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ABSTRACT 

Driving performance can be directly related to the driver behaviour in terms 

of the mental workload and risk perception. No generally accepted model or system 

exists that can model the driving task or driver performance in a comprehensive 

manner. The purpose of this research is to develop a methodology using a series of 

modelling techniques to evaluate driving performance under naturalistic driving 

contexts. Exploratory statistical techniques and artificial neural network have been 

used as the backbone of the work presented in this thesis to determine and classify 

driver performance in different categories by identifying underlying natural sub-sets 

in the driving data set. A safe and experienced driver should possess the knowledge 

and the experience about his/her driving skills along with an acute awareness of the 

surrounding driving environment. The methodology proposed in this thesis can be 

used for various applications including evaluation of driving performance of 

emergency ambulance drivers.  
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background  

Driving is a complex task that requires the driver to employ a wide range of skills 

in order to interact with a complex environment, while simultaneously managing different 

driving task demands. The driving task can be considered as the interaction between 

various vehicle, driver, and environment characteristics. Nowadays, the magnitude of 

information available to drivers through various technological systems and advancements 

is simply overwhelming. Each individual driver is unique and thus, their level of 

performance greatly relies on their driving behaviour through successful processing of 

available information. Every driver has a different perception of acceptable risk levels. 

These risk levels are subjective in nature and might be influenced by driver age, gender, 

lifestyle, social background, etc., which in turn can dictate the driver performance to a 

certain extent. A good driver must therefore possess an adequate level of mental and 

physical skills to control the vehicle within the environment that they are expected to 

function.  

No generally accepted model or system exists that can model the driving task or 

driver performance in a comprehensive manner. Driving performance can be directly 

related to the driver behaviour in terms of the mental work load and risk perception. The 

driver can choose to follow different strategies for a given risky scenario by adjusting the 

various driving parameters (e.g. choice of vehicle speed) to constantly adjust the perceived 

level of risk to an acceptable value. Moreover, there is no standard set of variables defined 

that can be used to develop a comprehensive model encompassing driver performance and 

behaviour. The nature of data sets available for analysis varies greatly amongst research 

groups since each research group develops driver models tailored to their research needs. 

Extensive research has been conducted to understand the reasons leading to 

roadway collision events and as such, drivers have been identified as one of the major 

contributors for such events. Driving is a dynamic event with continuously changing 
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demands and levels of interaction or attention required by the driver. According to 

Transport Canada’s National Collision Database (NCDB), 73% of recorded injury 

collisions in 2010 occurred in urban areas, which includes metropolitan streets and 

residential areas [1]. Reducing the number of collisions that lead to such events are of key 

interest to policy makers around the world. Any such traffic event is the interaction between 

the driver, vehicle, and the road. The work done for this thesis involves the use of factors 

involved with the vehicle and the road to help identify an evaluation criteria for driver 

performance. It is very important to understand and classify driving behaviour under 

different categories based on driving performance and associated levels of risk involved. 

Such analysis is also very important in understanding and identifying factors that can lead 

to risky driving scenarios. The work presented in this thesis can have a wide range of 

applications for developing a better understating of the underlying characteristics inherent 

to the driving task.  

1.2 Research Objectives 

A safe and experienced driver should possess the knowledge and the experience 

about their driving skills along with an acute awareness of the surrounding driving 

environment. However, it is very challenging to objectify and quantify such phenomena 

mathematically, based on naturalistic driving data. Often collision scenarios are a result of 

driver errors, such as errors in risk perception, driving distractions, etc. Therefore, there is 

a need to identify possible factors and scenarios contributing to risky driving behaviour so 

that mitigating solutions (e.g. tailored driver training modules) can be further developed to 

help prevent risky driving events or collisions. 

The purpose of this research is to develop a methodology using a series of 

modelling techniques to evaluate driving performance under naturalistic driving contexts, 

as presented in Figure 1.1. The methodology was developed using an iterative approach 

where every step was verified to ensure accurate model results. This thesis proposes a 

classification model based on driver performance that is indicative of the task demand and 

risk perception of the driver. In particular, the presented work analyzes the driving 

performance under an urban driving setting (metropolitan streets and residential streets).  
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The objective is develop a driver classification model, using artificial neural networks 

(ANN), that can classify driver performance using different classes or categories.  

Figure 1.1: Research Methodology 

Neural network is a very powerful mathematical tool that can determine, predict, 

and classify complex non-linear relationships without any prior assumptions. Based on 

analysis of a driving data set, the proposed work will attempt to determine the relationship 

between the driver performance and the associated risk factors using ANNs and statistical 

methods. Statistical modelling techniques will be used extensively used throughout this 

thesis to determine and interpret the natural subsets within the driving data set. Emphasis 

will also be placed on data processing techniques for tackling complex data sets containing 

quantitative information. In particular, the variables presented in this thesis assume 

continuous numerical values. Determining associated trends in a given data set is very 

important for building successful models using ANNs. Furthermore, the developed model 

will be analyzed to determine how individual input parameters affect individual outcomes 

of the model, by performing a sensitivity analysis. It should be realized that the proposed 

framework developed in the following thesis is based on information available in the data 

set. It serves as a guideline and provides an overview of the methodology that will be 

implemented to model driver performance, which can be used for various applications.  

1.3 Research Applications  

Apart from evaluating driving performance under regular driving scenarios, the 

work done for this thesis can also be extended to include various other purposes. One such 
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application is the use of such analysis and modelling techniques for evaluating the driving 

performance of emergency services such as ambulances. Recently, there has been growing 

concern due to the increased number of ambulance collisions, which can cause serious 

injuries to occupants and cause extensive damage to expensive emergency vehicles. For 

instance, over 370 ambulance collisions were reported in Quebec City alone in the past five 

years [2]. Research indicates that ambulance drivers are one of the most important factors 

influencing ambulance collisions. Thus, it is very important to understand individual driver 

behaviour and characteristics that can lead to risky behaviours such as speeding and 

overtaking other vehicles. Although driving an ambulance in emergency situations will be 

different from regular driving conditions, similar methodology and modelling procedures 

can be followed to develop an evaluation tool for driver performance. An emergency 

situation can be described as a scenario where an ambulance needs to respond immediately 

to an emergency call within a specific time frame. It is a dangerous activity that involves 

very risky and hazardous situations. The driver is often required to make immediate 

decisions based on the available information at that instant. Such analysis will greatly assist 

in understanding ambulance collisions and will help in decreasing the number of 

ambulance collisions in the future. A similar methodology can also be implemented for 

evaluating drivers for effective fleet management. 

The work presented in this thesis can be applied to evaluate the performance of 

elderly drivers. The age structure of the Canadian population demographics is changing, 

with a significant proportion of the population falling under the age group of 65+ years. 

Moreover, elderly drivers have a higher risk of being involved in vehicle collisions. 

Although aging affects every individual in a different manner; driving skills, in general, 

gradually deteriorate due to an increase in reflex or response times. Instead of deciding 

arbitrarily to restrict the driving capabilities of an elderly driver, a tool can be developed 

to evaluate the performance using a similar methodology to the one outlined in this thesis. 

Such a tool will help in developing a quantitative measure for decisions with respect to 

driving restrictions. This tool in turn can have a positive impact on the quality of life for 

the aging population in Canada. 
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CHAPTER 2 

LITERATURE REVIEW 

A driver performance classification model can serve as the foundation for 

understanding driver characteristics and performance that lead to vehicle collisions. Driver 

modelling is an ongoing research topic and there exist various models that address various 

aspects of driver performance and behaviour. However, a generally acceptable framework 

is not available that encompasses all the behavioural effects of a driver that can 

comprehensively describe the driving task. Limited research has been conducted in this 

area using exploratory statistical methods combined with neural networks. This chapter 

highlights some of the important work conducted in this field of research. The knowledge 

learnt from previous literature served as a guideline for developing the classification model 

for this thesis. The chapter is divided into two sections. The first section introduces some 

key theoretical models that have served as the foundation for driver models. The second 

section of the chapter presents some relevant work conducted in developing a mathematical 

model using the knowledge gained from the theoretical models. 

2.1 Theoretical Models  

A comprehensive way of developing a driver model can be viewed as a combination 

of three major elements: inputs, information processing or behaviour, and outputs [3] 

(Figure 2.1). These parameters can be used to determine measures of effectiveness, or to 

evaluate driver performance. According to researchers, the occurrence of vehicle collisions 

can be reduced significantly if technology were available to detect the driver’s potential 

for risky behaviour. If a technology existed that could identify individual driver 

characteristics responsible for poor driving performance, it would allow for the 

minimization of driver errors (through development of tailed training programs or 

advanced vehicle assistance systems), which could play a key role in automotive safety 

improvement. Based on Wilde’s risk homeostasis theory, drivers attempt to maintain a 

target level of risk per unit time. If the driver is provided with additional safety measures, 

the driver will exhibit more risky behaviour to compensate and return to the target level of 

risk [3]. Every individual driver has a different level of risk perception; hence, it is very 

important to understand and analyze individual driving performance. If similar trends were 
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categorized in different levels, a more comprehensive model for performance evaluation 

could be developed. One of the major drawbacks of such theories pertaining to driver 

modelling is that they only explain the factors and motivations affecting the driver 

behaviour without describing the process involved in determining such behavioural 

characteristics. Also, such models cannot quantify factors associated with risk levels which 

can be further utilized to develop a mathematical model. 

 

Figure 2.1: Comprehensive Overview of a Sample Driver Model 

 

One of the most popular models for driver behaviour is Michon’s Hierarchical 

Control Model [4]. Michon proposed a simple two way classification model for describing 

driving behaviour. This one dimensional model is appropriate for distinguishing behaviour 

using a simple input-output oriented model and internal state models. The second 

dimension differentiates between functional and taxonomic models, where model 

components may or may not interact with each other [4]. His model was further subdivided 

to show that there are three major factors involved in driver decision making: strategy, 

maneuvering/tactics, and control [4]. Michon’s driver behavioural model has served as the 

basis of various studies over the years in an attempt to develop an effective driver model. 

For the purpose of this research, more emphasis will be given to the maneuvering/tactical 
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and control levels of the model, since they are associated with the maneuver execution and 

decision making processes of the driver. The maneuvering or tactical level is primarily 

associated with the driver’s interaction with the traffic environment, where the driver’s 

actions related to vehicle maneuvering are dependent on his/her level of expertise and 

interaction with the surrounding environment.  

Another notable model that has been extensively used in the literature is the 

Guarding Automobile Drivers through Guidance Education and Technology (GADGET) 

matrix [3]. The GADGET matrix was initially developed to assess and structure post 

license driver education in the European Union. The GADGET matrix is also based on 

Michon’s driver model and consists of four categories for describing driver behaviour – 

goals for life and skills for living, driving goals and context, mastery of traffic situations, 

and vehicle manoeuvering [3]. The levels or cells of the GADGET matrix are not mutually 

exclusive due to the inherent complexity of the driving task. It is possible that some 

subtasks might be conducted at different levels simultaneously (e.g. speed control, 

accelerating, braking, etc.). This model is very important since various driving safety laws 

and regulations in Europe and United States were developed based on the findings from 

this particular research. For instance, the GADGET matrix was used as the base for 

developing key driver competencies, which were then integrated into the driver (category 

B) education program in the European Union.  

Overall, the driver uses cognitive, perceptual, and motor abilities to successfully 

carry out the driving task. Driving can therefore be described as a hierarchy of navigation, 

guidance, and control conducted simultaneously with visual search, recognition, and 

monitoring operations [5]. Thus based on the theoretical models and assumptions for risk 

perception, a comprehensive driver model that can relate the driver performance, 

capability, and behaviour to the level of associated risk can be proposed using the following 

five categories – attitudes/personality, experience, driver state, task demand/workload, and 

situation awareness [3].  
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2.2 Mathematical Models  

Various concepts and theories regarding driver behaviour were explored in Section 

2.1. Researchers have used knowledge based on these theories and developed mathematical 

models for determining driver behaviour and performance. One of the most important 

factors to consider when attempting to develop driver behaviour models is the vehicle 

speed. Aarts and van Schagen [6] have highlighted the importance of vehicle speed on road 

and traffic safety. According to their research, speed not only affects the severity of a 

vehicle collision, but also increases the risk of being in a collision event. The authors 

conducted an extensive review of empirical studies relating vehicle speed and the risk of 

collision. Based on their review of previous literature, they found that the risk of being 

involved in a collision event is higher for vehicles driving in “minor” or urban roadways 

when compared to rural or “major” roadways [6]. The authors have also inferred that a 

higher average speed in urban or minor roadways leads to a higher risk of crash. These 

observations are very important for the purpose of this research because speed was 

recorded during the data collection process. Moreover, only the driving data from urban 

and residential roadways were selected for modelling the driving performance. 

Othman et al. [7], conducted a study on driver behaviour and obtained data from a 

driving simulator using a predetermined computer simulated driving course. In order to 

extract relevant data from the raw data set, the authors used a linear prediction analysis 

(LPA) technique to extract relevant features that could best describe the driver operation 

behaviour [7]. Through LPA techniques, parameters were identified using local data sets. 

These parameters were used as feature vectors of the driving operation. Feature vectors 

contain sets of numerical features that can help describe a particular scenario or object. 

Using Auto Associative Neural Networks (AANN), Othman et al. performed an identity 

mapping of the feature vectors for each driver and tested the capabilities of the developed 

network using sets of features from the same and different drivers. The model was 

primarily developed to identify the driver performance; the proposed method had an overall 

accuracy of 81.70% [7]. Pedal position, speed, and acceleration were used as the input 

parameters for the analysis. The model of each driver essentially captured the distribution 

of features of that driver, and the overall performance of the model was evaluated through 

the driver identification process. One of the major drawbacks of using such technique is 
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that it is challenging to interpret the results since it only helps to identify driving patterns; 

it does not provide information regarding whether the driving performance is satisfactory 

or not.  

Constantinescu, Marinoiu, and Vladoiu [8] also investigated the driving styles of 

various drivers by classifying the drivers based on their “risk proneness” to group drivers 

according to their behaviours. The authors used exploratory statistical methods to identify 

the groups of driving styles based on data collected from an in-house built GPS system. 

However, the work was only limited to providing some description for each group 

identified from the set of experimental results. No attempt was made to develop a 

mathematical model to determine the relationship between each set of identified group and 

the individual driving parameters. 

Another interesting technique was presented by Macadam et al. [9], where the 

driver behaviour was classified under five different categories using range and range rates 

of longitudinal closures. The data was trained and classified using ANNs. Once the network 

was developed, an aggressivity index was defined to reflect the frequency or willingness 

of a particular driver to overtake and pass other vehicles [9]. The numbering system, 

combined with the age of the drivers, revealed the associated trends and patterns of 

behaviour observed in different age groups. However, when a similar technique was 

applied to represent the longitudinal control behaviour associated with closing-in and 

tracking of a preceding vehicle, the technique did not yield favourable results. One possible 

explanation of not obtaining favourable results could be due to the limited number of input 

parameters for the ANN network. Since driving behaviour is affected by other road and 

environment characteristics, the network could be trained using a different set of 

parameters in order to be able classify and predict driver behaviour. 

Apart from the use of ANNs, various driver models exist which utilize the concepts 

of control theory, vehicle dynamics, fuzzy logic, and genetic algorithms. Models developed 

using vehicle dynamics and control theory are very complex in nature and require several 

prior assumptions. An example is the model proposed by Sharp, Casanova, and Symonds 

[10] where a steering control model is developed using linear optimal discrete time preview 
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control theory. It should be noted that the proposed model is non-linear in nature and the 

driver model is joined to the vehicle dynamics model to demonstrate the path tracking 

performance [10]. The developed model requires priori assumptions and the availability of 

a large number of parameters to satisfy the mathematical expressions. The model 

demonstrates reliable results but is highly dependent on the assumptions made during the 

development of the model. One advantage of using neural networks to model such 

behaviour is that no prior assumptions are required, and results may be achieved using a 

smaller set of input parameters.  

Another example of such a model is the one presented by Raksincharoensak et al. 

[11] for modelling naturalistic driving behaviour in traffic scenarios. The authors use a 

combined driver behaviour model using a state transition feature. The driver behaviour 

model was essentially based on longitudinal vehicle dynamics with a particular focus on 

vehicle accelerations and braking. The longitudinal driver model was further categorised 

into five driving states from a viewpoint of active safety [11]. The framework of the work 

was based on a non-generative method known as the Boosting Sequential Labelling 

Method (BSLM) which was used to train the model for driver behaviour recognition. Using 

BSLM, the conditional probability was calculated to determine the relationship between 

the sensor data and the driving states. Similar to the concept of ANNs, the described 

technique (BSLM) is a statistical machine learning technique for real time driver state 

recognition. Using such method, varying levels of accuracies were obtained for the five 

driving states. A lower accuracy (73%) was observed when determining the driver braking 

behaviour. Moreover, the mode results deviate significantly when the training data set for 

the algorithm is altered [11], thus showing some inconsistencies in the model. 

On the contrary, neural networks have been particularly successful in the field of 

driver behaviour modelling since they are able to capture various driving characteristics 

through an iterative training process along with iterative parameter adjustments to obtain 

the desired results. One of the major challenges for neural networks is to find a method to 

interpret the final results. Often it can be challenging to determine the relationship between 

the network input and output parameters based on an analysis of the network weights. 
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The literature presented in this chapter has demonstrated the wide range of 

techniques and applications of driver behaviour and performance modelling. The variables 

considered for analysis were different for each study. Moreover, the level of detailed 

information available on the driver-vehicle-environment varies greatly along with the 

experimental setup. It is thus often challenging to summarize a set of variables that can 

provide a comprehensive overview of driver behaviour. The work conducted for this thesis 

utilizes variables (e.g. speed, position, etc.) that can be recorded and obtained in a 

straightforward manner to determine the various driving characteristics under naturalistic 

driving conditions. 
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CHAPTER 3  

STATISTICAL METHODS 

The following chapter presents an overview of core statistical concepts relevant to 

this work’s analysis of driver performance. Often, such analysis involves multi-

dimensional data with three or more variables. Thus, it is sometimes challenging to 

interpret and analyze data in higher dimensions. The chapter begins with an introduction 

to mathematical concepts that be will utilized for different statistical modelling techniques. 

Two analysis techniques will be introduced in this chapter – cluster analysis and factor 

analysis. Cluster analysis is a widely used technique for exploratory data mining and 

pattern recognition tasks, amongst many others. Factor analysis is then presented as a 

dimension reduction technique to model a given multivariate data set, with minimal loss of 

information. The analyses techniques presented in this chapter will be used for the research 

presented. The techniques will provide insight into the structure of the data set and help 

reduce the complexity of the data by identifying factors that are of key importance for the 

developed model.  

3.1 Background Mathematics  

This section attempts to provide some common mathematical terminology that will 

be required to understand the different statistical techniques presented throughout this 

thesis. This section is divided into two different parts – statistical concepts and matrix 

algebra concepts. Before proceeding, a multivariate data set will be described that will form 

the basis of all analysis and techniques mentioned henceforth. 

 

Multivariate Data 

Statistical analysis is based on observations and variables. A variable, for the 

purpose of this thesis, is described as a unique character or quantity that is measured for 

analysis (e.g. vehicle velocity, distance travelled, etc.). Similarly, an observation is defined 

as a set of variables or measurements that describes a particular scenario or case. Thus, a 

multivariate data set is considered as a data set where two or more variables of interest are 

present for analysis and modelling. The statistical measures presented in the following 
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sections are for a sample data set of interest. A sample data set is a subset of the entire 

population, which encompasses all possible scenarios or cases.  

3.1.1 Statistical Concepts 

Some basic statistical measures and computations are presented in this section that 

will help to analyze and explore the relationships between different observations and 

variables in a given data set.  

Sample Mean 

The mean or average value of a given variable, �̅�, in a sample data set can be 

computed using Equation 1. 

 
𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛, �̅� =  ∑

𝑥𝑖
𝑛

𝑛

𝑖=1

 (1) 

where, xi = ith
 observation of variable x,  

n = number of observations present in the data set 

 

Sample Standard Deviation and Variance 

The standard deviation, 𝜎𝑥, and variance, 𝜎𝑥
2, provide a measure of the spread or 

dispersion of a given variable from its mean value and can be computed using Equations 2 

and 3. 

 
𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝜎𝑥 = √

∑ (𝑥𝑖 −
𝑛
𝑖=1 �̅�)2

𝑛 − 1
 (2) 

  𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝜎𝑥
2 = 

∑ (𝑥𝑖 −
𝑛
𝑖=1 �̅�)2

𝑛 − 1
 (3) 

 

Covariance 

Covariance is a statistical measure of the variance between two given variables, x 

and y. The covariance can be computed using Equation 4. 

 𝑐𝑜𝑣(𝑥, 𝑦) =  
∑ (𝑥𝑖 −
𝑛
𝑖=1 �̅�)(𝑦𝑖 − 𝑌)̅̅ ̅

𝑛 − 1
 (4) 

The sign of the covariance is of particular importance in determining the 

relationship between two different variables. A positive sign indicates that the magnitudes 

of the two variables increase/decrease simultaneously. On the other hand, a negative value 
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indicates that the magnitude of the first variable increases while the magnitude of the other 

variable decreases. If the covariance value is zero, it indicates that the two variables are 

independent, i.e. their magnitudes are not dependent on each other. 

For a multivariate data set consisting of more than two variables, a covariance 

matrix can be formed which contains all the possible covariance values between the 

different variables in a data set. A general expression of a covariance matrix, C, of three 

variables (x, y, and z) can be presented as follows: 

 

𝐶 =  (

𝑐𝑜𝑣(𝑥, 𝑥) 𝑐𝑜𝑣(𝑥, 𝑦) 𝑐𝑜𝑣(𝑥. 𝑧)
𝑐𝑜𝑣(𝑦, 𝑥) 𝑐𝑜𝑣(𝑦, 𝑦) 𝑐𝑜𝑣(𝑧, 𝑧)
𝑐𝑜𝑣(𝑧, 𝑥) 𝑐𝑜𝑣(𝑧, 𝑦) 𝑐𝑜𝑣(𝑧, 𝑧)

) (5) 

It is important to note that the diagonal of matrix C is the variance of each individual 

variable itself. Thus, C will also be referred to as the variance covariance matrix. Also, it 

should be noted that the matrix, C, is symmetrical along the diagonal with cov(x, y) =cov(y, 

x). 

Correlation 

Correlation is another important statistical measure of dependence between two 

given variables. The sample Pearson correlation coefficient, r, is used to determine the 

correlation coefficient between variables, as expressed in Equation 6. 

 𝑟 =
1

𝑛 − 1
 ∑(

𝑥𝑖 − �̅�

𝜎𝑥
)(
𝑦𝑖 − �̅�

𝜎𝑦
)

𝑛

𝑖=1

 (6) 

An r value of +1 indicates a perfectly positive correlation, while a value of -1 indicates a 

perfectly negative correlation between the x and y variables under consideration. An r value 

of zero indicates that the values are independent of each other. In a similar manner as the 

variance covariance matrix, a correlation matrix can also be formed for a multivariate data 

set consisting of more than two variables. 

3.1.2 Matrix Algebra Concepts 

The aim of this section is to provide some important background, pertinent to 

matrix algebra, required for the statistical techniques presented in this chapter and applied 

throughout the thesis. It is assumed that the reader has a good understanding about the basic 
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concepts of matrix manipulation. Special emphasis will be provided on some important 

properties of eigenvalues and eigenvectors since they will be used extensively for the 

principal component method, introduced later in this chapter.  

 

Eigenvalues and Eigenvectors 

Eigenvectors and eigenvalues are important tools for analysis of system of linear 

equations. Consider a non-zero vector, A, of dimension (n x 1) multiplied with a square 

matrix, B, of dimension (n x n). Vector A will be known as the eigenvector of B only if 

there exists a solution (real or complex) such that: 

 𝐵𝐴 = 𝜆𝐴 (7) 

where, λ is an eigenvalue of B. Eigenvectors are only specific to square matrices and will 

always have a length equivalent to 1. The length of a vector,(
𝜆1
𝜆2
) can be defined using 

Equation 8. 

 𝑙𝑒𝑛𝑔𝑡ℎ(𝜆1, 𝜆2) = √𝜆1
2 + 𝜆2

2 (8) 

Hence, to obtain an eigenvector of unit length, each element of the vector can be divided 

by the length of the vector, as shown below. 

Eigenvector (
𝜆1
𝜆2
) can be re-written as

(

 

𝜆1
√𝜆1

2 + 𝜆2
2⁄

𝜆2
√𝜆1

2 + 𝜆2
2⁄
)

   

A set n of eigenvalues for a given matrix, B, can be essentially determined using Equation 

9. 

 𝐵 − 𝜆𝐼 = 0 (9) 

where, I = identity matrix of dimension n x n.  

Once the eigenvalues, λi, are computed, the corresponding eigenvectors, Ai, can be 

determined using Equation 10. 

 (𝐵 − 𝜆𝑖𝐼)𝐴𝑖 = 0 (10) 

Thus, an n x n matrix will always have n eigenvectors It is also important to note that all 

eigenvectors of a matrix are orthogonal to each other, for principal component analysis (i.e. 

they are linearly independent of each other). 
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3.2 Cluster Analysis  

Cluster analysis can be described as a set of tools to identify clusters or groups, 

based on natural trends, in a multivariate data set. The clusters or groups are determined 

based on some similarity criterion such that, the observations within the group have the 

closest proximity; while, the observations between different groups have the largest 

proximity. Thus, cluster analysis is considered as an unsupervised learning technique to 

group data without having information about the similarities within the data set a priori.  

Consider a multivariate data set matrix (m x x), consisting of x variables and m 

observations. The proximity between pairs of observations (mi, mj) can be determined by 

calculating the Euclidean distance, dij, of the data set matrix using Equation 11 [12]. The 

Euclidean distance is the most commonly used distance method and is defined as the 

geometrical distance between two points, derived from the Pythagoras theorem. The 

greater the distance values, the more dissimilar are the observations and vice versa. 

 𝑑𝑖𝑗 = (∑|𝑚𝑖𝑘
2 − 𝑚𝑗𝑘

2 |

𝑥

𝑘=1

)1/2 (11) 

Once the proximity between the observations are computed, an algorithm can be selected 

to group the observations, based on their proximities. 

Clustering algorithms essentially fall into two categories: partitioning algorithms 

and hierarchical algorithms. The key differences between the two algorithms rely on the 

fact that partitioning algorithms require initial assumptions related to the number of clusters 

and cluster centers. On the other hand, hierarchical clustering algorithms do not require the 

specification of initial number of clusters. Moreover, hierarchical clustering provides more 

meaningful and subjective division of clusters based on natural trends in the data set.  The 

following sub-sections will focus on a specific type of hierarchical clustering algorithm, 

since it was selected as the most appropriate algorithm for the data set to be analyzed. 

3.2.1 Hierarchical Agglomerative Clustering 

The hierarchical clustering method aims to build a hierarchy of clusters. The 

method can be further described by two techniques: the agglomerative (“bottom-up” 

approach) technique and the divisive (“top-down” approach) technique. The agglomerative 
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method relies on a “bottom-up” approach where each observation in the data matrix is 

assigned to an individual cluster. The method progresses in stages by merging the closest 

clusters together, based on a selected algorithm, until one single cluster remains. An 

overview of the agglomerative clustering method is presented in Figure 3.1.  

Most clustering algorithms utilize the computation of distances (e.g. Euclidian 

distance) to determine the criteria for merging two clusters together. However, after 

performing cluster analysis with various clustering algorithms, Ward’s method was 

selected for analysing the multivariate data set because it demonstrated better clustering 

results than the other algorithms. Ward’s clustering method is described more in details in 

the following section. 

 

Figure 3.1: Hierarchical Agglomerative Clustering Method Overview 

 

3.2.2 Ward’s Method 

Cluster analysis using Ward’s method does not involve the computation of 

proximities or distances like traditional methods. Rather, Ward’s method considers it as an 

analysis of variance (ANOVA) problem to evaluate the distance between clusters and 

provides an alternative approach for cluster analysis [13].  Unlike other clustering 

algorithms, Ward’s method merges groups by ensuring that the variation within the groups 

does not change significantly. The error sum of squares, total sum of squares, and R-

squared values are very important for this method and are computed using Equations 12, 
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13, and 14 [13], respectively. Let Yimx denote the variable x in observation m belonging to 

cluster i. 

 

Error sum of squares, SSError: 

 𝑆𝑆𝐸𝑟𝑟𝑜𝑟 = ∑ ∑ ∑ |𝑌𝑖𝑚𝑥 − �̅�𝑖𝑥|
2

𝑥𝑚𝑖
 (12) 

where, �̅�𝑖𝑥  is the mean of variable x present in cluster i. 

The error sum of squares value helps to evaluate individual observations for each 

variable against the cluster mean of that variable. SSError is computed for each cluster, and 

a small value is indicative of the individual observation or data to be very close to the 

cluster mean,�̅�𝑖𝑥. Hence, a relatively small value suggests that a single observation of data 

is a member of that individual cluster. 

Total Sum of Squares, SSTotal: 

 𝑆𝑆𝑇𝑜𝑡𝑎𝑙 = ∑ ∑ ∑ |𝑌𝑖𝑚𝑥 − �̅�𝑥|
2

𝑘𝑗𝑖
 (13) 

The total sum of squares helps to evaluate individual observations of each variable against 

the grand mean, �̅�𝑥, of that variable across all clusters. 

Once SSError and SSTotal is computed, the proportion of variation explained by a 

particular cluster can be explained using the R-squared value: 

 𝑅2 =
𝑆𝑆𝑇𝑜𝑡𝑎𝑙 − 𝑆𝑆𝐸𝑟𝑟𝑜𝑟

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
  (14) 

The agglomerative method starts with m clusters (one cluster for each observation) using 

the hierarchical approach. The algorithm progresses by determining a pair of observations 

which yield the smallest SSError or largest R2. Based on the values, m – 1 clusters are 

formed; i.e., only one cluster contains two observations while the rest of the clusters contain 

one observation each. The process is repeated, at each stage of the algorithm, by clustering 

together pairs with the highest R2 value. Since the analysis is done using hierarchical 

agglomerative technique, the algorithm continues till one large cluster of m observations is 

formed. An overview of the hierarchical agglomerative using Ward’s method is presented 

in Figure 3.2. 
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Figure 3.2: Hierarchical Agglomerative Clustering using Ward’s method 

 

The results of a cluster analysis can be effectively summarized visually with the aid of a 

dendogram. A dendogram is type of tree diagram with U-shaped links, which helps to 

visualize the clusters produced by the unsupervised classification method described above. 

The dendogram is constructed by plotting the distance versus the observation number, as 

shown in Figure 3.3.  

 

Figure 3.3: Sample Dendogram to Visualize Clusters 

 

Figure 3.3, shows three distinct groups identified through cluster analysis since the 

distance values (y axis) of the individual groups are significantly different, relative to each 
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other. The distance between two individual groups, Ci and Cj can be determined using the 

combinatorial expression presented in Equation 15 [14].  

 𝐷(𝐶𝑖, 𝐶𝑗) =
(𝑛𝑗 + 𝑛𝑘)𝑑𝑘𝑗 + (𝑛𝑗 + 𝑛𝑙)𝑑𝑙𝑗 − 𝑛𝑗𝑑𝑘𝑙

𝑛𝑖 + 𝑛𝑗
  (15) 

where, 𝑑 is the Euclidean distance between the two vectors, ni, nj, nk, nl are the number of 

observations in Ci, Cj, Ck, Cl. The new cluster Cj is considered to be formed by merging 

two clusters Ck and Cl, respectively. 

The distance between two respective clusters is sum of squared deviations from 

points to cluster centroids [15]. It should be noted that the relative ranking of the distance 

in the dendogram is more important in the formation of clusters rather than the magnitude 

itself.  

3.3 Factor Analysis 

In addition to performing a cluster analysis to determine natural groups or clusters 

in a data set, it is often beneficial to identify the underlying characteristics of the collected 

data. This can be achieved through factor analysis by defining a small number of factors, 

n, that can explain most of the variation observed in the data set. The main objective of 

factor analysis is to provide logical interpretation of a multivariate data set by reducing 

complexity through identification of factors, which can essentially explain most of the 

model behaviour. Thus, a data set with x variables can be explained with the help of n 

variables instead; where, n will always be smaller than x.  

3.3.1 Factor Model 

Assume a data set of variables y1, y2,…yx. Also, assume that all the variables in the 

data set are linearly related to a small number of common factors (f1, f2,…,fn). These factors 

are considered to be inferred from the relationship inherent to the data set, instead of being 

collected directly from the data. Thus, each variable in the data set can be expressed as a 

function of the underlying factors, as shown in Equation 16. 
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 𝑦1 = 𝛽 10 + 𝛽 11𝑓1 + 𝛽 12𝑓2 +⋯+ 𝛽 1𝑛𝑓𝑛 + 𝑒1 
𝑦2 = 𝛽 20 + 𝛽 21𝑓1 + 𝛽 22𝑓2 +⋯+ 𝛽 2𝑛𝑓𝑛 + 𝑒2 

𝑦𝑥 = 𝛽 𝑥0 + 𝛽 𝑥1𝑓1 + 𝛽 𝑥2𝑓2 +⋯+ 𝛽 𝑥𝑛𝑓𝑛 + 𝑒𝑥 

 

(16) 

In equation 16, e1, e2,…ex are considered as the errors between the actual values and the 

predicted values of a given variable, by the factor model. Moreover, the terms β10, β21,…βfn 

are the coefficients for the respective factors and are referred to as the factor loadings. 

Hence, the abovementioned model is analogous to a regression model where each variable 

can be modelled using n factors, which can explain the variation in the data set. At this 

point, it should be realized that n << x. 

Before a detailed discussion is presented on how to interpret the factor model, the 

following assumptions are necessary to uniquely estimate the parameters for the model 

[13]: 

1. The mean and variance of random errors, ei, are zero: �̅� = 0, and σe
2 = 0, where i = 

1, 2,…x. 

2. The mean and variance of common factors, fi, is zero and one respectively: 𝑓 ̅= 0, 

and σf
2 = 1, where i = 1, 2,…n. 

3. There is no correlation within common factors, errors, and between common factors 

and errors: cov(fi, fj) =0, cov(ei, ej) = 0, and : cov(ei, fj) = 0. 

Based on the assumptions presented for the model, the variance of any given variable 

xi can be calculated using Equation 17. 

 
𝜎𝑥𝑖
2 = 𝛾𝑖1

2 𝜎𝑓1
2 + 𝛾𝑖2

2 𝜎𝑓2
2 + …+ 𝛾𝑖𝑛

2 𝜎𝑓𝑛
2 + (12)𝜎𝑒𝑖

2  

𝜎𝑥𝑖
2 = 𝛾𝑖1

2 + 𝛾𝑖2
2 + …+ 𝛾𝑖𝑛

2 + 𝜎𝑖
2 

(17) 

where, the terms 𝛾𝑖1
2 + 𝛾𝑖2

2 + …+ 𝛾𝑖𝑛
2  are referred to as the communality, and 𝜎𝑖

2  is 

referred to as the specific variance,  of any give variable i. Communality represents the 

portion of the variable that is explained by the common factors; whereas, the specific 

variance accounts for the portion of 𝜎𝑥𝑖
2 that is not explained by the communality. 
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Communality serves as a good assessment tool to determine how well the 

developed factor model behaves with respect to a set of variables. Moreover, the covariance 

between any two variables (xi, xj) can be determined using Equation 18.  

 𝑐𝑜𝑣(𝑥𝑖 , 𝑥𝑗) =  𝛾𝑖1𝛾𝑗1 + 𝛾𝑖2𝛾𝑗2 +⋯+ 𝛾𝑖𝑛𝛾𝑗𝑛 (18) 

Once the variance and covariance are computed for all the variables using Equations 17 

and 18, the results can be organized in a variance-covariance matrix, C, as explained in 

Section 3.1.1. Matrix C will have a dimension of x x x, since there are x variables in the 

data set. 

The variance for each variable is organized along the major diagonal of the matrix, 

while the covariance between the individual variables is arranged in the remainder 

elements of the symmetric matrix, C. A matrix computed using original variables from the 

data set leads to the formation of theoretical variance-covariance matrix. On the other hand, 

computation of a matrix using the predicted variables from the factor model leads to the 

formation of an observed variance-covariance matrix. The difference between the 

theoretical and the observed matrices is stored in a new matrix known as the residual 

variance-covariance matrix (RD), as shown in Equation 19. The structure of matrix RD is 

similar to that of matrix C.  

 
𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑀𝑎𝑡𝑟𝑥, 𝑅𝐷 = 𝐶𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 − 𝐶𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 (19) 

The residual matrix helps to assess the fit of the factor model. The lower the values of the 

residual matrix, the better the factor model performs in modelling the initial set of 

variables, p, present the data set. 

There are two methods widely used in factor analysis to determine the factor 

loading values for the model – principal component method and maximum likelihood 

estimation method. The following section provides an overview of the principal component 

method, since this method will be further used to analyse the multivariate driving data set. 

Maximum likelihood estimation method requires the data set to be obtained from a 

multivariate normal distribution data. Since not all variables necessarily follow a normal 

distribution, principal component method was selected as the most suitable method for 

analysis. 
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3.3.2 Principal Component Method 

The objective of the principal component method is to determine the factor loadings 

in such a manner that the total communality of the model is as close as possible to the total 

of the predicted variables. Principal component analysis will help to reduce the number of 

variables in a data set for better interpretation, using linear combinations. Before the 

principal component method is applied, it is very important for the data to be standardized. 

The data standardization process and its implications are explained in further detail in 

Chapter 5.  

The first step, in determining the factor loadings using the principal component 

method, is to construct the variance covariance matrix, C, of the data set using Equations 

3 and 4. Since the variance covariance matrix is a square matrix, it can be re-represented 

using eigenvalues and eigenvectors (Equation 8), as discussed in Section 3.1.2. Since the 

idea is to reduce the dimension of the data set matrix, the eigenvector and the eigenvalues 

are arranged in a descending order. Thus, the eigenvector with the highest eigenvalue forms 

the first principal component and so on. 

Once the principal components are identified, the factor loading can be determined 

using the spectral decomposition (SD) theorem, as shown in Equation 20. 

 𝑆𝐷 =∑𝜆𝑖𝑣𝑖𝑣𝑖
𝑇

𝑥

𝑖−1

=̃  ∑𝜆𝑖𝑣𝑖𝑣𝑖
𝑇

𝑛

𝑖−1

= 𝐿𝐿𝑇 (20) 

where, v is the eigenvector corresponding to the eigenvalue λi, vi
T is the transpose of v, and 

L is the factor loading matrix.  Thus, the estimator of factor loadings [13] can be expressed 

using Equation 21 as follows: 

 𝑙𝑖𝑗 = 𝑣𝑖𝑗√𝜆𝑖 (21) 

Finally, to determine the number of factors required for the analysis, a scree plot 

can be generated by plotting the eigenvalues vs. the number of principal components, as 

shown in Figure 3.4. The number of factors is determined at the point beyond which the 

eigenvalues are comparably small and do not change significantly with respect to each 

other. For instance, by observing Figure 3.4, it can be seen that beyond the third component, 

there is no large change in eigenvalues between the components. As a result, three principal 
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components can be selected for use in the factor model. The interconnecting lines for scree 

plots serve as a visual aid for determining the trend, the eigenvalues cannot assume any 

values along the interconnecting lines (blue lines). The set of eigenvalues calculated for 

each data set is discrete in nature. 

 

Figure 3.4: Sample Scree Plot to Determine Number of Factors 
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CHAPTER 4  

ARTIFICIAL NEURAL NETWORKS 

4.1 Background  

Artificial neural networks (ANN), as the name suggests, are inspired by biological 

neurons and the information processing capabilities of the human brain. ANNs can be 

described as massive interconnected processing elements (neurons) that can obtain and 

store knowledge from an external environment or data set. From a mathematical 

standpoint, neural networks can be considered as “black boxes”, and serve as an essential 

analysis and modelling tool for multivariate data sets. ANNs are capable of performing a 

variety of tasks including prediction (function approximation), pattern recognition, and 

forecasting [16].  They are versatile tools used across multiple disciplines and areas of 

research ranging from engineering systems and stock market predictions to speech pattern 

recognition. 

Traditional methods for determining the relationship between input and output 

parameters require a set number of rules, equations, or assumptions for describing the 

system. One of the biggest advantages of ANNs are that no prior assumptions or rules are 

required to determine the underlying relationships between the input and the output 

parameters. This thesis will focus on developing a classification ANN model for 

categorizing driving performance using a known set of inputs and outputs. This technique 

is known as supervised learning, where the network attempts to approximate the 

relationship between the inputs and the different classes of driver performance using a 

known set of targets or classes. The aim of this chapter is to provide introduction to the 

concepts associated with the design and construction of classification neural networks. The 

chapter concludes with some general design guidelines and evaluation methods to ensure 

the quality, in terms of network accuracy and generalization capabilities, of any desired 

network of choice. 

4.2 Multi-Layer Perceptrons 

As mentioned earlier, ANNs are built by interconnecting processing units called 

neurons. These neurons are interconnected with corresponding parameters known as 
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weights that help the ANN to learn and map inputs to outputs. The weights are an integral 

part of a network and help to describe the effect of each single unit on the network output. 

For the purpose of this research, a specific type of neural network known as multi-layer 

perceptrons (MLP) will be discussed. MLPs are one of the most widely used types of neural 

networks [17], consisting of a set of input units and a set of output units connected together 

through one or more processing hidden units. The hidden units will be primarily used as 

non-linear classifiers to categorize driver performance. Such networks are arranged in 

layers and will be represented henceforth as a series of three numbers in the following 

format: Input layer – Hidden layer(s) – Output layer. 

The number of inputs, hidden layer(s), and outputs will be expressed in numeric 

format to provide an overview of the network architecture. For example, a basic 

feedforward MLP network with a 4-2-1 architecture is presented in Figure 4.1. The term 

feedforward indicates that information flows only in one direction in the network (i.e. from 

inputs to outputs). No feedback loops are present in such networks. 

 

Figure 4.1: Feedforward MLP Network Architecture 
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The input layer, as seen in Figure 4.1, consists of parameters received from an 

external environment. The inputs are connected to the hidden layer with the help of 

weights, which in turn helps to process the input values to determine the relationship 

between a given set of known output variables. Often, MLP networks also have bias units 

present in the network. These units are always connected to all processing units except the 

input layer. Bias values are always set to one, and accounts for the effects that are not 

explained by the input variables in the model. Thus, bias values can be considered 

analogous to the intercept value in a statistical regression analysis [16]. The following 

section discusses the individual characteristics about MLPs and neural networks in detail. 

4.3 Processing Unit  

The purpose of a processing unit, present in hidden layers and output layers, is to 

process information and compute an output signal based on the information incoming into 

the unit from a previous layer (input layer or hidden layer). An example of a processing 

unit is presented in Figure 4.2. 

 

Figure 4.2: Processing Unit 

where, w is the weight of the jth neuron of the ith layer, and bi is the bias value. 
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The total input to a processing unit is essentially a vector sum of the weighted inputs 

including the bias value, if any (Figure 4.2). The total input is then transformed by the 

processing unit by a function called the activation function. A general expression for 

computing the unit output is presented in Equations 22 and 23. 

 𝑢 =∑𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑖𝑗

𝑝

𝑖=1

 

 

(22) 

 
𝑧𝑗 = 𝑓(𝑢) (23) 

where, p is the number of units in a given layer and u is the weighted inputs. 

The choice of activation function is dependent on the model requirements and the 

data set. Since the objective is to design a classification network with binary outputs, the 

choice of activation function for the processing units play an important role in the design 

of the network and is discussed in detail in the following section.  

4.3.1 Activation Functions 

Non-linearity is introduced to the network through activation functions and hence, 

allows for complex non-linear mapping of inputs to outputs. Activation functions are 

mostly continuous differentiable functions. This property is important because weight 

adjustments are achieved by backpropagating errors through the network. Backpropagation 

will be discussed further at a later section. Depending on the requirements of the data, the 

activation functions can be either linear or non-linear in nature. Irrespective of the nature 

of data entering a neuron, each activation function is bound within a certain operating 

range, except the linear activation function. Thus, the output from the neuron will never go 

beyond its operating range value. One of the major reasons why ANNs are able to predict 

complex non-linear functions is due to the fact that activation functions help to map the 

data from input to output of a processing unit non-linearly. Three commonly used 

activation functions for MLPs are presented in Table 4.1, along with their corresponding 

equations. 
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Table 4.1: Commonly Used Activation Functions for ANNs 

Activation 

Function 
Graphical Representation 

Operating 

Range 

Mathematical 

Representation 

Logistic 

Sigmoid 

 

0 to 1 

𝑙𝑜𝑔𝑠𝑖𝑔(𝑢)

=
1

1 + 𝑒−𝑢
 

Tan 

Sigmoid 

 

-1 to 1  

𝑡𝑎𝑛ℎ(𝑢)

=
1 + 𝑒−𝑢

1 − 𝑒−𝑢
 

Step 

Function 

 

0 or 1 

𝑓(𝑢)

= {
1 𝑖𝑓 𝑢 ≥ Ɵ
0 𝑖𝑓 𝑢 ≤  Ɵ

 

 

where, Ɵ is a 

predefined 

threshold value 
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The selection of the most suitable activation function for the processing units is 

vital for designing a neural network. Each activation function has specific properties which 

should be considered when choosing an appropriate function. The objective of this thesis 

is to design a classification ANN binary classifiers as outputs. As a result, a suitable 

activation function for the network can either be the logistic sigmoid activation function, 

hyperbolic tangent sigmoid activation function, or the step function. The step function is 

predominantly used for linear networks with single layers [16]. Moreover, step functions 

are not continuous in nature, thus making them non-differentiable. This makes them 

unsuitable for computing network gradients and determining trends where non-linearities 

exist in a given data set. A suitable activation function for a binary non-linear model is the 

logistic sigmoid function which has an upper bound of +1 and a lower bound of 0 (Table 

4.1). On the contrary, tanh activation function reduces network performance and decreases 

computational time considerably when compared with the logistic sigmoid function [18]. 

Even though the hyperbolic tangent function (tanh) has an operating range of [-1, 1], it will 

be preferred over logistic sigmoid function due to the rational mentioned above. 

4.4 Network Training  

Once the basic structure of the processing units are determined, emphasis is placed 

on determining a suitable method for training the network. ANNs learn by adjusting a set 

of weights present in a network in order to successfully build a classification model. An 

ANN network can learn through either supervised training or unsupervised training.  

 Supervised Learning: The network is presented with a known set of inputs and 

corresponding outputs. These known outputs are often referred to as network 

targets. The error between the calculated network outputs and targets are used by 

the learning algorithm to update and adjust the weights of the network. MLPs 

always learn when a set of desired outputs or targets is presented to the network. 

The ANN network developed for the purpose of this research will be trained using 

the supervised learning technique. 

 Unsupervised learning: The network is presented with a set of input parameters 

without a priori information about the desired outputs. The network adjusts its 

weights using relevant algorithms to identify underlying properties of the data to 

be modelled. However, MLPs cannot be trained with this technique. 
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For a network to learn from a desired output, an error criterion must be selected for 

evaluation of the network’s accuracy. Each input set is presented to the network several 

times in an iterative manner, so that weights undergo adjustment until the ANN learns to 

perform the task as desired. The simplest way of determining the error (E) for the jth data 

point is to compute the difference between the network output (z) and the target output (t) 

for each unit, as shown in Equation 24. 

 
𝐸𝑗 = 𝑡𝑗 − 𝑧𝑗 (24) 

To calculate the error of the entire network output layer, the Mean Squared Error 

(MSE) method is utilized, as shown in Equation 25. MSE is the average of errors and is 

based on the Pythagoras theorem. MSE sums the squares of the individual errors so that 

the effect of their positive and negative signs is not taken into consideration. The objective 

is to obtain a low enough absolute error value which is suitable for a given analysis. 

 𝑀𝑆𝐸 =
1

2𝑝
∑𝐸𝑖

2

𝑝

𝑖=1

 (25) 

where p is the number of units in a given layer. 

The goal of any given MLP network, during the training phase, is to minimise the 

overall error between the network outputs and the target outputs. This in turn is dependent 

on how data is presented to the network, and how the network weights are updated. There 

are essentially two ways in which the network can be trained. 

 Online Learning: For this method, the error is calculated and the network weights 

are updated after each observation in the data set is presented to the network. 

 Batch Learning: This method calculates the error and updates the network weights 

once the entire data set is passed through the network. Every time the entire set of 

data passes through the network once, it is referred to as an epoch. At the end of 

each epoch, the average error for the network is calculated and the weights are 

updated accordingly. 

There are certain things that should be taken into consideration before selecting the training 

mode for the designed network. The batch learning mode is comparatively faster than the 
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online learning mode since the weight updates occur less frequently. Moreover, the batch 

learning method provides a better representation of the required weight updates [17] 

otherwise this method of network training might cause the network weights to reach a local 

minimum error instead of a global minimum error; hence, care should be taken when 

designing and training a network with batch learning mode.  The designed ANN for driver 

performance classification will utilize the concept of batch learning since it is more 

efficient than the online learning mode. 

So far, the material presented in this chapter has provided an overview of the 

different training methods for designing a neural network. One important part of designing 

a network is to determine a suitable algorithm to update the weights based on error 

backpropagation in the MLP network. The following sub-section provides an overview of 

the different training algorithms that should be taken in to consideration when designing 

an MLP network. 

4.4.1 Learning Algorithms 

The learning process takes place by incrementally adjusting the weights of the 

network such that the activation functions in the processing neurons can generate the 

desired response [16], i.e. correct classification of performance for the task at hand. During 

the learning process, the network error eventually decreases, since the difference between 

the target and the network output gradually decreases. This process of adjusting the weights 

while reducing the error to a specified level is more generally referred to as the training 

phase of the network. The training phase can be initiated by assigning random weight 

values across the network. MSE will be treated as the error indicator for adjusting the 

weights of the network. 

The technique of backpropagating the errors forms a crucial part in the network 

learning phase. The backpropagation technique involves calculating the first partial 

derivatives of outputs with respect to inputs. The first derivative of error is often referred 

to as the sensitivity of error. Essentially the first derivative of error with respect to the 

output neuron can be computed using Equation 26.  
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𝜕𝐸

𝜕𝑧
=
𝜕

𝜕𝑧
(
1 + 𝑒−𝑧

1 − 𝑒−𝑧
) (26) 

The objective is to determine the partial derivative of error with respect to the hidden 

neurons and input neurons (Figure 4.2). This can be achieved by utilizing the chain rule of 

differentiation as shown in Equation 27. 

 
𝜕𝐸

𝜕𝑧
=
𝜕𝐸

𝜕𝑧
.
𝜕𝑧

𝜕𝑣
.
𝜕𝑣

𝜕𝑢
.
𝜕𝑢

𝜕𝑥
 (27) 

where, v is the output from the hidden layer neuron and  
𝜕𝑣

𝜕𝑢
 is essentially the derivative of 

the activation function(s) used in the hidden layer(s).  

The above mentioned technique of backpropagating errors can then further be 

utilized to update the network weights. Some of the more common techniques for network 

learning algorithm are – delta bar delta learning, steepest descent method, quick 

propagation, Gauss Newton method, Levenberg Marquardt method, etc. For the purpose 

of this thesis, only the Levenberg Marquardt (LM) technique will be discussed in detail, 

since it will used extensively for the development of the ANN model. 

The LM technique computes the second derivative of the error to update the 

weights, which essentially indicates the rate at which the gradient of error in the designed 

network changes [16]. At any given point on the error surface, the second derivative of 

error, with respect to the weight (w), can be expressed as
𝜕2𝐸

𝜕𝑤2
.  Computing the second 

derivative provides a more efficient method to determine the optimum set of weights for 

the desired network. For the LM technique, the required weight adjustment is computed 

using Equation 28. 

 ∆𝑤𝜀 = −
𝑑𝑒𝑟𝜀

𝑑𝑒𝑟𝜀2 + 𝑑𝑒𝑟𝛼
 (28) 

where, ε is the epoch number, der is sum of derivatives of error with respect to the inputs, 

and α is the damping factor. The damping factor, α, is altered accordingly for each epoch 

in an attempt to minimize the overall error of the network.   
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The LM technique is a hybrid learning technique which has shown superior results 

to other learning techniques due to its increased efficiency in converging to a global 

minimum error as compared to the other methods mentioned earlier [16].  

4.5 Design Considerations and Validation 

Building a neural network is an iterative and experimental process. This section will 

summarize the information presented in this chapter, and will present a general set of 

guidelines for designing networks. No set rules or generic architectures exist for obtaining 

the desired results. Each network is different in its inherent properties and requires 

appropriate selection of algorithms and techniques that are tailored to a given set of data. 

When designing and building an MLP network, some decisions need to be made regarding 

the network size and architecture. In general, before an ANN can be built, the data needs 

to be processed and coded using a suitable method to obtain better network performance. 

More details about data processing methods will be presented in Chapter 5. Apart from 

that, the number of hidden layers also needs to be determined for preliminary analysis. 

Designing ANNs is an iterative process and more than one architecture is usually tested 

before determining the final structure of the network. Some analytical techniques are 

presented below which serve as guidelines for determining the preliminary network 

architecture: 

 According to Kolmogorov`s theorem, the upper bound for the number of hidden 

units in a network can be represented by the expression 2x + 1, where x is the 

number of input variables. 

 The number of training patterns should approximately equal the number of weights 

present in the network multiplied by the error limit [17]. 

 The number of hidden units are dependent on the properties of the input variables. 

A complex multivariate data might require more hidden units/layers to learn the 

underlying relationships. 

 There should a reasonable trade-off between network generalization and network 

accuracy [17]. 

 Hyperbolic tangent (tanh) is an asymmetric function and leads to faster learning 

with fewer epochs than a non-asymmetric activation function such as the logistic 

sigmoid function. 
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Once the network has been trained using the desired architecture, the error 

performance and quality of the designed network can be validated by plotting the error and 

weight distributions of the network. An ideal distribution should follow a normal 

distribution curve with peaks near the center of the curve (near the zero region). Another 

good indicator of good network learning performance is the initial and final values of the 

weights. If the weights have varied significantly from their initial points then it indicates 

that the desired network has learnt from the data presented [17]. Various other plots can be 

used to test the performance of a designed network, and will be explored in detail in a later 

chapter. 
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CHAPTER 5 

MULTIVARIATE DATA SET 

The aim of this chapter is to introduce the data set that was used for driver 

performance classification. Before the techniques described in Chapters 3 and 4 can be 

utilized for modelling purposes, it is vital to understand the nature of the data set to be used 

for such analyses. The chapter begins with a general overview of the data collection and 

data extraction processes. Some explorative and descriptive analyses are conducted on the 

raw data set to provide an insight into the nature of the raw data. The remainder of the 

chapter explores methods for transforming the data set in preparation for modelling 

purposes. Throughout the course of this chapter, the limitations of the data set as well the 

limitations of the scope of analysis will be discussed so that an in-depth understanding of 

the nature of the data set is obtained. In the chapter that follows, a processed multivariate 

data set will be modelled by determining the unobservable natural patterns inherent in the 

data set. 

5.1 Data Collection 

The data was collected by the Research Group in Motion Analysis and Ergonomics 

(GRAME) from Université Laval, Quebec, Canada. The data collection process involved 

equipping the test vehicles with vision systems, GPS, and a data acquisition system (GPS). 

The vision systems implemented in the instrumented vehicles served two purposes. The 

first purpose was to monitor the driver and passenger (if applicable) activities inside the 

vehicle cabin, and secondly to monitor the external environment of the vehicle through the 

use of a dual stereoscopic system with accurate three dimensional (3D) forward vision and 

a 360° field of view [2]. This system for monitoring the external environment is referred 

to as the Environmental Perceptual System (EPS) and consists of forward calibrated 

cameras that were mounted in the instrumented vehicles. The EPS serves to obtain visual 

information about the traffic and road conditions surrounding the vehicle. All videos 

obtained from the vision system were synchronized and fused together for providing visual 

information about the vehicle cabin and the external environment. Figure 5.1 shows an 

example of how two separate videos obtained for the vehicle cabin and external 

environment were synchronized and fused together. Due to limitations with respect to the 
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equipment, the analysis presented in this thesis will rely heavily on information recorded 

by the GPS and the EPS system.  

 

Figure 5.1: Visual Information from Internal and External Environment of the Vehicle 

Synchronized and Fused Together 

The test studies were conducted in the province of Quebec using two types of 

vehicle – a heavy duty transport truck and a hybrid electric vehicle (Toyota Prius). The 

video samples for each test drive were collected at 16Hz while the GPS data was sampled 

at 4Hz. Both the video acquisition systems and the GPS system were synchronized to 

ensure that reliable and accurate information about the vehicle and the environment were 

collected. The sample set for the study consisted of twenty-nine test drives, nineteen of 

which were obtained from the transport truck, and ten from the hybrid vehicle. The 

following raw data was available for each test drive: 

1. Latitude and longitude of the vehicle, obtained from GPS, in degrees 

2. Axial speeds of the vehicle in Earth Centered, Earth Fixed (ECEF) coordinate 

system, obtained from GPS, in cm/s 

3. Video frame number  

4. Video file for the external and internal environment of the vehicle 

It should be noted that the test drives for the study were not conducted on any 

specific or fixed routes. The data was collected under naturalistic driving contexts and most 
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of the samples consisted of driving in various rural and urban roadways including trans-

Canada highways and Quebec AutoRoute. However, the data collected from the hybrid 

vehicle consisted driving data mostly in urban and residential areas of Quebec. Since the 

driving conditions were not consistent (e.g. similar test route, similar duration, similar 

weather conditions, etc.), certain comparable sections of the test drives were isolated for 

further analysis. A detailed explanation on the data extraction and trimming process is 

provided in Section 5.2. 

The following sub-section gives a brief overview of the ECEF coordinate system 

to provide more insight into the nature of data collected.  

5.1.1 ECEF Coordinates 

ECEF coordinates describes a Cartesian coordinate system that is used to define an 

object’s location and is often found in GPS systems and satellites. ECEF is a fixed 

coordinate system with respect to the Earth, with its center of origin (0, 0, and 0) placed at 

the mass center of Earth. It often provides very precise information without having to 

model the Earth as an ellipsoid [19]. The coordinate frame is oriented in such a way that 

the Z axis points toward the North Pole while the X and Y axes are placed on the equatorial 

plane of the Earth, as shown in Figure 5.2. It should be noted that ECEF coordinate system 

is not dependent on the position or orientation of the vehicle in consideration. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: ECEF Coordinates 
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5.2 Raw Data Processing 

Once the raw data was recorded for each test drive, the data was stored in an .xml 

file for further treatment and processing. ‘Analyse’ software is a data treatment and 

analysis toolbox, compatible with MATLAB software, developed by Mr. M. E. Kaszap 

from GRAME at Université Laval. This software package was used to initially process and 

filter the raw GPS data. 

5.2.1 Latitude and Longitude Correction 

Several preliminary steps are required before the raw latitude and longitude signals 

can used for further analysis. The raw data channels containing recorded latitude and 

longitude values have missing data or “zeroes” which are not useful for analysis purposes. 

These false “zeroes” are caused by temporary GPS signal dropout during data recording. 

Thus, the zero values were required to be corrected first in the latitude and longitude 

channels using Analyse software. Figure 5.3 shows a sample set before and after the zero 

correction was applied to a sample latitude channel from a test drive. 

 

Figure 5.3: (a) Raw Signal from Latitude Channel (b) Latitude Channel after “Zero” Correction 

To remove unwanted signal drops during GPS recording, when the vehicle is 

slowing down or coming to a stop, the latitude and longitude needed to be further corrected. 

The data was then passed through a moving window weighted average filter and a 
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polynomial filter to obtain the final corrected latitude and longitude values. Both the filters 

aid in noise reduction of the recorded signals. The moving window method helps to smooth 

the signal in order to exclude random noise in elevation measurements while the 

polynomial filter helps to reduce the effect of signal white noise in the recorded data. A 

completely corrected latitude channel is presented in Figure 5.4 for reference. This 

procedure is a standard pre-processing procedure developed by Université Laval for raw 

GPS data treatment for naturalistic driving applications and was applied to all the recorded 

test drives considered for this research.  

 

Figure 5.4: Example of a Final Corrected Latitude Channel obtained from raw GPS data 

5.2.2 Vehicle Speed Determination 

Once the corrected latitude and longitude values were obtained, the resultant 

vehicle speed, in km/h, was calculated from the ECEF coordinate speeds using Equation 

29. 
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 𝑉𝑟𝑒𝑠 = 0.036√𝑣𝑥2 + 𝑣𝑦2 + 𝑣𝑧2 (29) 

where, vx, vy, vz are the ECEF velocities in cm/s and 0.036 is the conversion factor for 

converting cm/s to km/h.  

Figure 5.5 shows the vehicle speed pattern observed for a Prius test drive with a 

mean speed of 30.45 km/h and a maximum vehicle speed of approximately 106 km/h. A 

quick observation of Figure 5.5 reveals that the vehicle travelled mostly in urban or 

residential areas. This can be deduced by observing that the vehicle was travelling at speeds 

lower than 80km/h for majority of the test drive duration and performed numerous stops; 

both factors are indicative of residential or urban driving. On urban roadways, speed 

profiles fluctuate due to frequent stoppages because of traffic signals, stop signs, traffic 

congestion, etc.  

 

Figure 5.5: Speed Profile for a Prius Test Drive 
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5.2.3 Vehicle Acceleration Determination 

The next step in data processing was to determine the vehicle acceleration. The 

acceleration of the vehicle, a, cannot be directly obtained from the raw data set, but rather 

has to be computed from the obtained vehicle speed in km/h. This is because the vehicles 

were not equipped with sensors to record the vehicle acceleration directly. The 

acceleration, in km/h2, between two successive points in the data set can be computed using 

Equation 30.  

 𝑎 =
𝑉𝑟𝑒𝑠2 − 𝑉𝑟𝑒𝑠1

(0.25)(
1

3600)
 (30) 

A simple numeric manipulation was used to compute the acceleration, knowing that 

the GPS data was sampled at 4Hz. Figure 5.6 presents plot of speed and acceleration for a 

sample Prius test drive. The graphs in Figure 5.6 only represent a section of the test drive 

to increase the resolution. It should be noted that there will be a certain degree of error 

associated with the calculated acceleration due to its indirect computation from vehicle 

speed. The ten sharp peaks in acceleration (positive and negative) seen in Figure 5.6(b) 

correspond to the ten instances in Figure 5.6(a) where the vehicle accelerated or decelerated 

over a very short period of time. 

 

Figure 5.6: Comparison between Speed and Acceleration Profile of a Prius Test Drive (a) Speed 

Profile (b) Acceleration Profile  
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5.2.4 Distance Travelled 

It was important to determine the distance that the vehicle travelled in each test 

drive, since each test drive had a different duration and route associated with it. The 

distance, d, travelled between two sets of latitude and longitude points was determined 

using the Haversine formula, as shown in Equation 31. The Haversine formula is used for 

navigation purposes to compute the shortest distance between two points on the Earth’s 

surface. The formula is based on the assumption that the Earth is spherical in shape. 

 ℎ = 𝑠𝑖𝑛2 (
𝑙𝑎𝑡2−𝑙𝑎𝑡1

2
) + cos(𝑙𝑎𝑡1) cos(𝑙𝑎𝑡2) 𝑠𝑖𝑛

2(
𝑙𝑜𝑛2−𝑙𝑜𝑛1

2
) 

𝑐 = 2𝑎𝑡𝑎𝑛2(√ℎ, √1 − ℎ ) 

dist = 6371c 

(31) 

where, lat is the latitude value, lon is the longitude value, and 6371 is the radius of the 

Earth in km. Note that (lat1, lon1) and (lat2, lat2) are consecutive data points in the data set. 

The Haversine formula is well conditioned for computations of distances even as small as 

a few metres [20]. An example of the total distance travelled by Prius during a sample test 

drive is presented in Figure 5.7. 

 

Figure 5.7: Total Distance Travelled for a Prius Test Drive 
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5.3 Data Extraction for Modelling 

For the purpose of consistency in modelling, it is essential to trim the data set for 

each test drive such that the driving conditions are comparable. Urban/residential driving 

is very complex in nature due to the various levels of interaction of the driver with the 

environment. Moreover, most driving events are often observed in urban/residential 

settings where the vehicle frequently has to accelerate/decelerate, stop, perform sharp 

turns, etc. As a result, each test drive was trimmed accordingly to isolate portions of the 

test drive where the driver was travelling in urban/residential roadways, with a posted 

speed limit of 50 km/h. The data was further trimmed to exclude all data points where the 

vehicle was stationary (e.g. at stop signs, intersections, etc.). Scenarios where the vehicle 

remains stationary do not provide valuable information for initial model development. 

Rather it diminishes the quality of the data set since it might skew or alter the trends 

observed. 

 For instance, a stationary vehicle does not have any speed value associated with it. 

If these instances were to be included in the final data set, it would provide a 

misrepresentation of the average speed value of the vehicle during that test drive. Once all 

the test drives were trimmed to include scenarios where the vehicle was moving in 

urban/residential roadways, some preliminary statistical calculations (as described in 

Chapter 3) were performed on each test drive set to obtain the final set of variables for 

analysis and modelling purposes. Over 38,000 data points or observations were obtained 

for the 29 test drives. The set of input variables extracted from each test drive is presented 

in Table 5.1. The data set consisted of twenty nine test drives and can be found in Table 

A.1 (Appendix A). Thus, the obtained data set consisted of quantitative variables which 

were continuous in nature, i.e. can assume any numerical value along a continuum. The 

only exception was the variable,𝑉10, which was essentially a ratio or percentage where a 

value of zero indicated an absence of the feature or measurement under consideration. 
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Table 5.1: List of Input Variables  

Variable Description Variable Units 

Mean Vehicle Speed �̅� km/h 

Standard Deviation of Vehicle Speed 𝜎𝑉  km/h 

Percentage of Test Drive where Vehicle Speed 

Exceeds 10% of the Posted Speed Limit 

𝑉10 n/a 

Standard Deviation of Vehicle Acceleration 𝜎𝑎 km/h2 

Mean Vehicle Acceleration (Positive) 𝐴𝑐𝑐̅̅ ̅̅ ̅ km/h2 

Standard Deviation of Positive Acceleration 𝜎𝐴𝑐𝑐 km/h2 

Mean Vehicle Acceleration (Negative) 𝐵𝑟𝑘̅̅ ̅̅ ̅ km/h2 

Standard Deviation of Negative Acceleration 𝜎𝐵𝑟𝑘 km/h2 

Total Distance Travelled 𝐷𝑡𝑜𝑡 km 

The variables presented nine in Table 5.1 will serve as the basis for analysis and 

classification of driving performance for this thesis. The variables related to standard 

deviation help to measure the variation in a given variable for each test drive. The 

calculated vehicle acceleration was divided into two separate variables, Acc and Brk, based 

on their respective positive or negative signs. A positive acceleration value was used as an 

indicator of the driver accelerator pedal position in the vehicle, while a negative 

acceleration value was used as an approximate indicator of driver brake pedal position in 

the vehicle. It should be noted that these are only approximate measures since no direct 

measurement of the pedal positions were recorded from the vehicles. Another important 

thing to note from Table 5.1 is the V10 variable. V10 helps to evaluate the percentage of time 

the vehicle was travelling 10% above the posted speed limit in each test drive. This variable 

will serve as a measure of risky driving performance. Although 10% (55 km/h) is a 

conservative approach for sedans travelling in urban/residential areas, recall that the data 

set consists of two different classes of vehicles: a transport truck and a passenger car. 

Moreover, if the model is to be extended to include other roadway types with different 

speed limits, 10% provides a more consistent method for evaluation rather than absolute 

speed values for evaluating risky driver performance.  
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5.4 Outlier Detection 

Before the data set can be processed and used for modelling and analysis purposes, it is 

crucial to check for outliers present in the data set. Outliers are essentially data points or 

observations that are significantly different than the rest of the data set. Such values have 

an effect on the statistical model and the ANN model by generating unwanted errors, and 

thus are often excluded from the data set for analysis [17]. A simple check for outliers was 

conducted by determining the mean and standard deviations for each variable in the data 

set using Equation 32. 

  𝑥𝑐ℎ𝑒𝑐𝑘 = {
𝑛𝑜𝑡 𝑜𝑢𝑡𝑙𝑖𝑒𝑟, 𝑥𝑖𝑗 − 𝑥�̅� < 2𝜎𝑥𝑖

𝑜𝑢𝑡𝑙𝑖𝑒𝑟, 𝑥𝑖𝑗 − 𝑥�̅� > 2𝜎𝑥𝑖
 (32) 

where xij is any variable i belonging to observation j, 𝑥�̅� is the mean of variable i, and 𝜎𝑥𝑖 

is the standard deviation of variable i.  

A given variable i in observation j is an outlier if xcheck is greater than two standard 

deviations. A check for outliers was performed for each variable in a given observation. 

Based on the obtained results, the variable Dtot of observation 23 was found to be an outlier 

(Table A.1 in Appendix A). As a result, the entire observation, 23, was excluded from the 

data set to reduce the associated errors. Thus, the final data set consists of 28 observations 

of driving parameters which will be used henceforth for further analysis. 

5.5 Data Standardization 

Once the final data set of 28 observations was obtained for multivariate analysis, it 

was very important for the variables to be transformed in a manner such that each variable 

had a comparable effect on statistical analyses and neural networks. Since the variables in 

the data set were measured in different scales and units, it was very important to transform 

the data so that variables with higher magnitudes or scales (e.g.𝐴𝑐𝑐̅̅ ̅̅ ̅) did not outweigh the 

effect of variables with smaller magnitudes (e.g.𝑉10 ).  Data normalization and data 

standardization are two linear transformation techniques that are widely used for 

transforming or scaling the data set so that the relative effect of different variables can be 

interpreted in a meaningful manner irrespective of their units. The data set for this work 

was standardized instead of being normalized within a specific range (usually -1 to 1). 

Standardization was primarily done because the development of a factor model requires 
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the data set to be standardized. Moreover, instead of normalizing the data set between a 

defined range, standardization scales each variable such that the transformed variable has 

zero mean with unit variance. The general expression for standardizing any variable, x, is 

presented in Equation 33. 

  𝑥𝑠𝑡𝑑 =
𝑥 − �̅�

𝜎𝑥
 (33) 

The standardized final data set is presented in Table A.2 (Appendix A) for reference. Each 

variable can be converted back to its original value and unit for ease of interpretation of 

the model. 
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CHAPTER 6 

DRIVER PERFORMANCE CLASSIFICATION 

Driving is a complex task affected by various factors related to the driver, vehicle, 

and environment. No generally accepted mathematical model, or defined set of variables 

exists for providing comprehensive information about driving behaviour and performance. 

This lack of direction leads to questions requiring further in-depth investigation of the data 

set. What is the importance of the variables present in the data set for this research? How 

can the data set be used to draw some inferences about driver performance in 

urban/residential areas? These are some of the questions that will be addressed through the 

course of this chapter. The objective is to classify driver performance based on the variables 

presented in the final data set (Table 5.1), as described in Chapter 5. Although the set of 

variables used for this analysis is limited in nature, an attempt is made to provide 

meaningful interpretation of the information available about driver performance and 

behaviour. 

The following chapter is divided into two major sections. The first section focuses 

on an unsupervised hierarchical clustering technique to determine the natural subsets 

within the driving data set. Emphasis will be place on determining the optimum number of 

clusters or groups which can provide meaningful interpretation of driver performance. 

Once the specific groups are identified, an attempt is made to develop a supervised 

classification neural network that can establish the relationship between the input variables 

and the identified groups. This topic will be the focus of the second section of this chapter 

and will provide a basis for driver performance evaluation under similar circumstances (i.e. 

urban/residential roadways with a posted speed limit of 50 km/h). At this stage, it should 

be noted that all analyses and modelling will be conducted using the standardized data set 

presented in Table A.2 (Appendix A). Minitab Statistical Software v16.1.1 and MATLAB 

2014a were used extensively for carrying out the analyses presented in this chapter. 

6.1 Unsupervised Classification 

The driving data set relevant for this research has no priori information available 

about different driving behaviour, style, or performance. Hence, before a model for 

evaluating driver performance can be developed, it is important to determine the outcome 
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or dependent variable for the data set. This can be achieved by performing unsupervised 

clustering analysis, as described in Chapter 3.2. Through this technique, underlying 

patterns are identified which in turn help in evaluating the different groups of driving 

performance.  

The hierarchical clustering algorithm with Ward’s linkage was used to perform an 

initial cluster analysis on the standardized data set. The first step in the process was to 

generate a dendogram to determine the observable patterns in the data set using Ward’s 

linkage method. The initial dendogram for the analysis is shown in Figure 6.1. 

 

Figure 6.1: Dendogram of Driving Data Set for Initial Cluster Analysis 

As mentioned in Chapter 3, the hierarchical agglomerative algorithm starts by 

assigning each observation to a certain group. The algorithm progresses till one single 

group, containing all observations, remains. There was no information about the classes 

present in the data set prior to the investigation. Thus, one of the biggest challenges for 

cluster analysis was to determine the optimum number of clusters that represent the natural 

division in the data set. This aspect of statistical analysis has been widely explored by 

researchers from various disciplines. However, the use of such analysis techniques has 
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been limited in the field of engineering. Real data sets have a high level of complexity and 

no generally acceptable technique exists to estimate the number of clusters [21]. The 

interpretation of results is dependent on the analyst. Milligan and Cooper [22] conducted 

an extensive study for evaluating over 30 techniques to determine the number of clusters 

present in a simulated data set. Based on the findings of the study, the Calinski and 

Harabasz (C-H) criterion was considered as one of the most efficient methods for 

determining optimal number of clusters.  

The C-H criterion is based on the within cluster variance (SSW) and between cluster 

variance (SSB), and can be computed using Equations 34 and 35 [23]. A cluster is 

considered well defined when the between cluster variance is large and the within cluster 

variance value is small.  

  𝑆𝑆𝑊 =∑∑𝑑𝑥,𝑐�̅�
2

𝑥∈𝑐𝑖

𝑘

𝑖=1

 (34) 

  𝑆𝑆𝐵 =∑𝑛𝑖𝑑�̅�,𝑐�̅�
2

𝑘

𝑖=1

 (35) 

where, d is the Euclidean distance, k is the number of clusters, x is an observation, 𝑐�̅� is the 

cluster centroid of the ith
 cluster, ni is the number of observations in cluster ci, and �̅� is the 

overall mean of the data set. Thus, the C-H can be computed using Equation 36, where the 

optimal number of clusters is determined by the highest C-H value [23]. 

  𝐶 − 𝐻 =
𝑆𝑆𝐵(𝑛 − 𝑘)

𝑆𝑆𝑊(𝑘 − 1)
 (36) 

The C-H criterion is used to evaluate the quality of the classes and to determine the 

compactness or ‘tightness’ of each class. For the given data set, the C-H values were 

evaluated using ten initial clusters. To determine the number of optimum clusters, a plot 

similar to the scree plot can be generated using the calculated results. Hence, the C-H 

values, computed using Equation 36, were plotted against the number of clusters, as shown 

in Figure 6.2. A quick observation of Figure 6.2 reveals four optimal clusters for the data 

set (highest value of C-H). The interconnecting lines serve as a visual aid for determining 
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trends, no intermediate values are possible between two consecutive discrete points 

(indicated as points in Figure 6.2). 

 

Figure 6.2: Evaluation of Optimal Number of Clusters using C-H Criterion 

It is important to further validate the results obtained from the C-H criterion. 

Another criterion that has received significant attention for optimal cluster determination 

is the Gap criterion. This criterion can be applied to any clustering technique and distance 

measure [21].  A general graphical method, known as the “elbow” method, is used 

extensively where some error criterion is plotted against the number of clusters. The 

“elbow” occurs at the most significant drop in error. Tibshiran et al. [24] proposed a 

method to formalize the ‘’elbow” location by determining the number of clusters with the 

largest Gap value. The term “Gap” is used since the method focuses on comparing the 

distribution of the data set with a reference distribution, which is discussed below in further 

details. The optimal number of clusters is defined at the point where the Gap value is the 

largest [24].  The Gap value can be formally represented through Equation 37 [24]. 
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  𝐺𝑎𝑝𝑛(𝑘) = 𝐸𝑛
∗{log (𝑊𝑘} − log (𝑊𝑘) (37) 

where, 𝑊𝑘 = ∑
1

2𝑛𝑖
𝐷𝐼

𝑘
𝑖=1  

where, En
*

  denotes the expectation from a sample size under a sample size of n from the 

reference distribution, Wk is the pooled within cluster sum of squares around the cluster 

means, and D is the sum of pairwise distances for all points in cluster i.  

 

Figure 6.3: Evaluation of Optimal Number of Clusters using Gap Criterion 

The expected 𝐸𝑛
∗{log (𝑊𝑘} value was determined through Monte Carlo sampling from a 

reference distribution using MATLAB 2014a software. The reference distribution was 

consecutively generated using a uniform distribution over a box aligned with the principal 

components of the data [24]. According to Tibshiran et al., this method of reference 

distribution takes into account the original distribution of the multivariate data set. The plot 

for Gap values vs. number of clusters is shown in Figure 6.3 for analysis. Based on the 

results obtained using Equation 37, four optimal clusters were determined for the data set 

as well. The numerical results for the Gap criterion are presented in Table B.1 (Appendix 
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B) for reference. Since both the criteria, C-H and Gap, indicated four as the optimal number 

of clusters for the given data set, a cluster analysis with four final partitions were conducted 

using the method outlined in Chapter 3.2.  

The results of the final cluster analysis are best summarized using the dendogram 

in Figure 6.4. The distance between the classes is plotted on the y-axis, and data points or 

observations are plotted on the x-axis. The four classes, along with their class members, 

are highlighted with the aid of different colours in Figure 6.4. Tables B.2 and B.3 

(Appendix B) present information about the individual assignment of groups for each data 

point or observation as well as the centroids of each class. A summary of the results, along 

with the number of observations for each class, obtained from the cluster analysis is also 

presented in Tables 6.1 and 6.2.  

The centroid of a cluster is essentially a vector mean of the variables present in a 

given cluster. From the analysis, Class 1 and Class 2 were determined to be the two largest 

classes. Moreover, the lower the SSW value, the more compact the individual clusters 

(Table 6.1). Another important thing to consider for the analysis is the distance between 

any two cluster centroids (Table 6.2).  A large difference between any two cluster centroids 

indicates that the members present in each of the classes are significantly different from 

each other. For instance, Class 2 and Class 3 had the largest distance between the centroids 

followed by Class 2 and Class 4. 

Once the natural subdivisions in the data set were determined using unsupervised 

clustering algorithms, the next challenge was to use the obtained results to provide 

meaningful interpretation of the different classes. The different classes help to evaluate the 

driver performances based on the driver, vehicle, and environment characteristics. This 

problem was tackled by developing a supervised ANN network that had the capability of 

modelling the relationship between the input variables and each class. The following 

section provides detailed description of the ANN model developed for driver performance 

classification.  
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Figure 6.4: Dendogram Showing Assignment of Data Set into Four Classes 

Table 6.1: Results of Hierarchical Agglomerative Clustering with Four Classes 

 Number of 

Observations 

Within Cluster 

Sum of Squares 

(SSW) 

Average 

Distance from 

Centroid 

Maximum 

Distance from 

Centroid 

Class 1 11 18.66 1.20 2.34 

Class 2 8 18.11 1.41 2.30 

Class 3 3 9.95 1.80 2.15 

Class 4 6 12.23 1.40 1.81 
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Table 6.2: Distance Between Cluster Centroids 

 Class 1 Class 2  Class 3 Class 4 

Class 1 0.00 3.15 3.78 4.55 

Class 2 3.15 0.00 5.95 5.72 

Class 3 3.78 5.95 0.00 3.90 

Class 4 4.55 5.72 3.90 0.00 

6.2 ANN Model for Classification of Driver Performance 

The objective of this section is to determine the relationship between the different 

classes and input parameters with the aid of a supervised classification network. The first 

step involves transforming the different classes, obtained from unsupervised hierarchical 

agglomerative cluster analysis, into binary target values. To demonstrate this process, the 

target values for a few selected observations from the data set are presented in Table 6.3. 

Table 6.3: Example of Transforming Classes to Binary Target Values 

Sample Class 1 Class 2 Class 3 Class 4 

1 1 0 0 0 

5 0 1 0 0 

20 0 0 1 0 

24 0 0 0 1 

Using the binary target values, and the concepts introduced in Chapter 4, a 

supervised MLP feedforward backpropagation network utilizing an LM learning algorithm 

was designed for modelling the data set. Since neural networks are considered as “black 

boxes”, the objective of developing the network was to establish relationships between the 

input and output variables in a manner such that one can identify the class to which a 

particular sample of driving data belongs when only the input parameters are provided. 

Before a supervised ANN network can be trained using the data set, it is very important to 

determine a network architecture that will be able to reliably map the input parameters to 

the target classes. Thus, the entire modelling process can be described comprehensively in 

three distinct stages: network architecture, network training and validation, and network 

results. 
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6.2.1 Network Architecture 

The design process for an ANN architecture is an iterative process and various 

network configurations (i.e. number of processing units, number of hidden layers, 

activation functions, learning algorithms, etc.) were implemented before selecting a final 

network architecture. The architecture of the network that provided the best network 

performance value is presented in Figure 6.5. The final designed ANN for modelling driver 

performance classification has a 9-12-4 architecture. As seen from Figure 6.5, there are 

twelve hidden neurons or processing units connecting the input layer to the output layer 

with the aid of weights and biases. Bias values are connected to each hidden and output 

processing units respectively. 

As mentioned earlier, the tansigmoid activation function was chosen for both the 

hidden and the output processing units with an operating range of [-1, 1] due to the reasons 

described in Chapter 4. One important thing to note is that the network was presented with 

standardized input variables similar to the cluster analysis in order to obtain a better 

performance for the classification network. A summary of the final network architecture is 

presented in Table 6.4 for reference. 

Table 1.4: Final ANN Architecture for Driver Performance Classification 

Network Architecture Description Value 

Input Parameters 9 (Standardized Continuous Values) 

Target Classes 4 (Binary Values) 

Hidden Layer(s) 1 

Hidden Processing Units 12 

Activation Function (Hidden and Output Layers) Tansigmoid [-1,1] 
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Figure 6.5: Neural Network Architecture for Classifying Driver Performance 

6.2.2 Network Training and Validation 

The network training phase consisted of three stages: training the network, 

validating the network, and testing the network. Initially, the data set was randomly divided 

into three different subsets in the following manner: - 70% for training, 15% for validation, 

and 15% testing. The training subset data was then used to train the network by computing, 

updating, and adjusting the corresponding weight and bias values. The LM technique was 

used as the training algorithm for updating the network weights due its efficient 

performance when compared to other algorithms (Chapter 4.4.1). Simultaneously, the 

validation data set was used to monitor the network performance and generalization 

capabilities of the network and will be discussed in detail in the following section. The 

purpose of the test data set was to compare the quality of the classification model once the 

network is trained and validated. 
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Once the data was divided into three subsets, random initial weights and bias values 

were initiated by the network to commence the network training process with the aid of 

known target values. The network was trained using batch learning mode where the 

weights and biases were updated after each epoch. MSE was used for evaluating the 

performance of the network. The network was trained with 70% of the 28 data sets for 11 

epochs. The network training was terminated when the validation performance failed to 

decrease in 6 (default value for MATLAB Neural Network Toolbox) consecutive iterations 

in MATLAB software. An overview of the ANN training phase for classification of driver 

performance, along with the network performance results are presented in Table 6.5. The 

final network performance values (training, testing, and validation) were less than 0.1 thus 

indicating good overall network performance. 

Table 6.5: ANN Training Parameters and Performance Results 

Network Training Parameters & Results Value 

Network Training  Batch Mode 

Learning Algorithm  LM 

Division of Data Set 70-15-15 (Random) 

Network Performance Criterion MSE 

Epochs 11 

Training Performance 0.008 

Validation Performance 0.021 

Test Performance 0.029 

6.2.3 Network Results 

After completion of the network training phase, the next important step was to 

analyze the network results and determine the effectiveness of the network in modelling 

the driving data set. Figure 6.6 shows the performance (training, validation, and testing) of 

the network at each epoch during the training phase. The training phase began by reducing 

the training and validation error at each successive epoch. The best performance of the 

network was obtained at epoch 5 when the validation error was at its minimum. When the 

validation error started to increase, it indicated that the model was overfitting the training 

data set instead of providing a generalized result over the training and validation data sets. 
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Thus, the final network weight and bias values were recorded at epoch 5, where the 

validation error was a minimum. Moreover, the testing and validation performance curves 

followed a similar trend and reached a minimum error at the same epoch, as seen in Figure 

6.6, which indicated that the division of the data set used was adequate for modelling 

purposes [25]. This method of obtaining network weights and biases at the minimum 

validation error to prevent overfitting is often known as the early stopping method. 

Although the training error continued to decrease beyond epoch 5, obtaining the network 

results based on the lowest training performance would have resulted in a model which 

would have been very specific to the training data set and might have included associated 

noise inherent to that specific data set. 

 

Figure 6.6: ANN Performance Curves for Training, Validation, and Testing 

To further validate the network performance, the error (Ej) values between the 

target and the calculated network outputs (Equation 24) can be viewed on an error 

histogram, as shown in Figure 6.7. Furthermore, Table C.1 (Appendix C) lists all the error 

values obtained from the ANN network for each class for reference. An error histogram 
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presents a quick visualization of the error distribution presented by the network. In Figure 

6.7, the training data is represented in blue, the validation data is represented in green, and 

the test data is represented in red, respectively. The error histogram shape follows an 

approximate normal distribution curve with the highest errors observed near the zero region 

(indicating a healthy network). This shape further helps to validate that the trained network 

is robust and performs in a satisfactory manner. 

The next step was to see how well the trained ANN model was able to classify the 

parameters based on supplied target classes. Figure 6.8 presents a confusion matrix which 

helps to show the network’s behaviour by building a square matrix showing how the 

network helped predict each class based on its corresponding target value.  

 

Figure 6.7: Error Histogram for Designed ANN Network 

The major diagonal of each matrix indicates the percentage of observations the 

model was able to classify correctly. Any value observed at any other location (indicated 

in red) of the matrix indicates a false classification or error introduced by the ANN (Figure 
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6.8). It should be noted that there were no observations for 2, 3, and 4 in the validation 

subset. Any observation for class 2 was also absent in the test subset. As a result, the 

confusion matrix shows a “NAN” value where such observations were absent. The primary 

reason for the occurrence of missing observations is that the final data set was fairly small, 

consisting of only 28 observations. When the data set was divided randomly in to three 

subsets, the validation set and the test set had no sample observation for either class 2, 3 or 

4. To avoid this issue, it is recommended that the data set size be increased to include more 

observations for each class. However, due to the limited test drive data available during the 

course of this research, such a solution could not be implemented. Apart from the missing 

observations, the trained ANN network was able to classify the driver performance classes 

accurately when compared to their target values. An overall network accuracy of 95.6% 

was achieved using the data set which was fairly reasonable for this modelling purpose and 

can be shown through the regression plot of the network presented in Figure C.1 (Appendix 

C).  

The regression plot is a measure of the fit of the classification model, where the 

network output is plotted against the provided target values as determined from cluster 

analysis. All results presented for the network further help to demonstrate the reliability 

and accuracy of the developed model. Furthermore, the ANN model also helps to validate 

and confirm that the results obtained from the hierarchical agglomerative clustering 

technique provide insightful information about the presence of natural subsets or classes 

within the data set. If cluster analysis was not able to partition the data in to meaningful 

classes, the performance of the ANN model would not be satisfactory either. 
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Figure 6.8: Confusion Matrix for Driver Performance Classification using ANN 

6.3 Identification of Significant Variables 

Both the cluster analysis and the developed ANN helped establish the different 

classes to evaluate the driver performance. The ANN network developed in Section 6.2 is 

a robust model for reliably classifying the driver performance into four distinct classes. 

However, none of the methods presented so far gave an insight in to the variables that had 

the highest influence for a given class. Neural networks have powerful prediction and 

classification capabilities; however, it is often challenging to interpret and rationalize the 

results obtained from the network.  Hence, it is critical for the purpose of this research to 

derive inferences and identify meaningful interpretations of each of the classes identified 
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by the network. Since the developed classification model is non-linear in nature, it is 

necessary to determine the effect an individual input variable has on the entire system. This 

is turn will help to identify the variables that describe the different categories of driver 

performance observed in the data set. One way to achieve this is by analyzing the weight 

of the network for discovering trends or patterns in the data set. One disadvantage of this 

method is that MLPs often contain multiple hidden units which may make the process 

confusing and labour intensive. 

Since very little information is known about the structure of the data set, another 

possible way of extracting meaningful information from the network is to compute the 

partial derivative of each output class with respect to each input variable presented to the 

network. This calculation determines the sensitivity of the output with respect to the 

individual variables, providing information about driver performance variability between 

the different classes. The larger the sensitivity of a given variable in each class, the greater 

the effect that variable has in determining the outcome of driver performance for a given 

class. 

Determining the partial derivatives of outputs with respect to inputs is similar to 

the method presented in Chapter 4.4.1, and is similar to backpropagating error through the 

network. Instead of backpropagating the error, the partial derivative of the output with 

respect to the input can be computed using Equation 38 [17] by utilising the concept of 

chain rule of differentiation.  

  
𝜕𝑧

𝜕𝑥
=
𝜕𝑧

𝜕ℎ

𝜕ℎ

𝜕𝑥
 (38) 

where, z is a network output, x is a network input, and h is a hidden processing unit. 

The calculations can be further simplified by expressing the derivative of the 

activation function with respect to its output units [17]. The derivative of the hyperbolic 

tangent activation function can be expressed as (1-x2) w. Therefore, Equation 38 can be re-

written as Equation 39 [17] for the developed ANN for driver performance classification. 
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𝜕𝑧𝑗

𝜕𝑥𝑘
=∑(1 − ℎ𝑖

2)𝑤𝑖,𝑘(1 − 𝑧𝑗
2)𝑤𝑖,𝑗

12

𝑖=1

 (39) 

where, hi is the activation of processing unit j, wi,k is the weight from input unit k to hidden 

unit i, wi,j is the weight from hidden unit i to output unit j, and 12 is the number of hidden 

units used in the developed ANN. 

Since the objective is to determine the sensitivity of variables for each class, one 

possible method is to determine the sensitivity based on class centroids identified from the 

hierarchical agglomerative cluster analysis performed on the data set (Table B.3, Appendix 

B). The class center values essentially provide a good representation of the member of a 

given class. Table 6.6 show the results of the partial derivatives computed for each class 

using Equation 39. Computation of the partial derivatives essentially provides an overview 

for sensitivity analysis of the driving data set. 

The partial derivative values presented in Table 6.6 provide insight into which 

variables have the greatest sensitivity for a given output class. The weights of the ANN 

network utilized for the computation of the derivatives are presented in Tables C.2 and C.3 

(Appendix C) for reference. The purpose to calculating sensitivity in this case is to 

determine the variables which might lead to a change in class membership based on a small 

change. A positive value indicates that a small change in the variable will move the data 

point or driver performance for a given test drive closer to the input class. Similarly, a 

negative value indicates that a small change in the variable will move the data point or 

driver performance away from a given class [17]. Another important thing to realize is that 

all the values presented in Table 6.6 have a small magnitude. This is because the centroid 

of each class (indicating an overall representation of each class membership) was utilized 

for conducting the analysis. Thus, smaller values of derivatives or gradients are noticed. 
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Table 6.6: Sensitivity Analysis Results for Driver Performance Class 

Variable Class 1 Class 2 Class 3  Class 4 

𝜕𝑧𝑖
𝜕𝑉

 
0.021 0.017 -0.051 0.141 

𝜕𝑧𝑖
𝜕𝜎𝑉

 
0.33 -0.003 -0.031 -0.152 

𝜕𝑧𝑖
𝜕𝑉10

 
0.25 -0.056 -0.047 -0.237 

𝜕𝑧𝑖
𝜕𝜎𝑎

 
0.339 0.0278 0.101 0.0124 

𝜕𝑧𝑖
𝜕𝐴𝑐𝑐̅̅ ̅̅

 
0.342 0.0392 0.082 -0.003 

𝜕𝑧𝑖
𝜕𝜎𝐴𝑐𝑐

 
0.346 0.0412 0.043 0.015 

𝜕𝑧𝑖
𝜕𝐵𝑟𝑘̅̅ ̅̅ ̅

 
0.263 -0.079 0.043 -0.3434 

𝜕𝑧𝑖
𝜕𝜎𝐵𝑟𝑘

 
0.263 -0.006 0.043 0.041 

𝜕𝑧𝑖
𝜕𝐷𝑡𝑜𝑡

 
0.23 -0.078 0.063 -0.018 

The significant variables for each class is highlighted in boldface in Table 6.6 for 

reference. The following trends or observations can be summarized based on the results 

obtained from the sensitivity analysis: 

 Class 1: For a given test drive, class 1 is most sensitive to changes in variations in 

overall vehicle acceleration and positive vehicle acceleration (indicative of 

accelerator pedal position) in a given test drive. 

 Class 2: For a given test drive, class 2 is most sensitive to changes in the mean 

braking acceleration and total distance travelled. 

 Class 3: For a given test drive, class 3 is most sensitive to changes in the variation 

in overall vehicle acceleration 

 Class 4: For a given test drive, class 4 is most sensitive to changes in mean 

deceleration (indicative of brake pedal position) of any given test drive. 

These results can be used to further determine the characteristics observed in each class for 

evaluating driver performance. The following chapter utilizes the dimensionality reduction 

technique to further gain insight into the different classes of driving performance. 
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CHAPTER 7  

DRIVER PERFORMANCE CLASS DESCRIPTION 

In Chapter 6, analysis has revealed that driver performance based on various driving 

parameters or behaviour indices can be classified into four different classes. An ANN 

model was developed to classify the driver performance by establishing relationships 

between the driving parameters and classes. Furthermore, a sensitivity analysis was 

performed to determine the factor most sensitive for a given class. However, no formal 

description has been provided for each of the driver performance categories. The objective 

of this chapter is to perform a factor analysis using the principal component method in an 

attempt to reduce the dimensionality of the input data set so that a formal description of 

each class can be obtained. The utilization of this method can provide a better 

understanding of the type of driving performance observed. Factor analysis will help to 

interpret the driving data with fewer variables which in turn will aid in interpreting the 

characteristic inherent in each driving performance category. Based on these results, the 

different driving classes will also be ranked in terms of the driver risk levels. The ranking 

will help identify the types of driving performance that contribute to risky driving scenarios 

with potential for damage and for injuries. 

7.1 Data Dimensionality Reduction 

The first step in developing a factor model is to determine the number of principal 

components or factors that will be required to explain the majority of the variation in the 

data set. As explained in Chapter 3.3.2, the basis for principal component analysis relies 

on the computation of eigenvalues from the variance covariance matrix. A simple scree 

plot of eigenvalues vs. number of components was plotted to determine an appropriate 

number of components for the analysis.  

A quick observation of Figure 7.1 reveals a sharp drop in the eigenvalue magnitude 

for the first three components. An “elbow” is also observed at component three. The 

objective of using the principal component method is to determine a suitable number of 

factors (less than the number of variables in the data set) that can help explain the 

phenomena observed in the data set. The eigenvalues computed from the variance 

covariance matrix, along with the percentage of variation explained by each component, 
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are presented in Table 7.1. Thus, based on the results obtained from Figure 7.1 and Table 

7.1, a factor model for the data set was built using three factors (components). Based on 

the selection of three factors for the factor model, the factor model explains 87.3% of the 

variation present in the data set. This is sufficient to gain an insight into the different driver 

performance classes. 

 

Figure 7.1: Scree Plot for Determining the Number of Factors for Factor Model 

Table 7.1: Eigenvalue Analysis of the Covariance Matrix for Driving Parameters 

Component Eigenvalues Proportion (%) Cumulative (%) 

1 5.31 56.9 56.9 

2 2.18 23.4 80.3 

3 0.654 0.070 87.3 

4 0.597 0.064 93.7 

5 0.254 0.027 96.4 

6 0.181 0.019 98.4 

7 0.109 0.012 99.5 

8 0.039 0.004 100 

9 0.003 0.000 100 
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7.2 Factor Model for Driver Performance Classification 

Once the number of factors were determined for factor analysis, the factor loading 

(βij) of each input variable in the original data set were computed using Equations 20 and 

21. The purpose of the factor loading is to express the new factors (determined from 

dimensionality reduction using principal component method) in terms of the nine input 

variables present in the data set. This not only helps to reduce the complexity of the data 

set but also aids in interpreting the different driver performance classes. The factor loading 

values, along with their corresponding communality values, are presented in Table 7.2. 

Table 7.2: Factor Loading Values and Communalities for Factor Model 

Variable Factor 1 Factor 2 Factor 3 Communality (%) 

�̅� -0.131 -0.772 0.598 97.0 

𝜎𝑉  0.892 -0.163 -0.073 82.8 

𝑉10 0.824 -0.418 0.029 85.5 

𝜎𝑎 0.947 0.267 0.135 98.5 

𝐴𝑐𝑐̅̅ ̅̅ ̅ 0.933 0.240 -0.021 92.8 

𝜎𝐴𝑐𝑐 0.901 0.271 -0.013 88.5 

𝐵𝑟𝑘̅̅ ̅̅ ̅ -0.454 0.698 0.398 85.2 

𝜎𝐵𝑟𝑘 0.873 0.232 0.275 89.1 

𝐷𝑡𝑜𝑡 0.290 -0.751 -0.124 66.4 

Therefore, using the results from Table 7.2, Factor 1 can be expressed using the 

original nine driving parameters, as shown in Equation 40. Factor 2 and Factor 3 can be 

expressed in a similar manner as well. The calculated factor values corresponding to each 

observation or test drive is presented in Table D.1 (Appendix D). 

  
𝐹𝑎𝑐𝑡𝑜𝑟 1 =  −0.131�̅� + 0.892𝜎𝑉 + 0.824𝑉10 + 0.947𝜎𝑎 + 0.901𝜎𝐴𝑐𝑐

− 0.454𝐵𝑟𝑘̅̅ ̅̅ ̅ + 0.873𝜎𝐵𝑟𝑘 + 0.290𝐷𝑡𝑜𝑡 
(40) 

Since the goal is to determine a measure or criteria for interpreting each factor, the 

significant factor loading values (|𝛽𝑖𝑗|> 0.5) are presented in boldface in Table 7.2. Also, 

the communality value represents the percentage of variation explained by the three factors. 

This value serves as a good indicator of how well the model fits the driving data set. For 
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instance, 98.5% of the variation in vehicle acceleration (σa) can be explained with the aid 

of the three chosen factors. The communality value is analogous to the regression value for 

predicting the desired results. For the developed factor model, some variables have a higher 

communality value than others which aids in explaining the quality of the factor model in 

terms of each of the nine variables present in the driving data set. For instance, Dtot is the 

variable with the lowest communality value explaining only 66.4% of the variation in the 

original data set. Another way of determining the quality of the model is to compute the 

residual matrix using Equation 19. The residual matrix is based on computation of the 

correlation matrices and provides errors generated by the factor model. The resultant values 

of the residual matrix (R) is presented below. 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑀𝑎𝑡𝑟𝑖𝑥, 𝑅

=

(

 
 
 
 
 
 

0.029 −0.003 −0.026 0.004 0.018 0.035 −0.032 −0.032 −0.036
−0.003 0.172 −0.016 −0.034 −0.040 −0.063 0.023 0.010 −0.048
−0.026 −0.015 0.145 −0.017 −0.053 −0.062 −0.035 0.035 −0.118
0.004 −0.034 −0.017 0.015 0.022 0.015 0.002 −0.011 0.029
0.018 −0.40 −0.053 0.022 0.072 0.052 0.042 −0.068 0.087
0.035 −0.063 −0.062 0.015 0.052 0.115 0.016 −0.077 0.067
−0.032 0.023 0.023 0.002 0.042 0.016 0.148 −0.046 0.191
−0.032 0.010 0.010 −0.011 −0.068 0.077 −0.046 0.109 −0.052
−0.036 −0.048 −0.048 0.029 0.087 0.067 0.191 −0.052 0.336 )

 
 
 
 
 
 

 

The error magnitudes of matrix R are considerably low. Ideally, for a good factor 

model, the residual values should be as close to zero as possible. There are very few values 

in the residual matrix that have a magnitude greater than 0.1. Therefore, based on the 

communality and error values, it can be deduced that the three factors model helps to model 

the driving data set to an appropriate level of accuracy. However, it should be realized that 

the factor model has a significantly lower accuracy than the ANN model. The purpose of 

the factor model is not to classify driving performance based on inputs, but rather to provide 

insight into the meaningful interpretation of each driving performance class.  

7.3 Interpretation of Factors 

Before the driving performance for each class can be interpreted in a meaningful 

manner, it is important to understand what each of the three factors represent. The 

following inferences can be made based on the results presented in Table 7.2: 
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 Factor 1: Factor 1 indicates the vehicle has a higher tendency to speed over 10% of 

the posted speed limit with higher mean positive accelerations (indicative of vehicle 

accelerator pedal position). Under such circumstances, high variations of vehicle 

speed, vehicle acceleration, positive acceleration, and negative acceleration are also 

observed. These insights might give an indication about the level of risky behaviour 

demonstrated by the while driving in an urban or residential area.  

 Factor 2: Factor 2 shows that for a given test drive, if the vehicle stops or brakes 

frequently while travelling in an urban or residential setting (indicated by the high 

mean deceleration value), the mean speed of the vehicle and the total distance 

covered by the vehicle in that particular test drive decreases. The observations from 

this factor are intuitive. If the driver is decelerating or stopping the vehicle 

frequently, the vehicle will not be travelling at relative high speeds or will not be 

travelling a larger distance within a certain period of time. 

 Factor 3: Factor 3 is a factor which is primarily determined by the mean speed of 

the vehicle in a given test drive. Factor 3 does not provide much information with 

respect to other variables for interpreting the trends or underlying characteristics 

observed in the driving data set.  

Since, through dimensionality reduction, the number of variables predicting the 

driver performance classification can essentially be reduced to three categories, the results 

of the classification can be presented in a three dimensional (3D) space, as shown Figure 

7.2. A clear distinction between each class boundary is seen for each of the four classes for 

evaluating driver performance. Figure 7.2 further verifies the results obtained from the 

cluster analysis performed in Chapter 6 by ensuring that no two classes have intersecting 

or overlapping boundaries.  
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Once the significance of each factor is determined, it is now possible to provide 

some insight into the member characteristics of each class. Table 7.3 provides a 

comprehensive description of the classes inferred from the results from the factor model. 

Table 7.3 ranks the different classes based on risky driving behaviour. A value of 1 is 

indicative of the class which demonstrates the highest level of risk based on driving 

performance, as compared to the other classes.  

Table 7.3: Class Description Based on Factor Model Results 

  Min Max Description Level of Risk  

C
la

ss
 1

 

Factor 1 -3.54 0.46 No speeding, low positive 

accelerations 
4 

Factor 2 0.26 3.30 Frequent braking, shorter distances 

Factor 3 -1.19 0.20 Lowest mean speed 

C
la

ss
 2

 

Factor 1 -7.44 -2.87 No speeding, low positive 

accelerations 

3 Factor 2 -3.32 -0.28 Less frequent braking, longer 

distances 

Factor 3 0.05 1.11 High mean speed 

C
la

ss
 3

 Factor 1 3.99 9.08 Speeding, high positive accelerations 

1 Factor 2 2.09 3.31 Frequent braking, shorter distances 

Factor 3 0.13 1.70 High mean speed 

C
la

ss
 4

 

Factor 1 4.65 9.38 High acceleration, speeding 

2 
Factor 2 -2.96 -0.87 Less frequent braking, longer 

distances 

Factor 3 -0.63 -0.05 Low mean speed 

To obtain better understanding of the type of performance represented by each of the four 

classes, the results from Table 7.3 can be summarized as follows: 

 Class 1: The driving performance in Class 1 can be characterized by low vehicle 

accelerations, and longer travel distances. Also, the driver performs less frequent 

vehicle decelerations or stops during the course of the drive and the mean speed 

(20km/h – 35km/h) of the vehicle remains well below the posted speed limit (50 



 

73 

 

km/h) in an urban or residential driving environment. Moreover, the vehicle does 

not go beyond 10% of the posted speed limit of the roadway. This type of driving 

performance demonstrates the lowest level of risk when compared to all four 

classes.  

 Class 2: The driving performance characteristics for the members of Class 2 are 

similar to the characteristics observed in Class 1, except the mean vehicle speed. 

The members of class 2 have a higher mean vehicle speed (35km/h – 48km/h) 

compared to the members in Class 1. The mean vehicle speed is very close to the 

posted speed limits of urban and residential roadways. Higher vehicle speeds 

indicates that the driver performance observed in Class 2 is more risky than the 

driving performance in Class 1.  

 Class 3: The driving performance in Class 3 is characterized by high positive 

accelerations and high vehicle mean speeds. Members belonging to this class also 

have a tendency to drive at a speed which is 10% above the posted speed limit (for 

urban and residential roadways). The driving performance characteristics in Class 

3 demonstrated the highest level of risk among all four classes. 

 Class 4: The driving performance in Class 4 is characterized by high positive 

vehicle acceleration, but low mean vehicle speeds. Moreover, the driver also has a 

tendency to drive at a speed above 10% of the posted speed limit. In terms of risk, 

the members of this class have a rank of 2 among the four classes. 

Thus, using the modelling techniques highlighted in Chapters 3 and 4, the driving 

performance was classified into four different categories and ranked based on their level 

of risky behaviour. The information was extracted using a simple set of variables 

containing information about the vehicle speed, vehicle acceleration (positive and 

negative), and vehicle travel distance. The following chapter presents further discussions 

on the results obtained and provides some concluding remarks for the work that was 

conducted for this research. 
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CHAPTER 8  

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

Driving performance is dependent on the task demands dictated by the traffic 

environment. Task demands of the driver include factors such as the vehicle 

speed/acceleration, vehicle performance, and road structure.  Exploratory statistical 

techniques and ANNs have been used as the backbone of the work presented in this thesis 

to determine and classify driver performance in different categories based on the observed 

level of risky behaviour. The research not only helps to outline a methodology for 

modelling and classifying driver performance, it also utilizes statistical tools and 

techniques that complement the developed model for interpreting meaningful results. 

Moreover, the statistical techniques also help to validate the ANN model results as well. A 

summary of the key findings from this research is presented in Table 8.1.  

Table 8.1: Summary of Results for Driver Performance Classification 

 Class Description Significant Factor(s) 

Lowest Level of 

Risk 

 (Class 1) 

No speeding, low positive accelerations Variations in overall 

vehicle acceleration 

and positive vehicle 

acceleration 

Frequent braking, shorter distances 

Lowest mean speed 

Less Risky            

(Class 2) 

No speeding, low positive accelerations Mean braking 

acceleration and total 

distance travelled 

Less frequent braking, longer distances 

High mean speed 

Risky              

(Class 4) 

High acceleration, speeding 
Mean vehicle 

deceleration 
Less frequent braking, longer distances 

Low mean speed 

Highest Level of 

Risk 

 (Class 3) 

Speeding, high positive accelerations 
Variation in overall 

vehicle acceleration 
Frequent braking, shorter distances 

High mean speed 
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It is interesting to note that the vehicle acceleration/deceleration plays an important 

role in determining the different driver performance categories. The variation in 

acceleration levels in each test drive is also critical in determining the levels of risk 

associated with driving. 

One of the key challenges faced during the development phase of the work was the 

data processing stage. It is very important to extract relevant information from the raw data 

channels and trim the data set to obtain meaningful results. The data was trimmed and 

processed to include naturalistic driving scenarios only under an urban setting. Moreover, 

the raw data had to be processed in several stages before it could be used to develop reliable 

models using the techniques outlined in this thesis. The hierarchical clustering algorithm 

was successful in partitioning the driving data into four distinct classes without any 

overlaps. Also, the developed ANN classified the driver performance with an overall 

accuracy of 96.5%. The results obtained from the analysis provide a comprehensive 

overview of driving performance under naturalistic driving contexts even though limited 

information was available pertaining to the driver and the vehicle environment. The 

purpose of factor analysis was to gain further understanding of the different performance 

classes observed in the data set rather than providing an alternative modelling technique. 

The results obtained from the factor analysis model complemented the results from the 

unsupervised clustering model and the ANN model. The factor model also helped to 

determine the level of risk associated with each class by reducing the dimension of the 

original driving data set.  

Only 28 data test drives were available for conducting the analysis. It is recommended that 

the model is built using a larger data set to capture the various trends in driver behaviour 

which affect the driving performance.  As a result, increased levels of risky behaviour can 

lead to higher chances of getting involved in traffic events which, in turn, might jeopardize 

traffic safety.   
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8.2 Future Work 

Due to limitations in time and resources, the analysis was only limited to a transport 

truck and a passenger car. If there were more sample test drives for each vehicle, separate 

models could be developed for different types of vehicles and a comparison could be made 

between the different levels of performance and associated risk levels observed in drivers 

of different vehicles. The work presented in this thesis also lays the foundation for further 

analysis in the following areas: 

 The model can be extended to include other physiological factors related to the 

driver such as eye tracking, heart rate variability, driver fatigue,  and environmental 

factors (e.g. traffic information, weather information) to develop a more 

comprehensive and detailed overview of the driving performance.  

 The situation awareness of any driver depends on the level of the driver interaction 

with the vehicle and the traffic environment. Hence, the driver needs to adapt to the 

demands of the driving task continuously. The work presented in this thesis can be 

extended to include the situation awareness of the driver and the associated levels 

of perceived risks by integrating variables which reflect the changes in the driver 

task demand. 

 Naturalistic driving in different roadway configurations (e.g. highways, rural roads, 

etc.) can also be incorporated into the model once sufficient data is available for 

analysis. 

 The presented methodology can be used as an assessment tool for fleet management 

services to evaluate and identify key driver characteristics that lead to risky driving 

behaviour. This tool can further be used to develop tailored training programs for 

professional drivers to effectively reduce the number of traffic collisions. 
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APPENDICES  

Appendix A: Driving Data Set 

 
Table A.1: Data Set of Driving Parameters 

Sample �̅� 𝝈𝑽 𝑽𝟏𝟎 𝝈𝒂 𝑨𝒄𝒄̅̅ ̅̅ ̅ 𝝈𝑨𝒄𝒄 𝑩𝒓𝒌̅̅ ̅̅ ̅̅  𝝈𝑩𝒓𝒌 𝑫𝒕𝒐𝒕 

1 24.86 10.08 0.00 11650.78 8919.58 8915.95 7672.13 7351.59 1.54 

2 29.40 11.57 0.00 10887.61 7248.22 6700.07 8274.03 8584.52 1.70 

3 16.31 7.98 0.00 9346.71 6441.97 5158.56 7326.86 7567.47 0.86 

4 30.74 14.93 0.00 8867.13 6289.94 5160.47 6258.73 7218.71 1.57 

5 45.67 9.63 0.00 5145.19 3398.57 3538.33 3379.67 4224.92 6.18 

6 31.56 11.10 0.00 9269.12 6247.07 6250.23 7065.10 6967.35 0.98 

7 34.98 12.20 0.00 9370.23 6094.25 6223.68 6517.83 7622.07 3.42 

8 42.63 10.87 0.00 7339.70 4611.84 4966.08 5733.69 5474.02 0.86 

9 35.72 13.90 0.03 10286.98 7144.17 6531.78 7339.45 8058.68 2.47 

10 39.89 9.73 0.00 6809.31 3824.68 3513.72 4994.17 6360.86 0.93 

11 44.36 10.27 0.00 6541.84 4382.83 4426.27 4535.16 5142.27 7.26 

12 46.66 7.50 0.00 5678.98 3739.00 4551.67 3392.10 4297.23 2.01 

13 31.92 12.61 0.01 10008.83 6759.39 7057.36 6538.58 7888.92 4.38 

14 25.54 12.37 0.00 10427.40 6990.38 6786.93 7527.32 8174.14 3.01 

15 29.41 12.04 0.00 9840.10 6718.37 6943.48 7038.60 7128.11 0.81 

16 24.17 13.74 0.00 9130.50 6734.15 6121.35 5989.01 6969.13 0.76 

17 43.38 9.97 0.01 6378.59 4507.17 4216.87 4236.38 5049.08 4.48 

18 44.13 10.87 0.00 8823.98 4430.83 4920.79 5158.07 10431.01 1.87 

19 46.51 9.27 0.01 6526.68 4356.01 4622.95 4349.44 5102.91 4.45 

20 37.49 16.74 0.19 17363.59 10966.77 9261.85 15503.53 14134.79 2.67 

21 30.10 14.59 0.01 14589.36 11408.00 8357.39 11694.23 9521.93 4.62 

22 38.61 12.48 0.00 16064.99 10930.98 9167.85 14061.65 10964.41 0.87 

23 34.56 17.26 0.15 13061.83 9203.09 8118.95 10022.22 9711.64 16.76 

24 38.72 19.33 0.20 13118.76 9001.53 7429.21 -9768.26 10686.01 5.28 

25 41.66 16.12 0.23 12882.56 9219.96 7717.97 -9633.67 9767.23 4.97 

26 37.55 16.40 0.12 12408.50 9954.39 8342.84 -8528.33 8285.99 6.00 

27 38.01 16.51 0.21 15064.24 9513.13 8183.60 -13469.44 12067.61 2.80 

28 35.57 16.08 0.07 12578.16 8638.80 8086.46 -9362.88 9598.43 3.62 

29 38.65 16.97 0.19 15016.10 11308.05 9512.06 -11672.64 9818.15 8.03 
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Table A.2: Standardized Values for Final Data Set 

 

Sample �̅� 𝝈𝑽 𝑽𝟏𝟎 𝝈𝒂 𝑨𝒄𝒄̅̅ ̅̅ ̅ 𝝈𝑨𝒄𝒄 𝑩𝒓𝒌̅̅ ̅̅ ̅̅  𝝈𝑩𝒓𝒌 𝑫𝒕𝒐𝒕 
1 -1.47 -0.88 -0.58 0.38 0.73 1.35 0.57 -0.28 -0.78 

2 -0.86 -0.38 -0.58 0.15 0.05 0.10 0.65 0.24 -0.70 

3 -2.61 -1.58 -0.58 -0.33 -0.28 -0.77 0.53 -0.19 -1.11 

4 -0.68 0.74 -0.58 -0.48 -0.35 -0.77 0.39 -0.34 -0.76 

5 1.31 -1.03 -0.58 -1.62 -1.53 -1.68 0.01 -1.61 1.46 

6 -0.57 -0.54 -0.58 -0.35 -0.36 -0.15 0.49 -0.45 -1.05 

7 -0.12 -0.17 -0.52 -0.32 -0.43 -0.17 0.42 -0.17 0.13 

8 0.90 -0.61 -0.58 -0.95 -1.03 -0.88 0.32 -1.08 -1.11 

9 -0.02 0.40 -0.23 -0.04 0.00 0.00 0.53 0.02 -0.33 

10 0.54 -0.99 -0.58 -1.11 -1.35 -1.70 0.22 -0.70 -1.07 

11 1.13 -0.81 -0.58 -1.19 -1.13 -1.18 0.16 -1.22 1.97 

12 1.44 -1.74 -0.58 -1.46 -1.39 -1.11 0.01 -1.58 -0.55 

13 -0.52 -0.03 -0.46 -0.12 -0.15 0.30 0.42 -0.05 0.59 

14 -1.38 -0.11 -0.58 0.01 -0.06 0.15 0.55 0.07 -0.07 

15 -0.86 -0.22 -0.58 -0.18 -0.17 0.24 0.49 -0.38 -1.13 

16 -1.56 0.34 -0.58 -0.39 -0.16 -0.23 0.35 -0.45 -1.15 

17 1.00 -0.91 -0.51 -1.24 -1.07 -1.30 0.12 -1.26 0.64 

18 1.10 -0.61 -0.58 -0.49 -1.11 -0.90 0.24 1.03 -0.62 

19 1.42 -1.15 -0.48 -1.20 -1.14 -1.07 0.14 -1.24 0.62 

20 0.22 1.35 1.88 2.15 1.57 1.54 1.59 2.61 -0.24 

21 -0.77 0.63 -0.48 1.29 1.75 1.03 1.09 0.64 0.70 

22 0.37 -0.08 -0.58 1.75 1.55 1.49 1.40 1.26 -1.10 

24 0.38 2.21 2.01 0.84 0.76 0.51 -1.70 1.14 1.02 

25 0.77 1.14 2.32 0.76 0.85 0.67 -1.68 0.75 0.87 

26 0.22 1.23 0.93 0.62 1.15 1.03 -1.54 0.11 1.37 

27 0.29 1.27 2.14 1.44 0.97 0.94 -2.18 1.73 -0.17 

28 -0.04 1.12 0.29 0.67 0.61 0.88 -1.65 0.67 0.22 

29 0.37 1.42 1.79 1.42 1.71 1.69 -1.95 0.77 2.35 
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Appendix B: Cluster Analysis Results 

Table B.1: Results for Gap Criterion 

Cluster Number 𝑬𝒏
∗ {𝐥𝐨𝐠 (𝑾𝒌} 𝐥𝐨𝐠(𝑾𝒌) Gap Value 

1 4.02 3.98 0.039 

2 3.77 3.66 0.113 

3 3.64 3.41 0.233 

4 3.53 3.22 0.309 

5 3.43 3.10 0.324 

6 3.33 3.01 0.320 

7 3.24 2.91 0.330 

8 3.15 2.83 0.329 

9 3.07 2.73 0.334 

10 2.98 2.63 0.346 

 

Table B.2: Assignment of Data to Individual Classes 

Sample Class No. 

1 1 

2 1 

3 1 

4 1 

5 2 

6 1 

7 1 

8 2 

9 1 

10 2 

11 2 

12 2 

13 1 

14 1 

15 1 

16 1 

17 2 

18 2 

19 2 

20 3 

21 3 

22 3 

24 4 

25 4 

26 4 

27 4 

28 4 

29 4 
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Table B.3: Cluster Centroids with respect to Each Variable 

Variable Cluster 1 Cluster 2 Cluster 3 Cluster 4 

�̅� -0.97 1.10 -0.06 0.33 

𝝈𝑽 -0.22 -0.98 0.63 1.40 

𝑽𝟏𝟎 -0.53 -0.55 0.27 1.58 

𝝈𝒂 -0.15 -1.16 1.73 0.96 

𝑨𝒄𝒄̅̅ ̅̅ ̅ -0.11 -1.22 1.62 1.01 

𝝈𝑨𝒄𝒄 0.01 -1.23 1.36 0.95 

𝑩𝒓𝒌̅̅ ̅̅ ̅̅  0.49 0.15 1.36 -1.78 

𝝈𝑩𝒓𝒌 -0.18 -0.96 1.50 0.86 

𝑫𝒕𝒐𝒕 -0.58 0.17 -0.21 0.94 
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Appendix C: ANN Results 

 

Table C.1: Error Values Generated by the ANN Network 

Sample EClass1 EClass2 EClass3 EClass4 

1 0.074 -0.197 -0.148 -0.303 

2 0.040 0.155 -0.061 0.018 

3 0.020 0.026 -0.010 0.001 

4 0.039 0.215 -0.035 0.001 

5 0.224 0.025 -0.066 -0.182 

6 0.045 0.015 0.043 -0.058 

7 0.060 -0.032 0.003 -0.073 

8 -0.044 0.140 0.023 -0.131 

9 0.044 0.171 -0.058 -0.034 

10 0.017 0.135 -0.024 -0.115 

11 0.122 0.038 -0.047 -0.138 

12 0.376 0.023 -0.027 -0.158 

13 0.030 0.105 -0.049 -0.018 

14 0.021 0.219 -0.126 0.065 

15 0.043 0.013 0.037 -0.052 

16 0.033 0.160 -0.019 0.009 

17 0.110 0.058 -0.048 -0.153 

18 0.148 0.105 -0.025 -0.142 

19 0.204 0.035 -0.045 -0.175 

20 -0.023 0.048 0.030 0.064 

21 -0.021 0.184 0.039 0.035 

22 0.082 0.060 0.087 -0.437 

24 0.057 0.154 -0.266 0.052 

25 0.002 0.097 -0.005 0.051 

26 -0.033 0.088 -0.085 0.039 

27 0.118 0.124 -0.221 0.049 

28 0.007 0.147 -0.033 0.040 

29 -0.018 0.060 -0.028 0.061 

Max 0.376 0.219 0.087 0.065 

Min -0.044 -0.197 -0.266 -0.437 
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Figure C.1: Regression Plots for Developed ANN Model 
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Table C.2: Input Layer Weights for Driver Performance Classification ANN 

 

Weights �̅� 𝝈𝑽 𝑽𝟏𝟎 𝝈𝒂 𝑨𝒄𝒄̅̅ ̅̅ ̅ 𝝈𝑨𝒄𝒄 𝑩𝒓𝒌̅̅ ̅̅ ̅̅  𝝈𝑩𝒓𝒌 𝑫𝒕𝒐𝒕 

w11 -0.658 -0.653 0.559 -0.122 -0.475 0.567 0.588 0.323 1.22 

w12 0.337 -0.647 -0.237 0.322 0.938 0.473 0.843 -0.406 -1.232 

w13 1.679 0.667 0.636 -0.640 -0.519 -0.065 -1.613 0.598 0.285 

w14 0.286 0.892 0.481 0.891 1.192 1.301 -0.325 0.582 -0.577 

w15 1.412 -0.525 -0.054 -0.924 -0.793 -0.328 -0.041 0.159 0.932 

w16 0.374 0.308 -0.172 0.246 0.763 0.470 -1.195 0.344 -0.467 

w17 -0.495 -1.147 0.341 0.405 -0.449 0.578 -0.244 -0.927 0.239 

w18 -0.097 -0.584 -0.172 0.755 -0.612 -0.463 -0.846 -0.807 0.543 

w19 -0.570 0.217 -0.536 1.087 0.030 0.080 0.619 0.778 0.943 

w110 0.326 0.637 -0.954 0.397 0.495 -0.576 0.061 -0.442 -0.881 

w111 -0.843 0.554 0.310 -0.675 -0.002 -0.907 -0.059 0.791 0.191 

w112 -0.624 -0.687 1.156 -0.689 -0.205 0.193 -0.750 0.142 -0.323 

 

Table C.3: Hidden Layer Weights for Driver Performance Classification ANN 

 
 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 

w21 0.59 -0.46 -0.29 -0.63 -1.31 -0.48 0.32 -0.55 -0.65 -0.56 -0.31 -0.55 

w22 -0.72 0.05 0.59 -0.27 0.91 -0.10 0.58 -0.61 0.30 0.30 -0.53 -0.95 

w23 0.01 -0.03 0.02 0.82 0.05 -0.84 0.02 -0.56 0.63 0.62 -0.01 -0.19 

w24 0.01 0.01 0.09 0.36 -0.03 0.71 -0.03 0.68 -0.53 0.40 -0.07 -0.40 
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Appendix D: Factor Analysis Results 

 

Table D.1: Factor Values Corresponding to Each Test Drive 

 

Factor 1 Factor 2 Factor 3 Class 

0.460313 3.077591 -0.5652 1 

-0.71631 2.081729 -0.07449 1 

-3.53596 3.300682 -1.19458 1 

-1.88658 0.994194 -0.37078 1 

-7.03761 -3.31599 0.054508 2 

-2.60824 1.576643 -0.15614 1 

-1.71677 0.261618 0.000238 1 

-5.20243 -0.28907 0.438253 2 

-0.1821 0.659736 0.202733 1 

-6.30476 -0.29547 0.304688 2 

-5.16679 -3.06185 0.080557 2 

-7.44403 -1.55208 0.4549 2 

-0.39541 0.453902 -0.26219 1 

-0.52694 1.80449 -0.58462 1 

-1.55354 2.019935 -0.30776 1 

-1.58092 2.190253 -0.8607 1 

-5.69323 -2.03963 0.144381 2 

-2.86801 -0.27648 1.111984 2 

-5.72824 -2.24959 0.430496 2 

9.088206 2.08742 1.700602 3 

4.317548 2.118412 0.129444 3 

3.99149 3.31025 1.430705 3 

7.602487 -2.64044 -0.27568 4 

6.618668 -2.81746 -0.04986 4 

5.615049 -2.11879 -0.63278 4 

8.416693 -1.4449 -0.07 4 

4.652582 -0.87085 -0.52869 4 

9.38484 -2.96427 -0.55002 4 
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