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ABSTRACT
Today’s automotive manufacturing facilities use different robotic systems with the
specifically designed end of arm tooling (EOAT). Regardless of how accurate these robotic
systems may be, they are programmed to repeat the same task and move to the same
position repeatedly. As convenient as this process may be, it does not allow robots to
automatically readjust to different part variations without the human assistance. This
situation is especially noticeable in the plastics manufacturing industry, e.g., fuel tank

welding.

This thesis describes the systematic design methodology of an adaptable tooling system for
a part to part variations processing aimed at automotive plastic fuel tank manufacturing.
By combining a 3D vision system with a PLC, and a Fanuc R-2000iB/165F 6 axis robot,
the system provides the robot with the ability to automatically readjust the processing unit

to different part variations.

The design approach specifies programming and device correlation by using Siemens S7,
Fanuc TP, and SICK AG software. A case study using a fuel tank sample was developed
to check the system for functionality and performance. Results of the study indicate that

the system is accurate within £0.25 mm, which is well suited for fuel tank manufacturing.

The study signifies a new approach to vision guided robotics (VGR). It utilizes existing

equipment for applications where part variation may be present.

Three patent applications were published during the course of this research. They each

cover plastic fuel tank welding applications.
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CHAPTER 1: INTRODUCTION

1.1 Conventional Plastic Welding

In order to keep manufacturing systems in line with fast-moving pace of OEM demand,
Tier 1 plastic suppliers are faced with a challenging request to keep the production lines at
such pace. Any kind of alteration in the process will create the variation in part geometry,
resulting in a need to readjust the processing units to the part (e.g. blow moulded plastic
fuel tank). Depending on the process, this task may take long periods of time as once the
processing units are adjusted, initially manufactured components are required to go through
quality control prior to the manufacturing line continuing with the production. This
provides motivation for the development of a machine system which should reduce waste,
and increase efficiency and productivity, while preserving high value human involvement
(H. A. EIMaraghy, 2009). Most critical weld are referred to as hermetic welds, which are
commonly found in all components which provide fuel transfer to the inside/outside of the

fuel tank; such as inlet check valve (ICV).

Figure 1-Inlet Check Valve



These welds are created by one of the most popular thermoplastic joining methods called
hot plate welding. This method works by placing two components at the hot plate surface,
whose surface is then heated by conduction to promote component melting. Upon reaching
predetermined amount of melt at the molten surfaces, the heat source (i.e. hot plate) is
removed and the two components are brought together. Two components are then held
together and allowed to solidify producing the weld. A certain amount of weld flash created
by the molten plastic is squeezed out of the joint assuring adequate fusion between the
components (Grewell & Benatar, 2003).

Processing units used for this welding operation are referred to as the Fusion Units.
Controlled by the closed loop control system, these units are equipped with multiple
sensors for position and force monitoring. They consist of different subassemblies such as
Component Gripper which is used to retain the part being welded to the fuel tank, Part Hot
Plate used to melt the component welded to the fuel tank shell, and Tank Hot Plate

assembly used to promote the melt on the fuel tank surface. Figure 2 illustrated this unit.

FUSION
PROCESSING
UNIT T—

Figure 2-Fusion Unit Assembly Illustration (Courtesy SPM Automation (Canada) Inc.)



Fusion Units are normally guided to the fuel tank area by linear slide or robot, from which
point welding process takes place. Tank Hot Plate is brought into contact with the fuel tank,
at which point simultaneously Component Gripper is advanced to the Part Hot Plate,
promoting the part in the Component Gripper to melt. Once both melt pools are created,
Tank Hot Plate is retracted from the fuel tank, Part Gripper is retracted from the Part Hot
Plate, and melted part is brought into the contact with the melted surface on the fuel tank,
followed by solidification process.

The task of processing unit readjustment is typically performed by maintenance technicians
and is usually required every time a different batch of parts is introduced (i.e. WIP, change-
over, rework parts, etc.), part of the process is altered, or even air moisture content is
changed due to the outside temperature. All these factors can result in component or
component feature location to change position and/or shape.

This chapter will discuss robotic and fixed processing units commonly found in plastic fuel

tank manufacturing systems. It will also cover the need for automatic adjustment systems.

1.1.1 Welding Process Steps

It is imperative to understand the plastic welding phases/steps in order to convey the
impotence of this research. Following plastic welding phases are defined by (Grewell &
Benatar, 2003).

Matching: is the initial stage of the plastic welding process which requires increased force
applied by the hot plate (controlled by load cell) in order to conform the fuel tank surface
to the hot plate geometry. This process eliminates normally found surface deformation

(such as flatness) and allows for the weld surface to create a uniform flat surface ready for



the heating stage. Displaced material is incorporated in the flash past the hot plate
perimeter. Time for this stage is determined experimentally usually by trial and error until
the desired result is achieved.

Heating: is the second part of the heating process which starts immediately after the
matching stage without any mechanical movement of the processing unit. The force of the
hot plate during the matching phase is decreased to a minimum (controlled by load cell)
and the surface is allowed to be melted without any material displacement (energy is
transferred through conduction heat transfer). Heating time may be determined
theoretically or experimentally and checked through the microtome process (Wikipedia,
2016a) until heat affected zone of 0.4 mm is achieved.

Change-Over: is the mechanical movement of the parts at the end of the heating phase,
which occurs by moving each part out of the contact with the respective hot plate. In the
fuel tank welding, tank hot plate is removed for the fuel tanks surface, respectively
retracting the component gripper form the part hot plate. This is followed by the position
change of the tank hot plate cylinder and the part gripper cylinder, positioning the part
gripper directly over the melted fuel tank surface and bringing the melted parts together.
Change-Over time should be kept under 5 seconds for high-density polyethylene (HDPE)
welding in order to avoid surface cooling of the melted components.

Fusion: is the last stage of the process. It refers to parts being placed in contact together
under pressure and allowed to cool and solidify, completing the welding process. Joining
pressure is monitored by the load cell in order to assure that the correct amount of melt is
squeezed into the weld flash around the component. Having the pressure set too low during
the fusion stage will not allow for entrapped air to be removed and provide intimate contact
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between the components at the weld interface. Further, having the pressure set too high
will squeeze all the melt out of the joining area, creating an effect called “cold weld” (virgin

un-melted materials are below the melting point and act as a stop) resulting in a weak weld.

Figure 3-Outside and Inside Image of Component Properly Welded to Fuel Tank Body

1.2 Hard Fixed Processing Units
Dedicated production lines are commonly equipped with the fixed processing units
composed of the Fusion Unit attached to the machine frame via adjustment unit. This
allows the Fusion Unit adjustment in 3 major and 3 minor axes to the fuel tank surface,
resulting in tank hot plate being able to conform to the center of the feature and provide
parallel rectification of the hot plate to the hole weld surface. The process begins by the
fuel tank entering the station and clamping in the tank fixture. Once clamped in the tank
fixture, the processing unit is advanced usually by a linear slide, followed by the welding
of the component to the fuel tank surface which seals the hole opening. This conventional

process is often referred to as “blind” welding, meaning that the sensors and load cell on



the processing unit are used to assure that the contact between the processing unit and the
fuel tank is made, without monitoring the accuracy of finding the correct location and
parallelism to the weld surface. Once the operation is completed, the weld seal/quality is
checked in the helium leak station (the process performed later down the line) where the

fuel tank is tested for hermetic seal once all the components have been welded.

FUEL TANK
FIXTURE

ADJUSTMENT
UNIT

FUSION
PROCESSING
UNIT

PNEUMATIC
LINEAR S5LIDE

Figure 4-Fixed Mounted Fusion Unit Position Relative to the Fuel Tank Fixture
(Courtesy SPM Automation (Canada) Inc.)

1.3 Robotic Processing Units
Robotic production lines are normally equipped with the same Fusion Unit as dedicated
equipment. This unit is used as EOAT which is attached to the robot 6" axis. These robotic
configurations are found either as stand-alone cells or as a part of the larger production line
(e.g. index table or linear transfer production line) in the manufacturing settings. In either
case, once the fuel tank is clamped in the tank fixture, the processing unit is advanced to
the feature of interest by the robot, in order to perform the welding operation. Regardless
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of the processing unit being mounted to the robot or the mechanical adjustment unit, the
process is still considered “blind” welding since the sensors and load cell is used to provide

the feedback that the contact is made and the weld is performed.

The advantage of having the processing unit mounted on the robot over the mechanical
adjustment unit, is in the position re-adjustment time. Recording the new robot position is
much faster and easier than mechanically trying to adjust the processing unit to the fuel

tank surface.

FUSION
PROCESSING
UNIT

FUEL TANK % Z 3 _ ROBOT
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Figure 5-Robot Mounted Fusion Unit Position Relative to the Fuel Tank Fixture
(Courtesy SPM Automation (Canada) Inc.)



1.4 Current Industrial Practice
In order to understand why the part variation occurs in the automotive fuel tanks and the
need for this application, research needs to briefly describe the manufacturing process. As
automotive fuel tank with the typical shrink rate of 4% is used in the case study, this section
will discuss the shrink control, direction, and datum points of the fuel tank. Considering
the component length of 1.4 meters as outlined in the example below, length deviation of
5.6 cm in overall length can be expected from the blow moulding process to the final pack-
out stage when the fuel tank should stabilize to room temperature. However, since the
welding process is performed about halfway through the production, shrink rate is still very
active and part variations can be observed (comparing work in progress to already cooled
fuel tanks) during the welding stage. To overcome this issue, manufacturers design and
utilize datum geometry on the fuel tanks commonly referred to as the isostatic (ISO) locator
features. Typically, there are 2 ISO features on the fuel tank; 4-way constraining the part
location in two directions and 2-way constraining the part in one direction. Combined
together, these features control the geometry of the fuel tank during the shrink stage in the
welding process. ISO features are also used as the datum points to measure the compliance

of the final product, i.e., fuel tank, to the vehicle body.
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As illustrated in the figures above, fuel tank fixtures used in the welding process contain
assemblies designed as the reverse side of ISO features, called “ISO Pin” assemblies. These
assemblies are part of a typical tank fixture design in the fuel tank welding industry.
Combining ISO feature on the fuel tank with the ISO pins on the tank fixture provides
consistent fuel tank location in the tank fixture relative to datum locations. However, as the
shrink factor is still active and the fuel tank is still changing in terms of geometry, shrink
magnitude may move through the 2-way ISO towards the 4-way pin in the tank fixture as

shown in the figure below.

(8]

\4-WAY ISO PIN

Figure 9-Fuel Tank fixture Cross Section (Courtesy SPM Automation (Canada) Inc.)

As mentioned earlier regarding the process stability and the fuel tank variation during the
welding process, Figure 10 below illustrates a 2-way ISO pin assembly designed to allow

a variation in position of fuel tank 2-way ISO feature within £10 mm.
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Figure 10-2-Way 1SO Pin Assembly Cross-Section (Courtesy SPM Automation (Canada)
Inc.)

To conclude above-mentioned details, I1SO structures drive the fuel tank manufacturers to
position all hermetic welds in close proximity to 4-way I1SO feature in order to eliminate
feature location variation driven by the shrink. This in return constrains the fuel tank
geometry design and configuration of the fuel tank. Therefore, it is common to find all
hermetic welds in close proximity to the 4-way ISO feature, as locating hermetic seals in
more remote locations from the 4-way feature will result in constant equipment adjustment

and increased scrap rate.

Other factors such as manual handling of hot blow moulded fuel tank by manual de-
flashing operations and transferring the part to the next process contribute to the fuel tank
geometry variation as well; however, this will not be covered in this study as the research

will only concentrate on the non-operator dependent processes.
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1.5 Research Motivation
As some part to part variations are acceptable in the mass-production manufacturing
process, others may not be. Regardless of the use in dedicated or flexible manufacturing
production lines, processing units are designed to come in contact with the fuel tank surface
and weld the component. This position is adjusted by maintenance or setup technicians and
therefore it is always in fixed orientation and position relative to the fuel tank. And while
fuel tank surface might change, the processing unit will always advance towards the same
position in 3D space. Even though force sensing and monitoring is an integral part of the
closed loop controls system which monitors the welding process, the result of the welding
operation is that the components are welded to the fuel tank surface without knowing if the
correct position and/or angle to the weld location are attained. Aside from the component
being welded out of concentricity with the feature (Figure 11), this also may cause damage
to ethylene vinyl alcohol (EVOH) layer (Figure 13), if the hot plate surface on the
processing unit is not parallel with the hole weld surface on the fuel tank. Figure 12 displays

a component welded out of angular adjustment.
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Figure 13-Fuel Tank Blow Moulding Layers

EVOH layer consists of 3% overall fuel tank wall surface and is used as a hydrocarbon
barrier to prevent volatile gasses from escaping through the fuel tank wall (SIMONA,
2010). Though it is located closer to the inside wall of the tank surface, EVOH layer
damage may become undetected during the manufacturing process if an angular mismatch

between the hot plate and the tank surface becomes evident as shown in Figure 12.
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Figure 14-CAD Representation of Misaligned Melt Phase

Figure 14 illustrates the incorrect welding position of the component shown in Figure 12.

1.6 Objective and Problem Statement
The objective of this master thesis is the design and introduction of a new method for
adaptable tooling system which would automatically adapt to part variations, especially
noticeable in large automotive plastic fuel tanks.
By doing so, the research will be able to create a methodology for establishing a
relationship between the system components, as well as their function. Currently published
literature is unfortunately limited in terms of systematic design approach regarding robotic

guidance systems, due to the proprietary nature of these systems.
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By finding the correlation between the image captured by the 3D vision system and the 6
DoF robot in 3D space, the system would be able to reposition the EOAT to the feature of
interest in the image every time the position change would occur.

The equipment selected for this work is SICK AG IVC 3D vision system, Siemens PLC,
and Fanuc R2000-iB/165F robot equipped with an end of arm tool for plastic welding.
The significance of this design is aimed to improve OEE (Overall Equipment
Effectiveness), eliminate scrap rate, simplify equipment/machine design, minimize
maintenance personnel, and decrease the cost of manufacturing by eliminating
inconsistencies.

The intent of this work is to allow for other manufacturing applications where the part to
part variation is present, to implement the presented design where part variation or

component positioning may have an impact on the production quality.

1.7 Thesis Outline
Chapter 2 will conduct a literature survey on academia, patents, state-of-practice, and state-
of-the-art, as this research is directed more towards the industrial applications. Chapter 3
will review the systematic design approach in terms of methodology and IDEFO modeling.
Chapter 4 will present a case study example which will define design details with examples.
In Chapter 5 the research will demonstrate the results and the validation of the system,
which will be followed by system benchmarking. Chapter 6 will encompass discussions,

conclusion and future work on the system.
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CHAPTER 2: LITERATURE REVIEW
2.1 Overview

The study of vision-guided robotic systems using different tools has been a topic of interest
in both manufacturing industry and academia. As such, this chapter will encompass
different sections relating the research to academia, patents, state-of-the-practice, and state-
of-the-art.

The first part of the chapter will encompass the review of academic work, followed by the
review of the existing industrial patents. The third part will cover the discussion on state-
of-the-practice technique, followed by the discussion related to the state-of-the-art in the
industry. Many journals and patents have been researched, however only the ones most

related to this research have been cited and covered in this thesis.

2.2 Academia
This section will discuss research covered by academia related to vision-guided robotic

systems.

(Suligoj, Sekoranja, Svaco, & Jerbi¢, 2014) proposed object tracking with 2 robots and
stereo vision cameras. The problem was addressed by using 3 points on the part pallets
used to track the object with the vision system. The system was constructed by two cameras
mounted on the first robot, while the second robot carried the markers. Camera robot would
monitor the position of the marker robot and advise it on its position relative to the object
by calculating the position between the robot’s tool center point (TCP) relative to the part

being processed. Communication protocol was established by using C++ programming and
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transmission control protocol/internet protocol (TCP/IP). This system shows a level of
complexity as well as constraints. In order to make the system functional, markers
described in the research must be present in order for the second robot to track the object
and coordinate the position to the robot performing the operations. Without the markers,
the system would not be able to perform, making it prone to failures. Authors presented a
viable solution for robot guidance; however, the integration of the two robots in sync makes

the system very expensive and intricate due to the synchronizing process.

(Bellandi, Docchio, & Sansoni, 2013) proposed using one robot and two cameras (one in
2D and second in 3D) in order to reposition robot to the object more accurately and faster.
The camera is presented as a “stand-alone” device in the 2D, and combined with a laser
slit projector in the 3D system operating in triangulation mode, it creates a system used for
object location and fitting. Research describes the arrangement composed of both cameras
fastened to the robot end of arm tool (EOAT). This concept arrangement describes a system
where the 2D geometric template matches and classifies the 3D object in order to get a
more robust and faster processing solution by eliminating the cloud segmentation and
object classification. By excluding the point cloud, 3D data is used for calculating location
as well as the object orientation in order for the robot EOAT to be properly oriented to the
object/feature of interest. This system shows enough accuracy for pick and place
applications, however it is constrained to objects with simplified shapes such as cylinders
and flat surfaces (planes) and would have limitations in recognizing and analyzing objects
which contain 3D surfaces (object height changing in Z direction) where multiple features

would need to be identified and located.
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(Martinez, Boca, Zhang, Chen, & Nidamarthi, 2015) research comprised of one robot
equipped with the stereo camera for random industrial bin picking applications. The study
describes the methodology on coordinate system synchronization between the two devices,
meaning that any scanned object would have its position directly related to the robot. Each
object is analyzed for access to picking position prior to robot advancement. Due to EOAT
size, the system was required to use 2 tool center points (TCP), and develop a procedure
for robot extraction path once the objects were grasped in order to avoid a collision.
Research demonstrates teaching methodology for using two different tool center points
(one for each part gripper on EOAT) and calibrating them together, along with other
methods such as robot extraction. System indicated some limitations regarding the part
orientation which was impacted by larger EOAT, as well as longer cycle time produced by

the algorithm used for object location and positioning.

Another bin picking application was presented by (Oh, Lee, & Lee, 2012). This research
describes the design of the system on the similar platform for pick and place application as
(Martinez et al., 2015). Published paper defines the application where one robot and two
cameras are used to locate the object. By using a larger field of view and geometric pattern
matching method with the respect to the 2D image, this concept allowed for a more robust
system which would be capable of locating components that would previously generate
faults. Designed for industrial applications, the system incorporated collision avoidance by
using the object orientation with respect to the bin orientation, increasing the system
reliability. The system did show certain sensitivity to outside elements (i.e. lighting) which
limited the system in high accuracy applications. After presenting the system at Korea

Robot World in 2010 as well as 2011, the system showed great success and public interest.
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(Semim, Jr, Silva, Silva, & Tormena, 2012) developed another concept on using the vision
system for positioning the robot EOAT to the engine head which may vary in position and
orientation. Computed vision system program was created by using Pearson Correlation
(Yen & Johnston, 2005) to determine the object position and orientation. The correlation
of the image and the robot EOAT was created by corresponding holes on the engine head
to the tool center point on the EOAT. Change in engine head position (displacement
position) was then transferred to the robot TCP position which would then be adjusted with

the same displacement values.

Charge-coupled device (CCD) camera integrated with 5 degrees of freedom (5 DoF) robot
was explored by (Xie & Hammerle, 2008). Research selected somewhat limited 5 axis
robot, equipped with the CCD camera on the end effector. To achieve the accuracy of the
vision system, new image processing technique was developed by using a pinhole camera.
Object recognition was performed by using 2D and 3D cameras; by taking images from
different angles in order to achieve accurate object angle position. This at the same time
eliminated the possibility of generating an inaccurate image and adjusting the EOAT
incorrectly if clustered objects are present in the work envelope. In addition to this, the
procedure used color instead of grayscale images, improving object tracking and
registration. It is imperative to acknowledge that the experiment utilized kinematics in
order to eliminate the vibrations created during the robot joint angles during the object

scan, which resulted in improved scan path speed and more accurate image recording.
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2.2.1 Academic Literature Review

Current academic publications relevant to this research were reviewed in the previous
section. The approach used by the academia illustrates different methods of adjusting the
robot end effector to part variations or differently positioned objects. The experiments
performed include a well-defined systematic approach to providing object recognition and
orientation in 3D space by using different robot arrangements in conjunction with single
or dual cameras. By using existing or developing a custom cloud platform for object pattern

matching the studies were tested for material handling (i.e. pick and place) applications.

Academic research identifies a level of complexity inadequate for manufacturing settings,
as certain industrial components (such as PLC) are not utilized, and proposed custom

programming software is often not recognized and/or approved by the industry.

Experiments displayed do not directly satisfy part processing applications (e.g. welding,
screwing, trimming, etc.) by using a single robot in conjunction with a single 3D vision
system and the PLC. However, methodologies displayed provide a good starting point that

can be used to develop a new approach for developing such system.
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2.3 Patents

(Richard, 2008) wrote an article on robotic guidance where he mentioned that marriage of
vision and robotics is changing the robotics nature, by going from pre-programmed
directions to the robots which are starting to “find their way” in a manufacturing
environment. This can commonly be observed at the robot conferences and/or shows,
which is usually followed by the industrial pretense. And even though most of the
manufacturers and/or integrators are very secretive regarding the methodology on the

robotic guidance, some patents may uncover details on the advances.

Patent assigned to ABB Robotics Inc.(Thorne, 1997), explains the robotic control system
for repositioning the EOAT to the new position with the assistance of video display
showing the coordinate points of the EOAT. Work points recovered from the robot

controller are displayed on the video screen for easier operator control and programming.
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This allows the technician to select and designate the work points which are to be
manipulated in terms of position and/or location. Once the points are saved, the program
is then recorded to the robot controller. The patent demonstrates easier manual
manipulation of the robot adjustment with the help of the 3D screen, however, it still
requires human assistance each time robot manipulation is required.

Another ABB Robotics Inc. assigned patent (Abare et al., 2003), describes the robotic
pallet welder machine used for manufacturing plastic fuel tank and adapting to different
part variations. This configuration describes the linear transfer machine with multiple
processing stations (i.e. boring and welding). Patent defines the system which includes 3D
vision camera located on the overhead support above the fuel tank. The vision system scans
the area of interest on the fuel tank during each cycle, once the palletized fuel tank enters
the station. Once the scan is completed, the location and the planarity data are
communicated to the robot processing the part. The patent further goes on describing the
robot and machine arrangement, as well as a brief description of the sequence of operations.
However, the patent does not describe the algorithm, communication protocol or any other
detailed description regarding the robotic adaptability to part variations. In addition to this,
this machine setup with the overhead 3D vision camera (assuming the 3D vision system is
mounted on the servo linear slide), creates the constrain for the vision system scan path, as
the feature of interest on the fuel tank may not be positioned directly under the camera.
This would require various overhead support designs for different products, constraining
the production line to the product on which the overhead support is designed to, and

limiting the flexibility of the robotic production cell.
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(Oxenfarth, 2007) describes a 3D vision system for position and angle readjustment of the
processing unit in fuel tank applications. The patent designates two different robot
arrangements. The first arrangement describes the relationship between the two robots, one
of which carries 3D scanner while the second robot carries the EOAT for plastic fuel tank
welding. Once the first robot would scan the area of interest, the position would be
translated to the second robot with EOAT, which would adapt to the new position. This
shows some similarity in the arrangement with (Abare et al., 2003), with the exception that
the camera is mounted to the robot instead of the overhead frame structure. (Oxenfarth,
2007) presented the second arrangement with the 3D vision camera being mounted to the
EOAT on one robot, eliminating the second robot altogether. This physical component
arrangement appears to have certain similarities to this thesis research as well as patent
applications (Novakovic & Holtkamp, 2017a), (Novakovic & Holtkamp, 2017b), and
(Novakovic & Holtkamp, 2017c). Aside from the robot arrangement, this patent does not
provide any description of the algorithm, device correlation, or communication protocol
description.

(Weber, Lane, & Novakovic, 2012a) and (Weber, Lane, & Novakovic, 2012b) is another
patent for fuel tank finishing/welding applications. The patent describes the tooling
arrangement and operation of scanning the outside surface of the fuel tank and triangulating
the position to the robot, for positioning/welding components inside the workpiece interior
(i.e. fuel tank) and the method of using the same. The patent describes 3D scanning of the
object exterior surface and triangulating the feature position back to the robot in order to
reposition the components holder to the inside of the work piece for welding. Once the
scan is performed, the robot EOAT enters the fuel tank through the sender unit (i.e. fuel
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pump) access opening and positions the component into alignment with the inside contact
surface under the region of interest. Published material provides the information that the
3D vision camera, robot controller, and the PLC devices are used. However, the patent
publication does not go into detail describing the systematic approach, algorithm,

component correlation, or method on device communication/protocol.

2.3.1 Patents Literature Review

Patents review section seems to follow a very similar pattern in terms of patent information
availability. The majority of the systems are used for part processing without providing
enough manifestations on the systematic approach or details to understand the system
structure and methodology (Risch, 2015). This is mostly as these systems are considered
trade secrets (Canadian Intellectual Property Office, 2015) and manufacturers are wary of
releasing any information as patents do not always provide full protection. This in return
makes these systems difficult to understand or to be built by the person skilled in the art.
Although reviewed patents do not satisfy this research criterion in regards to the design
detail, the objectives specified can be used for selecting an appropriate approach for the

systematic detail design.
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2.4 Industrial State of the Practice
Since the introduction of vision guided robotics (VGR), the initial systems were introduced
with 2D vision cameras. This arrangement allows for X, Y, R or X, Y, Z robotic adaptation
depending on the camera used (Fanuc Robotics America, 2012). The introduction of 2D
vision-guided robotic systems allowed for significant scrap reduction in material handling
operations depending on the application. And even though 3D vision guided robotics have
been introduced to the industry, many applications still remain utilized by 2D systems,
forcing manufacturers to keep advancement on these systems. Applications using
randomly placed objects on the same plane where the object tilt is not present are an ideal
application for these systems (Anandan, 2014). These systems are fully pre-programmed
with the set of tools utilized for the application (e.g. parameters, conditions, etc.). The user
interface allows for easy setup and the PC-based programming tools provide a platform for
easy integration (ABB, 2013). However, once the object tilt angles do become present, 3D

vision guidance is required.
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2.5 Industrial State of the Art
Part variety and product demand change drive the need for flexible manufacturing systems.
Constant tooling change-over and the introduction of new production components requires
perpetual tooling/machine adjustment until the production is stable. In order to solve this
issue, many equipment manufacturers turn to readily available industrial solutions. Robotic
manufacturers such as Fanuc and ABB were some of the first in the industry to introduce

vision-guided robotic systems.

Fanuc iRVision consists of several platforms (Fanuc Robotics America, 2016):

e 2D Vision Guidance allows the robot to accurately position the EOAT to the part
location in X, Y and R (rotation) position.

e 3DL Sensor provides the robot with the ability to position the EOAT in X,Y,Z
location as well as the angle and rotation (W,P,R).

e Visual Line Tracking system is based on the 2D vision camera platform. The
system provides the ability to the robot to pick and place the components to/from a
moving conveyor by monitoring the encoder sensor which provides the conveyor
speed and the position of the object on it.

e Vision Guided Depalletizing is another form of a system built on the 2D platform.
In addition to X,Y,R direction corrections and calculations, the system will also

calculate the Z height and reposition the tool center point accordingly.

Unlike Fanuc, ABB uses third part vision systems in order to provide their robots with the
vision guidance (COGNEX, 2017). Companies like Cognex and Braintech provide this

ability by integrating their products into the robot controllers (RobotWorx, 2016) for
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different uses; such as bin picking and processing applications. This approach provides

ABB with similar capabilities as Fanuc (ABB, 2008).

2D Vision Guidance allowing robot to accurately position the EOAT to the part

location in X, Y and R (rotation) position.

e Single camera information in 4 degrees of freedom (X,Y,Z,R)

e Single camera 3D technology for full 6 degrees of freedom adjustment
X,Y,ZW,P,R)

e Surround 3D imaging combining information from multiple cameras viewing parts

from different angles

2.6  Summary
Literature review presented in this chapter summarizes academic, patents, state-of-the-
practice and state-of-the-art solutions regarding vision-guided robotic applications for the
part to part variation handling. As creative and efficient academic solutions may be, they
do not present a feasible solution to the industrial requirements, mostly due to the level of
complexity and lack of industrial devices use. Patents, on the other hand, do not disclose
enough information on the system design or detail to understand the structure or the
function. State-of-the-practice and state-of-the-art provide already well-developed
solutions but do not disclose any information in regards to system design. Rather, they
provide an out-of-the-box solution for the integrators. Therefore, the research and results

presented in the following chapters address this lack of information and knowledge.
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CHAPTER 3: DESIGN OF AN ADAPTABLE TOOLING
SYSTEM FOR PART TO PART VARIATION PROCESSING
3.1 Systematic Design Process

The primary objective of this research thesis is to design a system that would automatically
adapt to part variations commonly found in the plastic manufacturing industry. Planning a
system design where different components are assembled in order to provide this objective
brings uncertainties which need to be addressed prior to components integration. In order
to achieve this design, extensively used IDEFO as well as systematic design approach by
(Pahl, Beitz, Feldhusen, & Grote, 2007) was chosen in order to select, configure, and
integrate components into the system, by observing and eliminating the constrains each

component might carry.
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Figure 15-Systematic Design Methodology
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3.1.1 Task Clarification

The fundamental problem in many blow moulded components processing is the part
variation. This variation leads to major automotive recalls which more often than not,
create large volumes of fuel tanks which needed replacing in the past (Grande, 2011),
(ARFC, 2002) and are still occurring (Mazda, 2016b), (Honda, 2016), (Mazda, 2016a).
Part to part variations typically found within mass produced plastics parts requires periodic
machine adjustment by maintenance technicians. This in return generates production
downtime, extra production cost, increases scrap rate and lowers overall equipment

effectiveness (OEE).

In order to eliminate this issue, adaptable tooling system is required so the feature on the
fuel tank and component being welded can be matched correctly. Readily available
industrial components such as robots, PLCs, cameras, etc., will only be used for the system

design.

Process cycle time should be lower than compared to current production as the ideal
condition would always be achieved, and the need for the matching time to conform the

fuel tank surface to the hot plate is decreased.

The system should allow for easy integration into existing robotic production without
major equipment changes. The addition of the system components (i.e. camera) to the
current production system should be performed with ease, assuming that the current

production already utilizes industrial robots and PLC.
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Once integrated, the robot should automatically adjust the EOAT to the new position on
the fuel tank where the feature of interest is deviated. Thus, resulting in adaptability to part

variations.

3.1.2 Conceptual Design

In order for the system to reposition the processing unit to the new feature location, it is
essential that the system is capable of adjusting in X, Y, Z, W, P, R directions. Thus, 6
degrees of freedom (6 DoF) robot will be used in order to provide the flexibility in position
adjustment and orientation. In addition to the robot, other components listed below will

need to be used in order to administer the position change.

e 3D vision system will be used for topology generation.
e PLC will be used to provide communication between the network devices and to
perform process making decisions.

e Processing unit will be used as robot EOAT for fuel tank welding.

Robot required for the application should have the ability to adjust in 6 degrees of freedom;
therefore, an articulated 6 DoF robot is required. For this application, an existing Fanuc
R2000-iB/165F robot will be utilized. Since Fanuc robots are most commonly found in the
worldwide manufacturing settings (Christensen, 2016), Fanuc TP robot programming

language is well developed for most operations regarding the robot movement and position.

Having the camera mounted as part of the EOAT, two user tools will be assigned to the

robot; one for the camera and second for the processing unit. With this approach, the robot
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can provide direction and velocity, producing an accurate and repeatable camera scan start
location, which will be used for analyzing the object topology. This procedure is achieved
by moving the robot over top of the object and scanning the surface on the initial component.
Once this is performed, the camera will record the feature position (i.e. hole) in terms of X,
Y, Z, W, P, R location, while simultaneously robot user tool position is recorded to the same
physical feature of interest (i.e. fuel tank hole) location. This procedure creates a correlation
between the feature of interest on the camera image and the robot EOAT position register
(PR). This position will be assigned as the “master” point from which all subsequent feature
locations will be measured. Once position difference on the next component scan is
calculated by the camera, the variation in position will be sent to the PLC where it will be
checked and then transferred to the robot. The robot will initially move EOAT to the
“master” position, and then perform the difference in location regarding X, Y, Z, followed
by W, P, R directions. Once process (i.e. welding) is completed, the subsequent component

can be processed.

ROBOT TCP POINTS FEATURE CENTER

Figure 16-Tool Center Point (TCP) Synchronization
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3D vision system will utilize manufacturer’s software and tools in order to find features in

3D space (SICK, 2013). Once feature location and position in 3D space is recorded, it is
referenced to the image upper left-hand corner (origin point). It is essential to mention that
this image corner is located on the image start scan line. Thus, moving the scan start
location without repositioning the object will change the feature location on the image.

Therefore, it is critical to assure that the image scan location is repeatable and accurate.
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Figure 17-3D CAD and 3D Scanned Image

Once the first image (“master”) is scanned, the position of the feature will be marked as
[0,0,0,0,0,0] (meaning that the “position offsets” are not present), from which all other

position will be measured. Once calculated, all changes in position will be sent to the PLC.

Siemens Step 7 PLC system will utilize a Ladder logic programming, typically found in the

manufacturing plants throughout North America (Smith, 2003). This type of programming

consists of a similar structure found in the relay logic for electrical wiring control circuits.
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Part of a PLC referred to as Function Block Diagrams (FBD) will be utilized for describing

the function between the input and output variables.

Network: 7 Invokes T SEND function ...

5 established to transmit the data to the partner as a continues

if
streams of by

Note: Modify DATA and LEN parameter to your individual sending range!
# - NNEC
I
#C1. ¥ SE
CONNECTED 4T SEND
EN B ENO
ENC #C1.SEND
#Cl. #cl.
SEND REQ REQ DONE |- SEND_DONE
PR #iC1.SEN
fiC1.ID ID U
#cl.
1 LEN BUSY |- SEND_BUSY
-SENI
AT RE(
#Cl. #cl.
SEND_DATA - DATA ERROR |- SEND_ERROR
¥C1.SEN
TATI
#C1.

SEND_
STATUS STATUS

Figure 18-PLC Program Example

However, due to PLC inability to send or receive decimal values to and from other network

devices, position locations will be required to be converted into integers prior to any

communication.

EOAT will utilize a standard processing unit (i.e. Fusion Unit). Unit consist of the following

assemblies:

e Tank Hot Plate: used for fuel tank melting
e Part Hot Plate: used for melting the component being attached to the fuel tank

e Holding Fixture: used for holding the component being attached to the fuel tank
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Figure 19-Fusion Unit Design (Courtesy SPM Automation (Canada) Inc.)

Robot TCP is recorded at the extension of “Component Gripper” cylinder 20 mm prior to

the end of cylinder stroke (380 mm from the position shown in Figure 19).

The conceptual sequence of operations is outlined in Figure 20 below.

1-Place "master" component

2-Scan and record "master' position
3-Place subsequent component

4-Scan and calculate position difference
5-Calculate offsets

6-Robot repositioning to new location

Figure 20-System Concept © 2017 IEEE
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The scope of each component is outlined in Figure 21 below.

CAMERA PLC ROBOT
-TRIGONOMETRY -CAMERA COMMUNICATION -P1L.C COMMUNICATION
-FEATURE FINDING -ROBOT COMMUNICATION -CAMERA TRIGGER
-ALGORITHM -SYSTEM CONTROL & CHECK | |-COORDINATE SYSTENM SYNC
-BYTE PACKAGING -SYSTEM MONITORING -POSITION READJUSTMENT
-PLC COMMUNICATION

N NI

Design of an Adaptable Tooling System for Part to Part Variation Processing

Figure 21-Component Scope © 2017 IEEE

Estimated cost of $40,000 is used as a benchmark, considering the cost of the 3D vision
system purchase ($15,000) along with the cost of programming and integration to the

existing robotic cell.

In addition to the cost of the system integration, tolerance needs to be considered. At this
point in the conceptual design stage, repeatability of the robot needs to be added to the
accuracy of the vision system. Fanuc Robotics specifies positional repeatability of +0.2
mm (Fanuc Robotics America, 2009). However, repeatability of £0.1 mm is possible by
using special software upgrade. SICK AG does not provide the tolerance specifications in
regards to the camera but rather uses an approach of applying various filter tools to enhance
the image and decrease the tolerance. By analyzing the components in order to determine
the possible system tolerance, pixel sizes in terms of 0.25 mm x 0.25 mm have been

identified in the 3D vision. Suggesting worst case scenario where the centroid of the object
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may be positioned close to the corner between 4 pixels, and the system automatically

applying it to one of the four quadrants, the following figure illustrates this accuracy.

THEORETICAL
OBJECT CETROID
POSITION

0.25

Figure 22-Worst Case Object Positioning by SICK AG Vision System

Considering robot repeatability of 0.2 mm, an assumption can be made that the next scan
start position may vary by this tolerance, thus causing the scanned object in the image to
look as it has moved. Figure 22 illustrates a theoretical object centroid position in proximity
of 4 quadrants, which would automatically fall within the one it is located in. However,
due to robot repeatability, this centroid position may move to a different quadrant, thus
generating the camera repeatability of +0.175 mm. In order to calculate the system
tolerance, both components (i.e. camera and robot) need to be added together. By doing so,
theoretical system repeatability of £0.375 mm is provided. Using this initial theoretical
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tolerance for adjusting the EOAT to the fuel tank, and fuel tank feature which can vary
+25.0 mm, this tolerance of £0.375 mm provides satisfactory tolerance limit in order to
pursue the research. More details on robot accuracy and repeatability are covered in section

5.1.

PLC tolerance is not included in this calculation as this device transfers the same values
from the vision system to the robot; therefore, it is assumed that no error is created during

this information transfer.

The conceptual design stage is concluded with the use of 6 DoF robot, 3D vision system,
PLC, the processing unit, and creating the correlation between these devices. Combining
the components together will provide the system structure. This arrangement will provide
flexibility for position adjustment, allow for information exchange, and the ability to

process the parts in a production environment.

3.1.3 Embodiment Design
Embodiment design phase represents a working structure of the project, which will develop

the construction structure of each component and their purpose.

3.1.3.1 Camera Embodiment Design
Having the camera as part of the EOAT, accurate robot speed is calculated by using

predetermined image length and the image profile size by using the equations below:
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Robot Speed (1)

No.of Objects Scanned /sec = m

Profile Rate (2)
No.of Objects Scanned /sec

No.of Profiles to Capture an Object =

Image Length (3)

Profile Dist =
rofile Distance No.of Profiles to Capture an Object

Signal to activate the camera scan is sent through the End Effector (EE) connector on
robot’s axis#2 once the position is reached. During this motion, camera velocity is attained,
as constant scan speed is required to provide an accurate image. Activating the camera scan
during acceleration or deceleration of the robot will create “stretched” or “compressed”

image, providing incorrect feature position values during the calculations.

LASER
LINE

. ,,"/ ‘ (-~
: e
CAMERA
POSITION

Figure 23-3D Vision Image Scan (Adopted from SICK, 2013)
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Figure 24-3D Vision Scan Generation (Adopted from SICK, 2013)

During the image scan, PLC byte is sent to the camera. This byte identifies the program
step to be executed. Depending on the program structure, a byte may identify the program
step or action. As the topology is generated, programming tools are used to identify the
area of the image to be analyzed.

By using SICK IVVC-3D software, an array of the tools is presented for object evaluation

as shown in Figure 25.

File Edit Debug Options Emulator Help
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Figure 25-1VC Studio Tools

Region of Interest (ROI) Tool: Used to identify the area in the image for analyzing.
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Blob Finder Tool: Used for feature analyzing once the feature is identified by the Region

of Interest (ROI) step. This step also provides the X, Y centroid location as well as the
feature size. It can also be used to provides the limit values used to set the restrictions in

part variation size (i.e. hole diameter).

Fit Surface Tool: Used to define a plane which can be used for attaining the Z location of

the feature as well as minor plane angles.

At this point, the system is able to determine X,Y,Z points and minor angles of the feature.

Once computed, the values can be converted to integers and sent to the PLC.

3.1.3.2 PLC Embodiment Design

In addition to the position integer values, different information is also transferred to the
PLC in order to assure that the scan data is correct. Values defining new image scan, fault
code, program step, offset limits, etc. are presented and then analyzed by the PLC. If the
values received are within specified limits set in the program, the data is then transmitted

to the robot and the process is allowed to continue.

3.1.3.3 Robot Embodiment Design
Once the image is recorded, the topology is analyzed by the camera and the feature
coordinates are sent to the PLC. During the new position calculation by the camera, robot

initially moves to the “master” position (recorded by position register), from where the new
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offset position will be determined by the information sent by the PLC. This information is
stored in the robot registers and calculated based on the information received by group
input/outputs. Initially received and stored as integers, the information is converted into

decimal values prior to adjusting to the new position.

Robot Group Inputs (GI) are organized as per below:

Gl[n]=Integer for X before decimal place 4)

Gl[n+1]=Integer for X after decimal place (5)

Robot Registers are normally used to store numbers which can be used for arithmetic
operations, cycle counts, track part counts, etc. (Fanuc Robotics America, 2003). Thus,
these registers will be used to store the values from the PLC, once converted into decimal

values per guideline below.

R[n] (X linear offset value) (6)

R[n+1] (Y linear offset value) (7)

Methodology and the equations of converting GI [n] and GI [n+1] as X position decimal

offset value from integer is presented below:
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Extracting integers into a value before decimal place:

R[n]=GI[n]-128 ©)

Extracting integers into value after decimal place:

R[X:SCRATCH PAD]=GI[n+1]-128 9)

R[X:SCRATCH PAD]=R[X:SCRATCH PAD]/100 (10)

Adding value before and after decimal together:

R[n]=R[n] + R[X:SCRATCH PAD] (11)

Once the information is extracted, the values are stored in the robot registers.

Position registers (PR) are used to store the positional information (X,Y,Z,W,P,R
configuration). Fanuc robotics provide up to 200 position registers in the controller (Fanuc
Robotics America, 2003), which are identified by the numbers. Therefore, “master”
position PR[X] is used by the case study as the position correlated to the feature center at
the master location from which all other offsets will take place. Two more position registers
are used for major and minor axis offsets. New position register for all major axis offsets

is assigned to PR[X+1], while minor axis offsets are provided by PR[X+2].
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Initially, all offsets will need to take place in the world followed by the angular
adjustments:

PR[X+1, 1]=PR[X,1] + R[n] (12)
PR[X+1, 2]=PR[X,2] + R[n+1] (13)
PR[X+1, 3]=PR[X,3] + R[n+2] (14)
PR[X+1,4]=PR[X,4] (15)
PR[X+1,5]=PR[X,5] (16)
PR[X+1,6]=PR[X,6] (17)

This is followed by the angular adjustment:

PR[X+2,4:SCAN TOOL ANG]=R[x+3] (18)
PR[X+2,5:SCAN TOOL ANG]=R[n+4] (19)
PR[X+2,6:SCAN TOOL ANG]=R[n+5] (20)

In this stage of the systematic design, the design of each component is created in
accordance with technical principles. By completing the embodiment design stage, a

definitive layout is created.
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3.1.4 Detailed Design

In the previous Design Embodiment phase, following is presented:

e Camera programming and object correlation to robot in 3D space
e PLC communication, byte information, and information transfer between devices

¢ Robot programming, position offsets, and correlation to the image

At the end of each scan cycle, the feature location along with measured and offset values
is displayed on the HMI screen for reference as shown in Figure 27. By using the
“Communication” (C) values displayed on the HMI, robot offsets can be checked by
matching the same values on the group input (GI) side of the robot controller. Same values

can also be used for monitoring part to part variation during the manufacturing process.

Position Change
Due to Part Variation Y+n2
Represented by
"Communication" (C) Values

Figure 26-Robot Position Change
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Figure 27-HMI Position Adjustment Display

Representation of “C”, “R”, and “M” values in Figure 27:

e C - Communication offsets values robot needs to offset from the “master” position
e R - Reference values representing the “master” position (robot PR[X]) from where

every subsequent feature position is measured

e M - Measured values representing the feature location in the image

It is important to mention that during the machine design singularity occurrence can be
avoided by utilizing Fanuc Roboguide software (Schollenberger, 2015), or by using 3D
CAD model and assuring that no two robot joints would line up making them redundant.
Any potential singularity occurrence can be avoided by manipulating robot position
relative to the object being processed. Figure 28 shows the reachable robot workspace

(Spong & Vidyasagar, 2008) relative to the fuel tank, and the real-estate available for robot

repositioning in a case of singularity.
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I FOR ROBOT
REPOSITIONING

AREA OF
INTEREST

Figure 28-Robot Position Relative to Fuel ~ Figure 29-Fuel Tank Feature Scan Area
Tank (Courtesy SPM Automation (Canada)  (Courtesy SPM Automation (Canada)
Inc.) Inc.)

Within this work space, fuel tank fixture design is required to allow for scan path clearance

of the feature as shown in Figure 29.

Singularity for this research was checked by utilizing 3D CAD model provided by SPM
Automation Inc. Designing all components for the research in 3D CAD prior to any
manufacturing and/or testing, the position of robot joints in 3D CAD did not show any
possibility for singularity occurrence. The same method was used to check for robot reach

and joint limits.

Another constrain on the 3D vision system is direct sunlight on the object being processed.

This represents a common problem with machine vision, as it affects the image geometry

46



by creating noise on the image (Microscan, 2013). System Limitations section provides

more insight on this problem as well as the resolution.

Completing the final stage of the systematic design, the design of each component is
finalized and potential complications are addressed. The system is provided with enough

information to lead to production build and programming.

3.2 IDEFO Design Process
IDEFO is a structured modeling method used to develop a functional or activity model of
an enterprise by describing what is done without regards to the sequence (W. EIMaraghy,
2015). It is used to graphically display any operation through building blocks as shown in
Figure 30. The process starts with scope definition by identifying the main function of the

model. Once the main function is determined, lower levels diagrams can be generated.

Control

input —Jpp-|  FUNCtion Name ———pp» Output

Eunction
Number

Mechanism

Figure 30-IDEFO Representation (Source: Wikipedia, Image by Defense Acquisition
University)
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Diagram order for this experiment is defined as following:

A_0- Design of an Adaptable Tooling System for Part to Part Variation

Processing (Figure 31)

AO0-Decoupled Node of the Design of an Adaptable Tooling System for Part to Part

Variation Processing (Figure 32)

Al-Task Clarification Phase (Figure 33)
A2-Conceptual Design Phase (Figure 34)
A3-Embodiment Design Phase (Figure 35)
A4-Detailed Design Phase (Figure 36)

Calculations
Singularity
Direct Sun Light

System Cost
Cycle Time
Device Communication

Part Variation Design of anAd-aptable
Tooling System for
Part to Part Variation
Processing

Hot Plate Welding

Hermetic Weld

AD

Production Cost Reduction

New Adaptable Tooling Design

Scrap Rate Reduction

6 Dol Robot
PLC
3D Vision System
Programming Algorithm

Robot Workspace & Reach

Node: A 0 | Title: Desing of an Adaptable Tooling System for Part to Part Variation Processing

Figure 31-Main Function Block
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Figure 33-Node Al (Task Clarification Phase)
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Figure 34-Node A2 (Conceptual Design Phase)
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Figure 35-Node A3 (Embodiment Design Phase)
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Figure 36-Node A4 (Detailed Design Phase)
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CHAPTER 4: IMPLEMENTATION CASE STUDY
4.1 Test Equipment

The primary goal of this research thesis is to accurately design and build the system capable
of adapting to different part variants. In order to provide insight on the system design and
build, this section will provide the information on equipment access, and explain the case
study execution.

Access to equipment is provided by SPM Automation (Canada) Inc., located in Windsor,
ON. SPM Automation is a Tier 1 equipment supplier specializing in industrial automation
and plastic welding applications. Full access to the prototype equipment which includes
PLC, HMI, Fanuc industrial robot, vision system, processing units, etc. was at the disposal

for design, development, and testing for this thesis research.

The basic equipment specifications are listed in the tables below.
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Table 3-Robot Specifications

Manufacturer Fanuc Robotics
Inc.

Robot Type R2000-iB 165F

Controller R-301A

Year September 2009

Robot ID F-87882

Table 4-PLC Specifications

Manufacturer

Siemens

PLC Type

S7-300

Figure 37-Test Robot-Fanuc R2000 iB 165F

Figure 38-Test PLC-Siemens S7
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Table 5-3D Vision System
Specifications

Manufacturer SICK AG

Type IVC-3D51111

Table 6-HMI Specifications

Manufacturer Siemens

Type IPC577C

Figure 40-Test HMI-Siemens

4.2 Test Environment
SPM Automation Inc. provided an ideal manufacturing setting for the test, by using real
manufacturing equipment as well as the surrounding, where different lighting conditions
equivalent to those in the production plants are provided. Figure 41 shows the prototype

cell.

54



Figure 41-SPM Automation Prototype Figure 42-Fuel Tank Section
Cell

By using smaller fuel tank section specimen, object manipulation was easier to achieve
than by using an actual full-size fuel tank. The specimen was placed on the table top located
in front of the robot during the testing. Because of the specimen size, position variation
was easily provided simply by moving the specimen in X, Y and Z directions. By placing
the wedge under one side of the specimen, minor axis variation was achieved regarding W,

P, and R angles. Figure below illustrates the different part position variations.
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etc.

Figure 43-3D CAD lllustration of Position Variations

4.3 Hardware Integration

Existing prototype cell is provided with already existing PLC, 6 DoF robot, HMI, and
EOAT. These devices are integrated together in order to provide support for small
production run batches or prototype testing.

The addition of the 3D vision system required fastening the unit to the EOAT by use of
mechanical brackets. Ethernet cable for PLC communication was combined with the
existing robot dressing, from the 3D vision system and terminated in the electrical cabinet.
Small junction box was mounted to the Fusion Unit (EOAT) to be used for electrical

terminals and relays to control the camera function.
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4.4 Device Communication
Device communication is established by using Ethernet IP with the following device
addresses:

Table 7-Device IP Addresses

PLC: 192.198.1.22

HMI: 192.168.1.12

3D Vision System: 192.168.1.2

Robot: N/A

All existing devices use Profibus communication (Wikipedia, 2017) for communication.

45 Test Procedure
This section specifies the test procedure and cycle sequence used to check the system for
functionality and record the data.
Before cycle start, certain criteria was required to be checked and/or established:
e Communication check between devices
¢ Robot speed through object scan path set at 250 mm/sec

e Scan area defined

45.1 Robot
Robot path is determined initially by setting the camera scan distance to the object. The 3D

vision system is manually activated through software (triggering the camera laser) while
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the robot with the camera is positioned above the object. Scan distance can be set by
changing the robot height which moves the 3D vision system up/down, or manually

through software if distance limitation allows. This procedure is performed until the object

is displayed in the object window as shown in the figure below.
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Figure 44-3D Vision System Distance Setup

Once the vision system height to the object is determined, scan triggering can be
established. By moving the robot over the object at previously set height, encoder position
is monitored and 1/O signal from the robot is used to send the camera signal to activate the
scan. By changing the robot register value for the camera scan start position in the robot
program, scan start location can be moved to a different position along the scan path to
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start sooner or later depending on the object location. By changing the number of profiles
in the camera setup screen (Figure 44), image length can be increased or decreased, thus

changing the scan window.

Control relay (2823CR) used to trigger the camera scan is controlled by the robot output
RO[04] through the end effector (EE) connector on robot joint#2. By supplying 24V to the
relay which is terminated at camera power connection#1, camera scan is activated. Junction
box with control relay is located on the robot EOAT. More information on the control

wiring is detailed in Appendix A.

5. 95

gap. ‘egbrusey . Wi
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Figure 45-Robot EE Connector Figure 46-Electrical Junction Box

Camera communication to the PLC is established through the Ethernet Switch. This device

uses pocket switching in order to establish the communication between different devices
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identified by their own IP addresses (Wikipedia, 2016b). Camera IP address in this case is

identified as 192.168.1.2 with subnet address 255.255.0.0.

Robot program is created by using Fanuc TP programming language called Karel, which

is derived from Pascal (Robotics, 2016). Robot program is shown in the figures below.

1: ISCAN 1 b 26: PR[166]=LPOS =
2: UTOOL_NUM=1 27: R[4:START SCAN]=PR[168,1] 39
3: IMove Home to Weld Sean 28: ICHECK POSITION FOR TRIGGER L&
4: DO[15:1N MAIN ROUTINEJ=0FF 29: IFR4:START SCANJ=R[5:], <«
5: DO[44}=OFF : JMP LBL [70] ; 8
6: DO[43:SCANNING PART]=ON 30: MPLEL [65] S—
7: | PR[120] 30% CNT100 31: LBL0] o
8: R[3:TRACKING REG]=121 32: RO[4:TRIGGER CAMERA]=ON o
9: ) PR[121] 30% CNT100 33: L PR[124] 125mm/sec CNT100 8 g
10: R[3:TRACKING REG]=122 34: RO[4:TRIGGER CAMERAJ=OFF o
2 35 DO[45:CAM DATA OUT]=ON as)
11: 1 PR[122] 30% CNT100 0 =
12 i HACKiNG N GIlad L 37: IWAIT FOR COMMUNICATION =y
13: L PR[123] 125mm/sec FINE |6 é 38: OVERRIDE=R[2]
14: » m a 39:
15: OVERRIDE=100% 8 & 40 LBL[198] 9
16 = 41: |F DI{36:W_TYPE_CJ=ON =0
17: IMOVE ROBOT BASED ON EXT. INFO 8 . IMP LBL [199] |C__3 T
18: ISET TOOL CENTER POINT TO 42: IFDI[37:0K TO OFFSET]=ON < =
19: IBORING UNIT (1) : IMP LBL [197] >_ % E
20; PR[166]=LPOS 43 50
21 44: |F DI[45]=ON, JMP LBL [199] = 8
22: LBL{6S] 45: IF DI{45]=0FF, IMP LBL [159] g =
23: ISET MOVE DATA 16: O 8
24: IMOVETO BASED ON EXT DATA 47: JMP LBL [198] o
25: L PR[166] 125mm/sec CNT100 48
: Tool Offset, PR[167] 49: |'BL [197]
26: PR[166]=LPOS 50: IROBOT COMPLETED SCAN s
e
Figure 47-Robot Configuration Program  Figure 48-Robot Path and Communication
Section Protocol Program Section

Figure 47 outlines the first part of the robot program which deals with robot configuration
regarding the routine, register tracking, approach speed and type (linear vs joint robot
move), and defines scan start position. The following Figure 48 describes the portion of

the robot program which defines robot approach to the object being scanned as well as the
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communication with the PLC device. Once this programming step is finalized, the robot

waits for the camera to transfer the new position coordinates through the PLC device.

50: |IROBOT COMPLETED SCAN

51: DO[45:CAM DATA OUT]=0FF ; ﬂ
52: DO[43:5CANNING PART]=0ON 71: IUNPACK COM DATA R12 ~ E =
53: [0K TO CONTINUE . 72: R[12:X MINOR W]=GI[15]-128 5 §
PR CECEEE YT shddenanan TIL ?( v 73: R[S:SCR:ATCH PAD]=G|[16]—J_28 E
S w (/3] o

55: I = 74 R[8:SCRATCH PAD]= —— &
56: IUNPACK COM DATARZ - L g : R[8:SCRATCH PAD]/100 § o
57: R[9:X MAIOR X]=GI[9]-128 g O 75 R[12:X MINOR W]=R[12:X MINOR W] + O
58: R[8:SCRATCH PAD]=GI[10}-128 = : R[8:SCRATCH PAD] : N
59: R[8:SCRATCH PAD]= —— é 8 76: IUNPACK COM DATA R13 oo

: R[8:SCRATCH PAD}/100 = O 77: R[13:Y MINOR P]=GI[17}-128 w E
£0: R[9:X MAJOR X]=R[9:X MAJOR X] + R[8:SCRATCH PAD] R 78: R[B:SCRATCH PAD]=GI[18]-128 = <
61: IUNPACK COM DATA R10 > ) 79 R[B:SCRATCH PAD]= — j =
62: R[10:Y MAIOR Y[=GI[11}-128 w E : R[8:SCRATCH PAD]/100 % E
63: R[8:SCRATCH PAD]=GI[12]-128 - g 80: R[13:¥ MINOR P]=R[13:¥ MINOR P] + é 8
64: R[B:SCRATCH PAD]= —— ﬁ = : R[8:SCRATCH PAD] =oO

: R[8:SCRATCH PAD]/100 % ¢ 81 [UNPACK COM DATAR14 <
65: R[10:Y MAIOR YIER[10:¥ MAIOR Y] + § 8 82: R[14:Z MINOR R}=GI[19]-128 =

: R[B:SCRATCH PAD] ___—-': I= O 83: R[B:SCRATCH PAD]=GI[20]-128 oo v
66: IUNPACK COM DATAR11 _ 84: R[B:SCRATCH PAD]= — U =
67: R[11:Z MAIOR Z]=G1[13]-128 N ® : R[8:SCRATCH PAD]/100 5 g
68: R[8:5CRATCH PAD]=GI[14}-128 w “,_" 85: R[14:Z MINOR R]=R[14:Z MINORR] + = o
§9: RS:SCRATCH PAD]= ~—k < RIBSCRATCH PAD] z

: R[8:5CRATCH PAD]/100 j O 86 DO[2B:AT IW FUSION 2]=OFF é o
70: R[11:Z MAJOR Z]=R[11:Z MAJOR Z] + % ¥ 87: R[3:TRACKING REG]=170 0O

: R[B:SCRATCH PAD] — é 8 88: | PR[170] 65% CNT100

=0 8%
Figure 49-Robot Major Axis Translations Figure 50-Robot Minor Axis

Translations

Figure 49 illustrates the protocol for “unpacking” of the 8-bit data (0 ... 256) received for
the X, Y and Z position. As stated earlier, PLC cannot send or receive the data in decimal
places, therefore data is broken into two sets of numbers; integer value before the decimal
place, and integer value after the decimal place (camera programming section describes the
reverse side of this formula in detail). Once this protocol is completed and the numbers are
extracted, the two values are then added together and the coordinate location in decimal

value is created. The same protocol is followed for the minor axes (shown in Figure 50).
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90; ITEACH REF POINT
91: R[3:TRACKING REG]=171

"MASTER"
POINT

9% A PRIA7] 655 FINE 102: IMOVE ROBOT IN WORLD — E
93: ICHECK OFFSETS IN RANGE T 103: PR172,1]=PRA71,1}+ i
94: IF R[9:X MAJOR X]>60 OR : R[9:X MAJOR X] E >_: ®
: R[9:X MAIOR X]«<-&0, 104: PR[172,2}=PR[171,2}+ nX=
: IMP LBL{199]  R[10:Y MAIOR V] 3= g
95: |F R[10:Y MAIOR Y]>60 OR 105: PR[172,3]=PR[171,3]+ S— E ﬂ (]
: R[10:¥ MAIOR Y}<-80, B - R[11:Z MAIOR Z] = w
: IMP 1BL[199] 0 108 PRI1724J=PR[171,4] o ﬂ o
96: IF R[11:Z MAIOR Z]>30 OR & b= 107: PRII72,5[=PR[1715] S
: R[11:Z MAJOR Z]<-30, i 8 = 108 PRI172,6/=PR[1716] 8
: IMP LBL[199] o E:: 0 109: L PR[172] 100mm/sec FINE o
97: IF R[12:X MINOR W]>20 OR . j O =  110: IANGLEROBOTIN TOOL —_— S
: R[12:X MINOR W]<(-20), IO l:E 111; PR[173,4:5CAN TOOL ANGULA]= =
: JMP LBL[199] T 5 § : R[12:X MINOR W] % o
98: IF R{13:Y MINOR P]=20 OR Ve |: w 112: PR[173,5:SCAN TOOL ANGULA]= = o o
: R[13:¥ MINCR P]<(-20), ﬁ @ l&: : R[13:¥ MINOR P] g z g
: IMP LBL[1949] T O 113: PR[173,6:5CAN TODL ANGULA]= S=E
99: [F R[14:Z MINOR R}>20 OR oo + R[14:Z MINOR R] > 2 ﬂ (8]
: R[14:Z MINOR R]<(-20), 114: TOOL _OFFSET CONDITION =W E
: VP LBLIJ.BQ] : PH[173.'5CAN TDOLHNGUU\] g ﬁ E
100: IF DI[37:0K TO OFFSET}=0FF : UTOOL[1] E 3
: IMP LBL[199] 115: L PR[172] 100mm/sec FINE o
101 : Tool_Offset » o
Figure 51-Robot “Master” Position and Figure 52-Robot Position Adjustment

Offset Check

Figure 51 identifies the “master” position PR[171] from which the position corrections take
place in terms of robot offsets. This position is required to be recorded by bringing the tool
center point of the EOAT to the feature location manually, every time a new product is
introduced to the system or the system is going through the teaching sequence. Next part
of the program assures that the values extracted from the camera fall within the offset
limitations prior to making position adjustments. This section of the program is used as a
redundancy check to eliminate any large position adjustments which may result in robot
crash and/or equipment damage. Any values greater than specified in the program limits
will generate a fault and stop the cycle. Succeeding program steps illustrated in Figure 52
demonstrate the position offsets in X, Y, and Z positions, followed by the angular
adjustment in W, P, and R.
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116:

117: DO[15:IN MAIN ROUTINEJ=ON
118: DO[41:AT MELT DROP}=ON
119: WAIT DI[39]=0N

120; DO{41:AT MELT DROPJ=OFF
121: WAIT DO[39]=0FF

122: IRETURN ROBOT TO HOME
123: DO[15:IN MAIN ROUTINE]=OFF
124: R[3:TRACKING REG]=170

125; 4 PR[170] 65% CNT100

126: UTOOL_NUM=1

127: I PR[1:PERCH POS] 65% FINE
128: R[3:TRACKING REG]=0

129: DO[15:IN MAIN ROUTINEI=OFF

130: END
131:

132: LBL[199]

133:

134: DO[45:CAM DATA OUT]=0OFF

135:

e

Figure 53-Robot Protocol

ROBOT PROTOCOL,
FAULT CHECK, ETC.,

136
137:
138:
i3
140:
141:
142:
143:
3144;
145:
1460
147:
148:
149:

IROBOT OFFSET OUT OF RANGE
IRETURN ROBOT TO HOME
UTOOL_NUM=1

R[3:TRACKING REG]=122

1 PR[122] 65% CNT100
R[3:TRACKING REG]=121

J PRI121] 65% CNT100
R[3:TRACKING REG]=120

1 PR[120] 65% CNT100

1 PR[1:PERCH POS] 65% FINE
R[3:TRACKING REG]=0
DO[15:N MAIN ROUTINEJ=OFF
DO[39]=0FF

DO[43:SCANNING PART]=OFF

PROGRAM END

———

ROBOT PROTOCOL,
FAULT CHECK, ETC.

I

Figure 54-Robot Protocol

Figure 53 and Figure 54 finalize the robot program by using standard programming

protocol.

63



4.5.2 Vision System
This section will describe the camera program as well as the techniques used in creating

the program for the fuel tank case study.

TOOLBARS AN NK
Ve 7 SCAT I}IAGE BANK

File Edit Debug Options Emulstar Help
+ = (uv) aush 0 Quigh ~ 1]
Image | Region of nerest| Metching | Cirosler caleuianion | Program | System [ Sarmmunication | Input/Outaut | €@
u§ Devices ” ' | Tahle-tankl
5 Programs 9
E4= Final
) Enr il Index| DB Malus iy -
S 1-Read from oftst Eovies
el 2- Grab Sewp a 0 1l
£ 3 Open Ethernst| 1 L] &
w48 4-Scan 2 1 1
® @ BZ- CALCULATIMIS UP:C = | a 0 ]
=& 91 - TEXT FOR RE Diescription Valueg Tahle QS@ 4 U 0
®- & 96 - Save Offsets - z 5 1] 1
@ 107- Apply Offaets Eraeandiing B [ 0
= & 114- Communiceb iE e ror Gote 7 o 7
@ B 131~ Display B 01 = Goto step 147 —\ —| i 0 0
25 146 - Loop Progra 02 = Cantinus ta next gtep False 7‘ 7| q 0 1]
@& 147-Error Handlir Time of execution (jis) i 10 35 5
1 Tables 01 = Last step with arrar -1 il 136 136
i Macros 02 = Lasterorcode ] 12| 1.4334.._|1.433454.
Read from offsels.bd 13-11.236.._| 11,2366
';ﬂ) Fead Table From Fissh 14 14175 14175
01 = Table Index 40 —] —] 15| 28525 25BES
1|02 = Fila Mame 'gifsets. b —‘ —| 16] 209.43.. | 209 4345
Tt ) g 17| 0.1067_|0.106717.
01 = Rasult 0 i L 0
19 0 1}
= Grak Setup ) b e
PROGRAM Setup ‘Tima of exacution (s) | I]l gl :L‘fl 1::
TREE — . e 128 128
L= Open Ethemet Raw [Hol [5tad] ] 128 28
- 01 = Timeout (ms) ‘60000 — — G 128 o8
02 = Transpor projoco| TCPincoming — — 6 178 128
3|04 = WC device port 5000 — = 37 138 138
05 = Associated IP 1452166 122 — = 28 127 127
06 = Associated port 5000 — — 29 727 297
Tire of execution (is) 0 \ NIET 128 128
Scan | 3 128 128
= o o - 3 q 9 ]
mage 0 - coord. x =41 -y =428 color =0-0=0-b=0 g :
PROGRAM PREVIEW PROGRAM
STEP LIST SCREEN TABLE

Figure 55-Camera Software Screen

Figure 55 illustrates the vision system software and the arrangement of tools used for
creating the program. It consists of the program tree, toolbars, scanned image banks,

preview screen, program steps and programming table.
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As the image is scanned by the camera during the robot movement over the object, PLC
byte is received from the PLC, at which time program starts its execution through the

programming steps.

The first part of the program examines the image by analyzing a static region of interest
(ROI) and by identifying the area where the examination of the features is taking place

(Figure 56) by looking for a specific feature (i.e. hole).

Feature of
Interest——__ |

ROI
(Region of Interest)

Figure 56-ROI Definition © 2017 IEEE
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Once ROI step has been defined, Blob Finder tool can be utilized. This tool is used for
analyzing the feature characteristics, and provides the centroid location as well as the
feature size, to the table ID specified in the tool (Figure 57). This tool allows for the
definition of size, depth and other feature parameters for the analysis. All features that do
not fall within these parameters are automatically discarded. Blob Finder tool also provides
limit values, which may be used to set the restrictions in part variation to avoid faults
created by the objects outside of the geometry scope. Once the feature is identified, the
parameters in terms of X and Y locations are exported to the program table and used in the

next programming section.

i~ Input! Cutput

Source bank: ﬁj
HOLE & ROl definition step:  [13
FEATURE Diastingtion Borme 1

Timeout [me] ol

[ SRR

- B_\r}':'_auri-éé't‘iunmr'eahnlds

Thraghold

Manual thresholds d
Upper threshold E5

- Blab selection

—/.) Minimum blab  [T0000
HOLE iy

LIMITS \Maxmumblﬂb [28000
——

- ;d-g-a-. T - E;II holes'in -
obs | ” T P Digplay :
{=—ats i | Blob mmber | |5 lAea | o Diisplay result
 Satting o 2618 03 17743 source
Sartihy | Fit towindow
MNa sarting e EaiE
: - Fesults 1
Soréng.ortien Found blobs: 1
Descentding > Upper 31
" , Lawer ]
Z-IIMHI_] II‘IHI\
a1 |
oo /')Tah\a indesc B0 Maxnurdper of Blabs in i k. | Cancal |
TABLE N[U\f[BERJ ‘ ‘
FOR POSITION HOLE HOLE
STORING POSITION SIZE

Figure 57-Blob Finder Tool © 2017 IEEE
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By using the X, Y position provided by the previous step, two circles are placed (1 smaller
and 1 bigger circle) with the centers corresponding to the same position. The area between
these two circles represents the surface defined for placement of the “Best Fit Plane” which

will be used for attaining the Z location of the feature (hole) in the next step.

@1 Pine | 598,502 3D Peint | 236.50mm 12550 Missing dasa ) (o]

AREA BETWEEN THE CIRCLES
INTO WHICH A "BEST FIT"

PLANE IS PLACED \

Image Bank 0

Figure 58-Methodology for Placing "Best Fit Plane™
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This plane is called the “Best Fit” for a simple reason of analyzing the 3D surface and

placing the plane on the surface that fits the best. Figure 59 shows an example of this

methodology.

AREA ABOVE
THE PLANE

AREA UNDER
THE PLANE

BEST FIT PLANE

Figure 59-Best Fit Plane Placement on 3D Surface © 2017 IEEE

Once the plane is established, the next part of the program is developed to determine the
plane angle in terms of roll and pitch in 3D space. As the X, Y position is already calculated
and stored in the program table, the location will be pulled back into the program logic and

placed into 02=Pixel X and 03=Pixel Y fields for each of the three steps as shown in Figure

60 below. This will provide calibrated Z position of the point.
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POSITION ON
BEST FIT
PLANE IN THE
X.Y HOLE
CENTER

POSITION ON
BEST FIT
PLANE 25mm
ABOVE THE
HOLE CENTER

POSITION ON
BEST FIT
PLANE 25mm
TO THE RIGHT
OF THE HOLE
CENTER

Midpaint

w\m Get Callbrated Pomt H
ez 01 = Soures bank 2 — =—
02'=Pixal X =54443 — —
03 =Pixal ¥ =54449 — =—
T 04 = Filterype Mo filter —_— —
05 = TransfonmData Block =1 — =1
Time o execution (s d Ij
01 = Calilarated ¥ (mm) 23675
02 = Calibrated ¥ (mm) 123
(3= Calibtated Z {mm) 184.3672
Upper
l:}"’ Gel Calibiated Pijnt =
P (1 = Source bank z — —
02 =Pixelx =544A3 — —
03 = Pixel % =54444-100 — —
- 04 = Filter type Hofilter — —
(5= Transtorm Dsta Block -1 — —
Time of exscution (4] i -]
(1 = Calibrated ¥ (mm) Bric] ot
02 = Callbrated ¥ {mm) 55
03 = Ealibrated Z (mim) 1841607
Right
'1;\!21 Gt Callbrated Pont H
T 01 =Soures biank 2 — —
02 = Pixal X =544A3+100 — —
DF=Fixel ¥ =54444 — =—
= 04'= Filter type Mo filter —_— —_—
5= Trangtorm Deta Block -1 =] ==—+
Time of gxecution (15) 0 |j
11 = Calibrated ¥ (mm) 26175
(2 = Calibrated ¥ {mm) 123
(3= Calilatated Z {mm) 1639218

Figure 60-Compound Plane Angle Calculation

The first part of the program uses the X and Y position after which the position is extracted

in the “Calibrated” field of each step, and X, Y and Z positions are calculated. Following

two steps perform the same calculation, however, the position is calculated 25 mm above

the hole center and 25 mm to the right of the hole on the best-fit plane. This provides 3

points in terms of X, Y, and Z positions, which are going to be used to calculate the plane

angle (robot minor axes), by using trigonometry as shown in Figure 61 and Figure 62

below.
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] Image Bank £

=
|s

Figure 61-X and Y Minor Points Calculation © 2017 IEEE

HOLE CENTER
POINT

X or Y DIMENSION

Z DIMENSION

POINT ABOVE
ORTO THE

RIGHT OF THE
HOLE CENTER

Figure 62-X and Y Minor Plane Calculation © 2017 IEEE
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Though this is considered a compound angle plane, robot software does not provide
calculations or a method for this position adjustment. In order to calculate this plane, robot
software uses X and Y minor axis as shown in Figure 62 above. Therefore, camera

algorithm was created to calculate minor X and Y angles separately.

Up to this point, the algorithm is able to calculate X, Y, Z positions, followed by W and P
angles (R value may be calculated if the orientation feature is used for yaw angle) after
which these values are saved to camera flash as the “master” coordinates, from which every
other cycle will be monitored in terms of difference in position. For a subsequent scan, the

program continues as explained below.

In the program structure master coordinates are saved to the camera flash but pulled back
into the program and stored in the table rows 40 to 45, while the values being calculated

are temporarily placed in the “scratch pad” rows 12-17 as shown in Figure 63.
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SCRATCH PAD

CALCULATIONS

BYTE

CONVERSION

MASTER

COORDINATES

STORAGE

Tahle-tankl
&
Inclese| OB Yalus \Ellua A Dieseription :
evice
] 1] i]
] 1] 0
10 34 3| DIAMETER FOR FLATNESS
11 136 136 DIAMETER 1N PIXELS
12 11433 [1.143385, |Ax
13]-9.8882.. | -9.88823. | Ay
14 71.5 77E[%
15 127.5 1276y
16| 65407 _|BE48767.. |2
1% G6E.578 BE.578| Faoll
18 1 0
14 1l i
20 135 136X
21 128 128|X..2
2 223 2233
23 128 128 .4
24 268 268|Z...6
25 216 216|Z,...B
26 128 128 w7
27 128 1284 8
28 128 128|Ay,..3
29 154 154 Ay 10
30 126 1284z 11
31 210 210[ Az 12
32 0 0| Caunter.....13
33 1 1| DONE {1)....14
34 1] 0|FALLT CODE .. 15
35 1} 0| TRAINEBIT (1)......18
3B 1] 0] CAMERA VARIFY [1-PASS 2 FAIL)... 17
37 1] 1]
34 1] 0| FLATHESS WaLLUE (BEFORE DEC)
34 - 0 0| FLATHESS WALUE (AFTER DEL)
40]-1.8077. | -1.887727| Offaet dx
41|-0.8077 | LBO7TE. | Ay
42| 11625 11625
43 14195 19175
44]43 50128 4360178]Z
45| B#.351 BE351 | Roll
46 1 i
471-0.210%. | 0210657
48 0 0| Offset Height
b a3 1] i =
"s70F G- 1000 SICK |o7if20e (123240

Figure 63-Scratch Pad and Master Coordinate Placement

As the values being calculated are stored in the rows 12-17, they are also being used by the

algorithm for comparison. The difference in each position is calculated and then stored in

the same row overwriting the original values, thus giving these rows name “scratch pad”.
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Final values are then transferred to rows 20-31, after which they are sent to the PLC through
the communication protocol. Prior to transferring the coordinates, these values are required
to be translated into integers, as PLC cannot send or receive decimal values. Thus, only 8-
bit values can be sent (0 ... 256). This part of the algorithm will separate decimal values
into 2 integer numbers (one before and one after decimal place). In order to generate this,

the following formula and rules were developed:

The rule was set that value 128 (half point of 256 bytes) is considered as 0 value. All values
over 128 are considered to be positive, while all values under 128 are considered negative.

The formula below illustrates this example.

nl represents integer value before decimal, and n2 represents integer value after decimal

To calculate nl value:

nl=[X] + 128 (21)

To calculate n2 value:

n2 = ((X-(n1-128) x 100) + 128 (22)

Example:
417

Integer value before decimal place:

4 +128=132

Integer value after decimal place:

((4.17-(132-128)) x 100)+128=145

Therefore 4.17 is sent as two separate bytes; 132 and 145.
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The reverse side of this formula can be found in the robot program Figure 49 and Figure 50,
as the robot is required to convert the values back into decimals in order to perform the

position offsets.

Once all values are computed by the camera program, they are combined together (one

after another) and sent to the PLC in form of a byte string, and subsequently to the robot.

Calculated position values are then displayed on the HMI screen for the

personnel/technician’s reference, as shown in Figure 64 below.

fAix= —8.349781
fAy= —-8.716859
Z= 198.536499
Rotate= —1.36478

[-1.25,-1,.A1,-8,-A.05,A.681"

[168.5,243.75,198.53,-8.35,-8.66,-2.85]

[159.25,242.75,198.54,-A.35,-0.72,-1.361

FLATNESS: .31

Figure 64-HMI Display
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The values are separated into 3 rows which represent the following:

Ref- Represents the “master” position from where all other subsequent scan positions are

measured.
M- Represents for the measured position of the scanned object.

Com- Represents communication offset values which are communicated to the robot.
These values are the difference between the reference point and the position of the

subsequent component.

453 PLC

The section on PLC programming will not be discussed in detail. Programming logic
operates based on standard Siemens S7 function blocks, which are modified for the
application of 3D vision system communication. The addition of this logic to the pre-
existing system does not present a great significance in terms of research novelty, as the
program logic for EOAT control is already present. More information on PLC program can

be found in Appendix B.

4.6 Summary
This chapter provided a case study that presented a methodology, approach, and the
implementation of the research to the fuel tank welding application. It demonstrated the
device integration and the communication protocol between all components. The test

procedure established the correlation between the robot and the image generated by the

75



vision system in order to associate the two objects. The following chapter will encompass
the system validation, accuracy, and test results. It will also cover improvements generated

by the system.
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CHAPTER 5: RESULTS, VALIDATION AND DISCUSSION
The following chapter is a summary of the test results which includes system accuracy.
Robot programming and testing was performed under different scenarios, drawing

conclusions on the system limitations.

5.1 Robot Validation
Robot manufacturers often publish only robot’s repeatability as the robotic accuracy has
not been yet fully developed to meet production needs (Fanuc Robotics America, 2017b).
Robot accuracy is defined as robot’s ability to move to the requested position and hitting
the target each time, while the repeatability may be defined as moving to the same position

repeatedly (Joubair, 2014) as illustrated in the figure below.
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GOOD REPEATABILITY GOOD REPEATABILITY
& &
GOOD ACCURACY BAD ACCURACY

BAD REPEATABILITY BAD REPEATABILITY
& &
GOOD ACCURACY BAD ACCURACY

Figure 65-Robotic Accuracy and Repeatability Illustration

Robot accuracy depends largely on the EOAT weight and center of mass. The combination
of joint positions and orientations with conjunction to the EOAT s referred to as the
“pounce” position. This pounce position may be physically altered if different EOAT is
placed on the robot and the position is measured and compared to the same position with

the previous EOAT used.

78



As this research utilizes only 1 EOAT and relies on the on the technician to establish a first
reference point by manually teaching the best EOAT position to the fuel tank surface, a
first reference point is created from which the repeatability measurements will take place.

Thus, system repeatability may be considered as accuracy.

Robot position in terms of readjustment was validated by monitoring tool center point

(TCP) position displayed on the robot teach pendant. (Joubair, 2014)

Robot “master” position is stored as position register PR[171]. Position adjustment values
send by the vision system are temporarily stored in robot registers R[9]-R[14]. Values from
these registers are then added to the PR[171] resulting in PR[172] position which is initially
generated by robot movement in X,Y,Z directions, followed by the W,P,R angles. Values

from scan image (e.g. Figure 64) were used for validation.

79



PR[171] position was recorded as shown in Figure 66:

Table 8-PR[171] Position Coordinates (Master Position)

X=2043.774 mm W=0.613 deg.
Y=339.205 mm P=87.328 deg.
Z=495.297 mm R=4.991 deg.

PRIITL] UF:F UT:F  CONF:NUT 0-10°
bl 2043. 774l 613 deg

¥ 339.205 mm P 87.328 deg

Z  495.297 mm R 4.991 deg
Position Detail
PRI 163: =R
PR[170: =R
GABYORMASTER B
PR[172:CALC REG 1=R
PRI173:SCAN TOOL BNGULAT=R
PRI174: J=*
Enter value

PRI 169: IR

Figure 66-PR[171] Coordinates (Master Position)

Offset values from Figure 64 sent by the vision system are populated in robot registers as

shown in Figure 67:
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Table 9-Register Values (Position Offset Values) From Scan Image

R[9]=-1.25 mm

R[12]= 0 deg.

R[10]=-1.0 mm

R[13]= -0.05 deg.

R[11]= 0.01 mm

R[14]= 0.68 deg.

:U:U?U;U;U;Uﬂ:UFUIHFD

Figure 67-Register Values (Offset Values)

These values are the same values transferred from scanned image in Figure 64.
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Register values (R[9] - R[14]) are then added to PR[171], resulting in PR[172] as shown

in the Figure 68:

Table 10- PR[172] Position Coordinates (Offset Position)

X =2043.774 + (-1.25) = 2042524 mm | W= 0.613 + 0 = 0.613 deg.

Y=339.205 + (-1.00) = 338.205 mm P=87.328 + (-0.05 ) = 87.278 deg.
Z= 495.297 + 0.01 = 495.307 mm R=4.991 + 0.68 = 5.671 deg.

DATA Position Reg .
' PRI172] UF:F UT:F CONF:NUT 0-10

Pl 2042 . 524N 613 deg
Y 338.205 mm P 87.278 deg
Z 49.307 mm R 5.671 deg
Position Detail

PRL170:

PR[171:MASTER

PR[172: IV=H

PR[173:SCAN TOOL ANGULA

PRI 174:

PR[175:

PR[176:

Enter value

Figure 68-PR[172] Coordinates (Offset Position)
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5.2 Camera Validation
To assure that the values are correct in terms of distance measurement provided by the

camera, the device was manufactured in order to measure X, Y, and Z directions.

Figure 69-Verification Plate Figure 70-Verification Plate CAD Model

By obtaining distance values between the holes in X and Y direction from the camera, these
values are then compared to the tolerance limit set in the camera program to the actual
manufactured dimensions between the holes. The same procedure is then followed for the
Z dimension (height). By obtaining X, Y and Z measurements by the camera, these values
are then compared to actual manufactured dimensions in order to determine camera
accuracy. Tolerance limit can be opened or closed depending on the manufacturing

accuracy of the device.
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{EIGHT ACTUAL= 13.1 HEIGHT SET=13

Figure 71-3D Scan of the Verification Figure 72-Verification Confirmation
Device

Figure 72 illustrates the distance in X and Y directions between the 3 holes. Z distance is
calculated by measuring the boss height to the base plate. If the distance measured is within
the acceptable limits, the verification section is considered as pass, deeming the camera as

accurate for processing.

This part of the program is activated by the PLC and can be programmed to activate after
a certain number of cycles, beginning of every shift, or prior to every cycle. Passing the
verification part of the program allows the program to advance with the sequence. It is
imperative to note that the device present in Figure 69 was manufactured by hand using
basic machine shop tools at disposal. The distance between the holes was not accurately
machined, prompting for tolerance of £0.5 mm. Repeatable scans showed that the values
obtained varied within £0.1 mm.
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5.3 System Accuracy
System accuracy will include all components integrated together, thus providing the

tolerance value for one complete system.

The test was performed by scanning a stationary fixed object (i.e. fuel tank section) 25
times without making any contact with the object after the scan. During this testing, 25
positions were recorded of the same stationary object to be used for accuracy calculation.
Position offset values are shown in the table below and represent the variation between
each scan. “Master” component was used in the test, providing [0,0,0,0,0,0] position as a

measurement point from where every other subsequent scan is measured.

Position variation of the stationary object in X and Y direction would normally indicate
that the scan activated by the robot was initiated too soon or too late from the encoder
position. Performed test concluded this was not the case as values obtained remained as

zero; proving that the scan start point was accurate and repeatable.

Position variation in Z direction may indicate that the scan path was too close or too far
from the object (making the object seem closer or further away from the camera), or that
the camera grayscale value calculated by the vision system carries a tolerance. Same

reasoning for position variation in W, P, R direction may be applied.

Position offsets (“C” values) are shown in the table below and represent the variation

between each scan.
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Table 11-System Tolerance/Repeatability

SCAN Nr. X Y Y4 W P R
1 0 0 0.01 0 0.02 0

2 0 0 0.01 0.01 0.07 0

3 0 0 -0.02 0 0.02 0

4 0 0 0.01 0 0.06 0

5 0 0 0.02 0 0.05 0

6 0 0 0.01 0 0.09 0

7 0 0 0 0.01 0.03 0

8 0 0 -0.01 0 0.01 0

9 0 0 0 0 0 0

10 0 0 -0.08 0 0.03 0

11 0 0 0 0.01 0.05 0

12 0 0 0 0.01 0.02 0

13 0 0 -0.06 0 0 0

14 0 0 -0.06 0.02 0.05 0

15 0 0 -0.05 0 0 0

16 0 0 -0.04 0.01 0.07 0

17 0 0 -0.06 0.02 0.03 0

18 0 0 -0.04 0.01 0.06 0

19 0 0 -0.01 0.02 0 0

20 0 0 0.01 0 0.01 0

21 0 0 -0.03 0.01 0.02 0

22 0 0 0 0.01 0.05 0

23 0 0 -0.05 0.02 0.05 0

24 0 0 -0.06 0 0.04 0

25 0 0 -0.05 0 0.09 0
MIN. Value 0 0 -0.08 0 0 0
MAX. Value 0 0 0.02 0.02 0.09 0
Tolerance 0 0 0.1 0.02 0.09 0

Figure 73 offset values below are noted in scan#14 position as shown in Table 11.
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Figure 73-Image Scan Repeatability Test

Using the maximum variation value of 0.1 mm noted in the Z direction, the system
accuracy is stated as £0.05 mm. The addition of this value to the theoretical robot position

repeatability of £0.2 mm, provides the complete system accuracy of £0.25 mm in position.

Video of the system testing was recorded by 5 different cameras positioned at different

angles around prototype cell. This included 2 of the cameras attached to the EOAT.
Video of the test as shown in Figure 74 is posted in the link below:

https://www.dropbox.com/s/1spf18s512n3daw/boris.mp4?dl=0
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https://www.dropbox.com/s/1spf18s5l2n3daw/boris.mp4?dl=0

Figure 74-Test Video Image

5.4 Various Scenarios

Acknowledged as sensitive, it was imperative that the system is tested for different lighting
scenarios present in the manufacturing settings. Different color flood lights (red, yellow
and green) were applied directly to the object during the scan phase of the cycle. Lights
were positioned at the distance of 150 mm away from the object and showed no impact on
the image quality.

In addition to the lighting, another test by using markers on the fuel tank surface was
implemented. White China marker was used to draw lines on the object prior to the scan
in order to analyze if the direct color applied to the surface would have any effect on the

image quality. This test showed no impact on the image quality.
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Test performed by applying direct sunlight did indicate to have a major effect on the system

in terms of the image quality. Section 6.3 on system limitations explains more.

5.5 System Comparison
This section will attempt to compare the outcomes/results of this research to some of the

currently available vision guided robotic applications.

5.5.1 System Benchmark

Benchmarking this research to the existing systems proved to be very difficult, as outlined
in the literature review section. Existing industrial systems do not go into any design detail,
as system providers consider vision guided robotics a trade secret. Patents follow the same
direction, by providing a minimal amount of information in the apprehension of reverse

engineering.

The research was able to collect information on Fanuc iRVision 3DL system in order to

create comparison in terms of cost and functionality.

Table 12-System Comparison

Fanuc iRVision 3DL Thesis
System Cost $23,300 $15,950
Integration Cost N/A $19,000
Accuracy +0.2 +0.25 mm
Ease of Use Simple Medium

Integration cost for iRVision was not listed in Table 12, as the industrial projects require a

high degree of detail as well as the scope of work in order to get an accurate quote from
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the manufacturer. Thus, the cost for iRVision integration was not provided. The cost for
thesis solution was available as SPM Automation recently provided integration quote for a

system presented in the research.

The accuracy of the stand-alone iRVision system was not published at the time of this
research. The system was referred to have a “high degree of accuracy” (Fanuc Robotics
America, 2017a). Fanuc R-2000iC/165F robots which are most commonly equipped with
the iRVision list the robot repeatability as 0.2 mm. No comment of iRVision system

integration having an effect on this tolerance is mentioned in this specification.

Ease of use regarding programming provides Fanuc with an advantage over the proposed
system. Interactive programming screens and tools on the robot controller allow the users
to use only one software for robot and camera programming, completely eliminating the
PLC. Presented research uses 3 different software packages (PLC, robot and vision system)
for the same solution. The elimination of extra software makes Fanuc system easier to use
for the certain applications (e.g. material handling) where PLC is not required to monitor

and check for certain values.

Assuming the equal cost for integration of the two systems, both systems present a practical
solution for solving part to part variation issues. The system presented in the thesis shows
lower cost compared to the Fanuc solution. However, Fanuc system provides a simpler
solution regarding the initial implementation and maintenance due to the exclusion of the
PLC and separate vision system programming. In conclusion, this provides system
integrators and/or end users with 2 feasible options to choose from depending on their

capability and/or budget.

90



55.2 Cycle Time
Data collected on welding Inlet Check Valve (ICV) component was gathered by contacting
existing fuel tank manufacturing plants such as YAPP Automotive System and Kautex

Textron.

Average cycle time was determined at 45 seconds as the component size varies and larger
surface area requires longer melt time. Comparing this cycle time to the test results of 34

seconds, cycle time reduction of 25% is achieved (Table 13).

Table 13-Cycle Time Comparison (Conventional vs Research Solution)

Conventional Thesis Solution
Average Cycle Time 45 sec 34 sec

5.5.3 Weld Quality

Weld quality cannot be quantified due to lack of information released by the manufacturing
facilities. Prevailing scrap rate frequently set by the manufacturing facilities is at 4%,
therefore this number can be expected to be reduced, as the research provides ideal tool

positioning.

5.5.4 Personnel Cost Reduction
Personnel cost reduction is another factor which cannot be quantified without detailed data
collection and research at the manufacturing facility. This improvement will remain to be

calculated in terms of personnel reduction percentage as the system gets implemented.
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5.5.5 Communication Option

Eliminating PLC device and establishing the communication between the robot and the
vision system directly is possible, however, it was not investigated as this option is not
preferred for an industrial application which requires a set of safety redundancy. PLC
device is used as a master device to assure that when a specific program is called to perform
(e.g. weld ICV, validation plate, etc.) it does indeed execute. This is required when multiple
objects are being analyzed by the system and not a single operation. It is also used to assure
that the values sent by the camera are a new set of data calculated and not previous scan
results. In addition to this, it is also used to monitor a variation between the objects and
collect this data for analyzing at a later date. Thus, unless the system is used for an
experiment outside of the production environment or being used for a single application

which may not require a set of safety checks, utilizing PLC device is recommended.

5.6 System Architecture
The figure below illustrates the system architecture in terms of control structure and device

communication used in this research.
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Figure 75-




5.7 System Configurations
Research used a specific approach best suited for the fuel tank manufacturing industry.
Vision system was mounted on the robot EOAT in order to easier manipulate the camera
position around the fuel tank and take images of various regions of interest. This approach

was used due to the fuel tank manufacturing equipment guidelines set by Tier 1 suppliers.

However, the system could also be configured with the fuel tank fixture used as the EOAT,
while the camera and the processing unit are fixed in the machine; essentially reversing the
components positions. With this approach, the robot can move the fuel tank in front of the
camera to perform a scan. Once the scan is completed, the fuel tank can then be
repositioned in front of the processing unit to perform the welding operations. This option

was not tested or explored but may present a feasible solution for some scenarios.

5.8 System Design Guidelines
In order for the system to perform and function as specified in the thesis research, the
following guidelines should be followed. This is particularly critical on the robot
programming side, as the repeatable image scan start position is very important. Non-
repeatable scan start position will generate incorrect object position relative to robot EOAT

tool center point.
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ROBOT

6 DoF

Minimum repeatability specified £0.2 mm

Create and test program for accurate scan start position by scanning the same
object over and comparing the positon results as outline in section 5.3

Use encoder position values to start the scan as grater (>) or smaller (<) than scan
start position value defined. Using exact value in the program may not active the
scan signal every time, as the encoder value jumps through decimal points during
robot movement. Thus, this value may be missed if specific.

Assure that all offset values are applied in correct directions, as camera and

EOAT may have different user tool coordinates

CAMERA

SICK IVC-3Dxxxxx series

Chose the camera by examining the features such as working distance from the
object

Create 3D validation device to assure that camera values measured are within
limits

Assure camera mounting is repeatable in the case of removal.

In case of camera removal, system should go through “mastering” sequence as the
correlation between the camera and the robot may be lost

Use torsion cables for Ethernet communication between camera and PLC due to

robot movement

Siemens S7

Ethernet and Profibus communication

Utilize standard function blocks (FB) for programming

Use different function blocks for communication, operations, faults, etc.

Monitor system to assure that new data is sent by the camera every time
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Utilize program to switch coordinate directions (e.g. X and Z) in case of robot
movement in the wrong direction, as robot and camera may have different user

tool coordinates
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Research Contribution
This research introduced a novel approach and created a model for solving production
issues created by part variations. This approach outlines a method for utilizing existing
capital equipment and integrating a 3D vision system. It can be used for most applications
where the position of components may vary, and the feature can be clearly defined in the
image scan. This approach introduces the methodology for using a vision system and
associating it with the robot EOAT to establish a correlation in 3D space. By using the
proposed approach to account for part variation, the system can be customized for each
application and tested for different elements. It may also be used to monitor and provide

information regarding part quality prior to processing, thus making it versatile.

6.2 Significance
As the presented research focuses on an industrial application, the potential significance
presented herein includes:
e Automatic adaptation of robot mounted processing unit for part variations
e Capability to simplify component fixturing by eliminating the consideration for the
magnitude and direction of shrink of the plastic fuel tank during manufacturing
e Ability to provide fuel tank manufacturers with more flexibility in terms of
hermetically welded component locations (distancing hermetic weld positions from

the 4-way isostatic element)
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e Increasing OEE (Overall Equipment Effectiveness) by eliminating downtime,
increasing output, and eliminating scrap

e Elimination of equipment setup cost due to process changes

e Overall production cost reduction

e Elimination of manufacturing inconsistencies in terms of final product quality

e Cycle time reduction by creating ideal conditions for fuel tank welding

e Minimizing equipment setup during installation due to an unstable manufacturing

process

6.3 System Limitations
During the system testing and development, different environmental conditions were
applied. It was concluded that direct sunlight exposure to the component surface creates
“noise” on the image, making it very difficult to process. An example of the same object

with and without direct sunlight exposure is shown in Figure 76 and Figure 77 below.
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Com = [34.25,3.7" 2.21,-8. Com = [-9.75,12.25,41.61,-5.22,8.341]
S ~ ———
Ref = [122,141,53.65,-2.11,-8.49] Ref = [122.25,141.25,53.2,-2.15,-8.62]
M = [156.25,144.75,74.55,-4.31,-1.14] M = [112.5,153.5,94.81,-7.37,-8.28]

Figure 76-Scan Without Direct Sun Light Figure 77-Scan Affected by Direct Sun
Exposure Light Exposure

Other light colours (flashing and non-flashing) as well as surface paints have also been
tested on the component surface and did not show to have any impact on the image in terms
of distortion. A solution to overcome the direct sunlight problem is to create a shadow on
the object surface. During the research, a cardboard panel was placed on the machine guard

to create a shadow in the work envelope, which eliminated the problem.

Another system limitation is the amount of tilt that may be applied to the object. Excessive
object angle will shift the hole center, and transform the circular shape of the hole into an
oval. An object with 6.4 mm thickness (comparable to the fuel tank wall thickness) was
simulated in CAD at 30° angle tilt in order to illustrate the effect of surface tilt on the fuel

tank surface. Applying this angle shifted the hole center by 1.6 mm. Increasing the wall
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thickness will result in greater feature position shift, as the circular feature becomes

increasingly oval. Figure 78 illustrates this limitation.

30 Deg. Tilt

Figure 78-Object Tilt lllustrating Hole Offset in 3D CAD

At this point in the system development stage, these two limitations are the only identified
restrictions on system performance. The results presented were specific to this thesis

research on solving part to part variation related to plastic fuel tank welding applications.

6.4 Conclusion
The design process regarding an adaptable tooling system for part-to-part variation

processing is presented in this thesis to help engineers develop equipment for solving part
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variation issues in the production environment. The same procedure may be used for pick
and place applications. Chapter 1 provided current industrial practice, identifying the
constrains in the fuel tank manufacturing process, which resulted in the research motivation
and objective. Chapter 2 presented a literature survey covering academia, patents, state-of-
the-practice, and state-of-the-art. Each section was reviewed to identify missing gaps,
which resulted in this research. Chapter 3 provided a design process used for the system
development and the method structure. Chapter 4 presented a case study, utilizing actual
industrial components and equipment to support and verify the methodology. The results
and validation of this case study were covered in Chapter 5. Research contributions,

significance, and limitations are presented in Chapter 6.

The proposed system design covered in this thesis requires the programming and
integration of PLC, vision system, and robot to produce a system, which is adaptable to
part position variation. Combined as one, the structure is classified as a vision guided

robotic (VGR) system, which can be applied to different manufacturing processes.

Commonly, manufacturing plants are required to retire existing older robots to make room
for new VGR systems, as the older equipment does not support software upgrades to make
them VGR compatible. With the proposed system, manufacturing facilities are presented
with an option of utilizing existing equipment, i.e., robots, in order to create a VGR system,

thus eliminating large investments.

The system was validated and tested at SPM Automation Inc., Windsor, ON, and resulted

in 3 patent applications:
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e US2017/0038756 A1 -METHOD OF SELF-ADJUSTING A MACHINE TO
COMPENSATE FOR PART-TO-PART VARIATIONS

e US2017/0038757 A1 -MACHINE FOR SELF-ADJUSTING ITS OPERATION TO
COMPENSATE FOR PART-TO-PART VARIATIONS

o CA2937951 Al -MACHINE AND METHOD OF SELF-ADJUSTMENT TO

COMPENSATE FOR PART-TO-PART VARIATIONS

6.5 Future Work
The system proposed in this thesis research is a new method of improving production
output, and as such, it is still being investigated for other limitations. In terms of system
potential, researching flatness measurement of the fuel tank surface can create an
opportunity for automatic parameter adjustment by manipulating the matching/heating
time of the fuel tank surface to further minimize the cycle time. Regarding parameter
adjustments, i.e., hole size and position, HMI interactive setup screen development should

be investigated to allow for simple setup adjustments.
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APPENDIX B: PLC Program for Camera Communication

SIMATIC

SIMATIC 300\CPU 317-2 PN/DP\...\FB97 - <offline>

FB97 - <offline>

"Rl Camera Send/Re TCP"

Name :
Author:

Time stamp Code:

Family:

Version: 1.4

Block version: 2
08/11/2013 03:38:19 PM

Interface: D5/16/2011 07:19:48 PM
Lengths (block/logic/data): 01562 01124 00028

INIT COM Bool FALSE
STAT

T_SEND TSEND

T_RCY TRCV 24.0

T _CON TCON 48.0

T_DISCON TDISCON 68.0

T_PARAM TCON_PAR 78.0

(=2l Struct 142.0
ip Word 142.0 wileko
CONNECTED Bool 144.0 FALSE
CONN._DONE Eool 144.1 FALSE
CONN_ BUSY Bool 144.2 FALSE
CONN_ERROR Bool 144.3 FALSE
CONN_SETA Bool 1444 FALSE
DISCONNECT Boal 144.5 FALSE
CONN_STATUS  |Word 146.0 WELGED
STATOS_SAV Int 148.0 0
SEND. REQ Eool 150.0 FALSE
SEND_DONE Bool 150.1 FALSE
SEND_BUSY Bool 150.2 FALSE
SEND_ERROR Bool 150, 3 FALSE
SEND_BEQ P Bool 150.4 FALSE
SEND_REQ 1 Bool 150.5 FALSE
SEND_STATUS  |Word 152.0 wH16H0
RECV. NDR Bool 154,0 FALSE
RECV_BUSY Boal 154.1 FALSE
RECV_ERROR Bool 154.2 FALSE
RECV_STATUS |Word 156.0 wi16H0
EECV_LEN o 158, 0. 0
BECV LEN & Int 160.0 0
ABORT REQ Bool 162.0 FALSE
ABORT_DONE Bool 162:1 FALSE
ABORT BUSY Bool 162.2 FALSE
ABORT_ERFOH |Bool 162.3 FALSE
ABORT BEQ I |[Bool 162.4 FALSE
ABORT _REQ P |Bool 162.5 FALSE
LBORT STATUS |Word 164.0 LESTE
STATO Bool 166.0 FALSE
SEND_DATA Array [1..50] ©Of Byte [168.0

Page 1 of 10
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ST

=

IATIC
SIMATIC 300\CPU 317-2 PN/DP\...\FB97 - <offline>

218.0
TEMP 0.0

RECV_DATA Array [1..50] Of Byt

Block: FBI7

PCP provides a g
service based on a data
It manages end-to-end o©
data transfer.

ervica,
complete

Furthermore, TCPF provides functions such as Sequencing, Flow Centrol
and BError detecticn and Recovery.

1 Clear Bits to start initlal connection

finr com #
#INIT_COM CONNE

R

TED

"Common C
DB . Fault. #Ci.

Reset SERD_REQ
R

1.CONN S

#C1.
CONN._SETA

#c1,
ABORT REQ

R

Network: 2 Set indiwvidual 1

*al connection ID for all following

metions

ID ¢f the connection.

the Ethernet interface
DP: or

DP or

B#16#5" for

~ "DEV_
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SIMATIC

SIMATIC 300\CPU 317-2 PN/DP\...\FB97 - <offline>

3) The parameter ACTIVE determines the type of conmection establishment:
~ FALSE: passive establishment
- TRUE: aective egstablishment

4) The parameter LOC PORT/REM_PORT' assigns the local/remote port numbers.
- if ACTIV=TRUE, remote port ls mandatory (i.e., local port is irrelevant)
= if ACTIV=FALSE, local port is mandidtory (i.e., remote port is irrelewvant

5) The parameter IP ADDRL .. IP ADDR4 identifies the remote IP address.

NNEC

T'E

#C1 i
- rCD
CONNECTED “SET TCP_ENDBOINT:"
| EN ENO
#C1.1D
#C1.ID 1D

BHle#2 IDEV_ID

on
"Common
DB".
Status.
System.
Always om —ACTIV
5000 |LOC_PORT
5000 —REM_PORT
10 IP_ADDR1
34 —IP ADDRZ
7 -1F ADDR3
212 IP_RDDR4

§T PARAM

#T_PARAM -(CON_DB

Page 3 of 10
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SIMATIC
SIMATIC 300\CPU 317-2 PN/DP\...\FB97 -

<pffline>

Network: 4 Establish TCP connection:

After the connection has been established, it is automdtically monitored and
maintained by the operating system ef the CPU.

If the connection has been irnterrupted, by any line break or due to the remote
communications partner, the active partner attempts to resstablish the

connection.

Therefore, the FB 65 "TCON" may not be called again.

#CL. i CON
CONNECTED T con
{ joit] - END
NN #CL.CONN
ETA INE
#C1. #C1.
CONN_SETA REQ DONE -~ CONN_DONE
fcl.rp #cl.cc
#C1.ID-ID

#Cl.
#T_PARAM BUSY — CONN_BUSY
#T_PARAM (CONNECT

HC1 .CONN &

#01.
ERROR — CONN_EREOR

On

#Cl.
CONN_
_STATUS - STATUS

Network: 5 Créate railsing edgé for the FBES "TCON"

to set up the TCP connéction (OBLOD imitial)
Indication of the conneetion status:

a) 1f the CPU may establish the specified connection after Stop/Run
immediately, the variable "CONNECTED" indicates HIGH (=1].

b) If the CPU is not able to establish the specified connection after Stop/Rum,
the variable "COMNECTED" remains LOW(=0).

c) Note: IE the instance DB is loaded by the user, the wvariable "CONNECTED"
indicates HIGH, although the connection may not be established yet.
However, the FB64 "TRCV" would indicate the STATUS=0x80C4, as long as the
connection has not been established.

#CL.
CONN_SETA #c1,
SR CONNECTED
s Q NoT |

#cl.

#CL.
CONN_DONE —R

114



SIMATIC

SIMATIC 300\CPU 317-2 PN/DP\...\FB97 - <off

Network: & Evaluate STATUS infermation

cured!

and save STATUS if ERBOR has been o

#C1.
CONN_

ouT

streams of bytes.

iividual nding range!

Note: Modify DATA and LEN parameter to your

. [ L
CONNECTED 4T SEND
EN - END

scl. s01.
SEND REQ DONE — SEND DONE

#( BEND_B

g1.ID
#€l.ID

ID
1 —LEN
I SEND 4
ATA i
#CL. #CL.
SEND_DATA —DATA ERROR
STATUS
Network: 8 Send OX

#C1.SEND
WE
#el,
SEND_DONE
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SIMATIC
SIMATIC 300\CPU 317-2 PN/DP\...\FB97 - <offline>

Send Error

#Cl.
SEND ERROR
5
"M99. 6"
R
MOVE
EN END
#
SEND_
STATUS 1IN QUT — MWR0D
Networ Send Data teo Camera

TEY,

"M301.0"

"301., 0™ wzi0s5.0m
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SIMATIC

SIMATIC 300\CPU 317-2 PN/DP\...\FB97 -

Net

the rising edge SEND_REQ to start the T_SEND function

wsy
kCclL.
SEND' BUSY

"M301.0"

#C1.
SEND_DONE

RROF
#cl.
SEND_FRROR

T o
"M301.0"

Network: 12

Evaluate STATUS informatien

and save STATUS if an FRROR has been ©

cured!

#C1.
SEND_ERROR

#CI.
STATUS SAV

In cuT
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SIMATIC
SIMATIC 300\CPU 317-2 PN/DP\...\FB97 -

<pffline>

Network: 13 Enable T RECV function

The data 1s stored inte the buffer specified with the ANY pointer of the
receive buffer (i.e., DATA parameter). After the data has been received, the
data is immediately available in the receive buffer. Receiving is indicated by
the NDR cutput parametér.

Mode LEN=0: The amount of data received is indicated within the RCVD LEN

parameter. The data can not be greater than the size specified
in the DATA paramster.

Mode LEN=x: The data is stored into a buffer whose length is specified by
the LEH parameter. If specified lerigth is reached, the
received data is available in the DATA area. The RCVD LEN signals
identical amount of bytes specified by the LEN input parameter.

Note: Modify DATA and LEN parameter to your individual receliving range!

4c1. o

i
CONNECTED #T BC
| EN - END
kel L
D
#C1. #C1l.
CONNECTED —EN R NOR — RECV_NDR
#01.ID 01 . F
#Cl.ID ID il
#C1.
32 -LEN BUSY -~ RECV_BUSY
# &l i
#C1. #cl.
RECV_DATA—DATA ERROR — RECV_ERROR
5
STATUS

#cl,
RCVD_LEN ~ RECV_LEN

Network: 14 1f new data available save the actual length of the data

RECV_NDR MEVE
1 jnie] ENO

i e

#C1. c1.
RECV_LENIN OUT - RECY_LEN S
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SIMATIC
SIMATIC 300\CPU 317-2 PN/DP\...\FB97 -

<pffline>

Network: 15 Evaluate STATUS infermation

and save STATUS if an ERROR has been occured!

RECV_ERRCOR MOVE
EN ENO

REC #C1.
STATOS IN QUT | STATUS_SAV

Network: 16 Invoke T DISC to abort TCP connection

The FB &6 "TDISCON" terminates a communications connection from the CPU to a
communications bar tner.

An existing connection is terminated when FB 68 ISCEN" is salled or when the
CBU has gone into STOP mode. To reestablish the connection, the FB &5 "TCON"
has to be inveoked again.

Note: Usually, Lhat function must never be invoked. Therefore, this functicn
remains disabled!

"Common
2] L
Status.
Systam. #T_DISCON
Always_Off T DISCON
1 EN ENO

§cl. $01s
ABCRT_REQ - REQ DONE

BOSY

#C1.
RBORT
ERROR — ERROR

#C1.
ABORT
STATUS — STATUS

Page 9 of 10
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SIMATIC

SIMATIC 300\CPU 317-2 PN/DP\...\FB97

- <of

Network: 17 Generate the raising edge for

T _DISC function block

"Commnon
DB™.
Status.
System.
Always_Off

#

i #
CONNECTED

AEQET_EUSY

#C1.
ABORT_DONE

Network: 18 Enable output ENO

fc1o f
ABDRT REQ
i

SR ABORT_REQ

R

Blwa
"Common
DB".
Status.
Systenm.
ARlways_en

SAVE

Page
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