applications as they impart excellent castability, low density, and good mechanical properties. 

Aluminum alloys have been used for tribological engine applications in the last few years, 

examples are A390, Alusil
TM

, Silitec
TM

, Lokasil
TM

, etc. [1–3]; those alloys are all hypereutectic 

alloy which contain 17–25 wt. % Si. Currently, only luxury vehicles are produced with linerless 

engine blocks made of hypereutectic aluminum-silicon (Al-Si) alloys.  The cheaper eutectic and 

near-eutectic aluminum–silicon alloys do not usually appear to have a strong surface to 

withstand wear problems caused by piston rings; a cast iron liner or thermal spraying coating is 

used for improved tribological properties of Al-Si casting alloys with a low Si content. 

The wear mechanisms, wear regimes and transitions of Al-Si alloys have been investigated in the 

past [4-9]. Those researches have shown that aluminum does not exhibit sufficient wear 

resistance to maintain cylinder wear among the ultra-mild wear regime. For that reason, by 

means of alloying and the addition of hard particles wear resistance can be promoted. The actual 

role that the microstructure, and specifically the hard phases and particles, act in providing wear 

resistance in aluminum casting alloys is a useful solution for wear. As a result, the effect of 

silicon content and morphology on wear resistance has been the main focus of many studies [10–
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12]; these studies give information that smaller eutectic silicon particles provide the stiffest 

resistance to particles sinking-in. Engine bores show to undergo microstructural transformations 

which are kind of element of their wear resistance. However, engine tests performed on 

hypereutectic parent metal engine bores [13, 14] report that the general knowledge that the hard 

particles simply carry the entire load is not the correct solution.  Instead, recent researches 

indicate that the combination of brittle, hard phases, plus a ductile matrix, and the breakdown 

products of the oil with the oil additive package cause to a very complex surface   structure when 

subjected to cyclic sliding loads at or close the shear strength of the aluminum matrix. This 

surface microstructure, which is not similar with the initial surface preparation, should have 

suitable wear resistance for long-term engine bore durability applications. [15] 

Plasma Electrolytic Oxidation (PEO) method is considered as an environmentally and cost-

effective electrochemical process, which can make a wear resistant oxide film on a variety of 

metals [16-19].  Different from   the   general anodizing process, PEO adopts a voltage above the 

dielectric breakdown potential of the oxide layer, which causes the gas evolution and local 

formation of plasma [20].  The PEO coatings are much harder than the anodizing coatings. 

Moreover, the PEO process uses dilute alkaline solutions instead of acidic electrolytes, which is 

less harm to the environment.  Therefore, it is reasonable to apply the PEO process to the engine 

cylinder bores of the all Al engine block to provide sufficient wear protection without causing 

any environment hazard. 

Previous researchers mainly focused their studies on the wear resistance of PEO coatings on Al 

alloys that are not cut from real casted engine blocks [21–25]. Research on the wear performance 

of the PEO coatings on Al under the lubrication condition was very limited. Investigation in the 

wear properties of PEO coatings on Al alloys under the starved and boundary lubrication 
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conditions were reported in references [26, 27]. It was found that the micro porosities on the 

coating surfaces can be acted as oil reservoirs and were beneficial to the oil-lubricated wear 

performance. However, comparison between the wear performance of PEO coatings and 

materials used as the commercial engine cylinder bores has not been reported yet. Generally, a 

thick, dense and smooth PEO coating is desirable for tribological applications. However, as the 

coating thickness is increased, the PEO coating forms a porous and rough outlayer on the top of a 

dense inner layer.  The worn off hard debris from the coarse outlayer would cause abrasive wear 

to both the cylinder bores and the piston rings. It is necessary to smoothen the coating surface 

when the coating is thick. In order to acquire a honing-free coating through short treatment time 

for cost saving, relatively thin PEO coatings were prepared in this work.  The thin coatings with 

tailored surface morphology and coating thickness were studied in tribological properties, 

compared with commercially available engine cylinder bore materials. 

2. Experiment method 

A PEO coating unit as described in Ref. [28] was used to produce the oxide coatings on the Al 

cylinder bore. The electrolyte was mainly sodium aluminate (6-8g/l NaAlO2) with a small 

amount of potassium hydroxide (KOH) added to balance the pH at 11. A small amount of MoS2 

powders (2-3 g/l) also was added to the solution. During the PEO process, the Al cylinder bore 

as the anode and a  stainless steel  plate as  the cathode were connected to a  unipolar pulsed DC 

power supply. 80% of the duty cycle and 2 kHz frequency were used   for the high   coating 

growth rate   [29].  There were two coatings prepared on the Al cylinder bores which were 5 

minutes and 10 minutes, respectively. Average surface roughness Ra of the coated Al cylinder 

bores was measured by a Mitutoyo SJ-201P stylus surface profiler. A scanning electron 

microscope (SEM JEOL-5800LV) with energy dispersive X-ray analysis (EDX) was utilized to 
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observe surface morphologies of the specimen cut from the coated cylinder bore's and  

commercial cylinder bores including Alusil, PTWA, and casting iron. 

Tribological properties of all the cut specimen were investigated using  a reciprocating  sliding  

tribometer against AISI 52100 chrome steel balls which were 4 mm  in diameter.  Vickers 

hardness for the balls was about 700 HV.  Made of hypereutectic Al–Si alloys, Alusil specimen 

was prepared from a commercially available Alusil® engine cylinder liner which was machined 

with  a special honing process to allow  the  Si particles in  the   Alusil  alloy  protruded from   

the   matrix and  were designed to isolate the  contact between the  soft matrix and  the  wear 

materials. However,  for the real case, the  engine cylinder bore  could  still undergo considerable 

wear  loss   under  the   following  circumstances:  cold start, the  use  of  the  ethanol–gasoline 

mixture fuel  (E85)   and  the directly injected fuel, where direct friction surface contacts would 

happen  due to the lack of the oil lubricant. Therefore, in order to evaluate the anti- wear 

performance of the  PEO coatings on cylinder bore  in those worse cases, the  wear tests were 

conducted under the   starved  lubrication  conditions  of 5W20   Motomaster engine oil  where  

friction countersurfaces con- tacted at their micro-asperities due  to lack of formation of lubricant 

film.  A normal load 15 N was selected so that the reference Alusil, PTWA and casting iron 

samples experienced between the mild wear and severe wear [30]. The sliding distance was 1000 

m for those samples. For a dry without lubricant condition, PTWA coated sample and PEO 

coatings prepared in electrolytes containing a solid lubricant powders or without the powders 

were tribotested at 1N load and 100m sliding distance. The wear tracks on the PEO coatings and 

those reference samples were studied using SEM. A Buehler Omnimet optical microscope was 

utilized to observe the wear tracks on not only the coated sample but also reference samples and 

the worn areas of all the steel balls. All coating samples were slightly polished (similar to a 
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brushing process) to Ra value below 0.5. 

3. Results and discussion 

Fig.7.1 shows the optical micrographs of the wear tracks on the PEO coating samples and 

scratched scars on the steel balls as well as friction curves at the boundary oil lubricant condition. 

Fig. 1(a) is for ta PEO coating S1 prepared with a powder-contained electrolyte for a relatively 

long treatment time (10 minutes). Fig. 1(b) is for a PEO coating S2 treated for a short time (5 

minutes). Fig. 1(c) depicts a PEO coating S3 prepared in the electrolyte without the MoS2 

powders. In each picture, mark (i) is for wear track of the coating, (ii) for scratch scar on the steel 

ball and (iii) the coefficient of coefficient (C.O.F).  From those pictures, it is shown that the 

coating S3 which was prepared in the no-powder contained electrolyte shows a higher C.O.F 

than the other two coatings. The C.O.F of the coating S3 went up to maximum 0.24 which is 

much higher than the coatings prepared in the electrolyte with powders. Usually, the surface of 

PEO coating is uniformly distributed with many micro-pores and dimples of the sizes ranging 

from a few to several micrometers. Previous research [31, 32] investigated that micro-pores were 

formed by the molten oxide and gas bubbles thrown out of micro-arc discharge channels. For oil-

lubricated sliding condition, micro-pores, micro-cracks or dimples which were normally 

deliberately produced on the wear surface, can alter the hydrodynamic efficiency and hence 

lubrication regime or performance of sliding surfaces [33, 34]. These pores and dimples on PEO 

coating can act as reservoirs for oil lubricants, which may result in a positive effect to the 

tribological performance of PEO coatings under boundary lubricated conditions. However, in 

this case, the load is 15N which is much higher than previous tests. The wear track picture in Fig. 

1(c) shows the coating S3 was locally broken at one end of its sliding tracks where the sliding 
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speed was slower and thus oil lubricant condition become even worse than the center area of the 

wear tracks. The oil film discontinuity could not keep the oil staying in the counter face between 

wear surface and steel ball.. The wear track width is around 500 µm and the worn area for steel 

ball is 468 × 571 µm. 

On the contrast, when a PEO coating was treated has in powders-contained electrolyte, the pores 

which were generated during the plasma discharges could be filled with powders. The powers 

were solid lubricant which can to some extent provide a lubricating effect. Thus, the coatings S1 

and S2 exhibited a lower C.O.F than the coating S3.  Compared the coating S1 (the long time 

treated sample) with the coating S2 (the short time treated sample), it can be found that the wear 

track of S1 is slightly larger than that of S2. me one  and worn surface for these two work piece 

However, the sizes of wear scars of the counterface balls are almost the same. For the C.O.F,  the 

PEO sample S2  had a stable  friction coefficient curve which is not larger than 0.13. The coating 

sample S2 had an increased C.O.F. curve from 0.14 to 0.16 and the localized coating was slightly 

ground off at the end of wear track. The reason for this phenomenon might be caused by 

treatment time. When the coating time was longer, although the coating thickness increased, , the 

long treatment time  could cause the coating surface feature coarse. As a result, when the load 

was high, such as 15N, the coating would have more contact with steel ball, leading to a higher 

C.O.F.  . 
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Fig 7.1.  Optical micrographs of (i) the wear tracks on PEO coatings and (ii) wear scars on counterface 

steel balls, and (iii) C.O.F. for (a) Coating S1, (b) Coating S2, and (c) Coating S3 (continued) 
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Fig 7.1.  Optical micrographs of (i) the wear tracks on PEO coatings and (ii) wear scars on counterface 

steel balls, and  (iii) C.O.F. for (a) Coating S1, (b) Coating S2, and (c) Coating S3.. 

 

Fig. 7.2 show the optical micrographs of the wear tracks on the reference samples and wear scars 

on the counterface steel balls. Fig.7.2(a) is for PTWA sample,. Fig.7.2(b) for Alusil® sample, 

and Fig.7.2(c) for cast iron sample. In each picture, mark (i) is for wear track, (ii) for scratching 

on steel balls and (iii)   coefficient of friction (C.O.F).   

Plasma transferred wire arc (PTWA) thermal spraying is a thermal spraying process that deposits 

a coating on the internal surface of a cylinder, or on the external surface of a part of any 

geometry. It is known for its use in coating the cylinder bores of an engine, enabling the use of 

aluminum engine blocks without the need for heavy cast iron liners. For Al-Si alloy engine 

blocks, PTWA provides a  weight-saving alternative to cast iron liners, while delivering 

increased displacement in the same size engine package and a potential for better heat 

transfer.[35, 36]  From Fig. 7.2(a), it can be found that there are  honed grooves in the PTWA  

coating. Those microvalleys or grooves act as wear debris traps and oil reservoirs for the 
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lubricant. Those grooves can keep the oil on the coating surface during the wear test which 

causes the C.O.F as lower as the PEO coating S2 prepared in an electrolyte with solid lubricant 

powders for a short treatment time. However, the counterface wear was smaller than the case for 

the PEO coating which had a rough surface than the PTWA coating. The PEO coatings had a 

surface roughness Ra = 0.5-0.6 µm, and roughness of the PTWA coating was Ra = 0.2 µm. 

The Alusil aluminium alloy is commonly used to make linerless aluminium alloy engine blocks. 

Alusil, when etched, will expose a very hard silicon precipitate. The descended aluminium 

matrix surface can hold oil, and silicon grains provide the load bearing surface.[37] Fig.7. 2(b) 

presents the tribotest results of Alusil sample. After a certain running time Si grains and the Al 

matrix were at the same height level. The steel ball was not only supported by the Si grains but 

was interacting with the Al matrix as well. The roughness of the original surface of the Al matrix 

might increase during the running of the test. As a result, the C.O.F. increased occasionally. The 

phenomenon could be observed for the PTWA case, except for the deferred time when the 

increased C.O.F. occurred at a 490-520 m sliding distance instead of 230-280 m for Alusil 

sample. The relatively soft Alusil and its smooth surface (Ra = 0.2 µm) were beneficial to the 

less counterface wear, compared to the PEO coatings, although the counterface wear appeared 

larger for Alusil than for PTWA and cast iron. The hard Si and possibly fractured Si grains may 

cause the slightly large wear scar on the steel ball. 

Generally cast irons have good wear resistance. Cast irons are used in slurry pumps, brick dies, 

several mine drilling equipments, rock machining equipments and the similar areas [38, 39]. Cast 

irons have wide applications in diesel engines as engine block materials and in gasoline engines 

as liners for aluminium engine blocks.   Fig.7. 2(c) shows the cast iron liner specimen tested at a 

15N load, 1000m sliding distance and boundary oil lubricant condition. The cast iron had carbon 
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graphite in it, which may be the reason why cast iron exhibited a lower C.O.F. than PTWA. The 

surface areas weaken by graphite structures may be locally fractured, causing the relatively large 

scratching scar on the ball surface, compared to the PTWA coating. 

In contrast with the PEO oxide coating, all the reference samples were relatively soft metallic 

materials with smooth surface finish, which resulted in less counterface wear. The previous 

research regarding surface roughness effect of a PEO coating on counterface wear indicates that 

the PEO coating with reduced roughness can have a similar or even smaller counterface wear [27] 

compared to the PTWA coating. On one hand, the strong PEO coating had an even C.O.F. curve 

without a spike, which may suggest the PEO coating have a better resistance to scuffing wear 

and the tribological property of the coating could be further improved with the increase of the 

running time due to the application-induced polishing effect. On the other hand, the metallic 

based coating or bore materials would be degraded during the application, and the frequency of 

 

Fig. 7.2. Optical micrographs of (i) the wear tracks on reference samples and (ii) wear scars on 

counterface steel balls, and  (iii) C.O.F. for (a) PTWA coating, (b) Alusil, and (c) cast iron 

(continued). 
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Fig. 7.2  Optical micrographs of (i) the wear tracks on reference samples and (ii) wear scars on 

counterface steel balls, and (iii) C.O.F. for (a) PTWA coating, (b) Alusil, and (c) cast iron. 

appearances of spikes (i.e., high C.O.Fs.) in the C.O.F curves would be increased.  SEM 

micrographs wear tracks of the PTWA sample are presented in Fig. 7.3(a) and 3(b).  Surface 

fatigue turned out as delamination of individual fractures of splats. The coating cohesion was 

mainly provided by interlocking of splat particles and adhesion strength. Crack propagation 
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followed the splat boundaries where smooth surfaces hindered mechanical interlocking and 

finally perpendicular micro cracks could remove a splat particle from the surface. At a low rate 

this must not be detrimental because the open volume c store motor oil and favor lubrication. 

One has to notice that delamination of splats can already occur in the course of honing. A 

differentiation during which stage, manufacturing of the surface or engine operation, a splat 

particle is removed is unlikely when the steel ball slides over and modification of the surface is 

progressed. Another wear mechanism within this wear test was found to be an abrasion wear. 

Grooves of different width could be seen in sliding direction of the moving steel ball all over the 

surface. The honing texture was abraded completely. The SEM images (Fig.7.3(c)) can be used 

to explain the C.O.F curve for PTWA sample at a boundary lubricate, 15N load and 1000 m M 

sliding distance condition. At around 500m, the C.O.F value had a mutation up to 0.25 which 

was caused by deformation of splat particles.  However, the damage was not very severe at the 

oil lubricated condition. As a result, the C.O.F. curve was drawn back to the origin value. 

SEM images of wear tracks of the Alusil sample are presented in Fig. 7.3(d) and 7.3(e).  It can be 

seen that the Al matrix was strongly modified during the wear test.  A friction induced wear 

particle dispersion strengthening process is considered responsible for the enhancement of the 

wear resistance of the hypereutectic Al-Si alloy.  The initial protrusion of Si primary particles is 

believed necessary to direct the energy input into the Si grains and to separate the steel ball from 

the initial contact to the soft Al surface. However, after the wear test, the elemental composition 

of the worn Al surface contains large amounts of oxygen, calcium and carbon, Fig. 7.3(f). 

Together with embedding of wear particles the aluminium matrix was plastically deformed. The 

C.O.F. curve in Fig.7.2(b) shows that the friction went high  at around 300m sliding distance and 

then returned to normal at 400m. 
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SEM micrographs for wear tracks of the cast iron sample are presented in Fig.7.3(g) and 7.3(h).  

The cast iron specimen was tested against the steel ball under the same boundary lubricate 

conditions and for the same wear distance as the other cases. The wear tracks seem smoother and 

narrow. However, there were still cracks that appeared on the wear track surface. The cracks 

were believed initiated from graphite sites after the sample experienced with a relatively long 

sliding distance. As a result, the suddenly increased C.O.F. only appeared after the 800m sliding. 

The C.O.F. dropped back to its early level at 900m, indicating the sample did not have a severe 

scuffing problem yet.  

The SEM observations and EDX analysis were also conducted for the wear tracks on the two 

PEO coatings after the sliding tests against chrome steel balls under a normal load 15 N for 1000 

m.  Fig. 7.4 shows the SEM micrographs of the wear track on the short time coated substrate 

(sample S2) and EDX spectra at two typical surface areas.  Surface polishing was the coating 

wear mechanism, Fig.7 .4(a). The smoother areas with grey color were originally Al matrix, and 

the porous surface areas with bright color were related to Si-enriched regions (Fig.7 .4(b)). The 

EDX spectra still shows high contents of oxygen in all the areas within the wear tracks, Fig.7 

4(c), which indicates the PEO coating was not broken. Element Mo could be found in the spectra 

a well, suggesting the solid lubricant powders MoS2 might be physically or chemically 

collaborated into the coating particularly at the rough surface areas where the powders could stay 

in the pores. Unfortunately, only a few powders can be observed in or near pores. Therefore, a 

chemical reaction of Mo into the oxide coating might also occurs. The MoS2 or Mo had 

seemingly played a role in the reduced C.O.F., compared to the PTWA coating. Although the test 

load is high (15N), the thin coating still can undergo the steel ball at a boundary lubrication. 
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Fig. 7.3 SEM micrographs for (a, b) PTWA, (c-d) Alusil and (e-f) cast iron liner specimen after 

the tribotests. 
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Fig.7.4 SEM micrographs and EDX spectra of the coating S2 after tested at a 15N, 1000m and 

oil lubricant condition. 

Fig. 7.5 shows the SEM micrographs and EDX spectra of the wear track on the long time coated 

Al substrate S1. . A few tiny scratches and localized coating chipping off   could be observed. 

The chipping off of the coating mostly occurred in the Si-enriched regions. The content of 

oxygen and molybdenum were higher in the coating S1 than in the coating S2 due to the longer 

treatment time.  The EDX result may indicate more molybdenum powders existed in the pores 

which were produced by plasma charges. Although the PEO coatings were thin, the coatings can 

still withstand the high contact stresses (in a range of 800-1000 MPa maximum Hertz contact 

stress) of the tests at 15N load where the maximum Hertz contact stress was in a range of 800-

1000 MPa.  
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Fig. 7.5. SEM micrographs and EDX spectra of the coating S1 after tested at a  15N, 1000m and 

oil lubricant condition. 

As mentioned before, even if the engine bore is always operated on the lubrication condition, 

there are still some cases for almost dry sliding of piston ring against the cylinder bore. Fig.7.6 

shows the wear test result for selected PTWA sample and PEO coating (S1, prepared with long 

treatment time in a MoS2 powder contained electrolyte). From the wear track pictures, it can be 

seen that under dry condition, the dimension for wear track on PTWA sample is much larger 

than the PEO sample. And also the C.O.F.  value, Fig 7.6 (a), is higher  than the PEO sample.  

Under a dry condition, the PTWA coated bore may be severely scratched by piston ring. On the 

other side, solid lubricant powders can play an important part for reducing the friction. Usually 
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Fig. 7.6. Optical images of (a) the coating S1 and (b) counter-ball as well as (c) PTWA coating 

and (d) counter-ball. (e)  C.O.F curves for the coatings.   
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the C.O.F. of a traditional PEO coating (as the coating S3) under dry condition is average 0.6.  

However, when the powders were added during the PEO process, the C.O.F. was dropped down 

to 0.15 which would significantly increase the anti-wear performance of the PEO coating under 

dry condition.   

4. Conclusion  

In this study, oxide coatings were deposited on cylinder bores made by a cast Al–Si alloy. The 

oxide coatings prepared in a MoS2 powder-contained electrolyte appeared to have an improved 

tribological property.   Incorporation of molybdenum and/or solid lubricant particles into the top 

oxide layer provided not only low friction to the coated Al–Si alloy but also good compatibility 

to the steel counterfaces. The counterface wear was related to the hardness and roughness of 

sample surfaces. The harder and rougher PEO coatings exhibited a higher degree of ball wear 

than the PTWA coating, but the PEO coatings had a lower coefficient of friction at both dry and 

oil lubricating test conditions. A better surface finish of a PEO coating would further improve the 

compatibility to steel counterface. Compared with all the PTWA, Alusil® and casting iron 

reference materials as a benchmark, the coefficients of friction of the PEO coatings were evenly 

low without spikes, and wear and plastic deformation of the coatings were minimal. The 

suddenly increased C.O.F (spikes) for tests of the commercially-used metallic based coating 

(PTWA) and bore materials (Alusil and cast iron) suggest that the reference materials were 

degraded during the accelerated test conditions. However, the even C.O.F. curves without a spike 

indicate the PEO coatings had a better resistance to scuffing wear. Therefore, the Mo-contained 

PEO coatings  can be good candidates for engine cylinder bore surface protection. 
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Chapter 8 
 

                                          Summary and future work 
 

1. Summary 

Linerless aluminium engine block cylinder bore surfaces need coatings to prevent wear and 

corrosion problems. In this thesis, plasma electrolytic oxidation coating technology was used to 

produce oxide coatings on an aluminium alloy A356. The uncoated A356 and commercially-used 

cylinder bore materials were also used for comparison study. The oxide coatings were to provide 

corrosion and wear resistance of the A356 alloy for aluminium engine applications. The coatings’ 

corrosion property was tested in an E85 alternative fuel medium. The tribological properties of 

the coatings were tested in dry and lubricating conditions. To reduce coefficient of friction of the 

oxide coatings against steel counter face materials, the coatings were also prepared in an 

electrolyte containing MoS2 powders. The modified coatings showed to possess a lower 

coefficient of friction, which would increase fuel efficiency when the coatings are used on engine 

cylinder bore surfaces. The results are summarized as follows. 

 

I. Corrosion property of Plasma Electrolytic Oxidation (PEO) coatings tested 

in an ethanol-gasoline fuel (E85) medium 

Ceramic oxide coatings were prepared on an engine bore material: aluminum A356 alloy by a 

plasma electrolytic oxidation (PEO) technique under unipolar, bipolar and duplex 

unipolar/bipolar current modes. Cross-sectional morphologies of the coatings were studied using 

a scanning electron microscope (SEM). The corrosion behavior of the coated and uncoated 
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samples was evaluated in ethanol-gasoline E85 fuels through potentiodynamic polarization and 

zero resistance ammeter (ZRA) testing methods. The results indicated that all the coatings had a 

better corrosion resistance compared to the uncoated substrate. The unipolar current mode 

created the PEO coating with a thicker coating microstructure and thus a better corrosion 

resistance, compared to a bipolar current mode. The duplex treatments of unipolar/bipolar or 

bipolar/unipolar current modes produced an even better performance of the coatings against 

galvanic corrosions caused by a steel/Al coupling in the E85 fuel medium. 

 

II. Corrosion property of contacts between carbon fiber cloth materials and 

typical metal alloys with and without Plasma Electrolytic Oxidation (PEO) 

coatings 

The demand for the use of carbon-fiber-reinforced materials in automotive industry is increasing 

worldwide. A destructive galvanic corrosion is inevitable when carbon fiber contacts with metals. 

In this research, the galvanic corrosion between carbon fiber and three kinds of commonly used 

metals, A356 aluminum alloy and Ti6Al4V titanium alloy, was studied. By employing the 

potentiodynamic polarization tests and zero resistance ammeters testing (ZRA) method, the 

corrosion potential and their differences in values were analyzed in a 3.5% NaCl solution. It was 

found that when coupled with carbon fiber, steel and A356 aluminum alloy were corroded while 

the titanium alloy remained almost intact. To address this problem for the lightweight aluminum 

alloys, the plasma electrolytic oxidation (PEO) technique was again employed to synthesize 

oxide coatings on the A356 alloy and Ti6Al4V titanium alloy as well. The results of the 

experiments showed the rate of the galvanic corrosion current could be decreased significantly 

when the PEO coatings were applied on the aluminum surfaces. The coatings prepared using 
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duplex unipolar and bipolar treatments had a dense surface and as a result, showed the lowest 

corrosion current and highest corrosion resistance in the polarization corrosion and ZRA tests. 

For the Ti-6Al-4V cases, both coated and uncoated samples exhibited excellent galvanic 

corrosion resistances in the test environment. 

 

 

III. MoS2/Al2O3 composite coatings on A356 alloy  
 

In order to reduce the fuel consumption and pollution, automotive companies are developing low 

friction surface technologies. Plasma electrolytic  oxidation (PEO)  is  a  promising  surface  

modification  tehcniques  for  the  improvement  of  the  tribological properties of metals, such as 

Al, Mg, Ti and their alloys. In this research, a plasma  electrolytic  oxidation  (PEO)  ceramic  

coating  process  was  used  to  form ceramic MoS2 oxide composite coatings on aluminum with 

intention for lower friction. The tribological properties of the oxide-MoS2 coatings were 

evaluated by sliding wear tests under the dry and lubricate conditions at the room temperature. 

The test  results  showed  that  the  solid  lubrication  MoS2   can be  integrated  into the  coatings  

for friction  reduction.  The role of solid lubrication in reducing friction coefficient has been 

exhibited more significantly in the oil test condition than in the dry test condition. 

IV. Plasma electrolytic oxidation coatings on engine bores to modify friction 

and wear behavior 

Since most conventional aluminum (Al) alloys have poor wear resistance, various technical 

solutions have been developed to generate wear-resistant cylinder bores against the sliding piston 

ring. In this work, the plasma electrolytic oxidation (PEO) process was employed to produce 

oxide ceramic coatings on an Al alloy A356 for Al engine block applications, to protect against 
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the wear damage. A reciprocating sliding tribometer was used to investigate the tribological and 

wear behavior of the PEO coatings and counterface materials under dry and lubricated conditions. 

A hypereutectic Al-Si alloy (Alusil), cast iron and plasma transferred wire arc (PTWA) coatings 

were also tested for the comparison study. The results show that the PEO coating can have a low 

coefficient of friction and minimal wear. The special PEO coating with some additive powders 

can be used as an alternative coating for wear and friction reduction of Al cylinder bores. 

 

2. Future work 

 
The corrosion experiments were conducted in room temperature and the A356 material was Ingot 

casting condition (large grain sizes). The future corrosion study in E85 should be also done at 

elevated temperatures to simulate the engine combustion conditions. The influence of grain sizes 

of the alloy’s microstructure on coating preparation and properties is needed in the future study 

as well. There is also a need to find appropriate ways to increase amount of MoS2 powders in the 

oxide coatings for further friction reduction. 
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