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ABSTRACT

Mg-based hybrid nano composites (MHNC) reinforced with alumina (Al2O3) fibre and/or
micron-sized/nano-sized Al,Oz or AIN particles were successfully prepared by a perform-
squeeze casting technique under an applied pressure of 90 MPa. Mechanical properties of
unreinforced AMG60 alloy, Al.Os fibre/AM60 composite, hybrid composite containing both
Al;O3 fibres and mircon-sized Al>Oz particles, as well as hybrid composite containing both
Al>03 fibres and nano-sized Al>O3 or AIN particles (MHNC) were determined by tensile testing.
The addition of fibres and micron-sized particle considerably increases the ultimate tensile and
yield strengths of the matrix alloy, despite that a substantial reduction in ductility. Microstructure
analyses by optical (OM) and scanning electron (SEM) microscopes show that the homogeneous
distribution of reinforcements, clean interfacial structure and grain refinement lead to the high
strengths of the composites. The addition of nano-sized Al>Os or AIN ceramics particles (3
vol.%) into the hybrid composite restores their ductility. The microstructure observation of
transmission electron microscopy (TEM) indicates that the presence of a relatively low
dislocation density in the matrix grains of the Mg-based hybrid nano composites (MHNCs). The
SEM fractography reveals that the fracture of the composites is caused primarily by localized
damages, such as particles and fibres damage and cracking, matrix fracture, and interface

debonding. The determined tensile properties support the fractographic features.
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CHAPTER 1 Introduction

1.1. Background
1.1.1. Introduction

The requirement for high-performance and lightweight materials in the automotive
industry has led to extensive research and development efforts in the development of magnesium
matrix composites and their cost-effective fabrication technologies. Composite materials are
versatile in terms of constituent selection so that the properties of the materials can be tailored.
The major disadvantage of metal matrix composites usually lies in the relatively high cost of
fabrication and of the reinforcement materials. The cost-effective processing of composite
materials is, therefore, an essential element for expanding their applications. The availability of a
wide variety of reinforcing techniques is attracting interest in composite materials. This is
especially true for the high-performance and lightweight magnesium-based materials due to
certain unique characteristics of composites which offer effective approaches to strengthen
magnesium.

Hybrid composites are fabricated by adding two or more reinforcements into matrix
materials so that excellent properties can be achieved through the combined advantages of short
fibres, and different size particles, which provide a high degree of design freedom. Hybrid metal
matrix composites are reinforced with hybrid reinforcement in which both particles and short
fibres are employed. As a result they can provide large opportunities to optimize the engineering
performance of metal matrix composites for potential applications in the automotive industry,
where different volumes, especially the relatively low volume, and selective reinforced areas of

reinforcements are required.



The hybrid metal-based composites could be fabricated by preform-squeeze casting, in
which a two-step process is involved. First, a preform is made and then the squeeze casting
pressurizes molten alloy to infiltrate into the preform. The advantages of preform-squeeze cast
hybrid composites are the following: both the particles and short fibres can be employed to
facilitate microstructure design and mechanical property optimization; reasonable low cost raw
materials and wide volume percentage range of reinforcements can be selected; mass production
becomes feasible; and improvements in the wettability of reinforcements enable selected regions
of parts to be reinforced only with no wetting agent.

In the open literature, there are a few studies on hybrid magnesium-based composites
which are fabricated by the preform-squeeze casting technique with micron-fibre skeleton and/or
micron-sized particles. The micron-particle introduction increases the efficiency of
reinforcement in wear resistance and strength of resultant composites. However, the addition of
micron-sized particles into the magnesium matrix leads to a significant decrease in ductility.

The inferior ductility of micron-sized particle reinforced magnesium composites limits its
expansion. For the improvement of the ductility of the resultant composite, studies on the
introduction of nano-sized particles to the magnesium composites have been carried out.
However, the nano-sized particles introduction was limited in the volume-fraction of the
reinforcement in the matrix alloy. The agglomeration of the nano-sized particles with high
volume fractions was inevitable with the traditional stirring casting method even with the pre-
mixed matrix alloy and nano-sized particles. There were studies in successful fabrication with
higher volume fraction nano-sized particles magnesium composite by the evaporation of

magnesium in an environment of high vacuum. But, the evaporation method was costly and not



suitable for larger components in high volume production. Moreover, the low volume fraction of
nano-particles introduction limits the design freedom of magnesium-based composite materials.
Therefore, the stirring problem faced by nano-sized particles could be resolved by the
hybrid preform fabrication with nano-sized particles. No detailed research reports on processing,
solidification and characterization of Mg-based hybrid nano-composites (MHNC) have been
found, although Mg-based composites reinforced with only nano-sized particles possess not only

the enhanced strengths but also reasonable ductilities.

1.2. Obijectives of this study

The objectives of this work are outlined as follows:
® Develop a process for preform fabrication with introduction of nano-sized particles;
® Develop a process for manufacturing magnesium-based hybrid nano composites with no
agglomerated nano-sized particles and micron-sized reinforcements;
® Analyze the microstructures of the developed magnesium-based hybrid nano composites in
comparison with the composites containing micron fibres and/or particles;
® Evaluate the mechanical properties of the fabricated composites; and

® Determine the fracture mechanisms of the developed magnesium-based hybrid composites.

1.3. Organization of the thesis

In this study, the fabrication method for producing the Mg/AM60-based hybrid nano
composites by using the preform and squeeze casting technology has been developed. The
microstructures of the fabricated MHNCs were analyzed with the optical (OM), Scanning (SEM)

and Transmission (TEM) electron microscopes. The mechanical properties of the MHNCs were



evaluated by tensile testing. The obtained results were compared with those of the composites
containing micron fibres and particles as well as the matrix alloy (AM60).

To effectively and concisely present the completed work, this thesis contains seven
chapters. Chapter 1 provides a general background of metal-based composites and the
advantages of nano-sized particles-reinforced hybrid metal matrix composites fabricated by
preform-squeeze casting technique. Chapter 2 reviews recent studies on the processing,
microstructure, and mechanical properties of magnesium-matrix composites. Chapter 3, Chapter
4, Chapter 5 reports the detailed fabrication method, comparisons, results and discussion with
respect to the effects of nano-sized particles in magnesium alloy AMG60-based hybrid nano
composite (MHNC) on microstructures, tensile properties, and fracture mechanism of the
developed magnesium-based hybrid composites. The conclusions of the present study are

summarized in Chapter 6. Finally, Chapter 7 gives some recommendations for future work.



CHAPTER 2 Literature Review

In this chapter, progresses upon magnesium-based metal matrix composite technologies
in recent decades are reviewed. Different reinforcement systems are discussed, including fiber,
micron-sized particles, nano-sized particles, and hybrid fiber/particles reinforcements. Several
reinforcement categories and combinations for magnesium composites have been introduced,
especially in nano-particle reinforcement and its composites. The superior hardness, tensile and
compressive properties of the composites should be attributed to not only the addition of
reinforcements themselves, but also the reinforcement distribution in the matrix, the bonding
between the reinforcement and matrix, and the grain structure refinement caused by
reinforcements. Typical methods for fabrication of composites are discussed and compared.
Squeeze Casting, Stir-casting, Powder Metallurgy, and Hot Extrusion are considered as the
common process techniques for the preparation of Mg-based composites. The formation of
intermetallic phases due to the reaction between the reinforcement and matrix alloy also plays an
important role in enhancing the mechanical properties of the composite. As the reinforcement
content increases, the composite with micron-sized reinforcements shows a significant decrease
in ductility. However, the addition of nano-particles to magnesium alloys causes no significant
reduction in the ductility of the resultant composites. The hybrid and nano-particles reinforced
magnesium composites are considered as the most promising and emerging high strength light-

weight materials owing to their unique engineering performance.



2.1. Introduction

Automakers are being subjected to increased strict fuel economy requirements, while
consumers are demanding improved interior comforts and advanced electronic systems for safety,
navigation, and entertainment, all of which add otherwise unnecessary weight. Automotive
manufacturers are turning to light-weight metals as one of the solutions to meet the demands [1-
3]. Aluminum alloys components such as engine blocks, body panels, and frame members. In
recent decades, magnesium alloys, as lighter alloys choice to aluminum ones, are being
researched and successfully subjected to certain types of components for mass production such
as instrument panels, valve covers, transmission housings, and steering column components. The
major current area of growth for the use of magnesium alloys in the high volume commercial
automotive sector enable an incentive for weight savings to maximize fuel economy and
minimize emissions [4]. BMW Company even achieves mass production of the whole 3.0-liter
six-cylinder gasoline engine with only 161 kilograms by magnesium Mg-Al-Sr alloys system [5].
Moreover, combining or replacing these efforts with the use of advanced metal-matrix micro-
and nano-composites (MMCs) not only reduce the mass of components, but also improve
reliability and efficiency [6,7]. Metal-matrix composites are metals or alloys that incorporate
particles, whiskers, fibers, or hollow micro-balloons made of a different material, and offer

unique features to tailor materials to specific design needs.



2.2. Fibers Reinforced Magnesium Alloys

2.2.1. Solidification process

Short Fiber and whisker reinforced metal-matrix-composites (MMCs) are manufactured
with various reinforcement distributions. Castings of magnesium matrix composites are most
commonly presented by liquid metal or preform infiltration method. The preform method
presents majority of short fibers randomly aligned in 2D planar architecture that normal to
applied pressing direction compared with the liquid or powder-metallurgy method, in which
substantial fibers alignment is parallel to the processing direction.

For preform method, the most common fabrication route is squeeze casting with pressure
infiltration. During squeeze casting, the reinforcement fibers is usually made into a preform and
placed into a permanent mold. The molten magnesium alloys are then poured into the mold and
solidified under high pressures. During the solidification period, the high pressure applied forced
the liquid magnesium infiltrate into the gaps in the preform that forms bonds between
reinforcement fibers with magnesium alloys. The pressure is the primary parameters that
influence the quality of castings. The pressure is supposed to be as high as possible; however, for
manufacturing magnesium composite, excessive high pressure may produce a turbulent flow of
molten magnesium causing gas entrapment and magnesium oxidation [8]. The advantage of this
method is allowing the superior types and volume fractions of reinforcement to incorporate with
magnesium alloys.

For powder-metallurgy method, magnesium alloy and reinforcement are mixed, pressed,
degased and sintered at a certain temperature under controlled atmosphere or in a vacuum [9].

Compared to squeeze casting with pressure infiltration method, this method requires powder



alloy instead of bulk material, and the conditions required are more critical; therefore, the cost
for fabrication is not ideal for mass production.

The varied reinforcement types of fibers, such as Al2Os fibers, enable to meet majority of
requirement of demands. In general, carbon fibers and alumina fibers are considered as the most
popular reinforcement fibers for commercial usage as those relatively cheap features.
Magnesium composites reinforced by alumina fibers are the most common combination; for
squeeze casting with pressure infiltration method, alumina fibers preform is made and placed in
the mold for squeeze casting. Then the liquid magnesium alloy is poured into the mold with
certain degree of pressure applied during solidification period. The carbon fibers reinforced
magnesium alloys are more complicated to fabricate with this method. It is reported by Kuo et al
[10] that if without proper treatment, the APC-2 prepreg (AS-4 carbon fibers) and magnesium
alloy delaminate after solidification as a result of surface energies difference and large thermal
expansion coefficient difference [11]. Kuo et al [10] treat the composites with a combination of
HNOs and H2SO4 with transition-metal ions instead of binder to resolve delamination problem,

which is effective.

2.2.2. Microstructure and Mechanical Properties

2.2.2.1. Alumina Fiber Reinforced Magnesium Alloys

There are bulk of studies on this type of reinforcement in magnesium and its alloys. The
very first study to be discussed is reported by Hack et al[12]. They chose pure magnesium for the
matrix as its microstructural simplicity and batch-to-batch reproducibility. The alumina fibers

chosen were in 20 um diameters with 35 and 55 percent volume fraction respectively. The fibers



were laid in unidirectional manner. Specimens were cut into 15.2 cm long with 1.27 cm x 0.25
cm rectangular for tensile and fatigue testing. As the prior-known information that the
mechanical properties of composites with hard alumina fibers is better than pure magnesium, this
report only contained the comparison of the results for difference volume fraction of
reinforcement and fibers orientation. Table 2.1 gives the results for the tensile test results. It
showed the longitude direction fibers provide superior tensile yield strength (YS) and ultimate
tensile strength (UTS) as those bears more loads than other orientations. It is interesting that even
the alumna fiber is brittle than magnesium fibers, with higher volume fraction 55% fibers, it
showed better elongation percentage. Figure 2.1 shows the fatigue data for the tests; similar to
tensile test, the axial direction provided superior properties under same level of loads applied.
Figure 2.2 shows the microstructure of the axial specimens containing defects attributed to crack
initiations, which are transverse (normal direction) fibers and clumps of alumina grains. Figure
2.3 shows the tensile failure and fatigue failure microstructure of axial specimens. It could be
observed that the tensile overload was identical to those of the off-axis tensile failure, while the
fatigue was by a combination of delamination of fiber/matrix interface and cracking of the

magnesium matrix.



Table 2.1 Tensile Properties of 35 and 55 Volume Fraction Alumina Fiber Reinforced

Magnesium [12]

Vol Pct Orientation, ¥S. Urs,
ALO; Deg. MPa MPa E. GPa e Pct
35 (r (axial) 213 383(396) 149(162) 0.26
35 22.5 34 207 116 0.52
35 45 23 108 a0 0.45
35 90 (transverse) 21 104 RS 0.42
55 0 (axial) 321% 567*(571) 197(229) 0.30%
55 22.5 27 196 i35 0.81
55 45 30 157 124 (.58
55 90 (ransverse) 18 67 90 0.24
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Figure 2.1. Fatigue Properties of 35 and 55 Volume Fraction Alumina Fiber Reinforced

Magensium [12].
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Figure 2.2. Microstructure of Axial Specimens of Alumina Fiber Reinforced Magnesium (1.

transverse fibers; 2. Clumps of alumina grains) [12].

(a) (b)

Figure 2.3. Microstructure of Axial Specimens of Alumina Fiber Reinforced Magensium Failure

(a. tensile overload; b. fatigue failure) [12].

Creep resistance of aluminum fiber reinforced magnesium alloys was reported by
Sklenicka et al[13] with AZ91 and QE22 magnesium alloy. Low Creep resistance of magnesium
alloy was not suitable for applications in automotive power-train. Pure AZ91D magnesium alloy
also showed poor creep resistance above 125 °C [14]. They added 20 volume fraction Saffil

fibers (97 pct Al.Ogz, 3pct SiO2) in AZ91 alloy and QE22 alloy. Their results shown in Figure 2.4
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and 2.5 demonstrated the second stage minimum creep rate and the creep fracture time. There

was apparent improvement with alumna fiber reinforcement.
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Figure 2.4. Minimum Creep Rate of AZ91 and QE22 alloys with 20% Alumina Fibers compared
with AZ91 and Pure Magnesium [13].
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Figure 2.5. Time for Creep Failure of AZ91 and QE22 alloys with 20% Alumina Fibers
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12



2.2.2.2. Carbon Fiber Reinforced Magnesium Alloys (Processing)

Carbon fibers have been popular in the past several decades. This reinforcement into
magnesium is considered as a feasible and cheap route to improve magnesium and its alloys
properties. As the carbon fibers have excellent mechanical properties, it is no doubt that the
addition of carbon fiber into magnesium alloy matrix provides superior mechanical properties.
However, compared to metal based reinforcement, the bonding between carbon fibers and
magnesium alloys are critical during the fabrication. A solution was provided by Huang et al[10].
There are another method provided by Katzman [15] that silicon dioxide coating is deposited on
the fiber surfaces from an organometallic precursor solution after the fibers passing the solution.
Hydrolysis or pyrolysis of the organometallic compound is used to form silicon dioxide on the
fiber surfaces that generates wetting and bonding when the fibers are immersed in molten
magnesium. In Katzman’s report[15], graphite fibers are prior-processed by using alkoxides, a
class of organometallic compounds to bond hydrocarbon groups with metal atoms by bridging
oxygen atoms [16] as precursors for ceramics and glasses [17,18], to form thin, uniform oxide
coatings.

Although carbon fibers are expensive in North America compared to those in Asia,the

features of carbon fibers into magnesium alloys reinforcement are remarkable.
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2.3. Micro-particles Reinforced Magnesium Alloys

2.3.1. Solidification process

Instead of fibers reinforcement, micro-particles reinforcement is another popular route to
reinforce magnesium alloys. As there is no direction concern in particles reinforcement, the
dispersion of particles is the key for this type of reinforcement. One of the popular particles
involved in magnesium alloy reinforcement is SiC particles. The general processing method for
particle reinforced magnesium composites is the mixing and casting process developed by
Institute of Magnesium Technology (ITM) [19]. A schematic diagram showing ITM liquid
mixing and casting process for magnesium MMCs is provided in Figure 2.6. It should be noted

that the furnace used should be under protective atmosphere such as SFe/CO2 [20].

Liquid-mixing
and castmg

Metal Ceramic

Y Y

Pre-heating

L]

Charge to furnace

y

Melt holding

L]

Melt stirring

Dle Permanent Sand
castin mold casting casting
Figure 2.6. Schematic diagram showing ITM liquid mixing and casting process for magnesium
MMCs [20].
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The fabrication for this type of composite can be achieved also by pressure infiltration
technique. It is reported that AZ91D magnesium alloy matrix with 40 volume percentage SiC
particles were made by Lo at al [21] in MTL/Canmet Canada et al in ITM. The preform held SiC
togerther by alumina binder to form a rigid three-dimensional network of inter-connecting

particulates. The infiltration stage at 600 °C (100 °C superheat for AZ91D alloy) and 40 MPa.

2.3.2. Microstructure and Mechanical Properties

2.3.2.1. SiC Particle Reinforced Magnesium Alloy AZ91D

By using different process parameters of the mixing and casting method, Luo at al[20]
prepared several pure Mg-based and AZ91D-based SiC-reinforced composites. He investigated
their microstructures and mechanical behavior.

Figure 2.7 compares the microstructures of the AZ91D-based SiC-reinforced composites
under different casting conditions. Tm, tm, and ts stand for melting temperature, melting time,
solidification temperature. The microstructure of pure magnesium-based reinforce also with SiC
particles under the same casting conditions in Figure 2.8 showed a success incorporation of SiC
particles in the AZ91 alloy as well as pure magnesium. The AZ91-based composite gave a better
dispersion of SiC particles compared to pure magnesium composites, which provides superior
mechanical properties improvement.

Figure 2.9 compares AZ91 alloys with/without reinforcement microstructures. The
apparent grain refinement was observed in the particles reinforcement AZ91 alloy reported in

Figure 2.10. Therefore, a conclusion could be made that particles reinforcement refined grain
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size to improve the mechanical properties as well as the properties provided by particles

materials. A same conclusion was made by Hu [22] with the casting of AM50A/SiC composites.

(&) Exp. 3 (T, = T00°C, t, = 60 min. and t, = 5 min) (d) Exp. 4 (T, = 800°C, t, = 30 min., and t, = 2 min.)

Figure 2.7. Optical Micro-graphs Showing the As-cast Microstructures of AZ91/SiC Composites
under Different Conditions (A. agglomerate, B. oxide, C. porosity) [20].
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(a) Exp. 5 (T, = 700°C, t, = 60 min., and t, = 2 min)  (b) Exp. 6 (T,, = 800°C, t, = 30 min,, and t, = )

Figure 2.8. Optical Micro-graphs Showing the As-cast Microstructures of Pure Magnesium/SiC
Composites under Different Conditions (A. agglomerate, B. oxide, C. porosity) [20].

@ ®)

Figure 2.9. Optical Micro-graphs Showing the As-cast Microstructures of (a) AZ91 alloy
(b)AZ91/SiC Composites [20].
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Table 2.2 shows the mechanical properties comparison of non-reinforcement AZ91 alloy
and AZ91/SiC particles (10 volume percentage); improvement can be apparently observed in the

Table 2.2.

Table 2.2 Tensile Properties of Ac-cast AZ91 alloy and AZ91/SiC particles (10 volume

percentage) [20]

0.2 Pct Lltimate
Elastic Yield Tensile
Modulus  Strength Strength  Elongation
Material (EM, GPa) (YS, MPa) (UTS, MPa) (£, Pet)

AZ9I 42.6 86.7 203 7.
AZ9I/SIC 447 135 152 0.8
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2.3.2.2. Titanium Particle Reinforced Magnesium Alloy AZ91

Improvement in the mechanical properties can be achieved through an adequate control of
the microstructure of the alloy such as grain size, texture, size and precipitates). Among those,
the most effective for improving strength magnesium is grain size refinement [21, 23, 24]. The
micron size reinforcements, usually ceramics such as SiC, results in an increase in the yield
strength with a considerable decrease in the elongation to failure [25-27]. Titanium particles are
popular in the micron-sized reinforcement technology in magnesium composites for its low
density and no reaction among elements to form brittle phases at magnesium and titanium
interface.

The processing method titanium as reinforcement is powder metallurgical route [28].
According to the research by Perez et al [28], magnesium powder particles were smaller than 300
pm mixed with titanium powder for 1 hour at 100 rpm with planetary mill. After the mixing, the
powder degased at 150 °C and hot extruded at 400 °C with a ratio of 18/1. The resulting product
was Mg/10 vol.% Ti. A true stress and strain curve of the magnesium/Ti composite is shown in
Figure 2.11. At room temperature, the magnesium/Ti composite has a yield stress of 160 MPa,
which is a remarkable improvement. However, due to its high cost, the method is not

recommended for mass production.
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0.15

Figure 2.11. True stress-true strain curves of Mg-10 Vol.%Ti composite in the 25-300 °C

temperature range [28].

2.4. Nano Particle Reinforced Magnesium

2.4.1. Solidification process

Among different reinforcement reinforced magnesium matrix composites, the
reinforcements with low cost and practicability are usually silicon carbide and alumina particles
[29, 30]. The micron particle-reinforced magnesium alloy processes higher tensile strength and
elastic modulus compared to unreinforced magnesium alloy. However, there is a remarkable
reduction in ductility. According to the study of Wans et al [31], the AZ91D alloy with micron
SiC particles reinforcement decreases elongation to 3% from non-reinforced AZ91D with 18%.
From the study of Hassan and Gupta [32], the compared to the AZ91 magnesium alloy

reinforced with much higher content of micron sized SiCp, the 0.2% yield strength, ultimate
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tensile strength, and ductility of the magnesium matrix nano-composites containing 1.11 vol.%
of alumina particle were remain higher. Nie et al[33] has carried out nano-SiCp/AZ91D alloy
composites prepared as semi-solid slurry by by hot extrusion under 2000 kN load. However, by
exceeding 1% volume fraction of nano SiC particles in the composites, the tensile properties
appeared decreases obviously. The basic idea to reinforce magnesium composites is to increase
the volume fraction of reinforcement and decrease particles size. With the limitation given above,
compromise should be carried out for fabrication of nano-sized magnesium composites.

The general processing method for nano-sized reinforced magnesium composites is by
using the semisolid stirring assisted ultrasonic vibration technique. In the study of Shen at al[34]
study, by using the above method, different compositions of reinforcement nano SiC particles in
AZ31B magnesium alloy were compared and discussed. In 2011, Tham et al [35] and Gupta et al
[36], used the DMD method for the fabrication of Mg-based nano composites. They employed
AIN nano-particle powder in 10-20 nm as reinforcement. The matrix was AZ91 and ZK60A
hybrid alloy with 2wt.% decreased aluminum content in AZ91. The hybrid alloys were heated in
a graphite crucible to 750 °C under Ar gas atmosphere. The crucible was equipped with bottom
pouring. Upon the set superheat temperature, the slurry liquid metal was stirred by a mild steel
impeller with Zirtex 25 coating to avoid iron contamination before pouring. The pouring liquid
metal was first disintegrated by two jets of argon gas normal to the liquid metal stream. The
disintegrated melt was subsequently deposited onto a metallic substrate located 500 mm from the
pouring point to obtain an ingot with 40 mm in diameter. After forming the mixture hybrid alloy
ingot, arrange the alloy and nano particles powder in a crucible. In the crucible, the arrangement
of alloys and particles powder was important. Figure 2.12 shows the arrangement in the crucible.

To form the AZ91/AK60A/1.5vol.% AIN nanocpmposite, AIN nanoparticles powder was
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isolated by wrapping in Al foil with minimal weight, which is the reason to decrease the
aluminum content in the AZ91. The wrap was arranged on the top of hybrid alloy block. The
resulting composite was fabricated by hot extrusion by 150 ton hydraulic press; the ratio is
20.25:1. Hot extrusion is carried out at 350 degree °C with holding at 400 °C for 1 hour. The
lubrication used was Colloidal graphite. The resulting product was 8 mm rods. Heat treatment for
the composites was mentioned in 200 °C for 1 hour in order to relax the monolithic
AZ91/ZK60A hybrid alloy without recrystallization softening. Prior to heat treatment, ingot
warped with aluminum foil was needed to avoid minimize reaction with oxygen in the heat
treatment furnace. A same DMD fabrication method by Zhong et al [37] using AZ31 matrix with
alumina nanoparticles powder warped by Al foil was under same pressure, temperature, and

extrusion ratio.

Al foil packet

AIN nanopowder

AZ91/ZKG60A pieces

Crucible

— Exit hole

Figure 2.12. Arrangement of raw materials in crucible before castingfor AZ91/ZK60A/AIN

nanocomposite [38].
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2.4.2. Microstructure and Mechanical Properties

2.4.2.1. Nano-sized SiC Particles Reinforced AZ31B Magnesium Composites

Shen et al[34] has made several groups of nano-sized SiC particles reinforced AZ31B
composite. The SEM analysis shows the microstructures of different compositions of
reinforcement is demonstrated in Figure 2.13, while the measured grain sizes are reported in
Figure 2.14.

Figure 2.15 shows the tensile test results for composites of those three compositions. The
results suggest the higher amount of composition of nano-particles reinforcement in AZ31B
provides the higher tensile properties, which is not consistent with the situation with AZ91D.
Reasons for the increase of tensile properties are attributed to grain refinement and uniform

distribution of nano SiC particles that act as ductility enhancer [39, 40].

Figure 2.13. SEM Micrographs of As-cast SiCp/AZ31B Nanocomposites: (a) 1 vol.%
SiCp/AZ31B Nanocomposite, (b) 2 vol.% SiCp/AZ31B Nanocomposite, (¢) 3 vol.%
SiCp/AZ31B Nanocomposite, (d) High Magnification of (c) [34].
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Figure 2.15. The Mechanical Properties of SiCp/AZ31B Nanocomposite after Hot Extrusion. (a)
Tensile Stain—Stress Curves, (b) Ultimate Tensile Strength, Yield Strength and Elongation [34].

2.4.2.2. Nano-sized AIN Particles Reinforced AZ91/ZK60A Hybrid Magnesium Composite

AZ91 and ZK60A hybrid AIN nanoparticle (10-20 nm) composites prepared by Paramothy
et al [38] has achieved higher yield strength and ultimate tensile strengths without significantly
decreasing the ductility of the alloys. The microstructure analysis was carried out by FESEM
(Field Emission Scanning Electron Microscopy) and TEM showing the intermetallic phases in
Figure 2.16. There were no macro-pores or shrinkage cavities observed, and the intermetallic
particles were distributed uniformly. The results of grain size measurements are given in Table
2.3, with the nano particles addition, the grain size refinement was not significant, and the grain
aspect ratio was not changed. But, the hardness has been increased. The reason for hardness

improvement should be attributed to the uniform distribution of AIN particles in the matrix and
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the higher constraint to localized matrix deformation during indentation due to the presence of
nano particles [41,42].

As the tensile and compression data carried out in Tables 2.4 and 2.5, the nano reinforced
alloys showed higher tensile and compressive strengths than those of monolithic alloys. The
0.2% vyield stress improvement was observed in tensile and not that significantly in compression.
The tensile failure strain was not significantly decreased, because the nano-sized particles had
the effect to decrease the ductility drop phenomenon compared to micron-sized particles. It was
noted that in compressive test, the failure strain for composites was higher than the monolithic
alloy. The reason in this case was the presence of the Mg-Zn nano rods reported in Figure 2.16.
The brittle Mg-Zn nano rod is prone to buckling followed by fracture with the hybrid alloy

matrix during compressive deformation unlike during tensile deformation.

Table 2.3 Results of grain characteristics and micro-hardness of AZ91/ZK60A and

AZ91/ZK60A/AIN nanocomposite [38]

. AIN Grain characteristics® Microhardness
Material ) "
(vol.%) Size (fm) Aspect ratio (HV)
AZ91/ZK60A —_ 45 0.9 1.4 137 = 4
AZ91/7ZK60/ B ) . . o
ALDVZRON, 150 w2408 1.4 160 = 8 (+17)

1.5 vol2 AIN

" Based on approximately 100 grains.
() Brackets indicate % change with respect to corresponding result of
AZ91/ZK60A.
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Table 2.4 Results of tensile testing of AZ91/ZK60A and AZ91/ZK60A/AIN nanocomposite [38]

. 0.2% TYS UTS Failure Energy
Material (MPa) (MPa) Strain (96) absorbed,
' EA (MJ/m?*)*
AZ91/7ZK60A 225+ 4 321 =4 16.1 = 0.3 49 + 1
AZ9NV/ZKGDAS 236 =6 336 =4 13.8 = 1.0 44 +4
1.5 vol% AIN (+5) (+5) (—14) (—10)

‘ Energy absorbed until fracture, that is, area under the engineering stress-
strain curve until the point of fracture (obtained using EXCEL software).

() Brackets indicate % change with respect to corresponding result of AZ91/
ZK60A.
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(1) AIN (214)

(2) MgsN> (521)
(3) Mgz N3 (721)
(4) MgZn; (008)
(5) MgZn; (303)

(1) MgZn2 (203)
(2) MgoZny; (440)
(3) MgZn3 (006)
(4) MgZn (217)

(d)

Figure 2.16. Representative FESEM micrographs showing grain size in monolithic
AZ91/ZK60A and AZ91/ZK60A/AIN nanocomposite: (a) lower magnification and (b) higher
magnification. (c) Representative TEM micrograph (including SAED pattern) showing the
presence of individual nitride nanoparticles and fine intermetallic particles in AZ91/ZK60A/AIN
nanocomposite. (d) Representative TEM micrograph (including SAED pattern) showing the
presence of individual Mg-Zn rod-shaped nanoparticles in AZ91/ZK60A/AIN nanocomposite.
Phases present but not labeled in the SAED patterns include Mg and Mg-Al phases only [38].

Table 2.5 Results of compressive testing of AZ91/ZK60A and AZ91/ZK60A/AIN

nanocomposite [38]

Energy

. . 0.2% CYS UcCs Failure

Material (MPa) (MPa) Strain (%) absorbed,
T s T i EA (M]/m?)?

AZ91/ZK60A 106 =5 508=+17 195 +1.7 83 +9

AZ91/ZK60A/ 107 = 12 54119 24.1 +6.5 88 = 7 (4-€

1.5 vol% AIN (+1) (+6) (+24) OR =4 L)

" Energy absorbed until fracture, that is, area under the engineering stress-
strain curve until the point of fracture (obtained using EXCEL software).

() Brackets indicate % change with respect to corresponding result of
AZ91/ZK60A.
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2.4.2.3. Nano-sized Alumina Particles Reinforced AZ31 Magnesium Composite

The DMD method [35, 36] was also applied to produce AZ31 with nano alumina particles
(50 nm size) [43]. Because of using the aluminum foil warping method for reinforcement
particles powder, AZ31 was not degraded its aluminum content prior to hot extrusion. AZ31 was
provided by Alfa Aesar in USA; and alumina nanoparticles powder was supplied by Baikowski
in Japan.

The microstructure of AZ31/nano alumina particles composite was observed under
FESEM. No macro pores, defects or shrinkages were observed in the nano composites. The XRD
diffraction found that the beta phase Ali2Mgi7 presented in the composite. The alumina
reinforcement distribution was uniform in Figure 2.17 (c) and (d), which appeared at grain
boundaries as well as inside grains.

Compared to AZ91/ZK60A hybrid alloys with AIN nano particles composites, AZ31 with
the same volume fraction of reinforcement (1.5 vol.% alumina) showed the significant grain
refinement over that of the monolithic alloy (Table 2.6). The grain size was reduced from 4.0
micron to 2.3 micron. With the addition of brittle alumina nano particles, the hardness of the
composite was superior compared with that of the monolithic alloy (30%). With the alumina
nano particles addition, the tensile UTS, 0.2% YS, the compressive UCS, and 0.2% CYS were
determined, showing significant improvements (Tables 2.7 and 2.8). The nano size particles
alumina additions resolved the problem of significant ductility reduction in micron size alumina
reinforcement, since there was an increment of failure strain in composites. The solution should
be attributed to that nano particles provide sites where cleavage cracks are opened ahead of the
advancing crack front that dissipates stress concentration from crack front and alters local

effective stress state from plane strain to plane stress in the neighborhood crack tip. However,
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with the SEM observation of fracture in tensile deformation (Figure 2.18), the AZ31/1.5 vol.%
nano alumina composites demonstrated micro-crack, while the tensile fracture in monolithic
AZ31 alloy had no micro-cracks. The work of fracture absorbed energy was also tested and
reported in Tables 2.7 and 2.8. It showed there were improvements for both tensile and
compressive deformation and a significant increase in tensile deformation was tested with 162%

increase.

Table 2.6 Results of grain and intermetallic particle characteristics and microhardness of AZ31

and AZ31/Al,03 nanocomposite [43]

Material Al Oy {vol) Crain characteristics® Intermetallic particle characteristics” Microhardness (HV)
Size (pum) Aspect ratio® Size (pum) Roundness® ratio

AZ31 — 40+089 14 33 L 11 19 bd+4

AZ31/1.5vol%AL 0y 1.50 23+£07 1.6 1.0+04 1.1 83+5(+30)

() Brackets indicate %change with respect to corresponding result of AZ31.
* Based on approximately 100 grains,
b Based on approximately 100 particles,
¢ Aspect ratio=major lengeh/minar length.
¢ Roundness measures the sharpness of a particle's edges and corners expressed by ( perimeter)?/4x (area) [26].

Table 2.7 Results of tensile testing of AZ31 and AZ31/Al>03 nanocomposite [43]

Material 0.2%TYS (MPa) LTS (MPa) Failure strain/elongation (% WOF (M]/m’
AZ31 172415 163+12 104+39 2549
AZ31/15vol AL Oy 04+8(+19) 3T £5(+0) 222424(+113) 6847 (+162)

Table 2.8 Results of compressive testing of AZ31 and AZ31/Al,0O3 nanocomposite [43]

Material 02CYS (MR) IG5 (MPa) Failure strain/ductility (%) WOF (Mm’
A 9349 48544 187472 7oLl
AZ31[15vol%AL 0, 0842 {45) 509+ 12{45) 180427 (-4) BA+15(+11)
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Figure 2.17. Representative micrographs showing grain and intermetallic particle sizes in: (a)
monolithic AZ31 and (b) AZ31/Al,03 nanocomposite. Representative micrographs showing
Al203 reinforcement distribution (location) in the AZ31/Al>0Os nanocomposite at: (c) grain
boundary and (d) within the grain [43].
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Figure 2.18. Representative tensile fractographs of: (a) monolithic AZ31 and (b) AZ31/Al;,03

nanocomposite [43].

2.4.2.4. Nano-sized Aluminum Particle Reinforced Pure Magnesium Composite

The monolithic magnesium with aluminum nano particle composite was made by Gupta et
al [37] et al in 2007. Magnesium was supplied by Merck (Germany) in powder phase (60-300
micron-meter). The aluminum powder was in 18 nm provided by Nanostructured & Amorphous
Materials Inc. (USA) The magnesium powder and aluminum power were blended in aV-blender
for 5h at 50 rpm. The mixture powder was pressed under 97 bar to ingot. The ingot was sintered
at 500 °C for 2 hours in an inert Ar gas atmosphere. The sintered ingot was soaked at 400 °C for
1 hour, and then hot extrude at 350 °C in an 150 tons hydraulic press. The extrusion ratio was
25:1 to obtain a 7 mm diameter. 4 volume percentages of aluminum were produced (0.25, 0.5,
0.75, 1) in the process for comparison.

The grain refinement was observed in the nano-particles composite. The most effective
refinement was the highest 1% vol fraction aluminum composite, which was reported in the

Table 2.9.
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The microstructures analyses (Figure 2.19 and 2.20) by FESEM and TEM with EDX,

showed that nano-Al particulates were uniformly distributed.

With the content of aluminum particles increased, the tensile mechanical properties were

indeed improved. However, with the content of volume fraction exceeding 0.5%, the 0.2% vyield

stress and ultimate tensile stress decreased. This phenomenon was applied to the ductility

improvement, hardness, and work of fracture, which was reported in Table 2.10. This decrease

may be due to the agglomeration of aluminum nano particulates with increasing volume fraction.

Table 2.9 Results of density and grain size measurements [37]

Material Al (w%)  Experimental density (g cm ) Theoretical density (gem ™) Porosity (%)  Grain size (um)  Aspect ratio
Mg/0.00AL, 0.0 173140012 .74 05 2346 13405
Mg/0.254],  0.38 1738 + 0.004 14 02 17435 13£0.6
Mg/0.50AL 076 1.746 + 0.009 173 04 17+8§ 15403
Mg/0.754), 116 1751 0,003 175 0 107 12402
Mg/L00Al, 152 1755+ 0.011 .75 0 16+6 14406

Table 2.10 Results of the room temperature mechanical properties of Mg and Mg/Alp samples

[37]

Materials Hardness (15HRT) 0.2% YS (MPa) UTS (MPa) Failure strain (%) WOF (MJ m )
ng!}.ﬂl'}AII, 4643 134+ 11 190+ 10 4606 T6+16
Mg/0.25Al, 4+ 181+ 14 214135 48404 103+19
Mg][}_ii)mp iT+1 218+ 16 271+ 11 6.2+09 159+ 2.1
Mg]U.?SAI,, 60+ 1 202+7 261 +10 50416 131429
Mg/1.00AL, 6141 185+9 26+ 12 313+ 10 T9+18
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Figure 2.19. Representative FESEM micrograph showing the distribution of aluminum
Mg/1.00Alp composite [37].

particulates (represented by white spots) in

= |
g

Figure 2.20. TEM micrograph showing good interfacial integrity between Mg matrix and nano-
Al particulates. The EDX spectrum verifies the presence of nano-aluminum particulate [37].
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2.4.2.5. Nano-sized Silicon Carbide Particles and Carbon Nano Tube Reinforced Pure

Magnesium Composite

In 2007, Thakur et al[44] et al carried out silicon carbide and carbon nano tube reinforced
pure magnesium composite. The processing method was blending the mixture particles and
alloys powder followed by sintering. Silicon carbide powder in 50 nm and multi-walled nanotube
in 40-70 nm were prepared as reinforcement. The sintering process is carried out by micro-wave
quick method at 640 °C near the melting temperature of magnesium for 25 minutes to remain the
original grain size in order to protect the effect of grain refinement by reinforcements. The
following hot extrusion was under 400 °C 1 hour holding and 350 °C extrusion temperature. The
ratio was 25:1.

The resulting test for the products with 1% volume fraction in total derived that by
increasing the SiC volume fraction, the grain size was decreasing; and with the increasing the
SiC volume fraction, the porosity was decreasing. The results were reported in Tables 2.11 and
2.12.

Table 2.13 shows the tensile deformation and hardness data for the resulting product. With
higher volume fractions of SiC particles, hardness, UTS, and 0.2% YS showed improvement
compared to low volume fraction composites. However, with even high volume fraction SiC
particles, although the tensile 0.2% YS, UTS, and hardness were improved, the ductility was not
as good as those of pure magnesium.

The properties improvement and porosity were superior with nano SiC particles than
carbon nano-tube, which should be attributed to the poor bonding between the magnesium matrix

and carbon nano-tubes.
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Table 2.11 Results of density and porosity measurements [44]

Material Theoretical density ( gf'mn';h Experimental density (g/em”)  Porosity (%)
Mg 1.74 1.737 = (.002 0.17 = 0.11
Me+03%CNT+L.7T%SIC  1.746 1.742 = 0.003 0.23 +0.15
Meg+05%CNT+0.5%5i1C 1,744 1.740 = 0,001 0.24 = 0.04
Meg+0.75%CNTH)I%SIC 1.743 1.739 = (.002 0.23 + 0.09
Meg+19%CNT 1.741 1.736 = 0,002 0.29 = (.10
Table 2.12 Results of CTE determination and image analysis [44]
Material Average CTE (x107°°C)  Grain size (um)  Aspect ratio  Roundness
Mg 29.04 = 1.05 259 + 4.0 L5 +02 1504
Mg+03%BOCNTHL7%SIC 2803 = 0.38 218+ 14 1501 [4=03
Me-+0.5%CNT+H).5%SIC 2813 £ 0.53 219+ 1.3 14 +02 14+ 03
Mg+0.7%CNTH)L3%SIC 28.25 = 0.63 221 %27 15+02 L5+04
Mg+l %CNT 28.67 = 0.29 223+ 20 15«03 1.6+ 05
Table 2.13 Results of micro-hardness and tensile properties [44]
Materials Micro-hardness (HV)  0.2% ¥YS (MPa) UTS (MPa)  Failure strain (5)
Mg 4] = 1 111.9 + 7.7 1558+21 59%12
Mg+03%CNT+0.7%S8IC 46 = | 1529 + 4.1 1954 =47 3307
Mg+0.5%CNTH).5%S8IC 45 = | 152.1 = 1.2 1883 + 27 23 +06
Mg+ T%ONTH0.3%81C 44+ | 1393 + 6.5 1829+ 75 21+05
Mg+1%CNT 4531 117 + 6.2 1538 +28 15+03

2.4.2.6. Nano-sized Alumina Particles and Carbon Nano Tube Reinforced Pure Magnesium

Composite

Alumina powder in 50nm and multi-walled nanotube in 40-70nm size were used as

reinforcement for pure magnesium matrix by Thakur et al [45],. The fabrication method was by
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powder metallurgy and hot extrusion. The magnesium powders, alumina particles, carbon nano-
tube were mixed by blender and sintered between 630 and 640 °C, which was close to pure
magnesium melting temperature, to promote better binding between the particulates. The
sintering was processed in a microwave instead of furnace for advantage of retention of original
microstructure without grain growth to help grain refinement. After the sintering method, a hot
extrusion method was carried out at 350 °C with 25:1 extrusion rate under an 150 tons hydraulic
press. The holding was at 400 °C for 1 hour.

As shown in Table 2.14, higher volume fractions of alumina resulted in higher porosity.
The tendency of hardness was very similar. But, the increment was slight with the addition of
nano Al>Os particles (Table 2.15). This phenomenon should be attributed to the combination of
hindrance to the motion of mobile dislocations by the presence of the reinforcing alumina
particles, grain refinement resulting from alumina particulates presence, and the low level of
porosity that helps improving the hardness of composite.

With increasing the aluminum volume fraction, the 0.2% yield strength, ultimate tensile
strength, and the failure strain were improved that represented in Table 2.16. The 1% CNT
reinforcement composite had inferior properties, which might be due to the following two points:
1) Poor interfacial bonding between CNT particulates and magnesium matrix for ineffective load
transfer from matrix to CNT particulates, and
2) Uneven distribution of CNT particulates in the magnesium matrix.

Figures 2.21 and 2.22 showed the tensile failure microstructure of the Mg-1 vol.% CNT
composite and Mg-0.7 vol.%CNT-0.3 vol.%Al>,03. With the decreasing in CNT volume fraction,
the macro cracks decreased. The Mg-1% CNT composite failed in a cleavage like features; while

the Mg-0.7%CNT-0.3%Al.03 composite failed for overall of its content.
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Table 2.14 Results of porosity and density measurements Mg/CNT/alumina [45]

Malerials Reim'r*uemcm {vol. %) Theoretical density (g/cn’) Experimental density (g/em®) Porosity (%)
CNT AlLOs

Mg+ 1%CNT 0.7 - 1.746 1.735 £ 0,008 0.611 £ 0460
Mg+0.7%CNT +0.3%AL 05 0.5 0.1 1747 1.737 £ 0.003 0.592 £ 0.258
Mg+0.5%CNT +0.5%Al: 04 0.3 0.2 1.748 1.745 £ 0,002 0.191 = 0.119
Mg+03%CNT +0.7%AL 05 0.2 03 1.749 1.730 £ 0.001 1.068 £ (.066

Table 2.15 Results of hardness tests Mg/CNT/alumina [45]

Materials Macrohardness (Rockwell superficial 15T) Vickers microhardness (HV)

Mg+1%CNT 479+ 26 1z 16

Mg +0.THCNT+03%AL0; 480=08 4514

Mg +05%CNT+0.5%Al05 82215 47+£23

Mg+ 0.3%CNT +0.7%ALO; 48315 M“2x 18

Table 2.16 Results of tensile tests Mg/CNT/alumina [45]

Malerials 0.2% Yield strength (MPa) UTS (MPa) Failure strain (%)

Mo+ 1%CNT 1129428 146.5 £ 6.5 19409

Mo +0.7%CNT+03%Al:04 1314+62 1643 11.2 26013

Mg +0.5%CNT+0.3%AL0; 136.5 = 5.8 [81.0 £ 8.6 25104

Mo+ 03%CNT+07%AL0; 153521 196.0 £ 3.3 25208

38



Figure 2.21. SEM micrograph showing cleavage step like features in the magnesium matrix of
the Mg+1%CNT composite [45].

i |

Figure 2.22. SEM micrograph showing intrinsic features on the fracture surface of the Mg+

0.3%CNT + 0.7%Al,03 composite sample deformed in uniaxial tension [45].
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2.5. Hybrid Composite Magnesium

2.5.1.Solidification process

Hybrid reinforcements in magnesium alloy are considered as a comprehensive method for
mass and inexpensive production. The combination of fibers and particles provides wide range of
modifications for demand of mechanical properties. The processing method is generally similar
to fibers reinforced magnesium composites with a difference in preform fabrication. The hybrid
preform is fabricated by introducing binding compounds, forming the shape of preforms under
certain pressure, drying and sintering. The direction of fibers is not required as in the

unidirectional as the fiber reinforced composites [46].

2.5.2. Microstructure and Mechanical Properties

2.5.2.1. Hybrid Reinforced AM60 Magnesium Composites

AMG60-based hybrid composites were made with alumina fibers with/without particles.
Figure 2.23 shows the SEM analysis microstructure of the preforms by Zhang et al][46],. Figure
2.24 shows the microstructures of AM60 and its composites with fibers and hybrid reinforcement
with same composition of fibers. Figure 2.25 shows the measured grain sizes. The results
indicates that fibers refine the grain size of the fibre-only composite. With the addition of micron
particles, the combination of two types of reinforcement refines the grain structure significantly.
Figures 2.26 and 2.27 present the hardness and stress-strain curves. The additions of particles

improve the mechanical properties of the AM60-based hybrid composites.
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(@) (b)

Figure 2.23. SEM Micrograph of (a) Pure Fibre Perform, arrowl—fibre and arrow2—empty cell,

(b) Hybrld Preforms, arrowl—fibre, arrow2—part|cle and arrow3—empty cell [46]

5&)“ ,_;JL£ %

(©

Figure 2.24. Optical Photograph Showing the Microstructures of Matrix Alloy and Composites,
(@) AMG60, (b) 9%Fibres/AM60, and (c) (4% particles +9%Fibres)/AMG60 [46].
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Figure 2.25. Grain Size of the Matrix Alloy, F/AM60 and (F+P)/AM60 Composites [46].
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Figure 2.26. Hardness Measurements for the Matrix Alloy and Composites [46].
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Figure 2.27. Typical Engineering Stress vs. Strain Curves for AM60 alloy, F/AMG60, and
(P+F)/AM60 Composites [46].

2.6. Other Fabrication Methods for Magnesium-Based Composites

Although the powder metallurgy, squeeze casting, and stirring followed by hot extrusion
methods, which are demonstrated to be the effective processes for fabricating magnesium-based
composites according to reinforcements types, have been introduced in previous sections, there

are still other methods reported for magnesium-based composites.

2.6.1. In-situ Synthesis

In-situ synthesis is a fabrication process differed from casting. Casting, as its process
feature, can be described as ex-situ synthesis. For magnesium-based casting, casting (hot
extrusion included) adds external reinforcement into the bulk magnesium-based material. In in-

situ synthesis, the reinforcement is generated inside the bulk material by controlling and take
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advantage of reactions between compositions of bulk material. As this feature, especially for
magnesium-based composite fabrication, very limited systems have been studied.

Mg-Si system is one of the systems studied to fabrication of Mg-based composites
reinforced by Mg.Si. The Si added to magnesium alloy can either readily react with the
magnesium during the melting process or can precipitate from the matrix during the cooling
process in the form of an intermetallic Mg»Si phase. The low-cost and abundance explains the
reason why Mg-Si alloy has been studied for in-situ synthesis of a magnesium-based matrix
composite. The Mg-Si phase has excellent hardness, but imposes serious difficulties in casting
Mg-Mg.Si with a high content of Mg2Si [9, 47]. The tendency of Mg.Si to form coarse needle-
shape Mg»Si phase at high concentration of Si can reduce the mechanical properties of the final
product.

The other system Mg-Ti-C was studied by Hwang et al [48] for nano-particle
reinforcement magnesium-based alloy. Milling was the preparation of material for this in-situ
process. The Mg, Ti, C powders were milled for 24 hours for the complete reaction of Ti and C

followed by sintering at 350 °C.

2.6.2. Pressure-less Infiltration

The pressure-less infiltration is relatively now compared to pressure infiltration (squeeze
casting). During the infiltration process, molten alloys flow through the channels of the
reinforcement bed or preform under the capillary action. For spontaneous infiltration, certain
infiltration agents are required for each unique system.

SiC/Mg composite has been studies by Hiromitsu and Takoo [49] for pressure-less
infiltration. The experiment set-up is shown schematically in Figure 2.28. SiC micron particles
and infiltration agent SiO> powders were mixed and placed in the bottom crucible. The upper
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crucible containing pure magnesium ingot that was placed on the top of the powder mixture.
When the system was heated, the magnesium was melted, and spontaneously infiltrated the
powder mixture. The reaction between SiO. and magnesium to form MgO and Si provided the
localized heat to resist solidification of Mg liquid and localized route for Mg liquid to
penetration the SiC powders. The resulting composite microstructure is shown in Figure 2.29.
The reinforcement distribution is evenly in the magnesium matrix.

The key of this pressure-less infiltration was the reaction of infiltration agent SiO. and
matrix magnesium. The infiltration behaviors depended mainly on the SiO2 content and powder
size. Without SiO2, there was no infiltration. To acquire decreased size SiC, the minimum SiO>

content needed to start the infiltration process.

Thermocouple

Induction coil Alumina crucible

// Steel crucible
- T
P o

Mgingot%/
22 |

Powder+—F

J00
!

Figure 2.28. Experiment Set-up for Pressure-less Infiltration SiC/Mg [49].
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(a) Upper part

Figure 2.29. The Microstructure of the Infiltrated SiC/Mg Composites [49].

2.6.3. Gas Injection

The Gas injection is a process that reinforcement carried by gases is blew into the liquid
phase matrix metal. The study carried out by Hansen et al [50] showed the fabrication of AZ91
ally magnesium based composite reinforced by SiC and Al.Oz particles by the gas injection.
Particles were transported through a tube below the bath surface of molten AZ91 alloy at 720-
730 °C with the carrier gas of Ar or N2. The resulting composite contained evenly distributed
reinforcement in AZ91 matrix. However, the presence of a number of clusters and agglomerates
of the particulates and the limitation of volume fractions of reinforcement made this process less

attractive.

46



2.6.4. Spray Forming

The spray forming directs the molten materials droplets onto a substrate to build up bulk
metallic materials. For magnesium composite fabrication, the reinforcement particles are injected
into the stream of the atomized matrix materials. SiC in 8 to 12 micron-meters reinforced QE22
magnesium alloy has found the process parameters exerts considerable influence on the resulting
microstructure [51]. As the rapid solidification during the spray forming process, the fine grains,

porosity, and absence of brittle phase at the SiC/matrix has been proved [9]

2.7. Summary

Significant research efforts have been made in the recent decades for improving
mechanical properties of magnesium alloys by introducing reinforcement addition. Several
improvements are made in not only just mechanical property enhancement but also economic
fabrication technologies. Powder metallurgy is an effective process method for fabrication of
Mg-based composite. However, due to its requirement of powder metals and reinforcement, its
high cost seems not acceptable. In-situ methods, which control the reaction of forming
reinforcement inside the matrix, require strict metallurgy system as well as ambient condition.
Only few systems have been tried such like Mg-Si with Mg.Si reinforcement. Despite its
economy of the in-situ process, the presence the needle-shaped Mg.Si phase reduces the
mechanical properties of the composite. Pressure-less infiltration needs a minimum size of
powder and infiltration agents such as SiO2 with strict content. The gas injection method, which
requires support from inert gas to inject reinforcement into matrix, limits the volume fraction of

the reinforcement. Spray forming is not ideal for the fabrication of composites as the
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homogeneous reinforcement distribution is hard to achieve. For nano-sized particle-reinforced
magnesium composites, due to the introduction of tiny powder reinforcement, quick sintering to
prevent grain coarsen and hot extrusion to densify materials, which are considered as the
effective processes, must be applied for the mixture of reinforcement and magnesium-based
matrix after blending or stirring. As such, strict material preparation procedures of nano particle-
reinforced Mg-based composites are required. Duplicated thermal processes in the DMD
technique significantly increase the manufacturing cost and prevent the nano composite from
applications with complex geometries in large sizes. Those drawbacks limit the nano-sized
reinforcement Mg-based composites to be applied for large scale industrial fabrication. On the
other hand, the advantage of nano-sized reinforcement Mg-based composites is that the
composite brittleness caused by increased volume fractions of reinforcement in micron size has
been significantly reduced by the substitution of ceramic nano particles. The introduction of
metallic nano particles such as aluminum into magnesium nano composites can make the
composite even more ductile than the matrix itself with improved tensile and compressive
properties. Despite the fineness of particles influences the refinement of matrix grain structure,
the key to the success in the full engagement of particles in the magnesium composites is the
bonding between matrix and reinforcement. Squeeze casting with preform infiltration has been
demonstrated that the most effective and economic method for fabrication of micron-sized fiber
or particle-reinforced only, and hybrid fiber and particles reinforced magnesium composites in
relatively large sizes. Hence, the preform and squeeze casting technology could enable the Mg-
based hybrid nano composites to be applied cost-effectively for complex geometries with various

sizes in the highly competitive automotive industry.
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CHAPTER 3 Processing and Properties of As-cast Magnesium AMG60-Based
Composite Containing Alumina Nano Particles and Micron Fibres

3.1. Introduction

The need for high-performance and lightweight materials in automobile and aerospace
industries has led to extensive research and development efforts generating metal matrix
composites (MMCs) and cost-effective fabrication technologies. The major disadvantage of
MMCs usually lies in the relatively high cost of fabrication and reinforcement materials. The
cost-effective processing of composite materials is, therefore, an essential element for expanding
their applications. This is especially true for the high performance magnesium-based materials
due to their high material and processing costs [1-4]. Since hybrid composites are fabricated by
adding two or more reinforcements into matrix materials, excellent properties and a high degree
of design freedom combinations including short fibres and different size particles become
achievable. As magnesium matrix composites are reinforced with hybrid reinforcement in which
both of the particles and short fibres are employed, large opportunities are provided to optimize
the engineering performance of magnesium based composites for potential applications in
automobile and aerospace industries [5]. The fabrication process for the hybrid preform with
cellular structure made by micron-sized ceramic Al,Oz particles and Al,O3 fibres was described
by Zhang [6]. Although the micron particle-reinforced magnesium alloy processes higher tensile
strength and elastic modulus compared to the unreinforced magnesium alloy, a remarkable
reduction in ductility is somewhat disappointing. To minimize ductility reduction recently,
nano-sized particles were introduced into magnesium alloys by substituting micron-sized
particles [7, 8]. However, high cost of nanoparticles and manufacturing processes make them

56



less attractive to the highly competitive automotive industry than conventional approaches, i.e.,
stir casting and/or preform and squeeze casting.

In this article, the on-going work on the development of the preform-squeeze casting
process, which is capable of infiltrating liquid magnesium alloy into the hybrid preform
containing nano particles and micron fibres under an applied pressure, was presented. Both of the
optical microscopy (OM) and scanning electron microscopy (SEM) were employed for the
microstructural analysis of the composite. The informative results of tensile testing on the

hybrid composites are compared with those of the unreinforced matrix alloy.

3.2. Experimental Procedures

3.2.1. Materials

Al>,O3 ceramic particles sized as 200 nm and Al2Os short fibres with an average diameter
of 3 um and height of 50 um were employed as the raw materials for preparation of the hybrid
reinforcements since they are relatively inexpensive and possess adequate properties. The matrix
alloy AMG60, with a chemical composition (wt.%) of 6.0Al-0.22Zn-0.4Mn-0.1Si-0.01Cu-
0.004Fe-0.002Ni-Mg, was chosen for its widespread use in the automotive industry with high
ductility and moderate strengths. The thermo-physical properties of the ceramic Al>Osz nano

particle, Al,Oz fibre and matrix alloy AMG60 are given in Table 3.1.
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composites.
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Table 3.1 Thermo-physical properties of the ceramic Al>O3 nano particle, Al.Os fibre and matrix

alloy AM60; Physical chemistry of property of ceramic grain and fibre Al>Oz and magnesium

alloy
Material Al>O3 particle Al,Os fibre AMG60
APS size 200 nm
Density g/cm? 3.97 3.40

3.2.2. Fabrication of hybrid preform

The preparation steps for fabrication of the hybrid preforms (Figure 3.1, a) involve mixing
the ceramic short fibres and particles, introducing the binding compounds, forming the preform
shape under pressure, drying and sintering. In the hybrid preform, the fibres serve as the skeleton
for a cellular structure. The content level of the fibre was pre-determined based on the desired
amount of porosity in the cellular solid. The particulate reinforcements were dispersed in the
pores present in the cellular solid. The content, size and type of the ceramic reinforcements were
adjusted to yield the required quantity, and shape of preform. In addition, for the purpose of a
comparative study of the hybrid preform characteristics; a pure fibre preform was also fabricated

using the same process without adding particulate reinforcements.

3.2.3. Fabrication of composites

Figure 3.1 (b) shows the fabrication process for the composites in which a squeeze casting
process was adopted. During fabrication, a hybrid preform was first preheated to 300 0C. Then,

molten matrix alloy AM60 at 750 OC infiltrated into the preheated preform under an applied
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pressure of 90 MPa. The pressure was maintained at the desired level for 25 seconds. After
squeeze casting, a cylindrical disk of dual-phase reinforced composite with 3 vol.% Al>Oz nano-
sized particles and 5 vol.% Al.Oz fibres, named (F+P)/AMG60, was obtained. In the hybrid
composite, the particles constituted the primary reinforcement phase, and short fibres served as
the secondary reinforcement phase. For the purpose of comparison, a composite (F/AM60) with

only 5vol. % Al>Oz fibre reinforcement was also prepared.

3.2.4. Microstructure analysis

All specimens were cut from the center of the casting coupon. The samples were then
polished and etched for the microstructural analysis. The primary characteristics of the prepared
samples were investigated under an optical microscopy (Buehler image analyzer 2002). A
scanning electron microscope (SEM) was employed for the detailed analysis of the
microstructure. The maximum resolution used was up to 100 nm, which was in a backscattered
mode. To further analyze the composition of the material, the energy dispersive spectroscopy

(EDS) was used during the microstructure analysis.

3.2.5. Tensile testing

The INSTRON machine was employed for the tensile test and the test rate was set as
0.05mm/min. The mechanical properties for both of the composites and unreinforced matrix
alloy were evaluated by tensile tests, by following ASTM B557. The tensile tests were

performed at ambient temperature. Based on the average of three tests, the mechanical
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properties, such as elastic modulus (E), ultimate tensile strength (UTS), yield strength (YS) and

elongation (ef) were obtained.

3.3. Results and Discussion

3.3.1. Characterization of hybrid preform composite

Prior to liquid metal pressure infiltration of preform, during the preform fabricating
process, a three-dimensional skeleton is constructed. The fibres constitute a solid supporting
frame with homogeneously dispersed ceramic particles in this three-dimensional structure. A
novel fabrication process with high-frequency and long-term stirring ensures the reinforcements,
both fibres and particles, disperse uniformly with acceptable little agglomeration. Consequently,
it ensures AMG60 alloy can be easily infiltrated into the preform. As well, the space of each cell
provided by fibres skeleton in the preform represents a channel in which the molten magnesium
alloy can flow through that preventing the deformation of the preforms to ensure efficient
infiltration. The developed process for the fabrication of hybrid preforms is flexible to combine
different kinds of discontinuous ceramic reinforcements and matrices for a wide range of
engineering applications.

The preform eventual properties are critical in determining the properties of the
magnesium composites. The SEM micrograph (Figure 3.2) depicts the microstructure of as-cast
composite. It can be seen from Figure 3.2 that the reinforced particles were dispersed and placed
individually with acceptable little agglomeration; a comparison is given as Figure 3.3 showing

the distribution of only 5% vol/fibres reinforced composite.
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(b)

Figure 3.2. SEM micrograph of composite matrix alloy and composites (3% nano-particles + 5%

Fibres) /AM60. a) overall dispersion of nano-particles and fibres; b) nano particles dispersion:

Arrow 1-nano particles; Arrow 2-fibres.
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Molten matrix alloy was infiltrated into a preheated preform under pressure during the
squeeze casting process. The previous studies [6, 9] have demonstrated that the quality of the
preform and the processing parameters, such as the preform preheated temperature, the matrix
alloy pouring temperature, and the applied pressure level in the preform plus squeeze casting

process, influence the quality and performance of the composites significantly.

(@)
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(b)

Figure 3.3. SEM micrograph of composite matrix alloy and composites (5% Fibres) /AM60. a)

overall dispersion of fibres; b) enlarged fibres: Arrow 1-fibres.

Nishida [10] described the threshold infiltration pressure, Po, using the following equation

during squeeze casting:
Po =-[4V{fy cos0] / [df (1-VT)]

where vy is the surface energy of the melt; 0 is the contact angle between reinforcement and melt,
VT is the reinforcement volume fraction of the preform and df is the diameter of fibre or particle.
If it is under ideal conditions, when Vf =5%vol and df = 5um, for the magnesium alloy which
can improve the wetting and decrease the surface energy of the melt, the contact angle between
reinforcement and magnesium alloy is less than 900, the molten metal infiltrates the hybrid

preform spontaneously. Generally, when modeling the infiltration, it is assumed that there is no
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deformation on the preform. However, in practice pressure applied to the molten matrix to
overcome capillary forces and other space resistance forces. As a result, residual porosity can be
formed during infiltration. In fact, to achieve high quality and density in composites, the applied
high pressure can transmit to the preform, the pressure can be reached to 90 MPa. This high
pressure may deform the preform and led to undesired defects in the composites.

To optimize the applied pressure and prevent deformation of the hybrid preform, the
compressive strengths of hybrid preform were evaluated by compressive tests at room
temperature. From the data analysis, the critical stress PO of the hybrid preform is as low as 0.6
MPa [9]. Above this pressure, the deformation in the hybrid preform begins to localize, the
cellular structure of preform suffer progressive crushing, and fractures propagate catastrophically.
As shown in Figure 3.4, fractures of the fibres occur in a typical brittle manner, i.e., crush and
cut. To avoid the premature fracture of the preform, the pressure applied in the squeeze casting
was increased gradually from a value below the critical stress. The gradual increase in the
applied pressure could effectively prevent the deformation of preform during squeeze casting.
The applied pressure during casting and infiltration enabled the superheated molten matrix alloy
in the preheated die to flow into the preform and wet reinforcement although no wetting agents
was employed. Also, because the contacting time between the molten alloy and reinforcement at
relatively high casting temperature was very short with the help of the applied pressure, the

microstructure of the composites is homogeneous without the porosity and reactants.
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Figure 3.4. Fractures of preform fibres : Arrow 1-fibres crush.

Figure 3.5 gives the grain structures of the matrix alloy and the composites. The grain size
measurements for the composites and unreinforced AM60 matrix alloy are presented in Table 3.2.
With 5 vol.% of micron fibres, the grain size of the matrix alloy decreases from 68 to 45 um by
34%. It was reported [11] that the addition of micron particles resulted in a grain refinement of
Mg alloy AM50. The microstructural analysis of the composite reveals the similar effect of
grain refinement by Al>Os nano particles. The addition of 3 vol.% Al,Oz nano particles further
reduces the grain size of the matrix alloy from 45 to 20 um by 56%. The observed grain
refinement might be primarily due to the combined effect of heterogeneous nucleation of
primary magnesium on Al>Os particles, restricted growth of magnesium grains, and

heterogeneous nucleation of eutectic magnesium (Mg12Al17) on Al,Oz particles and fibres[12].
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Table 3.2 Grain sizes of AM60 alloy, 5 vol.% Fibre/ AM60, and (3 vol.% nano-Particle +5

vol. % Fibre)/ AM60 composites

AM60 5% Fibre (5%Fibre + 3% nano-Particle)
IAMG60 /AMG60
Average grain size 68 45 20

(um)

100 um

(@
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Figure 3.5. Optical micrographs showing grain structure of (a) unreinforced AM60 matrix alloy,

Particle +5 vol. %Fibre)/ AM60. All are under

(b) 5 vol.% Fibre/ AM60 and (c) (3 vol. % nano

as-cast condition.
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3.3.2. Tensile properties

The typical engineering stress-strain curves for AM60, 5 vol. % Fibre/AM60, and (5 vol.%
Fibre+3 vol.% nano-Particle)/AM60 composites are shown in Figure 3.6 and the mechanical
properties data are given in Table 3.2. It is observed from the results that the addition of micron-
sized reinforcements leads to a significant improvement in the elastic modulus and the strengths,
but results in a marked diminishment in elongation. However, the addition of nano-sized
particles results in a significant improvement in the elastic modulus and the strengths as well as a
restoration of ductility. From Table 3.3, it can be seen that the yield strength (YS) of the
composites, of 5 vol.% Fibre/ AM60, and (5 vol.% Fibre+3 vol.% nano-Particle)/AM60 are 120
and 140 MPa, which increase by 48% and 73% over that of the unreinforced matrix alloy,
respectively. According to the tensile curve showing in Figure 3.5, the elastic moduli (E) of the
composites of 5 vol.% Fibre/ AM60, and (5 vol.% Fibre+3 vol.% nano-Particle)/AM60 are 50
and 53 GPa, which are 25% and 33% higher than that of the unreinforced matrix alloy,
respectively. The UTS of the 5 vol.% Fibre/ AM60, and (5 vol.% Fibre+3 vol.% nano-
Particle)/AM60 composites is 189 MPa and 216 MPa, which represents 11% AND 26% over
that of the matrix alloy, respectively. Compared to that (6%) of the matrix AMG60 alloy, the
elongation to failure (ef) of the composites are 2.2% and 3.5% for the 5 vol.% Fibre/ AM60, and
(5 vol.% Fibre+3 vol.% nano-Particle)/AM60 composites, respectively. The elongation is
restored after 3 vol.% of nano-sized alumina particles by 1.3% is added to the composite. This
might be because the sites provided by nano-particles where cleavage cracks are opened ahead of
the advancing crack front are capable of dissipating stress concentration from crack tips and

altering local effective stress state from plane strain to plane stress in the neighborhood crack tip

[71.
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Figure 3.6. Typical engineering stress vs. strain curves for the matrix alloy AMG60, the

composites of 5 vol. % Fibre/AMG60, and (5 vol.% Fibre+3 vol.% nano-Particle)/ AM60.

Table 3.3 UTS, YS, ef and E of the matrix alloy AM60, the composites of 5 vol. % Fibre/ AM60,

and (5 vol.% Fibre+3 vol.% nano-Particle)/AM60.

UTS YS (MPa) ef E
(MPa) (%) (GPa)
AMG60 171 81 6.0 40
(5 vol.% F)/AM60 189 120 2.2 50
(3 vol. % nano-Particle +5 216 140 3.5 53

vol. % Fibre)/AM60
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3.4. Conclusions

A hybrid preform-squeeze casting process for fabricating magnesium alloy AM60-based
hybrid composites reinforced by nano-sized particles and micron-sized fibres has been developed.
The SEM observation on the microstructure reveals that the nano-sized particles dispersed
homogenously in the matrix alloy without large agglomeration. The optical microstructure
analysis of the composites indicates that fibres orientate randomly in the matrix. The hybrid
composite reinforced with 3 vol. % nano-sized Al>Os particles and 5 vol. % Al2Oz3 fibres exhibits
improved tensile strengths over those of the matrix alloy. In particular, the yield strength (140
MPa) of the hybrid composite is 73% higher than that of the matrix alloy. The elastic modulus
of the hybrid composite (53 GPa) shows 33 % improvement over the matrix alloy (40 GPa).
Compared with the 6% elongation of the matrix alloy, the composite reinforced by 5 vol.% of the
Al>O3 micron fibre exhibits only the elongation of 2.2%. The addition of 3 vol.% of the Al>O3

nano particles restores the elongation of the composite by 1.3% to 3.5%.
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CHAPTER 4 As-cast Magnesium AM60-Based Hybrid Nanocomposite
Containing Alumina Fibres and Nanoparticles: Microstructure and Tensile
Behavior

4.1. Introduction

Magnesium as the lightest structural metal possesses high specific strengths and low
density over other metallic metals. In the past two decades, the use of magnesium-based
engineering applications in the automotive industry has risen significantly owing to the increased
demand for fuel economy, light-weighting, and performance. From the viewpoint of engineering
performance, magnesium alloys are not very competitive owing to their inferior mechanical and
high-temperature and corrosion and wear properties in comparison with aluminum alloys and
steels. When one or more reinforcements are added to a monolithic alloy to form a metal matrix
composite (MMC), a novel material with considerably improved properties such as high
strengths, high moduli and high-wear resistance, low coefficients of thermal expansion, becomes
available. MMCs accompanying with their superior mechanical properties over non-reinforced
monolithic alloys offers a large variety of engineering designs. Therefore, magnesium-based
composites have been receiving attention in recent years as an attractive choice for automotive
applications because of their low density and superior specific properties due to the need for
lightweight materials with high-performance in the automotive industry [1-3].

The major disadvantage of MMCs usually lies in the relatively high cost of fabrication and
reinforcement materials. The cost-effective processes for the preparation of composite materials
are an essential element for expanding their applications. This is especially true for the high-

performance Mg-base MMCs due to their high material and processing costs [4-7]. Recently,
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Zhang et al [8] and Zhou et al [9] demonstrated the success in the introduction of two or more
reinforcements including short fibres and particles with different sizes into magnesium matrix
alloy AM60 by using a preform-squeeze casting process. The fabricated Mg-based hybrid
composites exhibited excellent properties, and made a high degree of material design freedom
available for magnesium [8, 9]. As Mg-based hybrid composites employed hybrid
reinforcements such as particles and short fibres, opportunities emerges to optimize the
engineering performance of magnesium-based composites for various potential applications [10].
The study by Zhang et al [11] indicated that, although the micron-sized particle and fibres-
reinforced magnesium hybrid composites had high tensile strengths and elastic modulus
compared to the unreinforced matrix alloy, it was disappointed to observe a remarkable reduction
in ductility. To minimize ductility reduction recently, nano-sized particles were introduced into
magnesium alloys by substituting micron-sized particles [1, 12-14]. However, high costs of
nanoparticles and manufacturing processes such as evaporation, spray processing and ball
milling make them less attractive to the highly competitive automotive industry than
conventional approaches, i.e., stir casting and/or preform and squeeze casting.

In this article, the on-going work on the development of the preform-squeeze casting
process, which was capable of infiltrating liquid magnesium alloy AMG60 into the hybrid preform
containing nano-sized Al>Osz particles and micron-sized Al>Os fibres under an applied pressure,
was presented. The tensile properties of the Mg-based hybrid nanocomposite (MHNC) were
evaluated. The informative results of tensile testing on the MHNC were compared with those of
the unreinforced matrix alloy and the composites reinforced with micron-sized Al.Oz fibres

and/or Al;O3 particles. The Transmission Electron Microscopy (TEM), Scanning Electron
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Microscopy (SEM), and Optical Microscopy (OM) were employed for the microstructural and

fractural analyses of the MHNC.

4.2. Experimental Procedures

4.2.1. Materials

Magnesium alloy AM60 with a chemical composition (wt %) of 6.0Al-0.22Zn-0.4Mn-
0.1Si-0.01Cu-0.004Fe-0.002Ni-Mg was chosen as matrix alloy. Nano-sized AlOs ceramic
particles with an average particulate size of 100 nm (US Research Nanomaterials, Inc., USA),
micron-sized Al,Oz ceramic particles with an average particulate size of 5 pm (Inframat
Corporation, USA), and Al203 short fibres (Morgan Advanced Materials, United Kingdom) with
an average diameter of 4 um and length of 50 um were employed as raw materials for the
preparation of hybrid reinforcements since they are relatively inexpensive and possess adequate

properties.
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Figure 4.1. Flowchart showing the procedure for fabricating hybrid (a) preform and (b)
composites.

4.2.2. Fabrication of hybrid preform

The preparation steps for fabrication of the hybrid preforms (Figure 4.1, a) involve: mixing
the ceramic short fibres and particles, introducing the binding compounds, forming the preform
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shape under pressure, drying, and sintering. In the hybrid preform, the fibres serve as the
skeleton for a cellular structure. The content level of the fibre was pre-determined based on the
desired amount of porosity in the cellular solid. The particulate reinforcements were dispersed in
the pores present in the cellular solid. The content, size and type of the ceramic reinforcements
were adjusted to yield the required quantity, and shape of preform. In addition, for the purpose of
a comparative study of the hybrid preform characteristics; a pure fibre preform was also

fabricated using the same process without adding particulate reinforcements.

4.2.3. Fabrication of composites

Figure 4.1 (b) shows the fabrication process for the composites in which a squeeze casting
process was adopted. During fabrication, a hybrid preform was first preheated to 700 0C. Then,
molten matrix alloy AM60 at 750 OC infiltrated into the preheated preform under an applied
pressure of 90 MPa. The pressure was maintained at the desired level for 30 seconds. After
squeeze casting, a cylindrical disk of single or dual-phase reinforced composite with 3 vol.%
Al;03 nano-sized or micron-sized particles and 5 vol.% Al,O3 fibres, was obtained. In the
hybrid composite, the particles constituted the primary reinforcement phase, and the short fibres
served as the secondary reinforcement phase. For the purpose of comparisons, three different
types of 5 vol% Fibre/AM60, (5 vol.% Fibre + 3 vol% micron-Particle)/AM60, and (5 vol.%
Fibre+3 vol.% nano-Particle)/AM60 composites were prepared, which were named the fibre-
only composite, the micron hybrid composite, and the MHNC, respectively. More details on the

process for fabricating the composites are given in references 8, 9 and 11.
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4.2.4. Microstructure analysis

All specimens were cut from the center of the casting coupon. The type of heat treatment,
T4, was conducted on both of the unreinforced alloy AM60 and fiber-reinforced composites to
reveal the grain structure. Following the standard metallographic procedures, as-cast and T4-
treated specimens were mounted and polished. To disclose the microstructural characteristics of
the composites and alloys, samples were then polished and etched in a solution (60 ml 99%
ethanol solution, 20 ml acetic acid, 19 ml dilute water, and 1 ml nitric acid) for microstructural
analyses. The primary morphologic grain characteristics of the polished and etched samples were
investigated under optical microscopy (OM) (Buehler image analyzer 2002). The existence and
distribution of the reinforcements were investigated by a JEOL JSM-5800LV scanning electron
microscope (SEM) with an energy dispersive X-ray spectrometer (EDS). Samples for TEM
(JOEL 2010F) analyses were prepared by focus ion beam (FIB) (Zeiss NVision 40) using STEM
modulus for investigation. To prevent the fall-off of the tiny nanoparticle, a tungsten coating
was applied to the cross-section surface of the MHNC foil prepared by the FIB before the TEM

observation.

4.2.5. Tensile testing

Mechanical properties were evaluated via tensile testing (ASTM B557) at ambient
temperature using specimens of 25 mm x 6 mm x 6 mm (gauge lengthxwidthxthickness) on an

Instron (Grove City, PA, USA) machine equipped with a computer data acquisition system. The
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tensile specimens were machined from the center of as-cast coupons. The tensile tests were
performed at an initial strain rate of 5x10—3 s—1. The tensile properties, including 0.2% yield
strength (YS), ultimate tensile strength (UTS), elongation to failure (ef), and elastic modulus (E)

were obtained based on the average of three tests.

4.3. Results and Discussion

4.3.1. Microstructure

Figure 4.2 presents optical micrographs showing the unetched matrix alloy and the
composites. As shown in Figure 4.2(a) by the OM, the divorced eutectic phases (B-Mgi7Al12 ) is
present along the grain boundaries of the unreinforced alloy. Figure 4.2(b) depicts that the short
fibres are distributed in a random and isotropic orientation in the fibre-reinforced composite. The
microstructures of the hybrid magnesium composites reinforced with micron-sized and
nanosized particles are given in Figure 4.2(c) and (d), respectively. It can be seen that the fibres
and particles are uniformly distributed throughout the matrices in the fibre-only composite and
the hybrid composites. The introduction of either micron or nano particles up to 3 vol% has little
effect on the uniformity of fibres. Pores are barely found in the microstructure, implying the
hybrid composites were well densified during fabrication due to a gradual application of the
infiltration pressure. The pore-free microstructure of the composites also suggests the success in
the infiltration of the matrix alloy into the hybrid preform.

A non-uniform distribution of reinforcements could result in the degradation of
mechanical properties of the composites, a non-uniform grain structure and defect formation of

the composites. Although the large difference in size between the particles and the fibres is
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present, it can be seen from Figures. 4.2(c) and (d) that the micron or nanoparticles and fibres are
dispersed uniformly without agglomeration and cave in the matrix alloy. The microstructure of
the composites reinforced with both the Al,O3 micron and nanoparticles and micron fibres
distributed homogeneously in the matrix satisfies the materials design requirements by using
ceramic particles as the main reinforcement to enhance the mechanical and wear properties of the
composites, with the fibres helping improve their toughness. The overall properties of the

composites can be improved and tailored via optimization.

(@
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Figure 4.2. Optical photograph showing the microstructures of unetched as-cast matrix alloy and

composites, (a) unreinforced matrix alloy AM60, (b) 5 vol% Fibre/ AM60, (c) (3 vol% micron
particle +5 vol% Fibre)/ AMG60. (d) (3 vol% nanoparticle +5 vol% Fibre)/ AMG60.

Figure 4.3 presents the grain structures of the etched matrix alloy and the composites. The
grain size measurements for the composites and unreinforced AM60 matrix alloy are presented
in Figure 4.4. With 5 vol% of micron-sized fibres, the grain size of the matrix alloy decreases
from 68 to 45 um by 34%. The refinement of grain structure in the fibre-only composite should
be primarily attributed to the restriction of grain growth by the limited cellular space formed in
the skeleton of the fiber preform structure[15]. The addition of 3 vol.% Al,Os micron particles
to the hybrid composite further reduces the grain size of the matrix alloy from 45 to 28 um by
38%. It was reported [16] that the coupled effect of the heterogeneous nucleation of the primary

magnesium phase on micron particles and the restricted growth of magnesium crystals should be
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responsible for the grain refinement of as-cast Mg alloy AM50 with 5 vol% micron particles.
The microstructural analysis of the nanocomposite reveals the similar effect of grain refinement.
The substition of the Al2Os nano particles for the micron ones further reduces the grain size of

the matrix in the MHNC from 28 to 20 um by 40%.
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Figure 4.3. Optical micrographs showing grain structures of etched (a) unreinforced matrix alloy
AMG60, (b) 5 vol% fibre/ AM60, (c) (3 vol% micron particle +5 vol% fibre)/ AM60, and (d) (3
vol% nano particle +5 vol% fibre)/ AM60.
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Figure 4.4. Measured grain sizes of the unreinforced matrix alloy AM60, 5 vol% fibre/ AM60,
(3 vol% micron particle +5 vol% fibre)/ AM60, and (3 vol% nano particle +5 vol% fibre)/ AM60.
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Figure 4.5 shows the reinforcement distribution in the microstructure of the unreinforced
matrix alloy, the the fibre-only composite and the hybrid composites by SEM micrographs in a
backscattered electron (BSE) mode. It can be seen from Figure 4.5 that the reinforced fibres and
micron/nano particles were dispersed and placed individually with little agglomeration. As
illustrated in Figure 4.6, the TEM and EDS analyses confirms the presence of the micron
particles in the hybrid composite (Figure 4.6(a)), and the nanoparticles in the MHNC which
further evidences the successful introduction of the nanoparticles in the composites (Figure
4.6(c) ). The probe crossed the alumina micron and nano particles along the white line in Figure
4.6(b) and (d). When the probe went from the matrix to the particles, a large sharp decrease in
magnesium, and a rapid increase in aluminum and oxygen were found. This observation was
consistent with the compositions of the matrix and particle reinforcements. Examination of the
interfacial structure revealed a relatively clean interface of both the micron and nano particles.
No particle/matrix reaction products were detected in the hybrid composite and MHNC by TEM.
This should be primarily due to the presence of inadequate reaction time between the particles

and matrix alloy as a result of fast pressurized infiltration implemented during squeeze casting.

= e
LS .
|
r
A ;
-) e ‘l
e W"J.’ e
g s A ] F
. _.“ o . ! -‘-',‘)-;ﬁ . .
ll .“ " ‘f’ . i -; . J.
2 L % PN
20 um
’



Micron AlOs -
Particle
l. ’

AlzOs Fibre .

(b)

< Nano AlOs
Particle

7
J oy, = A
g e * e i
" ¥ /
e f 1
b -

AIzOg_Fibre

i E

(©)

Figure 4.5. SEM micrographs in BSE mode showing the reinforcement distribution in (a) 5
vol% fibre/ AM60, (b) (3 vol% micron-particle +5 vol% fibre)/ AM60, and (c) (3 vol. % nano-
particle +5 vol% fibre)/ AM60.
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Figure 4.6. TEM and EDS results showing the particle presence and the interface between the
particle and matrix, (a) a micron Al2Os particle in the (3 vol% micron Al2Os particles + 5 vol%
Fibres) /AMG60, (b) line scans and the corresponding line scanning pattern for the cross-section
area of the micron particle, (c) a nano Al2O3 particle in the (3 vol% micron Al2O3 particles + 5
vol% Fibres) /AM60 MHNC, and (d) line scans and the corresponding line scanning pattern for
the cross-section area of the nano particle. The gray lines denote the approximate scanning path.
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Figure 4.7 shows the TEM images of the composites reinforced with the two different
sizes of Al,Oz particles. Examination of microstructure revealed by TEM manifests the
difference between the two composites in the presence of defects. Relatively high dislocation
density exists in the composites reinforced by the micron size particles (Figure 4.7(a)). The
inherent difference in thermal expansion coefficients should be responsible for the formation of
mismatch stress of the Al,O3 particles and matrix alloy, which results in high dislocation density.
This observation is consistent with the results disclosed in references [12, 17]. However, when
the particle size decreases to the nano level, despite the presence of the distinctive difference in
their thermal expansion coefficients between the Al>Os3 particles and the matrix alloy, no evident
dislocations around the nano particle are observed in the matrix alloy under the applied condition
of the electron diffraction pattern, as shown in Figure 4.7(b). The low dislocation density in the
MHNC might be due to the fact that the nano particles are extremely tiny, which are hard to

generate sufficient strain by the thermal mismatch to induce dislocations during solidification.
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Figure 4.7. TEM micrographs showing dislocations in the composites with Al>O3 particles: (a)

micron and (b) nano.

4.3.2. Tensile properties

The representative engineering stress-strain curves for AMG60, the fibre-only composite
(AMG60 5%F), the micron hybrid composite (AM60 5%F-3%P micron Al>Oz3), and the MHNC
(AMG60 5%F-3%P nano Al>O3) are shown in Figure 4.8. The curves for the matrix alloy and the

composites have a similar pattern, in which the materials deform elastically first. Once the yield
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point is reached, the plastic deformation sets in. The addition of fibers and/or particles pushes
the yield points of the composites to high stress levels. Finally, the composites fractured at much
higher stress and lower strain levels than that of the matrix alloy AM60. It can be seen from
Figure 4.7 that, although the introduction of the reinforcements leads to an increase in the
strengths and modulus, there is a significant reduction in elongation when micron fibres and
particles are added. But, the placement of the nano particles in the MHNC, which replace the
micron ones, offsets the elongation reduction.

The tensile properties data given in Table 4.1 show that the as-cast matrix alloy exhibits
171 MPa of its UTS, 81 MPa of its YS, 40 GPa of its elastic modulus and 6.0% failure
elongation. The introduction of the micron fibre reinforcement, increases the UTS, YS and E to
189 MPa, 120 MPa and 50 GPa, by 11%, 48%, and 25%, respectively. Although additional 3
vol% of micron particles further enhances the UTS, YS and E only by 2%, 18%, 6%,
respectively, the elongation is reduced considerably from 6.0% to 1.6% by 73%. Meanwhile, the
MHNC gives the UTS of 216 MPa showing an increase of 13% in UTS over the hybrid
composite as the YS ( 140 MPa) and the E (53 GPa) are maintained. The determined tensile
strengths are in line with the grain size measurements since the grain refinement enhances the
materials strengths. Moreover, it is worthwhile noting that the er of the MHNC is 3.5%, which
represents an increase of 119% over that of the hybrid composites. The replacement of the
micron particles with the nano particles in the Mg-based hybrid composite effectively recovers

the ductility of the composite by 2% .
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Figure 4.8. Engineering stress vs. strain curves for the matrix alloy AM60, 5 vol% Fibre/AMG60,
(5 vol.% Fibre+3 vol% micron Al,O3z particle)/AM60, and (5 vol.% fibre+3 vol.% nano Al.O3
particle)/AMG60.

Table 4.1 UTS, YS, ef and E of the Matrix Alloy AM60, the Composites of 5 vol. %

Fibre/AM60, and (5 vol.% Fibre+3 vol.% nano-Particle)/AMG60.

YS UTS ef E
(MPa) (MPa) (%) (GPa)
AM60 81+6 171+#8 6.0%1.3 40+4
Fibre-only 120+5 189+12 2.2+1.7 50+2
Micorn Hybrid 142+7 192+15 1.6+1.1 54+5
MHNC 140+14 2165 3.5%1.2 53+3
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The observed ductility restoration is evidently supported by the results of the TEM
analysis. A high dislocation density provides more tough obstacles to overcome, which
increases the strength and toughness of materials. With a low dislocation density, however,
materials are capable of carrying more strain during deformation. Also, Hassan and Gupta[12]
have also observed that the addition of micron-sized reinforcements leads to an improvement in
the elastic modulus and the strengths, but results in a marked diminishment in elongation.
However, the addition of nano-sized particles results in a significant improvement in the elastic
modulus and the strengths as well as a restoration of ductility. This is because the sites provided
by nano-particles where cleavage cracks are opened ahead of the advancing crack front are
capable of dissipating stress concentration from crack tips and altering local effective stress state
from plane strain to plane stress in the neighborhood of the crack tip. Overall, the high strengths
and moderate elongation of the MHNC should result from the combined strengthening effect:
homogeneous distribution of nano particles, matrix grain structure refinement, good interfacial

bonding between the matrix and the nano particles and micron fibres[13].

96



4.3.3. Strain hardening
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Figure 4.9. True stress vs. strain curves for the matrix alloy AM60, 5 vol% Fibre/AMG60, (5
vol.% Fibre+3 vol% micron Al,Oz particle)/AM60, and (5 vol.% fibre+3 vol.% nano Al2Os
particle)/AMG60.
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Figure 4.10. Strain hardening curves for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 vol.%
Fibre+3 vol.% micron Al,O3 particle)/AM60, and (5 vol.% fibre+3 vol.% nano Al2Os

particle)/AM60, upon the commencement of plastic deformation.

The true stress and strain could be determined from the engineering stress and strain by

applying the following equations:

ot = oe (1+ &) (Eq. 4.1)

er=1In (1+ &) (Eq. 4.2)
where ot is the true stress, €t is the true strain, ce is the engineering stress, and ge is the
engineering strain. Figure 4.9 shows the true stress vs. strain curves for the matrix alloy AM60,
5 vol% Fibre/AM60, (5 vol.% Fibre+3 vol% micron Al,Oz particle)/AM60, and (5 vol.%
fibre+3 vol.% nano Al>Os particle)/ AM60.
The true stress-strain curve for engineering materials can be described by the power law
relationship for plastic deformation [11]:

c=Keg" (Eq. 4.3)
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where K is the strength index, ¢ is the plastic strain and n is the strain hardening exponent.

Table 4.2 lists the numerical values of the constants in Eq. 4.3 with the regression
coefficients. The strain hardening rate (do/de) can be obtained from the differentiation of the Eq.
4.3. The strain hardening behaviors of the alloy and composites are shown in Figure 4.10, which
was derived from Figure 4.9. Figure 4.10 presents the strain hardening rates at the beginning of
the plastic deformation for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 vol.% Fibre + 3 vol%
micron Al2Oz particle)/ AM60, and (5 vol.% fibre + 3 vol.% nano Al.Osz particle)/AM60. All the
tested materials revealed the similar trend, in which the strain hardening rates decrease with
increasing the true strain. At the beginning of the plastic deformation, the matrix alloy shows a
strain hardening rate of only 4085.2 MPa. The ceramics fibre introduction increases the strain
hardening rate to 7453.5 MPa. The strain hardening rate rises to 8360.9 MPa after the addition
of the micron particles to the hybrid composite. The substitution of the nano particles for the
micron ones leads to an increase in the strain hardening rate to 8418.6 MPa. The effect of the
particle size on the strain hardening rate of the hybrid composite and the MHNC seems limited.
Among all the tested materials, the MHNC has the highest strain hardening rate, which implies
that the MHNC are able to spontaneously strengthen itself increasingly to a large extent, in

response to plastic deformation before the final fracture.
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Table 4.2 Best fit parameters of power equation

Materials K (MPa) n R?
AMG60 444+10 0.3187+0.0074 0.9957+0.0019
AMG60 5%F 932+11 0.3908+0.0052 0.9946+0.0021

AMG60 5%F-3%P- micron Al,03 107712 0.4045+0.0070 0.9998+0.0001

AMG60 5%F-3%P nano Al,Oz  1143+15 0.4223+0.0098 0.9992+0.007

4.3.4. Fractography
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Figure 4.11. Fractures of AM60, AM60 composites with Al>Oz fibres particles (a) AM60 alloy
(b) AM60 alloy with 5%fibre (c) AM60 alloy with 5%fibre/ 3% micron size particles (d) AM60

alloy with 5%fibre/ 3% nano size particles (arrow 1- matrix crack; arrow 2- fibre crack; arrow 3-

debonding; arrow 4- micron-particle crack; arrow).

As shown in SEM fractography in Figure 4.11, the specimens were observed under high
magnifications in attempt to reveal detailed features of the fracture surfaces and determine the
fracture behaviors with reference to the mechanical properties of the composites reinforced with
the different volume fraction, sizes and types of fibre and particles. Figure 4.11 (a) shows a
typical fracture surface with a unreinforced AMG60 alloy. There were shallow dimples on the
surface and generally displayed ductile behavior. A considerable amount of energy was
consumed in the process of the formation of micronvoids, eventually leading to the formation of
cracks. This type of cracks resulted from the coalescence of microvoids under tensile stress. As

the reinforcement introduction of fibre and micron/nano-sized particles, significant amount of
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loads were transferred to fibre and micron/nano-sized particles. The composite broke in a brittle
mode much different from that of the unreinforced alloy. The final tensile fracture primarily
results from fibre and particles cracks, as shown in Figure 4.11, due to the inherent nature of the
high strength and brittleness of the ceramic fibres and particles. The debonding at the interface
between the fibre and matrix as well as the particle and matrix could be another crack initiation
area of the composite, which might be attributed to the insufficient infiltration of the molten
metal into the close packed network of fibres and particles. Few dimples are found on the
fracture surfaces of the fibre-only and the micro hybrid composites in Figure 4.11 (b) and (c).
However, certain deformation of the matrix alloy is evidently present on the fracture surface of
the MHNC. Overall, the SEM fractography results were in consistent with the tensile data as

reinforcement addition into the particles.

4.4. Conclusions

A hybrid preform-squeeze casting process for fabricating magnesium alloy AM60-based
hybrid nanocomposites reinforced by nano-sized particles and micron-sized fibres has been
developed. The SEM observation on the microstructure reveals that the nano-sized particles
disperse homogenously in the matrix alloy without large agglomeration. The optical and SEM
microstructure analyses of the composites indicate that fibres orientate randomly in the matrix
and grain structure is well refined. The TEM analyses reveal the presence of a low dislocation
density in the MHNC resulting from the deficiency of thermal strains due to the introduction of
nano-sized particles. The MHNC reinforced with 3 vol% nano-sized Al>Os particles and 5 vol%
Al>Os fibres exhibits an balance on tensile strengths and elongation compared with the fibre-only

and hybrid composites and the matrix alloy. Among the three types of the tested composites, the
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MHNC gives the highest UTS (216 MPa), er (3.5%) and the strain hardening rate (8418.6 MPa).
The YS (140 MPa) and E (53 GPa) of the MHNC are very comparable to those of the hybrid
composite. The addition of the 3 vol% Al.O3 nano particles restores the elongation of the hybrid
composite from 1.6% to 3.5%. The replacement of the micron particles with the nano particles
in the Mg-based hybrid composite effectively recovers the ductility of the composite by 118%.
The presence of the low dislocation density in the matrix of the MHNC should be responsible for

the ductility restoration.
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CHAPTER 5 Microstructure and Tensile Properties of Cast Magnesium
AMG60-Based Hybrid Nanocomposites Reinforced With Al>Os Fibres and
Al;Oz or AIN Nanoparticles

5.1. Introduction

Magnesium and its alloys, owing to their low density, approximately two-third of that of
aluminium, and high specific strength as compared to other structural metals, have attracted
widespread attention in commercial products as well as scientific research as demands for energy
conservation and engineering performance are increasing [1, 2]. Especially, a significant rise has
been witnessed in the magnesium-based engineering applications in the automotive industry.
Due to their relatively low mechanical and high-temperature and corrosion and wear properties,
magnesium alloys seem uncompetitive with aluminum alloys and steels. To improve mechanical
properties of metallic materials, ceramic-based reinforcement is often introduced to a monolithic
alloy to form a metal matrix composite (MMC). Consequently, considerably enhancement of
engineering properties such as high strengths, high moduli and high-wear resistance, low
coefficient of thermal expansion becomes achievable. The superior properties of MMCs over
non-reinforced monolithic alloys provide a large variety of engineering designs. Therefore,
magnesium-based composites, which are capable of meeting the demand for high-performance
materials with lightweight features, have been receiving attention in the past decade for

engineering applications in the automotive industry[3-5].

But, MMCs are often disadvantaged by relatively high cost of fabrication processes and

reinforcement materials [6-9]. An economic process for the preparation of composite materials
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is an essential element for expanding their applications. Recently, Zhang et al [10] and Zhou et
al [11] demonstrated the success in the introduction of two or more reinforcements including
short fibres and particles with different sizes into magnesium matrix alloy AM60 by using a
preform-squeeze casting process. The hybrid reinforce Mg-based composites exhibited excellent
properties as well as a high degree of freedom in materials design for magnesium [10, 11]. As
the addition of several reinforcements, Mg-based hybrid composites show opportunities optimize
the engineering performance of magnesium-based composites by emerging specific
characteristics of reinforcements for various potential applications [12]. The study by Zhang et al
[13] indicated that, with the introduction the micron-sized particle and fibres, magnesium hybrid
composites have gained high tensile strengths and elastic modulus compared to the unreinforced
matrix alloy. Meanwhile, it was observed a remarkable reduction in ductility. To minimize
ductility reduction recently, nano-sized particles were highlighted for improvement of this
situation. The addition of nano-sized particles into magnesium alloys by substituting micron-
sized particles successfully increases the ductility of micron-sized reinforced MMCs
significantly [3, 14-16]. However, studies on magnesium-based hybrid composites reinforced
with both nano particles and micron fibres are limited in the open literature. In particular, the
types and sizes of nano particles influence the mechanical properties of Mg-based
nanocomposites. Also, because of high costs of fabricating processes such as evaporation, spray
processing and ball milling compared with conventional approaches, i.e., stir casting and/or
preform and squeeze casting, real engineering applications of magnesium-based composites are

scarce in the highly competitive automotive industry.
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In this study, magnesium alloy AMG60-based hybrid nanocomposites (MHNC)
incorporating nano Al.Oz or AIN particles with different sizes and micron alumina (Al.Oz) fibre
are prepared by a preform and squeeze casting technique. The microstructures of the MHNCs
are analyzed by the Transmission Electron Microscopy (TEM), Scanning Electron Microscopy
(SEM), and Optical Microscopy (OM) and compared with that of the base alloy. The
mechanical properties of the MHNCs are determined by tensile testing. The effects of the
microstructure characteristics and reinforcement types on the tensile behavior of the MHNCs are

investigated. The SEM fractographic analyses of the MHNCs are performed.

5.2. Experimental Procedures

5.2.1. Materials

Magnesium alloy AM60 with a chemical composition (wt %) of 6.0Al-0.22Zn-0.4Mn-
0.1Si-0.01Cu-0.004Fe-0.002Ni-Mg was chosen as matrix alloy. Nano-sized Al>Os ceramic
particles with an average particulate size of 100 nm (US Research Nanomaterials, Inc., USA),
nano-sized AN ceramic particles with an average particulate size of 800 nm (US Research
Nanomaterials, Inc., USA), and Al.O3 short fibres (Morgan Advanced Materials, United
Kingdom) with an average diameter of 4 um and length of 50 pum were employed as raw
materials for the preparation of hybrid reinforcements since they are relatively inexpensive and

possess adequate properties listed in Table 5.1.
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Table 5.1 Mechanical properties of nano-sized ceramics particles

Elastic Modulus Fracture Toughness
(GPa) (MPa/m2)
Al2O3 385 [17] 3.3-5[19]
AIN 308 [18] 3-5.9 [20]
@) Ceramic fibres
Pre-treatment
v
ceramic particles > Mixing and binding
v
Shaping
v
Drying
Firing
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(b) Alloy melting

Preheated preform l
Squeeze casting D Circulation

|

Mold stripping

!

Initial composites

Figure 5.1. Flowchart showing the procedure for fabricating hybrid (a) preform and (b)

composites.

5.2.2. Fabrication of hybrid preform

The preparation steps for fabrication of the hybrid preforms (Figure 5.1, a) involve mixing
the ceramic short fibres and particles, introducing the binding compounds, forming the preform
shape under a pressure, drying and sintering. In the hybrid preform, the fibres served as the
skeleton for a cellular structure. The content level of the fibre was pre-determined based on the
desired amount of porosity in the cellular solid. The particulate reinforcements were dispersed in
the pores present in the cellular solid. The content, size and type of the ceramic reinforcements
were adjusted to yield the required quantity, and shape of the preform. In addition, for the
purpose of a comparative study of the hybrid preform characteristics; a pure fibre preform was

also fabricated using the same process without adding particulate reinforcements.
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5.2.3. Fabrication of composites

Figure 5.1 (b) shows the fabrication process for the composites in which a squeeze casting
process was adopted. During fabrication, a hybrid preform was first preheated to 700 °C. Then,
molten matrix alloy AM60 at 700 °C infiltrated into the preheated preform under an applied
pressure of 90 MPa. The pressure was maintained at the desired level for 30 seconds. After
squeeze casting, cylindrical disks of single or dual-phase reinforced composites with 3 vol.% of
nano-sized Al>Oz or nano-sized AIN particles and 5 vol.% Al,Os fibres, were obtained. In the
hybrid composite, the particles constituted the primary reinforcement phase, and short fibres
served as the secondary reinforcement phase. For the purpose of comparisons, three different
types of composites, 5 vol.% Fibre/AM60, (5 vol.% Fibre + 3 vol% nano-Al.Oz-Particle)/ AM60
and (5 vol.% Fibre+3 vol.% nano-AlIN-Particle)/ AM60 composites were prepared, which were
also named the fibre-only composite, the MHNC-AI>03, and the MHNC-AIN, respectively.

More details on the process for fabricating the composites are given in references 10, 11 and 13.

5.2.4. Microstructure analysis

All specimens were cut from the center of the casting coupon. The type of heat treatment,
T4, was conducted on both of the unreinforced alloy AM60 and fiber-reinforced composites to
reveal the grain structure. Following the standard metallographic procedures, as-cast and T4-
treated specimens were mounted and polished. To disclose the microstructural characteristics of
the composites and alloys, samples were then polished and etched in a hybrid solution (60 ml
99% ethanol solution, 20 ml acetic acid, 19 ml dilute water, and 1 ml nitric acid) for

microstructural analyses. The primary morphologic grain characteristics of the polished and
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etched samples were investigated under optical microscopy (OM) (Buehler image analyzer 2002).
The existence and distribution of the reinforcements were investigated by a JEOL JSM-5800LV
scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDS).
Samples for TEM (JOEL 2010F) were prepared by focus ion beam (FIB) (Zeiss NVision 40)
using STEM modulus for investigation; electron energy loss spectroscopy (EELS) was applied
for identification of non-conductive and negative element such as nitrogen To prevent the fall-
off of the tiny nano Al>O3 particle, a tungsten coating was applied to the cross-section surface of

the MHNC foil prepared by the FIB before the TEM observation.

5.2.5. Tensile testing

Mechanical properties were evaluated via tensile testing (ASTM B557) at ambient
temperature using specimens of 25 mm x 6mm x 6mm (gauge lengthxwidthxthickness) on an
Instron (Grove City, PA, USA) machine equipped with a computer data acquisition system. The
tensile specimens were machined from the center of as-cast coupons. The tensile tests were
performed at a strain rate of 5x10—3 s—1. The tensile properties, including 0.2% yield strength
(YS), ultimate tensile strength (UTS), elongation to failure (ef), and elastic modulus (E) were

obtained based on the average of three tests.
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5.3. Results and Discussion

5.3.1. Microstructure

Optical micrographs given in Figure 5.2 show the unetched matrix alloy and the
composites. Figure 5.2(a) reveals the divorced eutectic phases (B-Mg17Al12 ) is present along the
grain boundaries of the unreinforced alloy. As shown in Figure 5.2(b), the short fibres are
distributed in a random and isotropic orientation in the fibre-reinforced composite. Figures 5.2(c)
and (d) presents the microstructures of the hybrid magnesium composites reinforced with nano-
sized Al;Os or AIN particles, respectively. It can be seen that the fibres and particles are
uniformly distributed throughout the matrices in the fibre-only composite and the MHNCs. The
introduction of either nano-sized Al>Os or nano-sized AIN particles up to 3 vol% has almost no
influence on the uniformity of fibres. Pores are barely found in the microstructure, suggesting
the hybrid composites are well densified during fabrication due to a gradual application of the
infiltration pressure. The pore-free microstructure of the composites also ascertains the success
in the infiltration of the matrix alloy into the hybrid preform.

A non-uniform distribution of reinforcements could lead to a inhomogeneity of grain
structure and induce the formation of defects, and consequently degrade mechanical properties of
the composites. Despite the presence of the large difference in size between the particles and the
fibres, it is observed from Figures. 5.2(c) and (d) that the nanoparticles and fibres are dispersed
homogeneously without agglomeration and cave in the matrix alloy. The homogeneous
microstructures of the composites reinforced with both the Al>O3z and/or AIN nanoparticles and
micron fibres in the matrix meet the demand for the materials design by using ceramic particles

as the main reinforcement to enhance the mechanical and wear properties of the composites, with

114



the fibres helping improve their toughness. The overall properties of the composites should be

tailored and enhanced by the well-distributed reinforcements.

L

20 pum

(b)
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Figure 5.2. Optical photograph showing the microstructures of unetched as-cast matrix alloy and
composites, (a) unreinforced matrix alloy AM60, (b) 5 vol% Fibre/ AM60, (c) (3 vol% nano
Al>O3 particle +5 vol% fibre)/ AM60, and (d) (3 vol. % nano AIN particle +5 vol% fibre)/

AMGO0.
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Figure 5.3 presents the grain structures of the etched matrix alloy and the composites. The
grain size measurements for the composites and unreinforced AM60 matrix alloy are presented
in Figure 5.4. With 5 vol% of micron-sized fibres, the grain size of the matrix alloy decreases
from 68 to 45 um by 34%. Qiang et al [21] reported that the restriction of grain growth by the
limited cellular space formed in the skeleton of the fiber preform structure should be responsible
for the refinement of grain structure in the fibre-only composite. The addition of 3 vol.% AIN
nano particles to the hybrid composite further reduces the grain size of the matrix alloy from 45
to 34 um by 24%. It was observed [22] that the grain refinement of as-cast Mg alloy AM50 with
5 vol% micron fibre was attributed to the coupled effect of the heterogeneous nucleation of the
primary magnesium phase on particles and the restricted growth of magnesium crystals. The
microstructural analysis of the nanocomposite reveals the similar effect of grain refinement by
the addition of nano-sized particles. The replacement of the relatively large nano AIN partilces
with the fine nano AlOs3 particles further reduces the grain size of the matrix in the MHNC from

34 to 28 um by 21%.
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Figure 5.3. Optical micrographs showing grain structures of etched (a) unreinforced matrix alloy
AMBG60, (b) 5 vol.% fibre/ AM60, (c) (3 vol% nano Al203 particle +5 vol.% fibre)/ AM60, and (d)
(3 vol. % nano AIN particle +5 vol.% fibre)/ AM60.
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Figure 5.4. Measured grain sizes of the unreinforced matrix alloy AM60, 5 vol% fibre/ AM60,
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Figure 5.5. SEM micrographs in BSE mode showing the reinforcement distribution in (a) 5
vol% fibre/ AM60, (b) (3 vol% nano Al203 particle +5 vol% fibre)/ AM60, and (c) (3 vol. %
nano AIN particle +5 vol% fibre)/ AM60.
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Figure 5.5 gives the reinforcement distribution in the microstructure of the unreinforced
matrix alloy, the fibre-only composite and the hybrid composites by SEM micrographs in a
backscattered electron (BSE) mode. As shown in Figure 5.5, the reinforced fibres and nano
particles are well dispersed and placed individually with little agglomeration. The TEM and
EDS analyses presented in Figure 5.6, confirm the presence of the nano particles in the MHNCs
which further evidences the successful introduction of the nanoparticles in the composites
(Figure 5.6(a) and (c) ). The probe crossed an Al>Os nano particle and the AIN nano particles
along the white lines in Figures 5.6(b) and (d). When the probe went from the matrix to the
nano-sized Al>Os particle, a large sharp decrease in magnesium, and a rapid increase in
aluminum and oxygen were found. For the nano AIN particle-reinforced MHNC, the probe
detected a rapid increase in aluminum counts and a decrease in magnesium counts when crossing
a nano AIN particle by EDS scanning, and a rapid increase in nitrogen by EELS scanning. This
observation is consistent with the compositions of the matrix and particle reinforcements.
Examination of the interfacial structure reveals a relatively clean and featureless surface of both
the Al2O3 and AIN particles in the MHNCSs. No particle/matrix reaction products are detected in
either the nano Al2Os-reinforced MHNC or the nano AIN-reinforced MHNC by TEM. This
should be primarily due to the presence of inadequate reaction time between the particles and

matrix alloy as a result of fast pressurized infiltration implemented during squeeze casting.
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Figure 5.6. TEM micrographs (a) a nano Al>Os particle in the (3 vol% nano Al2Os particles + 5
vol% Fibres) /AM60 MHNC line scans and the corresponding line scanning pattern for the nano
particle cross-section area (b) EDS pattern for the nano Al2O3 particle line scan (c) a nano AIN
particle in the (3 vol% nano AIN particles + 5 vol% Fibres) /AM60 MHNC line scans and the
corresponding line scanning pattern for the particle cross-section area (d) EDS and EELS
patterns for the nano AIN particle line scan.
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Figure 5.7 shows the TEM micrographs of the fibre-only composite, MHNC-AI>Os, and
MHNC-AIN. As shown in Figure 5.7(a), the fibre-only composite contains high dislocation
densities around a micron fibre. However, Figure 5.7(b) reveals that the MHNC-AI>Os3 is almost
free of dislocations under the applied condition of the electron diffraction pattern. The very low
dislocation density in the MHNC-AI>Oz should primarily result from the fact that the nano
particles are extremely tiny (100 nm), which are hard to generate sufficient strain by the thermal
mismatch to induce dislocations during solidification. A moderate dislocation density exists in
the MHNC-AIN (Figure 5.7(c)), which might be attributed to their relatively large size of 800
nm compared with that of the nano Al>Os particles. The inherent difference in thermal
expansion coefficients should be responsible for the formation of mismatch stress of the particles
and matrix alloy, which results in a dislocation density to some extent. This observation is
consistent with the results disclosed in references [14, 23]. However, by the addition of the nano
AIN particles, nano-sized pores in a closed-cell structure are found, which is similar to a
structure in metal foams at macroscopic scale. Shi et al [24] suggested that this type of the
structure in nano scale formed during solidification rose from the wettability between the AIN
and magnesium alloy. The presence of the nano pores might act like those cells in foam metal
increases energy absorption, stiffness, and even ductility by extending the amount of plastic

dissipation during mechanical loading.
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Figure 5.7. TEM micrographs showing (a) the micron fibre-only composites with dislocations,
(b) the MHNC- Al>O3 with almost no dislocations, and MHNC-AIN with (c) AIN particle and (d)

nano pores and dislocations ((c)zoomed out).
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5.3.2. Tensile properties

The typical engineering stress-strain curves for AM60, the fibre-only composite (AM60
5%F), the the MHNC-AI>03 (AM60 5%F-3%P nano Al,Oz), and the MHNC-AIN (AM60 5%F-
3%P nano AIN) are shown in Figure 5.8. The curves for the matrix alloy and the composites
exhibit a similar pattern, where they deform elastically first. Upon the yield point is reached, the
plastic deformation sets in. The introduction of fibers and/or particles lifts the yield points of the
composites up to high stress levels. Consequently, the composites fractures at much higher
stress and lower strain levels than that of the matrix alloy AM60. It can be seen from Figure 5.8
that, although the introduction of the reinforcements leads to an increase in the strengths, there is
a significant reduction in elongation as micron fibres are added. But, the addition of the nano
Al>03 or AIN particles in the MHNC recovers the elongation significantly.

The tensile properties data given in Table 5.2 show that the as-cast matrix alloy has 171
MPa of its UTS, 81 MPa of its YS, 40 GPa of its elastic modulus and 6.0% failure elongation.
The introduction of the micron fibre reinforcement, increases the UTS, YS and E to 189 MPa,
120 MPa and 50 GPa, by 11%, 48%, and 25%, respectively, but reduces the elongation from
6.0% to 2.2% by 63%. Additional 3 vol.% of nano Al>Os particles further enhances the UTS, YS
and E to 216 MPa, 140 MPa and 53 GPa by 14%, 17% and 6% over those of the fibre-only
composite. Meanwhile, the MHNC-AIN composite possesses the UTS, YS and E of 210 MPa,
139 MPa, and 51 GPa, showing the increases of 11% in UTS, 16% in YS, 2% in E compared to
those of the fibre-only composite. Furthermore, it should be pointed out that the introduction of
nano-sized Al>Oz or AIN particles restores the elongation considerably from 2.2% of the fibre-
only composite to 3.5% or 3.6% by 59% or 63%, respectively. The determined yield and tensile

strengths of the tested materials are in line with the grain size measurements since the grain
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refinement enhances the materials strengths. Since the tensile properties of the MHNC- Al.O3
and MHNC-AIN are very comparable, the sizes of the tested nano particles seems to have a
limited effect on the tensile properties of the MHNC, although the nano AIN particles is eight
times larger than the nano Al>Oz particles. Also, the TEM observation suggests that the presence
of the moderate dislocation in the MHNC-AIN should be responsible for the resultant tensile
strengths, which are comparable to the tensile properties of the MHNC-AI>O3, although the
modulus of nano AIN particles is lower than that of nano Al,Oz3 particles. The existence of nano
pores in the MHNC-AIN might be beneficial to the deformation for extra strains, while its
dislocation density is only at a moderate level which might have a limited effect on ductility.
Overall, by taking into consideration of engineering performance and materials cost, the nano
Al>O3 particles with a relatively low price of appears attractive to the development of automotive
applications.

Table 5.2 UTS, YS, ef and E of the Matrix Alloy AM60, the Composites of 5 vol. %
Fibre/AM60, (5 vol.% Fibre+3 vol.% nano Al,Os particles)/AM60, (5 vol.% Fibre+3 vol.%

nano AIN particles)/AM60

YS UTS ef E
(MPa) (MPa) (%) (GPa)
AMG60 8116 17148 6.0£1.3 4044
Fibre-only 120+5 189+12 2.2+¥1.7 50+2
MHNC nano Al>O3 140+14 21615 3.5+1.2 5343
MHNC nano AIN 139+12 21017 3.6x0.6 51+4
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Figure 5.8. Engineering stress vs. strain curves for the matrix alloy AM60, 5 vol% Fibre/AMG60,
(5 vol.% Fibre+3 vol% nano Al,Oz particles)/AM60, and (5 vol.% fibre+3 vol.% nano AIN
particles)/AM60.

The observed ductility recovery is evidently supported by the results of the TEM analysis.
A high dislocation density provides more tough obstacles to overcome, which increases the
strength and toughness of materials. With a low dislocation density, however, materials are
capable of carrying more strain during deformation. Also, Hassan and Gupta[14] have also
observed that the addition of micron-sized reinforcements leads to an improvement in the elastic
modulus and the strengths, but results in a marked diminishment in elongation. However, the
addition of nano-sized particles results in a significant improvement in the elastic modulus and
the strengths as well as a restoration of ductility. This is because the sites provided by nano-

particles where cleavage cracks are opened ahead of the advancing crack front are capable of
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dissipating stress concentration from crack tips and altering local effective stress state from plane
strain to plane stress in the neighborhood of the crack tip. Overall, the high strengths and
moderate elongation of the MHNC should result from the combined strengthening effect:
homogeneous distribution of nano particles, matrix grain structure refinement, good interfacial

bonding between the matrix and the nano particles and micron fibres[15].

5.3.3. Strain hardening
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Figure 5.9. True stress vs. strain curves for the matrix alloy AM60, 5 vol% Fibre/AMG60, (5
vol.% Fibre+3 vol% nano Al>Os particles)/AM60, and (5 vol.% fibre+3 vol.% nano AIN
particles)/AM60.
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Figure 5.10. Strain hardening curves for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 vol.%
Fibre+3 vol% nano AlOs  particles)/AM60, and (5 vol.% fibre+3 vol.% nano AIN

particles)/AM60, upon the commencement of plastic deformation.

The true stress and strain can be calculated from the engineering stress and strain by
applying the following equations:
ot = oe (11 &) (Eq. 5.1)
er=1In (1+ &) (Eq. 5.2)
where ot is the true stress, &t is the true strain, oe is the engineering stress, and ee is the
engineering strain. Figure 5.9 shows the true stress vs. strain curves for the matrix alloy AM60,
5 vol% Fibre/AMG60, (5 vol.% Fibre+3 vol% nano Al,Os3 particle)/AMG60, and (5 vol.% fibre+3

vol.% nano AIN particle)/ AM60.
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The true stress-strain curve for engineering materials can be described by the power law
relationship for plastic deformation [13]:
c=K¢" (Eq.5.3)

where K is the strength index, ¢ is the plastic strain and n is the strain hardening exponent.

Table 5.3 Best fit parameters of power equation

Materials K (MPa) n R?
AMG60 444+10 0.3187x0.0074 0.9957%0.0019
AMG60 5%F 932+11 0.3908+0.0052 0.9946%0.0021

AMG60 5%F-3%P nano Al,O3 1143+15 0.4223+0.0098 0.9992+0.007

AMG60 5%F-3%P- nano AIN  1097+10 0.4201+0.0102 0.9907+0.0032

Table 5.3 lists the numerical values of the constants in Eq. 5.3 with the regression
coefficients. The strain hardening rate (do/d) can be obtained from the differentiation of the Eq.
5.3. The strain hardening behaviors of the matrix alloy and composites are shown in Figure 5.10,
which was derived from Figure 5.9. Figure 5.10 presents the strain hardening rates at the
beginning of the plastic deformation for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 vol.%
Fibre + 3 vol% nano Al;Os particle))AM60, and (5 vol.% fibre + 3 vol.% nano AIN
particle)/AM60. All the tested materials exhibit the similar trend, in which the strain hardening
rates decrease with increasing the true strain. At the beginning of the plastic deformation, the
matrix alloy shows a strain hardening rate of only 4085.2 MPa. The ceramics fibre introduction

increases the strain hardening rate to 7453.5 MPa. The strain hardening rate rises to 8418.6 MPa
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after the addition of the nano Al,O3z particles to the fibre-only composite. The substitution of the
nano AIN particles for the nano Al>Os particles leads to a minor decrease in the strain hardening
rate to 8201.9 MPa. Among all the tested materials, the MHNC-AI2O3 has the highest strain
hardening rate. The MHNC-AIN has the strain hardening rate slight lower than, but comparable
to that of the MHNC-AI,O3. With the relatively high YS, UTS and ef, the MHNC-AIN is
capable of absorbing large amount of energy before fracture. Both the MHNC-AI2Os and
MHNC-AIN are capable of spontaneously strengthening themselves increasingly to a large
extent, in response to plastic deformation before the final fracture. It seems that the variation of

the nano particle type and sizes has a limited effect on the strain hardening rate of the MHNC:s.

5.3.4. Fractography

@
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(d)

Figure 5.11. Fractures of AM60, AM60 composites with Al.Oz fibres particles (a) AM60 alloy
(b) AMG60 alloy with 5%fibre (c) AMG60 alloy with 5% fibre/ 3% nano Al>Os particles, and (d)
AMBG0 alloy with 5%fibre/ 3% nano AIN particles (arrow 1- matrix crack; arrow 2- fibre crack;

arrow 3- debonding).

The SEM fractographs given in Figure 5.11 depict the difference in the fracture modes of
the matrix alloy, the fibre-only composite, and the MHNCs. With SEM high magnifications,
detailed features of the fracture surfaces are revealed and the fracture behaviours are determined
with reference to the tensile properties of the composites reinforced with the different sizes and
types of fibre and particles. A typical fracture surface of the matrix is presented in Figure 5.11
(@). The existence of shallow dimples on the surface generally displays ductile behavior, which

implies the consumption of a considerable amount of energy in the process of the formation of
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micronvoids. The coalescence of microvoids under high tensile loading gives rise to the
formation of cracks, eventually leading to failure. The presence of fibre reinforcement and nano-
sized particles enables certain amount of tensile loads to be transferred from the matrix alloy to
fibre and nano-sized particles. The composites break in a brittle mode different from that of the
unreinforced alloy. The final tensile fracture primarily was caused by fibre cracking, as shown
in Figure 5.11(b), (c) and (d) due to the inherent nature of the high strength and brittleness of the
ceramic fibres. The debonding at the interface between the fibre and matrix as well as the
particle and matrix could be another crack initiation area of the composites, which might be
attributed to the insufficient infiltration of the molten metal into the close packed network of
fibres and particles. Few dimples are found on the fracture surfaces of the fibre-only composite
in Figure 5.11 (b). Certain deformation of the matrix alloy is evidently present on the fracture
surface of the MHNCs. In general, the results of the SEM observation on the fracture surfaces of

the tested materials are in consistent with the tensile data.

5.4. Conclusions

Mg alloy AM60-based hybrid nanocomposites (MHNC) incorporating nano Al>O3 or AIN
particles with different sizes and micron alumina (Al2Os) fibre were successfully prepared by a
preform and squeeze casting technique. The optical microstructure analyses of the composites
reveal the random orientation and the homogeneous distribution of fibres in the matrix and the
refinement of matrix grain structure. It is shown by the SEM observation that both types of
nano-sized Al>Os or AIN particles disperse homogenously in the matrix alloy without
agglomeration. The TEM analyses indicate that, compared with the micron fibre-only composite,
the MHNCSs possesses a low or moderate dislocation density, which results from the deficient
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thermal strain during matrix solidification due to the presence of nano-sized particles. Among
the three types of tested composites, the MHNC-AI203 exhibits the highest UTS (216 MPa), YS
(140 MPa), E (53 GPa), strain hardening rate (8418.6 MPa ). The addition of 3 vol.% Al>Os3 or
AIN nano particles restores the elongation of the hybrid composite from 1.6% to 3.5% or 3.6%,
respectively. The presence of a low or moderate dislocation density in the MHNCs should be
primarily responsible for ductility restoration by nano-sized reinforcements. Due to their high
engineering performance and low materials cost, the application of nano Al>Os particles should

be considered for the development of advanced automotive components.
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CHAPTER 6 Conclusions

The conclusions drawn from this study are summarized as follows:

A preform-squeeze casting process has been developed and applied to effectively fabricate
magnesium-based fibre and nano-sized particle-reinforced hybrid composites. The preform
infiltration method improves the volume fraction limitation of nano-sized particles in the
magnesium hybrid nano composites without agglomeration compared to traditional stirring
casting method.

The SEM observation on the microstructure reveals that, in the prepared hybrid preform
composites, the ceramic fibre and micron/nano particles are homogeneously dispersed. The
microstructure analysis of the composites also indicates that both particles and fibres are free of
agglomeration, and fibres orientate randomly in the matrix.

The investigation of grain refinement demonstrates that the nano-sized particles could be
served as heterogeneous nucleation sites for the primary a-Mg phase, and both fibres and
particles could become the heterogeneous nucleation substrate of the eutectic phase of the matrix
alloy, which resultantly, decreases the grain size of composite matrix. For the comparison of
hybrid composites, nano-sized Al>Os particles shows superior grain size refinement effect that
micron-sized Al>Os particles.

The TEM microscopy analysis accompanying by EDS and EELS detection demonstrates
that the interfaces between micron-sized Al>Os particles, nano-sized Al>Os particles, nano-sized
AIN particles are clean without reinforcement agglomeration and reaction products. The
mechanism of the ductility restore phenomena is investigated under high magnification TEM

observation. There is almost no dislocation observed in the hybrid composite reinforced with
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nano-sized Al>Os particles compared to the micron-sized Al>Oz particle-reinforced hybrid
composite. With the addition of AIN nano-sized particles, the dislocation is observed in the
MHNC owing to their relatively large size, but with a low density. The resultant strength and
ductility of the hybrid nano composite with nano-sized AIN particles are similar to those of
hybrid nano-sized Al,O3 particles composite. The similar tensile results should be attributed to
the presence of the low dislocation contribution and the nano-sized pores formed between the
nano-sized AIN particles and magnesium matrix alloy due to the relatively poor wettability.
However, the inferior high cost of nano AIN particles makes it less attractive than nano-sized
Al>03 particles.

The hybrid composite reinforced with 3 vol. % nano-sized Al>Oz particles and 5 vol. %
Al>03 fibres exhibits improved tensile strengths over those of the matrix alloy. In particular, the
yield strength (140 MPa) of the hybrid composite is 73% higher than that of the matrix alloy.
The elastic modulus of the micron hybrid composite (54 GPa) shows 33 % improvement over the
matrix alloy (40 GPa). Compared with the 6% elongation of the matrix alloy, the composite
reinforced by 5 vol.% of the Al.Oz micron fibre exhibits only the elongation of 2.2%.

The addition of 3 vol.% of the Al>Os nano particles restores the elongation of the
composite from 1.3% to 3.5%. The MHNC-AI.O3 gives the UTS of 216 MPa showing an
increase of 13% in UTS over the hybrid composite as its YS (140 MPa) and E (53 GPa) are
maintained. The MHNC-AIN composite possesses the UTS, YS and E of 210 MPa, 139 MPa,
and 51 GPa. It should be pointed out that the substitution of nano-sized Al,Oz or AIN particles
for the micron ceramic particles restores the elongation considerably from 1.6% of the micron

hybrid composite to 3.5% or 3.6% by almost 120% or 125%, respectively.
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The determined yield and tensile strengths of the tested materials are in line with the
grain size measurements since the grain refinement enhances the materials strengths. Since the
tensile properties of the MHNC-AI,O3 and MHNC-AIN are very comparable, the sizes of the
tested nano particles seems to have a limited effect on the tensile properties of the MHNC,
although the nano AIN particles are eight times larger than the nano Al>Oz particles. Also, the
TEM observation suggests that the presence of the low dislocation density in the MHNC-AIN
should be responsible for the resultant tensile strengths, which are comparable to the tensile
properties of the MHNC-AI,O3, although the modulus of nano AIN particles is lower than that of
nano Al,Os particles. The existence of nano pores in the MHNC-AIN might be beneficial to the
deformation for extra strains, while its dislocation density is only at a moderate level which
might have a limited effect on ductility. Overall, by taking into consideration of engineering
performance and materials cost, the nano Al>Os particles with a relatively low price of appears
attractive to the development of automotive applications.

Compared to the ductile fracture of the matrix alloy, the SEM fractography reveals that the
fracture of the micron-sized hybrid composites is in brittle mode, and the nano-sized hybrid
composites is in relatively ductile mode. The localized damages, i.e., reinforcement cracking,
matrix cracking and interface debonding, could be responsible for the tensile fracture of the Mg-

based hybrid composites.
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CHAPTER 7 Future Work

Because the size of reinforcement for both particle and fibre has a significant influence on
the engineering performance and microstructure development of composites, the future work for
this study can be classified into the following research areas:

Investigation in corrosion behaviors nano-sized hybrid composite with coating;

Detailed studies on solidification and characterization of the hybrid composites reinforced
with nano-sized particles and fibres;

Investigation in wear behaviors of hybrid composites for potential engineering applications;

Development of thermal treatment schemas (T4 and T6), in which the tensile properties of

the hybrid composites are optimized.
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APPENDIX B

Microstructure Analysis Figures

AMG60 (3 vol% micron Al20Oz3 particle +5 vol% fibre)

Figure B.1. OM micrographs of (3 vol% micron Al.Oz particle +5 vol% Al,Oz fibre)/ AM60

composite
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Figure B.2. Fracture of AMG60-based composite with 5 vol% Al,O3 Fibre + 3 vol% micron

Al>O3 particle
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Figure B.3. High magnification fracture of AM60-based composite with 5 vol% Al,Os3 fibre
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Figure B.4. Fracture of AM60-based composite with 5 vol% Al>Os fibre (Brittle Area)
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AMGB0 (3 vol% nano AIN particle +5 vol% fibre)

Figure B.5. OM micrographs of (3 vol% nano AIN particle +5 vol% Al>Oz fibre)/ AM60

composite

Figure B.6. SEM micrographs in BSE mode showing the reinforcement distribution in (3 vol%

nano AIN particle +5 vol% fibre)/ AM60 composite
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Figure B.7. Fractures of AM60-based composites with 5 vol% Al2Os fibre and 3 vol% nano AIN
particles
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Figure B.8. Fractures of AM60-based composites with 5 vol% Al>Os fibre and 3 vol% nano AIN
particles
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Figure B.9. Fractures of AM60-based composites with 5 vol% Al>O3 fibre and 3 vol% nano AIN

particles
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Figure B.10. TEM showing the nano-pores structure in (3 vol% nano AIN particle +5 vol%

Al>03 fibre)/ AM60 composite
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AMG60 (3 vol% nano Al2O3 particle +5 vol% fibre)

Figure B.11. SEM micrographs in BSE mode showing the reinforcement distribution in (3 vol%

nano Al,Os3 particle +5 vol% Al,Os fibre)/ AM60 composite
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Figure B.12. SEM micrographs in BSE mode showing the reinforcement distribution in (3 vol%

nano Al.Oz particle +5 vol% Al>Os fibre)/ AM60 composite
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Figure B.13. Fracture of AM60-based composite with 5 vol% Al.Oz fibre + 3 vol% nano Al,O3
particle
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Figure B.14. High magnification fracture of AM60-based composite with 5 vol% Al.Oz fibre +

3 vol% nano Al2Os particle
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Figure B.15. Fracture of AM60-based composite with 5 vol% Al>Os fibre + 3 vol% nano Al2Os

particle

163



Figure B.16. High magnification fracture of AM60-based composite with 5 vol% Al.Oz fibre +

3 vol% nano Al2Os particle
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Figure B.17. TEM showing the dislocation-free phenomena in (3 vol% nano Al.O3 particle +5

vol% fibre)/ AM60
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Figure B.18. TEM showing the presence in (3 vol% nano Al>Oz particle +5 vol% fibre)/ AM60
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Figure B.19. TEM diffraction pattern showing the difference between the metal matrix AM60

and the micron Al>Os particle

Figure B.20. TEM diffraction pattern showing the difference between the metal matrix AM60

and the nano Al,Oz particle
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Figure B.21. High Magnification Fracture of AM60 Alloy
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Figure B.22. Fracture of AM60 Alloy
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