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PLATELET-DERIVED GROWTH FACTOR ENABLES DIRECT DERIVATION OF 

OLIGODENDROCYTE PROGENITORS FROM CNS STEM CELLS 

Rajesh C. Rao and Ronald D. McKay. Laboratory of Molecular Biology, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD. (Sponsored by Diane 

S. Krause, Department of Laboratory Medicine, Yale University School of Medicine).  

 

Oligodendrocytes derived in the laboratory from stem cells have been proposed as a treatment for 

acute and chronic injury to the central nervous system (CNS).  Platelet-derived growth factor-receptor 

alpha (PDGFRα) signaling is known to play an important role for regulation of oligodendrocyte 

progenitor cell numbers both during development and adulthood. Here, we analyze the effect of 

PDGFRα signaling on CNS stem cells derived from embryonic day 13.5 murine cortex and cultured 

in monolayer. Fetal and adult CNS stem cells express PDGFRα, and PDGF-AA treatment increases 

viability and proliferation of these cells. In the absence of insulin, this effect of PDGF-AA is very 

clear. Consistent with this result, PDGF-AA strongly stimulates glycolytic rate. PDGF-AA treatment 

rapidly induces morphological changes in the cells although the cells maintain expression of a wide 

range of precursor markers. We show that a brief exposure to PDGF-AA rapidly and efficiently 

induces oligodendrocytes from CNS stem cells.  Our data suggest that phosphoinositide kinase-3 

(PI3K)/Akt, mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-

related kinase (MEK/Erk), mammalian target of rapamycin (mTOR) regulate survival, proliferation, 

glycolytic rate, and oligodendrogliogenesis induced by PDGF-AA. By treating with PDGF-AA, 

progenitor cells directly from embryonic cortex can be expanded and differentiated into 

oligodendrocytes with high efficiency. Our results show that PDGF-AA promotes oligodendrocyte 

progenitor generation from CNS stem cells and supports their survival and proliferation. The 

derivation of oligodendrocytes demonstrated here may support the safe and effective use of stem cells 

in the development of new therapies targeting this cell type.  
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Introduction 

 

Oligodendrocyte progenitors are dividing, lineage-restricted precursors that exist in both 

the developing and adult central nervous system (CNS) and differentiate into 

oligodendrocytes, the cell type responsible for myelination of CNS axons (1).   In vivo, 

oligodendrocyte progenitors arise in distinct temporal waves starting from embryonic day 

12.5 (E12.5) in the ventral forebrain, which then migrate laterally and dorsally, arriving 

in the cortex by E16 (2).  Historically, the isolation of oligodendrocyte progenitors has 

involved extensive, multistep purification procedures from postnatal tissues of the 

forebrain and optic nerve (3, 4).  The transplantation of this cell population has been 

proposed as a therapeutic approach to treat demyelinating diseases such as multiple 

sclerosis, and spinal cord injury (5-7). 

 

Multipotent stem cells that are the precursors to oligodendroglial, astroglial, and neuronal 

progenitors can be readily derived from the fetal and adult brain of many mammals and 

expanded to large numbers (8, 9).  Neural stem cells can also be efficiently generated 

from embryonic stem (ES) cells (10, 11).  Stem cells have been proposed as a source of 

oligodendrocytes to treat demyelinating disease and transplantation of human ES cell 

derived oligodendrocyte progenitors in spinal cord injury is imminent (12-14).  Cytokine 

signaling regulates the production of differentiated cell types from stem cells in vitro (15).  

Transplantation shows that the in vitro system generates functional oligodendrocytes but 

there is no study that explicitly defines the transition from stem cell to oligodendrocyte 

progenitor. 
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Platelet-derived growth factor (PDGF) was initially identified because of its role in the 

proliferation of glial cells and its oncogenic function in sarcoma virus (16-18).  The 

subsequent identification of the PDGF receptor has had an important role in defining 

membrane events that trigger proliferation (19-21).  PDGF and its receptors are expressed 

in several different cell types in the developing and adult CNS (22).   PDGF ligands A, B, 

C, and D occur as homodimers and as a heterodimer (AB) and bind two tyrosine kinase 

cell surface receptors, PDGFRα and PDGFRβ.  Most of the ligands (AA, AB, BB, CC) 

bind PDGFRα while a subset (BB, DD) bind PDGFRβ.  Ligand binding to PDGF 

receptor induces receptor dimerization, followed by activation of tyrosine kinase domains, 

and autophosphorylation of tyrosine residues on the cytoplasmic domain of the receptor 

(22). Docking proteins and signal adaptors interact with the phosphorylated tyrosine 

residues to initiate downstream signaling cascades important for cell metabolism, growth 

and survival, including the phosphoinositide kinase-3/Akt/ mammalian target of 

rapamycin (PI3K/Akt/mTOR) and mitogen-activated protein/extracellular signal-

regulated kinase kinase/extracellular signal-related kinase (MEK/Erk) pathways (23-25).   

 

In the CNS, PDGFRα is expressed by neuroepithelial cells as early as E8.5, retinal 

astrocytes, oligodendrocyte progenitors, developing and adult neurons, and adult neural 

stem cells in the subventricular zone (SVZ) (26-30).  PDGFRα-null mice are not viable; 

lethality is seen between embryonic day 9.5 and 16 (E9.5-16). These embryos show 

multiple CNS defects, including failure of neural tube closure and neural crest 

abnormalities (31, 32). Several defects in oligodendrocyte development related to 
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impaired PDGFRα signaling are observed. PDGFRα haploinsufficient animals, which 

survive long enough for oligodendrogliogenesis to occur, display precocious 

differentiation of oligodendrocytes progenitors in vivo and in vitro (32). The PI3K/Akt 

pathway is a particularly important downstream effector of this receptor as knockin mice 

harboring mutations in PDGFRα that selectively eliminate its capacity to activate PI3K 

die perinatally and display several defects, including impaired migration of 

oligodendrocytes progenitors and generalized hypomyelination (32, 33).  Conditional 

inactivation of PDGFRα in adult SVZ neural stem cells results in a severe reduction in 

stem cell-derived oligodendrocytes (29).  

 

PDGF-A plays a specific role in the developing CNS. PDGF-A knockout mice, when 

compared to wild-type or PDGF-B null mice, have reduced numbers of oligodendrocytes, 

display severe hypomyelination and a dysmyelinating phenotype (tremor), which argues 

for an essential role of the ligand in oligodendrocyte development (34). In vitro, PDGF-

AA is generated by astrocytes and is a more potent mitogen for oligodendrocyte 

progenitors than are other isoforms (35-38).  In the adult brain, infusion of exogenous 

PDGF-AA shifts cell production of SVZ neural stem cells from neurogenesis to 

oligodendrogliogenesis in vivo (29).  In the mouse embryo, PDGF-A and PDGFRα are 

expressed in adjacent layers; PDGF-A is the predominant isoform expressed in the 

developing CNS (38, 39). 

 

Apart from these developmental roles, PDGF signaling has been implicated in CNS 

tumorigenesis. Autocrine PDGF signaling—most commonly overexpression of the ligand 



4 
 

and/or receptor—is found in essentially 100% of human gliomas (40).  Indeed, gene 

transfer of PDGF-AA, has been shown to promote tumor-like formation in vivo (41, 42).  

Continuous, in vivo ventricular infusion of PDGF-AA into the adult brain induces the 

formation of large, SVZ stem cell-derived hyperplasias with some features of glioma (29). 

 

In this manuscript, we report the effects of PDGF-AA on neural stem cells derived from 

the fetal cerebral cortex. Continuous treatment of CNS stem cells with PDGF-AA 

maintains expression of neural precursor markers and increases viability, proliferation, 

nestin+ cell number and glycolytic rate. The increased cell number and glycolytic rate 

observed with PDGF-AA treatment is regulated by PI3K/Akt, MEK/Erk, and mTOR 

pathways. Brief exposure to PDGF-AA rapidly induces oligodendrogliogenesis from 

CNS stem cells through MEK/Erk and PI3K/Akt pathways. Using PDGF-AA, we 

describe a one-step method to derive large numbers oligodendrocyte progenitors directly 

from embryonic cortex and CNS stem cells. These findings demonstrate that PDGF-AA 

regulates CNS stem and progenitor cell number, metabolism, and fate through particular 

intracellular signaling pathways. The efficacy and safety of the oligodendrocyte 

progenitor populations derived here can now be simply assessed. 
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Statement of Purpose, Specific Hypothesis, and Specific Aims 

 

Despite the imminent use of stem cell-derived oligodendrocytes in clinical therapy of 

spinal cord injury, there is no study that explicitly defines the transition from stem cell to 

oligodendrocyte progenitor (43, 44).  In this study, our purpose was to define this 

transition by using multipotent neural stem cells derived from the fetal cortex, which 

clonally generate oligodendrocytes, neurons, and astrocytes. Given that platelet derived 

growth factor-AA (PDGF-AA) plays an essential role in oligodendrocyte development, 

we hypothesized that the cytokine would induce oligodendrogliogenesis from CNS stem 

cells (45). Our specific aims were to generate a rapid, serum-free method to generate 

oligodendrocytes from CNS stem cells and to determine which cell signaling pathways 

regulate the specification of the oligodendroglial fate. 
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Materials and Methods 

 

Cell culture. Fetal cortices were dissected free of meninges from E13.5 CD-1 mouse 

embryos (Charles River, Wilmington, MA) in Hank’s buffered saline solution (HBSS; 

Mediatech, Herndon, VA). Cortices were dissociated by brief mechanical trituration and 

resuspended in serum free medium containing Dulbecco’s modified Eagle medium 

(DMEM/F12, Mediatech) with N2 supplement (expansion medium) and fibroblast 

growth factor-2 (FGF2, 20 ng/ml, added daily, R&D Systems, Minneapolis, MN). N2 

supplement contains 25 μg/ml insulin, 100 μg/ml human apotransferrin, 20 nM 

progesterone, 100 μM putrescine, 30 nM sodium selenite (all from Sigma-Aldrich, St. 

Louis, MO) (46). CNS stem cells from passaged at ~60% confluence by briefly 

incubating in HBSS and gently scraped with a cell scraper. CNS stem cells from passage 

1 were plated at 5,000-25,000 cells/cm2. FGF2 was included throughout our experiments 

unless otherwise stated. To derive, propagate and expand oligodendrocyte progenitors 

from E13.5 cortical cells or CNS stem cells, cells were cultured in PDGF-AA (30 ng/ml, 

added daily) without FGF2 (20 ng/ml, R&D Systems) in expansion media. To rapidly 

induce oligodendrogliogenesis from CNS stem cells, passage 1 stem cells were re-plated 

at 25,000 cells/cm2 in PDGF-AA containing medium for 12 hours, and cultured in serum-

free differentiation media consisting of Neurobasal media with B-27 supplement 

(Invitrogen, Carlsbad, CA) for a differentiation period of 4-5 days. To induce 

differentiation of oligodendrocyte progenitors derived from CNS stem cells or primary 

E13.5 embryonic cortical cells, PDGF-AA was withdrawn and expansion media was 

replaced with differentiation media. 
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Immunocytochemistry. Cultured CNS cells were fixed with 4% paraformaldehyde and 

processed as described (47, 48). Cells were stained with primary antibodies against the 

following proteins: A2B5 (mouse monoclonal, 1:500, Chemicon, Temecula, CA), NG2 

(rabbit polyclonal, 1:100, Chemicon), O4 (mouse monoclonal, 1:50, Chemicon), BrdU 

(rat monoclonal, 1:400, Accurate, Westbury, NY), cleaved caspase-3 (rabbit polyclonal, 

1:200, Cell Signaling, Danvers, MA) , nestin (rabbit serum 130, 1:100, McKay Lab), 

Sox2 (goat polyclonal, 1:50, R&D Systems), PDGFRα (rabbit polyclonal, 1:500, Santa 

Cruz Biotech, Santa Cruz, CA), Olig2 (rabbit polyclonal, 1:5000, kind gift of H. 

Takebayashi). Appropriate secondary antibodies (Alexa Fluor 488 and 568, 1:200, 

Molecular Probes, Invitrogen) were applied and incubated for 1 hour at room temperature. 

Nuclei were stained with DAPI (0.25 µg/ml, Sigma, St. Louis, MO). Images were 

captured, using fluorescent filters, with a Zeiss Axioplan microscope and Zeiss Axiocam 

HR camera (Carl Zeiss Inc, Thornwood, NY). 

 

Measurement of glycolytic rate. CNS stem cells were plated at 6.25 x 104 cells/cm2 and 

cultured for 24 or 48 hours, and treated as indicated in the Figure legends. Cells were 

then incubated in expansion media supplemented with 10 mM glucose and 20 μCi/ml [5-

3H]glucose (Perkin Elmer, Waltham, MA) at 37oC . After 1 hour, an equal volume of 0.2 

N HCl was added to stop the reaction. 3H2O was separated from unmetabolized [5-

3H]glucose by evaporative diffusion of 3H2O in a sealed equilibration chamber. Samples 

were then analyzed with a scintillation counter, and readings were normalized by cell 

number.  
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Flow cytometry. Cells were plated at 3.12 x 104 cells/cm2 and cultured for 3 days, and 

treated as indicated in the Figure legends (growth factors added daily, media was not 

changed so that viable and nonviable cells could be analyzed). Adherent cells were 

passaged into suspension and combined with floating viable and nonviable cells and 

analyzed for viability based on propidium iodide exclusion. Flow cytometry and data 

analysis were performed by Jeanette Beers using a FACScaliber system and CELLQuest-

Pro software (BD Biosciences, San Jose, CA). 

 

Western blotting. Total cell lysates were prepared in lysis buffer (1% Triton X-100, 10% 

glycerol, 50 mM Tris, pH 7.4, 150 mM NaCl, 2 mM EDTA, 2 mM MgCl2, 1 mM DTT, 1 

mM PMSF, and phosphatase inhibitors) and were normalized for protein concentration. 

Protein was loaded on 4-12% polyacrylamide gels and transferred to nitrocellulose 

membranes (both Invitrogen, Carlsbad, CA). Primary antibodies include PDGFRα, 

PDGFβ (Santa Cruz Biotech, Santa Cruz, CA), phospho-tyrosine742-PDGFRα (Abcam, 

Cambridge, MA), phospho-serine-473-Akt, Akt, phospho-threonine-202/tyrosine-204-

Erk1/2 (Cell Signaling, Danvers, MA), and tubulin (Sigma, St. Louis MO). Blots were 

probed with HRP-conjugated secondary antibodies (1:10,000, Jackson Immunoresearch, 

West Grove, PA) followed by chemiluminescent reagent (1:2, Pierce, Rockford, IL). 

 

Pharmacologic treatments. Unless otherwise stated, we used the following 

concentrations: LY294002 (10 μM), PD98059 (50 μM), rapamycin (1 μM) (Calbiochem, 

San Diego, CA). For the effects of kinase inhibitors on activation of signaling pathways 
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following PDGF-AA treatment, cells were pre-incubated for 1 h with inhibitor prior to 

PDGF-AA administration. Control cultures were treated with DMSO vehicle. 

 

Statistical Analysis. In all experiments, mean ± s.d. or s.e.m is presented as stated. 

Asterisks identify experimental groups significantly different from control groups by the 

Student’s T-test. P-values < 0.05 were considered significant. 
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Results 
 
 

FGF2-responsive CNS stem cells express PDGFRα  

Murine E13.5 cortical cells were treated with fibroblast growth factor-2 (FGF2) in order 

to select for and expand CNS stem cells (15). As CNS stem cells in primary culture 

proliferated with continued FGF2 administration, increased amounts of PDGFRα, but not 

a related receptor, PDGFRβ, were detected by western blotting (Fig. 1A). 

Immunocytochemical analysis using an antibody against PDGFRα confirmed that the 

receptor is expressed by virtually all FGF2-expanded CNS stem cells (Fig 1B).  

 

PDGF-AA stimulation activates Akt, Erk, and mTOR in a sustained manner and 

maintains expression of neural precursor markers  

 

We next examined signaling induced by PDGF-AA. We found, by western blotting, that 

PDGF-AA stimulated phosphorylation of PDGFRα, with maximal activation at 5 min 

(Fig 1C).  

 

Receptor tyrosine kinases, such as insulin, FGF and PDGF receptors, are known to 

activate several downstream second messenger signaling pathways. In CNS stem cells, 

PDGF stimulation rapidly activated PI3K/Akt and Ras/MEK/Erk pathways with 

sustained kinetics: maximal activation occurred at 5 min yet phospho-Akt and Erk levels 

remained above baseline even 12h and 24h after addition of the ligand (Fig 1C). While 

we did not observe rapid activation, elevated phospho-mTOR was observed at 24h 
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following PDGF treatment (Fig. 2A). These data demonstrate that PDGF-AA activates 

key downstream survival, proliferation, and growth pathways in CNS stem cells in a 

sustained fashion over FGF2 treatment alone. 

 

Interestingly, co-stimulation with FGF2 and PDGF-AA or switching from FGF2 to 

PDGF-AA induced a rapid morphological change in CNS stem cells—in 12h, cells 

became phase-bright and bipolar. Nevertheless, PDGF-treated cells continued to divide 

and maintained expression of several neural progenitor markers shared by FGF2-

responsive CNS stem cells including nestin, Sox2, A2B5, PDGFRα, NG2, and Olig2 (Fig. 

1D-G). 
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Figure 1. PDGF-AA treatment activates PI3K/Akt and MEK/Erk pathways but maintains 

expression of precursor markers in embryonic PDGFRα+ CNS stem cells. (A) Western blot (WB) 

analysis of PDGFRs α and β in E13.5 lateral cortex, and after 3d and 5d treatment with FGF2. (B) 

FGF2-treated CNS stem cells express PDGFRα (PDGFRα, green). Scale bar = 10 μm. (C) PDGF-AA 

causes phosphorylation of PDGFRα and rapid and sustained activation of MEK/Erk and PI3K/Akt 

pathways. (D,E,F,G) Passage 1 CNS stem cells with treated with FGF2 alone, FGF2 + PDGF-AA, or 

switched from FGF2 to PDGF-AA alone for 3d. PDGF-AA treated cells maintained expression of 

several precursor markers, including (D) nestin (green), Sox2 (red); (E) A2B5 (red), PDGFRα 

(green); (F) NG2 (green); (G) Olig2 (red). All nuclei (B, D-G) were stained with DAPI (blue). Scale 

bar = 20 μm.  
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PDGF-AA increases nestin+ cell number, viability, and proliferation  

 

The activation of Akt, Erk, and mTOR pathways in CNS stem cells following PDGF 

stimulation prompted us to examine whether progenitor cell number, proliferation, and 

viability may be enhanced. To this end, we cultured CNS stem cells (passage 1) and 

primary E13.5 cortical cells at low density (5,000 cells/cm2), and assessed cell number 4d 

later. PDGF-AA treatment increased nestin-positive cell number in FGF2-expanded CNS 

stem cells and in primary E13.5 cortical cells by two to three-fold (316 ± 18.6% and 233 

± 37.9% of FGF2-treated controls, respectively; p < 0.02; Fig 2A, 3B). The increases in 

cell number correlated with increased Erk1/2, Akt, and mTOR phosphorylation (at 24 h) 

in PDGF-treated cultures versus control cultures in FGF2 alone (Fig 2A)  The PDGF-AA 

mediated increase in cell number was completely suppressed by pretreatment with the 

PI3K, MEK, and mTOR inhibitors, LY294002 (10 μM), PD98059 (50μM), rapamycin 

(1μM), respectively (62.5 ± 21.1%, 65.9 ± 13.0%, 127 ± 37.2%, respectively, vs. 316 ± 

18.6% FGF2+PDGF-AA, p < 0.03, Fig 2A). Western blotting confirmed inhibition of 

these three pathways (Fig 2A). These data show that the Akt, Erk1/2, and mTOR 

pathways are required for this effect. 

 

To assess whether the PDGF-AA induced increase in cell number was due to changes in 

proliferation, cells were pulsed with BrdU (10μg/ml) for increasing periods of time, and 

the proportion of cells undergoing S-phase during each pulse was analyzed by 

immunocytochemistry. At each pulse length, a consistent increase in BrdU incorporation 

was observed among PDGF-AA treated cells compared to control cells (e.g. for a 12h 
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pulse, 71.1 ±  4.15% for FGF2 vs. 86.2 ± 1.51% for FGF2 + PDGF-AA;  p < 0.015 at all 

pulse lengths; n = 3 for each pulse; Fig 2B). However, we found the slopes during the 

linear and plateau phases of the BrdU incorporation curve to be similar between both 

groups indicating that PDGF-AA does not change cell cycle length (data not shown). A 

modest but significant increase in cell viability was observed by PDGF-AA treatment, as 

measured by propidium iodide exclusion (61.3 ± 4.62% in controls to 69.5 ± 0.955%, *p 

< 0.05; n = 3; Fig 2F). These data demonstrate that PDGF treatment, through relatively 

modest changes in replication and survival rates, results in significant increases in 

progenitor cell number and correlates with enhanced levels of basal Akt, Erk, and mTOR 

phosphorylation.  
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Figure 2. PDGF-AA increases nestin+ cell number, viability, and proliferation; and activates 

mTOR PI3K/Akt, MEK/Erk pathways. (A) CNS stem cells were plated at low density (5,000 

cells/cm2) and grown for 4d ± FGF2, PDGF-AA, inhibitors of PI3K (LY, LY294002, 10μM), MEK 

(PD, PD98059, 50μM) and mTOR (RAPA, rapamycin, 1μM). Cell number (mean ± s.d., n = 4, *p < 

0.03) is expressed as percent of control (FGF2). WB analyses confirm inhibition of mTOR PI3K/Akt, 

MEK/Erk pathways. (B) CNS stem cells treated with FGF2 alone vs. FGF2 and PDGF-AA were 

pulsed with 10μM BrdU for increasing time periods, fixed, and labeled with anti-BrdU antibody 

(mean ± s.d., n = 3, *p < 0.015). To compare S-phase entry of control cells with cells switched from 

FGF2 to PDGF-AA, cells were pulsed for 24h, and labeled with anti-BrdU antibody (mean ± s.d., n = 

3 per time point, n.s. = non-significant). (C) CNS stem cells were grown for 3 d ± FGF2, PDGF-AA, 

and viability was analyzed based on propidium-iodide exclusion using FACS (n = 3, *p < 0.05). 
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PDGF-AA maintains cell number, viability, and proliferation in the absence of 

FGF2 and insulin  

 

CNS stem cells are cultured in vitro with high concentrations of insulin (25 μg/ml), a 

growth factor known to activate several downstream intracellular signaling cascades, 

including PI3K/Akt, MEK/Erk, and mTOR pathways and to promote cell survival and 

proliferation (49). To assess potential effects of PDGF on CNS stem cells that insulin 

may mask, we cultured cells in the absence of insulin. In our low density plating assay, in 

the presence of FGF2, 4 d insulin withdrawal resulted in a significantly diminished cell 

number (9.88 ± 2.30% of control, p < 0.0002, Fig 3A). However, PDGF-AA treatment 

rescued cell number (FGF2+PDGF: 93 ± 14.85%; PDGF only: 46.7 ± 7.31%; Fig 3A).  

 

Interestingly, cultures in PDGF-AA alone were partially rescued, and showed a five-fold 

increase in cell number over control cultures maintained in FGF2-containing, insulin-free 

conditions and approximately half that of FGF2 and insulin-treated cultures (46.7 ± 

7.31% vs. 9.88 ± 2.30% vs. 100 ± 14.1%, p < 0.001, Fig. 3A). Similarly, in primary 

E13.5 cortical cultures, no difference was observed between nestin+ cell number 

maintained in FGF2 and PDGF-AA minus insulin and control, FGF2 and insulin-

containing cultures (100 ± 35.3% in FGF2+insulin vs. 58.1 ± 22.2% in FGF2+PDGF-AA 

minus insulin, p = 0.09)  
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To examine survival, FGF2-treated CNS stem cells were treated with or without insulin, 

and either co-stimulated with or switched from FGF2 to PDGF-AA for 3d. While fresh 

FGF2 and PDGF-AA were added daily, media was not changed from plating so that dead 

or dying cells in suspension would not be excluded from viability analyses. At 3 d, media 

supernatant containing viable and nonviable cells in suspension was combined with the 

HBSS-passaged, adherent progenitors. The cell suspensions were incubated with 

propidium iodide and analyzed by FACS sorting. Insulin withdrawal severely 

compromised the survival of FGF2-treated cells, resulting in a drop in viability (from 

61.88 ± 7.13% to 7.13 ± 4.94%, p < 0.001, Fig 3C). Addition of PDGF-AA (in the 

presence of FGF2) effectively prevented insulin withdrawal-induced reduction in 

viability, and even PDGF-AA alone (without FGF2 and insulin) showed high viability 

(FGF2+PDGF-AA minus insulin, and PDGF-AA minus FGF2 and insulin: 60.2 ± 6.02%, 

and 38.0 ± 6.01%, respectively; Fig 3C). 

 

We then analyzed the insulin masking effect on BrdU incorporation after a 3hr pulse. 

Similar to the effect on viability, insulin withdrawal, in the presence of FGF2, caused a 

marked reduction in BrdU incorporation (31.6 ± 1.00% in insulin vs. 10.2 ± 0.623% 

without insulin, p < 0.00001, Fig 3D). Co-stimulation with PDGF-AA and FGF2 or 

switching to PDGF-AA in FGF2 and insulin-free conditions largely abrogated the 

decrease in proliferation (FGF2+PDGF-AA minus insulin and PDGF-AA minus FGF2 

and insulin: 37.8 ± 1.09% and 26.6 ± 1.31%, respectively; Fig. 3D). In fact, even in the 

absence of insulin, PDGF-AA addition actually increased the proportion of cells 

synthesizing DNA above control cultures (p < 0.003, Fig 3D).  
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Consistent with these results, the levels of p-mTOR, p-Akt, and p-Erk1/2 pathways 24 h 

following insulin withdrawal significantly decreased (Fig 3A). When cultures were co-

stimulated with PDGF-AA or switched to PDGF-AA alone following insulin withdrawal, 

increased activation of these pathways was evident.  

 

PDGF-AA promotes glucose metabolism 

 

Insulin is a well known factor that stimulates glucose metabolism through several 

pathways, including through PI3K/Akt activation (50, 51) .  Our results indicate that 

PDGF-AA is able to maintain an elevated level of phospho-Akt and high viability and 

proliferation without insulin, an effect strikingly distinct from FGF2. Therefore, to assess 

whether PDGF-AA alters glucose metabolism in CNS stem cells, we measured glycolytic 

rate in the presence and absence of insulin and PDGF-AA. As predicted, 24h after insulin 

withdrawal, glycolytic rate largely dropped (100 ± 21.4% vs. 29.3 ± 10.1%; p < 0.0001, 

Fig 3E). Co-stimulation with PDGF-AA, however, abrogated the decrease in glycolytic 

rate (FGF2+insulin: 100 ± 21.4% vs. FGF2+PDGF-AA minus insulin 80.9 ± 20.3%; p = 

0.105, Fig 3E). Switching to PDGF-AA alone showed much higher glycolytic rate than 

culture in FGF2 alone (56.3 ± 8.81%; p < 0.01, Fig 3E). Forty-eight hours after insulin 

withdrawal, the same pattern remained, and there was little difference in relative 

glycolytic rates among corresponding treatments at the earlier 24h timepoint (Fig 3E).  
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We next employed pharmacology to determine which pathways were required for the 

PDGF-mediated increase in glycolytic rate. Pretreatment with PD98059 and rapamycin 

nearly halved the glycolytic rate, while pretreatment with LY294002 reduced glycolytic 

rate to a level below cultures treated with FGF2 minus insulin (FGF2+PDGF-AA minus 

insulin: 80.9 ± 20.3%; FGF2+PDGF-AA+rapamycin minus insulin 44.4  ± 3.25%;  

FGF2+PDGF-AA+PD98059 minus insulin 42.2  ± 10.8%; FGF2+PDGF-AA+LY294002 

minus insulin 11.2 ± 3.25%. FGF2+PDGF-AA minus insulin vs. each inhibitor-treated 

group, p < 0.015, Fig 3E).  These data demonstrate that PI3K/Akt, MEK/Erk, and mTOR 

pathways mediate the PDGF-induced increase in glycolytic rate, and that PI3K/Akt is a 

particularly important regulator of glycolytic rate in general.  
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Figure 3. PDGF-AA rescues nestin+ cell number, viability, and proliferation in the absence of 

FGF2 and insulin and increases glycolytic rate. (A) CNS stem cells were plated at low density and 

grown for 4 d ± FGF2 (F), PDGF-AA (P), and insulin (Ins). Cell number (mean ± s.d., n = 4, *p < 

0.001) is expressed as percent of control (FGF2). (B) Freshly dissected E13.5 primary cortical cells 

were plated at low density and grown for 4 d ± FGF2, PDGF-AA, and insulin (mean ± s.e.m., n.s. = 

non-significant [p = 0.09], *p < 0.02). (C) CNS stem cells were grown for 3 d ± FGF2, PDGF-AA, 

and insulin; viability was analyzed based on propidium-iodide exclusion using FACS (mean ± s.d., n 

= 3, *p < 0.003). (D) CNS stem cells were pulsed with BrdU for 3 h, fixed and then labeled with an 

anti-BrdU antibody (mean ± s.d., n = 3, *p < 0.003). (E) CNS stem cells were cultured for 24 or 48 h 

± F, P, Ins, LY, PD, or RAPA and glycolytic rate was measured. Glycolytic rate (mean ± s.d., n = 4, 

*p < 0.015) is expressed as percent of control (F+Ins). 
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PDGF-AA promotes oligodendrogliogenesis from CNS stem cells  

 

PDGF-AA treatment of CNS stem cells resulted in a rapid morphological change: by 24h, 

the majority of cells became phase-bright, and extended long bipolar processes. However, 

in the presence of PDGF-AA, all cells expressed neural progenitor markers including 

nestin and Sox2, and remained in the cell cycle, with virtually all cells undergoing S-

phase in 24h (Figs 1D-G, 2B). We found that, in order to induce exit from the cell-cycle 

and terminal differentiation, PDGF-AA had to be withdrawn from the culture medium. 

Given the morphological change and rapid activation of the PI3K/Akt and MEK/Erk 

pathways and their known involvement in CNS cell differentiation, we wondered if a 

transient exposure to PDGF-AA would be sufficient to alter differentiation. First-passage 

CNS stem cells were exposed to PDGF-AA for 12 h, and were switched to differentiation 

medium (Neurobasal + B27 supplement without PDGF-AA or FGF2) for 4-5 d. By 3-4 d, 

PDGF-AA treated cultures showed obvious oligodendroglial differentiation, with the 

majority of cells extending numerous fine processes. At 4-5d, PDGF-AA treated cultures 

were visibly enriched for oligodendrocytes. Immunocytochemistry with the 

oligodendrocyte-specific antibody, O4, confirmed that PDGF-AA treatment, either by co-

stimulation with FGF2 or switching to PDGF-AA alone, increased the proportion of 

oligodendrocytes by 2.3 and 2.8 fold, respectively (FGF2-only control: 21.4 ± 2.81%; 

FGF2+PDGF-AA:  49.3 ± 4.25%; FGF2  PDGF-AA: 60.3 ± 0.918%. Control vs. each 

PDGF-AA treated group, p < 0.00003). These data demonstrate that transient exposure of 

CNS stem cells to PDGF-AA, for a duration roughly less than the length of a cell-cycle, 

induces robust oligodendrogliogenesis from CNS stem cells. 
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An interesting feature of PDGF-AA treatment of CNS stem cells was that a short 

exposure to the cytokine had a robust, long-term effect on oligodendroglial differentiation. 

This feature allowed us to use pharmacologic inhibitors for a short period of time and 

minimize toxicity to cells, especially during the 4-5 d period of differentiation. To assess 

which PDGF-AA activated pathways, if any, were required to induce 

oligodendrogliogenesis from CNS stem cells, we pretreated CNS stem cells with 

LY294002 and PD98059 for 1h, and then added PDGF-AA in the presence of inhibitor 

for 12 h. After 12-13 h, the inhibitor and exogenous PDGF-AA (and FGF2) were washed 

out by replacing media with differentiation media. The PI3K/Akt and MEK/Erk pathways 

were specifically chosen because they are rapidly activated by PDGF-AA by 5 min and 

the elevated activity persists for 12h. Transient blockade of the PI3K/Akt pathway 

partially inhibited PDGF-AA mediated oligodendrogliogenesis, while the pro-

oligodendroglial effect of PDGF-AA was completely inhibited with blockade of the 

MEK/Erk pathway (FGF2+PDGF-AA+LY294002: 38.5 ± 4.71% [vs. FGF2 only, p < 

0.002; vs. FGF2+PDGF-AA, p < 0.025]; FGF2+PDGF-AA+PD98059: 26.0 ± 5.38% [vs. 

FGF2 only, p = 0.200; vs. FGF2+PDGF-AA, p < 0.0015]). Thus, while both the 

PI3K/Akt and MEK/Erk pathways are required for PDGF-AA mediated 

oligodendrogliogenesis, the MEK/Erk pathway appears more important for this effect.   
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Figure 4. PDGF-AA promotes oligodendrogliogenesis from CNS stem cells. (A) CNS stem cells 

were plated at 25,000 cells/cm2 and pulsed for 12 h ± FGF2, PDGF-AA, LY, and/or PD (cultures were 

pretreated with inhibitors for 1h prior to PDGF-AA pulse). Cells in “PDGF-AA only” group were 

obtained by plating primary E13.5 cortical cells in PDGF-AA alone (no exogenous FGF2 was added) 

for 5-7 d, passaging, and plating at same density in (A). This enriched population of oligodendrocyte 

progenitors was treated with PDGF-AA for an additional 12 h. After cytokine and/or inhibitor 

treatment, cells were then switched to serum-free differentiation medium, cultured for 4-5 d, fixed, 

and labeled with anti-O4 antibody. Scale bar = 20 μm. (B) Percentage of O4+ oligodendrocytes of 

total cells (mean ± s.d., n = 4 [n = 3 for inhibitor-treated groups], *p < 0.025). 
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Transient exposure to PDGF-AA is associated with a delay in cell cycle exit during 

differentiation 

 

When CNS stem cells were exposed to PDGF-AA for only 12 h immediately prior to 

differentiation, it was clear, 4 d later, that this short pulse affected not only 

oligodendrogliogenesis, but also total cell number. In fact, differentiated cultures co-

stimulated with a 12 h pulse of PDGF-AA 4 d earlier had an approximate 2-fold increase 

in total cell number, but cell numbers in cultures switched from FGF2 to PDGF-AA, 

were not significantly different from FGF2-only control cultures (FGF2-only control: 499 

± 92.4 cells/field, FGF2+PDGF-AA: 956 ± 92.3, p < 0.005; FGF2 PDGF-AA: 732 ± 

143, p = 0.0826; Fig 5A). To account for the difference in cell number, we tracked 

proliferation and apoptosis rates. To monitor proliferation during differentiation, we 

pulsed parallel cultures with BrdU 2 h before fixation, every day for 4 d, and stained with 

a monoclonal anti-BrdU antibody to score cells undergoing S-phase. We assayed 

apoptosis, each day of differentiation, with a polyclonal antibody against caspase-3. 

Analysis of these parameters revealed that the differences in cell number were 

predominately due to delayed exit from the cell cycle among cells transiently exposed to 

PDGF-AA. In fact, 24h to 48h after withdrawal of PDGF-AA, treated cells exhibited a 

2.23 to 3.55-fold increase in BrdU incorporation versus control cultures (e.g. at 24 h, 

FGF2-only control: 11.8 ± 3.87%, FGF2+PDGF-AA: 42.1 ± 3.60%, p < 0.00075; 

FGF2 PDGF-AA: 26.5 ± 2.98%, p < 0.0075). By day 4 of differentiation, however, 

BrdU incorporation in all cultures dropped to well below 1%.  
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Figure 5. Transient exposure to PDGF-AA is associated with a delay in cell cycle exit during 

differentiation. (A) CNS stem cells were treated as in Fig 4A. Twelve, 36, 60, 84, and 108 hours after 

growth factor pulse, differentiating cells were fixed (BrdU was added 2 h before fixation as indicated), 

and cell number, (B) S-phase, and (C) apoptosis was measured by labeling with DAPI, anti-BrdU, and 

anti-cleaved caspase-3 antibodies (mean ± s.d., n =  3 for each timepoint, *p < 0.04). 
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PDGF-AA enables direct derivation of oligodendrocyte progenitors from the 

embryonic cortex 

 

We found that primary cells from E12.5 – E15.5 lateral cortex directly with PDGF-AA 

alone (no FGF2 or insulin) were selected for embryonic lineage oligodendrocyte 

progenitors. Two to three days after PDGF-AA treatment of primary embryonic cortical 

cells, small foci of bipolar, phase-bright cells were visible. By 5-7d of treatment, these 

bipolar cells were 70-80% confluent, requiring passage. In the presence of PDGF-AA, 

these cells continued to divide, and could be passaged up to 4-5 times without FGF2 and 

insulin. Withdrawal of PDGF-AA induced oligodendroglial differentiation (addition of 

insulin is required for survival of differentiating cells): as high as 77.4 ± 4.67% were O4+ 

oligodendrocytes (“PDGF-AA only,” Fig 5A).  
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Discussion 

 

Clonal analysis shows that multipotent cells can be isolated from the CNS that give rise 

to neurons and glia (15). The proportion of differentiated cells can be regulated by single 

factors and the differentiation to astrocytes by activation of the Jak/STAT pathway has 

been widely studied as a model of fate choice (52-56).  A simple method to generate 

oligodendrocytes from CNS stem cells might also contribute to our understanding 

differentiation pathways.  Here we show that PDGF-AA, through PDGFRα, leads to a 

rapid increase in the proportion of oligodendrocyte progenitors. The growth factor 

stimulates rapid and long-lasting activation of Akt and Erk1/2 (57) but phosphorylation 

of Tyr705 on STAT3 was not observed (data not shown).  The use of pharmacological 

inhibitors suggests that the Erk pathway is required for differentiation but there may also 

be a role for Akt activation in oligodendrocyte differentiation. The generation of large 

numbers of oligodendrocyte progenitors by a brief treatment with PDGF-AA can now be 

used to analyze the molecular mechanisms controlling the specification of this fate.    

 

The PI3K/Akt pathway is a central mediator of glucose metabolism (50, 58, 59). 

Furthermore, glycolytic rate is highly correlated to cell viability and proliferation (24). 

Given that PDGF-AA treatment induced sustained Akt phosphorylation, increased 

survival and proliferation, especially in insulin-free culture, we investigated whether 

PDGF regulates glucose metabolism in CNS stem cells. PDGF-AA was as effective as 

insulin in increasing glycolytic rate and over 2.75-fold as effective as FGF2. Along with 

PI3K/Akt, we looked for other signaling mediators necessary for PDGF-AA regulation of 
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glycolytic rate. The rapamycin-sensitive, mTOR complex 1, is downstream of Akt and 

mediates several nutrient transport and metabolic functions (60).  Akt can activate mTOR, 

either by direct phosphorylation, or indirectly through inactivation of tuberin, and an 

activated mTOR mutant has been shown to maintain glycolytic rate in hematopoietic 

cells even in the absence of growth factor/Akt signaling (25). We found that rapamycin 

partially blocked the PDGF-AA increase of glycolytic rate. Additionally, we show that 

the MEK/Erk pathway is required for the PDGF-AA mediated increase in glycolytic rate 

in CNS stem cells. Indeed, MEK/Erk pathway has been shown to promote glycolysis in 

the setting of hypoxia and serum exposure by increasing expression of specific glycolytic 

enzymes (61, 62). 

 

We have shown that PDGFRα is expressed by virtually all CNS stem cells in vitro, and 

its specific ligand, PDGF-AA, can induce robust oligodendrogliogenesis (2.5-3 fold over 

control cultures; 50-60% of total cells) via a single 12 h pulse in serum-free culture 

conditions. The short nature of the cytokine exposure permitted us to interrogate 

intracellular signaling through the use of several pharmacologic inhibitors and had the 

added advantage of minimizing exposure to these inhibitors during the subsequent 4-5d 

differentiation period. While inhibition of PI3K/Akt pathway only partially blocked the 

pro-oligodendrogliogenic action of PDGF-AA, MEK/Erk blockade almost completely 

blocked this effect, when compared to control cultures. Thus the MEK/Erk pathway 

appears particularly important for PDGF-AA mediated oligodendrogliogenesis from CNS 

stem cells.  
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We have previously reported that continuous PDGF-AA treatment of rat embryonic and 

adult CNS stem cells promotes continued proliferation of a neuronal-type precursor, 

based on expression of the antigen, MAP2 (15).  However, there are also reports of 

MAP2 expression in the oligodendrocyte lineage (63, 64).  Also, given the potent 

mitogenic effect of PDGF-AA as observed by rapidly increasing cell number and BrdU 

incorporation, continued expression of nestin and Sox2, immature morphology, we 

wondered if withdrawal of the growth factor was required to allow cell cycle exit and 

terminal differentiation.  After withdrawal of FGF2 and PDGF-AA but in continued 

presence of N2 medium, we observed some degree of differentiation but this was 

accompanied by compromised viability and incomplete maturation. We used another 

chemically defined, widely used serum-free medium, Neurobasal plus B-27 supplement, 

to promote survival and differentiation of the cells. In this medium, a dramatic increase in 

survival and maturation of differentiating cells was observed. By 3-5 d, it was obvious 

that extensive oligodendroglial differentiation was taking place. Others have reported that 

short pulses of PDGF-AA enhances neuronal differentiation (65, 66), however these 

groups used non-purified, E12-E14 primary cortical progenitors, without prior expansion 

with FGF2; many of these primary cells are committed neuronal progenitors. In contrast, 

FGF2-expanded embryonic neural cells are relatively homogenous and highly enriched 

for multipotent stem cells (15), and thus were used as our starting population for signal 

transduction and differentiation assays. 

 

The enhanced proliferation of PDGF-AA treated cells may imply that the cytokine exerts, 

in part, a selective effect to promote oligodendrogliogenesis. However it remains possible 
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that the brief pulse of PDGF-AA may exert an instructive change in fate, and that, after 

PDGF-AA withdrawal, newly specified oligodendrocyte progenitors undergo a higher 

number of divisions than do neuronal and astrocyte-committed progenitors as they exit 

the cell cycle and differentiate. Furthermore, a potential instructive component in the 

action of PDGF-AA on CNS stem cells remains difficult to rule out as virtually all cells 

express PDGFRα, the cytokine pulse is brief, and that, in response to PDGF-AA, several 

signaling pathways are rapidly activated and most cells undergo extensive morphologic 

changes in less than 24 h. Therefore, there is evidence for both selective and instructive 

components in the action PDGF-AA to promote oligodendrogliogenesis from CNS stem 

cells. 

 

Our ability to generate mitotic oligodendrocyte progenitors from CNS stem cells and 

directly from mid- to late-gestation primary cortical cells, in serum-free conditions, may 

be particularly advantageous for cell transplantation, as well as for in vitro differentiation 

studies. While others have reported derivation of enriched oligodendrocyte progenitors 

from neonatal rodent neural stem cells, termed “oligospheres,” the method involves a 

lengthy selection procedure, including phased administration of B104 neuroblastoma 

conditioned medium over a period of days to weeks (67, 68). Similarly, the isolation of 

highly purified oligodendrocyte progenitors from the neonatal and postnatal CNS—well 

known for 25 years—requires extensive, multistep selection protocols (3, 69). In contrast, 

we describe a rapid, serum-free method, based on exposure to a single factor, to derive 

oligodendrocyte progenitors directly from CNS stem cells or embryonic cortex without 

inducing terminal differentiation. These oligodendrocyte progenitors continue to divide, 
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do not terminally differentiate, can be passaged 4-5 times in the absence of exogenous 

FGF2 and insulin, enabling the generation of tens of million progenitor cells from a 

single embryo (approximately one million oligodendrocyte progenitors can be generated 

from a single E13.5 embryo at first passage, after 5-7 d in vitro) cells). When PDGF-AA 

is withdrawn, cells differentiate into approximately 60-80% O4+ oligodendrocytes.  

 

Taken together, our study links particular signaling pathways downstream of PDGFRα to 

CNS stem cell growth, survival, metabolism, and fate. With the recent evidence for 

elimination for embryonic-lineage oligodendrocyte progenitors (2),  it will be interesting 

to compare fetal oligodendrocyte progenitors with those that are derived postnatally, as 

well as embryonic CNS stem cell-derived oligodendrocyte progenitors with those isolated 

directly from the embryonic cortex. If human oligodendrocyte progenitors can similarly 

be generated, this method presented here may be used to derive large numbers of these 

progenitors for cell therapy for CNS injury or demyelinating disease. 
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