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ABSTRACT 

Circular jets impinging vertically on flat surfaces have many practical 

applications in industry. Nozzle height-to-diameter ratio plays an important role in 

the performance of this type of jet. 

In this thesis a step by step approach has been followed to cover different 

aspects of impinging jets. In the first step, a steady Reynolds-Averaged Navier-

Stokes simulation has been carried out on impinging jets with different nozzle 

stand-off distances. A strong dependency of the jet characteristics on the nozzle 

height-to-diameter ratio was observed. The simulations show that an increase in 

this ratio results in larger shear stress and more distributed pressure on the wall. 

In the second step, an unsteady simulation using Large Eddy Simulation 

has been performed on an impinging jet with large stand-off distance. Good 

agreement was observed between the mean value results obtained from the 

current simulations and experiments. Unlike impinging jets with small stand-off 

distance, where the ring-like vortices keep their interconnected shape upon 

reaching the plate, no sign of interconnection was observed on the plate for the 

large stand-off distance case. A large deflection of the jet stagnation streamline 

was observed in comparison to the cases with small nozzle height-to-diameter 

ratios. Large fluctuations of the unsteady wall shear stresses were also captured. 

A boiling model was developed for impinging jets with heat transfer. An 

Eulerian-Eulerian two-phase flow model was implemented using an open source 

code for the simulation (OpenFOAM). Initially, an adiabatic two-phase model was 

developed for flow in a pipe. Following this, the energy equation was activated to 
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account for non-adiabatic and boiling conditions. The simulation predictions were 

found to be in reasonable agreement with the experimental data and show 

significant improvement over previous numerical results. Finally, the model was 

upgraded for an impinging jet flow by implementing new correlations. The results 

obtained from the current model show reasonable agreement with the 

experimental results. The model can be confidently used for the evaluation of 

adiabatic and non-adiabatic impinging jet flows. 
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INTRODUCTION AND LITERATURE REVIEW 
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1.1. Background and motivation 

Turbulent jets impinging on a flat surface are commonly used in many 

industrial applications where enhancement of heat and mass transfer is required. 

Examples of such applications include cooling, heating, cleaning and drying. In 

this type of flow, the flow field is a combination of several distinct features, such 

as a free jet, a stagnation flow, and a radial wall jet (see Fig. 1.1). Each of these 

flows has its own particular characteristics which have gained the attention of 

many researchers. 

 

 

Fig. 1.1 Definition schematic of an axisymmetric impinging jet 
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1.1.1. Adiabatic round impinging jets 

The characteristics of round impinging jets strongly depend upon several 

parameters such as Reynolds number, distance between the nozzle and the 

plate, nozzle geometry and the rate of turbulence introduced at the inlet to the 

domain (Manceau et al. 2014). 

The core of the free jet is surrounded by a growing shear layer. In this 

shear layer the development of the Kelvin-Helmholtz instabilities results in the 

formation of ring vortices. Yule (1978) defined the term ―vortex‖ as a part of a 

flow field accompanying a concentrated, continuous, coherent distribution of 

vorticity which is uniform in the direction of the vorticity vector. With increasing 

downstream distance the ring vortices change into large eddies. An eddy may be 

described as a vorticity containing region of fluid which can be identified as a 

moving coherent structure in the flow (Yule, 1978). These eddies are significant 

features of the turbulent region of the jet. However, features like three-

dimensionality and irregularity of the vorticity field restrict us fromdenoting them 

as a ring vortex. 

The ring vortices which change into large eddies (see Figs. 1.2 and 1.3) 

have a three-dimensional shape and have lost their axisymmetric behaviour. 

These eddies influence the flow field and cause pressure fluctuations on the 

plate (Hadziabdic and Hanjalic, 2008). This phenomenon causes an unsteady 

behaviour in the radial distributions ofwall shear stress and wall pressure and will 

eventually influence the rate of the heat transfer from the plate (Hall and Ewing, 

2006). A wall jet is formed on the plate which is totally under the influence of the 
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unsteady structures impinging on the plate. These impinging unsteady structures 

cause separation and reattachment of the flow in the wall region which are 

associated with variations in the wall shear stress (El Hassan et al. 2013). 

 

Fig. 1.2 Iso-surfaces of λ2 criterion colored with velocity magnitude contours 

close to the nozzle exit 

 

Fig. 1.3 Iso-surface of pressure contours (-20 Pa) (top view) 
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The jet exit mean velocity remains constant inside the core part of the free 

jet region, where the turbulence intensity is very low. Once the core reaches its 

maximum penetration, which is associated with an increase in turbulence 

intensity, a sharp decay in the jet centreline velocity occurs. Basically, 

penetration of the turbulence from the shear layer to the core part of the jet 

destroys the jet and results in a large decay in jet streamwise velocity. In the 

impinging zone, the flow loses its axial velocity and changes direction due to the 

presence of the plate. A wall jet is formed on the plate and attains a fully 

developed behaviour as it travels towards the downstream. 

There are many numerical and experimental studies in the literature on 

different aspects of impinging jets. These analyses include investigations on the 

steady and unsteady flow parameters, effect of nozzle stand-off distance, 

behaviour of wall shear stress, pressure distribution and also separation and 

reattachment of flow along the wall jet zone. 

On the experimental side, the work carried out by Yule (1978) has been of 

particular interest to researchers because of its fundamental overview on the 

physics of impinging jets. Yule (1978) showed that for impinging jets with large 

distance between the nozzle and the plate, large eddies have a wide range of 

sizes and trajectories with no symmetry between them. This phenomenon results 

in an unsteady three-dimensional behaviour of large scale structures causing 

pressure fluctuation in the impinging zone. 

The effect of nozzle stand-off distance on flow parameters has been 

investigated by different researchers. Beltaos and Rajaratnam (1974, 1977) 
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classified impinging jets with H/D > 8.3 into three sub-regions including free jet, 

impinging region and wall jet zone as shown in Fig. 1.1. Following this, Giralt et 

al. (1977) conducted experiments on axisymmetric turbulent impinging jets for 3 

< H/D < 25. They developed an experimental correlation between flow 

parameters and different H/D ratios. Although their study covered different H/D 

cases, it was limited to a mean value analysis and did not present any time 

history of the data. 

Another aspect of impinging jetswhich has been investigated by different 

researchers is the behaviour of wall shear stress and static pressure in different 

flow configuration. Bradshaw and Love (1961) measured velocity, wall static 

pressure and skin friction for a case with H/D = 2. They observed that the high 

pressure region on the plate is slightly larger than the diameter of the jet. The 

peak of the wall skin friction magnitude occurred at a radius equal to that of the 

jet. A study carried out by Deshpande and Vaishnav (1982) showed a decreasing 

trend for the wall shear stress as the nozzle stand-off distance increases. Recent 

unsteady analysis of El Hassan et al. (2013) on the wall shear stress using 

particle image velocimetry showed significant influence of large-scale vortical 

structures on the wall shear stress (Re = 1260, H/D = 2). The influences of the 

vortex ring, the secondary and the tertiary vortices were reported to be the main 

mechanisms involved in the wall shear stress variation. 

On the numerical side, there are different Reynolds-Averaged Navier-

Stokes (RANS) analyses as well as Large Eddy Simulations (LES) and Direct 

Numerical Simulations (DNS) of impinging jets. In case of RANS analysis, most 
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of the studies are focused on the challenges associated with the turbulence 

modeling of impinging jets. 

The research of Craft et al. (1993) is one of the fundamental RANS 

studies on impinging jets which investigates the issues with the turbulence 

modeling for this type of flow. The benchmarking of the simulations was 

performed using the experimental results of Cooper et al. (1993). Their study 

suggested the higher performance of the Reynolds Stress Model with the wall 

reflection models compared to other turbulence models. 

Due to the limitations associated with LES and DNS computations, most 

of these studies deal with small H/D ratios. Olsson and Fuchs (1998) performed 

large eddy simulations for a case with H/D = 4. The purpose of their simulations 

was to study the turbulence parameters and the dynamic behaviour of impinging 

jets. They noticed generation of secondary vortices in the wall jet region which 

was found to be a result of primary vortices generated at the jet exit shear layer. 

They also observed that the primary vortices do not have an axisymmetric shape 

when approaching the plate. 

Hadziabdic and Hanjalic (2008) used LES to analyze a circular impinging 

jet at Re = 20,000 and H/D = 2. The case that they analyzed showed that due to 

the small distance between the nozzle and the plate, the generated vortices are 

short-lived and undergo a faster stretching breakdown than in a free jet due to 

the radial deflection. They also noticed that because of the jet flapping, the 

stagnation point meanders in time around the jet geometrical centre. They 

concluded that the second peak in the Nusselt number observed along the plate 
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was due to the reattachment of the recirculation bubble and associated 

turbulence production. 

Uddin et al. (2013) used LES to model impinging jets at two Reynolds 

numbers of 13,000 and 23,000 at H/D = 2, in order to extract the reason for the 

second peak observed in the radial distribution of the Nusselt number profile. 

They found that the flow acceleration in the developing region of the boundary 

layer is closely related to the secondary peak in the radial distribution of Nusselt 

number. 

Wu and Piomelli (2014) performed LES to study the roughness effects on 

the evolution of azimuthal vortices in impinging jets with H/D = 1 and Re = 

66,000. They modeled one case with laminar inflow and another one with 

turbulent inflow conditions. They observed a wider and weaker wall jet for the 

rough surface compared to the smooth surface for the turbulent case. They 

noticed that the peak of the velocity profile on the wall jet was shifted away from 

the plate. They concluded that roughness results in transition to the turbulence 

regime even if the inlet jet is laminar. 

 

1.1.2. Round impinging jets with boiling heat transfer 

One of the important applications of impinging jets in industry is their 

usage in removal ofalarge amount of heat from a surface. For example, 

impinging jets are used to cool electronic components in the computer industry 

and to dissipate the heat in pistons in the automotive industry. Boiling heat 

transfer may increase the heat transfer rate, while in other cases it significantly 
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reduces the heat transfer, which could allow the wall temperature to increase to 

the burnout point. Boiling heat transfer is characterized by a curve with different 

regimes, as shown in Fig. 1.4. In Regime I, due to the small temperature 

difference between the wall and liquid (wall superheat), the heat transfer 

mechanism is only through free convection. This single-phase heat transfer 

problem can be treated using common analytical solutions for free convection. 

The nucleate boiling regime, which is characterized by two sub-regimes (II and 

III), begins once bubbles are generated on the surface. Regime II refers to the 

condition when the isolated bubbles are formed at their own nucleation sites 

without interacting with each other when departing the surface. At higher wall 

superheat (Regime III), bubbles coalesce at different directionsas a consequence 

of higher nucleation frequency. Further increase of the wall superheat causes the 

boiling curve to rise to the local maximum heat flux point, called the critical heat 

flux (CHF). At this stage the high generation of vapor compared to previous 

stages results in a blockage between the surface and liquid. Therefore, heat 

must be transported through the vapor layer which is less efficient and results in 

a reduction in the heat flux. In the design of appliances working with boiling heat 

transfer, the CHF point is defined as a thermal limit in which further increase of 

wall superheat is accompanied with lower heat flux removal. 
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Fig. 1.4 Typical boiling curve and associated boiling regimes (Coursey, 2007) 

 

The transition boiling regime (Regime IV) occurs after the CHF point, 

characterized by increasing wall temperature while the heat flux removal 

decreases. This is due to the increase of bubbles generated on the surface (dry 

area). Therefore, this regime is not known to present any practical applications. 

Finally, following the transition regime, the boiling curve reaches a local minimum 

point denoted as the Leidenfrost point. At this point, the surface enters the film-

boiling regime (V). In this regime, in order to transfer heat to the liquid, it must be 

conducted across a continuous vapor film. This regime of heat transfer is an 

inefficient processand is not recommended for cooling purposes. It results in high 

heat fluxes but the temperature requirement is very high. 
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There are a number of studies in literature on the numerical modeling of 

subcooled boiling. Basically, most of these studies deal with the challenges of 

numerically modeling the boiling phenomenon and correlating it with the 

experimental results.In this regard, the model developed at Rensselaer 

Polytechnic Institute (RPI) by Kurul and Podowski (1990, 1991) has gained 

significant attention. According to the RPI model, the boiling heat transfer is 

divided into three components; convective, quenching and evaporative heat 

fluxes. The convective part provides for single-phase convection, quenching 

refers to liquid filling the wall vicinity after bubble detachment due to vaporization 

and the evaporative component is for the fluid that evaporates. 

The numerical simulation of boiling heat transfer is performed by 

employing different two-phase flow methods. The Eulerian-Eulerian and Volume 

of Fluid (VOF) approaches are widely used for this purpose. The Eulerian-

Eulerian method is more accurate because it solves the balance equations of 

mass, momentum and energy for both phases separately. However, it is 

computationally more expensive. The coupling of two phases is carried out by 

introducing source/sink terms such as interfacial forces and heat flux in these 

equations. 

Krepper and Rzehak (2011) used the Eulerian-Eulerian approach in CFX 

software for modeling the boiling heat transfer in a pipe flow. Most of their results 

showed good agreement with the experimental results, except for the bubble size 

radial distribution. Evaluation of their model shows that there is no interfacial area 

concentration (IAC) equation solved in their simulation. IAC is responsible for 
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changes in the bubble size and takes into account the effect of bubble break-up 

and coalescence in the model. In their recent study, Krepper et al. (2013) 

updated their model by implementing a population balance method which takes 

into account the variation of bubble size due to bubble breakup/coalescence and 

condensation/evaporation processes. The quality of their results was significantly 

improved, especially for the bubble size distribution. 

Michta (2011) and Michta et al. (2012) used OpenFOAM to model the 

boiling heat transfer in a pipe flow and considered the IAC equation as well as 

different interfacial forces in the model. The choice of OpenFOAM was based on 

the fact that it is an open source code and gives permission to the user to modify 

the code and to incorporate the appropriate experimental correlations. They 

found reasonable results in the adiabatic part of their code, however, for the 

boiling part the results were not in a good agreement with the experiments. 

Kunkelmann and Stephan (2010) simulated the nucleate boiling heat 

transfer using the Volume of Fluid (VOF) method in OpenFOAM. The boiling of a 

single bubble was simulated by modifying the OpenFOAM default solver. Their 

model captured the growth, departure and movement of the bubble. Good 

agreement with the experimental results was observed for the bubble size as well 

as the mean wall superheat. 

There are several different interfacial forces acting on both the continuum 

and dispersed phases in two-phase flows. They include, drag, lift, wall 

lubrication, turbulent dispersion and added mass forces. In order to properly 

model these interfacial forces which have a strong influence on the distribution of 
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the bubbles in two-phase flow simulations, different correlations have been 

suggested by different researchers. Drag is one of the primary interfacial forces 

which is generated by the continuous phase on the dispersed phase due to the 

movement of the dispersed phase. The correlation developed by Ishii and Zuber 

(1979) has been widely used for modelling the effect of the drag force. Tomiyama 

et al. (2002) measured trajectories of single air bubbles in simple shear flow to 

determine the transverse lift force acting on single bubbles. Their correlation has 

gained a lot of attention in the literature for modelling the lift force in two-phase 

flows. Antal et al. (1991) was the first to develop an analytical expression for the 

wall lubrication force. This is a repulsive force generated by the wall which 

pushes the bubbles away from it. Later, Tomiyama (1988) improved this model to 

pipe geometries. Frank (2005) upgraded the Tomiyama (1998) wall lubrication 

force coefficient and made it independent of the geometry. The virtual mass force 

which is generated due to the relative acceleration of one phase to the other is 

another important interfacial force. The correlation developed by Zuber (1964) 

has been widely used for the virtual mass force by many researchers. 

Narumanchi et al. (2008) developed a numerical model for boiling heat 

transfer in an impinging jet. The application of their study was in the cooling of 

power electronic components. They employed the Eulerian-Eulerian approach in 

Fluent software and found reasonable results for the prediction of wall superheat 

in the stagnation point region. However, no information was provided about the 

use of IAC and other interfacial force equations in their model. 
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Abishek et al. (2013) numerically studied the effect of heater-nozzle ratio 

on the boiling phenomenon in an impinging jet. The jet Reynolds number was 

2,500 with a subcooling of 20°C. They used the RPI model for decomposing the 

heat flux on the impingement plate and RNG k-ε to model the turbulence. The 

Eulerian-Eulerian two-phase flow model was used for the simulation. They found 

that irrespective of the heater-nozzle size ratio, at high superheat temperatures 

the quenching heat flux contributes to the major part of the heat flux. They also 

developed a correlation for the heat flux as a function of wall superheat and the 

size of the heater. 

 

1.1.3. Objectives and outline of the dissertation 

As the literature shows, there are many numerical and experimental 

simulations to study the various aspects of impinging jets. On the experimental 

side, detailed unsteady analysis of flow structures seem to be limited. On the 

numerical side, most of the unsteady studies are either RANS based or only 

cover small stand-off distances (H/D < 4). 

In the first phase of this dissertation (Chapter 2), the mean value analysis 

is carried out on impinging jets to evaluate the effect of nozzle stand-off distance 

on different mean flow parameters. In this regard, Reynolds-Averaged Navier-

Stokes simulations are carried out using different turbulence models at three 

nozzle height-to-diameter (H/D) ratios. 

In the second phase (Chapter 3), due to the limited reporting of unsteady 

results, the analysis is extended to the transient case to better understand the 
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flow features at large nozzle height-to-diameter ratios. The objective is to answer 

critical questions raised by the steady analysis in Chapter 2. In this regard, an 

unsteady simulation using Large Eddy Simulation (LES) is carried out on an 

impinging jet with H/D = 20. 

Commercial software has limitations in implementing the appropriate 

experimental correlations for every simulation, Furthermore, due to the 

inaccuracy observed in the previous numerical simulations of boiling heat 

transfer, it is of interest to develop a CFD code to simulate the boiling heat 

transfer for an impinging jet. As the literature shows, previous CFD approaches 

for boiling simulation in impinging jets do not take into account all aspects of two-

phase flow phenomenon, particularly in the boiling part of the model. In this 

regard, adetailed Eulerian-Eulerian two-phase flow model was developed using 

the open source codeOpenFOAM, which takes into account the effects of 

interfacial forces, breakup/coalescence of the bubbles as well as the interfacial 

area concentration (IAC) equation (chapter 4). It is expected that the model 

developed in this dissertation presents more accurate results than previous 

investigations and advances the state-of-the-art research on boiling simulation 

for both pipe flow and impinging jets. 
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CHAPTER 2 

RANS ANALYSIS OF THE EFFECT OF NOZZLE STAND-OFF DISTANCE 

ON TURBULENT IMPINGING JETS 
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2.1. Introduction 

Reynolds-Averaged Navier-Stokes (RANS) simulations have been carried 

out on turbulent impinging jets to evaluate the effect of nozzle height-to-diameter 

ratio on different flow parameters. In this regard, three cases with different H/D 

ratios have been selected for the simulations, corresponding to short (H/D = 2), 

intermediate (H/D = 6) and long (H/D = 18.5) jets. 

Circular jets impinging vertically on flat surfaces have many practical 

applications such as in heating, cooling, metal cutting, fabric weaving and 

cleaning. Most of the experiments on impinging jets have been performed for 

short stand-off distances, i.e., with an impingement height (H) to nozzle diameter 

(D) ratio of less than six. Cooper et al. (1993) carried out experiments on a jet 

impinging on a large plane surface and measured mean and turbulence 

quantities in different regions of the jet. They considered two Reynolds numbers, 

23,000 and 70,000, while the H/D ratio varied from two to ten, with particular 

focus between two and six. For H/D < 6, researchers have found that the core of 

the jet is still developing when reaching the plate surface (Nishino et al. 1996; 

Hadziabdic and Hanjalic 2008, Shademan et al. 2013). 

For larger impingement heights (H/D > 8.3), Beltaos and Rajaratnam 

(1974, 1977) classified the flow into three different regions: the free jet portion 

(region I), the impingement zone (region II) and the axisymmetric wall jet portion 

(region III), as illustrated in Fig. 2.1.Giralt et al. (1977) conducted experiments on 

axisymmetric turbulent impinging jets with H/D ratios ranging from 3 to 25 at Re = 
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34,000 up to 80,000. Based on their experimental data, they developed a 

conceptual model for submerged, axisymmetric, turbulent impinging jets, which 

can be used to analyze the effect of increasing the nozzle distance from the 

plate. Recently, Rajaratnam et al. (2010) performed measurements on an 

impinging jet with a large H/D ratio of 18.5 at Re = 100,000 using a standard 

constant temperature hot-wire anemometer and evaluated the mean and 

turbulence characteristics in regions I and II. They noticed self-similarity in the 

radial distribution of mean velocity profiles up to regions close to the 

impingement zone. 

 

Fig. 2.1 Definition schematic of an impinging circular jet with large height-to-

diameter ratio (adapted from Rajaratnam et al. (2010)) 
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Numerical simulation of a round jet impinging on a flat surface using 

Reynolds-Averaged Navier-Stokes (RANS) turbulence models have been the 

subject of considerable research, forming part of the 2nd ERCOFTAC-IAHR 

Workshop on Refined Flow Modelling in 1993. Subsequently, Craft et al. (1993) 

published their research using different turbulence models to analyze the heat 

transfer in the impingement region of the jet, i.e., region II. They observed that 

the results were not in good agreement with experimental data and attributed this 

to the weakness associated with the eddy viscosity stress-strain relationship in 

the turbulence models used. They also implemented second-moment closure 

models. Due to the incorrect response of the wall reflection process, the eddy 

viscosity model (k - ε) and the basic Reynolds Stress Model (RSM) failed to 

produce reasonable results. However, an improved RSM which takes into 

account the wall reflection effects generated satisfactory results. 

Most of the previous analyses of impinging jets deal with a specific nozzle 

stand-off distance. As mentioned earlier, the experiments by Giralt et al. (1977) 

were carried out to study the effect of stand-off distance, but the evaluation is 

limited to the quantities inside the jet, the variation of turbulence intensity along 

the jet axis and presentation of a numerical model for determining the wall shear 

stress. There is a lack of information regarding the effect of impingement 

distance on the mean and turbulence quantities in different regions of the 

impinging jet, including the free jet portion, impinging zone and the wall jet 

region. The focus of the current study is to investigate the mean and turbulence 

characteristics in all three regions of the impinging jet flow for different H/D 



20 
 

values. In addition, it is also of practical interest to evaluate the mean and 

turbulence quantities in regions very close to the wall because of the 

uncertainties associated with the experimental techniques in this region. 

In this chapter, three-dimensional RANS simulations have been carried 

out for H/D = 2, 6 and 18.5 at Re = 100,000. H/D = 2 represents a jet with 

impingement occurring in the potential core region. Jets with H/D = 6 are in a 

transitional state and the core of the jet is almost fully penetrated by the external 

flow. At H/D = 18.5, the jet can be considered as fully developed with distinct 

regions of flow including potential core, free jet and impingement zone. The 

experiments performed by Rajaratnam et al. (2010) have been used as the 

primary benchmark to validate the numerical model. However, other 

experimental data from Bradshaw and Love (1961) and Giralt et al. (1977) are 

also used to assess the accuracy of the computational results. 

 

2.2. Numerical method 

2.2.1. Geometry modelling and boundary conditions 

In this research, a high velocity air jet exiting from a circular nozzle 

impinges vertically on a flat plate and spreads out as a radial wall jet. The nozzle 

has an exit diameter of D = 23.4 mm. The stand-off distances between the nozzle 

exit plane and the plate are H = 46.8 mm (H/D = 2), 140.4 mm (H/D = 6) and 432 

mm (H/D = 18.5). The value H/D = 18.5 is specifically chosen to match the 

experimental conditions used by Rajaratnam et al. (2010). The inflow direction is 



21 
 

normal to the plate. Details of the computational domain and mesh generated for 

the current simulations are shown in Fig. 2.2. 

  

 

Fig. 2.2 (a) Full 3D geometry, (b) cross-section of the computational domain and 

mesh, and (c) domain dimensions and boundary conditions 

 

The full 3D geometry for the H/D = 18.5 case is illustrated in Fig. 2.2a and the 

structured mesh system and half cross-section of the domain with the boundary 

Inlet 

Inlet 
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conditions applied in the numerical model are shown in Figs. 2.2b and 2.2c, 

respectively. In Fig. 2.2c, the jet is aligned with the x-axis and r is the radial 

distance from the x-axis. To ensure that the location of the outlet boundary has 

negligible influence on the pressure and velocity fields, the computational domain 

is taken to have a radius of 0.4 m (17D) along the plate. Shorter distances 

between the pressure outlet boundary and the jet axis were taken for the H/D = 2 

and 6 cases, but sufficiently long enough to minimize the influence of this 

boundary on the flow field. 

A constant velocity of 61m/s is imposed at the inlet, corresponding to a 

Reynolds number of 100,000 based on the nozzle exit velocity and diameter. 

Since the air escapes to the atmosphere through the side and top boundaries of 

the computational domain, they are set as pressure outlets. The plate is 

considered to be a no-slip boundary. The Low Reynolds Number Modelling 

(LRNM) method (Launder and Spalding, 1974) is used as a numerical model to 

accurately capture the wall effect. 

In order to provide a fine mesh with minimal skewness in the boundary 

layer near the impinging wall, the mesh system is constructed of hexahedral 

elements. A high-density mesh, as shown in Fig. 2.2b, is used to capture the high 

shear stresses within the jet, as well as those generated near the plate, 

particularly in the impingement zone. For the rest of the domain, where the wall 

effect is smaller, a coarser mesh is used. Different mesh schemes, including fully 

structured, fully unstructured and hybrid meshes with different numbers of cells 

were tested. Finally, based on comparison of the simulated and experimental 
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results, the fully structured mesh was chosen for all subsequent simulations. Grid 

independence tests were also performed, the grid size being increased in 20% 

increments until no noticeable variance in the drag force exerted on the plate was 

observed. The total number of cells required to ensure a grid independent 

solution from the current simulations was approximately 1.1 x 106 for H/D = 2, 

1.38 x 106 for H/D = 6 and 1.84 x 106 for H/D = 18.5. 

 

2.2.2. Governing equations 

The impinging jet flow is modeled by the steady 3D incompressible RANS 

equations, representing conservation of mass and momentum balance. These 

equations, in tensor form, are: 

∂u i

∂x j
= 0              (2.1) 

∂

∂x j
 u iu j =

∂

∂x j
 ν(

∂u i

∂x j
+

∂u j

∂xi
) −

1

ρ

∂p 

∂xi
−

∂ui u j

∂x j
         (2.2) 

where xi, ui, ui′, p, ρ and ν denote the coordinate directions, velocity, the velocity 

fluctuations, pressure, density and kinematic viscosity, respectively, and the 

over-bar indicates a time-averaged quantity (Hoffmann and Chiang, 2000). 

Cooper et al. (1993) has reported that for the simulation of impinging jets, 

the k - ε model over-predicts the turbulent kinetic energy near the stagnation 

point. In order to reduce this effect, different turbulence models, which take into 

account the non-isotropic nature of the turbulent viscosity, have been considered. 
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The Realizable k – ε model (Shih et al. 1995), the k - ω SST (Shear Stress 

Transport) model (Menter, 1994) and the Reynolds Stress Model (RSM) 

(Launder et al. 1975) have been implemented in the current simulations. For the 

Realizable k - ε model, the LRNM is used.The k - ω SST turbulence model takes 

into account the low-Re effects in the flow. In the SST version of the model, the 

standard k – ω model is used for the near-wall region, combined with a standard 

k – ε model in the fully turbulent zone (Menter, 1994). The Reynolds Stress 

Model (RSM), which is also used in this study, takes into consideration multi-

scale and anisotropic effects of turbulence. In RSM, a transport equation is 

solved for each of the unknown stresses in the Reynolds stress tensor. A wall 

reflection scheme and pressure gradient terms are included in the model 

(Launder et al.1975). The details of these models can be found in FLUENT 

6.3.26 User’s Guide. 

The finite volume method is used to discretize the governing equations, 

with the QUICK scheme for discretization of the convective terms. The Standard 

scheme for the pressure interpolation is used. For the pressure-velocity coupling, 

the SIMPLE algorithm developed by Patankar and Spalding (1972) has been 

applied. FLUENT 6.3.26 is used to solve the discretized governing equations. 

During the simulations the drag force exerted on the plate was monitored, and 

the solution was considered converged when no significant change in drag was 

observed (changes less than the order of 10-3). For all results presented in this 

chapter, the residuals of the continuity, momentum and turbulence equations are 

all of the order of 10-4 or less. 
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2.3. Results 

To understand the effect of the nozzle height on the behaviour of 

impinging jets, different mean and turbulent flow parameters have been analyzed 

at various H/D ratios. These quantities include the decay of centreline velocity, 

radial distribution of axial velocity, pressure and shear stress distribution along 

the plate, and mean and root mean square (rms) velocities in the wall jet region. 

 

2.3.1. Centreline velocity 

To validate the current CFD simulations, the results are compared with the 

available experimental data of Giralt et al. (1977) and Rajaratnam et al. (2010). 

Although there are three distinct cases in the current simulations (H/D = 2, 6 and 

18.5), for the purpose of identifying the best RANS turbulence model to use for 

subsequent analysis, only the H/D =18.5 case was selected for a detailed 

comparison. According to the results shown in Fig. 2.3, the Realizable k - ε and 

RSM models show some over-prediction of the centreline velocity entering the 

impingement zone, but recover to provide a close match to the data of 

Rajaratnam et al. (2010) near the plate surface. On the other hand, the k - ω SST 

model provides a good agreement with the data of Rajaratnam et al. (2010) 

through the impingement zone and very close to the plate. Note that k - ω SST 

activates the k - ε model in regions where there is no wall effect. 
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Fig. 2.3 Comparison between computational and experimental centreline velocity 

 

All three models show good agreement with the H/D = 18.5 experimental 

data of Rajaratnam et al. (2010) as the flow approaches the plate (region II), but 

Fig. 2.3 also shows that RSM yields more accurate centreline velocity in the free 

jet (region I). Based on this comparison, and also considering that RSM is a non-

isotropic turbulence model, the RSM was selected as the main turbulence model 

for further simulations in all H/D cases. The following sections investigate the 

variation of the centreline velocity as the H/D ratio increases from 2 to 18.5. 

 

H/D=2 

H/D=3 

H/D=6 

H/D=6.6 
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2.3.1.1. H/D = 2 

The case of H/D < 6 represents an impinging jet where the core of the jet 

reaches the plate and has not yet been fully penetrated by the ambient flow. No 

fully developed free jet region exists for this type of impinging jet and different 

regimes of the jet are not distinguishable. To obtain a better understanding of this 

kind of impinging jet, H/D = 2 was chosen for the current CFD study and the 

results are compared with the available experimental data of Giralt et al. (1977) 

at H/D = 3 (see inset in Fig. 2.3). This comparison confirms that the current 

results follow the expected trend. For H/D = 2, no significant decay in the 

centreline velocity between the nozzle and the plate is observed, except in the 

impinging zone which starts around x/D = 1 and extends to the stagnation point. 

 

2.3.1.2. H/D = 6 

As previously discussed, H/D = 6 represents an intermediate regime of an 

impinging jet in which the core of the jet has reached the maximum penetration 

(Beltaos and Rajaratnam, 1977). Therefore, the current CFD analysis was 

carried out at H/D = 6 and the results are compared with the experimental data of 

Giralt et al. (1977) at H/D = 6.67 and the free jet results of Shinneeb et al. (2008) 

(see inset in Fig. 2.3). Similar to H/D = 2, at H/D = 6 no decay in the centreline 

velocity is observed up to the impinging zone (i.e., 0 <x/D < 5), which confirms 

that the core of the jet is still developing up to a location very close to the plate. 

Comparing the results with a free jet (Shinneeb et al. 2008), it is clear that the jet 
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is influenced by the impingement wallfor x/D > 5. Results for the radial 

distribution of the axial velocity are discussed in Section 2.3.2. 

 

2.3.1.3. H/D = 18.5 

According to the literature discussed above and also based on the results 

shown in Fig. 2.3, H/D = 18.5 represents an impinging jet in which all three sub-

regions of an impinging jet co-exist, namely the free jet region, impingement zone 

and wall jet region. Figure 2.3 shows that for H/D = 18.5, the core of the jet is still 

developing up to about x/D = 6and no decay in the centreline velocity can be 

observed. For x/D > 6, the free jet region starts to develop and a large decay in 

centreline velocity occurs up to about x/D = 15 as the ambient flow is entrained 

with the jet. For x/D > 15, the flow senses the plate and a much sharper decay in 

the centreline velocity can be seen compared to the decay in the region 6 < x/D < 

15. This is due to the transfer of the momentum from the axial to the radial 

direction. 

One can note from Fig. 2.3 that the results of Rajaratnam et al. (2010) 

deviate significantly from the results of the present simulations and the 

experimental results of Giralt et al. (1977) for x/D < 14. It is important to recall 

that the design of the nozzle has an impact on the downstream evolution of the 

jet (Xu and Antonia, 2002). The shape of the nozzle affects the behaviour of the 

shear layer at the jet exit, influencing flow characteristics such as jet expansion in 

the radial direction, jet development and most importantly the interaction with the 
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impingement zone. This could be the reason for this discrepancy. Nevertheless, 

for x/D > 17, where the flow approaches the impingement point, the mean values 

of the streamwisecentreline velocity obtained from the CFD calculations (H/D = 

18.5) match very well with the measurements of Rajaratnam et al. (2010), and 

fall between the results of Giralt et al. (1977) corresponding to H/D = 15.6 and 

H/D = 22. 

 

2.3.2. Radial distribution of velocity 

Figure 2.4 illustrates the effect of H/D on the radial distribution of the 

streamwise mean velocity, normalized by the local maximum value Um, for 

locations near the impingement plate (0.785 < x/H < 0.99). The radial distance is 

normalized by the jet half-width δ1, defined as the radial location where U = 

0.5Um.  

For H/D = 2, Fig. 2.4a shows that there is a slight shift in the peak of the 

streamwise velocity profiles towards the axis when moving from x/H = 0.785 to 

0.93. This phenomenon confirms that the flow is still accelerating and results in a 

transfer of momentum from the axial to radial direction in the region 0.785 < x/H 

<0.93. For the rest of the axial stations x/H = 0.97, 0.98 and 0.99, the streamwise 

velocity profiles collapse on each other. 

In Fig. 2.4b the streamwise velocity profiles at several axial stations are 

plotted for H/D = 6. The flat shape of the profile (no decay in the centreline 

velocity) at the x/H = 0.785 station shows that the core of the jet (with some 
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minor losses) has retained its top-hat shape up to this station. The peak 

observed in the other profiles is located off the centreline, which confirms that the 

flow has started to change direction from axial to radial. Comparison of the jet 

diameter at similar axial stations for H/D = 2 and H/D = 6 (Figs. 2.4a and 2.4b) 

shows a decrease in this value as the H/D ratio increases. 

The velocity profiles at stations very close to the plate (x/H = 0.98 and 

0.99) bring out another important difference between the H/D = 2 and 6 cases. 

Note that due to limitations in experimental techniques, measurements in regions 

very close to the plate are susceptible to large uncertainties. Figure 2.4a 

illustrates that there is a collapse in the velocity profiles at these stations for H/D 

= 2, which suggests that the flow has changed direction before these stations. 

However, for the same stations with H/D = 6, some changes in the peak of the 

profiles can be observed in Fig. 2.4b, indicating that momentum transfer occurs 

from the axial to the radial direction even at these stations very close to the plate. 

Figure 2.4c shows that the velocity profiles at all x/H stations have the same 

peak region along the centreline. This implies that the core of the jet is not 

developing anymore and the flow has reached an almost fully developed 

condition. The simulation results presented in Fig. 2.4c are consistent with the 

classification of impinging jets based on the H/D ratio presented by Beltaos and 

Rajaratnam (1974, 1977). 
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Fig. 2.4 Mean velocity distribution at different x/H stations, comparing 

experimental data and CFD results; (a) H/D = 2, (b) H/D = 6, (c) H/D = 18.5 
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2.3.3. Radial distribution of shear stress 

2.3.3.1. Shear stress in regions I, II and III 

Figure 2.5 shows the comparison between radial distribution of shear 

stress for three H/D ratios. The results show that there is a local maximum and 

minimum in the radial distribution of the shear stress (Figs. 2.5a, 2.5c and 2.5e). 

The first peak (maximum) occurs due to the entrainment of the ambient air into 

the exiting flow from the nozzle. As the flow expands in the radial direction the 

peak loses its magnitude. The second peak (minimum) is located in the region 

very close to the wall. It can be seen that as the flow gets closer to the wall the 

magnitude of the peak shear stress starts to increase, and at a specific station it 

starts to exhibit a decreasing behaviour. A good representation of this 

phenomenon can be seen in the inset (Figs. 2.5b, 2.5d, 2.5f) where the contours 

of uv   /Uj
2 in the impingement zone of the computational domain have been 

illustrated. In this figure, the positive peak shear stress is observed at x/H 

stations between the nozzle and the impingement zone. In the region where the 

flow changes direction from axial to radial, both positive and negative values of 

shear stress can be seen, and for the region very close to the plate, only the 

negative values of shear stress remain. Comparison of the shear stress profiles 

at different H/D shows that the magnitude of the peak value of the shear stress in 

the region close to the wall (x/H = 0.97 ~ 0.98) increases when H/D increases 

from 2 to 6 and then changes to a decreasing trend for H/D from 6 to 18.5. 
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Fig. 2.5 Comparison of experiments and CFD for the shear stress profiles uv   /Uj

2 

at different x/H stations and H/D ratios (continued) 

 

(b) 

(c) 

(d) 

(a) 
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Fig. 2.5 (continued) Comparison of experiments and CFD for the shear stress 

profiles uv   /Uj
2 at different x/H stations and H/D ratios 

 

Figure 2.5e compares the predicted shear stress with those of Rajaratnam et al. 

(2010) at H/D = 18.5. At most x/H stations, except very close to the plate at x/H = 

0.955 and 0.97, the CFD results match well with the experiments. Measurements 

at locations very close to the wall are associated with higher uncertainties. The 

well-known difficulties of experimental techniques in accurately capturing the 

large variation of shear stress in regions very close to the wall (x/H = 0.97 ~ 0.99) 

further support the contributions of CFD analysis in these regions. 

(e) 

(f) 
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2.3.3.2. Wall shear stress 

Figure 2.6 displays the wall shear stress distribution from the current 

simulations and the impinging jet measurements carried out by Alekseenko and 

Markovich (1994) at Re = 41,600 and H/D = 2. Also shown are the experimental 

results of Bradshaw and Love (1961) at Re = 150,000 and H/D = 18. In this 

figure, the radial direction is non-dimensionalized by the jet height, while the 

shear stress is normalized by 𝜌Uj
2. The quantity plotted along the vertical axis is 

chosen to be consistent with other studies. 

According to this figure, the peak wall shear stress is increased when the 

distance between the nozzle and the plate is increased, which is similar to the 

trend predicted by the numerical model of Giralt et al. (1977). As noted by 

Giraltet al. (1977) for small nozzle heights, the jet entering the impingement zone 

has a uniform velocity profile, causing lower flow acceleration near the stagnation 

point and therefore smaller shear stress values. By increasing the H/D ratio, the 

peak of the velocity profile shifts towards the centreline, resulting in maximum 

flow acceleration in the region close to the axis. 
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Fig. 2.6 Wall shear stress along the impingement plate 

 

Both the experimental results and the present simulations indicate the 

presence of two peaks in the wall shear stress distribution when H/D = 2. With 

increasing H/D, a single peak is located closer to the jet axis. Kataoka and 

Mizushina (1974) and Alekseenko and Markovich (1994) noticed that for small 

H/D values the transition from a laminar to turbulent boundary layer within the 

impingement zone is accompanied by a sudden increase in the wall shear stress. 

Consistent with their experiments, this phenomenon can be observed for H/D = 2 

in Fig. 2.6, where the wall shear stress experiences a sudden increase near r/H = 

1. For small H/D ratios, the transition from laminar to turbulent boundary layer in 

the wall jet part of the flow occurs slightly later compared to jets with large H/D 

ratios. This is due to the fact that in small H/D impinging jets, the potential core of 

the jet reaches the impingement region, whereas for large H/D cases the flow is 

turbulent when it enters the impingement zone. 
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2.3.4. Static pressure along the plate 

Figure 2.7 compares the static pressure distribution along the plate for 

different stand-off distances. The static pressure values are normalized by the 

static pressure at the stagnation point, Ps. The radial direction is normalized by 

r½, which is the radial position at which P = 0.5Ps.The numerical predictions 

obtained at all H/D ratios are consistent with the measurements by Bradshaw 

and Love (1961) and by Giralt et al. (1977) at large H/D. 

 

Fig. 2.7 Static pressure along the impingement plate 

 

For small stand-off distance (H/D = 2), the initial shape of the velocity 

profile is nearly uniform, as illustrated in Fig. 2.3 (inset) and Fig. 2.4a. Therefore, 

the pressure distribution in this case is wide and the region where higher 

pressure exists is larger. As the value of H/D increases, the jet velocity profile 

loses its uniform behaviour and the momentum is higher in regions close to the 
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centreline. This trend continues as the H/D ratio increases up to 18.5, for which a 

fully penetrated jet exists. At this ratio, a more gradual radial decay in the 

pressure profile is observed, which is in reasonable agreement with the 

experimental data of Bradshaw and Love (1961) at H/D = 21 and Giralt et al. 

(1977) at H/D = 22. 

 

2.3.5. Wall jet region 

Following impingement, the flow spreads out as a radial wall jet. As the 

flow moves along the wall, a boundary layer is formed. There are a number of 

experiments and numerical simulations on wall jet flows. These analyses include 

either jet flows exiting from a nozzle which is parallel to the plate or from a nozzle 

perpendicular to the plate. To analyze the results of the current simulations in the 

wall jet portion of the flow, the experimental data of Bradshaw and Love (1961) 

for H/D = 18 has been used as a benchmark. The mean values of the normalized 

radial velocity V/Vm for the three H/D values are plotted as a function of (H-x)/δ2 

in Fig. 2.8, where Vm is the local maximum value of V, (H-x) is the normal 

distance from the plate and δ2 is the distance above the plate at which V = 0.5Vm. 

Figure 2.8 shows a comparison between the experimental data of Bradshaw and 

Love (1961) at H/D = 18 and the numerical results for different H/D ratios at 

various r/D stations along the plate. This figure indicates that the present 

numerical simulations generate reasonable results which follow the trend of the 

experimental data. The results suggest that in regions located in the downstream 
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portion of the flow along the wall, a fully developed condition can be expected for 

all H/D values. 

 

 

 

Fig. 2.8 Radial velocity V/Vm at different r/D stations in the wall jet 

 

By comparing the spread between the velocity profiles at the two radial 

distances (r/D = 8.45 and 12) in all three H/D cases, it can be concluded that the 

rate of development of the wall boundary layer increases by increasing the H/D 

ratio. According to Fig. 2.8, a faster boundary layer development can be 

observed for impinging jets with larger nozzle heights. 
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Fig. 2.9 Comparison of vrms/Vm for different nozzle heights, at different r/D stations 

in the wall jet region (fully developed) 

 

Further analysis has been performed for key turbulence parameters, at 

different stations along the plate. Figures 2.9 and 2.10 illustrate the root mean 

square radial velocity vrms/Vm and the Reynolds stress uv   /Vm
2  obtained from the 

CFD simulations for the three H/D values at different r/D stations along the wall. 

Both vrms/Vm and uv   /Vm
2  profiles show a decreasing behaviour as the flow travels 

along the wall towards the downstream. A fully developed condition over the 

plate can be expected in sections far off the centreline of the impinging jet. 

Compared to the mean velocity profile in the wall jet region, a similar 

behaviour can be seen for the vrms/Vm and uv   /Vm
2  profiles. These figures show 

that an increase in nozzle height results in faster development for the turbulence 
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quantities. It should be noted that no experimental data are presented in Figs. 2.9 

and 2.10 becauseit is not available in the literature. 

 

 

 

Fig. 2.10 Comparison of uv   /Vm
2  for different nozzle heights, at different r/D 

stations in the wall jet region (fully developed) 

 

2.3.6. Wall heat transfer 

To investigate the dependency of the heat transfer rate from the plate on 

the nozzle height-to-diameter ratio, the energy equation was activated in the 

model. A constant temperature of 300°K was considered for the jet exiting from 

the nozzle. A constant heat flux (qv  = 1000 W/m2) was applied on the plate, 

which causes the fluid to be heated during the impingement and also along the 

wall region. The local convective heat transfer coefficient (h) can be calculated 

from 
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h =
qv

(Tw−Tj )
             (2.3) 

where Tw  is the wall temperature and Tj is the jet temperature at the exit of the 

nozzle. The local Nusselt number, which is representative of the heat transfer 

ratio, is defined as 

NuD =
hD

κ
            (2.4) 

where κ is the conductive heat transfer coefficient of the fluid. Figure 2.11 

illustrates the variation of the local Nusselt number on the plate with different H/D 

ratios. This figure demonstrates that increase in the H/D ratio causes significant 

changes in the behaviour of the heat transfer phenomena on the plate. The first 

feature observed is the change in the number of the peaks with increasing stand-

off distance H/D. At H/D = 2 two peaks are found at approximately r/D = 0.8 and 

1.7, which is consistent with the observed behaviour of the wall shear stress 

distribution. The first peak is due to the large flow acceleration after impingement 

and the second one is due to the transition to the turbulent regime in the wall 

region, as previously discussed by Colucci and Viskanta (1996). 
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Fig. 2.11 Nusselt number distribution along the plate at different H/D ratios 

 

Increasing H/D to 6.0 changes the trend of the Nusselt number curve.  

The magnitude of the first peak increases while the second peak disappears. The 

location of the Nusselt number peak is very similar to the H/D = 2 case and is 

located around r/D = 0.8. In this case, the trend of the Nusselt number curve is 

similar to the trend of wall shear stress. 

By increasing the H/D value to 18.5, the Nusselt number magnitude 

decreases in comparison to the two previous cases. The location of the peak 

value moves towards the centreline. The reason for this behaviour lies in the fact 

that for impinging jets with large H/D ratios (larger than 6 ~ 8), the jet approaches 

a fully penetrated condition and the maximum velocity of the jet is located only 

along the centreline. This is similar to the trend in the data obtained by Colucci 

and Viskanta (1996) for larger H/D ratio in their experiments. 
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2.4. Conclusions 

Three different nozzle stand-off distances (H/D), representative of the generally 

accepted classification of impinging jets, were modeled and the results have 

been compared to available experimental data. The present study adds to the 

existing state of knowledge by also providing detailed information very close to 

the impingement plate. Results indicate a strong relationship between the flow 

behaviour of an impinging jet and the height-to-nozzle diameter ratio. The effect 

of increasing the nozzle stand-off distance on flow parameters can be 

summarized as following: 

1. Centreline velocity: For H/D = 2 and 6, no decay was observed in the 

centreline velocity. For H/D = 18.5 no decay was seen up to an axial distance of 

x/D = 6. A significant reduction occurs for 6 < x/D < 15. For 15 < x/H < 18.5, a 

larger decay was observed compared to other stations due to the influence of the 

impingement zone and the transfer of momentum from the axial to the radial 

direction. 

2. Streamwise velocity in different radial distances: The position of the peak in 

radial distribution of the velocity at similar streamwise directions for different H/D 

cases moves towards the centreline, leading to reduction in the diameter of the 

jet. 

3. Pressure along the plate: The region of high pressure on the plate is 

gradually reduced with increasing H/D, primarily due to the change in the shape 

of the jet profile. 
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4. Wall shear along the plate: At small H/D values, two peaks of the wall shear 

can be seen, due to transition from a laminar to turbulent boundary layer. For 

large H/D, a single peak was observed because the potential core does not 

reach the plate. 

5. Shear stress distribution in the jet: Two peaks of the shear stress exist in the 

entire flow domain. One is due to the interaction of the exiting flow from the 

nozzle with the ambient air and the other one is due to the wall effect. When 

moving in the axial direction towards the wall, the shear stress increases up to a 

certain station and then decreases. 

6. Wall heat transfer: There are two peaks in the Nusselt number curve for 

small H/D values. As the H/D increases the second peak disappears, following 

the same trend observed for wall shear stresses. For very large H/D cases, the 

peak of the Nusselt number curve is reduced and is shifted towards the 

centreline. 
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CHAPTER 3 

LARGE EDDY SIMULATION OF ROUND IMPINGING JETS WITH LARGE 

STAND-OFF DISTANCE 
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3.1. Introduction 

Impinging jets have many practical applications in cooling, heating, metal 

cutting and industrial cleaning. They include different types of flows such as free 

jet flow, stagnating flow and a wall jet (see Fig. 1.1). In an impinging jet, flow 

exiting from the nozzle interacts with the ambient flow and due to the Kelvin-

Helmholtz instabilities a street of roll-up vortices is generated. There is a 

frequency for the generation of these vortices which is dependent on different 

parameters such as boundary conditions, nozzle geometry and Reynolds 

number. While traveling towards the plate, these vortices interact, break up, pair 

and coalesce with neighbouring vortices and their symmetrical shape is lost. This 

results in an unsteady three-dimensional behaviour for pressure and shear 

stresses in the impingement zone and a vorticity field in the entire domain. The 

heat transfer from the plate is also influenced by these unsteady three-

dimensional structures approaching the plate. 

Chapter 2 provided important mean value results for impinging jets with 

different H/D ratios. The effect of the H/D ratio on the mean wall shear stress, 

wall pressure and velocity distribution was investigated. However, since the 

simulations were based on steady RANS models, no information on unsteady 

flow phenomena such as vorticity generation and the creation and breakdown of 

large scale structures was obtained. 

In this chapter an unsteady CFD analysis is performed on an impinging jet 

with large stand-off distance. Firstly, the generation and evolution of the roll-up 
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vortices, their transition to large scale structures and their influence on different 

parts of the flow field are investigated to provide a more complete picture of the 

impinging jet flow, and to develop an understanding of the physics associated 

with these time-dependent phenomena. Secondly, the unsteady flow 

characteristics at a large stand-off distance are compared and contrasted with 

the results at small stand-off cases available in the literature. 

To resolve the unsteady flow features at large stand-off distances, it is 

necessary to develop an appropriate numerical model. As indicated earlier, 

RANS models have limitations in predicting the flow features, specifically: (i) 

inaccurate prediction of the stagnation zone flow, (ii) over-prediction of the 

stagnation point heat transfer, (iii) issues with turbulence modelling in different 

regions of the flow (Dewan et al. 2012, Zuckerman and Lior, 2005, Shademan et 

al. 2013). Consequently, Direct Numerical Simulation (DNS) or Large Eddy 

Simulation (LES) would be more appropriate choices for the unsteady analysis. 

However, research has shown that in order to resolve all scales of motion in 

DNS, the number of grid points would have to be of the order of Re9/4. This is a 

limitation that currently makes DNS practical only for low Reynolds number flows 

as well as for small H/D cases where the physical flow domain is relatively small. 

For example, Chung et al. (2002) used DNS to simulate an unsteady slot jet with 

H/D = 10 and Re = 300, 500 and 1,000. Hattori and Nagano (2004) simulated a 

plane impinging jet using DNS at Re = 9,120 for values of H/D = 0.5, 1 and 2. 

Both plane and round impinging jets with H/D = 10 were investigated by 

Tsubokura et al. (2003) using DNS at Re = 2,000 and LES at Re = 6,000. 

http://www.sciencedirect.com/science/article/pii/S0142727X14000940#b0025
http://www.sciencedirect.com/science/article/pii/S0142727X14000940#b0195
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Recently, Dairay et al. (2015) performed a DNS study on a round impinging jet 

with H/D = 2 at Re = 10,000 using a total of 952,247,081 cells. As the literature 

shows, previous DNS studies are associated with either small H/D ratios (H/D < 

2) or low Reynolds number flows (Re < 2000), and require a large number of 

cells, making the simulations too costly for practical use. 

In LES only large and high energy containing eddies are resolved and the 

small ones are modeled. This method demands reasonably fine meshes at 

higher Reynolds numbers, but it is more flexible compared with DNS and can be 

a meaningful alternative for industrial applications. Many of the jet studies 

reported in the literature deal with simple plane jets at low Reynolds numbers. 

Examples include LES studies on plane impinging jets by Voke and Gao (1998) 

at Re = 6,500, and by Beaubert and Viazzo (2003) at Re = 3,000 and 7,500. 

Hadziabdic and Hanjalic (2008) used LES to investigate a circular impinging jet 

at Re = 20,000 and H/D = 2 and recently Uddin et al. (2013) performed LES on 

impinging jets at Reynolds numbers of 13,000 and 23,000 at H/D = 2. The 

literature shows that most of the LES jet studies only cover small stand-off 

distances with high Reynolds number or large stand-off cases with small 

Reynolds number. 

In the current research, LES is used to investigate the unsteady flow 

characteristics of an impinging jet with a large stand-off distance at a high 

Reynolds number. These flow characteristics resolve questions about how the 

pressure fluctuations and wall shear distribution vary with time; how much the jet 

axis meanders around the centre in the impingement region; how the fluid 
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structure changes as the flow moves from the nozzle towards the plate; and how 

the separation and reattachment occur in the impinging zone and influence the 

wall shear stress. 

In this chapter, Large Eddy Simulation was performed for an impinging jet 

with height-to-diameter ratio H/D = 20 at the Reynolds number of 28,000 (based 

on the velocity at the nozzle exit (Uj) and jet diameter (D)). This simulation was 

designed to mimic the experimental setup at the Hydraulic Engineering 

Laboratory at the University of Windsor (Roussinova and Balachandar, 2012). 

The benchmarking experiments were conducted in a water jet facility using a 

round nozzle with an exit diameter D = 0.01 m and a distance of H = 0.2 m 

between the plate and the nozzle. The rectangular tank was 2 m long, 1 m wide 

and 0.7 m deep as illustrated in Fig 3.1. The nozzle and the flow conditioning 

system have been described in detail in free jet studies using particle image 

velocimetry (PIV) by Tandalam et al. (2010) and Tian et al. (2012). These 

experiments as well as the results presented in the literature by other 

investigators have been used for the purpose of validating the current 

simulations. 
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Fig. 3.1 Impinging jet experimental setup (Roussinova and Balachandar, 2012) 

 

3.2. Numerical method 

3.2.1. Geometry and boundary conditions 

In the experimental studies of Tandalam et al. (2010) and Tian et al. 

(2012), the flow first passed through a well-designed nozzle (Yu et al. 2012) prior 

to entering the jet tank. To maintain consistency with the experimental setup, the 

flow through the nozzle used in these studies has been modelled. In the second 

step, the jet flow in the tank was simulated. The flow parameters extracted from 

the nozzle exit were set as the inlet conditions for the tank simulation. The 

following sections describe the modelling of the flow through the nozzle and the 

tank. 
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3.2.1.1. Nozzle flow modelling 

A hybrid mesh combining a structured mesh in the wall region and an 

unstructured mesh in the rest of the nozzle is used. A total of 3.3 million cells 

were created for the entire nozzle geometry. A cross-section of the mesh is 

presented in Fig. 3.2. A mass flow rate of 0.35 kg/s is used at the inlet to the 

nozzle, resulting in a velocity of 2.86 m/s at the exit of the nozzle. A pressure 

outlet condition is applied for the outlet and a no-slip no-penetration condition is 

set for the walls. 

 

Fig. 3.2 Cross-section of the mesh in the nozzle 

 

A finite volume RANS simulation using the Reynolds Stress Model (RSM) 

was performed for the flow through the nozzle. The RSM was selected because, 

as a non-isotropic model, it has the capability of predicting the turbulence 

quantities in different directions, i.e., the Reynolds stresses uu    , vv   , ww     , −uv   , 

−uw     and −vw    , where uu    , vv    and ww      are normal stresses in x, y and z directions, 
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and the rest are shear stresses in x-y, x-z and y-z planes, respectively. The 

simulation was considered to have converged when no significant change in the 

drag force exerted on the nozzle was observed. Following this, the profiles of 

turbulence components and the mean velocity were extracted from the exit of the 

nozzle and introduced as inlet conditions for the next stage of the simulation. 

Ansys Fluent 14.0 has been used for performing the simulations. 

 

3.2.1.2. Tank flow modelling 

The dimensions of the computational domain for the tank were chosen to 

simulate the experimental setup described in section 3.1. To simplify the meshing 

and reduce the computational cost, the large rectangular tank was replaced by a 

large circular cylinder with its axis perpendicular to the nozzle outlet plane. To 

ensure that the location of the outlet boundary has negligible influence on the 

pressure and velocity fields produced by the impinging jet, the computational 

domain is taken to have a radius of 0.1 m (Fig. 3.3a). In order to reduce the 

lateral extent of the computational domain, the water is allowed to escape to the 

ambient through the outer cylindrical boundary of the computational domain. The 

plate is considered to be a no-slip boundary. The top plane is considered to be a 

wall with slip condition. 

Three different mesh sizes have been tested, each constructed in such a 

way that the mesh requirements for LES are satisfied. The three meshes are of a 

hybrid type with triangular prisms in the region r/D < 0.5, where r is the radial 
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distance from the jet centreline. For the rest of the domain, hexahedral elements 

are used. Details of the computational domain and the mesh generated for one of 

the LES cases are shown in Figs. 3.3a-c. Table 3.1 presents the mesh 

information for the three cases. 

 
 

 

 

 

Fig. 3.3(a) Virtual tank dimensions, (b) cross-section of the mesh inside the tank, 

(c) cross-section of the mesh on the plate 

 

(b) (a) 

(c) 

nozzle 

plate 

nozzle 
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Table 3.1 Grid data (virtual tank) 

Mesh 
Number of cells in each direction Total number 

of cells Axial Radial Circumferential 

#1 300 150 120 6.3 M 

#2 400 150 120 7.6 M 

#3 400 150 160 10.6 M 

 

The flow near a wall can be either resolved or modelled in LES, depending 

on the mesh resolution close to the wall. Since, in the current simulations, the 

analysis of the impingement zone is of primary interest, more emphasis is placed 

on the resolution of the mesh close to the target plate. Chapman (1979) 

determined that the resolution needed for the outer layer of a boundary layer is 

proportional to Re0.4, while for the wall layer the number of grid points required 

increases to Re1.8. The impingement wetted wall surface area increases rapidly 

with increase in the radial distance from the axis, resulting in a larger domain and 

consequently a need for more cells. In the area of interest (r/D < 4.0), the mesh 

resolution should satisfy the generally approved LES criteria for wall-attached 

flows suggested by Piomelli and Chasnov (1996), which requires that ∆r+ < 100, 

(r∆θ)+ < 20 and ∆h+ < 2 (h is the distance in the normal direction to the wall, θ is 

circumferential coordinate). Here ∆r+ = ∆r(uτ/υ), (r∆θ)+ = (r∆θ)(uτ/υ) and 

∆h+ = ∆h(uτ/υ), where uτ is the friction velocity and υ is the kinematic viscosity. 

The number of grid points in each direction ineach of the three meshes 

was increased in a way to evaluate its compliance with the above-mentioned 

criterion. Figure 3.4a shows that the value of h+ is less than one for all three 

meshes for the near-wall cells. Figure 3.3b confirms that increasing the number 
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of grid points in the axial direction produces smaller ∆h+ values close to the wall 

and meets the requirements of ∆h+ < 2. Figures 3.4c and 3.4d show the effect of 

the mesh density in the near-wall region. To check for the radial direction 

requirements (∆r+ < 100, (r∆θ)+ < 20) suggested by Piomelli and Chasnov 

(1996), the values of ∆r+ and (r∆θ)+ for the three meshes are plotted against the 

radial distance from the axis. Figures 3.4c and 3.4d show that in the region of 

interest (r/D < 4) the values of (r∆θ)+ and ∆r+ for all meshes are less than 5 and 

100, respectively. However, some increase in this value can be observed in 

regions far from the axis (r/D > 4), which is inevitable due to the expansion of the 

mesh in the radial direction. The marginal increase in the value of ∆r+ in the 

range of 4 < r/D < 10 might be due to the enhancement of the mesh quality in the 

axial direction from mesh #1 to #3. 

  

  

Fig. 3.4 Mesh requirement analysis 
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Figures 3.4c and 3.4d also show that increase in grid points in the 

circumferential direction does not have a significant effect on the results close to 

the wall. Figures 3.4a-d show that all three meshes meet the LES requirements. 

However, mesh #3 provides values closer to the criterion. 

The mesh resolution quality can also be evaluated by comparing the mesh 

cell size ∆ =  (∆r × r∆θ × ∆h)1/3 to the Kolmogorov length scale η = (υ3/ε)1/4. 

Here, υ is the molecular viscosity and ε is the dissipation rate. The value of ε can 

be estimated from the previous RANS simulation using the Realizable k - ε 

turbulence model. For isotropic turbulence, Pope (2000) has shown that a cell 

size of 12η or less is required in order to resolve the major contributions to the 

dissipation. Therefore, in the current study, attempts were made to keep the 

value of Δ/η value less than 12 in the regions of interest. 

 
Fig. 3.5 Comparison of mesh cell size with the Kolmogorov length scale at r/D=0 

 

Figure 3.5 compares the mesh cell size with the Kolmogorov length scale. 

It can be seen that mesh #3 meets the required criteria. Further details on the 

choice of mesh are provided in section 3.3. 
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3.2.2. Governing equations 

The velocity and pressure fields in a Newtonian fluid flow problem are 

described by the Navier-Stokes equations. The governing equations used in LES 

are obtained by filtering the unsteady Navier-Stokes equations in Fourier space. 

The filtered equations are as follows: 

∂ρ

∂t
+

∂

∂xi
 ρu i = 0            (3.1) 

∂

∂t
 ρu i +

∂

∂x j
 ρu iu j =

∂

∂x j
 μ

∂σij

∂x j
 −

∂p 

∂xi
−

∂τij

∂x j
        (3.2) 

Here, i= 1, 2, 3 indicates the spatial direction, p is the pressure, ρ is the density, 

μ is the dynamic viscosity, u i is the resolved velocity field, σij  is the shear stress 

tensor and τij  is the subgrid-scale (SGS) Reynolds stresses defined by 

τij = ρ𝑢𝑖𝑢𝑗 − ρui uj  .          (3.3) 

where the overbar indicates a resolved quantity. 

The subgrid-scale stresses resulting from the filtering operation are 

unknown and require modeling. The majority of the subgrid-scale models in use 

today are eddy viscosity models. These models assume proportionality between 

the anisotropic part of the SGS stress tensor τij − (1/3)δijτkk  and the resolved 

scale strain rate tensor Sij  as 

τij −
1

3
δijτkk  = −2μ

t
Sij          (3.4) 

where μt is the subgrid-scale turbulent viscosity, and Sij  is defined by 



59 
 

Sij =
1

2
 
∂u i

∂x j
+

∂u j

∂xi
  .         (3.5) 

One major drawback of the eddy viscosity subgrid-scale stress models 

used in LES is their inability to correctly represent the turbulent field in rotating or 

sheared flows near solid walls with a single universal model constant. The 

dynamic SGS model resolves this issue. The model coefficient is computed 

dynamically as the calculation progresses rather than being specified as apriori 

input. The model is based on an algebraic identity between the subgrid-scale 

stresses at two different filtered levels and the resolved turbulent stresses. The 

subgrid-scale stresses obtained using the dynamic model vanish in laminar flow 

and at a solid boundary, and have the correct asymptotic behaviour in the near-

wall region of a turbulent boundary layer. In the current simulations the dynamic 

Smagorinsky method presented by Germano et al. (1991) is used for the 

modelling of the subgrid-scale stresses. 

The Finite Volume Method (FVM) is used to discretize the governing 

equations. The second-order accurate central differencing scheme is used for 

discretizing the convective and diffusive terms. During the simulations, the drag 

force exerted on the plate is monitored, and the solution is considered to have 

converged when no significant change in drag was observed (changes less than 

the order of 10-3). For the results presented herein, all residuals are of the order 

of 10-4. 
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3.3. Time averaged results 

Validation of the numerical model was carried out by comparing the mean 

and turbulent quantities at x/D = 1 with the PIV results of Tandalam et al. (2010). 

Furthermore, the numerical results are also compared in the forthcoming 

sections with other available experimental results (Shinneeb et al. 2008, 

Rajaratnam et al. 2010, Giralt et al. 1997). 

To evaluate the accuracy of the inlet profiles, mean and turbulent profiles 

in the jet, obtained from the current LES analysis using the results of mesh #3, 

were compared with the PIV data close to the nozzle exit, at x/D = 1. As shown in 

Fig. 3.6, there is good agreement between the results of the LES and the PIV 

data. Considering the significant influence of the inlet condition on the 

development of the flow in the domain, the accuracy observed in the mean and 

turbulent profiles in the vicinity of the nozzle exit provides confidence in the 

validity of the calculation. 

  

Fig. 3.6 Comparison of (a) mean axial velocity, (b) turbulent axial velocity, 

obtained from LES and PIV experiments (Tandalam et al. 2010) at x/D = 1 
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Figure 3.7 shows the normalized mean centreline velocity from the current 

simulations using the three meshes in comparison with the experimental results 

for 0< x/D < 25. These results demonstrate the improvement in accuracy 

achieved by refinement from mesh #1 to mesh #3. Results from the present 

simulations follow the expected trend observed for different H/D values. Up to 

about x/D = 15, the flow is not influenced by the impingement wall and essentially 

follows the behaviour of a free jet. The computational model agrees well with the 

experimental data as the flow approaches the plate. An impinging jet with H/D = 

20 represents a flow with all three sub-regions discussed in Chapter 2. Up to 

about x/D = 4, the core of the jet is still developing and no decay in the centreline 

velocity can be observed. For x/D > 4, the free jet region starts to develop and a 

large decay in centreline velocity occurs up to about x/D = 15 as the ambient fluid 

is entrained into the jet. For x/D > 15, the flow senses the presence of the plate 

and a sharper decay in the centreline velocity can be seen due to the transfer of 

momentum from the axial to the radial direction. Based on the results presented 

in Fig. 3.7, as well as the mesh requirement analysis presented in the previous 

section, mesh #3 was selected for all subsequent simulations. Results obtained 

using mesh #3 compare well with the experiments along the axis and in the 

impingement zone. Better accuracy can be observed when comparing these LES 

results with the previous RANS study carried out inChapter 2. 
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Fig. 3.7 Mean centreline velocity obtained from LES, RANS and experiments 

 

Further validations were carried out by comparing other key flow 

parameters obtained from the numerical simulation (mesh #3) and experimental 

results. Figure 3.8a compares the mean static pressure distribution on the plate. 

The static pressure values are normalized by the pressure at the stagnation point 

(Ps). The radial direction is normalized by the jet half width (r½), which is the 

radial position where P = 0.5Ps. Higher pressure is observed in regions close to 

the impingement zone, and the pressure decreases in the radial direction. The 

numerical prediction obtained from the current simulation is in good agreement 

with the measurements of Bradshaw and Love (1961), and a slight improvement 

over the RANS results. 
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Fig. 3.8(a) Mean static pressure along the wall, (b) mean wall shear stress 

 

Figure 3.8b displays the mean wall shear stress distribution. In this figure, the 

radial direction is normalized by the impingement distance, while the shear stress 

is normalized by ρUj
2. The quantity plotted along the vertical axis is chosen to be 

consistent with other studies. A similar trend is observed between the data 
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3.9 shows that all three intensities start from a minimum value at x/D = 0 and 

reach a peak value at 6 < x/D < 8, indicating that the maximum rate of mixing 

occurs in this region. Streamwise turbulence intensity has larger values 

compared to the other components, suggesting that LES will be more accurate 

for impinging jet flows than models based on the assumption of isotropic 

turbulence. The results also show how the variation of the turbulence intensities 

are influenced by the presence of the impingement plate. Near the plate (x/D > 

19), the vrms and wrms (turbulence components in y and z directions) exceed urms 

due to the strong anisotropy caused by the turning flow along the plate. In 

proximity of the plate, the large decay in streamwise turbulent velocity occurs due 

to the change in flow direction, where vrms and wrms components show a sudden 

increase. A good match between the numerical and experimental data is 

observed in the region of 10 < x/D< 18, and the results show that the turbulence 

intensities undergo a transition from x/D = 0 up to 8. 

 

Fig. 3.9 Turbulence intensities obtained from LES and experiments 
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Fig. 3.10(a) Mean radial velocity profiles (V/Uj), (b) turbulent velocity profiles 

(vrms/Uj) in wall region, at different r/D stations 
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the fluid flows along the wall, a boundary layer is expected to be formed. The 
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obtained from the LES and experiments at different r/D stations along the plate. 

Basically, these results show that both mean and fluctuating components of the 

velocity follow the developing behaviour of a wall jet. As discussed earlier, the 

flow changes direction from axial to radial when it gets close to the plate. This 

phenomenon can be observed in the mean radial velocity values in Fig. 3.10a, as 

they start to increase from zero at r/D = 0 to higher values at r/D = 1, 2 and 3. 

The space between the profiles decreases along the wall jet, indicating that the 

flow is tending to a fully developed condition. 

 For the turbulent values, although there is not good agreement between 

the experiments and CFD in the proximity of the plate, the trend of the profiles in 

this region is very similar. This issue may be expected due to the higher levels of 

uncertainty associated with the measurements in the wall proximity. In the region 

where the wall effect is negligible, good agreement between the CFD and 

experiments can be observed. 

 Figures 3.11a,c and e demonstrate the contours of mean velocity 

magnitude superimposed with the sectional streamlines, streamwise turbulent 

velocity fluctuations and shear stress distribution in the entire domain, 

respectively. Figures 3.11b,d and e show the contours of the same parameters in 

the proximity of the plate. These figures confirm that there is a symmetrical 

behaviour for the flow parameters with respect to the axis. Sectional flow 

streamlines show the presence of a stagnation streamline which is located along 

the jet axis. As one would expect, many of the unsteady flow features are absent 

in these figures. As can be seen in these figures, turbulent velocity fluctuations 
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and shear stresses also show symmetrical behaviour with respect to the axis. 

The marginal discrepancies observed are due to the averaging time during the 

simulation period. An unsteady analysis will reveal the behaviour of these 

parameters over time and elucidate their deviation from the mean values. 

 

 

 

 

 

 

 

Fig. 3.11 Contours of (a,b) mean velocity magnitude superimposed with sectional 

streamlines, (c,d) streamwise turbulent velocity fluctuations and (e,f) shear stress 

in the whole domain and close to the plate 
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3.4. Unsteady results 

In this section, the evolution of the ring vortices generated in the domain 

due to the entrainment of the jet and the ambient flow and their effect on different 

flow regions will be discussed. This includes behaviour of structures in the free 

jet region, impingement zone and also in the wall jet portion of the flow. 

Different methods can be employed to visualize the three-dimensional flow 

structures. The literature shows that intuitive methods such as vorticity contours, 

pressure minima and streamline plots have largely been used for this purpose. 

Jeong& Hussain (1995) developed the λ2 criterion which can be used to identify 

the core of the vortices that exist in the flow field, using the fact that these cores 

are related to the locations of minimum pressure in the flow. Basically, this 

method connects the high vorticity and minimum pressure regions in the flow. 

Jeong & Hussain (1995) derived the λ2 criterion by taking the gradient of 

the Navier-Stokes equation and decomposing the acceleration gradient term into 

symmetric and antisymmetric parts, expressed as Sij Sij + ΩijΩij , where Sij  and Ωij  

are the symmetric and antisymmetric parts of the velocity gradient tensor, 

respectively. The Hessian of the pressure can then be connected to the vortical 

motions in the flow. According to the theory of multivariable calculus, the 

Sij Sij + ΩijΩij  tensor has three real eigenvalues (λ1 ≥ λ2 ≥ λ3). The point of local 

pressure minimum requires two eigenvalues of this tensor to be negative. λ2, 

which corresponds to the second largest eigenvalue of this tensor, is 

representative of the local pressure minima region. The iso-surface of λ2 can be 
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used for visualizing instantaneous structures in the flow. In this study, the 

different above-mentioned visualizing methods have been used depending on 

the flow region. 

 

3.4.1. Free jet region 

Figure 3.12a shows the iso-surface of λ2 criterion coloured with velocity 

magnitude contours and Fig. 3.12b shows the iso-surface of static pressure (-20 

Pa) coloured with vorticity magnitude contours. 

For the current case (H/D = 20), from x/D = 0 ~ 15 the jet behaves very 

similar to a free jet, in which the core of the jet undergoes a decay before 

reaching the plate. 

The vortices generated due to the Kelvin-Helmholtz instabilities form a 

street of rolled up vortex rings as illustrated in Fig. 3.12a. These vortices, while 

traveling towards the plate, interact, pair and coalesce with neighbouring vortices 

with increased azimuthal instability, thereby reducing their circumferential 

coherence. The distance between these vortices increases and the ring-like 

shape is lost when the flow approaches the impingement plate (Fig. 3.12b). 
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Fig.3.12 Iso-surfaces of a) λ2 criterion colored with velocity magnitude contours, 

b) static pressure (-20 Pa) colored with vorticity magnitude contours 

 

(a) 
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The expansion and stretching of the ring-like vortices caused by the 

azimuthal instabilities are demonstrated in Figs. 3.13a-I, which show vorticity 

magnitude contours in the y-z plane at different axial stations. The colour scale 

has been kept the same for all figures except in Fig. 3.13h because of the 

reduced vorticity magnitude at this axial location (x/D = 15). In regions very close 

to the nozzle (x/D = 1~1.5), the ring vortices have a diameter similar to the nozzle 

exit diameter with the highest vorticity located around the ring at about r/D = 0.5. 

As the vortices move axially, they become highly deformed with vertical patches 

which are nested around the ring by the time they reach x/D = 2. Basically, these 

patches of instability serve as a mechanism for transforming into the large scale 

eddies downstream. Figure 3.13 show that the number of these patches reduces 

as the fluid flows towards the plate. This may be attributed to the pairing and 

growing of these structures. 

At a particular distance from the nozzle, the ring-like vortices start to 

breakdown due to tilting and three-dimensional effects which cause the vortices 

to lose their axial symmetry. This results in the broken down structures striking 

the plate at different time instances. The asymmetric impingement of the large 

scale structures results in jet flapping and meandering around the jet axis. 
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Fig. 3.13 Deformation of shear layer in y-z plane visualized by the instantaneous 

vorticity magnitude contours at (a) x/D = 1, (b) x/D = 1.25, (c) x/D = 1.5, (d) x/D 

=1.75, (e) x/D = 2, (f) x/D = 4, (g) x/D = 7, (h) x/D = 15, (i) x/D = 20 

 

 To analyze the frequency of the ring vortices generated, the Strouhal 

number (St= f1D/Uj) of these vortices was determined. Here, f1 is the frequency of 

the generated ring vortices, D is the nozzle diameter and Uj is the jet exit velocity. 
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One should note that based on the observations of Hadziabdic and Hanjalic 

(2008) and Tsubokuraet al. (2003), the Strouhal number is strongly dependent on 

Reynolds number, initial velocity profile and most importantly the distance 

between the nozzle and the plate. In the current study, to determine the 

frequency of the shear layer instabilities, the energy-density spectra, obtained 

from a time series of the instantaneous static pressure at x/D = 2, r/D = 0.5 was 

examined. The time history of the pressure data is presented in Fig. 3.14a. 

Applying a FFT on this data identifies a dominant frequency of 180 Hz which 

corresponds to a Strouhal number of 0.63. 

 

Fig. 3.14(a) History of static pressure, (b) power spectral density at x/D = 2 and 

r/D = 0.5 
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 For comparison, Table 3.2 presents Strouhal numbers from previous 

studies and from the current simulation. As can be seen, the St predicted in the 

current simulation is in the range of previous experimental results at similar 

Reynolds numbers. 

Table 3.2 Experimental and numerical values of Strouhal number 

Experiments x/D Reynolds 
number 

Strouhal number 

Yule (1978), free jet 0.4 21,000 0.60 

Yule (1978), free jet 5~6 21,000 0.33~0.4 

Han & Goldstein (2003), free jet 1.0 8,000 0.65 

Han & Goldstein (2003), free jet 1.0 120,000 0.60 

Tsubokuraet al. (2003), H/D=10 3~8 6,000 0.37 

Hadziabdic&Hanjalic (2008), H/D=2 0.1 21,000 0.64 

Current LES study, H/D=20 2.0 28,000 0.63 

 

 As previously mentioned, due to the mixing and the level of the 

turbulence, the ring vortices lose their form, become entangled and evolve into 

large scale structures as they move towards the plate. As the ring vortices travel 

towards the impingement zone, they break down and lose their shape. The 

decrease in the number of ring vortices can be interpreted as a reduction in their 

frequency. To investigate the existence of a characteristic frequency (f2) or period 

(T2) for the structures hitting the plate, the pressure history at x/D = 18 and r/D = 

5 was recorded. The time history of the static pressure monitored at this point is 

presented in Fig. 3.15a. Following this, a FFT was carried out to determine any 

possible peak frequency for this time history, as illustrated in Fig. 3.15b. Figure 

3.15b shows a peak at a frequency of 5.6 Hz, which can be considered as the 
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characteristic frequency for the large structures impinging on the plate. Based on 

this frequency, the characteristic period (T2) is equal to 0.18. 

 

 

Fig. 3.15(a) History of static pressure, (b) power spectral density at x/D = 18 and 

r/D = 5 
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instances over the characteristic period (T2) are plotted in Fig. 3.16. The y-z 

plane parallel to the plate is located at (H-x)/D= 0.05, which is slightly above the 

plate. Five equal time intervals with Δt = T2/5 was chosen for evaluation. In this 

comprehensive figure, a,b,c, etc denote the flow field at different time instants. 

The index 1 refers to y-z plane (e.g., Figure 3.16a1), index 2 refers to the x-y 

plane (e.g., Figure 3.16a2) and index 3 refers to the x-z plane (e.g., Figure 

3.16a3). 

In Figures 3.16a1-f1, the red patches indicate the high velocity regions. In 

each of these figures the red patches are located in different regions of the flow 

field. It appears that the location of these patches depend on the shape of the 

large scale structures impinging on the plate. Although a semi-circular pattern 

can be observed for these patches, they are not circumferentially connected. 

These figures confirm the asymmetric impact of the large scale structures on the 

plate. 

The asymmetric impingement of the large scale structures also influences 

the location of the stagnation region, which can be observed by the behaviour of 

sectional streamlines in x-y plane. The dotted circle in the middle of Figures 

3.16a1-f1 indicates the location of the nozzle above the plate. As seen in Figs. 

3.16a1-f1, different stagnation patterns exist in the impingement zone at different 

times. One single patch of low velocity magnitude flow (in blue color with 

streamlines starting from that location) can be seen at the beginning of the 

characteristic period (T2) which represents the stagnation zone. As time goes on 

the shape of the stagnation zone changes and becomes more distributed on the 
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plate. Different disperse patches of blue color (with streamlines starting from that 

region) representing the stagnation zones can be observed on the plate. These 

zones are located significantly off the axis of symmetry relative to the beginning 

of the period. 

The stagnation regions reach a maximum distance of r/D = 2 from the axis 

of symmetry during the characteristic period. Note that, this dispersed form of 

stagnation regions are a result of the impingement of the broken down, 

disconnected, three-dimensional structures. At the end of the period (T2), the 

shape of the impingement region gets close to its original form at the beginning 

of the period (T2). At this instant of time the stagnation region gets close to the 

axis of symmetry and no other stagnation zone can be observed on the plate. 

Figure 3.16 also shows the flow streamlines in the x-y and x-z planes at 

different time intervals of the characteristic period (example, Figs. 3.16a2 and a3, 

Figs. 3.16b2 and b3, etc). The fluid structures have different shapes and sizes 

and are deflected in the radial direction while getting close to the plate. This 

behaviour influences the flow in the impingement zone as can be observed in the 

x-y and x-z planes. One of these influences is the change in the pressure 

contours noticed in the impingement zone. The presence of an adverse pressure 

gradient in different directions will allow for the generation of secondary vortices 

in the impingement zone. 
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Fig. 3.16 Instantaneous velocity magnitude (y-z plane) and static pressure 

contours (x-y and x-z planes) with sectional streamlines over the characteristic 

period (T2), (a) t/T2=0, (b) t/T2=1/5, (c) t/T2=2/5, (d) t/T2=3/5, (e) t/T2=4/5 and(f) 

t/T2=5/5 (the red circle in y-z plane shows the nozzle) (continued) 
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Fig. 3.16 (continued) Instantaneous velocity magnitude (y-z plane) and static 

pressure contours (x-y and x-z planes) with sectional streamlines over the 

characteristic period (T2), (a) t/T2=0, (b) t/T2=1/5, (c) t/T2=2/5, (d) t/T2=3/5, (e) 

t/T2=4/5 and(f) t/T2=5/5 (the red circle in y-z plane shows the nozzle) 
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Due to the large distance between the nozzle and the plate (H/D = 20), the 

maximum dislocation of the impingement point from the axis of symmetry is quite 

different from impinging jets with small nozzle-to-plate ratio (H/D < 4). Hadziabdic 

and Hanjalic (2008) noticed a maximum dislocation of r/D = 0.1 and a split of 

impingement point to two lines for H/D = 2. They suggested that the origin of the 

impingement point oscillation arises from the instability and tilt of the structures 

generated from the shear layer of the jet. 

In this study, due to the large distance between the nozzle and the plate, 

the oscillation of the structures is larger. At the beginning of the characteristic 

period the stagnation region (dark blue regions in Fig. 3.16a1) has a form of point 

with a maximum dislocation of r/D = 0.5 from the axis of symmetry. As time goes 

on different stagnation regions can be observed on the plate (at t/T2 = 3/4 and 

4/5). The maximum distance of these stagnation regions is about r/D = 2 from the 

axis of symmetry. Basically, one of the important differences observed for 

impinging jets with large nozzle stand-off distance relative to small nozzle height-

to-diameter ratio cases is the existence of these unorganized patches of 

stagnation regions distributed over the plate. 

After impingement the flow changes direction from axial to radial and a 

thin boundary layer is formed on the plate (referred to as the wall jet region). The 

sectional streamlines show an asymmetric behaviour at all times, caused by 

break-up and tilting of the largescale structures and the consequent three-

dimensionality of the flow in this part of the flow region. The structures occurring 

in the wall jet region are remnants of the ring-like vortices generated from the 
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nozzle shear layer which survive the impingement. The radial deflection of the 

structures results in minor separated regions in the wall jet flow with a counter-

rotating wall-attached form. Figure 3.17 is a magnified view of Fig. 3.16f2 which 

demonstrates this phenomenon. 

 

Fig. 3.17 Generation of secondary vortices in the wall region 

 

According to the analyses of Dairay et al. (2015) for an impinging jet with 

H/D = 1 and Hadziabdic and Hanjalic (2008) for H/D = 2, several secondary 

vortices occur in the wall jet region which are generated due to the influence of 

deflected nozzle vortices. This behaviour causes unsteadiness and fluctuations 

in the wall pressure and shear stress. Based on the flow streamlines and 

pressure contours presented in Figs.3.16a-f, the deflected large scale structures 

do not result in significant flow separation in the wall region. Basically, this 

behaviour illustrates another major difference between impinging jets with large 

(secondary vortex) 
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and small stand-off distances. This phenomenon is investigated in detail in the 

next section. 

 

3.4.3. Wall shear stress 

At the start of the characteristic time period, Figures 3.18a and b show the 

instantaneous sectional streamlines in the x-y plane (not scaled) and the wall 

shear stresses in the y direction, respectively. Similarly the rest of the figures in 

Fig. 3.18 show the distributions at other time instants over the characteristic 

period. In these figures the mean wall shear stresses are compared with the 

instantaneous results over the characteristic period (T2). The wall shear stress (𝜏) 

is normalized with the maximum mean value (𝜏mean-max) along the y direction. 

Note that these figures are presented at the same instantaneous time steps as 

presented in Fig. 3.16. Figures 3.18a-f show that, unlike that seen in the mean 

profile, there are multiple peaks in the instantaneous wall shear stress profile. 
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Fig. 3.18 Instantaneous sectional streamlines and (black) and mean (red) wall 

shear stress in x-y plan over the characteristic period (T2), (a,b) t/T2=0, (c,d) 

t/T2=1/5, (e,f) t/T2=2/5, (g,h) t/T2=3/5, (i,j) t/T2=4/5 and (k,l) t/T2=5/5 (continued) 
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Fig. 3.18 (continued) Instantaneous sectional streamlines and (black) and mean 

(red) wall shear stress in x-y plan over the characteristic period (T2), (a,b) t/T2= 0, 

(c,d) t/T2= 1/5, (e,f) t/T2= 2/5, (g,h) t/T2= 3/5, (i,j) t/T2= 4/5 and (k,l) t/T2=5/5 
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Three-dimensional unsteady structures impinging on the plate result in 

fluctuations in wall shear stresses. Comparison of the sectional streamlines with 

the associated wall shear stress profiles shows that large scale structures 

deflected after impingement do not cause severe wall shear stress fluctuation in 

regions with r/D > 5. No negative sign can be seen for the wall shear stress in 

this range during the characteristic period. However, large fluctuations relative to 

mean values, with a number of negative values, can be seen in the region 

between 0 < r/D < 5. These negative wall shear stress values are a result of the 

separation of flow in the impingement zone and generation of secondary vortices 

in that region (see Figs. 3.18a,c,e,g,i,k). 

 

3.5. Conclusions 

A LES based analysis was carried out to characterizea turbulent round 

impinging jet with a large stand-off distance. Modelling this type of long jet is 

computationally more expensive than short impinging jets normally discussed in 

the literature. 

Three meshes with different number of cells (6.3M, 7.6M, 10.6M) were 

used to ensure the mesh requirements in LES were satisfied. In addition to the 

mesh requirement, a Courant number of less than 0.5 was also considered for 

the current simulations. The decay of centreline velocity from the three different 

meshes was compared with the available experimental data. Based on the mesh 

requirement analysis and the quality of the results when compared with the 



86 
 

experiments, the 10.6M cell mesh was selected for subsequent computations. 

Based on these evaluations the LES framework showed good capability in 

capturing the mean value fields in all three sub-regions of the domain including 

the free jet, impinging zone and wall jet regions. 

Turbulence generation at the inlet of the computational domain plays an 

important role in large eddy simulations which significantly affects the 

downstream flow field. To introduce a correct shear flow and a proper level of 

turbulence at the exit of the nozzle, flow inside the nozzle was modelled 

separately. Good agreement between the experimental and computational 

results close to the nozzle and inside the tank suggests that the flow inside the 

nozzle has been accurately modelled. 

The dynamics of the roll-up vortices created by the instabilities in the initial 

shear layer close to the nozzle influences the entire flow field including the free 

jet region, impinging zone and wall jet region. It was found that these roll-up 

vortices have aStrouhal number of 0.63 near the nozzle. However, this 

parameter is reduced along the centreline towards the impingement zone. While 

moving towards the plate, these vortices merge, breakdown or change into 

largescale structures. Up to four diameters from the nozzle exit, these vortices 

retain their ring-like shape. In the range of 4 < x/D < 7, a transition occurs and the 

vortices start to change into largescale structures. For x/D > 7, there is no sign of 

the ring-like vortices as they are transitioned to form large scale structures. Due 

to the asymmetric behaviour of the structures, these eddies are tilted from the 

streamwise direction. The expansion, growth, tilt and unsteady behaviour of the 
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impinging structurescausedislocation of the impinging flow from the centreline, 

which is significantly larger when compared with cases with small H/D ratios. 

Unlike in the cases with small H/D ratios, for large stand-off cases, the largescale 

structures do not present a self-organizing tendency towards a ring-like shape 

after impingement. 

No connection was observed between the frequency of generation 

ofthering-like vortices close to the nozzle with that for the largescale structures 

close to the plate. In the current study a pressure ―probe‖ (numerical monitoring) 

was set at a location close to the plate to determine the frequency of the 

structures hitting the plate. Based on the pressure history, a FFT operation was 

carried out on the signal and the dominant frequency was captured. The 

behaviour of the structures in the impinging zone and in the wall region were 

analyzed using this characteristic frequency. 

Different patterns of velocity distribution were observed in the 

impingement region over one cycle. Initially, the stagnation region was in the 

form of an organized circular shape. As time passes, different patches of low 

velocity magnitude contours representing different stagnation regions were 

observed. Due to rotation, tilting and unsteadiness of the large scale structures 

approaching the plate, and also considering the large distance between the 

nozzle and the plate, a large dislocation of the jet stagnation regions was 

observed compared to cases with small stand-off distances.  
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CHAPTER 4 

CFD SIMULATION OF BOILING HEAT TRANSFER IN AN IMPINGING JET 

USING OPENFOAM 
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4.1. General remarks 

In this chapter a CFD model has been systematically developed to 

simulate subcooled boiling heat transfer in an impinging jet. Due to the difficulties 

associated with commercial software for modifying the code and implementing 

appropriate experimental correlations, the OpenFOAM source code is employed 

as the basic software upon which the boiling model has been built. OpenFOAM’s 

two-phase Eulerian-Eulerian approach is used and the model development 

procedure involves three stages. Initially, the model is developed for an adiabatic 

two-phase flow in a pipe. In the second stage, the energy equation and boiling 

model are incorporated in the CFD model for pipe flow to solve for the heat 

transfer and boiling phenomena. The third part of the work involves extending the 

CFD model to simulate the boiling heat transfer due to an impinging jet. 

 

4.2. Introduction 

Subcooled boiling is a phenomenon which occurs in many applications 

such as in the automotive industry and cooling of electronic components. As Fig. 

1.4 shows, in some conditions the boiling phenomenon increases the heat 

transfer rate from the surface, while in other cases it significantly reduces the 

heat transfer which could lead to the wall temperature increasing to the burnout 

point. This is directly related to the position of the point on the boiling curve 

where the amount of heat flux from the plate is related to the wall superheat 

temperature. If the point is located in the nucleate boiling regime, a minor change 
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in the wall superheat leads to the removal of a large amount of heat from the 

surface. If the point stays in a region before nucleate boiling, a change in the wall 

superheat will not be as beneficial as in the nucleate region and, if it is next to the 

nucleate region, any change in the wall superheat will be accompanied by a 

reduction in wall heat removal, which can lead to a burnout point and is 

potentially very dangerous. 

There are a number of studies reported in the literature on the numerical 

modeling of subcooled boiling. In this regard, the model developed at Rensselaer 

Polytechnic Institute (RPI) by Kurul and Podowski (1991) has gained significant 

attention. According to the RPI model, the boiling heat transfer is divided into 

three components; convective, quenching and evaporative heat fluxes. The 

convective part is for single-phase convection, quenching refers to liquid filling 

the wall vicinity after bubble detachment due to vaporization, and the evaporative 

component is for the fluid that evaporates. 

Due to the complex nature of the boiling phenomenon, numerical studies 

have had to deal with many challenges involved in modelling boiling. Hibiki and 

Ishii (2002) have introduced models for breakup and coalescence of bubbles. 

Yao and Morel (2004) studied the effect of a new time scale on the turbulence 

induced coalescence and breakup. They also investigated the nucleation of new 

bubbles on the volumetric interfacial area and were able to predict the local two-

phase parameters under boiling flow conditions. Recently, Michta (2011) 

simulated nucleate boiling using OpenFOAM. However, he could not obtain 

satisfactory results when compared to the experimental results. Although he 
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intended to simulate two-phase pipe flow, the model that he developed used a 

2D planar rectangular mesh instead of a 2D axisymmetric mesh. This created 

inaccuracy in the results due to the cancellation of circumferential fluxes in a 2D 

mesh. 

In thepresent study, it is of interest to develop a numerical model using 

OpenFOAM, to predict and analyze the boiling phenomenon in mechanical 

systems such as impinging jets. It is also of interest to improve upon the results 

obtained by Michta (2011) by using different numerical setups and experimental 

correlations. The default Eulerian-Eulerian model was selected as the basic 

model for further development. 

The developmentof the model is carried out in three stages. In the first 

stage, an isothermal two-phase model is developed for solving the two-phase 

bubbly flow without heat transfer in a pipe, taking into account the effect of 

different interfacial forces including drag, lift, added mass, wall lubrication and 

turbulent dispersion forces. For each of these forces, different experimental 

correlations have been selected from the literature to enable the user to choose 

the most appropriate correlation for the geometry which is being modeled. The 

effects of bubble breakup and coalescence have also been added to the model. 

In the second stage, the energy equation is linked to the main loop. The 

boiling model is then incorporated and linked to the main loop. Different 

numerical setups and boundary conditions corresponding to the simulations 

carried out by Michta (2011) were also used in an effort to improve the quality of 
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the results. The results, which include prediction of the two-phase flow 

parameters and the temperature field, are compared with the available 

experimental data and previous numerical results. 

In the third stage, the boiling model is upgraded to simulate the boiling 

heat transfer in an impinging jet. It is expected that at this stage of development, 

the code will be capable of modeling the subcooled boiling phenomenon with a 

higher level of accuracy than previous numerical studies. 

 

4.3. Governing equations 

The governing equations used in the current Eulerian-Eulerian model are 

the incompressible mass conservation, momentum and energy equations. Mass 

conservation is expressed as 

∂αk

∂t
+ ∇.  αk U   k =

Γki −Γik

ρk
 .           (4.1) 

In this equation αk  is the void fraction, U   k  is the velocity and ρk  is the 

density for phase k, which can be either liquid (L) or gas (G). Γki  represents the 

mass transfer due to a phase change from phase k to phase i and Γik  is for the 

same phenomenon but from phase i to k. As a result, in the case of no phase 

change, these terms will drop out of the equation. The momentum equation is 

∂

∂t
 αkU   k + ∇.  αkU   kU   k = −

αk

ρk
∇p − ∇. [αk Rk + Rk

t  ]  

 +αkg  +
F   k

ρk
+

Γki U   i−Γik U   k

ρk
(4.2) 
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where ∇p is the gradient of the pressure in the flow, ∇. [αk Rk + Rk
t  ] is the 

viscous diffusion term, g   is the gravitational force and F  k represents the interfacial 

forces occurring due to the movement of the bubbles in the liquid. The last term 

in equation (4.2) represents the evaporation and condensation effects on the 

momentum equation. The energy equation for the two-phase flow is 

∂((1−αi )hk )

∂t
+ ∇.  (1 −αi)hkU   k = −

1

ρk
∇. [ 1 −αi  qk + qk

t  ]  

+
 1−αi 

ρk

Dp

Dt
+

Γki h i−Γik hk

ρk
+

q w A w

ρk
(4.3)

where hk  is the specific enthalpy of phase k, qk and qk
t  are the molecular and 

turbulent heat flux inside phase k, q w  is the wall heat flux density and A w  refers 

to the contact area with the wall per unit volume (Michta, 2011). 

 

4.3.1. Interfacial forces 

In the current study, which is an Eulerian-Eulerian simulation, the 

interaction between the continuous liquid phase and discrete bubble phase is 

considered in different ways. One of them is the effect of interfacial forces which 

are exerted on the bubbles by the liquid phase. According to Newton's third law, 

the total force acting on the bubbles by the liquid phase is equal to the total force 

exerted on the liquid phase by the bubbles. Due to the movement of bubbles in 

the liquid phase, different forces act on them. These forces can be represented in 

the following form: 

F  G = F  G
D + F  G

L + F  G
WL + F  G

TD + F  G
VM           (4.4) 
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In this equation, F  G
D  is the (gas) drag force, F  G

L  is the lift force, F  G
WL  

describes the wall lubrication force, F  G
TD  is the turbulent dispersion force and F  G

VM  

represents the virtual mass force. These forces are discussed in the following 

subsections. 

 

4.3.1.1. Drag force 

As shown in eqn. (4.4), the drag force (F  G
D) is one of the interfacial forces 

which the bubbles experience due to their movement in the liquid. This force is in 

opposite direction to the movement of the bubbles and is defined by the following 

equation: 

F  G
D = −

3CD

4dB
ρLαG  U   G − U   L (U   G − U   L)         (4.5) 

Here   .   refers to the magnitude of the vector, dB  is the bubble diameter and CD  

is the drag coefficient, which can be calculated from the correlation developed by 

Ishii and Zuber (1979), 

CD =
24

Re b
 1 + 0.1Reb

0.75             (4.6) 

where Reb is the Reynolds number based on bubble diameter and the relative 

velocity between bubble and liquid. 
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4.3.1.2. Lift force 

The lift force on the bubbles has a significant influence on their radial 

distribution. The general form for the lift force is based on the formula presented 

by Tomiyamaet al. (2002) and is written as: 

F  G
L = −CLρLαG (U   G − U   L) × (∇ × U   L)         (4.7) 

In this equation, CL is the lift coefficient and can be determined using the 

correlation 

CL  =  

 
 
 

 
 

min 0.288tanh 0.121Reb , f Eod    if Eod < 4

f Eod                                             if 4 ≤ Eod ≤ 10

−0.27                                              if Eod >  10        

        (4.8) 

where 

f Eod = 0.00150Eod
3- 0.0159Eod

2- 0.0204Eod + 0.474       (4.9) 

This coefficient depends on the modified Eotvos number, given by 

Eo =
g(ρL−ρG )Ds

2

ς
         (4.10) 

where ς is the surface tension of the liquid and Ds  is the maximum horizontal 

dimension of the bubble, which is calculated using the following equation by 

Wellek et al. (1966): 

Ds = dB (1 + 0.163Eo0.757 )0.33         (4.11) 
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4.3.1.3. Wall lubrication force 

In two-phase flow there is another interfacial force which pushes the 

bubbles away from the wall. The force which is responsible for this wall peaking 

phenomenon is called the wall lubrication force (F  G
WL ). The calculation of this 

force in the current model is based on the correlation presented by Tomiyama 

(1998), 

F  G
WL = −0.5CWLρLαG dB (

1

y2
−

1

(D−y)2
)( U   G − U   L )

2n       (4.12) 

CWL  =  

 
 
 

 
 

e−0.933Eo +0.179                if 1 ≤ Eo ≤ 5

0.00599Eo − 0.0187    if 5 ≤ Eo ≤ 33

0.179                                 if Eo >  33        

       (4.13) 

Here CWL  is the wall lubrication force coefficient, D is the pipe diameter, n   

is the unit vector normal to the wall and y is the distance to the wall. Unlike the 

Michta (2011) model, which considered only the Tomiyama (1998) correlation for 

this force, in the current study the correlation of Frank (2005), which is geometry 

independent, is implemented in the code. 

 

4.3.1.4. Turbulent dispersion force 

The interfacial turbulent dispersion force is responsible for the effect of 

turbulent fluctuations of liquid velocity on the gas phase and plays a major role in 

the radial distribution of the bubbles. Burns et al. (2004) have proposed the 

following correlation for estimating this force: 
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F  G
TD = −

3CD

4dB

μαL

ςTD
ρl U   G − U   L (

1

αL
+

1

αG
)∇αG        (4.14) 

where ςTD = 0.9 is an empirical parameter. 

 

4.3.1.5. Virtual mass force 

The virtual mass force or added mass force (F  G
VM ) is generated due to the 

relative acceleration of one phase with respect to the other. The correlation 

proposed by Zuber (1964) is used for modeling the added mass force in the 

current study, i.e., 

F  G
VM = −0.5ρLαG

1+2α

1−α
(

DU   G

Dt
−

DU   L

Dt
)        (4.15) 

 

4.3.2. Boiling model 

The wall boiling phenomenon is modeled by the RPI boiling model of Kurul 

and Podowski (1991). According to the RPI model, the total heat flux from the 

wall to the liquid is partitioned into three components, namely the convective heat 

flux, the quenching heat flux, and the evaporative heat flux, written as 

Qtotal = QC + QQ + QE .         (4.16) 

The heated wall surface is subdivided into an area Ab , which is the area 

covered by nucleating bubbles, and a portion (1-Ab), which is the area covered 

by the fluid. The convective heat flux QC  is expressed as 
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QC  = hC(TW − TL)(1 − Ab)         (4.17) 

where hC  is the single phase heat transfer coefficient, and TW  and TL are the wall 

and liquid temperatures, respectively.The evaluation of Ab  is based on the 

departure diameter of the bubbles (dB) and also the site density (Nw ) using the 

following equation: 

Ab = πNw (adB
2 /2)2          (4.18) 

where a is the bubble influence factor, for which a value of 2 is used (Kurul and 

Podowski, 1991). The site density of bubbles (Nw ) depends on different 

parameters such as the material properties and wall superheat (ΔTsup = TW −

Tsat ,L), which is the temperature difference between the wall and the saturation 

temperature of the liquid. Lemmert and Chawla (1977) proposed the following 

equation for determining the site density of bubbles: 

Nw = Nref [(TW − TL)/(∆TrefN )]P         (4.19) 

where Nref = 0.8 × 106 m-2 and∆TrefN = 10K, based on the recommendation of 

Bartolomej and Chanturiya (1967). The bubble detachment (or departure) 

diameter has a significant influence on the modeling of the subcooled boiling 

phenomenon. In the current study, for high subcooling cases (ΔTsub = Tsat ,L − TL), 

the experimental correlation of Unal (1976) is used for calculating the bubble 

detachment diameter, which is expressed as: 

dB = 2.42 × 10−5P0.705 a/ b∅                (4.20a) 
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where P is the system pressure (Pa) and a, b and ∅ are experimental 

correlations defined in Unal (1976). For low subcooling cases (less than 2K) the 

Tolubinsky and Kostanchuk (1970) correlation is used and expressed as: 

dB = dref e
(−

Tsat −TL
∆Trefd

)
                  (4.20b) 

where dref is 0.6 mm and ∆Trefd = 45K (Krepper et al. 2007). Note that the current 

model is capable of evaluating different subcooling temperatures and 

automatically selects the proper experimental correlation for this purpose.The 

quenching heat flux (QQ) models the averaged transient energy transfer related 

to liquid filling the wall vicinity after bubble detachment, and is expressed by the 

following equation (Krepper and Rzehak, 2011): 

QQ = AbhQ TW − TL          (4.21) 

The quenching heat transfer coefficient hQ is calculated based on the 

formula presented by Mikic and Rohsenow (1969): 

hQ =
2

 π
f twρLkLCpL          (4.22) 

where kL  is the thermal conductivity of the liquid phase and CpL  is the specific 

heat of the liquid. The bubble detachment frequency (f) is given according to the 

formula presented by Cole (1960): 

f =  
4g(ρL−ρG )

3CD dBρL
 .           (4.23) 
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In equation (4.22), tw  is the waiting time between the bubble departure 

and the appearance of the next bubble at the same spot and is set equal to 0.8f-1 

as suggested by Kurul and Podowski (1990, 1991). The evaporation heat flux 

(QE) can be estimated via the evaporation mass flux at the wall, 

QE = mW  hsat ,L − hL          (4.24) 

Here, the generated vapor mass mW  is expressed as a function of bubble 

diameter at detachment (dB), bubble generation frequency (f) and nucleation site 

density (Nw ), 

mW =
π

6
dB

3ρG fNw .          (4.25) 

 

4.3.2.1. Phase change rates 

The evaporation of the liquid phase occurs at the wall where TW  exceeds 

the Tsat ,L of the liquid in its proximity. The evaporation rate (Γki ) can be 

determined using the following equation which is expressed in unit per volume 

(Yao and Morel, 2004): 

Γki =
π

6
dB

3ρG fNw As           (4.26) 

where As  is the surface area of the wall per unit volume. The saturated bubbles 

move away from the wall and come in contact with the bulk of the fluid which is at 

lower temperature. This causes the vapor to condensate. The condensation rate 

can be calculated using the equation (Michta, 2011): 
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Γik =
hii ΔTsub IAC

hG−hL
          (4.27) 

where hii  is based on the correlation by Wolfert et al. (1978) and IAC is the 

interfacial area concentration which is discussed in the next section. Figure 4.1 

presents the flowchart of the boiling model developed in the current study, 

including the sequence of calculations and algorithm loops. 
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Fig. 4.1 Boiling model algorithm 

Input flow parameters 
(u, T, P, …) 

Calculate Tsup = (Tw-Tsat) 

Calculate detachment 
frequency (f) and site 

density (N) 
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4.3.3. Interfacial area concentration 

The interfacial area concentration (IAC) accounts for the changes in the 

surface area of the bubbles. During bubble generation and movement, a number 

of phenomena can occur including change in shape and size, breakup and 

coalescence. To take all of these effects into consideration, the transport 

equation for the interfacial area concentration (IAC) is solved and linked to the 

mass, momentum and energy equations. The IAC equation solved in this study is 

the one proposed by Yao and Morel (2004): 

∂(IAC )

∂t
+ ∇.  (IAC)U   G =

2(IAC )

3αGρG
mLG + 12π(

IAC

αG
)2(∅C + ∅B ) +  πdw

2 ∅nuc    (4.28) 

where ∅C  and ∅B  represent the effect of bubble coalescence and breakup, 

respectively, and ∅nuc = fNw As takes into account the effect of boiling on the IAC. 

There are different experimental correlations in the literature to determine the 

effect of bubble breakup and coalescence. In the current study the model 

developed by Hibiki and Ishii (2002) was chosen and applied to the IAC equation, 

∅C = −ΓC
α2ε1/3

dB
11/3

(αmax −α)
exp −KC

dB
11/3

ρL
1/2ε1/3

ς1/2        (4.29) 

where ΓC = 0.031 and KC = 1.29, and 

∅B = ΓB
α(1−α)ε1/3

dB
11/3

(αmax −α)
exp −KB

ς

dB
5/3

ρL
1/2ε2/3

       (4.30) 

where ΓB = 0.021 and KB = 1.37. 
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An example of the implementation of the IAC, breakup and coalescence 

models in OpenFOAM is presented in Fig. 4.2. 

 

Fig. 4.2 Implementation of breakup, coalescence and IAC equation in 

OpenFOAM 
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4.3.4. Turbulence modelling 

Liquid phase turbulence simulation is carried out by implementing the 

standard k - ε turbulence model with additional terms representing the effect of 

gas bubbles. The effect of the liquid phase turbulence on the bubbles was 

modeled using the turbulent dispersion force described earlier in section 4.3.1.4. 

The total viscosity in a single phase flow is calculated from a molecular part 

(μmol ) in addition to the turbulent viscosity part (μturb ). The turbulent viscosity 

(μturb ) is defined in equation (4.31). In this equation, k is the turbulent kinetic 

energy, ε is the turbulent eddy dissipation and Cμ = 0.09, 

μturb = CμρL
k2

ε
 .          (4.31) 

 

4.3.4.1. Bubble induced turbulence 

Sato et al. (1981) suggested the following equation to consider the effect 

of bubbles on liquid phase turbulence: 

μbubble = CBρLαdB  U   G − U   L         (4.32) 

where CB = 0.6. The total viscosity for the two-phase flow is calculated from a 

molecular part (μmol ), the turbulent viscosity (μturb ) and the bubble induced 

contribution (μbubble ) as shown in Fig. 4. 3., i.e., 

μ = μmol + μturb + μbubble  .        (4.33) 
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Fig. 4.3 k - ɛ turbulence model, modified to account for gas bubbles 
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4.4. Results 

The code development procedure includes three stages. In the first stage, 

an adiabatic two-phase flow model has been developed which does not solve the 

energy equation. The second step of the model development process includes 

adding the energy equation to the solver and enabling the boiling model. The last 

stage includes extending the boiling model to an impinging jet flow. Validation of 

the code has also proceeded in stages, first testing the adiabatic model, followed 

by the boiling model for pipe flow, then jet impingement boiling. 

 

4.4.1. Evaluation of adiabatic case 

Initially, modeling of the interfacial forces and the Interfacial Area 

Concentration (IAC) transport equation were added to the solver. This gives the 

code the capability of predicting changes in the size of the bubbles due to 

breakup and coalescence (Fig. 4.2). The current model includes several 

improvements compared to the model developed by Michta (2011). The Frank 

(2005) correlation for wall lubrication force was added to the solver, enabling the 

user to apply this force to other flow geometries. A 2D axisymmetric mesh, 

instead of a 2D planar rectangular mesh which was employed by Michta (2011), 

was used for the current simulation. A slip condition was imposed for bubbles on 

the wall, whereas Michta (2011) used a no-slip condition. 

This part of the solver, which is referred to as the adiabatic part, does not 

take into account the heat transfer phenomenon or any phase change. 
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To evaluate the accuracy of the code and to ensure that the developed 

model at this stage generates satisfactory results, the DEDALE1101 experiment 

(Grossetête, 1995) was modeled using the modified version of OpenFOAM. The 

model geometry is a pipe (Fig. 4.4a) with 6 m length and diameter D = 0.0381 m. 

A uniform 2D axisymmetric mesh shown in Fig. 4.4b was generated for this flow 

field, with the axis of the pipe aligned along thex-axis. The mesh is comprised of 

20 cells in the radial direction and 300 cells in the streamwise direction. The 

number of cells selected in each direction is based on mesh convergence tests. 

 

 
 

 

Fig. 4.4 a) Schematic of a two-phase pipe flow (not to scale), b) 2D axisymmetric 

mesh 

 

The initial and boundary conditions used in this simulation were matched 

with the experimental setup. A liquid velocity of 0.91 m/s and a gas velocity of 

(a) 
(b) 

(pipe axis) 

(pipe wall) 

(inlet) 

D= 0.0381m 

L= 6m 
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1.36 m/s were introduced at the inlet. The inlet turbulent kinetic energy and 

dissipation rate obtained from the experiments were 0.00423 m2/s2 and 0.01695 

m2/s3, respectively. Values of 97 m-1 for the interfacial area concentration and 

0.048 for the void fraction were set at the inlet location. The no-slip condition was 

used at the wall for the liquid phase. For the gas phase, a slip condition was 

used. A pressure outlet condition was used at the outlet. Due to the 2D 

axisymmetric nature of the simulation, the pipe axis was taken as a 

computational boundary, on which a symmetry condition was imposed. 

Simulations were run until negligible change was observed in the pressure 

difference between the inlet and outlet of the domain. 

Figure 4.5 illustrates the results on the cross-section at x/D = 55, i.e. about 

1/3 of the pipe length, and compares these results obtained from the current 

model with DEDALE experimental data (Grossetête, 1995) and the numerical 

results of Michta et al. (2012) and Yao and Morel (2004). Figure 4.5a 

demonstrates that there is very good agreement between the IAC results 

obtained from the current study and the experiment. In particular, the current 

simulation predicts the correct IAC peak value and yields a good prediction of the 

peak IAC location in the wall proximity. The difference between the predicted and 

experimental location of the peak IAC near the pipe wall is less than 6%, while 

Michta et al. (2012) show a difference of about 17% and Yao and Morel (2004) is 

unable to capture the peak. 

The radial distribution of void fraction is plotted in Fig. 4.5b. Similar to the 

behaviour observed in the IAC profile, the void fraction profile obtained from the 
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current model captures the peak location and peak value of the void fraction in 

the proximity of the wall. In regions close to the pipe axis, the computational 

model accurately predicts the void fraction profile, as does the model of Michtaet 

al. (2012). The Yao and Morel (2004) results follow the trend of the experimental 

data at the middle region of the pipe, but cannot capture the correct behaviour in 

the wall region. 

Further evaluation of the model is carried out by comparing the liquid 

velocity at x/D = 55. The numerical results for the liquid velocity shown in Fig. 

4.5c indicate an error of about 10% compared to the experimental values. 

Considering the assumptions of the model, the discretization errors in the 

numerical scheme and the uncertainties associated with the measurements, this 

level of discrepancy seems to be acceptable. 

Comparison of the mean bubble diameter results predicted by the current 

model and previous numerical simulations with the experimental data shows that 

the current model generates satisfactory results in the middle region of the pipe. 

In the wall region, the results of Michta et al. (2012) are slightly closer to the 

experimental results, and neither simulation predicts the increase in mean bubble 

diameter. 

The improvement observed in the current numerical results is likely due to 

incorporating a different mesh topology than Michta et al. (2012) and the use of a 

different boundary condition for the bubbles on the wall boundary. Michtaet al. 

(2012) used a no-slip condition on the wall for the bubbles. In the current 
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simulation a slip condition, which is a more realistic assumption for bubble 

movement, is used to allow bubbles to freely slide on the wall. A 2D axisymmetric 

mesh was employed here, instead of the 2D planar mesh which was used by 

Michta et al. (2012). Proper implementation of all equations and correlations has 

been investigated carefully in the current model. The inaccuracy of the 

experimental results due to the associated measurement uncertainties at the wall 

proximity should also be taken into consideration. 

  

  

 

Fig. 4.5 Radial distribution of a) interfacial area concentration, b) void fraction, c) 

liquid velocity, d) bubble diameter 

 

Based on the evaluations discussed above, the adiabatic part of the model 

appears to generate satisfactory results. Overall, the present results are an 
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improvement over the previous numerical results of Michta (2011) and Yao and 

Morel (2004). Therefore, we can confidently proceed to the next step, which is to 

activate the energy equation and enable the boiling model in the code. 

 

4.4.2. Evaluation of boiling model 

Similar to the adiabatic test case, an appropriate experiment was chosen 

to evaluate the boiling model. The DEBORA experiment (Garnier et al. 2001) 

was selected as a benchmark in this case. Unlike the DEDALE experiment, the 

DEBORA experiment involved two-phase flow with phase change. Therefore, to 

test the model developed in this research, a simulation was designed to match 

the geometry and boundary conditions of the DEBORA experimental setup (Fig 

4.6). A vertical pipe with a diameter of 0.0192 m and heated length of 3.5 m was 

modeled. Subcooled Freon-12 (R12) was supplied at the inlet. Due to the heat 

flux on the pipe, bubbles start to form along the pipe wall and travel with the flow 

towards the exit of the pipe. 

Similar to the adiabatic case, a 2D axisymmetric mesh with 20 cells in the 

radial direction and 300 cells in the streamwise direction was used. Liquid 

velocity of 1.7 m/s and gas velocity of 1.9 m/s were supplied at the inlet. To 

match the experimental setup, the IAC value was set to be 5000 at the inlet. 

Turbulent kinetic energy and dissipation rate were obtained from the experiments 

and set to be 0.114 m2/s2 and 0.149 m2/s3, respectively. Zero velocity and a no 

penetration condition were applied on the wall for the liquid phase. Unlike the no-
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slip condition used by Michta (2011) for the bubble velocity on the wall, a slip 

condition was used in the current simulation. A pressure outlet condition was 

used at the outlet. The inlet temperature of the liquid phase was set at 68.5°C 

and a heat flux of 73,890 W/m2 was imposed on the pipe. 

 

Fig. 4.6 Sketch of the DEBORA test setup (Garnier et al. 2001) 

 

Due to the heat flux on the wall, the temperature of the liquid phase 

passing through the pipe increases over time. This increase continues until the 

liquid temperature reaches the saturation temperature in the proximity of the wall. 

At this stage small bubbles begin to form on the wall. As time progresses, these 

bubbles are convected downstream with the fluid. 

In order to evaluate the accuracy of the boiling model and compare it with 

previous studies, several parameters including the radial temperature distribution 
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of the liquid, the void fraction, the IAC and the mean bubble diameter were 

extracted at the exit of the pipe. Figure 4.7a shows a comparisonof the 

temperature profiles obtained from the current CFD simulation, the experimental 

measurements and other numerical results. As the graph shows, there is good 

agreement between the current and experimental results. The current results 

show a small improvement over the results obtained by Michta (2011). 

Figure 4.7b shows that the boiling model is capable of capturing the trend 

of the experimental IAC values over a significant portion of the pipe radius, 

especially in the near-wall region. The radial distribution of void fraction (Fig. 

4.7c) is better predicted by the current CFD model compared to the previous 

numerical results of Michta (2011), although neither compares well to the 

experimental data. Figure 4.7d illustrates a comparison of the mean bubble 

diameter obtained from the different simulations and shows very good agreement 

between the results obtained from the current simulation and the experimental 

results. A significant improvement also can be seen in the results relative to the 

numerical simulations of Michta (2011). The analysis of these results suggests 

the validity of the numerical model for the simulation of boiling heat transfer in a 

pipe flow. 
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Fig. 4.7 Radial distribution of a) liquid temperature, b) interfacial area 

concentration, c) void fraction, d) bubble diameter 

 

4.4.3. Boiling simulation in an impinging jet 

The boiling model developed in the previous section is only applicable to 

flow through a circular pipe. However, it is of interest to extend the boiling model 

to an impinging jet. Boiling liquid jets benefit from the latent heat of vaporization 

of the fluid to remove large amounts of heat (>20,000 W/m2K) from a surface 

(Narumanchi et al. 2008). This makes boiling an interesting phenomenon for an 

electronics cooling process. As illustrated in Fig 1.4, a small increase in Tsup in 
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the nucleate boiling part of the curve is accompanied by a large increase in the 

amount of heat flux (q‖) removed from the surface. 

To make the boiling model of the pipe flow applicable to an impinging jet, 

a number of additional modifications are required. The following is a listing of the 

modifications applied to the boiling model developed in this research. 

4.4.3.1. Lift force 

The lift force formula of Tomiyama et al. (2002) used above (Section 

4.3.1.2) is only valid for pipe flow. Here, the correlation suggested by Moraga et 

al. (1999) is used for the impinging jet: 

CL  =  

 
 
 

 
 

0.0767                                                                                   if φ ≤ 6000

− 0.12 − 0.2e−
φ

36000  e
φ

3e +7                       if 6000 ≤ φ ≤ 1.9e + 05

−0.002                                                                       if φ ≥ 1.9e + 05

    (4.34) 

where φ = RebRev. In this equationReb = dB  U   G − U   L /νL and Rev = dB
2  ∇ × U   L /

νL, where νL is the liquid viscosity. 

4.4.3.2. Wall lubrication force 

Unlike the Tomiyama (1998) correlation used for the pipe flow,the 

correlation of Frank (2005), which is geometry independent, was employed in the 

code for the impinging jet model: 

F  G
WL = −CWLf ρLα( (U   G − U   L) − ((U   G − U   L). n  )n   )2n       (4.35) 
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CWLf = CWL . max 0,
(1−

y w
10d B

)

6.8yw  
y w

10d B
 

0.7        (4.36) 

where CWL  can be determined from equation (4.11). 

4.4.3.3. Validation of the boiling model for impinging jet 

An appropriate experiment was chosen to evaluate the boiling model 

developed for impinging jets. The experiment carried out by Katto and Kunihiro 

(1973) was selected as a benchmark and a simulation was designed to match 

the geometry and boundary conditions of the experimental setup (Fig. 4.8). 

 

 
 

Fig. 4.8a) Computational domain, b) mesh for the impinging jet 

 

A water jet with 3°C subcooling at atmospheric pressure (i.e., with Tinlet = 

97°C) impinges on a 10 mm diameter disk with an inlet velocity of 2 m/s. The 

nozzle diameter is 1.6 mm, and the distance between the nozzle exit and the 

heated plate is maintained at 3 mm (H/D = 1.87). A heat flux is imposed on the 

(a) 

(b) 
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hotplate surface, as shown in Fig. 4.8a. Due to the heat flux on the plate, bubbles 

form on the wall and travel with the flow towards the exit of the domain. 

A 2D axisymmetric mesh was built for the simulation (Fig. 4.8b). Zero 

velocity and a no penetration condition were applied on the wall for the liquid 

phase. A periodic boundary condition was used for the two side boundaries. For 

the bubble velocity on the wall, a slip condition was imposed. A pressure outlet 

condition was used at the outlet. The k - ε model with a standard wall function 

modified for the current study was used for turbulence modeling. 

Fig. 4.9 shows the comparison of the boiling curve, which is a plot of heat 

flux vs. stagnation point wall superheat, obtained from the current CFD 

simulation, the numerical results of Narumanchi et al. (2008) and the 

experimental measurements of Katto and Kumihiro (1973). As seen in Fig. 4.9 

there is fair agreement between the results obtained from the current simulation 

and the experiments, witha difference of about 20%. Given the complex nature of 

this problem and the experimental uncertainties, differences of the order of even 

30% have been deemed acceptable (Narumanchi et al. 2008). This evaluation 

confirms that the current boiling model is capable of simulating boiling heat 

transfer in impinging jets. 
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Fig. 4.9 Boiling curve obtained from current CFD analysis, simulation of 

Narumanchi et al. (2008) and experiment of Katto and Kunihiro (1973) 

 

4.4.3.4. Results 

Figure 4.10 shows the liquid velocity vectors and velocity magnitude 

contours obtained from the current impinging jet simulation. After the 

impingement the flow turns to the radial direction and a wall jet is formed on the 

plate. 

  

Fig. 4.10 Liquid a) velocity vectors, b) velocity magnitude contours 
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Figure 4.11 shows different flow parameters for the impinging jet with a 

heat flux of 100,000 W/m2. The profiles of IAC and void fraction are plotted in 

Figs. 4.11a,b. A thicker profile and a higher peak can be observed as radial 

distance from the jet axis increases. This is due to the generation of more 

bubbles in regions far from the axis. Basically, the cooling effect of the impinging 

jet on the plate is weakened as the radial distance increases which is associated 

with more bubble generation in that region, i.e., an increase in IAC and void 

fraction. 

  

  

Fig. 4.11 Profiles at different radial stations; a) IAC, b) void fraction, c) liquid 

velocity, and d) bubble diameter 
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Fig. 4.11c plots the liquid velocity profiles for the same radial stations 

shown in Figs. 4.11a,b. This figure shows that the wall jet is approaching a fully 

developed condition as the radial distance increases. The bubble size profiles 

are shown in Fig. 4.11d for the same r/D stations. An increasing trend is 

observed for these profiles by moving towards the downstream region. 

 

4.5. Concluding remarks 

An Eulerian-Eulerian model has been developed to simulate the boiling 

heat transfer phenomenon in a pipe flow and in an impinging jet. The 

OpenFOAM software was used for developing the code. The default solver 

"twoPhaseEulerFoam" was modified to include boiling heat transfer. 

The model development procedure is divided into three stages. In the first 

step, which is the adiabatic portion, the OpenFOAM default two-phase flow 

model was enhanced to take into account several aspects of two-phase flow 

phenomena, including most of the interfacial forces between the liquid and the 

bubbles, and the breakup and coalescence of the bubbles. In this regard, the 

code was modified to account for the effect of drag, lift, wall lubrication, turbulent 

dispersion and added mass forces. Then the transport equation for the interfacial 

area concentration (IAC) parameter, which is responsible for the change in 

bubble shape, was added to the code. Different mesh topologies, boundary 

conditions and experimental correlations were considered to improve the quality 

of the results. An experimental test case was selected to evaluate the 



122 
 

performance of this part of the code. The comparison of the results obtained from 

the code with the experimental results showed good agreement, confirming the 

validity of the two-phase part of the model. Overall Improvement in the quality of 

the results was also observed when compared with previous numerical 

simulations available in literature. 

For the second stage, which is the heat transfer part of the study, the 

energy equation was activated and the boiling model was added to the code. The 

RPI boiling model implemented in the code partitions the heat flux on the wall 

into three different heat transfer mechanisms; convection, evaporation and 

quenching. The code was modified to account for the effect of each of these 

mechanisms. Updated versions of different correlations were used in the model. 

Furthermore, mass, momentum, energy and IAC equations were modified to 

incorporate the boiling phenomenon. Comparison of the results obtained from the 

current code with available experimental data on the pipe exit shows that the 

code generates satisfactory results. The results obtained from the current 

simulations show significant improvement for many of the important flow 

parameters in comparison with previous numerical results. 

In the last stage, the developed model was extended to an impinging jet. 

Modifications were made to some of the experimental correlations used for pipe 

flow in order for the model to be applicable to an impinging jet. The comparison 

of results obtained from the current simulation and other numerical and 

experimental studies confirms the accuracy and validity of the current model for 

the analysis of boiling phenomenon in impinging jets.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 
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In the current study, numerical simulations were carried out to investigate 

the behaviour of impinging jets with different flow configurations. Steady and 

unsteady analyses as well as adiabatic and non-adiabatic cases were analyzed. 

The study was divided into three parts. In the first part, the effect of nozzle stand-

off distance on mean flow parameters was analyzed using RANS simulations. In 

the second section, an unsteady simulation was performed to obtain the time 

history of the flow parameters in an impinging jet with large stand-off distance. 

Finally, a CFD model was developed for the analysis of boiling heat transfer in an 

impinging jet using OpenFOAM source code. The significant contributions of this 

research are summarized below. 

Effect of nozzle stand-off distance on impinging jets (Chapter 2): 

The performance and efficiency of impinging jets strongly depends on the 

nozzle stand-off distance. This influence is due to the fact that the core part of 

the jet ends at a certain axial location, following which a large decay occurs in the 

jet axial velocity. In the current investigation, we carried out three RANS 

simulations with different H/D values to evaluate the effect of H/D on mean flow 

parameters. The three H/D ratios were selected for this analysis representing the 

small, medium and large stand-off impinging jet cases. Furthermore, it was of 

interest to analyze the accuracy of different turbulence models for modeling this 

type of flow, and the results were evaluated by comparing with available 

experimental results. The Realizable k - ε and RSM models show some over-

prediction of the centreline velocity in the impingement zone, but recover to 

provide a close match to the experimental data near the plate surface. The k - ω 
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SST model provides good agreement with the experimental results through the 

impingement zone and very close to the plate. 

From this investigation it was found that there is a significant influence of 

H/D ratio on the behaviour of the impinging jet. For small H/D cases, the three 

well-known flow regions of an impinging jet were found to be indistinguishable. It 

was found that the core part of the jet impinged on the plate. By increasing the 

H/D ratio, the three distinct regions of the impinging jets including free jet, 

impingement zone and wall region became distinguishable. At small H/D values, 

two peaks in the wall shear stress distributionexist. However, for large H/D 

cases, a single peak was observed. The variation of pressure along the plate 

becomes more gradual when the H/D ratio increases. 

Unsteady analysis of impinging jets with large stand-off distance (Chapter 

3): 

To address some of the unsteady flow related issues that could not be 

accounted for with a RANS turbulence model in Chapter 2, a Large Eddy 

Simulation (LES) was carried out for an impinging jet with a large stand-off 

distance. The choice of LES for this evaluation was based on the fact that it is 

computationally efficient since it only resolves the large and high energy-

containing eddies and the small scales are modeled. 

Three different mesh sizes were used to ensure that the mesh 

requirement in LES was satisfied. The mesh resolution in the wall region was 

checked to comply with the generally approved LES criteria for wall-attached 
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flows. The mesh resolution quality inside the domain was also evaluated by 

comparing the mesh size to the Kolmogorov length scale. To validate the 

accuracy of the numerical model for unsteady analysis, the frequency of the ring 

vortices generated in the vicinity of the nozzle was compared with similar 

previous studies in the literature. It was found that the ring vortices generated by 

the interaction of the flow exiting the nozzle with the ambient flow in the tank 

undergo breakdown, stretching and merging and finally transform into large scale 

structures as they move towards the impingement plate. The vortical patches 

existing in the ring vortices are found to be the main reason for this 

transformation. 

The frequency of ring vortices that appear close to the nozzle reduces as 

the vortices move towards the plate. In the impinging zone, the frequency of the 

structures was significantly lower than the frequency of the ring vortices near the 

nozzle. The breakdown of ring vortices after five or six diameter from the nozzle 

is associated with three-dimensionality and unsteady effects which causes the 

fluid structures to lose their symmetry on approaching the plate. This causes an 

unsteady pressure fluctuation in the impinging region as well as jet meandering 

around the axis. 

After impingement the flow transforms into a wall jet. The structures hitting 

the plate result in separation of the flow on the plate, generating separation 

bubbles in the impinging region which influences the shear stress distribution in 

the wall region. 
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CFD analysis of boiling heat transfer in impinging jets (Chapter 4): 

An Eulerian-Eulerian two-phase flow model using OpenFOAM source 

code was developed to simulate the boiling heat transfer phenomenon in an 

impinging jet. The model development process included three stages. 

In the first stage, an adiabatic two-phase flow model was developed for 

pipe flow. The default solver for two-phase flow simulation in OpenFOAM was 

upgraded to take into account the effect of different interfacial forces and area 

concentration. The model was used to simulate a benchmark problem and the 

results showed good agreement with experimental data and an improvement 

over previous numerical simulations. 

In the second part of the model development process, the energy equation 

and the boiling model were activated. A benchmark experiment was selected for 

evaluating the quality of the developed model at this stage. The CFD simulation 

of this experiment showed very close agreement with the experimental results 

and significant improvement compared to previous simulations, particularly for 

the bubble size distribution. 

Having benchmarked the boiling model for the pipe flow, the model was 

upgraded to simulate the boiling phenomenon in an impinging jet. For this 

purpose, the experimental correlations valid for pipe flow were replaced with the 

ones for impinging jets. Comparison of the present results with the experimental 

results confirmed the validity of the developed model for impinging jets. 

 



128 
 

Recommendations for future research: 

 Due to the significant influence of the inlet condition on the flow 

development in jet flows, CFD simulation should be carried out to understand the 

effect of turbulence at the inlet of the domain. LES studies can be used to 

capture the influence of turbulence on generation, transfer and break down of 

vortical structures in the domain. This investigation can lead to a better 

understanding of the origin of vortical structure breakup in jet flows. 

 

 Another potential future study related to the current research is 

implementation of more accurate turbulence generation methods at the inlet. The 

LES in the current study uses the spectral synthesizer method which is based on 

mean value results obtained from previous RANS studies. Due to the nature of 

the LES analysis, a real time true turbulence level needs to be introduced at the 

inlet in order to generate more realistic results. This can be done by performing a 

separate simulation using LES to capture the time history of the turbulence 

fluctuations at the inlet and storing this data. Following this, another simulation 

which uses this time history data at the inlet can be employed to model the entire 

domain. 

 

 In the current dissertation, RANS and LES studies have been carried out 

to understand the flow in impinging jets. Based on the nature of these methods 

they are not as accurate as DNS for flow simulation. DNS will provide more 
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detailed data for analysis of the behaviour of the steady and unsteady flow 

features in this type of flow. 

 

 For the boiling simulation of impinging jets, the current simulation uses the 

OpenFOAM source code, which gives modifying permissions to the user. To 

improve the quality of the results it is possible to implement new experimental 

and numerical correlations for different parts of the model. Furthermore, having 

an open source code, it is possible to extend the model to other 3D geometries. 
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