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  ABSTRACT 

Navigating safely through traffic, while responding to an emergency, is often a 

challenge for emergency responders. To help alert other motorists, these responders use 

emergency lights and/or sirens. However, the former is useful only if within clear visual 

range of the other drivers. This shortcoming puts a greater emphasis on the importance of 

the audible emergency siren, which has its own shortcomings. This study considered 

several emergency siren systems with the goal to determine the most effective siren 

system(s) based on several criteria. Multiple experimental measurements and subjective 

analysis using jury testing using an NVH driving simulator were performed. It was found 

that the traditional mechanical siren was the most effective audible warning device; 

however, with significantly reduced electrical power requirements, the low frequency 

Rumbler siren, in conjunction with a more conventional electronic Yelp siren, was the 

preferred option. Recommendations for future work are also given. 
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NOMENCLATURE 

λ  wavelength (m) 

c  speed of sound (m/s) 

AKA  also known as 

B&K  Brüel and Kjær 

dB  decibels 

dBA  A-weighted decibels 

DIθ   directivity index (dB) 

DIN   Deutsches Institut für Normung 

EMVC  emergency medical vehicle collisions 

EMS  emergency medical service 

EVSN  emergency vehicle siren noise 

f  frequency (Hz) 

FFT  Fast Fourier Transform 

ft  feet 

FVS  Full Vehicle Simulator 

f2   frequency in the upper edge of the octave interval (Hz) 

f1  frequency in the lower edge of the octave interval (Hz) 

h  hour 

HATS  Hats and Torso Simulator 

HVAC  Heating, Ventilating, and Air-Conditioning 
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LP   sound pressure level (dB) 

LW   sound power level (dB) 
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P   sound pressure (Pa) 
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Pa  Pascal 
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phon  unit of loudness level 
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s  second 

SAE  Society of Automotive Engineers 

SD  semantic differential 

SPL  sound pressure level 

sone  unit of loudness 

W   sound power (W) 

W  Watt 

W0   reference sound power, 10
-12

 W 
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CHAPTER 1 

INTRODUCTION 

As a due service to the public, the assurance of the continuous improvement of 

one’s safety within society to enhance the quality of life is vital. Pertaining to emergency 

response services, the unambiguous purpose is the associated acts performed at the site of 

the emergency event in question. However, a typically overlooked and crucial component 

is the journey of these emergency responders. Whether it is police, fire and rescue, or 

medical response services, the responders are attempting to arrive at the destination as 

quickly and as safely as possible. In order to progress through traffic, these vehicles are 

equipped with warning systems to alert both nearby pedestrians and the drivers of nearby 

passenger vehicles. These warning systems are required to contain a minimum amount of 

both visual and audio warning cues [1]. 

With this information in mind, a desired need for future further analysis into this 

technology becomes of interest. Nevertheless, simply desiring expanded investigation 

does not warrant the need for a research project of this magnitude. The project was 

originally brought to the University of Windsor’s attention by the City of Windsor Police 

Services after several tragic events occurred; within the course of a single calendar year, 

five vehicle collisions involving emergency vehicles were recorded, of which, one 

incident resulted in the fatality of a civilian. The City of Windsor is more than willing to 

spend the necessary funds on new or additional siren equipment and/or modifications, if 

such changes produced a demonstrable increase in the effectiveness of the siren systems. 

The given is that an enhanced effectiveness of the siren systems will ultimately lead to 

increased safety on the roads. 
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The visual warning signaling system is the primary tool for the detection of 

emergency vehicles and generally consists of a series of LED lights enclosed in different 

coloured lamps. Generally, the mounting location of these lights is on the roof of the 

vehicles where their 360° rotation provides further coverage to all relative areas. It is 

sometimes the case that these lights are set on strobe modes to increase the alerting 

capability. Additional lights are often present on the front bumper, sides, and even the 

rear area of the vehicle to enhance the effectiveness. The use of reflective paints on the 

emergency vehicles also aids in the effectiveness, particularly in nighttime conditions. 

Many different types of light bars, lamp colours, mounting locations, and light patterns 

exist that all appear to serve a specific function and each with its own set of advantages 

and disadvantages. 

Unfortunately, the visual warning devices are virtually useless if the emergency 

vehicle is outside of the visible range of the receiver. As this poses a significant problem 

in urban traffic intersections, an audio warning system is necessary. This system is 

comprised of siren sounds designed to alert drivers and pedestrians before the emergency 

vehicle comes into sight, which in turn permits more time to take the proper course of 

action. The descriptive term for the sounds produced from these vehicles is Emergency 

Vehicle Siren Noise (EVSN).  

Unlike the visual warning systems, the siren technology is very limited and the 

traditional view is that it is ineffective. The main reasoning behind this stance is that the 

siren is very difficult to hear inside the cabin of a vehicle at distances greater than 8-12 m 

[2]. The measured width of a standard multi-lane traffic intersection can be significantly 

greater than 12 m, which supports the limits of siren systems. In addition, the sounding of 
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the siren occurs prior to the emergency vehicle reaching the intersection, and as a result, 

the source-to-receiver distance could easily be over 20 m. Apart from being extremely 

difficult to hear, the localisation of the sirens is also extremely low, particularly when 

attempting to determine if the emitting source is from the front or the rear of the receiver 

[3]. The generally held belief is that these limitations of the siren’s effectiveness are due 

to both the type of siren system employed as well as the listening environment. 

The layout of this thesis is as follows. Chapter 2 is a review of the pertinent 

literature from previous and related studies of EVSN. This includes discussions of related 

background material including the history of siren systems as well as a review of the 

fundamentals of acoustics. This is followed by an in-depth review of past research related 

to siren noise. Any identified shortcomings in the current state of art are identified for 

inclusion in this study. In addition, relevant information pertaining to the factors, which 

are believed to affect present siren systems, is included. Chapter 3 details the 

experimental approach for this study, including the experimental design and procedures 

for both the data acquisition and the subjective evaluations. The results of the 

experiments are provided and analysed in Chapter 4 followed by a discussion of the 

results in Chapter 5. Any identified limitations and uncertainties are also discussed in 

Chapter 5. Finally, the conclusions and recommendations of the research as well as 

suggestions for future work are provided in Chapter 6. 
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CHAPTER 2 

LITERATURE SURVEY 

The following chapter is a review of the available literature pertaining to 

emergency vehicle siren noise (EVSN), with a specific focus given to the evaluation of 

measuring the effectiveness of EVSN. Also of interest are studies having any specific 

parameters, which may hinder the effectiveness of sirens or compare the effectiveness of 

different types of siren systems or specific sounds. These are important to support the 

goal of this thesis, which is to provide information relating to the effectiveness of 

different siren technologies and to make recommendations for improvements. While 

existing studies appear to have not investigated this goal to any depth, a review of the 

studies pertaining to ESVN is essential to the understanding of the research presented in 

this thesis. 

Ample research is available that pertains to the study of various siren noise 

attributes for a variety of test scenarios [1]. The results of these investigations are 

important to this research as they provided knowledge and understanding of how sirens 

operate and how effective they are under certain operating conditions. These studies also 

provide insight into what areas of the science are lacking and require further 

investigation.  

Literature pertaining to jury testing guidelines and procedures is also included as 

these concepts are fundamental to some of the conclusions developed by this research. 

Understanding this first requires a basic understanding of acoustics and its propagation, 

as well as how humans perceive these sounds. 
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2.1 Fundamentals of Acoustics 

An understanding of the fundamentals of acoustics and the associated terminology 

is essential for both the literature pertaining to other siren studies as well as the results 

from this investigation. 

2.1.1 Basic Terminology of Acoustics 

Sound is a pressure fluctuation characterized as a wave motion propagating 

through air (or other elastic media) which results in the excitation of our hearing 

mechanism and ultimately gives us the perception of the sound [4]. In other words, the 

definition of sound can be said to have two components; the physical component which 

deals with the propagation of the acoustic energy, followed by the psychophysical 

component which deals with the interpretation of the sound, otherwise known as 

psychoacoustics. The physical study of sound is a problem of physics, such as the 

disturbance and propagation in air created by a loudspeaker. On the other hand, if the 

interest is how the perception of sound by a person occurs, psychophysical methods are 

required [5]. For the purposes of this study, both the physical and psychophysical metrics 

are studied. 

In addition to the above, a third fundamental quantity requires definition; noise. 

Noise is any sound, which either disturbs the intended silence or the intentional 

observation of another sound. Either of these situations generally leads to annoyance [6]. 

However, noise does not always need to fall into this generalized category. While noise is 

usually undesirable, in some cases it may be a carrier of information [5]. The emergency 

siren is a prime example of the latter, where most people consider the sound as 

unpleasant but it serves the purpose of conveying important information. It is also worth 
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noting that certain sounds may be unpleasant to some people, but not to others resulting 

in sounds being considered as ‘noise’ to only certain people [5]. This can be due to one’s 

previous experience or preference and is associated with the much more difficult subject 

of psychoacoustics discussed in more detail in a later section. 

Aside from the overall level of sound, an important characteristic of sound is the 

frequency (f) of the propagating acoustic energy, which is a characteristic of the periodic 

sound wave. The relationship of frequency with the speed of sound in the medium (c), 

approximately 344 m/s in air, and the wavelength of the periodic wave (λ), as shown in 

Equation 1 is: 

  
 

 
        (1) 

The audible frequency range for the human ear is from 20 Hz to 20,000 Hz [5]. 

Knowing this range is important for the study, as siren noise is included in only a very 

small segment of this spectrum.  

The most common unit of noise measurement is the decibel (dB) which is a 

logarithmic representation of the strength of a sound unit, relative to a specified reference 

level; the threshold of hearing [1]. Sound is most often quantified as either a sound 

pressure level or sound power level. Sound pressure level (SPL), often noted as Lp, is the 

acoustic sound pressure (P); expressed in decibels above the standard sound pressure (P0). 

Sound pressure level is dependent on the environmental factors within the propagation 

path, including the distance between the source and a receiver. That is, the strength of the 

source at a receiver location diminishes as the distance between the source and receiver 

increases. Sound power level (LW) is the acoustic sound power (W) expressed in decibels 
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above a standard reference sound power (W0). Sound power level (unit of decibel) is a 

characteristic of the source and is independent of environmental factors associated with 

the propagation path [5]. As such, sound power is the preferred descriptor of a sound 

source; however, it is difficult to quantify. The general formulae for the relationships 

between the sound pressure level and the sound power level are: 

          (
 

  
)      (2) 

          (
 

  
)      (3) 

             ( )    [  ]         (4) 

               (
  

  
)     (5) 

              [∑   
(
   
  
) 

   ]     (6) 

Directivity Index (DIθ) in the above Equation 4 is a correction factor used to 

account for nonlinear radiation of the source as well as environmental absorption and 

reflections in the propagation path. For example, the sound pressure level of an ideal 

spherically radiating point source will decrease by 6 dB for each doubling of distance [1]. 

It was also important to mention that, given the sound power of a source, Equation 4 

predicts the sound pressure level at another point along a radial line originating at the 

source (Equation 5), if the distance (r) between the source to the receiver is known.  

Also pertinent to this study is an understanding of how humans perceive changes 

in sound level. In general, a minimal change of 3 dB is necessary for the human auditory 



 

8 

 

system to perceive a change in sound level. It should be understood that a change in the 

sound level is not proportional to a change in the perceived loudness of a sound. 

Presented in Table 1 are other perceived changes in sound level. 

Table 1: Change in sound level relation to change in perceived loudness [4] 

 

For the analysis of sound, the division of a signal into specific frequency 

bandwidths is useful with the most common being either octave or third octave band 

analysis. Octave presentation of a sound is a 2:1 ratio of two frequencies that represent 

the upper and lower limits of the band interval as given in Equation 7 below [5].  

  

  
           (7) 

It is more common for noise measurements to use third octave band analysis, as 

this bandwidth better represents the inherent filtering network of the human auditory 

system. 
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A final attribute of sound measurements that warrants discussion is frequency 

weighting. Humans do not hear sounds at all frequencies with the same ability. The ear’s 

ability to perceive low and high frequency sounds is not as good as mid frequency sounds 

at approximately 1000 Hz. To account for this nonlinearity; a weighting scale adjusts the 

measured values of sounds to provide a better match to perception by the auditory 

system. The most common correction is the A-weighting curve and environmental noise 

measurements often use it, as is the case in this research. The A-weighting correction is 

also the basis of the psychoacoustic metric of loudness, which will be discussed later in 

this thesis. 

2.1.2 Psychoacoustic Terminology 

The study of the structure and mechanics of the ear falls under the study of its 

physiology. Alternatively, the study of how the auditory system perceives sound falls 

within the study area of psychology. From these, the term psychoacoustics provides an 

inclusive term embracing the physical structure of the ear, the sound pathways, the 

perception of sound, and their interrelationships. Psychoacoustics is pertinent to this 

study as it emphasizes both structure and function of the human ear [5]. 

It is known that noise can cause stress in people and that the onset of loud noise 

can produce effects such as fear and significant changes in pulse rate, respiration rate, 

blood pressure, metabolism, acuity of vision, skin electrical resistance, etc. [7]. Although 

the side effects of noise are not the focus of this study, they are valuable to note as these 

changes can have an impact on a driver or a pedestrian who is exposed to excessive levels 

of sound.  
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Measurements of a siren’s sound pressure level and sound power level are 

essential for understanding the physics and engineering of sirens as well as quantifying 

their noise characteristics. However, the data from these measurements is not sufficient to 

meet the goal of this project, which is to determine the effectiveness of EVSN. In order to 

fulfill the requirements of this project, it was essential that this research focused on both 

the physical and psychoacoustic components of siren noise. 

2.1.2.1 Loudness 

While many psychoacoustic quantities are significant to acoustics, a major metric 

used in this study was loudness. Loudness is a psychoacoustic term used to describe the 

magnitude of an auditory sensation. Although it is common to use the terms “very loud,” 

“loud,” “soft”, etc. which correspond to musical notations, it is evident that these terms 

are not scientifically valid. This is because these terms have no numerical value, as they 

are subject to the expression of a person’s perception and experience. The fact that these 

terms are perception based is the major reason why using the label of loudness is flawed 

as no two person’s perception of sounds is identical [8]. A simple example of this 

difference in perception is that of a fingerprint, in the sense that although the fingerprints 

of two people may be very similar, and may appear the same, they are not in fact 

identical. 

For certain sounds, there can be multiple aspects to the loudness impression. In 

other words, the listener may judge different ‘types’ of loudness. In speech for example, a 

listener may judge short-term loudness (the loudness of a specific syllable) or another 

listener may judge overall loudness of a relatively long segment (the loudness of the 

overall sentence) [9]. 



 

11 

 

As with sound pressure and sound pressure level, there are separate definitions for 

loudness and loudness level. Using equal level contours, the loudness level of a sound is 

equal to the sound pressure level of a 1000 Hz sinusoid that is judged equally as loud. 

This 1000 Hz sinusoid is presented in a free field domain with frontal incidence and the 

listener experiences it with both ears. The unit of loudness level is the phon. It is also 

important to note that the investigator must record the manner of listening to the 

unknown sound. The definition of loudness, on the other hand, is a numerical designation 

of the strength (with a unit of sone) of a sound. It is proportional to the subjective 

magnitude as estimated by listeners who have ‘normal’ hearing. The relationship between 

frequency, sound pressure level, and loudness is shown in Figure 1. 

 

Figure 1: Equal Loudness Contours [4] 

As stated previously, a relationship exists between sound pressure level and 

loudness level. The definition of one sone is the loudness value of a 1 kHz tone having a 
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sound pressure level of 40 dB relative to the reference value of 20 μPa. Above this value, 

an increase in 10 dB is equivalent to a doubling of the perceived loudness; 20 dB 

represents a sound four times as loud, and so forth. This relationship compliments the 

relationship depicted in Table 1. The relationship between sones and phons is that one 

sone is equivalent to a loudness level of 40 phons, and an increase in 10 phons results in 

doubling of the loudness [10]. Presented in Equation 8 is the relationship between 

loudness (N) and loudness level (LN) [11]. 

   (
     

  
)
       (8) 

It is important to note that this is a simple representation of a more complex 

equation. In addition to providing the relation between sound pressure level and loudness 

level as shown in Figure 1, Equation 8 also connects with the fact that the sound pressure 

level in decibels (again at a 1 kHz tone) is equivalent to the loudness level in phons. 

Two loudness standards are currently in use today. For the purposes of this 

project, the in-depth history and background of these models are not relevant. The 

Zwicker Method was the first loudness model to be standardized and was originally 

capable of determining loudness for stationary sounds only [12]. These models have since 

been updated, to have better correlation to human perception and to accommodate time-

varying sounds including the DIN 45631/A1 method [11]. The other method is the 

Glasberg and Moore Method, which is growing in popularity. As with the Zwicker 

Method, the original Glasberg and Moore standard was not capable of computing 

unsteady-state sounds. A recent update to this model has overcome this limitation. 
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Another interesting feature of this model is its ability to analyze thresholds for time-

varying sounds in the presence of background noise [9]. 

2.1.2.2 Other Psychoacoustic Characteristics 

While loudness is the most significant psychoacoustic characteristic, there are 

other factors that play important roles in this research. The first is sharpness, which can 

most easily be described as a measure of the tone colour of a sound. Adding sharpness to 

a sound gives it a character of powerfulness, however, too much sharpness and the sound 

will be perceived as aggressive. Sharpness can be easily estimated through calculation if 

the loudness pattern of the sound is available. Roughness is governed by temporal 

variations of a sound and reaches a maximum for modulation frequencies around 70 Hz. 

In essence, roughness can be described by the temporal-masking pattern of sounds. 

Another characteristic is fluctuation strength, which is similar to roughness but it reaches 

a maximum at modulation frequencies of approximately 4 Hz. The final quantity is 

composed metrics, which is a combination of psychoacoustic quantities that have proven 

successful for the prediction of annoyance of sounds [13]. 

2.2 Siren and Associated Attributes 

This study does not focus on a specific sound characteristic, or a particular device 

for that matter, and thus it is necessary to introduce the technology of the siren and its 

components and related attributes. 

2.2.1 History of the Siren 

During the 1790’s, the first siren was invented by physicist John Robison. This 

siren was developed for the sole purpose to be used as a musical instrument; specifically, 

it powered the pipes in an organ [14]. It was not until 1819 that Charles Cagniard de la 
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Tour invented an improved siren. It was still of the mechanical ‘family’ and was powerful 

enough to produce sound underwater. This technology employed perforated disks; one of 

which would rotate and the corresponding interruption to the fixed disk would produce a 

tone [15]. During this period, sirens were used as signaling devices, but only for trains 

and inside factories and not yet for emergency response purposes.  

In 1886, George Slight developed a device that was considered a major overhaul 

to the technology of sirens and is still used today [16]. Instead of disks, this new design 

uses two concentric cylinders, which have slots parallel to their length; only the inner 

cylinder rotates and as air pressure flows out of the slots of the outer cylinder, the 

periodic interruption of the flow creates a tone. Once electric power became readily 

available, sirens were no longer driven by external sources of compressed air. It was not 

until the early years of the 20
th

 century that sirens would be commonly used as warning 

devices. The next stage in siren advancement was the mounting of these devices on 

emergency vehicles, which did not occur until the late 19
th

 century with the introduction 

of automobiles. Soon after, emergency vehicles incorporated the use of sirens. 

2.2.2 Basic Siren Characteristics and Requirements 

A siren in terms of its appliance to EVSN is defined as an audible warning signal 

that must meet the following requirements: [17] 

A siren as a warning device must: 

1. Be easily perceived in any noisy conditions. 

2. Be easily perceived in every age group, including elderly with hearing loss. 

3. Be easily recognizable as a warning signal even after being perceived. 
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4. Have universality transcending national boundaries; in other words, the signal 

must be recognized as an emergency warning in any country or language. 

Recommended attributes to aid in meeting the mentioned criteria include: 

sufficient power and wide frequency spectrum to overcome masking noise, rapid rise of 

pitch, and relatively rapid cycling time (period required for the siren to sweep from the 

lowest to the highest fundamental frequency and back to the lowest [18]) [19]. The siren 

and the lighting systems work together to maximize early detection, recognition, and 

response to an oncoming emergency vehicle. Sirens generally provide the earliest 

detection, especially in urban environments where it can be difficult to become aware of 

the emergency vehicle. The lighting system provides improved ability to locate the 

vehicle so that a proper response occurs [1]. Currently, the general belief is that sirens are 

limited in their function as a warning device and no siren fulfills all of the requirements 

presented in the list above. The observation in many studies is that compromises of 

certain siren attributes must happen [20]. There is no assurance that all motorists and 

pedestrians will always hear, recognize, or react promptly in all typical circumstances 

[18]. However, a common question arises: “Why isn’t the amplitude of the siren 

increased to solve the perceiving issues?” Typically, this is a practical solution to many 

acoustical problems, particularly in everyday life. For example, if you are watching 

television and the background noise is high, you solve the problem by adjusting the 

volume on the television. Unfortunately, this rationale cannot be applied to sirens, as the 

sound produced exceeds the limit of damage risk and is approaching the pain threshold 

for human hearing. Figure 2 provides an illustration to explain this phenomenon further. 
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Figure 2: Human perception of sound [4] 

 As seen in Figure 2, the Limit of Damage Risk curve is dependent on the 

frequency and has a minimum value of approximately 90 dB. Certain sirens used in North 

America produce a sound power level up to 119 dB [1]. Fortunately, that value is just 

under the Threshold of Pain curve, which has a minimum value of 120 dB. Past studies 

have linked hearing loss to repeated siren exposure of emergency medical service 

personnel [19]. Given that the majority of modern emergency vehicles employ similar 

siren systems, this finding can also be said true for police and fire and rescue services 

personnel. This point was the core factor pertaining to the reason siren devices could not 

simply be adjusted to emit a higher sound level. 

2.2.3 Siren Types 

To expand upon the previously stated definition, a siren is a device or system that 

produces acoustical signals that continuously vary in frequency and call for the right-of-
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way of an emergency vehicle. These signals (and the electrical signals that are 

responsible for producing them) are generally referred to as siren signals [18]. With this 

definition, it is important to note that sirens are generally classified as either electronic 

(AKA electrical) or electromechanical (AKA mechanical) siren systems. An electrical 

siren system is composed of two main components; the first is an electronic siren 

amplifier, which is a device powered by the electrical system of the vehicle and produces 

an electrical signal that drives an electronic siren speaker, which is the second 

component. An electronic siren speaker is comprised of a transducer that converts the 

electrical signal produced by the electronic siren amplifier into acoustical energy. On the 

other hand, a mechanical siren system is a device that converts electrical energy directly 

into acoustical energy without the aid of an electronic power amplifier [18]. Currently, 

many emergency vehicles equipped with mechanical sirens are being outfitted with 

electrical siren systems. Another important characteristic of the mechanical and electrical 

sirens is the corresponding sound waves they produce. The mechanical system produces a 

waveform that approximates a square wave, while the electrical system produces the 

traditional sine wave. Figure 3 provides a basic illustration of these waves for different 

sound levels [17]. 
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Figure 3: The sine wave and the square wave 

Within the last decade, a new type of siren system has been introduced into the 

industry, which emits a low frequency sound as opposed to the typical high frequency 

sound signal. This device provides a duplicate tone emitted by the standard electrical 

siren but in a lower frequency. It was important to note that this system is not a stand-

alone device, as it ‘compliments’ the siren signal. Federal Signal, a technological leader 

in audible warning and operator safety, has developed their version of the system, which 
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they have appropriately named “The Rumbler: Intersection-clearing System”. The siren 

technology produces a penetrating/vibrating low frequency sound wave that has the 

distinct advantage of penetrating solid materials, such as passenger vehicles, allowing 

vehicle operators and nearby pedestrians to ‘feel’ the warning signals. The Rumbler is 

believed to be highly effective in dense urban environments with heavy vehicle traffic 

[21], where typical siren systems emitting high frequencies have revealed significant 

problems [19]. 

2.2.4 Siren Modes 

Traditionally, siren modes are categorized as either a Wail or Yelp signal. These 

are simply different modes of the siren operation, which produce the corresponding 

warning signal [18]. The air horn is another siren feature that works simultaneously with 

the regular siren system. This mode is often used by emergency medical response 

services and fire and rescue services when approaching an intersection [19]. As 

mentioned in the previous section, the low frequency siren system is capable of being 

incorporated with the existing siren modes for increased effectiveness. 

2.3 Testing Guidelines 

2.3.1 Field Measurements 

As with any study in acoustics, there are certain procedures and guidelines to 

which the study should adhere. Prior to any experimental design and testing, the Society 

of Automotive Engineers (SAE) published report outlining the procedures for siren 

testing was reviewed. Typically, for vehicle siren system noise, the receiver is located at a 

distance of approximately 3 m from the source [1]. However, this is not a mandatory 

factor, as it depends on the type of measurement and goal of the study. For example, in 
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comparing different mounting locations of the siren systems, a distance of 3 m is 

appropriate to carry out your measurements. However, if the study was to determine the 

effects of barriers on the effectiveness of sirens, a source-to-receiver distance of 3 m is 

not appropriate, as it is too short. 

2.3.2 Jury Testing 

As was the case with field measurement guidelines, the SAE had published work 

regarding guidelines for jury evaluations of automotive sounds. Again, this document was 

viewed as a reference containing ‘rules-of-thumb’ [22]. 

2.3.2.1 Listening Environment 

There are controllable factors of the listening environment that affect subjective 

testing. The acoustics of the room, décor, ambient noise, and temperature play a 

significant role in obtaining an adequate listening space. 

2.3.2.2 Subjects 

The term, subject, refers to any person that takes part in the evaluation of sounds 

in a listening study. Subject selection is vital to any study as it encompasses subject type, 

number of subjects, and recruiting subjects (if applicable). Subject training may be 

required depending on the level of complexity of the tasks expected of the subject. 

2.3.2.3 Sample Preparation 

A good sample preparation practice pertains to the appropriateness of the sound 

samples used in a jury evaluation. This extends to the editing of the sound data as well as 

issues faced with data collection, which are included in the SAE document. 
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2.3.2.4 Test Preparation and Delivery 

The first aspect of the test is the presentation of the samples to the subject. This 

includes pacing or timing, sample size, and sound reproduction method, which includes 

either loudspeakers or headphones. The second area is presentation (play) order. Much 

focus is placed on incorporating an appropriate method of controlling the sound 

presentation order to reduce experimental error due to biases as much as possible. For 

example, with a large number of sounds, the test can become undesirably long and to 

prevent this one should select only certain paired combinations for testing. Another 

similar task is the scaling task, where the subjects rate the sounds based on a set of 

criteria. The next aspect is the data collection environment. The most popular strategies 

include: forms processing, using software and a scanner (the “bubble-in” type of survey 

is among the most popular), a computer display which uses a desktop computer to 

administer listening tests, and hand held devices such as controller or PDA’s which could 

be setup to collect data into a computer for processing. The final component of 

preparation and delivery is the careful conveyance of any special instructions required by 

the subjects in order to obtain good data without inadvertently biasing the jury. 

2.3.2.5 Jury Evaluation Methods 

This section of jury testing is perhaps the most important as the methods of 

evaluation chosen can have a significant direct effect on the results of the study. The first 

method outlined is rank order, where the juror must rank a set number of sounds based on 

the established criteria. For simplicity, the number of sounds should be kept to six or 

lower. The major issue of this method is that it yields no scaling information. 
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The second method is the response (rating) scales method where the subject 

records their evaluation of the specified criteria of the sound on a scale, usually limited to 

a number between 1 and 10. While this method does solve the scaling dilemma 

mentioned in rank order, rating scales have their own list of issues for 

untrained/inexperienced subjects. The first is that the scale does not allow the subject to 

express their answer in a natural way. The listener generally has no idea what an “8” or 

“3” correspond to on the scale. The second problem is that different subjects use the 

scales differently. Some may only use a small range for a test while others may make use 

of the majority of the available scale. Another drawback of this type of test is that the 

subjects rarely use the extremes as they are ‘saving’ them in case the following sound is 

closer to the extreme. The final issue is that there is little reason to believe that ratings on 

an arbitrary scale should correlate with the objective characteristics of the sounds used in 

the test. 

The next major method of testing is paired comparison (PC) testing. By 

definition, PC methods are those in which sounds are presented in pairs and the subjects 

are asked to make a judgment decision on the sounds in the pair. There are multiple types 

of PC methods used in jury testing; the first of which is detection tasks, where the subject 

must select which of the sounds in the pair contains the signal to be detected. Evaluation 

tasks, the second type of PC that asks the subjects to make relative judgments (pick A or 

B) of the presented sounds based on the evaluation criteria. Often evaluation tasks are 

repeated until all possible sound pair combinations have been evaluated; sometimes 

certain pairs will be removed from the test to avoid tests of long duration. The final type 
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of PC method is similarity tasks, where the juror must make an estimated judgment on 

the sounds similarity. 

The semantic differential (SD) technique allows the evaluation of multiple 

attributes of sound such as preference, similarity, annoyance, etc. This method offers the 

ability for the juror to evaluate multiple criteria, which is not possible with PC. The 

subjects evaluate sounds on a number of descriptive response scales, using bipolar 

adjective pairs, such as quiet/loud and smooth/rough. These are the two extremes for a 

given scale, with intermediate points available for selection between those extremes. 

Figure 4 illustrates a typical example of a seven-point scale for a quiet/loud category. 

 

Figure 4: Seven-point scale for semantic differential evaluations [22] 

Magnitude estimation is the final evaluation method. In applying this technique, 

subjects assign a number to some attribute of the sound (how loud or how pleasant it is). 

Generally, there is no limit or boundary to the range of numbers a subject can use, thus 

essentially making magnitude estimation a scaling task without the respective boundaries. 

A major disadvantage of magnitude estimation is that different subjects may give widely 

different magnitude estimates. One strategy to address the issue of subject variability is to 

present a reference sound with a specific magnitude (i.e. 50) and have all other sounds in 

the test rated relative to that reference; this is referred to as ratio estimation. 
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2.3.2.3 Analysis Methods 

The intent of this section is to outline the data analysis of the methods discussed 

in the previous section. Magnitude estimation, rating, and semantic differential scales all 

fall into the category called interval scale, which contains all the information of an 

ordinal scale but also allows the computation of differences between sounds. As 

mentioned, magnitude estimation involves the subjects creating their own scales; there is 

a need to apply a method of normalization of responses prior to any statistical analysis. 

The distribution analysis of these three methods involve typical areas of interest, such as 

mean, median, mode, range, measure of shape, skewness, and kurtosis. Graphical 

techniques for analysis include scatter plots, normal probability plots, and histograms to 

name a few. Confidence intervals as well as testing and comparing sample means (t-test) 

are also useful analysis tools when examining data. Regression analysis (typically linear) 

is a technique used to assess the relationship between one dependent variable and one or 

more independent variables. Another statistical technique that is a useful tool is factor 

analysis. In application to the set of variables, it permits the discovery of which members 

of the set form coherent subsets that are relatively independent of one another. In other 

words, factor analysis reduces a large set of variables into a smaller set of variables, 

otherwise known as factors. There are two main types of factor analysis, each with their 

own set of complex and lengthy procedure. 

Prior to examining PC data, it is important to note that while there are multiple 

methods, PC techniques are separable into two categories, forced choice and similarity. 

Forced choice tasks present the juror with two sounds, and yields one preferred choice 

based on the criteria. Certain factors play pivotal roles in this type. The first is the test of 
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subject performance, which reveals how each subject individually, as well as the entire 

population, performs. Subject repeatability is a measure of the percentage of all 

comparisons judged the same for the first and second exposures in the test. It is important 

to note that the subject repeatability should be at least 70%, values below that may have 

their data removed [22]. If the average of the population is below 70%, then it is likely a 

problem exists within the test. Subject consistency is a measure of how well the pair 

judgments map into higher order constructs. Based on triads, the Kendall Consistency 

illustrates this factor. If A>B and B>C then it logically follows that A>C and is 

inconsistent if A<C. The final part of analysis for forced choice is the calculation of 

scores, which in turn obtains the rank order. The score for a given sound is simply the 

total number of times that sound is chosen summed over the total number of paired 

comparisons. For PC of similarity, performance measures for this type typically include 

histograms of subjects’ numerical ratings to insure full use of the entire scale and the 

rating differences between replicate judgments. Analysis of similarity evaluations 

involves using non-metric multi-dimensional scaling, which is closely related to factor 

analysis [22]. 

Rank order data falls into the category of ordinal scaling and thus is subject to 

non-parametric statistical analysis. As discussed, values obtained from rank order 

evaluations indicate relative positions of sounds but not the magnitude of the differences 

between them. Significance and correlation tests are the two methods for analyzing the 

data obtained [22]. 
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2.4 Previous Studies 

As mentioned, a significant quantity of research is available in relation to EVSN; 

however, a proper understanding of the theory and testing background is required to 

analyze the past studies. 

2.4.1 Auditory System 

One aspect that is of significant importance to this study was examining how the 

auditory system copes with receiving and analyzing such a vast range of sound 

intensities. Isabel Dean investigated the phenomenon of how humans are able to listen to 

sounds that vary greatly in loudness. In comparing the threshold of human hearing at 0 

dB to the upper limit of 120 dB, which correlates to one billion-fold higher in intensity, 

the human brain is accomplishing a remarkable feat [23]. This research is particularly 

relative to this study as siren noise correlates to a significant change in loudness 

compared to typical traffic noise.  

It was described by Dean that one way in which auditory neurons respond to 

sound is by changing the electrical activity level; quiet sounds produce little electrical 

activity, or more accurately, a low rate of ‘firing’ of the electrical events, while loud 

sounds are the opposite. In the past, the belief was that the range of sound intensities that 

produce an increase in the neuronal firing rates seemed too narrow to cover the ranges of 

sound intensities experienced in everyday life. Also understood was that the maximum 

point of firing was typically reached by sounds that are only as loud as a normal 

conversation. The question Dean addressed was how neurons manage to code shouting 

voices or sirens for that matter. The conclusion of the research was that neurons could 

alter the range of intensities to which they respond. Furthermore, these alterations occur 
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strictly based on the range of intensities that are present in the current listening 

environment. The adaption process was also determined to be extremely rapid, occurring 

over the course of hundreds of milliseconds [23]. This information was vital to this study 

as these adapting times may play a significant part in the reaction time of drivers and 

pedestrians. 

2.4.2 Physical – Shadowing due to Vehicles/Barriers on Road 

There are three categories of acoustic materials: absorbing materials, barrier 

materials, and damping materials [24]. Acoustic barriers placed in the path of a free field 

sound radiation will block part of the sound energy to the receiver and as a result create a 

relatively quiet zone in the acoustic shadow [25]. Three parameters control the level of 

acoustical attenuation by a barrier: the distance of the barrier from the source and the 

receiver, the wavelength of the sound, and the sound transmission loss of the barrier [26]. 

The size and form of the barrier are other important attributes that affect the attenuation 

[25]. 

For the study examined [2], two types of barriers were relevant to EVSN 

effectiveness: vehicles and barrier walls, the latter of which can be median dividers on the 

road as well as nearby buildings. The study confirmed that both walls and vehicles could 

act as barriers in relation to siren noise, resulting in reduced sound pressure levels in the 

shadowed area. The study confirmed that frequencies below 1000 Hz were more likely to 

refract around barriers as opposed to being absorbed [2]. 

A more recent study investigated the diminished effectiveness of an electrical 

siren system due to the effects of the shadowing vehicle. The study examined several 
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different traffic scenarios and concluded that the presence of a blocking vehicle resulted 

in a significant change (decrease of approximately 5 dB) in the sound pressure level at the 

receptor [27]. 

2.4.3 Physical – Directivity 

 Directivity measurements are fundamental to acoustics as no real sound produces 

a radial emission. One study examined a siren loudspeaker that was tested in an anechoic 

chamber, in which case white noise was played through the loudspeaker. Figure 5 

provides the results of the experiment. The measurements were taken at a distance of 1.8 

m from the source and 0° refers to the line perpendicular to and centred on the front of 

the speaker. 

 

Figure 5: Total SPL for respective directions [2] 

 This data indicated an 11 dB reduction in SPL between the on-axis and 

perpendicular directions, which would be perceived as less than half as loud. This study 

recommended that a second pair of speakers be installed in emergency vehicles, directed 
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sideways and activated when approaching intersections to combat the reduction in SPL 

[2]. 

 As just discussed in the previous study [2], the addition of speakers facing 

perpendicular to the direction of the emergency vehicle was recommended; however, it is 

not as straightforward as simply installing another speaker system. When employing 

multiple speakers, it is crucial to ensure that both of the speakers are operating in-phase. 

In other words, both speakers must be emitting the same signal simultaneously. If this is 

the case, the speakers combine to produce a higher output, which is referred to as 

constructive interference. However, if the speakers are operating out of phase with one 

another, phase cancelation occurs, which results in a reduced sound output. An 

experiment involved the installation of a second speaker onto the inside grill of a police 

cruiser (both speakers facing forward) and testing of its directional sound output in 

comparison to the single speaker. Figure 6 displays the results of the experiment in a 

polar plot [1]. 
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Figure 6: Polar plot measure of sound output of single and dual speaker system [1] 

 Several key points are evident from this data. First, the two-speaker siren system 

had increased sound energy in the frontal area of the vehicle, but areas of ‘lobbing’ are 

present, particularly toward the 45° points. Second, although the single siren speaker did 

not produce as high of a sound output as the two-speaker system, the lobbing effect was 

not present. In fact, the single speaker system outperformed the two-speaker 

configuration at +45° and −45°. This deficit of the two-speaker system was likely due to 

the speakers being spaced improperly from one another [1]. 

2.4.4 Physical – Noise Reduction of a Passenger Vehicle 

An experiment was carried out to determine the noise reduction of a passenger 

vehicle. In other words, what effect does a vehicle itself have on the sound pressure level 

that the driver experiences. SPLs were recorded at the driver’s position, for three speaker 

locations outside of the vehicle (front, rear, and driver’s door of the vehicle) with the 

vehicle present. The test was repeated with the vehicle absent and was subtracted from 
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the first set of data gathered. For this experiment, typical siren modes as well as the 

Rumbler siren were tested against one another and the results are shown in Figure 7 [20]. 

 

Figure 7: Noise reduction of a passenger vehicle [20] 

As discussed previously, the Rumbler exhibited increased vehicle penetration 

capabilities due to its low frequency output, as shown in Figure 7. The conclusion from 

this study was that while all sirens were subject to noise reduction of a passenger vehicle, 

low frequency siren systems show a significant decrease in this reduction [20]. 

2.4.5 Physical – Attenuation Due to Distance 

Presented earlier in this review, was the observation that SPL varies with distance. 

However, taking measurements at several distances can become time consuming, but 

sound power level measurements are independent of distance. A thorough study was 
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undertaken where the sound power levels of 20 siren combinations were measured. 

Figure’s 8 and 9 present the results of this study [20]. 

 

Figure 8: Sound power levels (A-weighted) [20] 

From these results, it was observed that in both cases of the Rumbler system 

addition, higher sound power levels in the low frequency range were observed, primarily 

between 100 to 400 Hz. As the frequency increased beyond this point, the Rumbler 

became ineffective. For the overall frequency range, the Yelp two-speaker siren system 

performed the best. It is also important to note that for the most part, all of the other siren 

systems are practically the same, as a fluctuation of only a few decibels occurred [20]. 
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Figure 9: Total (A-weighted) sound power levels [20] 

From Figure 9, both of the Rumbler addition inputs revealed a significantly lower 

maximum sound power output in comparison to all of the other siren systems. However, 

the results do not indicate that the Rumbler was an ineffective siren as it had higher 

vehicle penetrating ability, which can lead to a higher sound level within the cabin [20]. 

2.4.6 Physical – Effects of Back Pressure on Siren Loudspeaker 

As emergency vehicles are typically travelling at high speeds (50-80 km/h) when 

the siren system is active, there is a potential for a reduction in the sound radiated from 
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the siren due to the backpressure acting upon the loudspeaker diaphragm. SPL tests were 

carried out which placed the siren both outside and inside a wind tunnel at the speeds 

mentioned. A comparison of the measurements against one another indicated that the 

measurements from the wind tunnel tests manifested no degradation. Upon this finding, 

the siren loudspeaker was dismantled and it was determined that the speaker contained a 

pressure compensating design with ports connected to the front and rear of the speaker. 

Thus, the sound of the siren device was self-compensating for wind loading effects [2]. 

2.4.7 Psychoacoustic – Perceived Urgency 

Perceived urgency is a factor that is dependent on the characteristics of the sound. 

It is defined as the degree of urgency that a listener judges a sound to have. It is a 

significant factor pertaining to subject reaction times. It has been determined that the 

repetition period, also known as the cycling time of the signal, had the greatest influence 

on perceived urgency. To simply state, a rapidly repeating signal is perceived to be more 

urgent than a slowly repeating signal. Perceived urgency is an important characteristic for 

hazardous situations, such as intersections where a quick response time is crucial. A 

series of siren repetition periods were recorded and Table 2 presents the results. From the 

data, it is evident that the MS4000 Priority had the shortest repetition period of 0.05 s, 

which was more than 80 times shorter than the Wail siren mode [2]. 
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Table 2: Cycling time of siren signals [2] 

 

2.4.8 Psychoacoustic – Localisation 

A localisable sound has characteristics that allow accurate detection of the 

direction by the listener [2]. The human brain is capable of localising sounds within 5° of 

accuracy [3]. It is obvious that one of the primary attributes of a siren signal is that the 

sound is localisable, so that road users and pedestrians can accurately detect the location 

of the approaching emergency vehicle [2]. The primary reason why drivers have 

difficulty determining the direction of the siren sound is due to the vehicle enclosure 

obstructing the direct path of the siren noise and redistributing the acoustic energy over 

the surface of the vehicle. This re-radiation of sound into the enclosed space in turn has 

an effect as it alters the apparent perceived direction of the sound source. One strategy to 

aid in solving this problem was enhancing the effective frequency range of sirens, as prior 

observations have shown that humans exhibit difficulty determining the location of pure 
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tone sounds. Another approach to this issue was the implementation of low frequency 

siren systems that have increased vehicle penetration. This was due to the design of 

modern vehicles, which have high transmission loss above 1 kHz [20]. 

Another study was examined which made headway regarding the issues of 

localisation. It involved the comparison of four existing sirens (Yelp, Hilo, Wail, and 

Pulsar) to four newly developed sound patterns. The new patterns consisted of rapid 

frequency sweeps and each sweep was associated with a burst of broadband noise. The 

intention of using the new patterns was to increase localisation and alertness of siren 

systems. The study involved two components, first to test the sounds using a driving 

simulator and second to equip an emergency vehicle (in this case a fire truck) with these 

new patterns and record the reactions of drivers on the road in actual emergency vehicle 

journeys. Figure 10 shows the set up for the driving simulator jury testing [3] [28]. 

 

Figure 10: Layout of speakers in respect to the driving simulator for laboratory-

based research [3] 
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The data obtained from the laboratory jury evaluations indicated that the new 

sound patterns had significantly improved localisation attributes. The results in Figure’s 

11 and 12 illustrate the scores of the subjects. For the left/comparison, the responses were 

considered correct if they were accurate within ±22.5° [3] [28]. 

 

Figure 11: Percentage of correct responses for front/back detection [3] [28]  

 

Figure 12: Percentage of correct responses (within ±22.5°) for left/right detection [3] 

[28] 

 

As mentioned, the next phase of the study was the field trials, where the existing 

siren patterns along with the new patterns were installed on a fire truck and sounded 

during actual journeys. A video-recording apparatus provided an objective record of the 

interrelationship between the emergency vehicles and the road users. An onboard 
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observer was also present to understand and note the actions taken by the road users. Also 

recorded were parameters that may affect the results such as weather conditions and route 

of journey. Precise notes during these journeys were recorded which were based on a set 

of ten variables highlighted as relevant to the experience of both the fire crews and road 

users during an emergency vehicle situation. Figure 13 presents a summary of the three 

most-relative parameters with the corresponding gathered data [3]. 

 

Figure 13: Percentage of events occurring in field trials [3] 

This information revealed much information about the journeys during the field-

testing. First, with the current (old) sirens, the fire trucks had to make more lane changes 

based on inappropriate road user responses. More road users also failed to indicate their 

intended direction of travel when using the old siren pattern. Finally, the fire trucks had to 

make over four times more stops due to issues associated with the limitations of the old 

siren sounds. All of the remaining variables yielded similar results, and thus overall road 

users reacted quicker, resulted in more appropriate, well-signaled manoeuvers. 
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Furthermore, employing the new siren sound patterns resulted in a reduction in journey 

times by as much as 8.5% [3]. 

2.4.9 Psychoacoustic – Alertness 

Alertness is another relative psychoacoustic factor, which is often confused with 

perceived urgency. Alerting signals attract the listener’s attention [3] [28]. It is also worth 

noting that, alerting and alarming are often used interchangeably, although they are not 

synonyms. The study discussed in the previous section also had the jurors rate the alerting 

nature of the old and new sirens on a 1-5 scale. The observation was that the new sound 

patterns scored equally as well, even though the participants were unfamiliar with the 

sound patterns [28]. This study confirmed that being accustomed to the sound did not 

play a vital role in the level of alertness. 

2.4.10 Psychoacoustic – Masking 

Masking is the effect of the reduction of the perceived loudness of a sound due to 

background noise and it can be calculated using the Critical Band Method [2]. Previous 

work had suggested that the SPL of a siren within a vehicle cabin be approximately 72 

dB, for interior quiet conditions. With an assumed 30 dB attenuation provided by the 

closed car, the SPL outside the car must be above 100 dB. It was important to note that 

this requirement was for quiet interior conditions, as this was rarely the case with modern 

car audio and HVAC systems. As discussed, the sound power level of several sirens may 

exceed 120 dB, but the SPL at the drivers’ door of a passenger vehicle was unlikely to be 

in excess of 100 dB [20]. Figure’s 14 and 15 confirm this suspicion. 
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Figure 14: Masked thresholds under different conditions over 30 seconds [20]  

 

Figure 15: Masked threshold SPLs when driving with the radio on and windows 

closed and the predicted in-vehicle siren SPLs [20] 
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As seen in Figure 14, the masking thresholds were notably high in the frequency 

range of standard sirens and it is unlikely that the sound would be easily heard within the 

vehicle cabin under these conditions. From Figure 15, the masking thresholds were 

higher than both the Wail and the Rumbler siren. In general, a signal is less affected by 

masking if it is relatively complex in its nature and has a relatively large contrast with the 

background noise. It was stated that signal levels 6-10 dB above masking thresholds will 

ensure complete detectability. However, the recommendation was that signal levels be 

approximately 15 dB above the masked thresholds in order to ensure a rapid response 

from the listener [20]. 

2.4.11 Mounting Locations 

Traditionally, the mounting of the siren devices has been on the front bumper, 

facing forward on an emergency vehicle. The past studies mentioned had concluded that 

a significant reduction in SPLs at perpendicular angles occurred, which resulted in the 

installation of additional loudspeakers in the wheel arches. A third location for the device 

was on the roof of the vehicle. A study to evaluate the positioning effect measured the A-

weighted SPL inside the vehicle cabin for three Wail siren speaker locations. Table 3 

shows the summarized data [29]. 

Table 3: Total A-weighted siren SPLs within the emergency vehicle cabin [20] 
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Based on this data, the roof location was not an acceptable choice as a clearly 

perceptible increase of 7-8 dB occurred. This is notwithstanding the fact that emergency 

vehicle operators and crews currently have difficulty communicating with one another 

now with the current the siren locations on the bumper and in the wheel arch [20]. 

2.5 What is Missing? 

While it is evident that significant amount of previous research on the topic of 

EVSN exists, it is clear that it requires more study. Some of the studies described above 

covered all aspects of the parameters of interest, while others are missing significant 

components. It is also apparent that the analysis of all the possible factors affecting 

EVSN effectiveness is incomplete. The overall missing link between most of these 

studies is the lack of comparison of major types of sirens and as well as investigations 

into major factors believed to hinder the siren’s effectiveness. Many of the studies 

compare certain modes of the siren, such as the Wail and Yelp, but there exists little 

major work regarding a comparison of the major devices. 

Based on the literature review perhaps the most incomplete study examined was 

regarding shadow effects. Much work devoted to acoustic barrier wall studies exist; 

however, the information focused on the effects of vehicle shadowing is very scarce. It 

was determined that vehicles did act as barriers towards siren noise, and that frequencies 

above 1000 Hz have less refracting capabilities [2]. However, little data is available 

regarding factors that may play significant roles in the effect of vehicle shadowing. These 

factors include: size of vehicle, location of vehicle (in line with receiving vehicle or 

pedestrian), position of vehicle relative to siren (parallel or perpendicular), and effects of 

different mounting locations of sirens. 
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A fundamental comparison regarding the traditional mechanical siren system and 

the newer electrical system appears to be absent as determined during the initial research 

and it is considered vital as the electrical systems are rapidly replacing the mechanical 

systems. Another major missing component of siren research was a more in-depth 

analysis of the newly developed low frequency systems. The occurrence with which 

adoption of systems occurs is increasing, yet with limited research validating the system. 

Along the same lines of additional siren systems, research pertaining to the air horn siren 

was incomplete and the conclusion is that the system has virtually no data proving its 

effectiveness or hindrance. 

A final component that is absent from previous work is an overall 

recommendation regarding the most effective type(s) of siren systems for different 

emergency vehicles under different circumstances. The consensus based on the literature 

review is that each study only examined a fragment of a siren’s characteristics and as a 

result, an overall recommendation in relation to the effectiveness is not evident. 
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CHAPTER 3 

EXPERIMENT DETAILS 

In order to perform a complete investigation of the effectiveness of the different 

types of emergency sirens, several experiments were developed. The experiments were 

broken into multiple parts, with each part focused on a different siren characteristic. The 

following chapter provides a complete and thorough description of the equipment and 

instruments used, as well as the associated environmental considerations, experimental 

design, preparation work, and experimental procedures followed for each experiment. 

In terms of specifics regarding the actual equipment and procedure, the SAE’s 

report, specifically pertaining to EVSN recommended practice, was reviewed. This report 

covers information pertaining to the types of microphones to be used, calibration 

equipment and techniques, test speaker and mounting, power supply, anechoic room, SPL 

measurements, frequency measurements, and cycling period, etc. [18]. These guidelines 

were followed throughout the course of this study as best as possible. In regards to health 

and safety, proper measures (such as earplugs) were taken to protect those involved in the 

testing. 

The experiments for this investigation were separated into two parts. The first part 

was the measurement for future comparisons of a mechanical and electrical siren on a 

City of Windsor fire truck as well as the acquisition of the noise from a Rumbler siren 

installed on a City of Windsor Police Department cruiser that was donated to the 

University of Windsor for this study. From this data, analysis of the physical noise 

attributes was made. The second part investigated the psychoacoustic outcomes from 
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these measurements through objective sound quality metrics as well as subjective 

evaluations of the sirens sounds. 

3.1 General Experimental Setup 

The general setup in terms of equipment and instrumentation for each of the 

experiments was similar. As such, the details given are common to each. Any changes or 

modifications to the procedure of any specific measurement will be discussed in detail 

within the appropriate related experimental section. 

Given the psychoacoustic emphasis of this work, all of the acoustic acquisition 

was done using a Bruel & Kjaer (B&K) Type 4128-C binaural Head and Torso Simulator 

(HATS). The HATS is essentially a mannequin that has microphones mounted inside the 

ear cannel of the mannequin’s ears. The reason for using the HATS is to provide better 

replication of the sound field at the receiver location of a person. This is particularly 

important if the playback of the signal will be used for jury evaluations. For the 

experiments, the HATS was positioned either in the driver’s seat of the receptor vehicle 

or on a tripod to represent a pedestrian. The receptor vehicle was a 2010 Ford Focus 

Sedan. The two setups are shown in Figure 16. 
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Figure 16: HATS setup in receiver vehicle (left) and on tripod (right) 

To acquire and record the noise data, the HATS was connected to a B&K LAN-

XI data acquisition front end and the recordings were taken using B&K PULSE Time 

Data Recorder software. Prior to all data collection, the measurement system was field 

calibrated. Calibration tones were also recorded for the future calibration of the replay of 

the sounds. The sirens were operated and recorded for periods ranging from 5 to 30 

seconds depending on the type of test being conducted. 

Due to the physical space required to conduct the experiments, all measurements 

were conducted in wide-open outside areas, where background noise was a minimum so 

as not to affect the quality of the data. All measurements were made under appropriate 

weather conditions, which included dry ground surface and wind speeds under 15 km/h. 

These conditions were measured before each experiment and again after to ensure 

consistency. 
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3.2 Mechanical v. Electrical System Comparison & Analysis with the Rumbler 

3.2.1 Equipment and Instrumentation Setup 

The vehicles and equipment used for the experiments are categorised into three 

parts: those associated with the source, those associated with the receiver, and those 

associated with the barrier being tested (when applicable). The first emergency vehicle 

used was a City of Windsor Fire and Rescue Services Spartan fire truck. This truck was 

equipped with both the mechanical and electrical siren systems. The second emergency 

vehicle used for the testing was a Ford police cruiser donated to the University of 

Windsor by the City of Windsor Police Services. The vehicle was equipped with an 

electrical siren capable of both the Wail and Yelp as well as the Rumbler siren. The sirens 

tested were the Wail alone, Wail with the Rumbler, and Yelp with the Rumbler.  

3.2.2 Environmental Considerations 

The experiments were conducted at The Windsor International Airport on a 

private access road (formally Lauzon Road) at the east end of the property. This location 

was ideal, as it was sufficiently isolated to minimize any background noise from nearby 

traffic.  

3.2.3 Experimental Design Setup and Procedure 

Three experiments were conducted, which were designed with the intention of 

acquiring all the necessary data in the least possible time. The reason for this was due to 

the limited time that the fire truck was available. The engines for all the vehicles involved 

in the test were idling during the experiment, unless otherwise stated. Only a single 

recording for each part of the each experiment was made, again due to the limited period 

available for data acquisition.  
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3.2.3 a) Shadow Phenomenon 

The first test was to investigate the impact of the shadow phenomenon. For this, 

only the intersection (off-axis) scenario was examined. A schematic of the experimental 

setup for the shadow testing is shown in Figure 17. The arrows associated with each 

vehicle represent the vehicle’s orientation and the distances measured were from the 

source to the receiver. Recordings were acquired using the HATS, which was placed 

inside the receiving vehicle and the PULSE acquisition system. The barrier vehicle used 

was a 2006 Toyota Sienna.  

 

Figure 17: Shadowing setup with emergency vehicle 

The procedure for the shadow experiment is as follows: 

1) The vehicles and equipment were positioned as shown and discussed above. 

2) Equipment calibrations were performed and calibration tones recorded. 
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3) i. Mechanical and electrical sirens were each operated for a period of 7-15 

seconds and recorded. 

ii. The Wail, Wail with Rumbler, and Yelp with Rumbler were each operated for a 

period of 7-15 seconds and recorded. 

4) The shadow vehicle was removed and Step 3 is repeated. 

3.2.3 b) Pass-by 

The second experiment conducted was the vehicle pass-by (drive-by) test. This 

test was designed to simulate the emergency vehicle approaching an intersection at 50 to 

60 km/h for the fire truck and police cruiser respectively and passing by a stopped 

vehicle, which is positioned perpendicular to the direction of travel of the emergency 

vehicle. A schematic of the experimental setup is shown in Figure 18. 

 

Figure 18: Pass-by setup 

The procedure for the pass-by tests is as follows: 

1) The vehicles and equipment were positioned as shown and discussed above. 

2) Equipment calibrations were performed and calibration tones recorded. 
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3) The emergency vehicle accelerated until the predetermined speed of 50 or 60 

km/h was reached, at which point it maintained this speed. 

4) i. As the vehicle began to accelerate, the mechanical and electrical sirens were 

each operated until after the emergency vehicle completely passed the receptor 

vehicle. It should be noted that this step was repeated with the simultaneous and 

continuous addition of the air horn. 

ii. As the vehicle began to accelerate, the Wail, Wail with Rumbler, and Yelp with 

Rumbler were each operated until after the emergency vehicle completely passed 

the receptor vehicle. 

3.2.3 c) In Front Directivity 

The third experimental setup was designed to investigate the frontal directivity 

characteristics of the siren systems. For this experiment, the HATS was positioned 

around the emergency vehicle with 180° coverage. It was decided that there was little 

point in evaluating the rearward direction of the sirens given that sirens are intended for 

frontal warning. The setup for this experiment is shown in Figure 19. For the fire truck 

measurements, the HATS was located 8 m from the centre of the fire truck front bumper, 

whereas for the police cruiser, two test distances of 5 and 10 m from the centre of the 

front bumper were evaluated. The second distance for the police cruiser was to 

investigate the reduction of the Rumbler noise at a magnitude doubling of the source-to-

receiver distance. 
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Figure 19: Frontal directivity setup 

The procedure for the frontal directivity experiment is as follows: 

1) The vehicles and equipment were positioned as shown and discussed above. 

2) Equipment calibrations were performed and calibration tones recorded. 

3) i. The mechanical and electrical sirens were each operated for a period of 7-15 

seconds and are recorded. 

ii. The Wail, Wail with Rumbler, and Yelp with Rumbler were each operated for a 

period of 7-15 seconds and were recorded. 

4) The HATS device was then moved to the next radial position and Step 3 was 

repeated. 

5) Steps 3) ii. and 4) were repeated at a second distance of 10 m. 
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3.3 Psychoacoustic Analysis using Objective Sound Quality Metrics & Subjective 

Testing 

Once the recordings were processed and analyzed, the next phase was to perform 

objective testing using sound quality metrics allowing for comparison to the outcome 

from human jury evaluations. Prior to the evaluation, psychoacoustic metrics were 

calculated using sound quality software, to aid and design the jury evaluation. The 

majority of the recordings made in the Stage 1 testing were used for the jury evaluation 

playback. For this, a vehicle buck NVH driving simulator was used. For the jury testing, 

an application was submitted and approved by the University of Windsor Ethics Board. A 

copy of the Consent Form is provided in Appendix A. 

3.3.1 Equipment and Instrumentation Setup 

The jury test was conducted using a buck simulator that was designed and built by 

undergraduate students as a Capstone Design project. The purpose of using the buck with 

the NVH simulator software is to better simulate the driving experience and add context 

to the tests. A photo of a juror performing a test in the simulator buck is shown in Figure 

20. The simulation scenario was designed to be located at a 3-way traffic intersection, 

such that traffic was moving in the left and right directions in relation to the juror. Traffic 

lights were set to correspond to normal traffic situation with the traffic lights changing 

from green, to yellow, and to red, and then repeating for all directions of travel. For this 

study, the subject was positioned such that they were stopped at the intersection and they 

were instructed to remain at this location regardless of the colour of the traffic light. 
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Figure 20: Juror in the NVH driving simulator buck participating in evaluation 

The recordings were organized into two main categories; comparison of the fire 

truck’s electrical and mechanical sirens and the analysis of the police cruiser’s Rumbler 

siren. The recordings were edited using Brüel and Kjær PULSE LabShop Time Edit 

software to correct for appropriate left and right headphone balance. This was to ensure 

that the recordings are replayed to the correct ear and at the proper level in relation to one 

another. At this point, the recordings were subsequently resampled at 44100 Hz as 

required by all sound quality metric calculations. 

Prior to each jury test, the playback headphones were calibrated to ensure the 

recordings were being replayed to accurately represent the original sound recorded in the 
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field. To calibrate the headphones, the simulator headphones were positioned on the 

HATS and a 94 dB calibration tone recorded during the initial data acquisition was 

played through the headphones using the desktop simulator software. Here, the simulator 

sound mixer was adjusted until a level of 94 dB was measured by the HATS microphones 

(at each ear). Other factors of interest such as temperature of the room and comfort 

environment were considered and monitored during all jury evaluations. 

3.3.2 Environmental Considerations 

The subjective testing was carried out in a private room located in one of the 

NVH research labs. The testing environment was set such that the subject was 

comfortable to increase the concentration of the juror and to reduce possible sources of 

error. The noise level within the room was kept to a minimum level well below the 

detectable threshold of the headphone-wearing juror. Lighting and temperature were 

adjusted to a comfortable and constant level throughout the test to ensure that the 

participant did not experience fatigue and/or annoyance during the test.  

3.3.3 Experimental Design Setup and Procedure 

The jury tests were conducted using a predetermined list of sounds presented to 

the participants while they sat in the NVH driving simulator, which was positioned at an 

intersection in the stopped position at a traffic light. The participant was not required to 

drive the vehicle in motion. For the jury tests, only the pass-by and shadow phenomenon 

experimental data, using both the electrical versus mechanical comparison and Rumbler 

siren data, were used for these tests. The subjective test was comprised of 32 A/B paired 

comparisons, 16 of which were inverted duplicates. A copy of the test sheet used for the 

experiment is provided in Figure 21, which was completed by the research investigator. 
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The comparisons were randomized to avoid the juror becoming accustomed to any of the 

signals. Not mixing up the signals from one participant to the next ensured that each 

person was given an identical test under the same conditions. The test instructions were 

also provided to and verbally given to each participant. The matrices, which illustrate all 

of the paired signals used for the evaluation, are given in Appendix B.  
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Figure 21: Jury evaluation test sheet  
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CHAPTER 4 

DATA ANALYSIS 

4.1 General Analysis Outline 

Following the data acquisition described in the previous chapter, a thorough 

analysis of the data was carried out. This was done using several software applications as 

well as good engineering practices as are described in this chapter. 

Once acquired using the PULSE Time Data Recorder software, the data was post-

processed using B&K PULSE Reflex software, and exported to Microsoft Excel for 

organization and graphing. Two analysis techniques were used to process the data, those 

being a frequency analysis and a time analysis. The frequency analysis was performed 

through the use of the Fast Fourier Transform (FFT), which produces a frequency domain 

representation of the time domain signal. The frequency range chosen was based on the 

effective frequency range of the sirens as specified by the manufacturer. The second 

analysis technique was an overall time analysis, which allows for the analysis of the noise 

amplitude over time. For this, A-weighting filters were applied to the data to better 

represent the perceived amplitude of the sounds, particularly at low frequencies. 

Once the data was post-processed using the Reflex software, it was exported into 

Microsoft Excel. Here, the left and right ear data were combined into one overall value 

and then plotted into either a scatter or a radar plot for examination. These plots were 

used to compare the different siren sounds and to make conclusions as to the 

effectiveness of each siren scenario. A subsequent subjective analysis was performed to 

validate the objective conclusions and to provide insight into the human perception of the 
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different sirens under the different tested conditions and scenarios. Only some of the 

resulting data is presented in this chapter for discussion with the remaining results given 

in Appendices C and D. The flowchart below illustrates how each of the signals were 

compared against one another for each of the experiments. 

 

Figure 22: Flowchart of signals to be compared against one another for each test 

4.2 Mechanical v. Electrical System Comparison & Analysis with the Rumbler 

As discussed in Chapter 3, this component of the research involved three different 

experiments for which the overall and frequency analysis techniques were used to post-

process the data. 

4.2.1 Mechanical v. Electrical System Comparison 

From the manufacturer, the stated frequency range for the e-Q2B electrical siren 

is 725 to 1600 Hz [30]. No frequency range was available from the manufacturer of the 
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mechanical siren but observations from the measured data indicated that it was very 

similar to that of the e-Q2B. As such, a common frequency range for analysis was used 

for all sirens. 

4.2.1 a) Shadow Phenomenon 

As mentioned in Section 2.4.2, a previous study [27] concluded that significant 

adverse effects resulted in the detectability of an emergency siren resulted from the 

presence of a shadow vehicle. This previous study however, had faults in how the data 

was collected. The investigation of the effect of a shadow vehicle was repeated in this 

study, only with using actual emergency vehicles at an intersection scenario and with 

much better ambient noise levels. Figure 23 is a graph of the measured frequency 

response inside a receiver vehicle during the operation of the electrical siren, with and 

without the presence of the shadow vehicle. The difference in sound level between the 

two cases exceeded 10 dB at some frequencies, which correlates to a change in loudness 

by a factor of two. At some frequencies, the difference between the two cases suggests a 

change in loudness by a factor as high as nearly four.  
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Figure 23: A-Weighted Frequency Response of the electrical siren inside the 

receiver vehicle with and without the presence of the shadow vehicle 

 

 Figure 24 shows the results of the same test, only this time using the mechanical 

siren. While the results do not mirror that of the electrical siren, the mechanical is 

generally affected in the same manner by the presence of a blocking vehicle. It is 

observed that the greatest difference in sound pressure was at the extremes of the siren’s 

frequency range, at some frequencies greater than 30 dB. 
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Figure 24: A-Weighted Frequency Response of the mechanical siren inside the 

receiver vehicle with and without the presence of the shadow vehicle 

 

Given next is a comparison of the frequency response of the two sirens inside the 

receiver vehicle with the presence of the shadow vehicle. As can be seen in Figure 25, the 

electrical siren performed better at most frequencies over the mechanical siren, except 

between the frequencies of 1050 and 1175 Hz, where the mechanical siren showed an 

increase in sound pressure level, a spike was observed at approximately 1400 Hz. 
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Figure 25: A-Weighted Frequency Response of the mechanical and electrical siren 

inside the receiver vehicle with the presence of the shadow vehicle 

 

The same analysis was performed for the case without the shadow vehicle present. 

As this is not relevant to the effect of the presence of a shadow vehicle, this analysis was 

not included in the body of the report and instead is provided in Appendix C. Based on 

the presented data, it can be concluded that for the effective frequency range of the two 

sirens, the electrical siren generally outperformed the mechanical siren in terms of 

overcoming the effect of the shadow vehicle. However, the frequency spike observed for 

the mechanical siren in Figure 25 posed an interesting point given that the mechanical 

siren functions with a much more flat frequency response. This is attributed to the much 

smaller cycling period for the mechanical siren. 

The next data presented is the overall sound levels versus time for the various 

measurement cases. It was shown previously in Figure 25 that the mechanical siren had a 

notable level increase around the 1150 Hz region; however, this analysis does little to 

show the magnitude of what impact this has on the overall effectiveness of the 
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mechanical siren compared to the electrical siren. For this, similar comparisons using 

overall levels versus time are examined. To perform this, the data recordings were sliced 

into six-second segments to extract complete cycles of each siren for direct comparison. 

Again, analyses were carried out for the cases with and without the shadow vehicle 

present. Figure 26 displays the sound pressure level data for the time period of the two 

sirens with the shadow vehicle present. Also shown are the linear trend lines for each 

siren graph to aid in representing the average of the data values for comparison purposes. 

Logarithmically averaging the data was another option considered for the analysis. It is 

observed that while both sirens have fluctuating components, the mechanical siren 

demonstrated less modulation and is arguably more effective than the electrical siren. 

 

Figure 26: A-Weighted Overall Time Response of the mechanical and electrical 

siren inside the receiver vehicle with the presence of the shadow with corresponding 

linear 

 

The next comparison is that of the overall time analysis of each siren signal with 

and without the presence of the shadow vehicle. Figure’s 27 and 28 illustrate the data for 

the electrical and mechanical siren systems respectively. The difference between the data 
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with the shadow vehicle present and absent is approximately 12 dB for the electrical 

siren. It is important to note that the electrical siren fluctuates greatly in sound pressure 

level, with the maximum and minimum differences between the two cases being 20 and 4 

dB respectively. In consideration of the mechanical siren, the arithmetic average 

difference between the presence and absence of the shadow vehicle was again 12 dB. The 

characteristics of the mechanical siren produced a more constant sound with differences 

between the maximum and minimum data values being 21 and 6 dB respectively. The 

mechanical siren showed two ‘dips’ in the sound pressure level, which are likely 

attributed to the warm up period of the siren, as drops of this magnitude in sound pressure 

level for the mechanical siren were very uncommon under normal operating conditions. 

Based on the data analysed, it is shown that the electrical siren is more affected by the 

presence of the shadow vehicle. 

 

Figure 27: A-Weighted Overall Time Response of the electrical siren inside the 

receiver vehicle with and without the presence of the shadow vehicle with 

corresponding linear trend lines 
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Figure 28: A-Weighted Overall Time Response of the mechanical siren inside the 

receiver vehicle with and without the presence of the shadow vehicle with 

corresponding linear trend lines 

 

4.2.1 b) Pass-by 

Next considered is the pass-by data where the emergency vehicle passed by the 

perpendicular receiver vehicle, which was positioned as if at an intersection. As it was 

difficult to record identical segments for each pass-by run, the data points are matched 

based on the peak values, which are viewed as the small time period just before the 

emergency vehicle passed by the receptor vehicle. It is important to note that is was not 

possible to acquire data for each signal at the same point in their corresponding cycle, i.e. 

the midpoint of the wavelength. 

First examined is the direct comparison of the electrical and the mechanical siren 

systems as given in Figure 29. It is shown that the mechanical siren is generally louder 

than the electrical siren as the differences in sound pressure level at the maximum point is 

more than 7 dB. It was important to note that there are a few smaller spikes in the 

amplitude for the mechanical siren.  
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Figure 29: A-Weighted Overall Time Response of the mechanical and electrical 

siren pass-by inside the receiver vehicle 

 

Next compared are the two sirens with the addition of the air horn system as given 

in Figure 30. The mechanical siren showed better performance over the electrical again at 

the maximum values, but the electrical siren is favoured for several seconds prior to the 

spike. This leads to the conclusion that the air horn in combination with the electrical 

system improved the output of the electrical siren at greater source-to-receiver distances, 

but not when in the nearest proximity to the receiver. 
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Figure 30: A-Weighted Overall Time Response of the mechanical and electrical 

siren pass-by with the air horn inside the receiver vehicle 

 

The next comparison was the investigation of each individual siren with and 

without the use of the air horn system. The results are shown in Figure’s 31 and 32. The 

purpose of this was to validate or disprove the use of the air horn as an effective warning 

device when used in conjunction with a siren. Understandably, the addition of the air 

horn resulted in an increased sound pressure level in each case, particularly in the few 

seconds prior to the siren sound reaching the receptor vehicle. Examining Figure 31, the 

difference was approximately 5 dB and at some cases exceeded 15 dB, which amounts to 

a substantial change in sound level. 
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Figure 31 A-Weighted Overall Time Response of the electrical siren pass-by with 

and without the air horn inside the receiver vehicle 

 

The results for the mechanical siren system are given in Figure 32 where it is seen 

that the air horn did not improve the siren system’s capabilities to the same degree as 

with the electrical siren, likely because the mechanical system is already significantly 

louder than the electrical. This point supports earlier conclusions discussed from the data 

results shown in Figure 30, where the electrical siren outperformed the mechanical siren 

in the time period prior to the peak. Nonetheless, the addition of the air horn still proved 

to enhance the sound level for both siren systems. 
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Figure 32: A-Weighted Overall Time Response of the mechanical siren pass-by with 

and without the air horn inside the receiver vehicle 

 

Next examined was the frequency spectra averaged over the pass-by time for each 

siren. Shown in Figure 33 is the data for each siren without the air horn system activated. 

The results closely resemble the observations noted during the testing, as the electrical 

siren was observed to be most notable at the height of its cycle (at the lower frequencies) 

with its amplitude greatly diminishing as the low-to-high frequency increased. The 

frequency response for the mechanical siren was much different, as it did not possess the 

same high-to-low sweeping characteristics as the electrical siren. The majority of the 

mechanical siren’s sound level was approximately 30-40 dBA until a 70 dB spike 

occurred at approximately 1200 Hz, where the sound pressure level was approximately 

30 dB higher than the electrical siren. 
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Figure 33: A-Weighted Frequency Response of the mechanical and electrical siren 

pass-by inside the receiver vehicle 

 

While less critical, the same procedure was carried out with the addition of the 

case with the air horn siren system. Justification for which siren performed better was less 

conclusive, but at the same time, strengthened the case for use of the air horn. As seen in 

Figure 34, the majority of the data exceeded 40 dBA, unlike in Figure 33, where the 

majority of the data was below 40 dBA. The fluctuations observed for both sirens were 

due to the acoustical characteristics of the air horn (having a very short cycling period), 

when combined with each of the siren types. 
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Figure 34: A-Weighted Frequency Response of the mechanical and electrical siren 

pass-by with the air horn inside the receiver vehicle 

 

4.2.1 c) Directivity 

Analysis of the sound pressure level data taken at the various radial directions was 

performed to determine the directivity of each siren case. From this analysis, the 

maximum, minimum, and mean sound pressure levels were determined for comparison. 

The A-weighted radial data for the electrical siren is given in Figure 35 from 

which several observations can be made. Firstly, the data is relatively symmetric in the 

sense that opposing angles came close to mirroring each other. In addition, there is a 

substantial difference between the maximum and minimum values, particularly at the 

direct frontal measurement. Here, the difference in sound pressure level exceeded 20 dB. 

This difference can be described as having a perceived change in loudness by more than a 

factor of four and is attributed to the electrical siren’s modulation. Finally, it is important 

to note that the reported mean values occurred nearly at the midpoint for all the 
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measurements, indicating that neither the maximum nor the minimum values are affected 

by outside factors, such as environmental background noise. 

 

Figure 35: A-Weighted Overall Time Response of the electrical siren frontal 

directivity 

 

The results for the same analysis for the mechanical siren are given in Figure 36. 

Significant differences between these two sirens are observed. An obvious observation 

from Figure 36 is that the differences between the three calculated measurements are 

relatively low with the largest difference being less than 6 dB, which while perceivable, 

is not nearly as significant of a change in sound pressure level compared to the electrical 

siren. This small fluctuation is likely due to the characteristic of the siren, which emits a 

much more constant sound output, as opposed to the rise and fall modulating effect from 

the electrical siren. Additionally, the majority of data is above 90 dB, with multiple points 

exceeding 100 dB. There is also a notable lack of symmetry, which may be the result of 
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the fact that the mechanical siren device is located off-centre of the emergency vehicle, 

on the left side of the bumper.  

 

Figure 36: A-weighted Overall Time Response of the mechanical siren frontal 

directivity 

 

Compared next is the directivity of the two sirens as shown in Figure 37. The data 

comparing the maximum and minimum outcomes are provided in Appendix C. From 

Figure 37, the results of the mean values for the two sirens show that the mechanical siren 

has significantly higher sound pressure and much better directivity covered compared to 

the electrical siren. The amplitude differences vary from approximately 10 dB to over 20 

dB, representing substantial differences. This validates a more positive effect from the 

mechanical siren by providing greater radial coverage at greater sound pressure 

amplitudes. 
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Figure 37: Mean A-Weighted Overall Time Response of the mechanical and 

electrical siren frontal directivity 

 

4.2.3 Analysis of the Rumbler 

The tests involving the Rumbler siren were designed to be the same as those 

involving the comparisons between the electrical and mechanical siren systems. Any 

modifications to the analysis procedure will be detailed in the discussion of the results in 

the following sections. 

4.2.3 a) Shadow Phenomenon 

The final analysis of the shadow phenomenon examined the affect that the 

Rumbler siren, along with the Wail and Yelp signals, had with the presence of a shadow 

vehicle in comparison with the standard electrical Wail siren. Shown in Figure 38 is the 

measured A-weighted time signals for the Yelp with Rumbler, Wail with Rumbler and 
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significant increase in sound pressure over the measurement time period; it is assumed 

that a similar conclusion would be drawn for the Yelp siren pattern with and without the 

Rumbler. On average, the addition of the Rumbler resulted in a significant increase in 

sound pressure level of 6 dB. 

 

Figure 38: A-Weighted Overall Time Response of the Wail alone, Wail with 

Rumbler, and Yelp with Rumbler siren inside the receiver vehicle with the presence 

of the shadow vehicle with corresponding linear trend lines 

 

Next examined was each individual siren combination, with and without the 

shadow vehicle present in order to investigate how each siren is affected by the presence 

of a shadowing vehicle. The intent of this was not to validate an affect that the presence 

of the shadow phenomenon has on siren detectability, as it was already determined 

previously, but to see what affect the addition of the Rumbler may have. Figure’s 39, 40, 

and 41 show each siren signals data with and without the shadow vehicle. The Wail and 

Yelp siren, both with the addition of the Rumbler system resulted in an average 

attenuation of 11 dB with the presence of the shadow vehicle. The average difference 
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between the data with and without shadow vehicle for the Wail siren only was greater 

than 12 dB. The addition of the Rumbler system resulted in an average increase of 5 dB 

among the data. The conclusion here is that the addition of the Rumbler resulted in an 

increased sound output, regardless of whether a shadow vehicle was present. As such, 

having a Rumbler siren in combination with the Wail or Yelp signal will help overcome 

the shortcomings associated with the presence of a shadow vehicle.  

 

Figure 39: A-Weighted Overall Time Response of the Yelp with Rumbler siren 

inside the receiver vehicle with and without the presence of the shadow vehicle with 

corresponding linear trend lines 

50

55

60

65

70

75

80

0 1 2 3 4 5 6 7

S
o

u
n

d
 P

r
e
ss

u
r
e
 L

e
v
e
l 

(d
B

A
) 

Time (s) 

With Shadow Without Shadow
Linear (With Shadow) Linear (Without Shadow)



 

77 

 

 

Figure 40: A-Weighted Overall Time Response of the Wail with Rumbler Siren 

inside the receiver vehicle with and without the presence of the shadow vehicle with 

corresponding linear trend lines 

 

 

Figure 41: A-Weighted Overall Time Response of the Wail Siren inside the receiver 

vehicle with and without the presence of the shadow vehicle with corresponding 

linear trend lines 
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4.2.3 b) Pass-by 

As was the case for with the electrical and mechanical sirens, a comparison of the 

three siren scenarios for the pass-by experiment is considered. As before, the data points 

for the three graphed lines were matched up based on the peak values from the overall 

time analyses. These peaks represent the point where the emergency vehicle had nearly 

reached the position of the receptor vehicle. In other words, it is the position where the 

front bumper of the emergency vehicle would just be entering the intersection. As shown 

in Figure 42, the addition of the Rumbler siren to the Wail and Yelp resulted in an 

average sound pressure level increase of over 7 dB for both siren systems. 

 

Figure 42: A-Weighted Overall Time Response of the Wail alone, Wail with 

Rumbler, and Yelp with Rumbler siren pass-by inside the receiver vehicle 

 

4.2.3 c) Directivity 
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conducted at two different source-to-receiver distances to investigate the Rumbler’s 

measured sound output in relation to distance; that is, how well did it follow this inverse 

square law.  

Figure’s 43 and 44 show the mean value results for the distances of 5 m and 10 m 

from the centre front bumper of the police cruiser respectively. Through examination of 

these plots, it is observed that the addition of the Rumbler system resulted in higher 

sound pressure levels at all positions tested. The difference was not substantial, but is 

large enough such that the increase is easily perceivable. 

As before, the comparison of the maximum and minimum data for these siren 

cases is included in Appendix C. However, examination of those figures showed that the 

maximum and minimum values from the Yelp siren differed by only a few decibels; 

whereas, the Wail and Wail with Rumbler signals produced average differences of over 

10 dB between the maximum and minimum values. These differences were due to the 

characteristics of these siren signals, as was the case with the mechanical and electrical 

siren comparison on the fire truck.  
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Figure 43: Mean A-Weighted Overall Time Response of the Wail alone, Wail with 

Rumbler, and Yelp with Rumbler siren frontal directivity at a measurement 

distance of 5 m 
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Figure 44: Mean A-Weighted Overall Time Response of the Wail alone, Wail with 

Rumbler, and Yelp with Rumbler siren frontal directivity at a measurement 

distance of 10 m 

 

 Also provided in Appendix C is the comparison of each siren at the two 

measurement distances, to compliment the results shown in Figure’s 43 and 44. In theory, 

a signal’s sound pressure level should diminish by 6 dB when the distance between the 

source and receiver is doubled (inverse square law). However, the average difference in 

sound pressure level between the two distances was approximately 10 dB for the three 

sirens measured. This increase was likely due to the absorption and reflection 

characteristics of the testing environment, possibility of the measurements occurring in 

the acoustic near field (varying echo effects) [4], as well as experimental errors involved 

in the testing, the latter of which is addressed in the next chapter. 
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4.3 Psychoacoustic Analysis using Objective Sound Quality Metrics and Subjective 

Testing 

The second fundamental focus for the analysis of the acquired data was a 

psychoacoustic analysis using both the objective sound quality metric of loudness as well 

as subjective jury evaluations. The objective evaluation involved processing the recorded 

data using the B&K PULSE Reflex software. The purpose of examining this sound 

quality metric was to act as a reference for the test data obtained during the subjective 

testing. In theory, the results of a properly executed subjective analysis should coincide 

with the results from the processed sound quality data using the post-processing software. 

4.3.1 Sound Quality Metrics 

The sound quality analysis of the measured data involved the calculation of 

loudness. The loudness metric is the most fundamental of the sound quality metrics, and 

one that many other sound quality metrics are based on. Loudness has been shown to 

have much better correlation to human perception than simple A-weighting of the 

measured data. The calculation of loudness for the electrical and mechanical sirens is 

presented first. Table 4 illustrates the loudness results for the cases with and without the 

shadow vehicle present. It was found that the loudness was nearly doubled when the 

shadow vehicle was absent which corresponds to a notable increase. 

Table 4: Overall Time Average of Loudness (sone) Response of the electrical and 

mechanical siren inside the receiver vehicle with and without the presence of the 

shadow vehicle 

Siren 
Condition 

With Shadow Without Shadow 

Electrical 11.4 20.7 

Mechanical 12.8 23.9 
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The second sound quality comparison was for the perceived loudness for the pass-

by experiments. The loudness here is given with respect to time, as the loudness was not 

constant due to the moving emergency vehicle. Based on Figure 45, the mechanical siren 

system has more loudness than the electrical siren, which would also correspond to better 

perceptibility. The presented data also shows a noticeable increase in loudness for the 

data that includes the effect of the air horn. 

 

Figure 45: Loudness Overall Time Response of the electrical and mechanical siren 

pass-by with and without the air horn inside the receiver vehicle 

 

As for the case of the mechanical and electrical siren comparison, sound quality 

metrics were also used for the evaluation of the Rumbler siren. Table 5 illustrates the 

loudness results for the shadow phenomenon data for the three siren cases as presented 

previously. Again, the consensus is that the presence of the shadow vehicle results in a 

loudness value that is nearly half as much as for the case with no shadow vehicle. Also 
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important to note, was that the absence of the Rumbler results in a significant decrease in 

the calculated loudness. 

Table 5: Overall Time of Average Loudness (sone) Response of the Wail alone, Wail 

with Rumbler, and Yelp with Rumbler siren inside the receiver vehicle with and 

without the presence of the shadow vehicle 

Siren 
Condition 

With Shadow Without Shadow 

Yelp with Rumbler 10.9 19.7 

Wail with Rumbler 10.6 20.2 

Wail 7.2 14.3 

 

Figure 46 illustrates the loudness results from the pass-by analysis tests, which 

compares the loudness of the three siren cases. The same scale that was used for Figure 

45 was also used here so that the results can be directly compared. Between the three 

sirens, the addition of the Rumbler has a significant impact. Another observation made is 

that there is a noticeable difference between the electrical siren from the fire truck data in 

Figure 45 and the standalone Wail siren in Figure 46. Both sirens are essentially the same 

system with the only difference being two different speakers. The loudness of the 

electrical siren on the fire truck was determined to be 23.7 sones at its peak while the 

Wail siren on the police cruiser was only 13.3 sones. This difference of over 10 sones is 

attributed to the noise from the emergency vehicle itself. That is, the fire truck itself is a 

louder vehicle when being driven. This same relationship is observed for the shadow 

phenomenon loudness analysis. 
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Figure 46: Loudness (sone) Overall Time Response of the Wail alone, Wail with 

Rumbler, and Yelp with Rumbler siren pass-by with the air horn inside the receiver 

vehicle 

 

As stated earlier, the loudness evaluation was conducted to be a guide for the 

design of the jury test. It also served as a comparison between the objective and 

subjective results. Both the sound quality analysis and the design of the subjective tests 

were such that direct comparisons would be possible with the hope that they would also 

both reach the same conclusions. 

4.3.2 Subjective Testing 

The primary purpose of the jury evaluation is to support and validate the 

conclusions taken from the experimental testing results. The test was designed to 

determine and rank the perceived loudness of the siren signals. Being a subjective test, an 

absolute loudness unit is not possible, only a relative ranking. As such, the rankings and 

repeatability score taken from the juror results was recorded by the software and used to 

judge the performance. For the jurors who participated in the study, an average 
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repeatability of 89.3% was calculated. The repeatability score for each juror is given in 

Table 6. In addition to examining the repeatability scores, the juror answers to some 

control questions were monitored to ensure the juror was performing the test properly and 

that there was no fatigue. It is important to note that none of the jurors were given a 

hearing test prior to the evaluation. Although it is assumed that a person within the age 

range of 18 to 30 has good hearing, it would have been worthwhile to determine if any of 

the participants suffered from any degree of hearing loss. 
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Table 6: Overall jury repeatability scores 

Juror ID No. of Inverted Repeats No. of Consistent Votes % Repeatable 

J0001 16 16 100.0 

J0002 16 15 93.8 

J0003 16 14 87.5 

J0004 16 13 81.2 

J0005 16 15 93.8 

J0006 16 12 75.0 

J0007 16 11 68.8 

J0008 16 13 81.2 

J0009 16 16 100.0 

J0010 16 15 93.8 

J0011 16 14 87.5 

J0012 16 13 81.2 

J0013 16 14 87.5 

J0014 16 13 81.2 

J0015 16 16 100.0 

J0016 16 14 87.5 

J0017 16 15 93.8 

J0018 16 13 81.2 

J0019 16 15 93.8 

J0020 16 15 93.8 

J0021 16 16 100.0 

J0022 16 16 100.0 

J0023 16 15 93.8 

J0024 16 15 93.8 

J0025 16 11 68.8 

J0026 16 16 100.0 

J0027 16 15 93.8 

J0028 16 13 81.2 

J0029 16 13 81.2 

J0030 16 16 100.0 

J0031 16 16 100.0 

J0032 16 13 81.2 

Average 14.3 89.3 

 

Given in Table 7 are the subjective results comparing the electrical and 

mechanical siren with and without the presence of the shadow vehicle. The results show 

that, on average, 99.2% of the jurors selected the scenario without the shadow vehicle 
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present as being louder. It is thought that perhaps the very small percentage of 

participants (one person for the mechanical siren pair of the test only) that selected the 

opposite was likely attributed to the background traffic noise from the simulator software. 

In addition to the comparison of with and without the shadow vehicle, the electrical and 

mechanical signals, both with the shadow vehicle present, were paired against each other. 

It was found that 95.3% of participants perceived the mechanical siren as being louder 

compared to the electrical siren. 

Table 7: Jury Response of the Mechanical and Electrical Siren inside the receiver 

vehicle with and without the presence of the shadow vehicle 

Siren 
Scenario 

With Shadow Vehicle (%) No Shadow Vehicle (%) 

Electrical 0.0 100.0 

Mechanical 1.6 98.4 

Average Selection of No Shadow Vehicle 99.2 

 

The next results are for the comparison of the electrical and mechanical for the 

pass-by analysis, which also includes the air horn siren. Figure 47 shows the results for 

this subjective analysis. Examination of this data shows a clear preference of the 

mechanical siren over the electrical. The air horn system was also preferred by an average 

of 96.1% of the jurors between both the electrical and mechanical siren systems. 

Comparing the two siren systems with the addition of the air horn system resulted in the 

jurors preferring the mechanical siren with the air horn 98.4% of the time. 
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Figure 47: Jury Response of the Mechanical and Electrical Siren pass-by with and 

without the air horn inside the receiver vehicle 

 

 Figure 48 is a plot that illustrates the repeatability of the pass-by evaluation for 

the mechanical and electrical siren analysis. It was determined that the repeatability of the 

pairs involving the addition of the air horn on average scored over 95%, while the 

repeatability of the standalone comparison of the electrical and mechanical comparison 

scored 90.6%. These are very strong numbers in support of the mechanical siren, with or 

without the addition of the air horn. 
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Figure 48: Jury Repeatability of the Mechanical and Electrical Siren pass-by with 

and without the air horn inside the receiver vehicle 

 

The above analysis was repeated for the siren signals with the addition of the 

Rumbler siren. The results with the Rumbler under the conditions with and without the 

shadow vehicle are given in Table 8. It is shown that 99.5% of the jurors identified the 

signal without the shadow vehicle present as being the perceived louder siren scenario. 

Again, the small percentage of participants that identified the signal with the shadow 

vehicle present as being perceived as louder was likely attributed to the background 

traffic noise from the simulator software. 
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Table 8: Jury Response of the Wail alone, Wail with Rumbler, and Yelp with 

Rumbler Siren inside the receiver vehicle with and without the presence of the 

shadow vehicle 

Siren 
Scenario 

With Shadow Vehicle (%) No Shadow Vehicle (%) 

Wail 1.6 98.4 

Wail w/ Rumbler 0.0 100.0 

Yelp w/ Rumbler 0.0 100.0 

Average Selection of No Shadow Vehicle 99.5 

 

In addition to comparing the signals with and without the presence of the shadow 

vehicle, a comparison of the signals (with the shadow vehicle present) against one 

another was also investigated. From Figure 49, it is observed that the jurors consistently 

chose the addition of the Rumbler over the case without 97.7% of the time. There was 

also a preference of the Yelp over the Wail siren. 

 

Figure 49: Jury Response of the Wail alone, Wail with Rumbler, and Yelp with 

Rumbler Siren inside the receiver vehicle with the presence of the shadow vehicle 

 

Figure 50 shows the results from the pass-by tests, which include the Rumbler. 

Similar to the shadow phenomenon comparison, the sirens that included the Rumbler 
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system are preferred by 91.4% of the participants. However, comparing the Yelp and 

Wail signals, both with the Rumbler addition, show an inverse data trend compared to the 

shadow test results. The Wail with the Rumbler is preferred by 76.6% of the jurors. This 

change in pattern can be likely attributed to the characteristics of the sirens during the 

recording exercise. During the shadow vehicle testing, the emergency vehicle was 

immobile, and as a result, the sound at the receiver was steady. On the other hand, during 

the pass-by test, the sirens sounds increase in intensity before they reached a peak level 

just prior to passing the receptor vehicle. Based on reinvestigation of the recorded sounds, 

it was found that the Wail siren was at its peak amplitude at the immediate pass-by 

position. As a result, it was often perceived as being louder over the Yelp signal. 

Unfortunately repeated measurements were not acquired which would have aided in the 

comparison between the Yelp and Wail signals. However, the results still confirmed the 

effectiveness and preference of the Rumbler siren.  

 

Figure 50: Jury Response of the Wail alone, Wail with Rumbler, and Yelp with 

Rumbler Siren pass-by inside the receiver vehicle 
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Figure 51 illustrates the repeatability of the pass-by siren tests. These results confirm the 

difficultly that some of the participants experienced in their comparison between the Wail 

with Rumbler versus the Yelp with Rumbler sirens as nearly 20% changed their answer 

when the pair was re-presented to them. 

 

Figure 51: Jury Repeatability of the Wail alone, Wail with Rumbler, and Yelp with 

Rumbler Siren pass-by inside the receiver vehicle 

 

In addition to the tests already detailed, a further investigation into objective sound 

quality metrics was carried out to aid in the assessment of the siren signals. A particular 

sound characteristic common to siren sounds is modulation. To quantify this 

characteristic, the two sound quality metrics of modulation strength and fluctuation 

strength are often used. These modulation metrics are used to quantify a sound’s 

annoyance, alerting nature, and often-perceived urgency. It is important to note that the 

maximum modulation amplitudes are at frequencies of 70 Hz and 4 Hz for the roughness 

and fluctuation strength respectively [13]; as such, only roughness was examined for the 

Yelp and Wail signals, as it was the more accurate representation. The results of the 
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analysis are provided in Table 9. With the understanding that a rough signal is generally 

perceived as more annoying and alerting, these results validate the preference of the Yelp 

over the Wail by over a factor of two. 

Table 9: Roughness (asper) Response of the Yelp with Rumbler and Wail with 

Rumbler Siren inside the receiver vehicle with the presence of the shadow vehicle 

Parameter Roughness [asper] 

Siren Yelp with Rumbler Wail with Rumbler 

Signal Left Ear Right Ear Left Ear Right Ear 

Level 1.652 1.537 0.618 0.794 

Average 1.594 0.706 
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CHAPTER 5 

DISCUSSION 

5.1 Summary 

5.1.1 Mechanical v. Electrical System Comparison and Analysis with the 

Rumbler 

The first focus for this investigation was the comparison of the noise outcomes for 

traditional mechanical siren system to the newer electrical siren system. As discussed, 

this acoustical comparison was composed of three tests: shadow phenomenon, pass-by, 

and frontal directivity. The results from the frequency analysis of shadow testing led to 

the initial conclusion that electrical siren’s acoustic characteristics were more capable of 

overcoming the attenuation characteristics of the intervening vehicle barrier. The overall 

time data and A-weighting analyses, however, produced results in favour of the 

mechanical siren as being a more effective warning system. With this in mind, it is 

important to note a few key points. All those present during the experiment considered 

the mechanical siren significantly louder as well as more alarming and alerting. Second, 

the mechanical siren also proved to be more effective in the absence of the barrier, which 

suggests that the mechanical siren may be more effective overall. This was further 

validated in the remaining two tests. 

The second test conducted was the pass-by experiment, which also involved the 

testing of the air horn system. Based on the analysis, the mechanical siren outperformed 

the electrical siren with and without the addition of the air horn system. The period where 

the siren data was examined with the most stress was the few seconds before the acoustic 

maximum, which in turn was observed at the position when the siren signal reached the 
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front of the receptor. This position is a critical segment in a traffic scenario as it is just 

before the emergency vehicle reached the perpendicular traffic. This part of the study also 

demonstrated that the addition of the air horn was also effective and should be 

incorporated with the other sirens to help warn and clear a traffic intersection. 

The next investigation involving the electrical and mechanical system comparison 

was the measurement of frontal directivity. It was concluded that the traditional 

mechanical siren was significantly louder and had a greater spread of acoustic energy 

radiation compared to the newer electrical siren design. In other words, the data showed 

that the acoustic characteristics of the mechanical siren system produced higher and more 

consistent radial sound pressure levels in the frontal direction. 

With this conclusion in mind, it was still important to note a point of interest 

observed during the investigation. First, the mechanical siren was slightly more effective 

towards the left side of the fire truck due to its mounting location on the left side of the 

front bumper. However, this should not be considered a hindrance given that when a fire 

truck is approaching an intersection, the further off-axis that vehicles are positioned 

toward the left of the emergency vehicle and nearer to the mounting location of the siren 

will aid in reducing the impacts of the higher source-to-receiver distance. 

Next, the above experiments were repeated with the inclusion of the Rumbler 

siren system. This analysis involved the same three experimental tests that were 

conducted for the mechanical and electrical comparison. In regards to having the shadow 

vehicle present, two major conclusions were reached. The first was that the addition of 

the Rumbler siren resulted in a higher sound pressure level when the shadowing vehicle 
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was present compared to the system without the Rumbler. The second conclusion was 

that among the individual siren comparisons, which considered the differences with and 

without the shadow vehicle present, there was a noticeably smaller gap between the 

sound levels when the Rumbler system was active. The effectiveness of the Rumbler is 

attributed to its low frequency characteristics, which resulted in higher sound penetration 

through the structure of the vehicles. 

The pass-by tests resulted in the same general conclusion that the Rumbler 

resulted in a more effective audible warning system. The addition of the Rumbler siren 

resulted in a perceivable difference in sound output over a period of multiple seconds 

before the emergency vehicle reached the receptor vehicle’s position. This was 

significant as an additional one or two seconds can be crucial in the case of avoiding an 

emergency vehicle collision. 

The final test conducted was the directivity measurements. These considered two 

different test distances of 5 and 10 m from the centre front bumper of the police cruiser. 

Again, the first observation from this analysis was an increased sound pressure at all 

positions with the addition of the Rumbler system. Next considered were the acoustical 

characteristics for each of the siren cases. It was found that the average difference 

between the maximum and minimum values was 4, 11, and 16 dB for the Yelp with the 

Rumbler, Wail with the Rumbler, and the standalone Wail signals respectively. The 

difference between the two siren systems with the Rumbler was as expected, again due to 

the low frequency modulating characteristics of this type of signal; however, the 

difference between the Wail with and without the addition of the Rumbler siren was 

significant and was a deciding factor in terms of validating the effectiveness of the 
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Rumbler siren. The final outcome of the directionality assessment was the differences in 

sound level observed between the two measurement distances. In theory, the difference in 

sound pressure level should be 6 dB for an ideal source when the distance between the 

source and receiver is doubled. The changes in the SPL in the study were generally 

around 10 dB. This may be attributed to a combination of the effects of absorption and 

reflection present in the testing environment, errors involved, as well as the possibility 

that the measurements at these distances were still in the near field acoustic region. In any 

case, care should be taken in future work to not acquire noise measurement of this siren at 

too near a distance. 

5.1.2 Psychoacoustic Analysis using Objective Sound Quality Metrics and 

Subjective Testing 

The investigation of siren effectiveness using sound quality metrics in 

combination with subjective jury tests was used to validate and expand upon the results 

from the experimental noise tests. The purpose of these analyses focused on four points 

of interest: further examination of the shadow phenomenon, comparison of the electrical 

versus the mechanical siren systems, validation of the simultaneous use of the air horn, 

and investigation (leading to the validation) of the Rumbler low frequency siren system. 

Many of these criteria are intertwined and overlap with one another. The following 

discussion is in relation to the results gathered from the psychoacoustic part of the 

research. 

The objective part of the study concluded that the shadow phenomenon was a 

significant factor in the effectiveness of emergency vehicle siren systems. It was unclear 

whether the presence of a blocking vehicle would result in a perceivable change in 
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loudness among the entire sample population. Examining the results from the entire 

portion of the jury evaluation (the electrical versus mechanical comparison as well as the 

analysis of the Rumbler system), it was determined that 99.4% of the participants selected 

the signal in which the shadow vehicle was absent as being perceived as louder. The 

remaining 0.6% of participants that selected otherwise can likely be attributed ambient 

traffic noise during the simulation of the signal in which the shadow vehicle was present, 

thus falsely presenting itself as louder. In any case, the data overwhelmingly concluded 

the adverse acoustic effects resulting from the presence of a blocking vehicle on the 

sound output of all the siren systems. 

The results of the processed objective sound quality results showed that the 

mechanical siren was twice as loud as the electrical siren at all data points. The outcome 

from the subjective jury evaluation concluded that the mechanical siren was perceived to 

have greater loudness by 95.3% of the jurors during the shadow vehicle comparison 

(shadow vehicle was present during signal playback). The results from the subjective 

pass-by tests resulted in 89.1% of the jurors indicating that the mechanical siren was the 

louder option. This conclusion is further reinforced for the case having the addition of the 

air horn. 

The results from the addition of the air horn siren in conjunction with the other 

sirens during the pass-by tests conclude that this combination significantly increased the 

loudness of the warning system, whether it was the mechanical or electrical system. At 

the peak levels, the addition of the air horn system produced a loudness of 55.5 and 36.2 

sones inside the receiver car for the mechanical and electrical siren systems, respectively. 

The jury test paired the mechanical and electrical siren alone against the same system 
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with the addition of the air horn, i.e. mechanical versus mechanical with the air horn 

addition. The participants selected the signal with the addition of the air horn 98.4% and 

93.8% for the mechanical and electrical system comparisons respectively, as being the 

louder option. The final comparison consisted of both siren systems with the air horn 

paired with one another; it was determined that the participants perceived the mechanical 

siren with the air horn to be louder 95.3% of the time. This is a significant increase from 

89.1%, which led to the validation of the air horn siren’s effectiveness. 

The next part of the study repeated the above analysis, only now with the addition 

of the Rumbler siren system. The processed data from the early non-psychoacoustic 

discussions preliminarily demonstrated the positive effectiveness of the Rumbler, but it 

was also evident that further work was required before any concrete conclusions could be 

reached. The psychoacoustic analysis using the Reflex post-processing software showed 

that the addition of the Rumbler siren increased the loudness on average by factors of 1.5 

and 2 for the shadow and pass-by test respectively. Although the subjective jury test was 

not capable of calculating a numerical value in terms of an increase in loudness, a 

preference among the juror’s was determined. The results from the shadow test indicated 

that 97.7% of the participants perceived the Rumbler sounds to be louder. Similar results 

were found for the pass-by pairs, with 91.4% of the jurors perceiving the addition of the 

Rumbler system to be louder. Combining the results yielded preference for the Rumbler 

at 94.6%. These results incontrovertibly verify the overall effectiveness of the Rumbler 

siren in conjunction with the standard electrical siren system. 

A final observation made during the analysis of the Rumbler siren system analysis 

was the mixed preference between the Wail and Yelp siren modes. The participants 
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perceived the Yelp signal 73.4% over the Wail for the shadow vehicle testing but 

perceived the Wail signal 76.6% over the Yelp for the pass-by testing. Previous mention 

of this discrepancy in Chapter 4 briefly discussed that the reason for these inconsistencies 

were attributed to the peak level of the Wail siren being recorded as the emergency 

vehicle pass-by noise peaked. In essence, the highest sound output of the varying Wail 

siren was unintentionally recorded resulting in a louder signal compared to the recorded 

Yelp. It should be noted that the Yelp signal was preferred during the shadow test, during 

which several cycling periods of each stationary siren were recorded and compared, thus 

overcoming the above noted anomaly. A final analysis was conducted which examined 

the roughness characteristics of the two siren signals. The results confirmed the Yelp 

siren to having a higher roughness, which was more than double the Wail’s roughness. 

This metric can be related to other subjective preferences such as perceived urgency and 

annoyance, which are all favourable characteristics of an effective emergency siren. 

5.2 Limitations 

While this study examined multiple siren systems as well as several factors of 

application pertaining to their effectiveness, there are still limitations to how the study 

was conducted. The first and most significant limitation was the modification from the 

acoustic SAE testing practice for siren noise [18]. 

A first deviation was the testing environment that was used to collect the noise 

data. The SAE recommendation suggests the testing take place in an anechoic chamber. 

This would require a very large chamber; one which is larger than the chamber located at 

the University of Windsor NVH lab. This would also preclude any of the pass-by tests or 

test requiring two vehicles. Instead, the test environment was an outdoor setting, chosen 
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to best achieve free-field acoustic conditions. A second modification to the test procedure 

was the omission of the siren warm-up period, of approximately 10 min. The reason for 

not performing this operation is that it would cause disturbance to nearby populated 

areas. These include residential neighbourhoods as well as commercial properties.  

The SAE guide also has recommendations for siren mounting height, specified 

distance from the source to the receiver, as well as specifications for the number and type 

of measurements. The mounting height was not followed for the sole reason that all of the 

sirens tested were mounted to the emergency vehicle and so the height could not be 

changed. The distances between the source and the receiver were also modified 

significantly to instead accurately represent the designed traffic scenario simulation. It 

was felt this this was a reasonable deviation given the application of the subjective 

evaluations. 

Not related to the recommended testing document, another limitation in this study 

was the use of only one sample receptor vehicle for the shadow, pass-by, and noise 

reduction tests. The decision of using the 2010 Ford Focus was primarily due to ease of 

access as well as it was an accurate representation of a typical modern passenger vehicle. 

However, the use of only a single vehicle meant that the data was not representative 

across all vehicle sizes and types. This can have an impact for the consideration of more 

luxury style vehicles, which are designed and built with the highest possible noise 

attenuation characteristics. While this increased attenuation is a positive for the driving 

experience of the occupants, it is a direct hindrance to the perception of emergency 

sirens. Not including testing of such luxury style vehicles may be viewed as a 

shortcoming of this study. However, the conclusions that have been made are still 
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generally applicable in the sense that luxury vehicles can still be impacted by the 

presence of a blocking shadow vehicle; however, the level of impact of this was not 

investigated. 

Another limitation in this study was that it focused mostly on the sound quality 

metric of loudness. While loudness is indeed the most relative and informing sound 

quality metric, there are other acoustical characteristics that are of interest, namely: 

perceived urgency, harshness, alertness, and pleasantness. However, these metrics are 

usually customized for a very specific application and not readily available. In any case, 

it was still appropriate to use the loudness metric to design and validate the subjective 

tests. 

A drawback of the subjective study was the limited age range. Participants were 

selected from the range of 18 to 30 years of age. This is normal unless the jurors above 

the age of 30 have recently completed a hearing test resulting in a normal outcome. The 

concern with the limited age range is that it only represented a small percentage of the 

driver’s on the road. Young drivers of the ages 16 and 17 as well as drivers over the age 

of 30 are not represented in this study. 

A final limitation of the work is the fact that the jury evaluation was performed 

using a simulated scenario in a partial vehicle buck. An improvement would be to use a 

full vehicle simulator (FVS), which would add more context and better represent the 

simulated scenarios and traffic conditions. However, the ideal subjective test would 

require the participant on a traffic road and actual emergency vehicles used; this form of 

testing would represent the conditions being investigated more accurately. 
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5.3 Uncertainty Analysis  

The uncertainty involved in this study can be attributed to three components. The 

first was the error involved in the actual conducting of the experiments. This was broken 

up into human error and error due to the background noise. The human error may have 

been due to errors in measuring distances in the experimental setup as well as any noise 

interference with the recordings, such as breathing within the vehicle next to the HATS. 

The background noise present was also a potential factor, which may have 

affected the recorded data. This would have included nearby traffic noise, as well as 

aircraft noise. To the best of the researcher’s ability, recordings were only taken and 

subsequently chosen for processing where the quality of the acquisition appeared to be 

satisfactory. During the data processing, the recordings were examined in great depth in 

order to ensure that any noise interference was isolated from the processed data through 

slicing techniques. Once the processing of the data was complete, the values were again 

examined and any inconsistencies among the data were addressed and labeled 

accordingly. 

Another potential cause of uncertainty during the post-processing of the data was 

how the left and right ears of the HATS were combined. At present, several methods exist 

for the combining of binaural sound recordings. It was decided that the method chosen 

for this study was logarithmic addition for the recorded signal from the left and the right 

ears, using Equation 6. Logarithmically adding the signals resulted in an average increase 

in sound pressure level of 3 dB. Generally, a change of 3 dB would noticeably affect the 

results; however, since the signals were being compared against one another and not to 

some standard or reference sound level, an increase of 3 dB was viewed as insignificant. 
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It should be noted that some accepted practices of binaural addition could have resulted 

in increases of level as much as 5 or 6 dB. 

In relation to the subjective testing, an uncertainty always exists where human 

participants are used for subjective evaluation of data. This testing was carried out in 

accordance with common and accepted jury evaluation guidelines. More than 30 

participants were used for this study, which is above the minimum recommendation of 20 

participants. The average repeatability among the participants was approximately 89.3%, 

which is a good result considering half of the evaluation consisted of repeated pairs. The 

high repeatability also validated the test design and manner in which it was carried out. 

For the subjective tests, a comment among some jurors was that they were 

confused during the pass by comparisons as to whether to judge the loudness on an 

overall scale or by comparing the peak level (just prior to the emergency vehicle passing 

by). The investigator instructed the jurors to judge the peak level of the signals; the 

reason being that the signals did not all have the same time length. Other observations 

during the investigation included: jurors removing their foot off the break, causing the 

vehicle to accelerate forward into the traffic intersection. Other participants were 

observed to be re-listening to signals four or five times before arriving at a decision. 

Despite the limitations and uncertainties discovered and thoroughly examined 

throughout the course of this research, the confidence of the stated outcomes and 

conclusions is still more than pleasing. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

The following chapter is a reiteration of the significant conclusions resulting from 

this research. The purpose of the thesis was to examine present siren systems and present 

to the City of Windsor recommendations of the preferred audible warning system(s). In 

addition, factors relating to EVSN effectiveness were examined and included to better 

inform emergency responder personnel. The work completed was based on an extensive 

review of past studies, which showed missing and incomplete areas open for further 

investigation. The experiments conducted were designed to acquire the utmost level of 

information based on the set of criteria discussed. The results of the study exceeded the 

objectives of the research and in addition, recommendations for future work are provided. 

6.1 Conclusions 

As discussed in Chapter 5, the stated outcomes and conclusions focused on four 

principal elements, which may affect the outcomes of an emergency vehicle siren system. 

The first was the investigation of the shadow phenomenon. It was concluded that the 

presence of a blocking vehicle at traffic intersections does result in a reduction to the 

sound level within a receiver vehicle. It should be noted that this reduction is large 

enough such that it could significantly influence a driver’s ability to hear an approaching 

emergency vehicle. 

The second element was the comparative analysis of the mechanical and the 

electrical siren systems. It should be noted that the latter system is replacing the 

mechanical siren due to lower unit cost and reduced electrical power requirement for 

operation. The study concluded by all the different tests conducted that the mechanical 
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siren is a more effective siren system. This research, however, did not investigate the 

economic breakdown of the siren systems; the conclusions were based solely on 

acoustical performance. 

As part of the comparison between the electrical and mechanical systems, the 

addition of the air horn system was included in a portion of the experiments. The 

inclusion of the air horn resulted in higher sound outputs of the warning system as well as 

perceived preference among the jurors in regards to loudness. The validation of the air 

horn was important to this study as no other research was found in regards to the 

effectiveness of using the air horn. In fact, it was found that opinions regarding the use of 

the air horn are generally mixed among users and researchers. 

A final task of this study was the investigation of the effectiveness of the Rumbler 

system, which is a newly developed low frequency siren adaptation, which works in 

parallel with a standard electrical siren system. The investigation of the Rumbler was also 

included in the shadow phenomenon tests, as the addition of a low frequency system 

resulted in a greater ability to penetrate into a receiver vehicle. This conclusion can also 

be extended to other obstructions present in traffic, which can also be overcome through 

the implementation of the Rumbler siren. Overall, both the experimental analysis and 

subjective tests proved the Rumbler to be an effective emergency warning device. 

Also included in the study was an investigation that compared the Wail and Yelp 

siren modes, both of which are typical selections on electrical siren systems. The 

experimental and psychoacoustic analysis did not show one siren mode to be better than 

the other. However, it is believed that the Yelp is the more effective option given that the 
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cycling time of the Wail is 11 times longer than the Yelp. Analysis of the roughness 

metric concluded that the Yelp did have a rougher signal, which would attribute to a 

greater sense of urgency. This finding can be adapted to similar characteristics such as 

perceived annoyance and alerting nature, all of which are desirable characteristics for an 

emergency siren. 

6.2 Recommendations  

Based on the positive outcomes and stated conclusions, notable recommendations 

are provided. These recommendations are based on both the review of previous studies, 

conversation with emergency responders, combined with the observed outcomes of this 

research. 

The most obvious recommendation taken from the results of this study is the 

preference of the mechanical siren system. However, it is understood that due to the 

increased electrical power requirements for operation of the mechanical siren (which is 

not available on smaller emergency vehicles), it is recommended that the mechanical 

system be implemented onto any vehicle that can handle the required power 

consumption.  

It is also recommended that the air horn equipped in emergency vehicles be used 

with the sirens, particularly at congested traffic intersections. This recommendation is 

valid for both the electrical and mechanical siren systems. 

Implementation of the Rumbler siren system on all emergency vehicles is also 

recommended, especially those that do not have, or are not capable of powering the 

mechanical system. For all tests, the addition of this low frequency siren system proved 
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to be very effective and was the best siren to overcome the adverse effects of a shadow 

vehicle. A final recommendation is that the Yelp mode be given preference over the Wail 

sound for electrical siren systems. 

6.3 Opportunities for Future Work 

While it is evident this study attended to the goal of determining the effectiveness 

of several siren types, opportunities for further research and work still exist. An important 

aspect for future research is the investigation of methods to increase the effectiveness of 

siren systems without necessarily increasing the loudness of the siren. The following is 

detailed list for future work for the investigation of siren effectiveness: 

 Further expand the research related to the shadow phenomenon, using additional 

vehicle types and sizes 

 Examining the noise reduction characteristics of other receiving vehicles, such as 

luxury automobiles, which are designed to be more soundproof and having higher 

transmission loss characteristics 

 Further investigate the effects of noise reduction of an automobile under different 

ambient cabin conditions, i.e. with HVAC and/or stereo system on, and windows 

down 

 Effect on pedestrian recognition, primarily the localization of siren systems 

 Expand the subjective analysis to include other psychoacoustic metrics such as 

perceived urgency, localisation, and alerting nature 

 Incorporate driving into a jury evaluation to add better context to the subjective 

tests with the understanding that a more complex task will correspond to more 

difficulty to determine a preference 
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 Experimental testing of different mounting options of siren systems, i.e. outside of 

the front grill, or height of the siren speaker 

Noting the opportunities for future work, attention to the accomplishments of this 

study should be addressed. The joint satisfaction of the overall contributions of this 

research to academia as well as to the safety and wellbeing of the general public is a feat 

seldom accomplished and should be used as an example for research studies of similar 

nature.   
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APPENDICES 

Appendix A: Consent Form to Participate in Research & Letter of Information 

 

A1: Consent Form Page 1 of 2 
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A2: Consent Form Page 2 of 2 
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A3: Letter of Information Page 1 of 2 
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A4: Letter of Information Page 2 of 2 
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Appendix B: Jury Test Paired Comparison Matrices 

Note: Yellow fill indicates a pair used for evaluation and grey fill indicates an invalid pair 

B1: Electrical and mechanical siren pass-by with and without the air horn 

Signal Electrical 

Electrical 

w/ Air 

Horn 

Mechanical 

Mechanical 

w/ Air 

Horn 

Electrical         

Electrical w/ 

Air Horn 
        

Mechanical         

Mechanical 

w/ Air Horn 
        

 

B2: Electrical and mechanical siren with and without the presence of the shadow 

vehicle 

Signal 
Electrical No 

Shadow 

Electrical w/ 

Shadow 

Mechanical 

No Shadow 

Mechanical 

w/ Shadow 

Electrical No 

Shadow 
        

Electrical w/ 

Shadow 
      

  

Mechanical 

No Shadow 
      

  

Mechanical 

w/ Shadow 
      

  

 

B3: Wail alone, Wail with Rumbler, and Yelp with Rumbler siren pass-by 

 

 

  

Signal Wail 
Wail + 

Rumbler 

 Yelp + 

Rumbler 

Wail       

Wail + 

Rumbler 
      

Yelp + 

Rumbler 
      



 

121 

 

B4: Wail alone, Wail with Rumbler, and Yelp with Rumbler siren with and without 

the presence of the shadow vehicle 

Signal 

Wail + 

Rumbler No 

Shadow 

Wail + 

Rumbler w/ 

Shadow 

Wail No 

Shadow 

Wail w/ 

Shadow 

Yelp + 

Rumbler No 

Shadow 

Yelp + 

Rumbler w/ 

Shadow 

Wail + 

Rumbler No 

Shadow 

      

      

Wail + 

Rumbler w/ 

Shadow 

      

      

Wail No 

Shadow 
      

      

Wail w/ 

Shadow             

Yelp + 

Rumbler No 

Shadow             

Yelp + 

Rumbler w/ 

Shadow             
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Appendix C: Mechanical v. Electrical System Comparison & Analysis with Rumbler 

Data Analysis Results 

 

C1: A-weighting Overall Time Response of the mechanical and electrical siren since 

the receiver vehicle with the presence of the shadow vehicle with corresponding 

linear trend lines 

 

C2: Maximum A-weighted Overall Time Response of the mechanical and electrical 

siren frontal directivity 
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C3: Minimum A-weighted Overall Time Response of the mechanical and electrical 

siren frontal directivity 
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C4: A-weighted Overall Time Response of the Yelp with Rumbler siren pass-by 

under multiple engine conditions 

 

 

C5: A-weighted Overall Time Response of the Wail with Rumbler siren pass-by 

under multiple engine conditions 
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C6: A-weighted Overall Time Response of the Wail alone siren pass-by under 

multiple engine conditions 

 

 

C7: A-weighted Overall Time Response of the Yelp with the Rumbler siren frontal 

directivity at a measurement distance of 5 m 
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C8: A-weighted Overall Time Response of the Wail with the Rumbler siren frontal 

directivity at a measurement distance of 5 m 

 

 

C9: A-weighted Overall Time Response of the Wail alone siren frontal directivity at 

a measurement distance of 5 m 
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C10: A-weighted Overall Time Response of the Yelp with the Rumbler siren frontal 

directivity at a measurement distance of 10 m 

 

 

C11: A-weighted Overall Time Response of the Wail with the Rumbler siren frontal 

directivity at a measurement distance of 10 m 
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C12: A-weighted Overall Time Response of the Wail alone siren frontal directivity 

at a measurement distance of 10 m 

 

 

C13: Mean A-weighted Overall Time Response of the Yelp with the Rumbler siren 

frontal directivity at measurement distances of 5m and 10 m  
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C14: Mean A-weighted Overall Time Response of the Wail with the Rumbler siren 

frontal directivity at measurement distances of 5m and 10 m 

 

 

C15: Mean A-weighted Overall Time Response of the Wail alone siren frontal 

directivity at measurement distances of 5m and 10 m 
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Appendix D: Psychoacoustic Analysis using Objective Sound Quality Metrics and 

Subjective Testing Results 

D1: Jury evaluation scores, participants 1 to 9 

Pair 

# 
Type Signal Option 

Juror # / Gender 

1 F 2 M 3 M 4 M 5 M 6 F 7 M 8 F 9 F 

1 Pass-by 
YR A                   

WR B X X X X X X X X X 

2 Shadow 
WR A X X X X X X X X X 

WR w/S B                   

3 Pass-by 
E A                   

M B X X X X X X X X X 

4 Shadow 
YR w/S A                   

YR B X X X X X X X X X 

5 Pass-by 
M A                   

M w/A B X X X X X X X X X 

6 Shadow 
M w/S A                   

M B X X X X X X X X X 

7 Shadow 
YR w/S A X X X   X X X X X 

WR w/S B       X           

8 Pass-by 
W A             X     

YR B X X X X X X   X X 

9 Shadow 
E A X X X X X X X X X 

E w/S B                   

10 Shadow 
W w/S A                   

WR w/S B X X X X X X X X X 

11 Pass-by 
E w/A A X X X   X X X X X 

E B       X           

12 Shadow 
WR w/S A X X X X X X X X X 

W w/S B                   

13 Shadow 
M w/S A X X X X X X X   X 

E w/S B               X   

14 Shadow 
W w/S A           X X     

YR w/S B X X X X X     X X 

15 Pass-by 
E w/A A                   

M w/A B X X X X X X X X X 

16 Pass-by 
M A X X X   X   X X X 

E B       X   X       

17 Shadow 
W w/S A               X   

W B X X X X X X X   X 

18 Pass-by W A                   
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WR B X X X X X X X X X 

19 Pass-by 
E A                   

E w/A B X X X X X X X X X 

20 Shadow 
E w/S A             X     

M w/S B X X X X X X   X X 

21 Shadow 
WR w/S A     X   X X X     

YR w/S B X X   X       X X 

22 Shadow 
WR w/S A                   

WR B X X X X X X X X X 

23 Shadow 
YR A X X X X X X X X X 

YR w/S B                   

24 Shadow 
E w/S A                   

E B X X X X X X X X X 

25 Pass-by 
M w/A A X X X X X X X   X 

M B               X   

26 Pass-by 
YR A X X   X X X X X X 

W B     X             

27 Shadow 
W A X X X X X X X X X 

W w/S B                   

28 Pass-by 
WR A X   X X X     X X 

YR B   X       X X     

29 Shadow 
YR w/S A X X X X X X X X X 

W w/S B                   

30 Shadow 
M A X X X X X X X X X 

M w/S B                   

31 Pass-by 
WR A X X X X X X X X X 

W B                   

32 Pass-by 
M w/A A X X X X X X X X X 

E w/A B                   
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D2: Jury evaluation scores, participants 10 to 18 

Pair 
# 

Type Signal Option 
Juror # / Gender 

10 M 11 F 12 F 13 M 14 F 15 M 16 M 17 M 18 M 

1 Pass-by 
YR A       X   X     X 

WR B X X X   X   X X   

2 Shadow 
WR A X X X X X X X X X 

WR w/S B                   

3 Pass-by 
E A   X               

M B X   X X X X X X X 

4 Shadow 
YR w/S A                   

YR B X X X X X X X X X 

5 Pass-by 
M A                   

M w/A B X X X X X X X X X 

6 Shadow 
M w/S A                   

M B X X X X X X X X X 

7 Shadow 
YR w/S A X X X X X X X X X 

WR w/S B                   

8 Pass-by 
W A               X   

YR B X X X X X X X   X 

9 Shadow 
E A X X X X X X X X X 

E w/S B                   

10 Shadow 
W w/S A                   

WR w/S B X X X X X X X X X 

11 Pass-by 
E w/A A X   X X X X X X X 

E B   X               

12 Shadow 
WR w/S A X X X X X X X X X 

W w/S B                   

13 Shadow 
M w/S A X X X X X X X X X 

E w/S B                   

14 Shadow 
W w/S A                   

YR w/S B X X X X X X X X X 

15 Pass-by 
E w/A A                   

M w/A B X X X X X X X X X 

16 Pass-by 
M A X X X X   X   X   

E B         X   X   X 

17 Shadow 
W w/S A                   

W B X X X X X X X X X 

18 Pass-by 
W A       X         X 

WR B X X X   X X X X   

19 Pass-by 
E A   X               

E w/A B X   X X X X X X X 
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20 Shadow 
E w/S A                   

M w/S B X X X X X X X X X 

21 Shadow 
WR w/S A       X X   X   X 

YR w/S B X X X     X   X   

22 Shadow 
WR w/S A                   

WR B X X X X X X X X X 

23 Shadow 
YR A X X X X X X X X X 

YR w/S B                   

24 Shadow 
E w/S A                   

E B X X X X X X X X X 

25 Pass-by 
M w/A A X X X X X X X X X 

M B                   

26 Pass-by 
YR A X X   X X X X X X 

W B     X             

27 Shadow 
W A X X X X X X X X X 

W w/S B                   

28 Pass-by 
WR A   X X       X X X 

YR B X     X X X       

29 Shadow 
YR w/S A X X X X X X X X X 

W w/S B                   

30 Shadow 
M A X X X X X X X X X 

M w/S B                   

31 Pass-by 
WR A X X X X X X X X   

W B                 X 

32 Pass-by 
M w/A A X X   X X X X X X 

E w/A B     X             
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D3: Jury evaluation scores, participants 19 to 27 

Pair # Type Signal Option 
Juror # / Gender 

19 M 20 F 21 M 22 M 23 M 24 F 25 M 26 M 27 F 

1 Pass-by 
YR A                   

WR B X X X X X X X X X 

2 Shadow 
WR A X X X X X X X X X 

WR w/S B                   

3 Pass-by 
E A                   

M B X X X X X X X X X 

4 Shadow 
YR w/S A                   

YR B X X X X X X X X X 

5 Pass-by 
M A                   

M w/A B X X X X X X X X X 

6 Shadow 
M w/S A                   

M B X X X X X X X X X 

7 Shadow 
YR w/S A X   X   X X X X X 

WR w/S B   X   X           

8 Pass-by 
W A                   

YR B X X X X X X X X X 

9 Shadow 
E A X X X X X X X X X 

E w/S B                   

10 Shadow 
W w/S A                   

WR w/S B X X X X X X X X X 

11 Pass-by 
E w/A A X X X X X X   X X 

E B             X     

12 Shadow 
WR w/S A X X X X X X X X X 

W w/S B                   

13 Shadow 
M w/S A X X X X X X X X X 

E w/S B                   

14 Shadow 
W w/S A             X     

YR w/S B X X X X X X   X X 

15 Pass-by 
E w/A A             X     

M w/A B X X X X X X   X X 

16 Pass-by 
M A X X X X X X   X X 

E B             X     

17 Shadow 
W w/S A                   

W B X X X X X X X X X 

18 Pass-by 
W A                   

WR B X X X X X X X X X 

19 Pass-by 
E A                   

E w/A B X X X X X X X X X 
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20 Shadow 
E w/S A             X     

M w/S B X X X X X X   X X 

21 Shadow 
WR w/S A X     X           

YR w/S B   X X   X X X X X 

22 Shadow 
WR w/S A                   

WR B X X X X X X X X X 

23 Shadow 
YR A X X X X X X X X X 

YR w/S B                   

24 Shadow 
E w/S A                   

E B X X X X X X X X X 

25 Pass-by 
M w/A A X X X X X X X X X 

M B                   

26 Pass-by 
YR A X X X X X X X X X 

W B                   

27 Shadow 
W A X X X X X X X X X 

W w/S B                   

28 Pass-by 
WR A X X X X     X X   

YR B         X X     X 

29 Shadow 
YR w/S A X X X X X X X X X 

W w/S B                   

30 Shadow 
M A X X X X X X X X X 

M w/S B                   

31 Pass-by 
WR A X X X X X X X X X 

W B                   

32 Pass-by 
M w/A A X X X X X X   X X 

E w/A B             X     
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D4: Jury evaluation scores, participants 28 to 32 

Pair 

# 
Type Signal Option 

Juror # / Gender 

28 M 29 F 30 M 31 M 32 F 

1 Pass-by 
YR A         X 

WR B X X X X   

2 Shadow 
WR A X X X X X 

WR w/S B           

3 Pass-by 
E A           

M B X X X X X 

4 Shadow 
YR w/S A           

YR B X X X X X 

5 Pass-by 
M A           

M w/A B X X X X X 

6 Shadow 
M w/S A X         

M B   X X X X 

7 Shadow 
YR w/S A X   X   X 

WR w/S B   X   X   

8 Pass-by 
W A   X       

YR B X   X X X 

9 Shadow 
E A X X X X X 

E w/S B           

10 Shadow 
W w/S A           

WR w/S B X X X X X 

11 Pass-by 
E w/A A X X X X X 

E B           

12 Shadow 
WR w/S A X X X X X 

W w/S B           

13 Shadow 
M w/S A X X X X X 

E w/S B           

14 Shadow 
W w/S A           

YR w/S B X X X X X 

15 Pass-by 
E w/A A           

M w/A B X X X X X 

16 Pass-by 
M A X X X X X 

E B           

17 Shadow 
W w/S A           

W B X X X X X 

18 Pass-by 
W A           

WR B X X X X X 

19 Pass-by 
E A           

E w/A B X X X X X 
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20 Shadow 
E w/S A           

M w/S B X X X X X 

21 Shadow 
WR w/S A X     X   

YR w/S B   X X   X 

22 Shadow 
WR w/S A           

WR B X X X X X 

23 Shadow 
YR A X X X X X 

YR w/S B           

24 Shadow 
E w/S A           

E B X X X X X 

25 Pass-by 
M w/A A X X X X X 

M B           

26 Pass-by 
YR A   X X X   

W B X       X 

27 Shadow 
W A X X X X X 

W w/S B           

28 Pass-by 
WR A X   X X X 

YR B   X       

29 Shadow 
YR w/S A X X X X X 

W w/S B           

30 Shadow 
M A X X X X X 

M w/S B           

31 Pass-by 
WR A X X X X   

W B         X 

32 Pass-by 
M w/A A X X X X X 

E w/A B           
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D5: Siren signal total and merit scores from jury evaluation 

Car Name Total Score Merit Score 

Cop Cruiser - Pass-by - Wail 1 -3.5 

Cop Cruiser - Pass-by - Wail + Rumbler 47 5.0 

Cop Cruiser - Pass-by - Yelp + Rumbler 27 -1.4 

Cop Cruiser - Shadow - Wail + Rumbler No Shadow 32 2.9 

Cop Cruiser - Shadow - Wail + Rumbler w Shadow 34 -0.1 

Cop Cruiser - Shadow - Wail No Shadow 31 2.9 

Cop Cruiser - Shadow - Wail w Shadow 0 -8.2 

Cop Cruiser - Shadow - Yelp + Rumbler No Shadow 32 2.9 

Cop Cruiser - Shadow - Yelp + Rumbler w Shadow 46 -0.6 

Fire Truck - Pass-by - Electrical 1 -3.5 

Fire Truck - Pass-by - Electrical w/ Air Horn 30 0.0 

Fire Truck - Pass-by - Mechanical 25 -2.2 

Fire Truck - Pass-by - Mechanical w/ Air Horn 60 5.7 

Fire Truck - Shadow - Electrical No Shadow 32 2.9 

Fire Truck - Shadow - Electrical w Shadow 0 -4.9 

Fire Truck - Shadow - Mechanical No Shadow 31 2.9 

Fire Truck - Shadow - Mechanical w Shadow 28 -1.0 
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