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ABSTRACT  

Today’s automotive manufacturing facilities use different robotic systems with the 

specifically designed end of arm tooling (EOAT). Regardless of how accurate these robotic 

systems may be, they are programmed to repeat the same task and move to the same 

position repeatedly. As convenient as this process may be, it does not allow robots to 

automatically readjust to different part variations without the human assistance. This 

situation is especially noticeable in the plastics manufacturing industry, e.g., fuel tank 

welding. 

This thesis describes the systematic design methodology of an adaptable tooling system for 

a part to part variations processing aimed at automotive plastic fuel tank manufacturing. 

By combining a 3D vision system with a PLC, and a Fanuc R-2000iB/165F 6 axis robot, 

the system provides the robot with the ability to automatically readjust the processing unit 

to different part variations.  

The design approach specifies programming and device correlation by using Siemens S7, 

Fanuc TP, and SICK AG software. A case study using a fuel tank sample was developed 

to check the system for functionality and performance. Results of the study indicate that 

the system is accurate within ±0.25 mm, which is well suited for fuel tank manufacturing. 

The study signifies a new approach to vision guided robotics (VGR). It utilizes existing 

equipment for applications where part variation may be present. 

Three patent applications were published during the course of this research. They each 

cover plastic fuel tank welding applications.  
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CHAPTER 1: INTRODUCTION 

1.1 Conventional Plastic Welding  

In order to keep manufacturing systems in line with fast-moving pace of OEM demand, 

Tier 1 plastic suppliers are faced with a challenging request to keep the production lines at 

such pace. Any kind of alteration in the process will create the variation in part geometry, 

resulting in a need to readjust the processing units to the part (e.g. blow moulded plastic 

fuel tank). Depending on the process, this task may take long periods of time as once the 

processing units are adjusted, initially manufactured components are required to go through 

quality control prior to the manufacturing line continuing with the production. This 

provides motivation for the development of a machine system which should reduce waste, 

and increase efficiency and productivity, while preserving high value human involvement 

(H. A. ElMaraghy, 2009). Most critical weld are referred to as hermetic welds, which are 

commonly found in all components which provide fuel transfer to the inside/outside of the 

fuel tank; such as inlet check valve (ICV).  

 

Figure 1-Inlet Check Valve 
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These welds are created by one of the most popular thermoplastic joining methods called 

hot plate welding. This method works by placing two components at the hot plate surface, 

whose surface is then heated by conduction to promote component melting. Upon reaching 

predetermined amount of melt at the molten surfaces, the heat source (i.e. hot plate) is 

removed and the two components are brought together. Two components are then held 

together and allowed to solidify producing the weld. A certain amount of weld flash created 

by the molten plastic is squeezed out of the joint assuring adequate fusion between the 

components (Grewell & Benatar, 2003). 

Processing units used for this welding operation are referred to as the Fusion Units. 

Controlled by the closed loop control system, these units are equipped with multiple 

sensors for position and force monitoring. They consist of different subassemblies such as 

Component Gripper which is used to retain the part being welded to the fuel tank, Part Hot 

Plate used to melt the component welded to the fuel tank shell, and Tank Hot Plate 

assembly used to promote the melt on the fuel tank surface. Figure 2 illustrated this unit. 

 

Figure 2-Fusion Unit Assembly Illustration (Courtesy SPM Automation (Canada) Inc.) 
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Fusion Units are normally guided to the fuel tank area by linear slide or robot, from which 

point welding process takes place. Tank Hot Plate is brought into contact with the fuel tank, 

at which point simultaneously Component Gripper is advanced to the Part Hot Plate, 

promoting the part in the Component Gripper to melt. Once both melt pools are created, 

Tank Hot Plate is retracted from the fuel tank, Part Gripper is retracted from the Part Hot 

Plate, and melted part is brought into the contact with the melted surface on the fuel tank, 

followed by solidification process. 

The task of processing unit readjustment is typically performed by maintenance technicians 

and is usually required every time a different batch of parts is introduced (i.e. WIP, change-

over, rework parts, etc.), part of the process is altered, or even air moisture content is 

changed due to the outside temperature. All these factors can result in component or 

component feature location to change position and/or shape.  

This chapter will discuss robotic and fixed processing units commonly found in plastic fuel 

tank manufacturing systems. It will also cover the need for automatic adjustment systems. 

 

1.1.1 Welding Process Steps 

It is imperative to understand the plastic welding phases/steps in order to convey the 

impotence of this research. Following plastic welding phases are defined by (Grewell & 

Benatar, 2003). 

Matching: is the initial stage of the plastic welding process which requires increased force 

applied by the hot plate (controlled by load cell) in order to conform the fuel tank surface 

to the hot plate geometry. This process eliminates normally found surface deformation 

(such as flatness) and allows for the weld surface to create a uniform flat surface ready for 
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the heating stage. Displaced material is incorporated in the flash past the hot plate 

perimeter. Time for this stage is determined experimentally usually by trial and error until 

the desired result is achieved. 

Heating: is the second part of the heating process which starts immediately after the 

matching stage without any mechanical movement of the processing unit. The force of the 

hot plate during the matching phase is decreased to a minimum (controlled by load cell) 

and the surface is allowed to be melted without any material displacement (energy is 

transferred through conduction heat transfer). Heating time may be determined 

theoretically or experimentally and checked through the microtome process (Wikipedia, 

2016a) until heat affected zone of 0.4 mm is achieved.  

Change-Over: is the mechanical movement of the parts at the end of the heating phase, 

which occurs by moving each part out of the contact with the respective hot plate. In the 

fuel tank welding, tank hot plate is removed for the fuel tanks surface, respectively 

retracting the component gripper form the part hot plate.  This is followed by the position 

change of the tank hot plate cylinder and the part gripper cylinder, positioning the part 

gripper directly over the melted fuel tank surface and bringing the melted parts together. 

Change-Over time should be kept under 5 seconds for high-density polyethylene (HDPE) 

welding in order to avoid surface cooling of the melted components. 

Fusion: is the last stage of the process. It refers to parts being placed in contact together 

under pressure and allowed to cool and solidify, completing the welding process. Joining 

pressure is monitored by the load cell in order to assure that the correct amount of melt is 

squeezed into the weld flash around the component. Having the pressure set too low during 

the fusion stage will not allow for entrapped air to be removed and provide intimate contact 
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between the components at the weld interface. Further, having the pressure set too high 

will squeeze all the melt out of the joining area, creating an effect called “cold weld” (virgin 

un-melted materials are below the melting point and act as a stop) resulting in a weak weld. 

 

Figure 3-Outside and Inside Image of Component Properly Welded to Fuel Tank Body 

 

1.2 Hard Fixed Processing Units 

Dedicated production lines are commonly equipped with the fixed processing units 

composed of the Fusion Unit attached to the machine frame via adjustment unit. This 

allows the Fusion Unit adjustment in 3 major and 3 minor axes to the fuel tank surface, 

resulting in tank hot plate being able to conform to the center of the feature and provide 

parallel rectification of the hot plate to the hole weld surface.  The process begins by the 

fuel tank entering the station and clamping in the tank fixture. Once clamped in the tank 

fixture, the processing unit is advanced usually by a linear slide, followed by the welding 

of the component to the fuel tank surface which seals the hole opening. This conventional 

process is often referred to as “blind” welding, meaning that the sensors and load cell on 
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the processing unit are used to assure that the contact between the processing unit and the 

fuel tank is made, without monitoring the accuracy of finding the correct location and 

parallelism to the weld surface. Once the operation is completed, the weld seal/quality is 

checked in the helium leak station (the process performed later down the line) where the 

fuel tank is tested for hermetic seal once all the components have been welded. 

 

Figure 4-Fixed Mounted Fusion Unit Position Relative to the Fuel Tank Fixture 

(Courtesy SPM Automation (Canada) Inc.) 

 

1.3 Robotic Processing Units 

Robotic production lines are normally equipped with the same Fusion Unit as dedicated 

equipment. This unit is used as EOAT which is attached to the robot 6th axis. These robotic 

configurations are found either as stand-alone cells or as a part of the larger production line 

(e.g. index table or linear transfer production line) in the manufacturing settings. In either 

case, once the fuel tank is clamped in the tank fixture, the processing unit is advanced to 

the feature of interest by the robot, in order to perform the welding operation. Regardless 
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of the processing unit being mounted to the robot or the mechanical adjustment unit, the 

process is still considered “blind” welding since the sensors and load cell is used to provide 

the feedback that the contact is made and the weld is performed. 

The advantage of having the processing unit mounted on the robot over the mechanical 

adjustment unit, is in the position re-adjustment time. Recording the new robot position is 

much faster and easier than mechanically trying to adjust the processing unit to the fuel 

tank surface. 

 

Figure 5-Robot Mounted Fusion Unit Position Relative to the Fuel Tank Fixture 

(Courtesy SPM Automation (Canada) Inc.) 
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1.4 Current Industrial Practice 

In order to understand why the part variation occurs in the automotive fuel tanks and the 

need for this application, research needs to briefly describe the manufacturing process. As 

automotive fuel tank with the typical shrink rate of 4% is used in the case study, this section 

will discuss the shrink control, direction, and datum points of the fuel tank. Considering 

the component length of 1.4 meters as outlined in the example below, length deviation of 

5.6 cm in overall length can be expected from the blow moulding process to the final pack-

out stage when the fuel tank should stabilize to room temperature. However, since the 

welding process is performed about halfway through the production, shrink rate is still very 

active and part variations can be observed (comparing work in progress to already cooled 

fuel tanks) during the welding stage. To overcome this issue, manufacturers design and 

utilize datum geometry on the fuel tanks commonly referred to as the isostatic (ISO) locator 

features. Typically, there are 2 ISO features on the fuel tank; 4-way constraining the part 

location in two directions and 2-way constraining the part in one direction. Combined 

together, these features control the geometry of the fuel tank during the shrink stage in the 

welding process. ISO features are also used as the datum points to measure the compliance 

of the final product, i.e., fuel tank, to the vehicle body.   
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Figure 6-ISO Feature Location on Fuel Tank 

 

 

Figure 7-ISO Pin Assembly on Tank 

Fixture (Courtesy SPM Automation 

(Canada) Inc.)  

 

 

Figure 8-Fuel Tank Clamping (Courtesy 

SPM Automation (Canada) Inc.) 
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As illustrated in the figures above, fuel tank fixtures used in the welding process contain 

assemblies designed as the reverse side of ISO features, called “ISO Pin” assemblies. These 

assemblies are part of a typical tank fixture design in the fuel tank welding industry. 

Combining ISO feature on the fuel tank with the ISO pins on the tank fixture provides 

consistent fuel tank location in the tank fixture relative to datum locations. However, as the 

shrink factor is still active and the fuel tank is still changing in terms of geometry, shrink 

magnitude may move through the 2-way ISO towards the 4-way pin in the tank fixture as 

shown in the figure below. 

 

Figure 9-Fuel Tank fixture Cross Section (Courtesy SPM Automation (Canada) Inc.) 

 

As mentioned earlier regarding the process stability and the fuel tank variation during the 

welding process, Figure 10 below illustrates a 2-way ISO pin assembly designed to allow 

a variation in position of fuel tank 2-way ISO feature within ±10 mm. 
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Figure 10-2-Way ISO Pin Assembly Cross-Section (Courtesy SPM Automation (Canada) 

Inc.) 

 

To conclude above-mentioned details, ISO structures drive the fuel tank manufacturers to 

position all hermetic welds in close proximity to 4-way ISO feature in order to eliminate 

feature location variation driven by the shrink. This in return constrains the fuel tank 

geometry design and configuration of the fuel tank. Therefore, it is common to find all 

hermetic welds in close proximity to the 4-way ISO feature, as locating hermetic seals in 

more remote locations from the 4-way feature will result in constant equipment adjustment 

and increased scrap rate.   

Other factors such as manual handling of hot blow moulded fuel tank by manual de-

flashing operations and transferring the part to the next process contribute to the fuel tank 

geometry variation as well; however, this will not be covered in this study as the research 

will only concentrate on the non-operator dependent processes. 
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1.5 Research Motivation 

As some part to part variations are acceptable in the mass-production manufacturing 

process, others may not be. Regardless of the use in dedicated or flexible manufacturing 

production lines, processing units are designed to come in contact with the fuel tank surface 

and weld the component. This position is adjusted by maintenance or setup technicians and 

therefore it is always in fixed orientation and position relative to the fuel tank. And while 

fuel tank surface might change, the processing unit will always advance towards the same 

position in 3D space. Even though force sensing and monitoring is an integral part of the 

closed loop controls system which monitors the welding process, the result of the welding 

operation is that the components are welded to the fuel tank surface without knowing if the 

correct position and/or angle to the weld location are attained. Aside from the component 

being welded out of concentricity with the feature (Figure 11), this also may cause damage 

to ethylene vinyl alcohol (EVOH) layer (Figure 13), if the hot plate surface on the 

processing unit is not parallel with the hole weld surface on the fuel tank. Figure 12 displays 

a component welded out of angular adjustment. 
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Figure 11-Part Welded Out of 

Concentricity 

 
Figure 12-Part Welded on an Angle 

 

 

Figure 13-Fuel Tank Blow Moulding Layers 

 

EVOH layer consists of 3% overall fuel tank wall surface and is used as a hydrocarbon 

barrier to prevent volatile gasses from escaping through the fuel tank wall (SIMONA, 

2010).  Though it is located closer to the inside wall of the tank surface, EVOH layer 

damage may become undetected during the manufacturing process if an angular mismatch 

between the hot plate and the tank surface becomes evident as shown in Figure 12.   
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Figure 14-CAD Representation of Misaligned Melt Phase 

 

Figure 14 illustrates the incorrect welding position of the component shown in Figure 12. 

 

1.6 Objective and Problem Statement 

The objective of this master thesis is the design and introduction of a new method for 

adaptable tooling system which would automatically adapt to part variations, especially 

noticeable in large automotive plastic fuel tanks. 

By doing so, the research will be able to create a methodology for establishing a 

relationship between the system components, as well as their function. Currently published 

literature is unfortunately limited in terms of systematic design approach regarding robotic 

guidance systems, due to the proprietary nature of these systems. 
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By finding the correlation between the image captured by the 3D vision system and the 6 

DoF robot in 3D space, the system would be able to reposition the EOAT to the feature of 

interest in the image every time the position change would occur.   

The equipment selected for this work is SICK AG IVC 3D vision system, Siemens PLC, 

and Fanuc R2000-iB/165F robot equipped with an end of arm tool for plastic welding. 

The significance of this design is aimed to improve OEE (Overall Equipment 

Effectiveness), eliminate scrap rate, simplify equipment/machine design, minimize 

maintenance personnel, and decrease the cost of manufacturing by eliminating 

inconsistencies.  

The intent of this work is to allow for other manufacturing applications where the part to 

part variation is present, to implement the presented design where part variation or 

component positioning may have an impact on the production quality. 

 

1.7 Thesis Outline 

Chapter 2 will conduct a literature survey on academia, patents, state-of-practice, and state-

of-the-art, as this research is directed more towards the industrial applications. Chapter 3 

will review the systematic design approach in terms of methodology and IDEF0 modeling. 

Chapter 4 will present a case study example which will define design details with examples. 

In Chapter 5 the research will demonstrate the results and the validation of the system, 

which will be followed by system benchmarking. Chapter 6 will encompass discussions, 

conclusion and future work on the system. 

 



   

16 
 
 

CHAPTER 2: LITERATURE REVIEW 

2.1 Overview 

The study of vision-guided robotic systems using different tools has been a topic of interest 

in both manufacturing industry and academia. As such, this chapter will encompass 

different sections relating the research to academia, patents, state-of-the-practice, and state-

of-the-art. 

The first part of the chapter will encompass the review of academic work, followed by the 

review of the existing industrial patents. The third part will cover the discussion on state-

of-the-practice technique, followed by the discussion related to the state-of-the-art in the 

industry. Many journals and patents have been researched, however only the ones most 

related to this research have been cited and covered in this thesis. 

 

2.2 Academia  

This section will discuss research covered by academia related to vision-guided robotic 

systems.  

(Šuligoj, Šekoranja, Švaco, & Jerbić, 2014) proposed object tracking with 2 robots and 

stereo vision cameras. The problem was addressed by using 3 points on the part pallets 

used to track the object with the vision system. The system was constructed by two cameras 

mounted on the first robot, while the second robot carried the markers. Camera robot would 

monitor the position of the marker robot and advise it on its position relative to the object 

by calculating the position between the robot’s tool center point (TCP) relative to the part 

being processed. Communication protocol was established by using C++ programming and 
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transmission control protocol/internet protocol (TCP/IP). This system shows a level of 

complexity as well as constraints. In order to make the system functional, markers 

described in the research must be present in order for the second robot to track the object 

and coordinate the position to the robot performing the operations. Without the markers, 

the system would not be able to perform, making it prone to failures. Authors presented a 

viable solution for robot guidance; however, the integration of the two robots in sync makes 

the system very expensive and intricate due to the synchronizing process.  

(Bellandi, Docchio, & Sansoni, 2013) proposed using one robot and two cameras (one in 

2D and second in 3D) in order to reposition robot to the object more accurately and faster. 

The camera is presented as a “stand-alone” device in the 2D, and combined with a laser 

slit projector in the 3D system operating in triangulation mode, it creates a system used for 

object location and fitting. Research describes the arrangement composed of both cameras 

fastened to the robot end of arm tool (EOAT). This concept arrangement describes a system 

where the 2D geometric template matches and classifies the 3D object in order to get a 

more robust and faster processing solution by eliminating the cloud segmentation and 

object classification. By excluding the point cloud, 3D data is used for calculating location 

as well as the object orientation in order for the robot EOAT to be properly oriented to the 

object/feature of interest. This system shows enough accuracy for pick and place 

applications, however it is constrained to objects with simplified shapes such as cylinders 

and flat surfaces (planes) and would have limitations in recognizing and analyzing objects 

which contain 3D surfaces (object height changing in Z direction) where multiple features 

would need to be identified and located.  
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(Martinez, Boca, Zhang, Chen, & Nidamarthi, 2015) research comprised of one robot 

equipped with the stereo camera for random industrial bin picking applications. The study 

describes the methodology on coordinate system synchronization between the two devices, 

meaning that any scanned object would have its position directly related to the robot. Each 

object is analyzed for access to picking position prior to robot advancement. Due to EOAT 

size, the system was required to use 2 tool center points (TCP), and develop a procedure 

for robot extraction path once the objects were grasped in order to avoid a collision. 

Research demonstrates teaching methodology for using two different tool center points 

(one for each part gripper on EOAT) and calibrating them together, along with other 

methods such as robot extraction. System indicated some limitations regarding the part 

orientation which was impacted by larger EOAT, as well as longer cycle time produced by 

the algorithm used for object location and positioning.  

Another bin picking application was presented by (Oh, Lee, & Lee, 2012). This research 

describes the design of the system on the similar platform for pick and place application as 

(Martinez et al., 2015). Published paper defines the application where one robot and two 

cameras are used to locate the object. By using a larger field of view and geometric pattern 

matching method with the respect to the 2D image, this concept allowed for a more robust 

system which would be capable of locating components that would previously generate 

faults. Designed for industrial applications, the system incorporated collision avoidance by 

using the object orientation with respect to the bin orientation, increasing the system 

reliability. The system did show certain sensitivity to outside elements (i.e. lighting) which 

limited the system in high accuracy applications. After presenting the system at Korea 

Robot World in 2010 as well as 2011, the system showed great success and public interest. 
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(Semim, Jr, Silva, Silva, & Tormena, 2012) developed another concept on using the vision 

system for positioning the robot EOAT to the engine head which may vary in position and 

orientation. Computed vision system program was created by using Pearson Correlation 

(Yen & Johnston, 2005) to determine the object position and orientation. The correlation 

of the image and the robot EOAT was created by corresponding holes on the engine head 

to the tool center point on the EOAT. Change in engine head position (displacement 

position) was then transferred to the robot TCP position which would then be adjusted with 

the same displacement values.  

Charge-coupled device (CCD) camera integrated with 5 degrees of freedom (5 DoF) robot 

was explored by (Xie & Hämmerle, 2008). Research selected somewhat limited 5 axis 

robot, equipped with the CCD camera on the end effector. To achieve the accuracy of the 

vision system, new image processing technique was developed by using a pinhole camera. 

Object recognition was performed by using 2D and 3D cameras; by taking images from 

different angles in order to achieve accurate object angle position. This at the same time 

eliminated the possibility of generating an inaccurate image and adjusting the EOAT 

incorrectly if clustered objects are present in the work envelope. In addition to this, the 

procedure used color instead of grayscale images, improving object tracking and 

registration. It is imperative to acknowledge that the experiment utilized kinematics in 

order to eliminate the vibrations created during the robot joint angles during the object 

scan, which resulted in improved scan path speed and more accurate image recording. 
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2.2.1 Academic Literature Review 

Current academic publications relevant to this research were reviewed in the previous 

section. The approach used by the academia illustrates different methods of adjusting the 

robot end effector to part variations or differently positioned objects. The experiments 

performed include a well-defined systematic approach to providing object recognition and 

orientation in 3D space by using different robot arrangements in conjunction with single 

or dual cameras. By using existing or developing a custom cloud platform for object pattern 

matching the studies were tested for material handling (i.e. pick and place) applications.  

Academic research identifies a level of complexity inadequate for manufacturing settings, 

as certain industrial components (such as PLC) are not utilized, and proposed custom 

programming software is often not recognized and/or approved by the industry. 

Experiments displayed do not directly satisfy part processing applications (e.g. welding, 

screwing, trimming, etc.) by using a single robot in conjunction with a single 3D vision 

system and the PLC. However, methodologies displayed provide a good starting point that 

can be used to develop a new approach for developing such system. 
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Table 1-Academia Research Gaps 

 
 -Explored 

 -Not Explored 

 

2.3 Patents  

(Richard, 2008) wrote an article on robotic guidance where he mentioned that marriage of 

vision and robotics is changing the robotics nature, by going from pre-programmed 

directions to the robots which are starting to “find their way” in a manufacturing 

environment. This can commonly be observed at the robot conferences and/or shows, 

which is usually followed by the industrial pretense. And even though most of the 

manufacturers and/or integrators are very secretive regarding the methodology on the 

robotic guidance, some patents may uncover details on the advances.  

Patent assigned to ABB Robotics Inc.(Thorne, 1997), explains the robotic control system 

for repositioning the EOAT to the new position with the assistance of video display 

showing the coordinate points of the EOAT. Work points recovered from the robot 

controller are displayed on the video screen for easier operator control and programming. 
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This allows the technician to select and designate the work points which are to be 

manipulated in terms of position and/or location. Once the points are saved, the program 

is then recorded to the robot controller. The patent demonstrates easier manual 

manipulation of the robot adjustment with the help of the 3D screen, however, it still 

requires human assistance each time robot manipulation is required.   

Another ABB Robotics Inc. assigned patent (Abare et al., 2003), describes the robotic 

pallet welder machine used for manufacturing plastic fuel tank and adapting to different 

part variations. This configuration describes the linear transfer machine with multiple 

processing stations (i.e. boring and welding). Patent defines the system which includes 3D 

vision camera located on the overhead support above the fuel tank. The vision system scans 

the area of interest on the fuel tank during each cycle, once the palletized fuel tank enters 

the station. Once the scan is completed, the location and the planarity data are 

communicated to the robot processing the part. The patent further goes on describing the 

robot and machine arrangement, as well as a brief description of the sequence of operations. 

However, the patent does not describe the algorithm, communication protocol or any other 

detailed description regarding the robotic adaptability to part variations. In addition to this, 

this machine setup with the overhead 3D vision camera (assuming the 3D vision system is 

mounted on the servo linear slide), creates the constrain for the vision system scan path, as 

the feature of interest on the fuel tank may not be positioned directly under the camera. 

This would require various overhead support designs for different products, constraining 

the production line to the product on which the overhead support is designed to, and 

limiting the flexibility of the robotic production cell.  
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(Oxenfarth, 2007) describes a 3D vision system for position and angle readjustment of the 

processing unit in fuel tank applications. The patent designates two different robot 

arrangements. The first arrangement describes the relationship between the two robots, one 

of which carries 3D scanner while the second robot carries the EOAT for plastic fuel tank 

welding. Once the first robot would scan the area of interest, the position would be 

translated to the second robot with EOAT, which would adapt to the new position. This 

shows some similarity in the arrangement with (Abare et al., 2003), with the exception that 

the camera is mounted to the robot instead of the overhead frame structure. (Oxenfarth, 

2007) presented the second arrangement with the 3D vision camera being mounted to the 

EOAT on one robot, eliminating the second robot altogether. This physical component 

arrangement appears to have certain similarities to this thesis research as well as patent 

applications (Novakovic & Holtkamp, 2017a), (Novakovic & Holtkamp, 2017b), and 

(Novakovic & Holtkamp, 2017c). Aside from the robot arrangement, this patent does not 

provide any description of the algorithm, device correlation, or communication protocol 

description.  

(Weber, Lane, & Novakovic, 2012a) and (Weber, Lane, & Novakovic, 2012b) is another 

patent for fuel tank finishing/welding applications. The patent describes the tooling 

arrangement and operation of scanning the outside surface of the fuel tank and triangulating 

the position to the robot, for positioning/welding components inside the workpiece interior 

(i.e. fuel tank) and the method of using the same. The patent describes 3D scanning of the 

object exterior surface and triangulating the feature position back to the robot in order to 

reposition the components holder to the inside of the work piece for welding. Once the 

scan is performed, the robot EOAT enters the fuel tank through the sender unit (i.e. fuel 
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pump) access opening and positions the component into alignment with the inside contact 

surface under the region of interest. Published material provides the information that the 

3D vision camera, robot controller, and the PLC devices are used. However, the patent 

publication does not go into detail describing the systematic approach, algorithm, 

component correlation, or method on device communication/protocol. 

 

2.3.1 Patents Literature Review 

Patents review section seems to follow a very similar pattern in terms of patent information 

availability. The majority of the systems are used for part processing without providing 

enough manifestations on the systematic approach or details to understand the system 

structure and methodology (Risch, 2015). This is mostly as these systems are considered 

trade secrets (Canadian Intellectual Property Office, 2015) and manufacturers are wary of 

releasing any information as patents do not always provide full protection. This in return 

makes these systems difficult to understand or to be built by the person skilled in the art.  

Although reviewed patents do not satisfy this research criterion in regards to the design 

detail, the objectives specified can be used for selecting an appropriate approach for the 

systematic detail design. 
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Table 2-Patent Research Gaps 

 -Explored 

 -Not Explored 

 

2.4 Industrial State of the Practice 

Since the introduction of vision guided robotics (VGR), the initial systems were introduced 

with 2D vision cameras. This arrangement allows for X, Y, R or X, Y, Z robotic adaptation 

depending on the camera used (Fanuc Robotics America, 2012).  The introduction of 2D 

vision-guided robotic systems allowed for significant scrap reduction in material handling 

operations depending on the application. And even though 3D vision guided robotics have 

been introduced to the industry, many applications still remain utilized by 2D systems, 

forcing manufacturers to keep advancement on these systems. Applications using 

randomly placed objects on the same plane where the object tilt is not present are an ideal 

application for these systems (Anandan, 2014). These systems are fully pre-programmed 

with the set of tools utilized for the application (e.g. parameters, conditions, etc.). The user 

interface allows for easy setup and the PC-based programming tools provide a platform for 

easy integration (ABB, 2013). However, once the object tilt angles do become present, 3D 

vision guidance is required. 
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2.5 Industrial State of the Art 

Part variety and product demand change drive the need for flexible manufacturing systems.  

Constant tooling change-over and the introduction of new production components requires 

perpetual tooling/machine adjustment until the production is stable. In order to solve this 

issue, many equipment manufacturers turn to readily available industrial solutions. Robotic 

manufacturers such as Fanuc and ABB were some of the first in the industry to introduce 

vision-guided robotic systems. 

Fanuc iRVision consists of several platforms (Fanuc Robotics America, 2016): 

 2D Vision Guidance allows the robot to accurately position the EOAT to the part 

location in X, Y and R (rotation) position. 

 3DL Sensor provides the robot with the ability to position the EOAT in X,Y,Z 

location as well as the angle and rotation (W,P,R).  

 Visual Line Tracking system is based on the 2D vision camera platform. The 

system provides the ability to the robot to pick and place the components to/from a 

moving conveyor by monitoring the encoder sensor which provides the conveyor 

speed and the position of the object on it. 

 Vision Guided Depalletizing is another form of a system built on the 2D platform. 

In addition to X,Y,R direction corrections and calculations, the system will also 

calculate the Z height and reposition the tool center point accordingly. 

Unlike Fanuc, ABB uses third part vision systems in order to provide their robots with the 

vision guidance (COGNEX, 2017). Companies like Cognex and Braintech provide this 

ability by integrating their products into the robot controllers (RobotWorx, 2016) for 
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different uses; such as bin picking and processing applications. This approach provides 

ABB with similar capabilities as Fanuc (ABB, 2008). 

 2D Vision Guidance allowing robot to accurately position the EOAT to the part 

location in X, Y and R (rotation) position. 

 Single camera information in 4 degrees of freedom (X,Y,Z,R) 

 Single camera 3D technology for full 6 degrees of freedom adjustment 

(X,Y,Z,W,P,R) 

 Surround 3D imaging combining information from multiple cameras viewing parts 

from different angles  

 

2.6 Summary 

Literature review presented in this chapter summarizes academic, patents, state-of-the-

practice and state-of-the-art solutions regarding vision-guided robotic applications for the 

part to part variation handling. As creative and efficient academic solutions may be, they 

do not present a feasible solution to the industrial requirements, mostly due to the level of 

complexity and lack of industrial devices use. Patents, on the other hand, do not disclose 

enough information on the system design or detail to understand the structure or the 

function. State-of-the-practice and state-of-the-art provide already well-developed 

solutions but do not disclose any information in regards to system design. Rather, they 

provide an out-of-the-box solution for the integrators. Therefore, the research and results 

presented in the following chapters address this lack of information and knowledge.  
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CHAPTER 3:  DESIGN OF AN ADAPTABLE TOOLING 

SYSTEM FOR PART TO PART VARIATION PROCESSING 

3.1 Systematic Design Process 

The primary objective of this research thesis is to design a system that would automatically 

adapt to part variations commonly found in the plastic manufacturing industry. Planning a 

system design where different components are assembled in order to provide this objective 

brings uncertainties which need to be addressed prior to components integration. In order 

to achieve this design, extensively used IDEF0 as well as systematic design approach by  

(Pahl, Beitz, Feldhusen, & Grote, 2007) was chosen in order to select, configure, and 

integrate components into the system, by observing and eliminating the constrains each 

component might carry. 

 

Figure 15-Systematic Design Methodology 
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3.1.1 Task Clarification 

The fundamental problem in many blow moulded components processing is the part 

variation. This variation leads to major automotive recalls which more often than not, 

create large volumes of fuel tanks which needed replacing in the past (Grande, 2011), 

(ARFC, 2002) and are still occurring (Mazda, 2016b), (Honda, 2016), (Mazda, 2016a). 

Part to part variations typically found within mass produced plastics parts requires periodic 

machine adjustment by maintenance technicians. This in return generates production 

downtime, extra production cost, increases scrap rate and lowers overall equipment 

effectiveness (OEE).   

In order to eliminate this issue, adaptable tooling system is required so the feature on the 

fuel tank and component being welded can be matched correctly. Readily available 

industrial components such as robots, PLCs, cameras, etc., will only be used for the system 

design. 

Process cycle time should be lower than compared to current production as the ideal 

condition would always be achieved, and the need for the matching time to conform the 

fuel tank surface to the hot plate is decreased. 

The system should allow for easy integration into existing robotic production without 

major equipment changes. The addition of the system components (i.e. camera) to the 

current production system should be performed with ease, assuming that the current 

production already utilizes industrial robots and PLC. 
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Once integrated, the robot should automatically adjust the EOAT to the new position on 

the fuel tank where the feature of interest is deviated. Thus, resulting in adaptability to part 

variations. 

 

3.1.2 Conceptual Design 

In order for the system to reposition the processing unit to the new feature location, it is 

essential that the system is capable of adjusting in X, Y, Z, W, P, R directions. Thus, 6 

degrees of freedom (6 DoF) robot will be used in order to provide the flexibility in position 

adjustment and orientation. In addition to the robot, other components listed below will 

need to be used in order to administer the position change.  

 3D vision system will be used for topology generation. 

 PLC will be used to provide communication between the network devices and to 

perform process making decisions. 

 Processing unit will be used as robot EOAT for fuel tank welding. 

Robot required for the application should have the ability to adjust in 6 degrees of freedom; 

therefore, an articulated 6 DoF robot is required. For this application, an existing Fanuc 

R2000-iB/165F robot will be utilized. Since Fanuc robots are most commonly found in the 

worldwide manufacturing settings (Christensen, 2016), Fanuc TP robot programming 

language is well developed for most operations regarding the robot movement and position.  

Having the camera mounted as part of the EOAT, two user tools will be assigned to the 

robot; one for the camera and second for the processing unit. With this approach, the robot 
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can provide direction and velocity, producing an accurate and repeatable camera scan start 

location, which will be used for analyzing the object topology. This procedure is achieved 

by moving the robot over top of the object and scanning the surface on the initial component. 

Once this is performed, the camera will record the feature position (i.e. hole) in terms of X, 

Y, Z, W, P, R location, while simultaneously robot user tool position is recorded to the same 

physical feature of interest (i.e. fuel tank hole) location. This procedure creates a correlation 

between the feature of interest on the camera image and the robot EOAT position register 

(PR). This position will be assigned as the “master” point from which all subsequent feature 

locations will be measured. Once position difference on the next component scan is 

calculated by the camera, the variation in position will be sent to the PLC where it will be 

checked and then transferred to the robot. The robot will initially move EOAT to the 

“master” position, and then perform the difference in location regarding X, Y, Z, followed 

by W, P, R directions. Once process (i.e. welding) is completed, the subsequent component 

can be processed.  

 

Figure 16-Tool Center Point (TCP) Synchronization 
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3D vision system will utilize manufacturer’s software and tools in order to find features in 

3D space (SICK, 2013). Once feature location and position in 3D space is recorded, it is 

referenced to the image upper left-hand corner (origin point). It is essential to mention that 

this image corner is located on the image start scan line. Thus, moving the scan start 

location without repositioning the object will change the feature location on the image. 

Therefore, it is critical to assure that the image scan location is repeatable and accurate.  

 

Figure 17-3D CAD and 3D Scanned Image 

 

Once the first image (“master”) is scanned, the position of the feature will be marked as 

[0,0,0,0,0,0] (meaning that the “position offsets” are not present), from which all other 

position will be measured.  Once calculated, all changes in position will be sent to the PLC.  

Siemens Step 7 PLC system will utilize a Ladder logic programming, typically found in the 

manufacturing plants throughout North America (Smith, 2003). This type of programming 

consists of a similar structure found in the relay logic for electrical wiring control circuits. 
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Part of a PLC referred to as Function Block Diagrams (FBD) will be utilized for describing 

the function between the input and output variables.  

 

Figure 18-PLC Program Example 

 

However, due to PLC inability to send or receive decimal values to and from other network 

devices, position locations will be required to be converted into integers prior to any 

communication.  

EOAT will utilize a standard processing unit (i.e. Fusion Unit). Unit consist of the following 

assemblies: 

 Tank Hot Plate: used for fuel tank melting 

 Part Hot Plate: used for melting the component being attached to the fuel tank 

 Holding Fixture: used for holding the component being attached to the fuel tank 
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Figure 19-Fusion Unit Design (Courtesy SPM Automation (Canada) Inc.) 

 

Robot TCP is recorded at the extension of “Component Gripper” cylinder 20 mm prior to 

the end of cylinder stroke (380 mm from the position shown in Figure 19). 

The conceptual sequence of operations is outlined in Figure 20 below. 

 
Figure 20-System Concept © 2017 IEEE 
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The scope of each component is outlined in Figure 21 below. 

 

Figure 21-Component Scope © 2017 IEEE 

 

Estimated cost of $40,000 is used as a benchmark, considering the cost of the 3D vision 

system purchase ($15,000) along with the cost of programming and integration to the 

existing robotic cell. 

In addition to the cost of the system integration, tolerance needs to be considered. At this 

point in the conceptual design stage, repeatability of the robot needs to be added to the 

accuracy of the vision system. Fanuc Robotics specifies positional repeatability of ±0.2 

mm (Fanuc Robotics America, 2009). However, repeatability of ±0.1 mm is possible by 

using special software upgrade. SICK AG does not provide the tolerance specifications in 

regards to the camera but rather uses an approach of applying various filter tools to enhance 

the image and decrease the tolerance. By analyzing the components in order to determine 

the possible system tolerance, pixel sizes in terms of 0.25 mm x 0.25 mm have been 

identified in the 3D vision. Suggesting worst case scenario where the centroid of the object 
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may be positioned close to the corner between 4 pixels, and the system automatically 

applying it to one of the four quadrants, the following figure illustrates this accuracy.   

 

Figure 22-Worst Case Object Positioning by SICK AG Vision System 

 

Considering robot repeatability of ±0.2 mm, an assumption can be made that the next scan 

start position may vary by this tolerance, thus causing the scanned object in the image to 

look as it has moved. Figure 22 illustrates a theoretical object centroid position in proximity 

of 4 quadrants, which would automatically fall within the one it is located in. However, 

due to robot repeatability, this centroid position may move to a different quadrant, thus 

generating the camera repeatability of ±0.175 mm. In order to calculate the system 

tolerance, both components (i.e. camera and robot) need to be added together. By doing so, 

theoretical system repeatability of ±0.375 mm is provided. Using this initial theoretical 



   

37 
 
 

tolerance for adjusting the EOAT to the fuel tank, and fuel tank feature which can vary 

±25.0 mm, this tolerance of ±0.375 mm provides satisfactory tolerance limit in order to 

pursue the research. More details on robot accuracy and repeatability are covered in section 

5.1. 

PLC tolerance is not included in this calculation as this device transfers the same values 

from the vision system to the robot; therefore, it is assumed that no error is created during 

this information transfer. 

The conceptual design stage is concluded with the use of 6 DoF robot, 3D vision system, 

PLC, the processing unit, and creating the correlation between these devices. Combining 

the components together will provide the system structure. This arrangement will provide 

flexibility for position adjustment, allow for information exchange, and the ability to 

process the parts in a production environment. 

 

3.1.3 Embodiment Design 

Embodiment design phase represents a working structure of the project, which will develop 

the construction structure of each component and their purpose. 

 

3.1.3.1 Camera Embodiment Design 

Having the camera as part of the EOAT, accurate robot speed is calculated by using 

predetermined image length and the image profile size by using the equations below: 
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𝑁𝑜. 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑆𝑐𝑎𝑛𝑛𝑒𝑑/𝑠𝑒𝑐 =
𝑅𝑜𝑏𝑜𝑡 𝑆𝑝𝑒𝑒𝑑

Image Length
 

(1) 

𝑁𝑜. 𝑜𝑓 𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑠 𝑡𝑜 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑎𝑛 𝑂𝑏𝑗𝑒𝑐𝑡 =
𝑃𝑟𝑜𝑓𝑖𝑙𝑒 𝑅𝑎𝑡𝑒

𝑁𝑜. 𝑜𝑓 𝑂𝑏𝑗𝑒𝑐𝑡𝑠 𝑆𝑐𝑎𝑛𝑛𝑒𝑑/𝑠𝑒𝑐
 

(2) 

𝑃𝑟𝑜𝑓𝑖𝑙𝑒 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐼𝑚𝑎𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ

𝑁𝑜. 𝑜𝑓 𝑃𝑟𝑜𝑓𝑖𝑙𝑒𝑠 𝑡𝑜 𝐶𝑎𝑝𝑡𝑢𝑟𝑒 𝑎𝑛 𝑂𝑏𝑗𝑒𝑐𝑡
 

(3) 

 

Signal to activate the camera scan is sent through the End Effector (EE) connector on 

robot’s axis#2 once the position is reached. During this motion, camera velocity is attained, 

as constant scan speed is required to provide an accurate image. Activating the camera scan 

during acceleration or deceleration of the robot will create “stretched” or “compressed” 

image, providing incorrect feature position values during the calculations.  

   

Figure 23-3D Vision Image Scan (Adopted from SICK, 2013) 
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Figure 24-3D Vision Scan Generation (Adopted from SICK, 2013) 

 

During the image scan, PLC byte is sent to the camera. This byte identifies the program 

step to be executed. Depending on the program structure, a byte may identify the program 

step or action. As the topology is generated, programming tools are used to identify the 

area of the image to be analyzed. 

By using SICK IVC-3D software, an array of the tools is presented for object evaluation 

as shown in Figure 25. 

 

Figure 25-IVC Studio Tools 

 

Region of Interest (ROI) Tool: Used to identify the area in the image for analyzing. 
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Blob Finder Tool: Used for feature analyzing once the feature is identified by the Region 

of Interest (ROI) step. This step also provides the X, Y centroid location as well as the 

feature size. It can also be used to provides the limit values used to set the restrictions in 

part variation size (i.e. hole diameter). 

Fit Surface Tool: Used to define a plane which can be used for attaining the Z location of 

the feature as well as minor plane angles. 

At this point, the system is able to determine X,Y,Z points and minor angles of the feature. 

Once computed, the values can be converted to integers and sent to the PLC. 

 

3.1.3.2 PLC Embodiment Design 

In addition to the position integer values, different information is also transferred to the 

PLC in order to assure that the scan data is correct. Values defining new image scan, fault 

code, program step, offset limits, etc. are presented and then analyzed by the PLC. If the 

values received are within specified limits set in the program, the data is then transmitted 

to the robot and the process is allowed to continue. 

 

3.1.3.3 Robot Embodiment Design 

Once the image is recorded, the topology is analyzed by the camera and the feature 

coordinates are sent to the PLC. During the new position calculation by the camera, robot 

initially moves to the “master” position (recorded by position register), from where the new 
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offset position will be determined by the information sent by the PLC. This information is 

stored in the robot registers and calculated based on the information received by group 

input/outputs. Initially received and stored as integers, the information is converted into 

decimal values prior to adjusting to the new position. 

Robot Group Inputs (GI) are organized as per below: 

GI[n]=Integer for X before decimal place  (4) 

GI[n+1]=Integer for X after decimal place  (5) 

………  

Robot Registers are normally used to store numbers which can be used for arithmetic 

operations, cycle counts, track part counts, etc. (Fanuc Robotics America, 2003).  Thus, 

these registers will be used to store the values from the PLC, once converted into decimal 

values per guideline below. 

R[n] (X linear offset value) (6) 

R[n+1] (Y linear offset value) (7) 

………  

Methodology and the equations of converting GI [n] and GI [n+1] as X position decimal 

offset value from integer is presented below:  
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Extracting integers into a value before decimal place:  

R[n]=GI[n]-128 (8) 

Extracting integers into value after decimal place:  

R[X:SCRATCH PAD]=GI[n+1]-128 (9) 

R[X:SCRATCH PAD]=R[X:SCRATCH PAD]/100 (10) 

Adding value before and after decimal together:  

R[n]=R[n] + R[X:SCRATCH PAD]        (11) 

Once the information is extracted, the values are stored in the robot registers. 

Position registers (PR) are used to store the positional information (X,Y,Z,W,P,R 

configuration). Fanuc robotics provide up to 200 position registers in the controller (Fanuc 

Robotics America, 2003), which are identified by the numbers. Therefore, “master” 

position PR[X] is used by the case study as the position correlated to the feature center at 

the master location from which all other offsets will take place. Two more position registers 

are used for major and minor axis offsets. New position register for all major axis offsets 

is assigned to PR[X+1], while minor axis offsets are provided by PR[X+2].  
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Initially, all offsets will need to take place in the world followed by the angular 
adjustments: 

 

PR[X+1, 1]=PR[X,1] + R[n] (12) 

PR[X+1, 2]=PR[X,2] + R[n+1]  (13) 

PR[X+1, 3]=PR[X,3] + R[n+2]  (14) 

PR[X+1,4]=PR[X,4] (15) 

PR[X+1,5]=PR[X,5] (16) 

PR[X+1,6]=PR[X,6] (17) 

 

This is followed by the angular adjustment:  

PR[X+2,4:SCAN TOOL ANG]=R[x+3]    (18) 

PR[X+2,5:SCAN TOOL ANG]=R[n+4]      (19) 

PR[X+2,6:SCAN TOOL ANG]=R[n+5]      (20) 

In this stage of the systematic design, the design of each component is created in 

accordance with technical principles. By completing the embodiment design stage, a 

definitive layout is created. 
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3.1.4 Detailed Design 

In the previous Design Embodiment phase, following is presented: 

 Camera programming and object correlation to robot in 3D space 

 PLC communication, byte information, and information transfer between devices 

 Robot programming, position offsets, and correlation to the image  

At the end of each scan cycle, the feature location along with measured and offset values 

is displayed on the HMI screen for reference as shown in Figure 27. By using the 

“Communication” (C) values displayed on the HMI, robot offsets can be checked by 

matching the same values on the group input (GI) side of the robot controller. Same values 

can also be used for monitoring part to part variation during the manufacturing process. 

 

Figure 26-Robot Position Change 
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Figure 27-HMI Position Adjustment Display 

 

Representation of “C”, “R”, and “M” values in Figure 27: 

 C - Communication offsets values robot needs to offset from the “master” position 

 R - Reference values representing the “master” position (robot PR[X]) from where 

every subsequent feature position is measured 

 M - Measured values representing the feature location in the image 

It is important to mention that during the machine design singularity occurrence can be 

avoided by utilizing Fanuc Roboguide software (Schollenberger, 2015), or by using 3D 

CAD model and assuring that no two robot joints would line up making them redundant. 

Any potential singularity occurrence can be avoided by manipulating robot position 

relative to the object being processed. Figure 28 shows the reachable robot workspace 

(Spong & Vidyasagar, 2008) relative to the fuel tank, and the real-estate available for robot 

repositioning in a case of singularity. 
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Figure 28-Robot Position Relative to Fuel 

Tank (Courtesy SPM Automation (Canada) 

Inc.) 

 

 

Figure 29-Fuel Tank Feature Scan Area 

(Courtesy SPM Automation (Canada) 

Inc.) 

 

Within this work space, fuel tank fixture design is required to allow for scan path clearance 

of the feature as shown in Figure 29. 

Singularity for this research was checked by utilizing 3D CAD model provided by SPM 

Automation Inc. Designing all components for the research in 3D CAD prior to any 

manufacturing and/or testing, the position of robot joints in 3D CAD did not show any 

possibility for singularity occurrence. The same method was used to check for robot reach 

and joint limits. 

Another constrain on the 3D vision system is direct sunlight on the object being processed. 

This represents a common problem with machine vision, as it affects the image geometry 
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by creating noise on the image (Microscan, 2013). System Limitations section provides 

more insight on this problem as well as the resolution. 

Completing the final stage of the systematic design, the design of each component is 

finalized and potential complications are addressed. The system is provided with enough 

information to lead to production build and programming.  

 

3.2 IDEF0 Design Process 

IDEF0 is a structured modeling method used to develop a functional or activity model of 

an enterprise by describing what is done without regards to the sequence (W. ElMaraghy, 

2015). It is used to graphically display any operation through building blocks as shown in 

Figure 30. The process starts with scope definition by identifying the main function of the 

model. Once the main function is determined, lower levels diagrams can be generated.  

 

Figure 30-IDEF0 Representation (Source: Wikipedia, Image by Defense Acquisition 

University) 
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Diagram order for this experiment is defined as following: 

- A_0- Design of an Adaptable Tooling System for Part to Part Variation 

Processing (Figure 31) 

- A0-Decoupled Node of the Design of an Adaptable Tooling System for Part to Part 

Variation Processing (Figure 32) 

 A1-Task Clarification Phase (Figure 33) 

 A2-Conceptual Design Phase (Figure 34) 

 A3-Embodiment Design Phase (Figure 35) 

 A4-Detailed Design Phase (Figure 36) 

 

Figure 31-Main Function Block 
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Figure 32-Decoupled Node A0 
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Figure 33-Node A1 (Task Clarification Phase) 

 

 

Figure 34-Node A2 (Conceptual Design Phase) 
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Figure 35-Node A3 (Embodiment Design Phase) 

 

 

Figure 36-Node A4 (Detailed Design Phase) 
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CHAPTER 4: IMPLEMENTATION CASE STUDY 

4.1 Test Equipment 

The primary goal of this research thesis is to accurately design and build the system capable 

of adapting to different part variants. In order to provide insight on the system design and 

build, this section will provide the information on equipment access, and explain the case 

study execution. 

Access to equipment is provided by SPM Automation (Canada) Inc., located in Windsor, 

ON. SPM Automation is a Tier 1 equipment supplier specializing in industrial automation 

and plastic welding applications. Full access to the prototype equipment which includes 

PLC, HMI, Fanuc industrial robot, vision system, processing units, etc. was at the disposal 

for design, development, and testing for this thesis research. 

 

The basic equipment specifications are listed in the tables below. 
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Table 3-Robot Specifications 

Manufacturer Fanuc Robotics 

Inc. 

Robot Type R2000-iB 165F 

Controller R-30IA 

Year September 2009 

Robot ID F-87882 

 

 
 

Figure 37-Test Robot-Fanuc R2000 iB 165F 

 

 

Table 4-PLC Specifications 

Manufacturer Siemens 

PLC Type S7-300 

 

 

 

 

Figure 38-Test PLC-Siemens S7 
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Table 5-3D Vision System 

Specifications 

Manufacturer SICK AG 

Type IVC-3D51111 

 

 
 

Figure 39-Test Camera-SICK IVC-3D 

 
 
 

 

 

Table 6-HMI Specifications 

Manufacturer Siemens 

Type IPC577C 

 

 

 

Figure 40-Test HMI-Siemens 

 

4.2 Test Environment 

SPM Automation Inc. provided an ideal manufacturing setting for the test, by using real 

manufacturing equipment as well as the surrounding, where different lighting conditions 

equivalent to those in the production plants are provided. Figure 41 shows the prototype 

cell. 
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Figure 41-SPM Automation Prototype 

Cell 

 

Figure 42-Fuel Tank Section 

 

By using smaller fuel tank section specimen, object manipulation was easier to achieve 

than by using an actual full-size fuel tank. The specimen was placed on the table top located 

in front of the robot during the testing. Because of the specimen size, position variation 

was easily provided simply by moving the specimen in X, Y and Z directions. By placing 

the wedge under one side of the specimen, minor axis variation was achieved regarding W, 

P, and R angles. Figure below illustrates the different part position variations. 
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Figure 43-3D CAD Illustration of Position Variations 

 

4.3 Hardware Integration 

Existing prototype cell is provided with already existing PLC, 6 DoF robot, HMI, and 

EOAT. These devices are integrated together in order to provide support for small 

production run batches or prototype testing.  

The addition of the 3D vision system required fastening the unit to the EOAT by use of 

mechanical brackets. Ethernet cable for PLC communication was combined with the 

existing robot dressing, from the 3D vision system and terminated in the electrical cabinet. 

Small junction box was mounted to the Fusion Unit (EOAT) to be used for electrical 

terminals and relays to control the camera function. 
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4.4 Device Communication 

Device communication is established by using Ethernet IP with the following device 

addresses: 

Table 7-Device IP Addresses 

PLC: 192.198.1.22 

HMI: 192.168.1.12 

3D Vision System: 192.168.1.2 

Robot: N/A 

 

All existing devices use Profibus communication (Wikipedia, 2017) for communication. 

 

4.5 Test Procedure 

This section specifies the test procedure and cycle sequence used to check the system for 

functionality and record the data. 

Before cycle start, certain criteria was required to be checked and/or established: 

 Communication check between devices 

 Robot speed through object scan path set at 250 mm/sec 

 Scan area defined 

 

4.5.1 Robot 

Robot path is determined initially by setting the camera scan distance to the object. The 3D 

vision system is manually activated through software (triggering the camera laser) while 



   

58 
 
 

the robot with the camera is positioned above the object. Scan distance can be set by 

changing the robot height which moves the 3D vision system up/down, or manually 

through software if distance limitation allows. This procedure is performed until the object 

is displayed in the object window as shown in the figure below. 

 

Figure 44-3D Vision System Distance Setup 

 

Once the vision system height to the object is determined, scan triggering can be 

established. By moving the robot over the object at previously set height, encoder position 

is monitored and I/O signal from the robot is used to send the camera signal to activate the 

scan. By changing the robot register value for the camera scan start position in the robot 

program, scan start location can be moved to a different position along the scan path to 
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start sooner or later depending on the object location. By changing the number of profiles 

in the camera setup screen (Figure 44), image length can be increased or decreased, thus 

changing the scan window. 

Control relay (2823CR) used to trigger the camera scan is controlled by the robot output 

RO[04] through the end effector (EE) connector on robot joint#2. By supplying 24V to the 

relay which is terminated at camera power connection#1, camera scan is activated. Junction 

box with control relay is located on the robot EOAT. More information on the control 

wiring is detailed in Appendix A. 

 

Figure 45-Robot EE Connector 

 

 

Figure 46-Electrical Junction Box 

 

Camera communication to the PLC is established through the Ethernet Switch. This device 

uses pocket switching in order to establish the communication between different devices 
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identified by their own IP addresses (Wikipedia, 2016b). Camera IP address in this case is 

identified as 192.168.1.2 with subnet address 255.255.0.0. 

 

Robot program is created by using Fanuc TP programming language called Karel, which 

is derived from Pascal (Robotics, 2016). Robot program is shown in the figures below. 

 
Figure 47-Robot Configuration Program 

Section 

 

Figure 48-Robot Path and Communication 

Protocol Program Section 

 

Figure 47 outlines the first part of the robot program which deals with robot configuration 

regarding the routine, register tracking, approach speed and type (linear vs joint robot 

move), and defines scan start position. The following Figure 48 describes the portion of 

the robot program which defines robot approach to the object being scanned as well as the 
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communication with the PLC device. Once this programming step is finalized, the robot 

waits for the camera to transfer the new position coordinates through the PLC device. 

 
Figure 49-Robot Major Axis Translations 

 
Figure 50-Robot Minor Axis 

Translations 

 

Figure 49 illustrates the protocol for “unpacking” of the 8-bit data (0 … 256) received for 

the X, Y and Z position. As stated earlier, PLC cannot send or receive the data in decimal 

places, therefore data is broken into two sets of numbers; integer value before the decimal 

place, and integer value after the decimal place (camera programming section describes the 

reverse side of this formula in detail). Once this protocol is completed and the numbers are 

extracted, the two values are then added together and the coordinate location in decimal 

value is created. The same protocol is followed for the minor axes (shown in Figure 50).  
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Figure 51-Robot “Master” Position and 

Offset Check 

 
 

 
Figure 52-Robot Position Adjustment 

 

 

Figure 51 identifies the “master” position PR[171] from which the position corrections take 

place in terms of robot offsets. This position is required to be recorded by bringing the tool 

center point of the EOAT to the feature location manually, every time a new product is 

introduced to the system or the system is going through the teaching sequence. Next part 

of the program assures that the values extracted from the camera fall within the offset 

limitations prior to making position adjustments. This section of the program is used as a 

redundancy check to eliminate any large position adjustments which may result in robot 

crash and/or equipment damage. Any values greater than specified in the program limits 

will generate a fault and stop the cycle. Succeeding program steps illustrated in Figure 52 

demonstrate the position offsets in X, Y, and Z positions, followed by the angular 

adjustment in W, P, and R. 
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Figure 53-Robot Protocol 

 

 

Figure 54-Robot Protocol 

 

Figure 53 and Figure 54 finalize the robot program by using standard programming 

protocol. 
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4.5.2 Vision System 

This section will describe the camera program as well as the techniques used in creating 

the program for the fuel tank case study. 

 

Figure 55-Camera Software Screen 

 

Figure 55 illustrates the vision system software and the arrangement of tools used for 

creating the program. It consists of the program tree, toolbars, scanned image banks, 

preview screen, program steps and programming table. 
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As the image is scanned by the camera during the robot movement over the object, PLC 

byte is received from the PLC, at which time program starts its execution through the 

programming steps. 

The first part of the program examines the image by analyzing a static region of interest 

(ROI) and by identifying the area where the examination of the features is taking place 

(Figure 56) by looking for a specific feature (i.e. hole). 

 

Figure 56-ROI Definition © 2017 IEEE 
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Once ROI step has been defined, Blob Finder tool can be utilized. This tool is used for 

analyzing the feature characteristics, and provides the centroid location as well as the 

feature size, to the table ID specified in the tool (Figure 57). This tool allows for the 

definition of size, depth and other feature parameters for the analysis. All features that do 

not fall within these parameters are automatically discarded. Blob Finder tool also provides 

limit values, which may be used to set the restrictions in part variation to avoid faults 

created by the objects outside of the geometry scope. Once the feature is identified, the 

parameters in terms of X and Y locations are exported to the program table and used in the 

next programming section. 

 

Figure 57-Blob Finder Tool © 2017 IEEE 
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By using the X, Y position provided by the previous step, two circles are placed (1 smaller 

and 1 bigger circle) with the centers corresponding to the same position. The area between 

these two circles represents the surface defined for placement of the “Best Fit Plane” which 

will be used for attaining the Z location of the feature (hole) in the next step. 

 

Figure 58-Methodology for Placing "Best Fit Plane" 
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This plane is called the “Best Fit” for a simple reason of analyzing the 3D surface and 

placing the plane on the surface that fits the best. Figure 59 shows an example of this 

methodology. 

 

Figure 59-Best Fit Plane Placement on 3D Surface © 2017 IEEE 

 

Once the plane is established, the next part of the program is developed to determine the 

plane angle in terms of roll and pitch in 3D space. As the X, Y position is already calculated 

and stored in the program table, the location will be pulled back into the program logic and 

placed into 02=Pixel X and 03=Pixel Y fields for each of the three steps as shown in Figure 

60 below. This will provide calibrated Z position of the point. 
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Figure 60-Compound Plane Angle Calculation 

 

The first part of the program uses the X and Y position after which the position is extracted 

in the “Calibrated” field of each step, and X, Y and Z positions are calculated. Following 

two steps perform the same calculation, however, the position is calculated 25 mm above 

the hole center and 25 mm to the right of the hole on the best-fit plane. This provides 3 

points in terms of X, Y, and Z positions, which are going to be used to calculate the plane 

angle (robot minor axes), by using trigonometry as shown in Figure 61 and Figure 62 

below. 
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Figure 61-X and Y Minor Points Calculation © 2017 IEEE 

 

 

Figure 62-X and Y Minor Plane Calculation © 2017 IEEE 
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Though this is considered a compound angle plane, robot software does not provide 

calculations or a method for this position adjustment. In order to calculate this plane, robot 

software uses X and Y minor axis as shown in Figure 62 above. Therefore, camera 

algorithm was created to calculate minor X and Y angles separately. 

Up to this point, the algorithm is able to calculate X, Y, Z positions, followed by W and P 

angles (R value may be calculated if the orientation feature is used for yaw angle) after 

which these values are saved to camera flash as the “master” coordinates, from which every 

other cycle will be monitored in terms of difference in position. For a subsequent scan, the 

program continues as explained below. 

In the program structure master coordinates are saved to the camera flash but pulled back 

into the program and stored in the table rows 40 to 45, while the values being calculated 

are temporarily placed in the “scratch pad” rows 12-17 as shown in Figure 63. 
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Figure 63-Scratch Pad and Master Coordinate Placement 

 

As the values being calculated are stored in the rows 12-17, they are also being used by the 

algorithm for comparison. The difference in each position is calculated and then stored in 

the same row overwriting the original values, thus giving these rows name “scratch pad”.  
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Final values are then transferred to rows 20-31, after which they are sent to the PLC through 

the communication protocol. Prior to transferring the coordinates, these values are required 

to be translated into integers, as PLC cannot send or receive decimal values. Thus, only 8-

bit values can be sent (0 … 256). This part of the algorithm will separate decimal values 

into 2 integer numbers (one before and one after decimal place). In order to generate this, 

the following formula and rules were developed: 

The rule was set that value 128 (half point of 256 bytes) is considered as 0 value. All values 

over 128 are considered to be positive, while all values under 128 are considered negative. 

The formula below illustrates this example.  

n1 represents integer value before decimal, and n2 represents integer value after decimal 

 

To calculate n1 value:  

n1 = [X] + 128 
 

(21) 

To calculate n2 value:  

n2 = ((X-(n1-128) x 100) + 128 
 

(22) 

 

Example: 

4.17 

Integer value before decimal place: 

4 + 128=132 

Integer value after decimal place: 

((4.17-(132-128)) x 100)+128=145 

Therefore 4.17 is sent as two separate bytes; 132 and 145. 
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The reverse side of this formula can be found in the robot program Figure 49 and Figure 50, 

as the robot is required to convert the values back into decimals in order to perform the 

position offsets. 

Once all values are computed by the camera program, they are combined together (one 

after another) and sent to the PLC in form of a byte string, and subsequently to the robot. 

Calculated position values are then displayed on the HMI screen for the 

personnel/technician’s reference, as shown in Figure 64 below. 

 

Figure 64-HMI Display 
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The values are separated into 3 rows which represent the following: 

Ref- Represents the “master” position from where all other subsequent scan positions are 

measured.  

M- Represents for the measured position of the scanned object. 

Com- Represents communication offset values which are communicated to the robot. 

These values are the difference between the reference point and the position of the 

subsequent component.  

 

4.5.3 PLC 

The section on PLC programming will not be discussed in detail. Programming logic 

operates based on standard Siemens S7 function blocks, which are modified for the 

application of 3D vision system communication. The addition of this logic to the pre-

existing system does not present a great significance in terms of research novelty, as the 

program logic for EOAT control is already present. More information on PLC program can 

be found in Appendix B. 

 

4.6 Summary  

This chapter provided a case study that presented a methodology, approach, and the 

implementation of the research to the fuel tank welding application. It demonstrated the 

device integration and the communication protocol between all components. The test 

procedure established the correlation between the robot and the image generated by the 



   

76 
 
 

vision system in order to associate the two objects. The following chapter will encompass 

the system validation, accuracy, and test results. It will also cover improvements generated 

by the system. 
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CHAPTER 5: RESULTS, VALIDATION AND DISCUSSION 

The following chapter is a summary of the test results which includes system accuracy. 

Robot programming and testing was performed under different scenarios, drawing 

conclusions on the system limitations. 

 

5.1 Robot Validation 

Robot manufacturers often publish only robot’s repeatability as the robotic accuracy has 

not been yet fully developed to meet production needs (Fanuc Robotics America, 2017b). 

Robot accuracy is defined as robot’s ability to move to the requested position and hitting 

the target each time, while the repeatability may be defined as moving to the same position 

repeatedly (Joubair, 2014) as illustrated in the figure below. 



   

78 
 
 

 

Figure 65-Robotic Accuracy and Repeatability Illustration 

 

Robot accuracy depends largely on the EOAT weight and center of mass. The combination 

of joint positions and orientations with conjunction to the EOAT is referred to as the 

“pounce” position. This pounce position may be physically altered if different EOAT is 

placed on the robot and the position is measured and compared to the same position with 

the previous EOAT used.  
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As this research utilizes only 1 EOAT and relies on the on the technician to establish a first 

reference point by manually teaching the best EOAT position to the fuel tank surface, a 

first reference point is created from which the repeatability measurements will take place. 

Thus, system repeatability may be considered as accuracy. 

Robot position in terms of readjustment was validated by monitoring tool center point 

(TCP) position displayed on the robot teach pendant. (Joubair, 2014) 

Robot “master” position is stored as position register PR[171]. Position adjustment values 

send by the vision system are temporarily stored in robot registers R[9]-R[14]. Values from 

these registers are then added to the PR[171] resulting in PR[172] position which is initially 

generated by robot movement in X,Y,Z directions, followed by the W,P,R angles. Values 

from scan image (e.g. Figure 64) were used for validation. 
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PR[171] position was recorded as shown in Figure 66: 

Table 8-PR[171] Position Coordinates (Master Position) 

X=2043.774 mm W=0.613 deg. 

Y=339.205 mm P=87.328 deg. 

Z=495.297 mm R=4.991 deg. 

 

 

Figure 66-PR[171] Coordinates (Master Position) 

 

Offset values from Figure 64 sent by the vision system are populated in robot registers as 

shown in Figure 67: 
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Table 9-Register Values (Position Offset Values) From Scan Image 

R[9]= -1.25 mm R[12]= 0 deg. 

R[10]= -1.0 mm R[13]= -0.05 deg. 

R[11]= 0.01 mm R[14]= 0.68 deg. 

 

 

Figure 67-Register Values (Offset Values) 

These values are the same values transferred from scanned image in Figure 64. 
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Register values (R[9] - R[14]) are then added to PR[171], resulting in PR[172] as shown 

in the Figure 68: 

Table 10- PR[172] Position Coordinates (Offset Position) 

X = 2043.774 + (-1.25) = 2042.524 mm W= 0.613 + 0 = 0.613 deg. 

Y= 339.205 + (-1.00) = 338.205 mm P= 87.328 + (-0.05 ) = 87.278 deg. 

Z= 495.297 + 0.01 = 495.307 mm R=4.991 + 0.68 = 5.671 deg. 

 

 

Figure 68-PR[172] Coordinates (Offset Position) 
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5.2 Camera Validation  

To assure that the values are correct in terms of distance measurement provided by the 

camera, the device was manufactured in order to measure X, Y, and Z directions.  

 

 

Figure 69-Verification Plate 

 

 

Figure 70-Verification Plate CAD Model 

 

By obtaining distance values between the holes in X and Y direction from the camera, these 

values are then compared to the tolerance limit set in the camera program to the actual 

manufactured dimensions between the holes.  The same procedure is then followed for the 

Z dimension (height). By obtaining X, Y and Z measurements by the camera, these values 

are then compared to actual manufactured dimensions in order to determine camera 

accuracy. Tolerance limit can be opened or closed depending on the manufacturing 

accuracy of the device. 
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Figure 71-3D Scan of the Verification 

Device 

 

Figure 72-Verification Confirmation 

 

Figure 72 illustrates the distance in X and Y directions between the 3 holes. Z distance is 

calculated by measuring the boss height to the base plate. If the distance measured is within 

the acceptable limits, the verification section is considered as pass, deeming the camera as 

accurate for processing. 

This part of the program is activated by the PLC and can be programmed to activate after 

a certain number of cycles, beginning of every shift, or prior to every cycle. Passing the 

verification part of the program allows the program to advance with the sequence. It is 

imperative to note that the device present in Figure 69 was manufactured by hand using 

basic machine shop tools at disposal. The distance between the holes was not accurately 

machined, prompting for tolerance of ±0.5 mm. Repeatable scans showed that the values 

obtained varied within ±0.1 mm. 
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5.3 System Accuracy 

System accuracy will include all components integrated together, thus providing the 

tolerance value for one complete system.  

The test was performed by scanning a stationary fixed object (i.e. fuel tank section) 25 

times without making any contact with the object after the scan. During this testing, 25 

positions were recorded of the same stationary object to be used for accuracy calculation. 

Position offset values are shown in the table below and represent the variation between 

each scan. “Master” component was used in the test, providing [0,0,0,0,0,0] position as a 

measurement point from where every other subsequent scan is measured.  

Position variation of the stationary object in X and Y direction would normally indicate 

that the scan activated by the robot was initiated too soon or too late from the encoder 

position. Performed test concluded this was not the case as values obtained remained as 

zero; proving that the scan start point was accurate and repeatable. 

Position variation in Z direction may indicate that the scan path was too close or too far 

from the object (making the object seem closer or further away from the camera), or that 

the camera grayscale value calculated by the vision system carries a tolerance. Same 

reasoning for position variation in W, P, R direction may be applied. 

Position offsets (“C” values) are shown in the table below and represent the variation 

between each scan. 
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Table 11-System Tolerance/Repeatability 

 

Figure 73 offset values below are noted in scan#14 position as shown in Table 11. 
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Figure 73-Image Scan Repeatability Test 

 

Using the maximum variation value of 0.1 mm noted in the Z direction, the system 

accuracy is stated as ±0.05 mm. The addition of this value to the theoretical robot position 

repeatability of ±0.2 mm, provides the complete system accuracy of ±0.25 mm in position. 

Video of the system testing was recorded by 5 different cameras positioned at different 

angles around prototype cell. This included 2 of the cameras attached to the EOAT. 

Video of the test as shown in Figure 74 is posted in the link below: 

 https://www.dropbox.com/s/1spf18s5l2n3daw/boris.mp4?dl=0  

https://www.dropbox.com/s/1spf18s5l2n3daw/boris.mp4?dl=0
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Figure 74-Test Video Image 

 

 

5.4 Various Scenarios  

Acknowledged as sensitive, it was imperative that the system is tested for different lighting 

scenarios present in the manufacturing settings. Different color flood lights (red, yellow 

and green) were applied directly to the object during the scan phase of the cycle. Lights 

were positioned at the distance of 150 mm away from the object and showed no impact on 

the image quality.  

In addition to the lighting, another test by using markers on the fuel tank surface was 

implemented.  White China marker was used to draw lines on the object prior to the scan 

in order to analyze if the direct color applied to the surface would have any effect on the 

image quality. This test showed no impact on the image quality. 
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Test performed by applying direct sunlight did indicate to have a major effect on the system 

in terms of the image quality. Section 6.3 on system limitations explains more. 

 

5.5 System Comparison 

This section will attempt to compare the outcomes/results of this research to some of the 

currently available vision guided robotic applications.  

 

5.5.1 System Benchmark 

Benchmarking this research to the existing systems proved to be very difficult, as outlined 

in the literature review section. Existing industrial systems do not go into any design detail, 

as system providers consider vision guided robotics a trade secret. Patents follow the same 

direction, by providing a minimal amount of information in the apprehension of reverse 

engineering. 

The research was able to collect information on Fanuc iRVision 3DL system in order to 

create comparison in terms of cost and functionality. 

Table 12-System Comparison 

 Fanuc iRVision 3DL Thesis 

System Cost $23,300 $15,950 

Integration Cost N/A $19,000 

Accuracy ±0.2 ±0.25 mm 

Ease of Use Simple Medium 

 

Integration cost for iRVision was not listed in Table 12, as the industrial projects require a 

high degree of detail as well as the scope of work in order to get an accurate quote from 
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the manufacturer. Thus, the cost for iRVision integration was not provided. The cost for 

thesis solution was available as SPM Automation recently provided integration quote for a 

system presented in the research. 

The accuracy of the stand-alone iRVision system was not published at the time of this 

research. The system was referred to have a “high degree of accuracy” (Fanuc Robotics 

America, 2017a).  Fanuc R-2000iC/165F robots which are most commonly equipped with 

the iRVision list the robot repeatability as ±0.2 mm. No comment of iRVision system 

integration having an effect on this tolerance is mentioned in this specification. 

Ease of use regarding programming provides Fanuc with an advantage over the proposed 

system. Interactive programming screens and tools on the robot controller allow the users 

to use only one software for robot and camera programming, completely eliminating the 

PLC. Presented research uses 3 different software packages (PLC, robot and vision system) 

for the same solution. The elimination of extra software makes Fanuc system easier to use 

for the certain applications (e.g. material handling) where PLC is not required to monitor 

and check for certain values.  

Assuming the equal cost for integration of the two systems, both systems present a practical 

solution for solving part to part variation issues. The system presented in the thesis shows 

lower cost compared to the Fanuc solution. However, Fanuc system provides a simpler 

solution regarding the initial implementation and maintenance due to the exclusion of the 

PLC and separate vision system programming. In conclusion, this provides system 

integrators and/or end users with 2 feasible options to choose from depending on their 

capability and/or budget. 
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5.5.2 Cycle Time 

Data collected on welding Inlet Check Valve (ICV) component was gathered by contacting 

existing fuel tank manufacturing plants such as YAPP Automotive System and Kautex 

Textron. 

Average cycle time was determined at 45 seconds as the component size varies and larger 

surface area requires longer melt time. Comparing this cycle time to the test results of 34 

seconds, cycle time reduction of 25% is achieved (Table 13). 

 

Table 13-Cycle Time Comparison (Conventional vs Research Solution) 

 Conventional Thesis Solution 

Average Cycle Time 45 sec 34 sec 

 

5.5.3 Weld Quality  

Weld quality cannot be quantified due to lack of information released by the manufacturing 

facilities. Prevailing scrap rate frequently set by the manufacturing facilities is at 4%, 

therefore this number can be expected to be reduced, as the research provides ideal tool 

positioning.   

5.5.4 Personnel Cost Reduction 

Personnel cost reduction is another factor which cannot be quantified without detailed data 

collection and research at the manufacturing facility. This improvement will remain to be 

calculated in terms of personnel reduction percentage as the system gets implemented.  
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5.5.5 Communication Option 

Eliminating PLC device and establishing the communication between the robot and the 

vision system directly is possible, however, it was not investigated as this option is not 

preferred for an industrial application which requires a set of safety redundancy. PLC 

device is used as a master device to assure that when a specific program is called to perform 

(e.g. weld ICV, validation plate, etc.) it does indeed execute. This is required when multiple 

objects are being analyzed by the system and not a single operation. It is also used to assure 

that the values sent by the camera are a new set of data calculated and not previous scan 

results. In addition to this, it is also used to monitor a variation between the objects and 

collect this data for analyzing at a later date. Thus, unless the system is used for an 

experiment outside of the production environment or being used for a single application 

which may not require a set of safety checks, utilizing PLC device is recommended. 

 

5.6 System Architecture  

The figure below illustrates the system architecture in terms of control structure and device 

communication used in this research. 
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Figure 75-System Architecture 
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5.7 System Configurations 

Research used a specific approach best suited for the fuel tank manufacturing industry. 

Vision system was mounted on the robot EOAT in order to easier manipulate the camera 

position around the fuel tank and take images of various regions of interest. This approach 

was used due to the fuel tank manufacturing equipment guidelines set by Tier 1 suppliers.  

However, the system could also be configured with the fuel tank fixture used as the EOAT, 

while the camera and the processing unit are fixed in the machine; essentially reversing the 

components positions. With this approach, the robot can move the fuel tank in front of the 

camera to perform a scan. Once the scan is completed, the fuel tank can then be 

repositioned in front of the processing unit to perform the welding operations. This option 

was not tested or explored but may present a feasible solution for some scenarios. 

 

5.8 System Design Guidelines 

In order for the system to perform and function as specified in the thesis research, the 

following guidelines should be followed. This is particularly critical on the robot 

programming side, as the repeatable image scan start position is very important. Non-

repeatable scan start position will generate incorrect object position relative to robot EOAT 

tool center point.  
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ROBOT 

 6 DoF  

 Minimum repeatability specified ±0.2 mm  

 Create and test program for accurate scan start position by scanning the same 

object over and comparing the positon results as outline in section 5.3 

 Use encoder position values to start the scan as grater (>) or smaller (<) than scan 

start position value defined. Using exact value in the program may not active the 

scan signal every time, as the encoder value jumps through decimal points during 

robot movement. Thus, this value may be missed if specific. 

 Assure that all offset values are applied in correct directions, as camera and 

EOAT may have different user tool coordinates 

CAMERA 

 SICK IVC-3Dxxxxx series 

 Chose the camera by examining the features such as working distance from the 

object 

 Create 3D validation device to assure that camera values measured are within 

limits 

 Assure camera mounting is repeatable in the case of removal.  

 In case of camera removal, system should go through “mastering” sequence as the 

correlation between the camera and the robot may be lost 

 Use torsion cables for Ethernet communication between camera and PLC due to 

robot movement 

PLC 

 Siemens S7 

 Ethernet and Profibus communication 

 Utilize standard function blocks (FB) for programming 

 Use different function blocks for communication, operations, faults, etc. 

 Monitor system to assure that new data is sent by the camera every time 
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 Utilize program to switch coordinate directions (e.g. X and Z) in case of robot 

movement in the wrong direction, as robot and camera may have different user 

tool coordinates 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

 

6.1 Research Contribution 

This research introduced a novel approach and created a model for solving production 

issues created by part variations. This approach outlines a method for utilizing existing 

capital equipment and integrating a 3D vision system. It can be used for most applications 

where the position of components may vary, and the feature can be clearly defined in the 

image scan. This approach introduces the methodology for using a vision system and 

associating it with the robot EOAT to establish a correlation in 3D space. By using the 

proposed approach to account for part variation, the system can be customized for each 

application and tested for different elements. It may also be used to monitor and provide 

information regarding part quality prior to processing, thus making it versatile.  

 

6.2 Significance 

As the presented research focuses on an industrial application, the potential significance 

presented herein includes: 

 Automatic adaptation of robot mounted processing unit for part variations 

 Capability to simplify component fixturing by eliminating the consideration for the 

magnitude and direction of shrink of the plastic fuel tank during manufacturing 

 Ability to provide fuel tank manufacturers with more flexibility in terms of 

hermetically welded component locations (distancing hermetic weld positions from 

the 4-way isostatic element) 
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 Increasing OEE (Overall Equipment Effectiveness) by eliminating downtime, 

increasing output, and eliminating scrap 

 Elimination of equipment setup cost due to process changes  

 Overall production cost reduction 

 Elimination of manufacturing inconsistencies in terms of final product quality 

 Cycle time reduction by creating ideal conditions for fuel tank welding 

 Minimizing equipment setup during installation due to an unstable manufacturing 

process 

 

6.3 System Limitations 

During the system testing and development, different environmental conditions were 

applied. It was concluded that direct sunlight exposure to the component surface creates 

“noise” on the image, making it very difficult to process. An example of the same object 

with and without direct sunlight exposure is shown in Figure 76 and Figure 77 below.  
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Figure 76-Scan Without Direct Sun Light 

Exposure 

 

Figure 77-Scan Affected by Direct Sun 

Light Exposure 

 

Other light colours (flashing and non-flashing) as well as surface paints have also been 

tested on the component surface and did not show to have any impact on the image in terms 

of distortion. A solution to overcome the direct sunlight problem is to create a shadow on 

the object surface. During the research, a cardboard panel was placed on the machine guard 

to create a shadow in the work envelope, which eliminated the problem. 

Another system limitation is the amount of tilt that may be applied to the object.  Excessive 

object angle will shift the hole center, and transform the circular shape of the hole into an 

oval. An object with 6.4 mm thickness (comparable to the fuel tank wall thickness) was 

simulated in CAD at 30° angle tilt in order to illustrate the effect of surface tilt on the fuel 

tank surface. Applying this angle shifted the hole center by 1.6 mm. Increasing the wall 
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thickness will result in greater feature position shift, as the circular feature becomes 

increasingly oval. Figure 78 illustrates this limitation. 

 

Figure 78-Object Tilt Illustrating Hole Offset in 3D CAD 

 

At this point in the system development stage, these two limitations are the only identified 

restrictions on system performance.  The results presented were specific to this thesis 

research on solving part to part variation related to plastic fuel tank welding applications. 

 

6.4 Conclusion 

The design process regarding an adaptable tooling system for part-to-part variation 

processing is presented in this thesis to help engineers develop equipment for solving part 
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variation issues in the production environment. The same procedure may be used for pick 

and place applications. Chapter 1 provided current industrial practice, identifying the 

constrains in the fuel tank manufacturing process, which resulted in the research motivation 

and objective. Chapter 2 presented a literature survey covering academia, patents, state-of-

the-practice, and state-of-the-art. Each section was reviewed to identify missing gaps, 

which resulted in this research. Chapter 3 provided a design process used for the system 

development and the method structure. Chapter 4 presented a case study, utilizing actual 

industrial components and equipment to support and verify the methodology. The results 

and validation of this case study were covered in Chapter 5. Research contributions, 

significance, and limitations are presented in Chapter 6.  

The proposed system design covered in this thesis requires the programming and 

integration of PLC, vision system, and robot to produce a system, which is adaptable to 

part position variation. Combined as one, the structure is classified as a vision guided 

robotic (VGR) system, which can be applied to different manufacturing processes.  

Commonly, manufacturing plants are required to retire existing older robots to make room 

for new VGR systems, as the older equipment does not support software upgrades to make 

them VGR compatible. With the proposed system, manufacturing facilities are presented 

with an option of utilizing existing equipment, i.e., robots, in order to create a VGR system, 

thus eliminating large investments.  

The system was validated and tested at SPM Automation Inc., Windsor, ON, and resulted 

in 3 patent applications: 
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 US 2017/0038756 A1 -METHOD OF SELF-ADJUSTING A MACHINE TO 

COMPENSATE FOR PART-TO-PART VARIATIONS 

 US 2017/0038757 A1 -MACHINE FOR SELF-ADJUSTING ITS OPERATION TO 

COMPENSATE FOR PART-TO-PART VARIATIONS 

 CA 2937951 A1 -MACHINE AND METHOD OF SELF-ADJUSTMENT TO 

COMPENSATE FOR PART-TO-PART VARIATIONS 

 

6.5 Future Work  

The system proposed in this thesis research is a new method of improving production 

output, and as such, it is still being investigated for other limitations. In terms of system 

potential, researching flatness measurement of the fuel tank surface can create an 

opportunity for automatic parameter adjustment by manipulating the matching/heating 

time of the fuel tank surface to further minimize the cycle time. Regarding parameter 

adjustments, i.e., hole size and position, HMI interactive setup screen development should 

be investigated to allow for simple setup adjustments.  
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APPENDIX B: PLC Program for Camera Communication 
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