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ABSTRACT 

Mg-based hybrid nano composites (MHNC) reinforced with alumina (Al2O3) fibre and/or 

micron-sized/nano-sized Al2O3 or AlN particles were successfully prepared by a perform-

squeeze casting technique under an applied pressure of 90 MPa. Mechanical properties of 

unreinforced AM60 alloy, Al2O3 fibre/AM60 composite, hybrid composite containing both 

Al2O3 fibres and mircon-sized Al2O3 particles, as well as hybrid composite containing both 

Al2O3 fibres and nano-sized Al2O3 or AlN particles (MHNC) were determined by tensile testing.  

The addition of fibres and micron-sized particle considerably increases the ultimate tensile and 

yield strengths of the matrix alloy, despite that a substantial reduction in ductility. Microstructure 

analyses by optical (OM) and scanning electron (SEM) microscopes show that the homogeneous 

distribution of reinforcements, clean interfacial structure and grain refinement lead to the high 

strengths of the composites.  The addition of nano-sized Al2O3 or AlN ceramics particles (3 

vol.%) into the hybrid composite restores their ductility. The microstructure observation of 

transmission electron microscopy (TEM) indicates that the presence of a relatively low 

dislocation density in the matrix grains of the Mg-based hybrid nano composites (MHNCs). The 

SEM fractography reveals that the fracture of the composites is caused primarily by localized 

damages, such as particles and fibres damage and cracking, matrix fracture, and interface 

debonding. The determined tensile properties support the fractographic features. 
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CHAPTER 1 Introduction 

1.1. Background 

1.1.1. Introduction 

          The requirement for high-performance and lightweight materials in the automotive 

industry has led to extensive research and development efforts in the development of magnesium 

matrix composites and their cost-effective fabrication technologies. Composite materials are 

versatile in terms of constituent selection so that the properties of the materials can be tailored. 

The major disadvantage of metal matrix composites usually lies in the relatively high cost of 

fabrication and of the reinforcement materials. The cost-effective processing of composite 

materials is, therefore, an essential element for expanding their applications. The availability of a 

wide variety of reinforcing techniques is attracting interest in composite materials. This is 

especially true for the high-performance and lightweight magnesium-based materials due to 

certain unique characteristics of composites which offer effective approaches to strengthen 

magnesium.  

          Hybrid composites are fabricated by adding two or more reinforcements into matrix 

materials so that excellent properties can be achieved through the combined advantages of short 

fibres, and different size particles, which provide a high degree of design freedom. Hybrid metal 

matrix composites are reinforced with hybrid reinforcement in which both particles and short 

fibres are employed. As a result they can provide large opportunities to optimize the engineering 

performance of metal matrix composites for potential applications in the automotive industry, 

where different volumes, especially the relatively low volume, and selective reinforced areas of 

reinforcements are required. 
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          The hybrid metal-based composites could be fabricated by preform-squeeze casting, in 

which a two-step process is involved. First, a preform is made and then the squeeze casting 

pressurizes molten alloy to infiltrate into the preform. The advantages of preform-squeeze cast 

hybrid composites are the following: both the particles and short fibres can be employed to 

facilitate microstructure design and mechanical property optimization; reasonable low cost raw 

materials and wide volume percentage range of reinforcements can be selected; mass production 

becomes feasible; and improvements in the wettability of reinforcements enable selected regions 

of parts to be reinforced only with no wetting agent.  

          In the open literature, there are a few studies on hybrid magnesium-based composites 

which are fabricated by the preform-squeeze casting technique with micron-fibre skeleton and/or 

micron-sized particles. The micron-particle introduction increases the efficiency of 

reinforcement in wear resistance and strength of resultant composites. However, the addition of 

micron-sized particles into the magnesium matrix leads to a significant decrease in ductility.  

The inferior ductility of micron-sized particle reinforced magnesium composites limits its 

expansion. For the improvement of the ductility of the resultant composite, studies on the 

introduction of nano-sized particles to the magnesium composites have been carried out. 

However, the nano-sized particles introduction was limited in the volume-fraction of the 

reinforcement in the matrix alloy. The agglomeration of the nano-sized particles with high 

volume fractions was inevitable with the traditional stirring casting method even with the pre-

mixed matrix alloy and nano-sized particles. There were studies in successful fabrication with 

higher volume fraction nano-sized particles magnesium composite by the evaporation of 

magnesium in an environment of high vacuum. But, the evaporation method was costly and not 
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suitable for larger components in high volume production. Moreover, the low volume fraction of 

nano-particles introduction limits the design freedom of magnesium-based composite materials. 

          Therefore, the stirring problem faced by nano-sized particles could be resolved by the 

hybrid preform fabrication with nano-sized particles. No detailed research reports on processing, 

solidification and characterization of Mg-based hybrid nano-composites (MHNC) have been 

found, although Mg-based composites reinforced with only nano-sized particles possess not only 

the enhanced strengths but also reasonable ductilities.   

1.2. Objectives of this study 

          The objectives of this work are outlined as follows: 

 Develop a process for preform fabrication with introduction of nano-sized particles; 

 Develop a process for manufacturing magnesium-based hybrid nano composites with no 

agglomerated nano-sized particles and micron-sized reinforcements; 

 Analyze the microstructures of the developed magnesium-based hybrid nano composites in 

comparison with the composites containing micron fibres and/or particles;  

 Evaluate the mechanical properties of the fabricated composites; and  

 Determine the fracture mechanisms of the developed magnesium-based hybrid composites. 

 

1.3. Organization of the thesis 

In this study, the fabrication method for producing the Mg/AM60-based hybrid nano 

composites by using the preform and squeeze casting technology has been developed. The 

microstructures of the fabricated MHNCs were analyzed with the optical (OM), Scanning (SEM) 

and Transmission (TEM) electron microscopes. The mechanical properties of the MHNCs were 
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evaluated by tensile testing. The obtained results were compared with those of the composites 

containing micron fibres and particles as well as the matrix alloy (AM60).  

          To effectively and concisely present the completed work, this thesis contains seven 

chapters. Chapter 1 provides a general background of metal-based composites and the 

advantages of nano-sized particles-reinforced hybrid metal matrix composites fabricated by 

preform-squeeze casting technique. Chapter 2 reviews recent studies on the processing, 

microstructure, and mechanical properties of magnesium-matrix composites. Chapter 3, Chapter 

4, Chapter 5 reports the detailed fabrication method, comparisons, results and discussion with 

respect to the effects of nano-sized particles in magnesium alloy AM60-based hybrid nano 

composite (MHNC) on microstructures, tensile properties, and fracture mechanism of the 

developed magnesium-based hybrid composites. The conclusions of the present study are 

summarized in Chapter 6. Finally, Chapter 7 gives some recommendations for future work. 
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CHAPTER 2 Literature Review 

In this chapter, progresses upon magnesium-based metal matrix composite technologies 

in recent decades are reviewed. Different reinforcement systems are discussed, including fiber, 

micron-sized particles, nano-sized particles, and hybrid fiber/particles reinforcements. Several 

reinforcement categories and combinations for magnesium composites have been introduced, 

especially in nano-particle reinforcement and its composites. The superior hardness, tensile and 

compressive properties of the composites should be attributed to not only the addition of 

reinforcements themselves, but also the reinforcement distribution in the matrix, the bonding 

between the reinforcement and matrix, and the grain structure refinement caused by 

reinforcements. Typical methods for fabrication of composites are discussed and compared. 

Squeeze Casting, Stir-casting, Powder Metallurgy, and Hot Extrusion are considered as the 

common process techniques for the preparation of Mg-based composites. The formation of 

intermetallic phases due to the reaction between the reinforcement and matrix alloy also plays an 

important role in enhancing the mechanical properties of the composite. As the reinforcement 

content increases, the composite with micron-sized reinforcements shows a significant decrease 

in ductility. However, the addition of nano-particles to magnesium alloys causes no significant 

reduction in the ductility of the resultant composites. The hybrid and nano-particles reinforced 

magnesium composites are considered as the most promising and emerging high strength light-

weight materials owing to their unique engineering performance. 
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2.1. Introduction 

Automakers are being subjected to increased strict fuel economy requirements, while 

consumers are demanding improved interior comforts and advanced electronic systems for safety, 

navigation, and entertainment, all of which add otherwise unnecessary weight. Automotive 

manufacturers are turning to light-weight metals as one of the solutions to meet the demands [1-

3]. Aluminum alloys components such as engine blocks, body panels, and frame members. In 

recent decades, magnesium alloys, as lighter alloys choice to aluminum ones, are being 

researched and successfully subjected to certain types of components for mass production such 

as instrument panels, valve covers, transmission housings, and steering column components. The 

major current area of growth for the use of magnesium alloys in the high volume commercial 

automotive sector enable an incentive for weight savings to maximize fuel economy and 

minimize emissions [4]. BMW Company even achieves mass production of the whole 3.0-liter 

six-cylinder gasoline engine with only 161 kilograms by magnesium Mg-Al-Sr alloys system [5]. 

Moreover, combining or replacing these efforts with the use of advanced metal-matrix micro- 

and nano-composites (MMCs) not only reduce the mass of components, but also improve 

reliability and efficiency [6,7]. Metal-matrix composites are metals or alloys that incorporate 

particles, whiskers, fibers, or hollow micro-balloons made of a different material, and offer 

unique features to tailor materials to specific design needs. 
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2.2. Fibers Reinforced Magnesium Alloys 

 2.2.1. Solidification process 

          Short Fiber and whisker reinforced metal-matrix-composites (MMCs) are manufactured 

with various reinforcement distributions. Castings of magnesium matrix composites are most 

commonly presented by liquid metal or preform infiltration method. The preform method 

presents majority of short fibers randomly aligned in 2D planar architecture that normal to 

applied pressing direction compared with the liquid or powder-metallurgy method, in which 

substantial fibers alignment is parallel to the processing direction.  

          For preform method, the most common fabrication route is squeeze casting with pressure 

infiltration. During squeeze casting, the reinforcement fibers is usually made into a preform and 

placed into a permanent mold. The molten magnesium alloys are then poured into the mold and 

solidified under high pressures. During the solidification period, the high pressure applied forced 

the liquid magnesium infiltrate into the gaps in the preform that forms bonds between 

reinforcement fibers with magnesium alloys. The pressure is the primary parameters that 

influence the quality of castings. The pressure is supposed to be as high as possible; however, for 

manufacturing magnesium composite, excessive high pressure may produce a turbulent flow of 

molten magnesium causing gas entrapment and magnesium oxidation [8]. The advantage of this 

method is allowing the superior types and volume fractions of reinforcement to incorporate with 

magnesium alloys.  

          For powder-metallurgy method, magnesium alloy and reinforcement are mixed, pressed, 

degased and sintered at a certain temperature under controlled atmosphere or in a vacuum [9]. 

Compared to squeeze casting with pressure infiltration method, this method requires powder 
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alloy instead of bulk material, and the conditions required are more critical; therefore, the cost 

for fabrication is not ideal for mass production. 

          The varied reinforcement types of fibers, such as Al2O3 fibers, enable to meet majority of 

requirement of demands. In general, carbon fibers and alumina fibers are considered as the most 

popular reinforcement fibers for commercial usage as those relatively cheap features. 

Magnesium composites reinforced by alumina fibers are the most common combination; for 

squeeze casting with pressure infiltration method, alumina fibers preform is made and placed in 

the mold for squeeze casting. Then the liquid magnesium alloy is poured into the mold with 

certain degree of pressure applied during solidification period. The carbon fibers reinforced 

magnesium alloys are more complicated to fabricate with this method. It is reported by Kuo et al 

[10] that if without proper treatment, the APC-2 prepreg (AS-4 carbon fibers) and magnesium 

alloy delaminate after solidification as a result of surface energies difference and large thermal 

expansion coefficient difference [11]. Kuo et al [10] treat the composites with a combination of 

HNO3 and H2SO4 with transition-metal ions instead of binder to resolve delamination problem, 

which is effective.  

 

2.2.2. Microstructure and Mechanical Properties  

  2.2.2.1. Alumina Fiber Reinforced Magnesium Alloys 

          There are bulk of studies on this type of reinforcement in magnesium and its alloys. The 

very first study to be discussed is reported by Hack et al[12]. They chose pure magnesium for the 

matrix as its microstructural simplicity and batch-to-batch reproducibility. The alumina fibers 

chosen were in 20 µm diameters with 35 and 55 percent volume fraction respectively. The fibers 
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were laid in unidirectional manner. Specimens were cut into 15.2 cm long with 1.27 cm x 0.25 

cm rectangular for tensile and fatigue testing. As the prior-known information that the 

mechanical properties of composites with hard alumina fibers is better than pure magnesium, this 

report only contained the comparison of the results for difference volume fraction of 

reinforcement and fibers orientation. Table 2.1 gives the results for the tensile test results. It 

showed the longitude direction fibers provide superior tensile yield strength (YS) and ultimate 

tensile strength (UTS) as those bears more loads than other orientations. It is interesting that even 

the alumna fiber is brittle than magnesium fibers, with higher volume fraction 55% fibers, it 

showed better elongation percentage. Figure 2.1 shows the fatigue data for the tests; similar to 

tensile test, the axial direction provided superior properties under same level of loads applied. 

Figure 2.2 shows the microstructure of the axial specimens containing defects attributed to crack 

initiations, which are transverse (normal direction) fibers and clumps of alumina grains. Figure 

2.3 shows the tensile failure and fatigue failure microstructure of axial specimens. It could be 

observed that the tensile overload was identical to those of the off-axis tensile failure, while the 

fatigue was by a combination of delamination of fiber/matrix interface and cracking of the 

magnesium matrix. 
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Table 2.1 Tensile Properties of 35 and 55 Volume Fraction Alumina Fiber Reinforced 

Magnesium [12] 

 

 

Figure 2.1. Fatigue Properties of 35 and 55 Volume Fraction Alumina Fiber Reinforced 

Magensium [12]. 
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Figure 2.2. Microstructure of Axial Specimens of Alumina Fiber Reinforced Magnesium (1. 

transverse fibers; 2. Clumps of alumina grains) [12]. 

 

  

(a)                                                                      (b)  

Figure 2.3. Microstructure of Axial Specimens of Alumina Fiber Reinforced Magensium Failure 

(a. tensile overload; b. fatigue failure) [12]. 

 

          Creep resistance of aluminum fiber reinforced magnesium alloys was reported by 

Sklenicka et al[13] with AZ91 and QE22 magnesium alloy. Low Creep resistance of magnesium 

alloy was not suitable for applications in automotive power-train. Pure AZ91D magnesium alloy 

also showed poor creep resistance above 125 °C [14]. They added 20 volume fraction Saffil 

fibers (97 pct Al2O3, 3pct SiO2) in AZ91 alloy and QE22 alloy. Their results shown in Figure 2.4 
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and 2.5 demonstrated the second stage minimum creep rate and the creep fracture time. There 

was apparent improvement with alumna fiber reinforcement. 

 

Figure 2.4. Minimum Creep Rate of AZ91 and QE22 alloys with 20% Alumina Fibers compared 

with AZ91 and Pure Magnesium [13]. 

 

Figure 2.5. Time for Creep Failure of AZ91 and QE22 alloys with 20% Alumina Fibers 

compared with AZ91 and Pure Magnesium [13]. 
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2.2.2.2. Carbon Fiber Reinforced Magnesium Alloys (Processing) 

          Carbon fibers have been popular in the past several decades. This reinforcement into 

magnesium is considered as a feasible and cheap route to improve magnesium and its alloys 

properties. As the carbon fibers have excellent mechanical properties, it is no doubt that the 

addition of carbon fiber into magnesium alloy matrix provides superior mechanical properties. 

However, compared to metal based reinforcement, the bonding between carbon fibers and 

magnesium alloys are critical during the fabrication. A solution was provided by Huang et al[10]. 

There are another method provided by Katzman [15] that silicon dioxide coating is deposited on 

the fiber surfaces from an organometallic precursor solution after the fibers passing the solution. 

Hydrolysis or pyrolysis of the organometallic compound is used to form silicon dioxide on the 

fiber surfaces that generates wetting and bonding when the fibers are immersed in molten 

magnesium. In Katzman’s report[15], graphite fibers are prior-processed by using alkoxides, a 

class of organometallic compounds to bond hydrocarbon groups with metal atoms by bridging 

oxygen atoms [16] as precursors for ceramics and glasses [17,18], to form thin, uniform oxide 

coatings.  

          Although carbon fibers are expensive in North America compared to those in Asia,the 

features of carbon fibers into magnesium alloys reinforcement are remarkable. 
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2.3. Micro-particles Reinforced Magnesium Alloys 

2.3.1. Solidification process 

          Instead of fibers reinforcement, micro-particles reinforcement is another popular route to 

reinforce magnesium alloys. As there is no direction concern in particles reinforcement, the 

dispersion of particles is the key for this type of reinforcement. One of the popular particles 

involved in magnesium alloy reinforcement is SiC particles. The general processing method for 

particle reinforced magnesium composites is the mixing and casting process developed by 

Institute of Magnesium Technology (ITM) [19]. A schematic diagram showing ITM liquid 

mixing and casting process for magnesium MMCs is provided in Figure 2.6. It should be noted 

that the furnace used should be under protective atmosphere such as SF6/CO2 [20]. 

 

Figure 2.6. Schematic diagram showing ITM liquid mixing and casting process for magnesium 

MMCs [20]. 
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          The fabrication for this type of composite can be achieved also by pressure infiltration 

technique. It is reported that AZ91D magnesium alloy matrix with 40 volume percentage SiC 

particles were made by Lo at al [21] in MTL/Canmet Canada et al in ITM. The preform held SiC 

togerther by alumina binder to form a rigid three-dimensional network of inter-connecting 

particulates. The infiltration stage at 600 °C (100 °C superheat for AZ91D alloy) and 40 MPa. 

 

2.3.2. Microstructure and Mechanical Properties 

2.3.2.1. SiC Particle Reinforced Magnesium Alloy AZ91D 

          By using different process parameters of  the mixing and casting method, Luo at al[20] 

prepared several pure Mg-based and AZ91D-based SiC-reinforced composites. He investigated 

their microstructures and mechanical behavior.  

Figure 2.7 compares the microstructures of the AZ91D-based SiC-reinforced composites 

under different casting conditions. Tm, tm, and ts stand for melting temperature, melting time, 

solidification temperature. The microstructure of pure magnesium-based reinforce also with SiC 

particles under the same casting conditions in Figure 2.8 showed a success incorporation of SiC 

particles in the AZ91 alloy as well as pure magnesium. The AZ91-based composite gave a better 

dispersion of SiC particles compared to pure magnesium composites, which provides superior 

mechanical properties improvement. 

Figure 2.9 compares AZ91 alloys with/without reinforcement microstructures. The 

apparent grain refinement was observed in the particles reinforcement AZ91 alloy reported in 

Figure 2.10. Therefore, a conclusion could be made that particles reinforcement refined grain 
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size to improve the mechanical properties as well as the properties provided by particles 

materials. A same conclusion was made by Hu [22] with the casting of AM50A/SiC composites. 

 

Figure 2.7. Optical Micro-graphs Showing the As-cast Microstructures of AZ91/SiC Composites 

under Different Conditions (A. agglomerate, B. oxide, C. porosity) [20]. 



17 

 

  

Figure 2.8. Optical Micro-graphs Showing the As-cast Microstructures of Pure Magnesium/SiC 

Composites under Different Conditions (A. agglomerate, B. oxide, C. porosity) [20]. 

  

Figure 2.9. Optical Micro-graphs Showing the As-cast Microstructures of (a) AZ91 alloy 

(b)AZ91/SiC Composites [20]. 
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Figure 2.10. Grain Size Comparison of As-cast AZ91 alloy and AZ91/10vol.% SiC [20]. 

 

          Table 2.2 shows the mechanical properties comparison of non-reinforcement AZ91 alloy 

and AZ91/SiC particles (10 volume percentage); improvement can be apparently observed in the 

Table 2.2.   

 

Table 2.2 Tensile Properties of Ac-cast AZ91 alloy and AZ91/SiC particles (10 volume 

percentage) [20] 
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2.3.2.2. Titanium Particle Reinforced Magnesium Alloy AZ91 

          Improvement in the mechanical properties can be achieved through an adequate control of 

the microstructure of the alloy such as grain size, texture, size and precipitates). Among those, 

the most effective for improving strength magnesium is grain size refinement [21, 23, 24]. The 

micron size reinforcements, usually ceramics such as SiC, results in an increase in the yield 

strength with a considerable decrease in the elongation to failure [25-27]. Titanium particles are 

popular in the micron-sized reinforcement technology in magnesium composites for its low 

density and no reaction among elements to form brittle phases at magnesium and titanium 

interface.  

          The processing method titanium as reinforcement is powder metallurgical route [28]. 

According to the research by Perez et al [28], magnesium powder particles were smaller than 300 

µm mixed with titanium powder for 1 hour at 100 rpm with planetary mill. After the mixing, the 

powder degased at 150 °C and hot extruded at 400 °C with a ratio of 18/1. The resulting product 

was Mg/10 vol.% Ti. A true stress and strain curve of the magnesium/Ti composite is shown in 

Figure 2.11. At room temperature, the magnesium/Ti composite has a yield stress of 160 MPa, 

which is a remarkable improvement. However, due to its high cost, the method is not 

recommended for mass production. 
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Figure 2.11. True stress–true strain curves of Mg–10 Vol.%Ti composite in the 25–300 °C 

temperature range [28]. 

 

2.4. Nano Particle Reinforced Magnesium 

2.4.1. Solidification process 

          Among different reinforcement reinforced magnesium matrix composites, the 

reinforcements with low cost and practicability are usually silicon carbide and alumina particles 

[29, 30]. The micron particle-reinforced magnesium alloy processes higher tensile strength and 

elastic modulus compared to unreinforced magnesium alloy. However, there is a remarkable 

reduction in ductility. According to the study of Wans et al [31], the AZ91D alloy with micron 

SiC particles reinforcement decreases elongation to 3% from non-reinforced AZ91D with 18%. 

From the study of Hassan and Gupta [32], the compared to the AZ91 magnesium alloy 

reinforced with much higher content of micron sized SiCp, the 0.2% yield strength, ultimate 



21 

 

tensile strength, and ductility of the magnesium matrix nano-composites containing 1.11 vol.% 

of alumina particle were remain higher. Nie et al[33] has carried out nano-SiCp/AZ91D alloy 

composites prepared as semi-solid slurry by by hot extrusion under 2000 kN load. However, by 

exceeding 1% volume fraction of nano SiC particles in the composites, the tensile properties 

appeared decreases obviously. The basic idea to reinforce magnesium composites is to increase 

the volume fraction of reinforcement and decrease particles size. With the limitation given above, 

compromise should be carried out for fabrication of nano-sized magnesium composites.  

          The general processing method for nano-sized reinforced magnesium composites is by 

using the semisolid stirring assisted ultrasonic vibration technique. In the study of Shen at al[34] 

study, by using the above method, different compositions of reinforcement nano SiC particles in 

AZ31B magnesium alloy were compared and discussed. In 2011, Tham et al [35] and Gupta et al 

[36], used the DMD method for the fabrication of Mg-based nano composites. They employed 

AlN nano-particle powder in 10-20 nm as reinforcement. The matrix was AZ91 and ZK60A 

hybrid alloy with 2wt.% decreased aluminum content in AZ91. The hybrid alloys were heated in 

a graphite crucible to 750 °C under Ar gas atmosphere. The crucible was equipped with bottom 

pouring. Upon the set superheat temperature, the slurry liquid metal was stirred by a mild steel 

impeller with Zirtex 25 coating to avoid iron contamination before pouring. The pouring liquid 

metal was first disintegrated by two jets of argon gas normal to the liquid metal stream. The 

disintegrated melt was subsequently deposited onto a metallic substrate located 500 mm from the 

pouring point to obtain an ingot with 40 mm in diameter. After forming the mixture hybrid alloy 

ingot, arrange the alloy and nano particles powder in a crucible. In the crucible, the arrangement 

of alloys and particles powder was important. Figure 2.12 shows the arrangement in the crucible. 

To form the AZ91/AK60A/1.5vol.% AlN nanocpmposite, AlN nanoparticles powder was 
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isolated by wrapping in Al foil with minimal weight, which is the reason to decrease the 

aluminum content in the AZ91. The wrap was arranged on the top of hybrid alloy block. The 

resulting composite was fabricated by hot extrusion by 150 ton hydraulic press; the ratio is 

20.25:1. Hot extrusion is carried out at 350 degree °C with holding at 400 °C for 1 hour. The 

lubrication used was Colloidal graphite. The resulting product was 8 mm rods. Heat treatment for 

the composites was mentioned in 200 °C for 1 hour in order to relax the monolithic 

AZ91/ZK60A hybrid alloy without recrystallization softening. Prior to heat treatment, ingot 

warped with aluminum foil was needed to avoid minimize reaction with oxygen in the heat 

treatment furnace. A same DMD fabrication method by Zhong et al [37] using AZ31 matrix with 

alumina nanoparticles powder warped by Al foil was under same pressure, temperature, and 

extrusion ratio. 

 

 

Figure 2.12. Arrangement of raw materials in crucible before castingfor AZ91/ZK60A/AlN 

nanocomposite [38]. 
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2.4.2. Microstructure and Mechanical Properties 

2.4.2.1. Nano-sized SiC Particles Reinforced AZ31B Magnesium Composites 

          Shen et al[34] has made several groups of nano-sized SiC particles reinforced AZ31B 

composite. The SEM analysis shows the microstructures of different compositions of 

reinforcement is demonstrated in Figure 2.13, while the measured grain sizes are reported in 

Figure 2.14.  

          Figure 2.15 shows the tensile test results for composites of those three compositions. The 

results suggest the higher amount of composition of nano-particles reinforcement in AZ31B 

provides the higher tensile properties, which is not consistent with the situation with AZ91D. 

Reasons for the increase of tensile properties are attributed to grain refinement and uniform 

distribution of nano SiC particles that act as ductility enhancer [39, 40]. 

 

Figure 2.13. SEM Micrographs of As-cast SiCp/AZ31B Nanocomposites: (a) 1 vol.% 

SiCp/AZ31B Nanocomposite, (b) 2 vol.% SiCp/AZ31B Nanocomposite, (c) 3 vol.% 

SiCp/AZ31B Nanocomposite, (d) High Magnification of (c) [34]. 
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Figure 2.14. Grain Sizes of As-cast SiCp/AZ31B Nano-composites [34]. 
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Figure 2.15. The Mechanical Properties of SiCp/AZ31B Nanocomposite after Hot Extrusion. (a) 

Tensile Stain–Stress Curves, (b) Ultimate Tensile Strength, Yield Strength and Elongation [34]. 

 

2.4.2.2. Nano-sized AlN Particles Reinforced AZ91/ZK60A Hybrid Magnesium Composite 

          AZ91 and ZK60A hybrid AlN nanoparticle (10-20 nm) composites prepared by Paramothy 

et al [38] has achieved higher yield strength and ultimate tensile strengths without significantly 

decreasing the ductility of the alloys. The microstructure analysis was carried out by FESEM 

(Field Emission Scanning Electron Microscopy) and TEM showing the intermetallic phases in 

Figure 2.16. There were no macro-pores or shrinkage cavities observed, and the intermetallic 

particles were distributed uniformly. The results of grain size measurements are given in Table 

2.3, with the nano particles addition, the grain size refinement was not significant, and the grain 

aspect ratio was not changed. But, the hardness has been increased. The reason for hardness 

improvement should be attributed to the uniform distribution of AlN particles in the matrix and 



26 

 

the higher constraint to localized matrix deformation during indentation due to the presence of 

nano particles [41,42]. 

          As the tensile and compression data carried out in Tables 2.4 and 2.5, the nano reinforced 

alloys showed higher tensile and compressive strengths than those of monolithic alloys. The 

0.2% yield stress improvement was observed in tensile and not that significantly in compression. 

The tensile failure strain was not significantly decreased, because the nano-sized particles had 

the effect to decrease the ductility drop phenomenon compared to micron-sized particles. It was 

noted that in compressive test, the failure strain for composites was higher than the monolithic 

alloy. The reason in this case was the presence of the Mg-Zn nano rods reported in Figure 2.16. 

The brittle Mg-Zn nano rod is prone to buckling followed by fracture with the hybrid alloy 

matrix during compressive deformation unlike during tensile deformation. 

 

Table 2.3 Results of grain characteristics and micro-hardness of AZ91/ZK60A and 

AZ91/ZK60A/AlN nanocomposite [38] 
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Table 2.4 Results of tensile testing of AZ91/ZK60A and AZ91/ZK60A/AlN nanocomposite [38] 
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Figure 2.16. Representative FESEM micrographs showing grain size in monolithic 

AZ91/ZK60A and AZ91/ZK60A/AlN nanocomposite: (a) lower magnification and (b) higher 

magnification. (c) Representative TEM micrograph (including SAED pattern) showing the 

presence of individual nitride nanoparticles and fine intermetallic particles in AZ91/ZK60A/AlN 

nanocomposite. (d) Representative TEM micrograph (including SAED pattern) showing the 

presence of individual Mg-Zn rod-shaped nanoparticles in AZ91/ZK60A/AlN nanocomposite. 

Phases present but not labeled in the SAED patterns include Mg and Mg-Al phases only [38]. 

 

 

Table 2.5 Results of compressive testing of AZ91/ZK60A and AZ91/ZK60A/AlN 

nanocomposite [38] 
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2.4.2.3. Nano-sized Alumina Particles Reinforced AZ31 Magnesium Composite 

          The DMD method [35, 36] was also applied to produce AZ31 with nano alumina particles 

(50 nm size) [43]. Because of using the aluminum foil warping method for reinforcement 

particles powder, AZ31 was not degraded its aluminum content prior to hot extrusion. AZ31 was 

provided by Alfa Aesar in USA; and alumina nanoparticles powder was supplied by Baikowski 

in Japan.  

          The microstructure of AZ31/nano alumina particles composite was observed under 

FESEM. No macro pores, defects or shrinkages were observed in the nano composites. The XRD 

diffraction found that the beta phase Al12Mg17 presented in the composite. The alumina 

reinforcement distribution was uniform in Figure 2.17 (c) and (d), which appeared at grain 

boundaries as well as inside grains. 

          Compared to AZ91/ZK60A hybrid alloys with AlN nano particles composites, AZ31 with 

the same volume fraction of reinforcement (1.5 vol.% alumina) showed the significant grain 

refinement over that of the monolithic alloy (Table 2.6). The grain size was reduced from 4.0 

micron to 2.3 micron. With the addition of brittle alumina nano particles, the hardness of the 

composite was superior compared with that of the monolithic alloy (30%). With the alumina 

nano particles addition, the tensile UTS, 0.2% YS, the compressive UCS, and 0.2% CYS were 

determined, showing significant improvements (Tables 2.7 and 2.8). The nano size particles 

alumina additions resolved the problem of significant ductility reduction in micron size alumina 

reinforcement, since there was an increment of failure strain in composites. The solution should 

be attributed to that nano particles provide sites where cleavage cracks are opened ahead of the 

advancing crack front that dissipates stress concentration from crack front and alters local 

effective stress state from plane strain to plane stress in the neighborhood crack tip. However, 
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with the SEM observation of fracture in tensile deformation (Figure 2.18), the AZ31/1.5 vol.% 

nano alumina composites demonstrated micro-crack, while the tensile fracture in monolithic 

AZ31 alloy had no micro-cracks. The work of fracture absorbed energy was also tested and 

reported in Tables 2.7 and 2.8. It showed there were improvements for both tensile and 

compressive deformation and a significant increase in tensile deformation was tested with 162% 

increase. 

 

Table 2.6 Results of grain and intermetallic particle characteristics and microhardness of AZ31 

and AZ31/Al2O3 nanocomposite [43] 

 

 

 

Table 2.7 Results of tensile testing of AZ31 and AZ31/Al2O3 nanocomposite [43] 

 

Table 2.8 Results of compressive testing of AZ31 and AZ31/Al2O3 nanocomposite [43] 
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Figure 2.17. Representative micrographs showing grain and intermetallic particle sizes in: (a) 

monolithic AZ31 and (b) AZ31/Al2O3 nanocomposite. Representative micrographs showing 

Al2O3 reinforcement distribution (location) in the AZ31/Al2O3 nanocomposite at: (c) grain 

boundary and (d) within the grain [43]. 
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Figure 2.18. Representative tensile fractographs of: (a) monolithic AZ31 and (b) AZ31/Al2O3 

nanocomposite [43]. 

 

2.4.2.4. Nano-sized Aluminum Particle Reinforced Pure Magnesium Composite 

          The monolithic magnesium with aluminum nano particle composite was made by Gupta et 

al [37] et al in 2007. Magnesium was supplied by Merck (Germany) in powder phase (60-300 

micron-meter). The aluminum powder was in 18 nm provided by Nanostructured & Amorphous 

Materials Inc. (USA) The magnesium powder and aluminum power were blended in aV-blender 

for 5h at 50 rpm. The mixture powder was pressed under 97 bar to ingot. The ingot was sintered 

at 500 °C for 2 hours in an inert Ar gas atmosphere. The sintered ingot was soaked at 400 °C for 

1 hour, and then hot extrude at 350 °C in an 150 tons hydraulic press. The extrusion ratio was 

25:1 to obtain a 7 mm diameter. 4 volume percentages of aluminum were produced (0.25, 0.5, 

0.75, 1) in the process for comparison. 

          The grain refinement was observed in the nano-particles composite. The most effective 

refinement was the highest 1% vol fraction aluminum composite, which was reported in the 

Table 2.9. 
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          The microstructures analyses (Figure 2.19 and 2.20) by FESEM and TEM with EDX, 

showed that nano-Al particulates were uniformly distributed. 

          With the content of aluminum particles increased, the tensile mechanical properties were 

indeed improved. However, with the content of volume fraction exceeding 0.5%, the 0.2% yield 

stress and ultimate tensile stress decreased. This phenomenon was applied to the ductility 

improvement, hardness, and work of fracture, which was reported in Table 2.10. This decrease 

may be due to the agglomeration of aluminum nano particulates with increasing volume fraction. 

 

Table 2.9 Results of density and grain size measurements [37] 

 

Table 2.10 Results of the room temperature mechanical properties of Mg and Mg/Alp samples 

[37] 
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Figure 2.19. Representative FESEM micrograph showing the distribution of aluminum 

particulates (represented by white spots) in Mg/1.00Alp composite [37]. 

 

Figure 2.20. TEM micrograph showing good interfacial integrity between Mg matrix and nano-

Al particulates. The EDX spectrum verifies the presence of nano-aluminum particulate [37]. 
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2.4.2.5. Nano-sized Silicon Carbide Particles and Carbon Nano Tube Reinforced Pure 

Magnesium Composite 

          In 2007, Thakur et al[44] et al carried out silicon carbide and carbon nano tube reinforced 

pure magnesium composite. The processing method was blending the mixture particles and 

alloys powder followed by sintering. Silicon carbide powder in 50 nm and multi-walled nanotube 

in 40-70 nm were prepared as reinforcement. The sintering process is carried out by micro-wave 

quick method at 640 °C near the melting temperature of magnesium for 25 minutes to remain the 

original grain size in order to protect the effect of grain refinement by reinforcements. The 

following hot extrusion was under 400 °C 1 hour holding and 350 °C extrusion temperature. The 

ratio was 25:1.  

          The resulting test for the products with 1% volume fraction in total derived that by 

increasing the SiC volume fraction, the grain size was decreasing; and with the increasing the 

SiC volume fraction, the porosity was decreasing. The results were reported in Tables 2.11 and 

2.12. 

          Table 2.13 shows the tensile deformation and hardness data for the resulting product. With 

higher volume fractions of SiC particles, hardness, UTS, and 0.2% YS showed improvement 

compared to low volume fraction composites. However, with even high volume fraction SiC 

particles, although the tensile 0.2% YS, UTS, and hardness were improved, the ductility was not 

as good as those of pure magnesium. 

          The properties improvement and porosity were superior with nano SiC particles than 

carbon nano-tube, which should be attributed to the poor bonding between the magnesium matrix 

and carbon nano-tubes. 
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Table 2.11 Results of density and porosity measurements [44] 

 

 

Table 2.12 Results of CTE determination and image analysis [44] 

 

Table 2.13 Results of micro-hardness and tensile properties [44] 

 

2.4.2.6. Nano-sized Alumina Particles and Carbon Nano Tube Reinforced Pure Magnesium 

Composite 

          Alumina powder in 50nm and multi-walled nanotube in 40-70nm size were used as 

reinforcement for pure magnesium matrix by Thakur et al [45],. The fabrication method was by 
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powder metallurgy and hot extrusion. The magnesium powders, alumina particles, carbon nano-

tube were mixed by blender and sintered between 630 and 640 °C, which was close to pure 

magnesium melting temperature, to promote better binding between the particulates. The 

sintering was processed in a microwave instead of furnace for advantage of retention of original 

microstructure without grain growth to help grain refinement. After the sintering method, a hot 

extrusion method was carried out at 350 °C with 25:1 extrusion rate under an 150 tons hydraulic 

press. The holding was at 400 °C for 1 hour. 

          As shown in Table 2.14, higher volume fractions of alumina resulted in higher porosity. 

The tendency of hardness was very similar. But, the increment was slight with the addition of 

nano Al2O3 particles (Table 2.15). This phenomenon should be attributed to the combination of 

hindrance to the motion of mobile dislocations by the presence of the reinforcing alumina 

particles, grain refinement resulting from alumina particulates presence, and the low level of 

porosity that helps improving the hardness of composite. 

          With increasing the aluminum volume fraction, the 0.2% yield strength, ultimate tensile 

strength, and the failure strain were improved that represented in Table 2.16. The 1% CNT 

reinforcement composite had inferior properties, which might be due to the following two points: 

1) Poor interfacial bonding between CNT particulates and magnesium matrix for ineffective load 

transfer from matrix to CNT particulates, and 

2) Uneven distribution of CNT particulates in the magnesium matrix. 

          Figures 2.21 and 2.22 showed the tensile failure microstructure of the Mg-1 vol.% CNT 

composite and Mg-0.7 vol.%CNT-0.3 vol.%Al2O3. With the decreasing in CNT volume fraction, 

the macro cracks decreased. The Mg-1% CNT composite failed in a cleavage like features; while 

the Mg-0.7%CNT-0.3%Al2O3 composite failed for overall of its content. 
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Table 2.14 Results of porosity and density measurements Mg/CNT/alumina [45]  

 

 

 

Table 2.15 Results of hardness tests Mg/CNT/alumina [45] 

 

Table 2.16 Results of tensile tests Mg/CNT/alumina [45] 
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Figure 2.21. SEM micrograph showing cleavage step like features in the magnesium matrix of 

the Mg+1%CNT composite [45]. 

 

Figure 2.22. SEM micrograph showing intrinsic features on the fracture surface of the Mg+ 

0.3%CNT + 0.7%Al2O3 composite sample deformed in uniaxial tension [45]. 
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2.5. Hybrid Composite Magnesium 

2.5.1.Solidification process 

          Hybrid reinforcements in magnesium alloy are considered as a comprehensive method for 

mass and inexpensive production. The combination of fibers and particles provides wide range of 

modifications for demand of mechanical properties. The processing method is generally similar 

to fibers reinforced magnesium composites with a difference in preform fabrication. The hybrid 

preform is fabricated by introducing binding compounds, forming the shape of preforms under 

certain pressure, drying and sintering. The direction of fibers is not required as in the 

unidirectional as the fiber reinforced composites [46]. 

2.5.2. Microstructure and Mechanical Properties 

2.5.2.1. Hybrid Reinforced AM60 Magnesium Composites 

          AM60-based hybrid composites were made with alumina fibers with/without particles. 

Figure 2.23 shows the SEM analysis microstructure of the preforms by Zhang et al][46],. Figure 

2.24 shows the microstructures of AM60 and its composites with fibers and hybrid reinforcement 

with same composition of fibers. Figure 2.25 shows the measured grain sizes. The results 

indicates that fibers refine the grain size of the fibre-only composite. With the addition of micron 

particles, the combination of two types of reinforcement refines the grain structure significantly. 

Figures 2.26 and 2.27 present the hardness and stress-strain curves. The additions of particles 

improve the mechanical properties of the AM60-based hybrid composites. 
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(a)                                                                            (b) 

Figure 2.23. SEM Micrograph of (a) Pure Fibre Perform, arrow1—fibre and arrow2—empty cell, 

(b) Hybrid Preforms, arrow1—fibre, arrow2—particle and arrow3—empty cell [46] 

 

(a)                                                                      (b) 

 

(c) 

Figure 2.24. Optical Photograph Showing the Microstructures of Matrix Alloy and Composites, 

(a) AM60, (b) 9%Fibres/AM60, and (c) (4% particles +9%Fibres)/AM60 [46]. 
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Figure 2.25. Grain Size of the Matrix Alloy, F/AM60 and (F+P)/AM60 Composites [46]. 

 

Figure 2.26. Hardness Measurements for the Matrix Alloy and Composites [46]. 
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Figure 2.27. Typical Engineering Stress vs. Strain Curves for AM60 alloy, F/AM60, and 

(P+F)/AM60 Composites [46]. 

2.6. Other Fabrication Methods for Magnesium-Based Composites 

          Although the powder metallurgy, squeeze casting, and stirring followed by hot extrusion 

methods, which are demonstrated to be the effective processes for fabricating magnesium-based 

composites according to reinforcements types, have been introduced in previous sections, there 

are still other methods reported for magnesium-based composites. 

2.6.1. In-situ Synthesis 

          In-situ synthesis is a fabrication process differed from casting. Casting, as its process 

feature, can be described as ex-situ synthesis. For magnesium-based casting, casting (hot 

extrusion included) adds external reinforcement into the bulk magnesium-based material. In in-

situ synthesis, the reinforcement is generated inside the bulk material by controlling and take 
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advantage of reactions between compositions of bulk material. As this feature, especially for 

magnesium-based composite fabrication, very limited systems have been studied.  

          Mg-Si system is one of the systems studied to fabrication of Mg-based composites 

reinforced by Mg2Si. The Si added to magnesium alloy can either readily react with the 

magnesium during the melting process or can precipitate from the matrix during the cooling 

process in the form of an intermetallic Mg2Si phase. The low-cost and abundance explains the 

reason why Mg-Si alloy has been studied for in-situ synthesis of a magnesium-based matrix 

composite. The Mg-Si phase has excellent hardness, but imposes serious difficulties in casting 

Mg-Mg2Si with a high content of Mg2Si [9, 47]. The tendency of Mg2Si to form coarse needle-

shape Mg2Si phase at high concentration of Si can reduce the mechanical properties of the final 

product. 

          The other system Mg-Ti-C was studied by Hwang et al [48] for nano-particle 

reinforcement magnesium-based alloy. Milling was the preparation of material for this in-situ 

process. The Mg, Ti, C powders were milled for 24 hours for the complete reaction of Ti and C 

followed by sintering at 350 °C. 

2.6.2. Pressure-less Infiltration 

          The pressure-less infiltration is relatively now compared to pressure infiltration (squeeze 

casting). During the infiltration process, molten alloys flow through the channels of the 

reinforcement bed or preform under the capillary action. For spontaneous infiltration, certain 

infiltration agents are required for each unique system. 

SiC/Mg composite has been studies by Hiromitsu and Takoo [49] for pressure-less 

infiltration. The experiment set-up is shown schematically in Figure 2.28. SiC micron particles 

and infiltration agent SiO2 powders were mixed and placed in the bottom crucible. The upper 
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crucible containing pure magnesium ingot that was placed on the top of the powder mixture. 

When the system was heated, the magnesium was melted, and spontaneously infiltrated the 

powder mixture. The reaction between SiO2 and magnesium to form MgO and Si provided the 

localized heat to resist solidification of Mg liquid and localized route for Mg liquid to 

penetration the SiC powders. The resulting composite microstructure is shown in Figure 2.29. 

The reinforcement distribution is evenly in the magnesium matrix. 

          The key of this pressure-less infiltration was the reaction of infiltration agent SiO2 and 

matrix magnesium. The infiltration behaviors depended mainly on the SiO2 content and powder 

size. Without SiO2, there was no infiltration. To acquire decreased size SiC, the minimum SiO2 

content needed to start the infiltration process. 

 

Figure 2.28. Experiment Set-up for Pressure-less Infiltration SiC/Mg  [49]. 
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Figure 2.29. The Microstructure of the Infiltrated SiC/Mg Composites [49]. 

 

2.6.3. Gas Injection 

          The Gas injection is a process that reinforcement carried by gases is blew into the liquid 

phase matrix metal. The study carried out by Hansen et al [50] showed the fabrication of AZ91 

ally magnesium based composite reinforced by SiC and Al2O3 particles by the gas injection. 

Particles were transported through a tube below the bath surface of molten AZ91 alloy at 720-

730 °C with the carrier gas of Ar or N2. The resulting composite contained evenly distributed 

reinforcement in AZ91 matrix. However, the presence of a number of clusters and agglomerates 

of the particulates and the limitation of volume fractions of reinforcement made this process less 

attractive. 
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2.6.4. Spray Forming 

          The spray forming directs the molten materials droplets onto a substrate to build up bulk 

metallic materials. For magnesium composite fabrication, the reinforcement particles are injected 

into the stream of the atomized matrix materials. SiC in 8 to 12 micron-meters reinforced QE22 

magnesium alloy has found the process parameters exerts considerable influence on the resulting 

microstructure [51]. As the rapid solidification during the spray forming process, the fine grains, 

porosity, and absence of brittle phase at the SiC/matrix has been proved [9] 

. 

2.7. Summary 

Significant research efforts have been made in the recent decades for improving 

mechanical properties of magnesium alloys by introducing reinforcement addition. Several 

improvements are made in not only just mechanical property enhancement but also economic 

fabrication technologies. Powder metallurgy is an effective process method for fabrication of 

Mg-based composite. However, due to its requirement of powder metals and reinforcement, its 

high cost seems not acceptable. In-situ methods, which control the reaction of forming 

reinforcement inside the matrix, require strict metallurgy system as well as ambient condition. 

Only few systems have been tried such like Mg-Si with Mg2Si reinforcement. Despite its 

economy of the in-situ process, the presence the needle-shaped Mg2Si phase reduces the 

mechanical properties of the composite. Pressure-less infiltration needs a minimum size of 

powder and infiltration agents such as SiO2 with strict content. The gas injection method, which 

requires support from inert gas to inject reinforcement into matrix, limits the volume fraction of 

the reinforcement. Spray forming is not ideal for the fabrication of composites as the 
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homogeneous reinforcement distribution is hard to achieve. For nano-sized particle-reinforced 

magnesium composites, due to the introduction of tiny powder reinforcement, quick sintering to 

prevent grain coarsen and hot extrusion to densify materials, which are considered as the 

effective processes, must be applied for the mixture of reinforcement and magnesium-based 

matrix after blending or stirring. As such, strict material preparation procedures of nano particle-

reinforced Mg-based composites are required.  Duplicated thermal processes in the DMD 

technique significantly increase the manufacturing cost and prevent the nano composite from 

applications with complex geometries in large sizes. Those drawbacks limit the nano-sized 

reinforcement Mg-based composites to be applied for large scale industrial fabrication.  On the 

other hand, the advantage of nano-sized reinforcement Mg-based composites is that the 

composite brittleness caused by increased volume fractions of reinforcement in micron size has 

been significantly reduced by the substitution of ceramic nano particles. The introduction of 

metallic nano particles such as aluminum into magnesium nano composites can make the 

composite even more ductile than the matrix itself with improved tensile and compressive 

properties. Despite the fineness of particles influences the refinement of matrix grain structure, 

the key to the success in the full engagement of particles in the magnesium composites is the 

bonding between matrix and reinforcement. Squeeze casting with preform infiltration has been 

demonstrated that the most effective and economic method for fabrication of micron-sized fiber 

or particle-reinforced only, and hybrid fiber and particles reinforced magnesium composites in 

relatively large sizes. Hence, the preform and squeeze casting technology could enable the Mg-

based hybrid nano composites to be applied cost-effectively for complex geometries with various 

sizes in the highly competitive automotive industry. 
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CHAPTER 3 Processing and Properties of As-cast Magnesium AM60-Based 

Composite Containing Alumina Nano Particles and Micron Fibres 

3.1. Introduction 

          The need for high-performance and lightweight materials in automobile and aerospace 

industries has led to extensive research and development efforts generating metal matrix 

composites (MMCs) and cost-effective fabrication technologies. The major disadvantage of 

MMCs usually lies in the relatively high cost of fabrication and reinforcement materials. The 

cost-effective processing of composite materials is, therefore, an essential element for expanding 

their applications. This is especially true for the high performance magnesium-based materials 

due to their high material and processing costs [1-4]. Since hybrid composites are fabricated by 

adding two or more reinforcements into matrix materials, excellent properties and a high degree 

of design freedom combinations including short fibres and different size particles become 

achievable. As magnesium matrix composites are reinforced with hybrid reinforcement in which 

both of the particles and short fibres are employed, large opportunities are provided to optimize 

the engineering performance of magnesium based composites for potential applications in 

automobile and aerospace industries [5]. The fabrication process for the hybrid preform with 

cellular structure made by micron-sized ceramic Al2O3 particles and Al2O3 fibres was described 

by Zhang [6]. Although the micron particle-reinforced magnesium alloy processes higher tensile 

strength and elastic modulus compared to the unreinforced magnesium alloy, a remarkable 

reduction in ductility is somewhat disappointing.  To minimize ductility reduction recently, 

nano-sized particles were introduced into magnesium alloys by substituting micron-sized 

particles [7, 8].  However, high cost of nanoparticles and manufacturing processes make them 
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less attractive to the highly competitive automotive industry than conventional approaches, i.e., 

stir casting and/or preform and squeeze casting. 

          In this article, the on-going work on the development of the preform-squeeze casting 

process, which is capable of infiltrating liquid magnesium alloy into the hybrid preform 

containing nano particles and micron fibres under an applied pressure, was presented. Both of the 

optical microscopy (OM) and scanning electron microscopy (SEM) were employed for the 

microstructural analysis of the composite.  The informative results of tensile testing on the 

hybrid composites are compared with those of the unreinforced matrix alloy.     

 

3.2. Experimental Procedures 

3.2.1. Materials 

          Al2O3 ceramic particles sized as 200 nm and Al2O3 short fibres with an average diameter 

of 3 µm and height of 50 µm were employed as the raw materials for preparation of the hybrid 

reinforcements since they are relatively inexpensive and possess adequate properties.  The matrix 

alloy AM60, with a chemical composition (wt.%) of 6.0Al-0.22Zn-0.4Mn-0.1Si-0.01Cu-

0.004Fe-0.002Ni-Mg, was chosen for its widespread use in the automotive industry with high 

ductility and moderate strengths. The thermo-physical properties of the ceramic Al2O3 nano 

particle, Al2O3 fibre and matrix alloy AM60 are given in Table 3.1.  
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Figure 3.1. Flowchart showing the procedure for fabricating hybrid (a) preform and (b) 

composites. 
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Table 3.1 Thermo-physical properties of the ceramic Al2O3 nano particle, Al2O3 fibre and matrix 

alloy AM60; Physical chemistry of property of ceramic grain and fibre Al2O3 and magnesium 

alloy 

Material Al2O3 particle Al2O3 fibre AM60 

APS size 200 nm 

  

Density g/cm3  3.97 3.40  

 

3.2.2. Fabrication of hybrid preform 

          The preparation steps for fabrication of the hybrid preforms (Figure 3.1, a) involve mixing 

the ceramic short fibres and particles, introducing the binding compounds, forming the preform 

shape under pressure, drying and sintering. In the hybrid preform, the fibres serve as the skeleton 

for a cellular structure. The content level of the fibre was pre-determined based on the desired 

amount of porosity in the cellular solid. The particulate reinforcements were dispersed in the 

pores present in the cellular solid. The content, size and type of the ceramic reinforcements were 

adjusted to yield the required quantity, and shape of preform. In addition, for the purpose of a 

comparative study of the hybrid preform characteristics; a pure fibre preform was also fabricated 

using the same process without adding particulate reinforcements.  

 

3.2.3. Fabrication of composites 

          Figure 3.1 (b) shows the fabrication process for the composites in which a squeeze casting 

process was adopted. During fabrication, a hybrid preform was first preheated to 300 0C. Then, 

molten matrix alloy AM60 at 750 0C infiltrated into the preheated preform under an applied 
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pressure of 90 MPa. The pressure was maintained at the desired level for 25 seconds. After 

squeeze casting, a cylindrical disk of dual-phase reinforced composite with 3 vol.% Al2O3 nano-

sized particles and 5 vol.% Al2O3 fibres, named (F+P)/AM60, was obtained. In the hybrid 

composite, the particles constituted the primary reinforcement phase, and short fibres served as 

the secondary reinforcement phase. For the purpose of comparison, a composite (F/AM60) with 

only 5vol. % Al2O3 fibre reinforcement was also prepared. 

 

3.2.4. Microstructure analysis 

          All specimens were cut from the center of the casting coupon. The samples were then 

polished and etched for the microstructural analysis. The primary characteristics of the prepared 

samples were investigated under an optical microscopy (Buehler image analyzer 2002). A 

scanning electron microscope (SEM) was employed for the detailed analysis of the 

microstructure. The maximum resolution used was up to 100 nm, which was in a backscattered 

mode. To further analyze the composition of the material, the energy dispersive spectroscopy 

(EDS) was used during the microstructure analysis. 

 

3.2.5. Tensile testing 

          The INSTRON machine was employed for the tensile test and the test rate was set as 

0.05mm/min. The mechanical properties for both of the composites and unreinforced matrix 

alloy were evaluated by tensile tests, by following ASTM B557. The tensile tests were 

performed at ambient temperature.  Based on the average of three tests, the mechanical 
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properties, such as elastic modulus (E), ultimate tensile strength (UTS), yield strength (YS) and 

elongation (ef) were obtained. 

3.3. Results and Discussion 

3.3.1. Characterization of hybrid preform composite 

          Prior to liquid metal pressure infiltration of preform, during the preform fabricating 

process, a three-dimensional skeleton is constructed. The fibres constitute a solid supporting 

frame with homogeneously dispersed ceramic particles in this three-dimensional structure. A 

novel fabrication process with high-frequency and long-term stirring ensures the reinforcements, 

both fibres and particles, disperse uniformly with acceptable little agglomeration. Consequently, 

it ensures AM60 alloy can be easily infiltrated into the preform. As well, the space of each cell 

provided by fibres skeleton in the preform represents a channel in which the molten magnesium 

alloy can flow through that preventing the deformation of the preforms to ensure efficient 

infiltration. The developed process for the fabrication of hybrid preforms is flexible to combine 

different kinds of discontinuous ceramic reinforcements and matrices for a wide range of 

engineering applications.  

          The preform eventual properties are critical in determining the properties of the 

magnesium composites. The SEM micrograph (Figure 3.2) depicts the microstructure of as-cast 

composite. It can be seen from Figure 3.2 that the reinforced particles were dispersed and placed 

individually with acceptable little agglomeration; a comparison is given as Figure 3.3 showing 

the distribution of only 5% vol/fibres reinforced composite. 
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(a) 

 

(b) 

Figure 3.2. SEM micrograph of composite matrix alloy and composites (3% nano-particles + 5% 

Fibres) /AM60.  a) overall dispersion of nano-particles and fibres; b) nano particles dispersion: 

Arrow 1-nano particles; Arrow 2-fibres. 
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          Molten matrix alloy was infiltrated into a preheated preform under pressure during the 

squeeze casting process. The previous studies [6, 9] have demonstrated that the quality of the 

preform and the processing parameters, such as the preform preheated temperature, the matrix 

alloy pouring temperature, and the applied pressure level in the preform plus squeeze casting 

process, influence the quality and performance of the composites significantly.  

 

 

(a) 
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(b) 

Figure 3.3. SEM micrograph of composite matrix alloy and composites (5% Fibres) /AM60.  a) 

overall dispersion of fibres; b) enlarged fibres: Arrow 1-fibres. 

 

          Nishida [10] described the threshold infiltration pressure, Po, using the following equation 

during squeeze casting: 

Po =-[4Vfγ cosθ] / [df (1-Vf)] 

where γ is the surface energy of the melt; θ is the contact angle between reinforcement and melt, 

Vf is the reinforcement volume fraction of the preform and df is the diameter of fibre or particle. 

If it is under ideal conditions, when Vf =5%vol and df = 5µm, for the magnesium alloy which 

can improve the wetting and decrease the surface energy of the melt, the contact angle between 

reinforcement and magnesium alloy is less than 90o, the molten metal infiltrates the hybrid 

preform spontaneously.  Generally, when modeling the infiltration, it is assumed that there is no 
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deformation on the preform. However, in practice pressure applied to the molten matrix to 

overcome capillary forces and other space resistance forces. As a result, residual porosity can be 

formed during infiltration. In fact, to achieve high quality and density in composites, the applied 

high pressure can transmit to the preform, the pressure can be reached to 90 MPa. This high 

pressure may deform the preform and led to undesired defects in the composites.  

          To optimize the applied pressure and prevent deformation of the hybrid preform, the 

compressive strengths of hybrid preform were evaluated by compressive tests at room 

temperature. From the data analysis, the critical stress P0 of the hybrid preform is as low as 0.6 

MPa [9]. Above this pressure, the deformation in the hybrid preform begins to localize, the 

cellular structure of preform suffer progressive crushing, and fractures propagate catastrophically. 

As shown in Figure 3.4, fractures of the fibres occur in a typical brittle manner, i.e., crush and 

cut.  To avoid the premature fracture of the preform, the pressure applied in the squeeze casting 

was increased gradually from a value below the critical stress. The gradual increase in the 

applied pressure could effectively prevent the deformation of preform during squeeze casting. 

The applied pressure during casting and infiltration enabled the superheated molten matrix alloy 

in the preheated die to flow into the preform and wet reinforcement although no wetting agents 

was employed. Also, because the contacting time between the molten alloy and reinforcement at 

relatively high casting temperature was very short with the help of the applied pressure, the 

microstructure of the composites is homogeneous without the porosity and reactants. 
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Figure 3.4. Fractures of preform fibres : Arrow 1-fibres crush. 

 

          Figure 3.5 gives the grain structures of the matrix alloy and the composites. The grain size 

measurements for the composites and unreinforced AM60 matrix alloy are presented in Table 3.2.  

With 5 vol.% of micron fibres, the grain size of the matrix alloy decreases from 68 to 45 µm by 

34%.  It was reported [11] that the addition of micron particles resulted in a grain refinement of 

Mg alloy AM50.  The microstructural analysis of the composite reveals the similar effect of 

grain refinement by Al2O3 nano particles. The addition of 3 vol.% Al2O3 nano particles further 

reduces the grain size of the matrix alloy from 45 to 20 µm by 56%.  The observed grain 

refinement might be primarily due to the combined effect of heterogeneous nucleation of 

primary magnesium on Al2O3 particles, restricted growth of magnesium grains, and 

heterogeneous nucleation of eutectic magnesium (Mg12Al17) on Al2O3 particles and fibres[12].  
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Table 3.2 Grain sizes of AM60 alloy, 5 vol.% Fibre/ AM60, and (3 vol.% nano-Particle +5 

vol. % Fibre)/ AM60 composites 

 AM60 5% Fibre 

/AM60 

(5%Fibre + 3% nano-Particle) 

/AM60 

Average grain size 

(µm) 

68 45 20 

 

 

(a) 
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(b) 

 

(c) 

Figure 3.5. Optical micrographs showing grain structure of (a) unreinforced AM60 matrix alloy, 

(b) 5 vol.% Fibre/ AM60 and (c) (3 vol. % nano-Particle +5 vol. %Fibre)/ AM60. All are under 

as-cast condition. 
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3.3.2. Tensile properties 

          The typical engineering stress-strain curves for AM60, 5 vol. % Fibre/AM60, and (5 vol.% 

Fibre+3 vol.% nano-Particle)/AM60 composites are shown in Figure 3.6 and the mechanical 

properties data are given in Table 3.2. It is observed from the results that the addition of micron-

sized reinforcements leads to a significant improvement in the elastic modulus and the strengths, 

but results in a marked diminishment in elongation. However, the addition of nano-sized 

particles results in a significant improvement in the elastic modulus and the strengths as well as a 

restoration of ductility.  From Table 3.3, it can be seen that the yield strength (YS) of the 

composites, of 5 vol.% Fibre/ AM60, and (5 vol.% Fibre+3 vol.% nano-Particle)/AM60 are 120 

and 140 MPa, which increase by 48% and 73% over that of the unreinforced matrix alloy, 

respectively.  According to the tensile curve showing in Figure 3.5, the elastic moduli (E) of the 

composites of 5 vol.% Fibre/ AM60, and (5 vol.% Fibre+3 vol.% nano-Particle)/AM60 are 50 

and 53 GPa, which are 25% and 33% higher than that of the unreinforced matrix alloy, 

respectively.  The UTS of the 5 vol.% Fibre/ AM60, and (5 vol.% Fibre+3 vol.% nano-

Particle)/AM60 composites is 189 MPa and 216 MPa, which represents 11% AND 26% over 

that of the matrix alloy, respectively. Compared to that (6%) of the matrix AM60 alloy, the 

elongation to failure (ef) of the composites are 2.2% and 3.5% for the 5 vol.% Fibre/ AM60, and 

(5 vol.% Fibre+3 vol.% nano-Particle)/AM60 composites, respectively.  The elongation is 

restored after 3 vol.% of nano-sized alumina particles by 1.3% is added to the composite.  This 

might be because the sites provided by nano-particles where cleavage cracks are opened ahead of 

the advancing crack front are capable of dissipating stress concentration from crack tips and 

altering local effective stress state from plane strain to plane stress in the neighborhood crack tip 

[7].  
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Figure 3.6. Typical engineering stress vs. strain curves for the matrix alloy AM60, the 

composites of 5 vol. % Fibre/AM60, and (5 vol.% Fibre+3 vol.% nano-Particle)/AM60. 

 

Table 3.3 UTS, YS, ef and E of the matrix alloy AM60, the composites of 5 vol. % Fibre/AM60, 

and (5 vol.% Fibre+3 vol.% nano-Particle)/AM60. 

 UTS 

(MPa) 

YS (MPa) ef 

(%) 

E 

(GPa) 

AM60 171 81 6.0 40 

 

(5 vol.% F)/AM60 

 

(3 vol. % nano-Particle +5 

vol. % Fibre)/AM60 

 

189 

 

216 

 

120 

 

140 

 

2.2 

 

3.5 

 

50 

 

53 
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3.4. Conclusions 

          A hybrid preform-squeeze casting process for fabricating magnesium alloy AM60-based 

hybrid composites reinforced by nano-sized particles and micron-sized fibres has been developed.  

The SEM observation on the microstructure reveals that the nano-sized particles dispersed 

homogenously in the matrix alloy without large agglomeration. The optical microstructure 

analysis of the composites indicates that fibres orientate randomly in the matrix. The hybrid 

composite reinforced with 3 vol. % nano-sized Al2O3 particles and 5 vol. % Al2O3 fibres exhibits 

improved tensile strengths over those of the matrix alloy. In particular, the yield strength (140 

MPa) of the hybrid composite is 73% higher than that of the matrix alloy.  The elastic modulus 

of the hybrid composite (53 GPa) shows 33 % improvement over the matrix alloy (40 GPa). 

Compared with the 6% elongation of the matrix alloy, the composite reinforced by 5 vol.% of the 

Al2O3 micron fibre exhibits only the elongation of 2.2%. The addition of 3 vol.% of the Al2O3 

nano particles restores the elongation of the composite by 1.3% to 3.5%. 
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CHAPTER 4 As-cast Magnesium AM60-Based Hybrid Nanocomposite 

Containing Alumina Fibres and Nanoparticles: Microstructure and Tensile 

Behavior 

4.1. Introduction 

          Magnesium as the lightest structural metal possesses high specific strengths and low 

density over other metallic metals.  In the past two decades, the use of magnesium-based 

engineering applications in the automotive industry has risen significantly owing to the increased 

demand for fuel economy, light-weighting, and performance. From the viewpoint of engineering 

performance, magnesium alloys are not very competitive owing to their inferior mechanical and 

high-temperature and corrosion and wear properties in comparison with aluminum alloys and 

steels.  When one or more reinforcements are added to a monolithic alloy to form a metal matrix 

composite (MMC), a novel material with considerably improved properties such as high 

strengths, high moduli and high-wear resistance, low coefficients of thermal expansion, becomes 

available.  MMCs accompanying with their superior mechanical properties over non-reinforced 

monolithic alloys offers a large variety of engineering designs.  Therefore, magnesium-based 

composites have been receiving attention in recent years as an attractive choice for automotive 

applications because of their low density and superior specific properties due to the need for 

lightweight materials with high-performance in the automotive industry [1-3].   

          The major disadvantage of MMCs usually lies in the relatively high cost of fabrication and 

reinforcement materials.  The cost-effective processes for the preparation of composite materials 

are an essential element for expanding their applications. This is especially true for the high-

performance Mg-base MMCs due to their high material and processing costs [4-7].  Recently, 
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Zhang et al [8] and Zhou et al [9] demonstrated the success in the introduction of two or more 

reinforcements including short fibres and particles with different sizes into magnesium matrix 

alloy AM60 by using a preform-squeeze casting process.  The fabricated Mg-based hybrid 

composites exhibited excellent properties, and made a high degree of material design freedom 

available for magnesium [8, 9].  As Mg-based hybrid composites employed hybrid 

reinforcements such as particles and short fibres, opportunities emerges to optimize the 

engineering performance of magnesium-based composites for various potential applications [10]. 

The study by Zhang et al [11] indicated that, although the micron-sized particle and fibres-

reinforced magnesium hybrid composites had high tensile strengths and elastic modulus 

compared to the unreinforced matrix alloy, it was disappointed to observe a remarkable reduction 

in ductility.  To minimize ductility reduction recently, nano-sized particles were introduced into 

magnesium alloys by substituting micron-sized particles [1, 12-14].  However, high costs of 

nanoparticles and manufacturing processes such as evaporation, spray processing and ball 

milling make them less attractive to the highly competitive automotive industry than 

conventional approaches, i.e., stir casting and/or preform and squeeze casting. 

          In this article, the on-going work on the development of the preform-squeeze casting 

process, which was capable of infiltrating liquid magnesium alloy AM60 into the hybrid preform 

containing nano-sized Al2O3 particles and micron-sized Al2O3 fibres under an applied pressure, 

was presented.  The tensile properties of the Mg-based hybrid nanocomposite (MHNC) were 

evaluated.  The informative results of tensile testing on the MHNC were compared with those of 

the unreinforced matrix alloy and the composites reinforced with micron-sized Al2O3 fibres 

and/or Al2O3 particles. The Transmission Electron Microscopy (TEM), Scanning Electron 
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Microscopy (SEM), and Optical Microscopy (OM) were employed for the microstructural and 

fractural analyses of the MHNC.     

4.2. Experimental Procedures 

4.2.1. Materials 

          Magnesium alloy AM60 with a chemical composition (wt %) of 6.0Al-0.22Zn-0.4Mn-

0.1Si-0.01Cu-0.004Fe-0.002Ni-Mg was chosen as matrix alloy.  Nano-sized Al2O3 ceramic 

particles with an average particulate size of 100 nm (US Research Nanomaterials, Inc., USA), 

micron-sized Al2O3 ceramic particles with an average particulate size of 5 µm (Inframat 

Corporation, USA), and Al2O3 short fibres (Morgan Advanced Materials, United Kingdom) with 

an average diameter of 4 µm and length of 50 µm were employed as raw materials for the 

preparation of hybrid reinforcements since they are relatively inexpensive and possess adequate 

properties. 
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Figure 4.1. Flowchart showing the procedure for fabricating hybrid (a) preform and (b) 

composites. 
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shape under pressure, drying, and sintering.  In the hybrid preform, the fibres serve as the 

skeleton for a cellular structure.  The content level of the fibre was pre-determined based on the 

desired amount of porosity in the cellular solid. The particulate reinforcements were dispersed in 

the pores present in the cellular solid. The content, size and type of the ceramic reinforcements 

were adjusted to yield the required quantity, and shape of preform. In addition, for the purpose of 

a comparative study of the hybrid preform characteristics; a pure fibre preform was also 

fabricated using the same process without adding particulate reinforcements.  

 

4.2.3. Fabrication of composites 

          Figure 4.1 (b) shows the fabrication process for the composites in which a squeeze casting 

process was adopted. During fabrication, a hybrid preform was first preheated to 700 0C. Then, 

molten matrix alloy AM60 at 750 0C infiltrated into the preheated preform under an applied 

pressure of 90 MPa. The pressure was maintained at the desired level for 30 seconds. After 

squeeze casting, a cylindrical disk of single or dual-phase reinforced composite with 3 vol.% 

Al2O3 nano-sized or micron-sized particles and 5 vol.% Al2O3 fibres, was obtained.  In the 

hybrid composite, the particles constituted the primary reinforcement phase, and the short fibres 

served as the secondary reinforcement phase.  For the purpose of comparisons, three different 

types of 5 vol% Fibre/AM60, (5 vol.% Fibre + 3 vol% micron-Particle)/AM60, and (5 vol.% 

Fibre+3 vol.% nano-Particle)/AM60 composites were prepared, which were named the fibre-

only composite, the micron hybrid composite, and the MHNC, respectively.  More details on the 

process for fabricating the composites are given in references 8, 9 and 11. 
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4.2.4. Microstructure analysis 

          All specimens were cut from the center of the casting coupon. The type of heat treatment, 

T4, was conducted on both of the unreinforced alloy AM60 and fiber-reinforced composites to 

reveal the grain structure.  Following the standard metallographic procedures, as-cast and T4-

treated specimens were mounted and polished.  To disclose the microstructural characteristics of 

the composites and alloys, samples were then polished and etched in a solution (60 ml 99% 

ethanol solution, 20 ml acetic acid, 19 ml dilute water, and 1 ml nitric acid) for microstructural 

analyses. The primary morphologic grain characteristics of the polished and etched samples were 

investigated under optical microscopy (OM) (Buehler image analyzer 2002).  The existence and 

distribution of the reinforcements were investigated by a JEOL JSM-5800LV scanning electron 

microscope (SEM) with an energy dispersive X-ray spectrometer (EDS). Samples for TEM 

(JOEL 2010F) analyses were prepared by focus ion beam (FIB) (Zeiss NVision 40) using STEM 

modulus for investigation.  To prevent the fall-off of the tiny nanoparticle, a tungsten coating 

was applied to the cross-section surface of the MHNC foil prepared by the FIB before the TEM 

observation. 

 

 

 

4.2.5. Tensile testing 

          Mechanical properties were evaluated via tensile testing (ASTM B557) at ambient 

temperature using specimens of 25 mm × 6 mm × 6 mm (gauge length×width×thickness) on an 

Instron (Grove City, PA, USA) machine equipped with a computer data acquisition system. The 
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tensile specimens were machined from the center of as-cast coupons.  The tensile tests were 

performed at an initial strain rate of 5×10−3 s−1.  The tensile properties, including 0.2% yield 

strength (YS), ultimate tensile strength (UTS), elongation to failure (ef), and elastic modulus (E)  

were obtained based on the average of three tests. 

 

4.3. Results and Discussion 

4.3.1. Microstructure 

          Figure 4.2 presents optical micrographs showing the unetched matrix alloy and the 

composites. As shown in Figure 4.2(a) by the OM, the divorced eutectic phases (β-Mg17Al12 ) is 

present along the grain boundaries of the unreinforced alloy.  Figure 4.2(b) depicts that the short 

fibres are distributed in a random and isotropic orientation in the fibre-reinforced composite. The 

microstructures of the hybrid magnesium composites reinforced with micron-sized and 

nanosized particles are given in Figure 4.2(c) and (d), respectively. It can be seen that the fibres 

and particles are uniformly distributed throughout the matrices in the fibre-only composite and 

the hybrid composites.  The introduction of either micron or nano particles up to 3 vol% has little 

effect on the uniformity of fibres.  Pores are barely found in the microstructure, implying the 

hybrid composites were well densified during fabrication due to a gradual application of the 

infiltration pressure.  The pore-free microstructure of the composites also suggests the success in 

the infiltration of the matrix alloy into the hybrid preform.   

           A non-uniform distribution of reinforcements could result in the degradation of 

mechanical properties of the composites, a non-uniform grain structure and defect formation of 

the composites. Although the large difference in size between the particles and the fibres is 
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present, it can be seen from Figures. 4.2(c) and (d) that the micron or nanoparticles and fibres are 

dispersed uniformly without agglomeration and cave in the matrix alloy. The microstructure of 

the composites reinforced with both the Al2O3 micron and nanoparticles and micron fibres 

distributed homogeneously in the matrix satisfies the materials design requirements by using 

ceramic particles as the main reinforcement to enhance the mechanical and wear properties of the 

composites, with the fibres helping improve their toughness. The overall properties of the 

composites can be improved and tailored via optimization. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 4.2. Optical photograph showing the microstructures of unetched as-cast matrix alloy and 

composites, (a) unreinforced matrix alloy AM60, (b) 5 vol% Fibre/ AM60, (c) (3 vol% micron 

particle +5 vol% Fibre)/ AM60. (d) (3 vol% nanoparticle +5 vol% Fibre)/ AM60.  

 

          Figure 4.3 presents the grain structures of the etched matrix alloy and the composites.  The 

grain size measurements for the composites and unreinforced AM60 matrix alloy are presented 

in Figure 4.4.  With 5 vol% of micron-sized fibres, the grain size of the matrix alloy decreases 

from 68 to 45 µm by 34%.   The refinement of grain structure in the fibre-only composite should 

be primarily attributed to the restriction of grain growth by the limited cellular space formed in 

the skeleton of the fiber preform structure[15].  The addition of 3 vol.% Al2O3 micron particles 

to the hybrid composite further reduces the grain size of the matrix alloy from 45 to 28 µm by 

38%.  It was reported [16] that the coupled effect of the heterogeneous nucleation of the primary 

magnesium phase on micron particles and the restricted growth of magnesium crystals should be 
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responsible for the grain refinement of as-cast Mg alloy AM50 with 5 vol% micron particles.  

The microstructural analysis of the nanocomposite reveals the similar effect of grain refinement.  

The substition of the Al2O3 nano particles for the micron ones further reduces the grain size of 

the matrix in the MHNC from 28 to 20 µm by 40%.  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 4.3. Optical micrographs showing grain structures of etched (a) unreinforced matrix alloy 

AM60, (b) 5 vol% fibre/ AM60, (c) (3 vol% micron particle +5 vol% fibre)/ AM60, and (d) (3 

vol% nano particle +5 vol% fibre)/ AM60. 

 

Figure 4.4. Measured grain sizes of the unreinforced matrix alloy AM60, 5 vol% fibre/ AM60, 

(3 vol% micron particle +5 vol% fibre)/ AM60, and (3 vol% nano particle +5 vol% fibre)/ AM60. 
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          Figure 4.5 shows the reinforcement distribution in the microstructure of the unreinforced 

matrix alloy, the the fibre-only composite and the hybrid composites by SEM micrographs in a 

backscattered electron (BSE) mode.  It can be seen from Figure 4.5 that the reinforced fibres and 

micron/nano particles were dispersed and placed individually with little agglomeration.  As 

illustrated in Figure 4.6, the TEM and EDS analyses confirms the presence of the micron 

particles in the hybrid composite (Figure 4.6(a)), and the nanoparticles in the MHNC which 

further evidences the successful introduction of the nanoparticles in the composites (Figure 

4.6(c) ).  The probe crossed the alumina micron and nano particles along the white line in Figure 

4.6(b) and (d).  When the probe went from the matrix to the particles, a large sharp decrease in 

magnesium, and a rapid increase in aluminum and oxygen were found.  This observation was 

consistent with the compositions of the matrix and particle reinforcements. Examination of the 

interfacial structure revealed a relatively clean interface of both the micron and nano particles. 

No particle/matrix reaction products were detected in the hybrid composite and MHNC by TEM.  

This should be primarily due to the presence of inadequate reaction time between the particles 

and matrix alloy as a result of fast pressurized infiltration implemented during squeeze casting. 

 

(a) 
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(b) 

 

(c) 

Figure 4.5. SEM micrographs in BSE mode showing the reinforcement distribution in (a) 5 

vol% fibre/ AM60, (b) (3 vol% micron-particle +5 vol% fibre)/ AM60, and (c) (3 vol. % nano-

particle +5 vol% fibre)/ AM60.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.6. TEM and EDS results showing the particle presence and the interface between the 

particle and matrix, (a) a micron Al2O3 particle in the (3 vol% micron Al2O3 particles + 5 vol% 

Fibres) /AM60, (b) line scans and the corresponding line scanning pattern for the cross-section 

area of the micron particle, (c) a nano Al2O3 particle in the (3 vol% micron Al2O3 particles + 5 

vol% Fibres) /AM60 MHNC, and (d) line scans and the corresponding line scanning pattern for 

the cross-section area of the nano particle.  The gray lines denote the approximate scanning path. 
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          Figure 4.7 shows the TEM images of the composites reinforced with the two different 

sizes of Al2O3 particles. Examination of microstructure revealed by TEM manifests the 

difference between the two composites in the presence of defects. Relatively high dislocation 

density exists in the composites reinforced by the micron size particles (Figure 4.7(a)). The 

inherent difference in thermal expansion coefficients should be responsible for the formation of 

mismatch stress of the Al2O3 particles and matrix alloy, which results in high dislocation density. 

This observation is consistent with the results disclosed in references [12, 17]. However, when 

the particle size decreases to the nano level, despite the presence of the distinctive difference in 

their thermal expansion coefficients between the Al2O3 particles and the matrix alloy, no evident 

dislocations around the nano particle are observed in the matrix alloy under the applied condition 

of the electron diffraction pattern, as shown in Figure 4.7(b).  The low dislocation density in the 

MHNC might be due to the fact that the nano particles are extremely tiny, which are hard to 

generate sufficient strain by the thermal mismatch to induce dislocations during solidification.  
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(a) 
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(b) 

Figure 4.7. TEM micrographs showing dislocations in the composites with Al2O3 particles: (a) 

micron and (b) nano.  

4.3.2. Tensile properties  

          The representative engineering stress-strain curves for AM60, the fibre-only composite 

(AM60 5%F), the micron hybrid composite (AM60 5%F-3%P micron Al2O3), and the MHNC 

(AM60 5%F-3%P nano Al2O3) are shown in Figure 4.8. The curves for the matrix alloy and the 

composites have a similar pattern, in which the materials deform elastically first.  Once the yield 
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point is reached, the plastic deformation sets in.  The addition of fibers and/or particles pushes 

the yield points of the composites to high stress levels. Finally, the composites fractured at much 

higher stress and lower strain levels than that of the matrix alloy AM60.  It can be seen from 

Figure 4.7 that, although the introduction of the reinforcements leads to an increase in the 

strengths and modulus, there is a significant reduction in elongation when micron fibres and 

particles are added.  But, the placement of the nano particles in the MHNC, which replace the 

micron ones, offsets the elongation reduction.   

          The tensile properties data given in Table 4.1 show that the as-cast matrix alloy exhibits 

171 MPa of its UTS, 81 MPa of its YS, 40 GPa of its elastic modulus and 6.0% failure 

elongation. The introduction of the micron fibre reinforcement, increases the UTS, YS and E to 

189 MPa, 120 MPa and 50 GPa, by 11%, 48%, and 25%, respectively.  Although additional 3 

vol% of micron particles further enhances the UTS, YS and E only by 2%, 18%, 6%, 

respectively, the elongation is reduced considerably from 6.0% to 1.6% by 73%.  Meanwhile, the 

MHNC gives the UTS of 216 MPa showing an increase of 13% in UTS over the hybrid 

composite as the YS ( 140 MPa) and the E (53 GPa) are maintained.  The determined tensile 

strengths are in line with the grain size measurements since the grain refinement enhances the 

materials strengths.  Moreover, it is worthwhile noting that the ef of the MHNC is 3.5%, which 

represents an increase of 119% over that of the hybrid composites.  The replacement of the 

micron particles with the nano particles in the Mg-based hybrid composite effectively recovers 

the ductility of the composite by 2% .  
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Figure 4.8. Engineering stress vs. strain curves for the matrix alloy AM60, 5 vol% Fibre/AM60, 

(5 vol.% Fibre+3 vol% micron Al2O3  particle)/AM60, and (5 vol.% fibre+3 vol.% nano Al2O3 

particle)/AM60. 

 

Table 4.1 UTS, YS, ef and E of the Matrix Alloy AM60, the Composites of 5 vol. % 

Fibre/AM60, and (5 vol.% Fibre+3 vol.% nano-Particle)/AM60. 

 

YS 

(MPa) 

UTS 

(MPa) 

ef 

(%) 

E 

(GPa) 

AM60 

 

81±6 

 

171±8 

 

6.0±1.3 

 

40±4 

 

Fibre-only 120±5 189±12 2.2±1.7 50±2 

     

Micorn Hybrid 142±7 192±15 1.6±1.1 54±5 

     

MHNC 140±14 216±5 3.5±1.2 53±3 
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          The observed ductility restoration is evidently supported by the results of the TEM 

analysis.  A high dislocation density provides more tough obstacles to overcome, which 

increases the strength and toughness of materials.  With a low dislocation density, however, 

materials are capable of carrying more strain during deformation.  Also, Hassan and Gupta[12] 

have also observed that the addition of micron-sized reinforcements leads to an improvement in 

the elastic modulus and the strengths, but results in a marked diminishment in elongation. 

However, the addition of nano-sized particles results in a significant improvement in the elastic 

modulus and the strengths as well as a restoration of ductility. This is because the sites provided 

by nano-particles where cleavage cracks are opened ahead of the advancing crack front are 

capable of dissipating stress concentration from crack tips and altering local effective stress state 

from plane strain to plane stress in the neighborhood of the crack tip.  Overall, the high strengths 

and moderate elongation of the MHNC should result from the combined strengthening effect: 

homogeneous distribution of nano particles, matrix grain structure refinement, good interfacial 

bonding between the matrix and the nano particles and micron fibres[13].   
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4.3.3. Strain hardening 

 

Figure 4.9. True stress vs. strain curves for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 

vol.% Fibre+3 vol% micron Al2O3  particle)/AM60, and (5 vol.% fibre+3 vol.% nano Al2O3 

particle)/AM60. 
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Figure 4.10. Strain hardening curves for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 vol.% 

Fibre+3 vol.% micron Al2O3  particle)/AM60, and (5 vol.% fibre+3 vol.% nano Al2O3 

particle)/AM60, upon the commencement of plastic deformation.  

 

          The true stress and strain could be determined from the engineering stress and strain by 

applying the following equations: 

σt = σe (1+ εe)                                   (Eq. 4.1) 

εt = ln (1+ εe)                                   (Eq. 4.2) 

where σt is the true stress, εt is the true strain, σe is the engineering stress, and εe is the 

engineering strain.  Figure 4.9 shows the true stress vs. strain curves for the matrix alloy AM60, 

5 vol% Fibre/AM60, (5 vol.% Fibre+3 vol% micron Al2O3  particle)/AM60, and (5 vol.% 

fibre+3 vol.% nano Al2O3 particle)/AM60.  

The true stress-strain curve for engineering materials can be described by the power law 

relationship for plastic deformation [11]: 

σ = K εn                                          (Eq. 4.3) 
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where K is the strength index, ε is the plastic strain and n is the strain hardening exponent.   

         Table 4.2 lists the numerical values of the constants in Eq. 4.3 with the regression 

coefficients. The strain hardening rate (dσ/d) can be obtained from the differentiation of the Eq. 

4.3.  The strain hardening behaviors of the alloy and composites are shown in Figure 4.10, which 

was derived from Figure 4.9.  Figure 4.10 presents the strain hardening rates at the beginning of 

the plastic deformation for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 vol.% Fibre + 3 vol% 

micron Al2O3  particle)/AM60, and (5 vol.% fibre + 3 vol.% nano Al2O3 particle)/AM60.  All the 

tested materials revealed the similar trend, in which the strain hardening rates decrease with 

increasing the true strain.  At the beginning of the plastic deformation, the matrix alloy shows a 

strain hardening rate of only 4085.2 MPa.  The ceramics fibre introduction increases the strain 

hardening rate to 7453.5 MPa.  The strain hardening rate rises to 8360.9 MPa after the addition 

of the micron particles to the hybrid composite.  The substitution of the nano particles for the 

micron ones leads to an increase in the strain hardening rate to 8418.6 MPa. The effect of the 

particle size on the strain hardening rate of the hybrid composite and the MHNC seems limited.  

Among all the tested materials, the MHNC has the highest strain hardening rate, which implies 

that the MHNC are able to spontaneously strengthen itself increasingly to a large extent, in 

response to plastic deformation before the final fracture. 
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Table 4.2 Best fit parameters of power equation 

Materials K (MPa) n R2 

AM60 444±10 0.3187±0.0074 0.9957±0.0019 

AM60 5%F 932±11 0.3908±0.0052 0.9946±0.0021 

AM60 5%F-3%P- micron Al2O3 1077±12 0.4045±0.0070 0.9998±0.0001 

AM60 5%F-3%P nano Al2O3 1143±15 0.4223±0.0098 0.9992±0.007 

 

4.3.4. Fractography  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 4.11. Fractures of AM60, AM60 composites with Al2O3 fibres particles (a) AM60 alloy 

(b) AM60 alloy with 5%fibre (c) AM60 alloy with 5%fibre/ 3% micron size particles (d) AM60 

alloy with 5%fibre/ 3% nano size particles (arrow 1- matrix crack; arrow 2- fibre crack; arrow 3- 

debonding; arrow 4- micron-particle crack; arrow). 

 

          As shown in SEM fractography in Figure 4.11, the specimens were observed under high 

magnifications in attempt to reveal detailed features of the fracture surfaces and determine the 

fracture behaviors with reference to the mechanical properties of the composites reinforced with 

the different volume fraction, sizes and types of fibre and particles. Figure 4.11 (a) shows a 

typical fracture surface with a unreinforced AM60 alloy. There were shallow dimples on the 

surface and generally displayed ductile behavior. A considerable amount of energy was 

consumed in the process of the formation of micronvoids, eventually leading to the formation of 

cracks. This type of cracks resulted from the coalescence of microvoids under tensile stress. As 

the reinforcement introduction of fibre and micron/nano-sized particles, significant amount of 
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loads were transferred to fibre and micron/nano-sized particles. The composite broke in a brittle 

mode much different from that of the unreinforced alloy.  The final tensile fracture primarily 

results from fibre and particles cracks, as shown in Figure 4.11, due to the inherent nature of the 

high strength and brittleness of the ceramic fibres and particles.  The debonding at the interface 

between the fibre and matrix as well as the particle and matrix could be another crack initiation 

area of the composite, which might be attributed to the insufficient infiltration of the molten 

metal into the close packed network of fibres and particles.  Few dimples are found on the 

fracture surfaces of the fibre-only and the micro hybrid composites in Figure 4.11 (b) and (c).  

However, certain deformation of the matrix alloy is evidently present on the fracture surface of 

the MHNC. Overall, the SEM fractography results were in consistent with the tensile data as 

reinforcement addition into the particles. 

  

4.4. Conclusions 

          A hybrid preform-squeeze casting process for fabricating magnesium alloy AM60-based 

hybrid nanocomposites reinforced by nano-sized particles and micron-sized fibres has been 

developed.  The SEM observation on the microstructure reveals that the nano-sized particles 

disperse homogenously in the matrix alloy without large agglomeration. The optical and SEM 

microstructure analyses of the composites indicate that fibres orientate randomly in the matrix 

and grain structure is well refined. The TEM analyses reveal the presence of a low dislocation 

density in the MHNC resulting from the deficiency of thermal strains due to the introduction of 

nano-sized particles.  The MHNC reinforced with 3 vol% nano-sized Al2O3 particles and 5 vol% 

Al2O3 fibres exhibits an balance on tensile strengths and elongation compared with the fibre-only 

and hybrid composites and the matrix alloy. Among the three types of the tested composites, the 
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MHNC gives the highest UTS (216 MPa), ef (3.5%) and the strain hardening rate (8418.6 MPa).  

The YS (140 MPa) and E (53 GPa) of the MHNC are very comparable to those of the hybrid 

composite. The addition of the 3 vol% Al2O3 nano particles restores the elongation of the hybrid 

composite from 1.6% to 3.5%.  The replacement of the micron particles with the nano particles 

in the Mg-based hybrid composite effectively recovers the ductility of the composite by 118%.  

The presence of the low dislocation density in the matrix of the MHNC should be responsible for 

the ductility restoration. 
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CHAPTER 5 Microstructure and Tensile Properties of Cast Magnesium 

AM60-Based Hybrid Nanocomposites Reinforced With Al2O3 Fibres and 

Al2O3 or AlN Nanoparticles 

5.1. Introduction 

          Magnesium and its alloys, owing to their low density, approximately two-third of that of 

aluminium, and high specific strength as compared to other structural metals, have attracted 

widespread attention in commercial products as well as scientific research as demands for energy 

conservation and engineering performance are increasing [1, 2]. Especially, a significant rise has 

been witnessed in the magnesium-based engineering applications in the automotive industry.  

Due to their relatively low mechanical and high-temperature and corrosion and wear properties, 

magnesium alloys seem uncompetitive with aluminum alloys and steels.  To improve mechanical 

properties of metallic materials, ceramic-based reinforcement is often introduced to a monolithic 

alloy to form a metal matrix composite (MMC). Consequently, considerably enhancement of 

engineering properties such as high strengths, high moduli and high-wear resistance, low 

coefficient of thermal expansion becomes achievable.  The superior properties of MMCs over 

non-reinforced monolithic alloys provide a large variety of engineering designs. Therefore, 

magnesium-based composites, which are capable of meeting the demand for high-performance 

materials with lightweight features, have been receiving attention in the past decade for 

engineering applications in the automotive industry[3-5].   

 

          But, MMCs are often disadvantaged by relatively high cost of fabrication processes and 

reinforcement materials [6-9].  An economic process for the preparation of composite materials 
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is an essential element for expanding their applications.  Recently, Zhang et al [10] and Zhou et 

al [11] demonstrated the success in the introduction of two or more reinforcements including 

short fibres and particles with different sizes into magnesium matrix alloy AM60 by using a 

preform-squeeze casting process.  The hybrid reinforce Mg-based composites exhibited excellent 

properties as well as a high degree of freedom in materials design for magnesium [10, 11].  As 

the addition of several reinforcements, Mg-based hybrid composites show opportunities optimize 

the engineering performance of magnesium-based composites by emerging specific 

characteristics of reinforcements for various potential applications [12]. The study by Zhang et al 

[13] indicated that, with the introduction the micron-sized particle and fibres, magnesium hybrid 

composites have gained high tensile strengths and elastic modulus compared to the unreinforced 

matrix alloy.  Meanwhile, it was observed a remarkable reduction in ductility. To minimize 

ductility reduction recently, nano-sized particles were highlighted for improvement of this 

situation. The addition of nano-sized particles into magnesium alloys by substituting micron-

sized particles successfully increases the ductility of micron-sized reinforced MMCs 

significantly [3, 14-16].  However, studies on magnesium-based hybrid composites reinforced 

with both nano particles and micron fibres are limited in the open literature.  In particular, the 

types and sizes of nano particles influence the mechanical properties of Mg-based 

nanocomposites.  Also, because of high costs of fabricating processes such as evaporation, spray 

processing and ball milling compared with conventional approaches, i.e., stir casting and/or 

preform and squeeze casting, real engineering applications of magnesium-based composites are 

scarce in the highly competitive automotive industry. 
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          In this study, magnesium alloy AM60-based hybrid nanocomposites (MHNC) 

incorporating nano Al2O3 or AlN particles with different sizes and micron alumina (Al2O3) fibre 

are prepared by a preform and squeeze casting technique.  The microstructures of the MHNCs 

are analyzed by the Transmission Electron Microscopy (TEM), Scanning Electron Microscopy 

(SEM), and Optical Microscopy (OM) and compared with that of the base alloy.  The 

mechanical properties of the MHNCs are determined by tensile testing.  The effects of the 

microstructure characteristics and reinforcement types on the tensile behavior of the MHNCs are 

investigated.  The SEM fractographic analyses of the MHNCs are performed. 

 

5.2. Experimental Procedures 

5.2.1. Materials 

          Magnesium alloy AM60 with a chemical composition (wt %) of 6.0Al-0.22Zn-0.4Mn-

0.1Si-0.01Cu-0.004Fe-0.002Ni-Mg was chosen as matrix alloy.  Nano-sized Al2O3 ceramic 

particles with an average particulate size of 100 nm (US Research Nanomaterials, Inc., USA), 

nano-sized AN ceramic particles with an average particulate size of 800 nm (US Research 

Nanomaterials, Inc., USA), and Al2O3 short fibres (Morgan Advanced Materials, United 

Kingdom) with an average diameter of 4 µm and length of 50 µm were employed as raw 

materials for the preparation of hybrid reinforcements since they are relatively inexpensive and 

possess adequate properties listed in Table 5.1. 
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Table 5.1 Mechanical properties of nano-sized ceramics particles  

 

Elastic  Modulus 

(GPa) 

Fracture Toughness 

(MPa/m2) 

Al2O3 385 [17] 3.3-5 [19] 

AlN 308 [18] 3-5.9 [20] 

 

 

 

 

 

 

Ceramic fibres 

Pre-treatment 

Mixing and binding Ceramic particles 

Shaping 

 

Firing 

Drying 

(a) 
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Figure 5.1. Flowchart showing the procedure for fabricating hybrid (a) preform and (b) 

composites. 

 

5.2.2. Fabrication of hybrid preform 

          The preparation steps for fabrication of the hybrid preforms (Figure 5.1, a) involve mixing 

the ceramic short fibres and particles, introducing the binding compounds, forming the preform 

shape under a pressure, drying and sintering. In the hybrid preform, the fibres served as the 

skeleton for a cellular structure. The content level of the fibre was pre-determined based on the 

desired amount of porosity in the cellular solid. The particulate reinforcements were dispersed in 

the pores present in the cellular solid. The content, size and type of the ceramic reinforcements 

were adjusted to yield the required quantity, and shape of the preform. In addition, for the 

purpose of a comparative study of the hybrid preform characteristics; a pure fibre preform was 

also fabricated using the same process without adding particulate reinforcements.  

 

Initial composites 

Alloy melting 

Mold stripping 

Preheated preform 

Squeeze casting Circulation 

(b) 
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5.2.3. Fabrication of composites 

          Figure 5.1 (b) shows the fabrication process for the composites in which a squeeze casting 

process was adopted. During fabrication, a hybrid preform was first preheated to 700 0C.  Then, 

molten matrix alloy AM60 at 700 0C infiltrated into the preheated preform under an applied 

pressure of 90 MPa.  The pressure was maintained at the desired level for 30 seconds. After 

squeeze casting, cylindrical disks of single or dual-phase reinforced composites with 3 vol.% of 

nano-sized Al2O3 or nano-sized AlN particles and 5 vol.% Al2O3 fibres, were obtained. In the 

hybrid composite, the particles constituted the primary reinforcement phase, and short fibres 

served as the secondary reinforcement phase.  For the purpose of comparisons, three different 

types of composites, 5 vol.% Fibre/AM60, (5 vol.% Fibre + 3 vol% nano-Al2O3-Particle)/AM60 

and (5 vol.% Fibre+3 vol.% nano-AlN-Particle)/AM60 composites were prepared, which were 

also named the fibre-only composite, the MHNC-Al2O3, and the MHNC-AlN, respectively.  

More details on the process for fabricating the composites are given in references 10, 11 and 13. 

 

5.2.4. Microstructure analysis 

          All specimens were cut from the center of the casting coupon. The type of heat treatment, 

T4, was conducted on both of the unreinforced alloy AM60 and fiber-reinforced composites to 

reveal the grain structure.  Following the standard metallographic procedures, as-cast and T4-

treated specimens were mounted and polished.  To disclose the microstructural characteristics of 

the composites and alloys, samples were then polished and etched in a hybrid solution (60 ml 

99% ethanol solution, 20 ml acetic acid, 19 ml dilute water, and 1 ml nitric acid) for 

microstructural analyses. The primary morphologic grain characteristics of the polished and 
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etched samples were investigated under optical microscopy (OM) (Buehler image analyzer 2002).  

The existence and distribution of the reinforcements were investigated by a JEOL JSM-5800LV 

scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDS). 

Samples for TEM (JOEL 2010F) were prepared by focus ion beam (FIB) (Zeiss NVision 40) 

using STEM modulus for investigation; electron energy loss spectroscopy (EELS) was applied 

for identification of non-conductive and negative element such as nitrogen  To prevent the fall-

off of the tiny nano Al2O3 particle, a tungsten coating was applied to the cross-section surface of 

the MHNC foil prepared by the FIB before the TEM observation. 

 

5.2.5. Tensile testing 

          Mechanical properties were evaluated via tensile testing (ASTM B557) at ambient 

temperature using specimens of 25 mm × 6mm × 6mm (gauge length×width×thickness) on an 

Instron (Grove City, PA, USA) machine equipped with a computer data acquisition system. The 

tensile specimens were machined from the center of as-cast coupons.  The tensile tests were 

performed at a strain rate of 5×10−3 s−1.  The tensile properties, including 0.2% yield strength 

(YS), ultimate tensile strength (UTS), elongation to failure (ef), and elastic modulus (E)  were 

obtained based on the average of three tests. 
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5.3. Results and Discussion 

5.3.1. Microstructure 

          Optical micrographs given in Figure 5.2 show the unetched matrix alloy and the 

composites.  Figure 5.2(a) reveals the divorced eutectic phases (β-Mg17Al12 ) is present along the 

grain boundaries of the unreinforced alloy.  As shown in Figure 5.2(b), the short fibres are 

distributed in a random and isotropic orientation in the fibre-reinforced composite. Figures 5.2(c) 

and (d) presents the microstructures of the hybrid magnesium composites reinforced with nano-

sized Al2O3 or AlN particles, respectively. It can be seen that the fibres and particles are 

uniformly distributed throughout the matrices in the fibre-only composite and the MHNCs.  The 

introduction of either nano-sized Al2O3 or nano-sized AlN particles up to 3 vol% has almost no 

influence on the uniformity of fibres.  Pores are barely found in the microstructure, suggesting 

the hybrid composites are well densified during fabrication due to a gradual application of the 

infiltration pressure.  The pore-free microstructure of the composites also ascertains the success 

in the infiltration of the matrix alloy into the hybrid preform.   

          A non-uniform distribution of reinforcements could lead to a inhomogeneity of grain 

structure and induce the formation of defects, and consequently degrade mechanical properties of 

the composites.  Despite the presence of the large difference in size between the particles and the 

fibres, it is observed from Figures. 5.2(c) and (d) that the nanoparticles and fibres are dispersed 

homogeneously without agglomeration and cave in the matrix alloy.  The homogeneous 

microstructures of the composites reinforced with both the Al2O3 and/or AlN nanoparticles and 

micron fibres in the matrix meet the demand for the materials design by using ceramic particles 

as the main reinforcement to enhance the mechanical and wear properties of the composites, with 
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the fibres helping improve their toughness. The overall properties of the composites should be 

tailored and enhanced by the well-distributed reinforcements. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.2. Optical photograph showing the microstructures of unetched as-cast matrix alloy and 

composites, (a) unreinforced matrix alloy AM60, (b) 5 vol% Fibre/ AM60, (c) (3 vol% nano 

Al2O3 particle +5 vol% fibre)/ AM60, and (d) (3 vol. % nano AlN  particle +5 vol% fibre)/ 

AM60.  
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          Figure 5.3 presents the grain structures of the etched matrix alloy and the composites.  The 

grain size measurements for the composites and unreinforced AM60 matrix alloy are presented 

in Figure 5.4.  With 5 vol% of micron-sized fibres, the grain size of the matrix alloy decreases 

from 68 to 45 µm by 34%.  Qiang et al [21] reported that the restriction of grain growth by the 

limited cellular space formed in the skeleton of the fiber preform structure should be responsible 

for the refinement of grain structure in the fibre-only composite.  The addition of 3 vol.% AlN 

nano particles to the hybrid composite further reduces the grain size of the matrix alloy from 45 

to 34 µm by 24%.  It was observed [22] that the grain refinement of as-cast Mg alloy AM50 with 

5 vol% micron fibre was attributed to the coupled effect of the heterogeneous nucleation of the 

primary magnesium phase on particles and the restricted growth of magnesium crystals.  The 

microstructural analysis of the nanocomposite reveals the similar effect of grain refinement by 

the addition of nano-sized particles.  The replacement of the relatively large nano AlN partilces 

with the fine nano Al2O3 particles further reduces the grain size of the matrix in the MHNC from 

34 to 28 µm by 21%. 
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(a) 

 

 

(b) 
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(c) 

 

(d) 

Figure 5.3. Optical micrographs showing grain structures of etched (a) unreinforced matrix alloy 

AM60, (b) 5 vol.% fibre/ AM60, (c) (3 vol% nano Al2O3 particle +5 vol.% fibre)/ AM60, and (d) 

(3 vol. % nano AlN  particle +5 vol.% fibre)/ AM60. 
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Figure 5.4. Measured grain sizes of the unreinforced matrix alloy AM60, 5 vol% fibre/ AM60, 

(3 vol% nano Al2O3 particle +5 vol% fibre)/ AM60, and (d) (3 vol. % nano AlN  particle +5 

vol% fibre)/ AM60. 

 

(a) 
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(b) 

 

(c) 

Figure 5.5. SEM micrographs in BSE mode showing the reinforcement distribution in (a) 5 

vol% fibre/ AM60, (b) (3 vol% nano Al2O3 particle +5 vol% fibre)/ AM60, and (c) (3 vol. % 

nano AlN  particle +5 vol% fibre)/ AM60. 
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          Figure 5.5 gives the reinforcement distribution in the microstructure of the unreinforced 

matrix alloy, the fibre-only composite and the hybrid composites by SEM micrographs in a 

backscattered electron (BSE) mode.  As shown in Figure 5.5, the reinforced fibres and nano 

particles are well dispersed and placed individually with little agglomeration.  The TEM and 

EDS analyses presented in Figure 5.6, confirm the presence of the nano particles in the MHNCs 

which further evidences the successful introduction of the nanoparticles in the composites 

(Figure 5.6(a) and (c) ).  The probe crossed an Al2O3 nano particle and the AlN nano particles 

along the white lines in Figures 5.6(b) and (d).  When the probe went from the matrix to the 

nano-sized Al2O3 particle, a large sharp decrease in magnesium, and a rapid increase in 

aluminum and oxygen were found.  For the nano AlN particle-reinforced MHNC, the probe 

detected a rapid increase in aluminum counts and a decrease in magnesium counts when crossing 

a nano AlN particle by EDS scanning, and a rapid increase in nitrogen by EELS scanning.  This 

observation is consistent with the compositions of the matrix and particle reinforcements.  

Examination of the interfacial structure reveals a relatively clean and featureless surface of both 

the Al2O3 and AlN particles in the MHNCs.  No particle/matrix reaction products are detected in 

either the nano Al2O3-reinforced MHNC or the nano AlN-reinforced MHNC by TEM.  This 

should be primarily due to the presence of inadequate reaction time between the particles and 

matrix alloy as a result of fast pressurized infiltration implemented during squeeze casting. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.6. TEM micrographs (a) a nano Al2O3 particle in the (3 vol% nano Al2O3 particles + 5 

vol% Fibres) /AM60 MHNC line scans and the corresponding line scanning pattern for the nano 

particle cross-section area (b) EDS pattern for the nano Al2O3 particle line scan (c) a nano AlN 

particle in the (3 vol% nano AlN particles + 5 vol% Fibres) /AM60 MHNC line scans and the 

corresponding line scanning pattern for the particle cross-section area (d) EDS and EELS 

patterns for the nano AlN particle line scan. 



125 

 

 

          Figure 5.7 shows the TEM micrographs of the fibre-only composite, MHNC-Al2O3, and 

MHNC-AlN.  As shown in Figure 5.7(a), the fibre-only composite contains high dislocation 

densities around a micron fibre.  However, Figure 5.7(b) reveals that the MHNC-Al2O3 is almost 

free of dislocations under the applied condition of the electron diffraction pattern.  The very low 

dislocation density in the MHNC-Al2O3 should primarily result from the fact that the nano 

particles are extremely tiny (100 nm), which are hard to generate sufficient strain by the thermal 

mismatch to induce dislocations during solidification. A moderate dislocation density exists in 

the MHNC-AlN (Figure 5.7(c)), which might be attributed to their relatively large size of 800 

nm compared with that of the nano Al2O3 particles.  The inherent difference in thermal 

expansion coefficients should be responsible for the formation of mismatch stress of the particles 

and matrix alloy, which results in a dislocation density to some extent.  This observation is 

consistent with the results disclosed in references [14, 23].  However, by the addition of the nano 

AlN particles, nano-sized pores in a closed-cell structure are found, which is similar to a 

structure in metal foams at macroscopic scale.  Shi et al [24] suggested that this type of the 

structure in nano scale formed during solidification rose from the wettability between the AlN 

and magnesium alloy.  The presence of the nano pores might act like those cells in foam metal 

increases energy absorption, stiffness, and even ductility by extending the amount of plastic 

dissipation during mechanical loading.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.7. TEM micrographs showing (a) the micron fibre-only composites with dislocations, 

(b) the MHNC- Al2O3 with almost no dislocations, and MHNC-AlN with (c) AlN particle and (d) 

nano pores and dislocations ((c)zoomed out).  
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5.3.2. Tensile properties  

          The typical engineering stress-strain curves for AM60, the fibre-only composite (AM60 

5%F), the the MHNC-Al2O3 (AM60 5%F-3%P nano Al2O3), and the MHNC-AlN (AM60 5%F-

3%P nano AlN) are shown in Figure 5.8.  The curves for the matrix alloy and the composites 

exhibit a similar pattern, where they deform elastically first.  Upon the yield point is reached, the 

plastic deformation sets in.  The introduction of fibers and/or particles lifts the yield points of the 

composites up to high stress levels.  Consequently, the composites fractures at much higher 

stress and lower strain levels than that of the matrix alloy AM60.  It can be seen from Figure 5.8 

that, although the introduction of the reinforcements leads to an increase in the strengths, there is 

a significant reduction in elongation as micron fibres are added.  But, the addition of the nano 

Al2O3 or AlN particles in the MHNC recovers the elongation significantly.   

          The tensile properties data given in Table 5.2 show that the as-cast matrix alloy has 171 

MPa of its UTS, 81 MPa of its YS, 40 GPa of its elastic modulus and 6.0% failure elongation. 

The introduction of the micron fibre reinforcement, increases the UTS, YS and E to 189 MPa, 

120 MPa and 50 GPa, by 11%, 48%, and 25%, respectively, but reduces the elongation from 

6.0% to 2.2% by 63%.  Additional 3 vol.% of nano Al2O3 particles further enhances the UTS, YS 

and E to 216 MPa, 140 MPa and 53 GPa by 14%, 17% and 6% over those of the fibre-only 

composite.  Meanwhile, the MHNC-AlN composite possesses the UTS, YS and E of 210 MPa, 

139 MPa, and 51 GPa, showing the increases of 11% in UTS, 16% in YS, 2% in E compared to 

those of the fibre-only composite.  Furthermore, it should be pointed out that the introduction of 

nano-sized Al2O3 or AlN particles restores the elongation considerably from 2.2% of the fibre-

only composite to 3.5% or 3.6% by 59% or 63%, respectively.  The determined yield and tensile 

strengths of the tested materials are in line with the grain size measurements since the grain 
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refinement enhances the materials strengths.  Since the tensile properties of the MHNC- Al2O3 

and MHNC-AlN are very comparable, the sizes of the tested nano particles seems to have a 

limited effect on the tensile properties of the MHNC, although the nano AlN particles is eight 

times larger than the nano Al2O3 particles.  Also, the TEM observation suggests that the presence 

of the moderate dislocation in the MHNC-AlN should be responsible for the resultant tensile 

strengths, which are comparable to the tensile properties of the MHNC-Al2O3, although the 

modulus of nano AlN particles is lower than that of nano Al2O3 particles.  The existence of nano 

pores in the MHNC-AlN might be beneficial to the deformation for extra strains, while its 

dislocation density is only at a moderate level which might have a limited effect on ductility.  

Overall, by taking into consideration of engineering performance and materials cost, the nano 

Al2O3 particles with a relatively low price of appears attractive to the development of automotive 

applications. 

Table 5.2 UTS, YS, ef and E of the Matrix Alloy AM60, the Composites of 5 vol. % 

Fibre/AM60, (5 vol.% Fibre+3 vol.% nano Al2O3  particles)/AM60, (5 vol.% Fibre+3 vol.% 

nano AlN  particles)/AM60 

 

YS 

(MPa) 

UTS 

(MPa) 

ef 

(%) 

E 

(GPa) 

AM60 81±6 171±8 6.0±1.3 40±4 

Fibre-only 120±5 189±12 2.2±1.7 50±2 

MHNC nano Al2O3 140±14 216±5 3.5±1.2 53±3 

MHNC nano AlN 139±12 210±7 3.6±0.6 51±4 
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Figure 5.8. Engineering stress vs. strain curves for the matrix alloy AM60, 5 vol% Fibre/AM60, 

(5 vol.% Fibre+3 vol% nano Al2O3  particles)/AM60, and (5 vol.% fibre+3 vol.% nano AlN 

particles)/AM60. 

 

          The observed ductility recovery is evidently supported by the results of the TEM analysis.  

A high dislocation density provides more tough obstacles to overcome, which increases the 

strength and toughness of materials.  With a low dislocation density, however, materials are 

capable of carrying more strain during deformation.  Also, Hassan and Gupta[14] have also 

observed that the addition of micron-sized reinforcements leads to an improvement in the elastic 

modulus and the strengths, but results in a marked diminishment in elongation.  However, the 

addition of nano-sized particles results in a significant improvement in the elastic modulus and 

the strengths as well as a restoration of ductility. This is because the sites provided by nano-

particles where cleavage cracks are opened ahead of the advancing crack front are capable of 
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dissipating stress concentration from crack tips and altering local effective stress state from plane 

strain to plane stress in the neighborhood of the crack tip.  Overall, the high strengths and 

moderate elongation of the MHNC should result from the combined strengthening effect: 

homogeneous distribution of nano particles, matrix grain structure refinement, good interfacial 

bonding between the matrix and the nano particles and micron fibres[15].   

 

5.3.3. Strain hardening 

 

Figure 5.9. True stress vs. strain curves for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 

vol.% Fibre+3 vol% nano Al2O3  particles)/AM60, and (5 vol.% fibre+3 vol.% nano AlN 

particles)/AM60. 
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Figure 5.10. Strain hardening curves for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 vol.% 

Fibre+3 vol% nano Al2O3  particles)/AM60, and (5 vol.% fibre+3 vol.% nano AlN 

particles)/AM60, upon the commencement of plastic deformation.  

 

          The true stress and strain can be calculated from the engineering stress and strain by 

applying the following equations: 

σt = σe (1+ εe)                                   (Eq. 5.1) 

εt = ln (1+ εe)                                   (Eq. 5.2) 

where σt is the true stress, εt is the true strain, σe is the engineering stress, and εe is the 

engineering strain.  Figure 5.9 shows the true stress vs. strain curves for the matrix alloy AM60, 

5 vol% Fibre/AM60, (5 vol.% Fibre+3 vol% nano Al2O3  particle)/AM60, and (5 vol.% fibre+3 

vol.% nano AlN particle)/AM60.  
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          The true stress-strain curve for engineering materials can be described by the power law 

relationship for plastic deformation [13]: 

σ = K εn                                          (Eq.5.3) 

where K is the strength index, ε is the plastic strain and n is the strain hardening exponent.   

 

Table 5.3 Best fit parameters of power equation 

Materials K (MPa) n R2 

AM60 444±10 0.3187±0.0074 0.9957±0.0019 

AM60 5%F 932±11 0.3908±0.0052 0.9946±0.0021 

AM60 5%F-3%P nano Al2O3 1143±15 0.4223±0.0098 0.9992±0.007 

AM60 5%F-3%P- nano AlN 1097+10 0.4201+0.0102 0.9907+0.0032 

 

          Table 5.3 lists the numerical values of the constants in Eq. 5.3 with the regression 

coefficients.  The strain hardening rate (dσ/d) can be obtained from the differentiation of the Eq. 

5.3.  The strain hardening behaviors of the matrix alloy and composites are shown in Figure 5.10, 

which was derived from Figure 5.9. Figure 5.10 presents the strain hardening rates at the 

beginning of the plastic deformation for the matrix alloy AM60, 5 vol% Fibre/AM60, (5 vol.% 

Fibre + 3 vol% nano Al2O3  particle)/AM60, and (5 vol.% fibre + 3 vol.% nano AlN 

particle)/AM60.  All the tested materials exhibit the similar trend, in which the strain hardening 

rates decrease with increasing the true strain.  At the beginning of the plastic deformation, the 

matrix alloy shows a strain hardening rate of only 4085.2 MPa.  The ceramics fibre introduction 

increases the strain hardening rate to 7453.5 MPa.  The strain hardening rate rises to 8418.6 MPa 
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after the addition of the nano Al2O3  particles to the fibre-only composite.  The substitution of the 

nano AlN particles for the nano Al2O3  particles leads to a minor decrease in the strain hardening 

rate to 8201.9 MPa.  Among all the tested materials, the MHNC-Al2O3 has the highest strain 

hardening rate.  The MHNC-AlN has the strain hardening rate slight lower than, but comparable 

to that of the MHNC-Al2O3.  With the relatively high YS, UTS and ef, the MHNC-AlN is 

capable of absorbing large amount of energy before fracture.  Both the MHNC-Al2O3 and 

MHNC-AlN are capable of spontaneously strengthening themselves increasingly to a large 

extent, in response to plastic deformation before the final fracture. It seems that the variation of 

the nano particle type and sizes has a limited effect on the strain hardening rate of the MHNCs.   

 

5.3.4. Fractography  

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 5.11. Fractures of AM60, AM60 composites with Al2O3 fibres particles (a) AM60 alloy 

(b) AM60 alloy with 5%fibre (c) AM60 alloy with 5% fibre/ 3% nano Al2O3 particles, and (d) 

AM60 alloy with 5%fibre/ 3% nano AlN particles (arrow 1- matrix crack; arrow 2- fibre crack; 

arrow 3- debonding). 

 

          The SEM fractographs given in Figure 5.11 depict the difference in the fracture modes of 

the matrix alloy, the fibre-only composite, and the MHNCs.  With SEM high magnifications, 

detailed features of the fracture surfaces are revealed and the fracture behaviours are determined 

with reference to the tensile properties of the composites reinforced with the different sizes and 

types of fibre and particles.  A typical fracture surface of the matrix is presented in Figure 5.11 

(a).  The existence of shallow dimples on the surface generally displays ductile behavior, which 

implies the consumption of a considerable amount of energy in the process of the formation of 
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micronvoids. The coalescence of microvoids under high tensile loading gives rise to the 

formation of cracks, eventually leading to failure.  The presence of fibre reinforcement and nano-

sized particles enables certain amount of tensile loads to be transferred from the matrix alloy to 

fibre and nano-sized particles.  The composites break in a brittle mode different from that of the 

unreinforced alloy.  The final tensile fracture primarily was caused by fibre cracking, as shown 

in Figure 5.11(b), (c) and (d) due to the inherent nature of the high strength and brittleness of the 

ceramic fibres.  The debonding at the interface between the fibre and matrix as well as the 

particle and matrix could be another crack initiation area of the composites, which might be 

attributed to the insufficient infiltration of the molten metal into the close packed network of 

fibres and particles.  Few dimples are found on the fracture surfaces of the fibre-only composite 

in Figure 5.11 (b).  Certain deformation of the matrix alloy is evidently present on the fracture 

surface of the MHNCs.  In general, the results of the SEM observation on the fracture surfaces of 

the tested materials are in consistent with the tensile data. 

 

5.4. Conclusions 

          Mg alloy AM60-based hybrid nanocomposites (MHNC) incorporating nano Al2O3 or AlN 

particles with different sizes and micron alumina (Al2O3) fibre were successfully prepared by a 

preform and squeeze casting technique. The optical microstructure analyses of the composites 

reveal the random orientation and the homogeneous distribution of fibres in the matrix and the 

refinement of matrix grain structure.  It is shown by the SEM observation that both types of 

nano-sized Al2O3 or AlN particles disperse homogenously in the matrix alloy without 

agglomeration.  The TEM analyses indicate that, compared with the micron fibre-only composite, 

the MHNCs possesses a low or moderate dislocation density, which results from the deficient 
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thermal strain during matrix solidification due to the presence of nano-sized particles.  Among 

the three types of tested composites, the MHNC-Al2O3 exhibits the highest UTS (216 MPa), YS 

(140 MPa), E (53 GPa), strain hardening rate (8418.6 MPa ).  The addition of 3 vol.% Al2O3 or 

AlN nano particles restores the elongation of the hybrid composite from 1.6% to 3.5% or 3.6%, 

respectively.  The presence of a low or moderate dislocation density in the MHNCs should be 

primarily responsible for ductility restoration by nano-sized reinforcements.  Due to their high 

engineering performance and low materials cost, the application of nano Al2O3 particles should 

be considered for the development of advanced automotive components. 
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CHAPTER 6 Conclusions 

          The conclusions drawn from this study are summarized as follows: 

          A preform-squeeze casting process has been developed and applied to effectively fabricate 

magnesium-based fibre and nano-sized particle-reinforced hybrid composites. The preform 

infiltration method improves the volume fraction limitation of nano-sized particles in the 

magnesium hybrid nano composites without agglomeration compared to traditional stirring 

casting method. 

          The SEM observation on the microstructure reveals that, in the prepared hybrid preform 

composites, the ceramic fibre and micron/nano particles are homogeneously dispersed. The 

microstructure analysis of the composites also indicates that both particles and fibres are free of 

agglomeration, and fibres orientate randomly in the matrix. 

          The investigation of grain refinement demonstrates that the nano-sized particles could be 

served as heterogeneous nucleation sites for the primary α-Mg phase, and both fibres and 

particles could become the heterogeneous nucleation substrate of the eutectic phase of the matrix 

alloy, which resultantly, decreases the grain size of composite matrix. For the comparison of 

hybrid composites, nano-sized Al2O3 particles shows superior grain size refinement effect that 

micron-sized Al2O3 particles. 

          The TEM microscopy analysis accompanying by EDS and EELS detection demonstrates 

that the interfaces between micron-sized Al2O3 particles, nano-sized Al2O3 particles, nano-sized 

AlN particles are clean without reinforcement agglomeration and reaction products. The 

mechanism of the ductility restore phenomena is investigated under high magnification TEM 

observation. There is almost no dislocation observed in the hybrid composite reinforced with 
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nano-sized Al2O3 particles compared to the micron-sized Al2O3 particle-reinforced hybrid 

composite. With the addition of AlN nano-sized particles, the dislocation is observed in the 

MHNC owing to their relatively large size, but with a low density. The resultant strength and 

ductility of the hybrid nano composite with nano-sized AlN particles are similar to those of 

hybrid nano-sized Al2O3 particles composite. The similar tensile results should be attributed to 

the presence of the low dislocation contribution and the nano-sized pores formed between the 

nano-sized AlN particles and magnesium matrix alloy due to the relatively poor wettability. 

However, the inferior high cost of nano AlN particles makes it less attractive than nano-sized 

Al2O3 particles. 

          The hybrid composite reinforced with 3 vol. % nano-sized Al2O3 particles and 5 vol. % 

Al2O3 fibres exhibits improved tensile strengths over those of the matrix alloy. In particular, the 

yield strength (140 MPa) of the hybrid composite is 73% higher than that of the matrix alloy.  

The elastic modulus of the micron hybrid composite (54 GPa) shows 33 % improvement over the 

matrix alloy (40 GPa). Compared with the 6% elongation of the matrix alloy, the composite 

reinforced by 5 vol.% of the Al2O3 micron fibre exhibits only the elongation of 2.2%.  

 The addition of 3 vol.% of the Al2O3 nano particles restores the elongation of the 

composite from 1.3% to 3.5%.  The MHNC-Al2O3 gives the UTS of 216 MPa showing an 

increase of 13% in UTS over the hybrid composite as its YS (140 MPa) and E (53 GPa) are 

maintained.  The MHNC-AlN composite possesses the UTS, YS and E of 210 MPa, 139 MPa, 

and 51 GPa. It should be pointed out that the substitution of nano-sized Al2O3 or AlN particles 

for the micron ceramic particles restores the elongation considerably from 1.6% of the micron 

hybrid composite to 3.5% or 3.6% by almost 120% or 125%, respectively.   
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The determined yield and tensile strengths of the tested materials are in line with the 

grain size measurements since the grain refinement enhances the materials strengths. Since the 

tensile properties of the MHNC-Al2O3 and MHNC-AlN are very comparable, the sizes of the 

tested nano particles seems to have a limited effect on the tensile properties of the MHNC, 

although the nano AlN particles are eight times larger than the nano Al2O3 particles. Also, the 

TEM observation suggests that the presence of the low dislocation density in the MHNC-AlN 

should be responsible for the resultant tensile strengths, which are comparable to the tensile 

properties of the MHNC-Al2O3, although the modulus of nano AlN particles is lower than that of 

nano Al2O3 particles. The existence of nano pores in the MHNC-AlN might be beneficial to the 

deformation for extra strains, while its dislocation density is only at a moderate level which 

might have a limited effect on ductility. Overall, by taking into consideration of engineering 

performance and materials cost, the nano Al2O3 particles with a relatively low price of appears 

attractive to the development of automotive applications. 

          Compared to the ductile fracture of the matrix alloy, the SEM fractography reveals that the 

fracture of the micron-sized hybrid composites is in brittle mode, and the nano-sized hybrid 

composites is in relatively ductile mode. The localized damages, i.e., reinforcement cracking, 

matrix cracking and interface debonding, could be responsible for the tensile fracture of the Mg-

based hybrid composites. 
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CHAPTER 7 Future Work 

          Because the size of reinforcement for both particle and fibre has a significant influence on 

the engineering performance and microstructure development of composites, the future work for 

this study can be classified into the following research areas: 

          Investigation in corrosion behaviors nano-sized hybrid composite with coating; 

          Detailed studies on solidification and characterization of the hybrid composites reinforced 

with nano-sized particles and fibres; 

          Investigation in wear behaviors of hybrid composites for potential engineering applications; 

          Development of thermal treatment schemas (T4 and T6), in which the tensile properties of 

the hybrid composites are optimized.
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APPENDIX B 

Microstructure Analysis Figures 

AM60 (3 vol% micron Al2O3 particle +5 vol% fibre)  

 

Figure B.1. OM micrographs of (3 vol% micron Al2O3 particle +5 vol% Al2O3 fibre)/ AM60 

composite 
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Figure B.2. Fracture of AM60-based composite with 5 vol% Al2O3 Fibre + 3 vol% micron 

Al2O3 particle 
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Figure B.3. High magnification fracture of AM60-based composite with 5 vol% Al2O3 fibre 
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Figure B.4. Fracture of AM60-based composite with 5 vol% Al2O3 fibre (Brittle Area) 
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AM60 (3 vol% nano AlN particle +5 vol% fibre) 

 

Figure B.5. OM micrographs of (3 vol% nano AlN particle +5 vol% Al2O3 fibre)/ AM60 

composite 

 

Figure B.6. SEM micrographs in BSE mode showing the reinforcement distribution in (3 vol% 

nano AlN particle +5 vol% fibre)/ AM60 composite 
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Figure B.7. Fractures of AM60-based composites with 5 vol% Al2O3 fibre and 3 vol% nano AlN 

particles 
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Figure B.8. Fractures of AM60-based composites with 5 vol% Al2O3 fibre and 3 vol% nano AlN 

particles 
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Figure B.9. Fractures of AM60-based composites with 5 vol% Al2O3 fibre and 3 vol% nano AlN 

particles 
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Figure B.10. TEM showing the nano-pores structure in (3 vol% nano AlN particle +5 vol% 

Al2O3 fibre)/ AM60 composite 

 



159 

 

AM60 (3 vol% nano Al2O3 particle +5 vol% fibre) 

 

 

Figure B.11. SEM micrographs in BSE mode showing the reinforcement distribution in (3 vol% 

nano Al2O3 particle +5 vol% Al2O3 fibre)/ AM60 composite 
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Figure B.12. SEM micrographs in BSE mode showing the reinforcement distribution in (3 vol% 

nano Al2O3 particle +5 vol% Al2O3 fibre)/ AM60 composite 
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Figure B.13. Fracture of AM60-based composite with 5 vol% Al2O3 fibre + 3 vol% nano Al2O3 

particle 
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Figure B.14. High magnification fracture of AM60-based composite with 5 vol% Al2O3 fibre + 

3 vol% nano Al2O3 particle 
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Figure B.15. Fracture of AM60-based composite with 5 vol% Al2O3 fibre + 3 vol% nano Al2O3 

particle 
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Figure B.16. High magnification fracture of AM60-based composite with 5 vol% Al2O3 fibre + 

3 vol% nano Al2O3 particle 
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Figure B.17. TEM showing the dislocation-free phenomena in (3 vol% nano Al2O3 particle +5 

vol% fibre)/ AM60 
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Figure B.18. TEM showing the presence in (3 vol% nano Al2O3 particle +5 vol% fibre)/ AM60 
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Figure B.19. TEM diffraction pattern showing the difference between the metal matrix AM60 

and the micron Al2O3 particle 

 

Figure B.20. TEM diffraction pattern showing the difference between the metal matrix AM60 

and the nano Al2O3 particle 
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AM60 Alloy 
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Figure B.21. High Magnification Fracture of AM60 Alloy 
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Figure B.22. Fracture of AM60 Alloy 
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