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ABSTRACT 

The inversed diffusion flame (IDF) burner which is characterized by a double flame structure and 

ultra-low nitrogen oxide emissions has been studied at the lab scale in this work. This experimental 

study is intend to investigate the structure of co-axial non-premixed diffusion flames with inversed 

flow arrangement of methane and air, surrounded with combustion products from a lean flat flame, 

simulated combustion products, nitrogen and air. The co-flow stream is to simulate the possible 

gases surrounding the flames inside an industrial furnace. The previous numerical and experimental 

investigation has studied central air jet flows into the co-annular fuel jet, and then both mixing with 

the surrounded hot combustion stream from premixed lean flat flame. The present investigation is 

focused on the same initially non-premixed inversed arrangement with central air and fuel streams 

flowing into hot combustion products, air, and pre-heated simulated combustion products. 
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CHAPTER 1 

Introduction 

1.1 Flameless Oxidation 

Flameless oxidation is a mode of combustion which is characterized by the large extended reaction 

zone with no definite visible flame; it provides more uniform heat transfer to the load. Inside the 

furnace, fuel and air jets react with combustion products which have cooled down by heat transfer 

to the load creating the flameless oxidation regime. The concept of flameless oxidation was first 

introduced for around 70 years ago. 

  In order to minimize formation of nitrogen oxides and produce an oxidation effluent, Bell and 

McGill (1983) attempted to burn the stream which contained nitrogen oxides at 1093℃ and above, 

using excess amount of reducing agent, which led to flameless oxidation. This process allows 

combustion with much lower equivalence ratio. Wünning and Wünning (1997) pointed out the key 

features of flameless oxidation, in which the thermal NO emission can be reduced even with high 

air pre-heating temperature; the flameless oxidation could occur in the combustion chamber with 

Figure 1.1: Regenerative burner (Wünning and Wünning, 1997) 
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temperature higher than 800 ℃; flameless oxidation occurs without any visible or audible flame at 

optimized condition.  Their regenerative burner which operated in both flame and flameless 

oxidation mode contained mainly two jets, the central fuel jets and co-flow air jets. The exhaust 

gas was entrained and mixed with these two jets as shown in Figure 1.1, forming the reaction zone 

of fuel/exhaust gas mixed jets, plus air/exhaust gas mixed jets. This burner is designed to enhance 

the recirculation of the exhaust gas. The recirculation of the exhaust gas and mixing of the other 

two jets are the key factors for flameless oxidation. Wünning and Wünning (1997) characterized 

the recirculation rate by the following factor 

Figure 1.2: Comparison of simultaneously taken temperature and OH-LIPF images between 

premixed flames under highly turbulent condition and flameless oxidation (Plessing et al., 1998) 
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                                                                𝐾𝑉 =
𝑀̇𝐸

𝑀̇𝐹+𝑀̇𝐴
                                                               (1.1) 

where 𝑀̇ is the mass flow rate for (E) as the exhaust gas jet, (F) as hydrocarbon fuel jet and (A) as 

air jet in the burner reaction zone. They found that to obtain the flammable mixture, the 

recirculation rate  𝐾𝑉  should be equal or less than 0.5, and with even more reliable operation 

condition, 𝐾𝑉  should be equal or less than 0.3. They explored the stability limits for flameless 

oxidation, and plotted the schematics of the stability limits over the stable flame, unstable flame 

and flameless oxidation by applying different recirculation rates.  

  Plessing et al. (1998) explored the actual difference of temperature and OH specie for flame and 

flameless oxidation by using laser measurement techniques as shown in Figure 1.2. Comparing 

with the turbulent flame mode with flameless oxidation mode, the peak temperature region is much 

lower in flameless oxidation mode, and temperatures are more uniformly distributed. Their finding 

has been confirmed by OH Laser-Induced Photodissociation and Fluorescence. The intensity of 

OH is much less in flameless oxidation mode, and more uniformly distributed. The results they 

obtained identifies the key features of the flameless oxidation. 

  As flameless oxidation shows dramatically decreased peak temperatures, the 𝑁𝑂𝑥 emissions also 

get affected. Mancini et al. (2002) has investigated the behavior of 𝑁𝑂𝑥 with numerical simulation 

and experimental validation. They found out that 𝑁𝑂𝑥 is formed in an elongated, thin shear layer 

located between the natural gas jet and the air jet, and 𝑁𝑂𝑥  is formed mainly by the thermal 

mechanism. The prompt 𝑁𝑂 plays a small role in 𝑁𝑂𝑥  formation process. Also, 𝑁𝑂 re-burning 

mechanism is negligible in the analyzed case. Cho et al. (2011) studied the behavior of a 300 kWth 

regenerative multi-burner flameless oxidation furnace and tested two firing modes as shown in 

Figure 1.3. Lower 𝑁𝑂 emission was achieved by the parallel firing mode rather than the staggered 

mode, and the main reason for this phenomenon is related to the higher temperature uniformity 

ratio which is defined as 



 

4 

 

                                                        𝑇𝑢 = 1 − √
1

𝑁
∑ (

(𝑇𝑖−𝑇̅)

𝑇̅
)𝑁

𝑖=1                                                  (1.2) 

where 𝑇𝑖 is the measured temperature at a certain location (i) and 𝑇̅ is the average temperature of 

all measured temperature from different locations in the furnace. The temperature uniformity ratio 

𝑇𝑢 is in the range of 0 to 1, and 1 indicates perfectly uniform temperature inside the furnace. The 

CO emissions only slightly differ between parallel and staggered modes and the CO concentration 

is less than 40 ppm, which is relatively low. 

  A large amount of work has been done on fairly large-scale furnaces, the regenerative burner 

which could be like refractory lined furnace with an 2 × 2 m cross-section and a length of 6.25 m 

(Mancini et al., 2002).  Flamme (2004) investigated the FLOX® burner under gas turbine 

conditions. Different types of flameless oxidation burners were studied, the single nozzle burner, 

multi-air nozzle burner and a range of single nozzle burners. The results from experiment and 

numerical simulation indicate the lowest 𝑁𝑂𝑥  and CO emission has been achieved by the 

arrangement of several single nozzles FLOX® burners. For 𝜆 ratio of 2 and 2.5,  𝑁𝑂𝑥 emissions are 

between 1 and 3 ppm, and carbon monoxide is less than 10 ppm. Danon et al. (2010) has tested 

Figure 1.3: Multi-burner installation map for the definition of configurations and operating 

modes (Cho et al., 2011) 
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flameless oxidation in a prototype FLOX® gas turbine combustor both numerically and 

experimentally.  The Low Calorific Value (LCV) gas has been introduced as the primary fuel which 

is produced by a catalytic auto-thermal reforming unit. A mixture of 𝐶𝐻4, CO, 𝐶𝑂2, 𝑁2 and 𝐻2 has 

been fed into the reforming unit. The ultra-low emission combustion has been achieved, and two 

different recirculation zones were identified from calculation results. 90% of the NO was formed 

by the nitrous oxide mechanism, and rest 10% is formed by the thermal mechanism. 

  Sobiesiak et al. (1998) has investigated performance characteristics of the novel low-NOx CGRI 

burner. The resultant combustion has the feature of visually flameless, which in this case they prefer 

to reaction zone as combustion zone rather than flames. It enabled the usage of high air pre-heating 

by matching with NOx emission standards. With the appropriate choice of fuel and oxidant port 

angles and spacing, the reasonably short, compact burner combustion zone has been achieved. 

FODI (Fuel/Oxidant Direct Injection) non-premixed firing strategy has been applied. Because 

FODI primarily depends on adequate entrainment by the fuel and oxidant jets of recirculation of 

the furnace gases (primarily combustion products) which has been cooled by heat transfer to the 

surroundings.  The burner configuration has the clear advantage to enhance the entrainment, a large 

number of fuel and oxidant ports to shorten the burner combustion zones plus promotes stability, 

and with two common features in most furnace combustion chamber, namely ample of presence of 

cooled product gases, also the momentum of the fuel and oxidant feed-streams.  

  In achieving the flameless oxidation, the characteristics of individual jets play the key role. 

Veríssimo et al. (2013) has examined the importance of the inlet air velocity on establishing the 

flameless combustion in a 10 kW laboratory scale combustor. As their results shows, by increasing 

the inlet air velocity, flameless combustion condition remains almost in the same region of the 

combustor, as the main reaction zone remains constant 𝜆 = 1.3. When 𝜆 > 1.7, flameless oxidation 

could be established regardless of the change in air jet momentum. It indicated that the central high-

momentum air jet surrounded by a number of low-momentum fuel jets may have some difficulties 

to establish the flameless oxidation with the dilution of substantial amount of flue gases. 
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1.2 Fuel Reformation 

Fuel reformation is a method to generate hydrogen or hydrogen-enriched products from hydrogen 

fuels such as natural gas. Since hydrogen has the property to significantly enlarge the flammable 

region and extend the flammability region to much lower equivalence ratio. Rabenstein and Hacker 

(2008) indicated the possible operation modes for hydrogen production by ethanol reforming as: 

 Steam reforming; 

 Partial-oxidation; 

 Auto-thermal reforming. 

1.2.1 Steam Reforming 

Haryanto et al. (2005) claimed steam reforming of natural gas to produce hydrogen to be the most 

energy-efficient technology at that time, as this process can extract H2 from both hydrocarbon fuels 

and water. Otsuka et al. (1998) indicated steam reforming is a highly endothermic reaction, so the 

high temperature which normally greater than 900℃ is a need and large amount of energy is 

consumed to drive this reaction. The ideal steam reforming for methane is: 

                         𝐶𝐻4 + 𝐻2𝑂 → 𝐶𝑂 + 3𝐻2, ∆𝐻 = +49.3 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙                                         (1.3) 

1.2.2 Partial-oxidation Reforming 

Compared with steam reforming, the partial oxidation of methane is an exothermic reaction. The 

reaction can proceed at moderate temperature which is less than 500℃ ideally. In reality the direct 

partial oxidation of methane is very difficult to achieve, due to partial oxidation process gets 

complete oxidation of methane to CO2 and H2O and steam reforming of remaining CH4 with H2O 

involved in. To resolve this issue, higher temperature ( > 800℃) is required to obtain high 
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selectivity of H2 and CO, due to the reformatting reaction’s limitation of thermodynamic 

equilibrium at low temperature. The ideal partial-oxidation for methane is: 

                         𝐶𝐻4 + 0.5𝑂2 → 𝐶𝑂 + 2𝐻2, ∆𝐻 = −8.5 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙                                      (1.4) 

1.2.3 Auto-thermal Reforming 

Hoang and Chan (2004) defined the auto-thermal reforming as the combination reaction of partial-

oxidation and steam reforming under thermally neutral conditions and with consideration of heat 

loss to the surroundings. There are basic eight auto-thermal related reactions come from both partial 

oxidation and steam reforming of methane, and they have been split to two streams of reactions. 

Sets of reactions include containing exothermic complete oxidation, followed by steam reforming, 

water-gas shift, and CO2-reforming reactions of methane, and the second stream includes the 

cracking of methane and carbon monoxide to carbon deposition, plus gasifying carbon by steam 

and oxygen. Among these eight reactions, some reactions proceed with the combination of the 

others, while some has significantly low rate of reactions. The four major reactions to be considered 

is the exothermic complete combustion of a fraction of feed methane: 

                      𝐶𝐻4 + 2𝑂2 → 𝐶𝑂2 + 2𝐻2𝑂, ∆𝐻1(298) = −802000𝑘𝐽/𝑘𝑚𝑜𝑙                              (1.5) 

With the endothermic steam reforming reaction to CO: 

                     𝐶𝐻4 + 𝐻2𝑂 ↔ 𝐶𝑂 + 3𝐻2, ∆𝐻2(298) = 206000𝑘𝐽/𝑘𝑚𝑜𝑙                                     (1.6) 

Accompanied by a water-gas shift: 

                     𝐶𝑂 + 𝐻2𝑂 ↔ 𝐶𝑂2 + 𝐻2, ∆𝐻3(298) = −41000𝑘𝐽/𝑘𝑚𝑜𝑙                                       (1.7) 

Some methane steam-reformed directly to CO2: 

                     𝐶𝐻4 + 2𝐻2𝑂 ↔ 𝐶𝑂2 + 4𝐻2, ∆𝐻4(298) = 165000𝑘𝐽/𝑘𝑚𝑜𝑙                                     (1.8) 
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  To operate the auto-thermal reformer, the catalyst of the reformer need to be heated up to 300℃ 

to lead the auto-thermal reaction to self-active proceed with predetermined mixture of methane, air 

and water. The main advantage of auto-thermal reforming is the thermal energy generated from 

partial oxidation can be absorbed by stream reforming as these two processes simultaneously 

occurring in the reactor. 

1.3 Inversed Diffusion Flame 

Mikofski et al. (2006) stated the Inversed Diffusion Flames (IDFs) are similar to normal diffusion 

flames (NDFs), and the difference is the exchanged relative position of fuel and oxidizer. The 

temperature and mixture fraction histories to form soot and polycyclic aromatic hydrocarbon 

(PAH) are different, and these soot and PAH escape to the surroundings without oxidization since 

they do not need to travel pass the high temperature reaction zone.  A lot of studies have been done 

on different aspects of normal diffusion flames and also inversed diffusion flames. The following 

schematics in Figure 1.4 and Figure 1.5 compare a laminar NDF burner and IDF burner: 

Figure 1.4: Schematic diagram of normal laminar diffusion flame assembly (Snelling et al., 1999) 
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  Wu and Essenhigh (1985) first identified six different flame types of methane inversed diffusion 

flame in one map. Only two types of flame had similar behavior that could represent IDF, and these 

flames occupied over 50% of total flame map. The Burke-Schumann flame (Burke and Schumann, 

1928) surface with instantaneous reaction was used as the prediction model. The measurement of 

radial and axial temperature and species concentration profile were agreed with calculation results. 

   Sobiesiak and Wenzell (2005) extended the investigation of characteristics and structure for non-

premixed flames of fuel/oxidizer direct injection and inversed fuel/oxidizer delivery. The results 

indicated velocity of the inner air jet and outer fuel jet has crucial impact of the flame length. By 

controlling velocity ratio, fuel/air nozzle diameter ratio, and fuel/air jet equivalence ratio, producing 

an extended uniform and high temperature region could be promising. The anchor diffusion flame 

at the nozzle could stabilize the whole flame by its presence. Johnson and Sobiesiak (2011) 

continued the studying of this non-premixed flame by adding a lean premixed, burner-stabilized 

methane/air flame as the source of combustion products to create the double flame structure. Both 

experimental measurements and numerical simulation had been applied to investigate IDFs. The 

hysteresis behavior had been found out by increasing of central air velocity, a partially premixed 

Figure 1.5: Schematic diagram of inversed laminar diffusion flame assembly (Johnson and 

Sobiesiak, 2011) 
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flame was produced by mixing central air and fuel jets, and when the central velocity reached a 

critical level, the partially premixed flame propagated back and stabilized upstream closer to the 

burner face to from IDF. 

  The characteristics of inversed diffusion flame have investigated with different types of fuel and 

different burner configuration. Mikofski et al. (2006) studied the flame height associate with both 

ethylene and methane as primary fuel. They were using OH PLIF measurement, and it indicated 

that as luminous soot is above the reaction zone, the luminous height is greater than height of the 

reaction zone, so the luminous flame height is not effective to quantify the flame height. Sze et al. 

(2004) investigated the temperature distribution and heat transfer aspects of IDF with butane as 

fuel. The temperature profiles of the flame showed a cool core at low flame heights, and the 

maximum temperature region were presented instead at higher elevation. From the distribution 

combustion products, it shows high heat flux region is strongly bonded to where the intense reaction 

occurred, and the heat flux drops correspondingly where the post combustion is. Katta et al. (2005) 

studied the dynamics of IDF and how it affected the formation of PAH and soot by using ethylene 

as fuel. The results shows flame oscillation does not affect formation of radical and product species 

very significantly, but it has strong influence certain on slowly formed PAH species. Vortices at 

17.2 Hz helped the mixing of species, resulting in more uniformly distribution of PAH species at 

downstream locations. 

1.4 Thesis Objective 

 

1) To identify the flame structures that occur when velocities and temperature of the central 

air, annular fuel flow and co-flow are changed. Different types of co-flow jets have been 

tested, namely air, nitrogen, combustion products produced by a burner stabilized lean 

flame and a synthetic gas to simulate the combustion products. Both the co-flowing 

combustion products and the simulated combustion products are representative of the 

furnace gases that air and fuel jests would entrain into. 
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2) To identify the operation conditions under fuel reformation and flameless oxidation. In 

some cases, the central fuel was delivered at various angles, and central air tube was raised 

above the burner surface to provide additional mixing time of central fuel/air and co-flow 

jets before the reactions, in order to create more homogenous mixture and enlarge the 

reaction zone. The pre-heating level of the co-flow jets has been varied as well to favor the 

temperature of fuel reformation and flameless oxidation. These parameters have been 

controlled to lead combustion or oxidation reaction taking over the entire mixing volume 

and avoid the visible thin flame front. 

1.5 Methodology 

Digital photographs and excited-state CH radical (CH*) chemiluminescence (Schefer, 1997) have 

been used for imaging the flames. The CH* images are post-processed and converted into a 2-D 

contour profile with spatial axis to describe the flame. The flame structures in these contour profiles 

are compared with a two-dimensional temperature profile from thermocouple measurement. With 

proper control of input conditions, the detailed characteristics of the flames are identified. The 

flame structure and temperature relations between flameless oxidation and fuel reformation has 

been analyzed. 

1.6 Thesis Organization 

This thesis is focused on the experimental analysis of an initially non-premixed inversed diffusion 

flame. The experimental burner assembly, gas delivery method, burner configuration, CH* 

chemiluminescence imaging system, temperature controlling/monitoring system and flame 

stability measurement system are described in Chapter 2. The preliminary results on the flame 

structure characteristics are discussed in Chapter 3. It includes IDFs with various flow arrangement 

and different co-flow conditions, and results are obtained by using unfiltered pictures and 

temperature measurements. The flames with different inlet conditions and co-flow gases are 

presented in Chapter 4. The comparison of flame structures from CH* chemiluminescence 
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distribution with temperature profile for various pre-heating level and different co-flow gases are 

included in this chapter. Detailed analysis for the characteristics of the flames follows, with 

discussions on the impact of different inlet conditions on inversed diffusion flames. The evidence 

of flameless oxidation and fuel reformation has also been described in this chapter. The conclusions 

and possible future work are presented in the final chapter. 
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CHAPTER 2 

Experimental Apparatus 

The design and fabrication of the initially non-premixed inversed diffusion flame burner 

experimental setup was carried out as a PhD dissertation project (Johnson, 2009). The detailed 

description of major experimental setup components are provided in his dissertation. When the 

experimental setup was adopted for this work, the main parts were in working condition, but 

additional connections and modifications were needed to put the system together in order to get it 

ready. The major additions and modifications done to the experimental setup during this research 

work include the following: 

 Modification of the gas delivery system by introducing the simulated combustion products, 

nitrogen and additional compressed shop air into the system. 

 The heat exchanger and its controlling system have been introduced in order to obtain 

different pre-heating temperature levels of the co-flowing gases. 

 Modification of the temperature controlling program to measure and monitor the flame and 

burner temperature. 

 Integration of imaging processing program for online processing of measurement to more 

accurately evaluate with the flame lifting heights, and quantify the flame oscillation of the 

unstable flames. 

  Since Johnson (2009) has described most of the key components, only an overview of the 

experimental apparatus and modifications that have been done during the course of research are 

discussed in this section. The detailed temperature measurement system with the control units is 

also covered in this section, additionally the CH* chemiluminescence system and post-processing 

code are discussed with proper literature support. Furthermore, some thermocouples have been 

replaced or reinstalled, and additional thermocouples have been added to the temperature 

measurement system. A newly designed imaging processing system by utilizing a webcam has been 

installed to monitor the flame oscillation. 
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2.1 Overview of the Experimental Setup 

The experimental setup which consists of an inversed diffusion flame burner with two co-axial 

tubes in the center is shown in the Figure 2.1, the burner is covered by a transparent housing. One 

of the thermal control boxes, main parts of the traverse mechanism, and the USB portable data 

acquisition box are also shown in this figure. 

2.2 Gas Delivery System  

Figure 2.2 shows the schematic of the gas delivery system for the IDF burner. All the gases are 

supplied from compressed gas bottles except one from a shop quality compressed air. The gases 

coming out from gas bottles are first controlled by regulators, after three-way valves (McMaster-

Carr 4149T72) and shutoff valves (McMaster-Carr 4886K56 and Swagelok SS-44S6) on each line, 

the gas lines have the second metering devices which are rotameters (Omega FL-1466-S for central

Figure 2.1: Experimental setup with thermal control unit and data acquisition system 
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fuel, FL1448-G for central air, FL-1445-G for co-flow simulated combustion products, FL1447-S 

for co-flow nitrogen, and FL-1446-S for co-flow air). Due to the need of precision control for each 

flow stream, the needle valves (Swagelok B-SS2-D for co-flow combustion products and co-flow 

air, B-4MG for central fuel/air and co-flow nitrogen) are installed right after the rotameters. The 

measurements are don with electronic mass flow-meters (Alicat Scientific M-2SLPM-D/5M for 

central fuel, co-flow nitrogen and co-flow simulated combustion products, M-10SLPM-D/5M for 

central air and M-20SLPM-D/5M for co-flow air). All the flow measurements have been recorded 

in this course of work were taken with flow-rate fluctuation ±0.05 𝐿𝑃𝑀  during steady state 

operation.  All the flow velocities are calculated based on the bulk velocities at the exit of burner 

top, and at room temperature and pressure. 

2.3 Burner Configuration 

 

Figure 2.3: The flows arrangement in IDF burner 



 

17 

 

 

 

Thermocouple installation hole 

Figure 2.5: IDF burner with thermocouple installed 

Figure 2.4: Top view of the burner face with co-axial tubes at the center 
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Figure 2.3 shows the actual look of the burner face from the top, as is indicated in Figure 2.4, at the 

center, there is central air flow, and annular fuel flow is called in Figure 2.4 the central fuel flow. 

Both of the jets are surrounded by the co-flow as it shows in Figure 2.3, the entire co-flow is running 

through 1114 holes with size of 0.5mm. A port has been drilled for thermocouple installation, so 

the temperature inside the burner can be measured. It is shown in Figure 2.5.   

  Figure 2.6 shows three central air tube cases that were studied: (1) the tube is flush with the burner 

surface; (2) raised above the burner surface at 0.635 cm; and (3) raised at 1.27 cm. That is one way 

to delay the mixing of central fuel/co-flow combustion products with central air flow. It has been 

investigated in dissertation by (Johnson, 2009) and continued here.  

  Also in course of this research, the idea for delaying mixing has been taken further. The angled 

delivery of central fuel has been introduced with inverted cones to guide the fuel flow. Grandmaison 

et al. (1998) studied the burners with the fuel and air ports axis were all divergent shows in Figure 

2.7. The stream 1 has much smaller momentum flux than stream 2, the typical momentum flux 

ratio 𝜓12  for practical burner operation is 0.02. The angle between the axes is at 𝜃1,𝑜 , in this 

Figure 2.6: Central air tube located regards to the burner tip at 3 different levels 

(1) 

(2) 

(3) 
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case 𝜃1,𝑜 equals the port-separation angle  𝜃12, and the range of port-separation angles is from 0 −

40°. The results indicated that the normalized longitudinal position of the point of confluence has 

direct relation of the momentum flux ratio, and the port separation angle.  𝑑12 is generally the 

distance between the centers of fuel and air ports at exit. With the range of 𝜓12 = 0.005 − 0.08, 

and 𝜃12 = 10 − 40°, position at the confluence point of the fuel and air jets 𝑥𝑐 is well fitted by the 

relation: 

                                               𝑥𝑐 = 6.5d12𝜓12
0.1exp (0.0125θ12

2 𝜓12
0.5)                                        (2.1) 

In the two-jet mixing zone, Grandmaison et al. (1998) also pointed out while the fuel and air 

materials mix with each other, the two jets are mixing with more of the ambient combustion gases 

as well. 

  Based on the results illustrated from Grandmaison et al. (1998), the angled delivery methods has 

been applied with the same purpose to delay the mixing of fuel and air jets even more. As the angle 

between axes is in the range of 0 − 40°, 15° has been selected as the angle to guide the fuel jet to 

mix with air jet. To compare with the case that central air tube raised from the burner face, the 

height of inverted cones are made the same as the level of the air tube raised. Figure 2.8 and Figure 

2.9 show the draft and dimension of cones designed, the fuel flow is guided to flow over the surface  

Figure 2.7: Development of the fuel jet, stream 1, in the entrainment field of the air jet, stream 2 

(Grandmaison et al, 1998) 
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Figure 2.8: Cone dimensions with 0.635 cm in height. 

Figure 2.9: Drafted cone dimensions with 1.27 cm in height. 
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of the cone, and air flow is running through the center of the cone. Figure 2.10 illustrates the flow 

directions for central air and fuel flowing along the cone. 

  For experiments with co-flowing combustion products, these were generated from burning a lean 

methane-air mixture at equivalence ratio 𝜙 =  0.78 with velocity of 16.27 cm/s. The co-flowing 

air velocities in this course of study are the range from 0 to over 61.71 cm/s, and co-flowing 

simulated combustion products velocities from 0 to 49.37 cm/s. The major geometric and flow 

configurations have been listed in Table 2.1. 

2.4 Chemiluminescence Imaging System 

In the PhD dissertation work (Johnson, 2009), excited-state CH radical (denoted CH*) was used as 

the measurement reference for flame-front location, because Crosley (1989) indicated that light 

emission from CH has been used to mark the reaction zones as it exists near the flame front which 

can reveal the location of the combustion chemistry taking place, and in this course of continuing 

work, same technique has been applied. Pimentel et al. (1960) identified the emitter 𝐶𝐻(Α2Δ), 

further denoted as CH*, but the elementary reactions of its formation remained unclear at that time. 

Williams and Smith (1970) found the oxidation of acetylene in flames is accompanied with strong 

radiation from ions, and this chemiluminescent radiation predominant in the main reaction zone. 

OH*, CH*, C2*and CO are the major chemiluminescent emission radicals. They also stated that  

Central Air 

Central Fuel 

Central Air 

Central Fuel 

Figure 2.10: Fabricated cones with 0.635 cm and 1.27 cm in height 
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CH* is formed by the following chemiluminescent reactions: 

                                                      𝐶2𝐻 + 𝑂2 → 𝐶𝐻∗ + 𝐶𝑂2                                                      (2.2) 

                                                      𝐶2𝐻 + 𝑂 → 𝐶𝐻∗ + 𝐶𝑂                                                          (2.3) 

                                                      𝐶2 + 𝑂𝐻 → 𝐶𝐻∗ + 𝐶𝑂                                                          (2.4) 

Devriendt et al. (1996) indicated that the emitter CH* has intense blue emission at  𝜆~430 𝑛𝑚, and 

it is the most notable features of hydrocarbon flames. Higgins et al. (2001) intend to use the non-

intrusive measurement of CH chemiluminescence to provide feedback control of premixed gas 

turbine engines. The CH chemiluminescence was measured by a photo-multiplier tube (PMT) with 

a band-pass interference filter (centered at 431.5 nm with a full width at half height of 11.2 nm). 

Kojima et al. (2000) used chemiluminescence two-dimensional imaging for laminar methane/air 

premixed flames to overcome the problem of spatial resolution to detect the local flame front, as at 

that time most chemiluminescence measurements were collecting the global emission along the 

line of sights of typical optical lens. Kojima et al. (2005) continued their work by comparing the 

results of spatial intensity profiles of OH*, CH* and C2 (d) chemiluminescence between spatial 

resolved measurements and a1-D flame simulation including the excited-state species. The C2 (d) 

intensity profile has been found located at the middle of the OH*, CH* species in the reaction zone, 

and the sequence of the location of the peak intensity was OH*, flowed by C2 (d) and then it is 

CH*. The Abel inverted technique has been used by Jeong et al. (2006) to produce the concise and 

exact solution for reconstruction of the CH* images. The CH* profile is extracted from intensity 

profile data by yielding two dimensional ‘slices’ of the flame. 

  The CH* chemiluminescence imaging system used here was described in the PhD work (Johnson, 

2009), and it is used mostly unchanged in the current work. The post process program is based on 

the three-point Abel transform which is also been described in Johnson (2009). The details of 

modification of the image processing methodology can be found in Appendix A.  
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2.5 Temperature Controlling System 

The overview schematic of the temperature controlling system shows in Figure 2.11. Since pre-

heating the co-flow gases is essential factor to achieve the flameless oxidation and fuel reformation, 

to maintain the operating conditions of the IDF burner at a certain temperature range is crucial, and 

the temperature controlling system is severing this purpose. This system consists of two parts, the 

temperature monitoring and close loop temperature controlling. To monitor the temperature, K-

type thermocouple (Omega KMQXL-125G-6) has been installed through the hole drilled on the 

burner wall which is shown in Figure 2.5. Break-up Board (NI SCB-68) and data acquisition card 

(NI PCI-MIO-16E-1) are collecting the temperature data from thermocouple and sending to the 

LabVIEW program in the computer, so the real time temperature reading are presented in the 

computer. The monitoring LabVIEW program is showing in Appendix B with details. On the 

Figure 2.11: Temperature control schematic 
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temperature controlling side, the close loop control is taking by the on and off controller showing 

in Figure 2.12. The thermocouple (Omega CHAL-005) signal is send to the controller, it processes 

the temperature reading in order to command the power switch of the heating tape (McMaster-Carr 

4550T253). The temperature is maintained by an on and off switch of the heating tape, and the 

switch is controlled by the feedback from the thermocouple.  

2.6 Temperature Measurement System 

Figure 2.13 and Figure 2.14 are showing the traverse mechanism and control box which are the two 

major parts of the temperature measurement system. The traverse mechanism is built based on two 

actuators to support the motion in vertical and horizontal directions, as it connects to the 

thermocouple fork which supports the R type thermocouple (Omega SP13RH-003/SPPL-003). The 

traverse mechanism is controlled and powered from one of the modules inside the control box. The 

motion control module contains screw terminal (NI UMI-7764) and motion control card (NI PCI-

7330) which is connected to the computer and operate through the LabVIEW program. The 

program is running based on target positions, and it has the minimum step of 0.01 mm for both 

horizontal and vertical directions. The other module inside the control box is used for the 

temperature measurements, the R type thermocouple readings are collected through data 

Figure 2.12: Temperature controller 
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acquisition card for temperature monitoring mentioned in section 2.5. The LabVIEW program of 

the temperature measurement is also shared with the temperature monitoring program. 

 

Thermocouple 

Fork 

Traverse 

Mechanism 

Figure 2.13: Traverse system 

Figure 2.14: Control box 
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2.7 Flame Stability Measurement System 

During this course of work, some flames were found to be highly unstable when the inversed 

diffusion flame is running with co-flow simulated combustion products, since the simulated 

combustion products contains only very small amount of oxygen. The composition of simulated 

combustion products are calculated based on the combustion products methane and air flame with 

equivalence ratio 𝜑 = 0.78,  

𝐶𝐻4 + 2.56(𝑂2 + 3.76𝑁2) → 𝐶𝑂2 + 2𝐻2𝑂 + 9.64𝑁2 + 0.56𝑂2 

Since the water in the real products is gaseous, in the simulated (bottled) combustion products, it 

was omitted. The final composition of simulated combustion products is 7.62% of carbon dioxide, 

4.26% of oxygen, and 88.12% of nitrogen by volume.  

  As the flames are unstable with simulated combustion products, the flame characteristics vary all 

the time. To measure the flame lifting height, as the flame is moving up and down, capturing the 

lift-off height accurately is quite problematic. The flame stability measurement system has been 

introduced to overcome this issue. Huang et al. (1999) studied the on-line flicker measurement of 

gaseous flames by imaging processing. A CCD camera has been used,  on-line imaging processing 

and subsequent was used to provide the control. They concluded that their system has the ability to 

monitoring the flicker and analyzing the dynamic nature of a flame, and the relative error of their 

measurements was no greater than 3%. In course of this work, the system is much simplified 

version, and it includes just contains a webcam (Microsoft LifeCam HD-3000) and a computer to 

run the MATLAB program. The webcam has the framing rate of 30 frames per second. The 

MATLAB imaging processing toolbox has been used for capture and process the images. Imaging 

geometric transformation and image conversion are the two major functions been selected for this 

program. The percentage of flame getting below certain height in 100 frames is calculated by the 

program. Total number of pixels the flame has taken are also been counted. The flame motion is 
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captured over 5 seconds, and the calculation results are taken into account to establish the lift-off 

height. The program details are described in Appendix C.  
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CHAPTER 3 

Flame Characteristics with Co-flow of Combustion Products from a Flat Flame 

This chapter discusses results of the experiments conducted on IDF flames with co-flow 

combustion products from a premixed flat flame shown in Figure 3.1. It is the continuation work 

of the PhD dissertation (Johnson, 2009), and it is focused on finding the evidence of flameless 

oxidation and fuel reformation at the initial state of this course work. Minor changes have been 

made to the experimental setup at this stage, the operation conditions and the gas delivery method 

has been modified to favor the targeted working conditions.  

  In Figure 3.1, from left to right are the burner-stabilized flames with increasing of equivalence 

ratio by decreasing the co-flow air velocity, so that the flame is getting richer.Various flow rate of 

co-flow air or fuel result in the premixed flame with different equivalence ratios. As the flat flame 

is serving as the source of combustion products, it results different composition of the combustion 

products. With different combination of central air and fuel velocities, the flame structure changes 

has been illustrated in Figure 3.2. A fuel rich premixed flame has been created with the fixed flow 

rate of uco-flow air = 0.65 cm/s and uco-flow fuel = 0.19 cm/s. By increasing the central air  

Figure 3.1: Images illustrate premixed flat flame, and the co-flow fuel flow rate for these three 

cases are the same which uco-flow fuel=0.25 cm/s 

                             1.18                                     0.94                                          0    

                                                                   uco-flow air[cm/s]   
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 Operating Conditions  

Picture # ucentral fuel (cm/s) ucentral air  (cm/s) 

a 0.861 4.06 

b 2.584 4.06 

c 2.584 13.533 

d 5.167 4.06 

e 2.584 31.125 

Table 3.1: Central air and fuel running conditions for Figure 3.2 

Figure 3.2: Sample sequence images with various central air and fuel velocities fixed flat flame 

composition (co-flowing mixture uco-flow air=2.163 cm/s, uco-flow fuel=0.629 cm/s) 

(a)                                     (b)                                      (c) 

(d)                                    (e) 
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Operating Conditions 

Picture # ucentral fuel (cm/s) ucentral air  (cm/s) ucertain gas (cm/s) 

a 0.75 4.06 0 

b 2.584 4.06 1.06 

c 2.584 13.533 5.3 

Table 3.2: Central air, fuel and curtain gas running conditions for Figure 3.3 

Figure 3.3: Sample sequence images with additional nitrogen curtain gas. With fixed flow rate of 

the co-flowing mixture uco-flow air=2.163 cm/s, uco-flow fuel=0.629 cm/s for the first two pictures from 

the left. The flat flame is entirely replaced with nitrogen flow in the hot flame. The flow rate of 

curtain gas are increasing with large increments in this case 

(a)                                        (b)                               (c) 
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velocity, inner flame of IDF grows longer and at same threshold velocity it gets detached from the 

burner top. With move velocity increase, the inner flame height keeps on increasing till it merges 

with the outer diffusion flame. On the other hand, if the annular fuel flow velocity is increased, the 

major outer diffusion flame changes is its elongation.  

  Figure 3.3 shows flames for a fixed flat flame in the first two pictures with different central air 

and fuel velocities. A curtain gas of nitrogen has also been introduced into the flow for the 

conditions shown Figure 3.3. The another stream of co-flowing gas surrounding the existed flow 

field acts like a ‘shield’ or ‘curtain’ to prevent the surrounding air entrainment to this flow field. 

When increasing the flow rate of the outside nitrogen, the first two pictures on the left clearly show 

that the edge of the flat flame has been curved up. Comparing with Figure 3.2, by adding the curtain 

gas, the flame structure does not change much except for the flat flame edge. The double flame 

structure is not sensitive to the surrounding entrainment of the surroundings. To take a look of the 

effect of the curtain gas on the IDF, the flat flame has been turned off in the third picture. High 

flow rate of nitrogen curtain does not lift the inner IDF. All these conditions are with relatively 

small central air and central fuel flow rates, and it indicates that with these operation conditions, 

the flame structure is relatively stable. Among conditions shown in Figure 3.2 and Figure 3.3, there 

is no clear evidence for fuel reformation and flameless oxidation. One way to possibly change this 

is to delay the mixing of central air and central fuel. 

  A sequence of pictures is shown in Figure 3.4, where the central air tube has been raised for 0.635 

cm in order to delay the mixing, and the flat flame is for the co-flow mixture of air and fuel are 

fixed at lower equivalence ratio. Since the stainless steel tube is exposed to the flat flame, the high 

temperature from the flame is heating up the tip of the tube, so as the second picture of this sequence 

shows. Without any cooling of the tube and the central fuel is flowing, the pyrolysis process starts 

around the hot spot of the tube. That is the major reason for the red color from the fuel stream, as 

the fuel undergoes a thermochemical decomposition into species like hydrogen and carbon 

monoxide with some soot particles are also formed there to emit the red color light. When central  
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Operation Conditions 

Picture # ucentral fuel (cm/s) ucentral air  (cm/s) 

a 0 4.06 

b 2.584 0 

c 2.584 1.353 

d 2.584 5.413 

e 2.584 5.819 

Table 3.3: Central air and fuel running conditions for Figure 3.4 

Figure 3.4: Sample sequence images with central air tube raised from the burner surface for 0.635 

cm, and the fixed flat flame (co-flow fuel flow rate uco-flow fuel=0.865 cm/s, air flow rate uco-flow 

air=3.146 cm/s) 

(a)                                     (b)                                     (c) 

(d)                                     (e) 
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Operation Conditions 

Picture # ucentral fuel (cm/s) ucentral air  (cm/s) 

a 0 4.06 

b 2.584 0 

c 2.584 1.353 

d 2.584 5.413 

e 2.584 5.819 

Table 3.4: Central air and fuel running conditions for Figure 3.5 

Figure 3.5: Sample sequence images with central air tube raised from the burner surface for 1.27 

cm, and fixed flat flame (co-flow fuel flow rate uco-flow fuel=0.865 cm/s, air flow rate uco-flow air=3.146 

cm/s) 

(d)                                      (e) 

(a)                                     (b)                                   (c) 
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air being introduced to the flow field as shown in the third picture, the air flow also acting as a 

coolant of the tube. As the temperature of the tube decreases, the fuel pyrolysis is occurring at 

higher flame elevation, and the outer diffusion flame gets formed, with the inner flame attached to 

the tip of the tube. By increasing the flow rate of the central air even more, the cooling effect of the 

tube becomes stronger, and all the hot spots on the tube are eliminated, the fuel pyrolysis is 

terminated as well. As the central air tube raises closer to the tip of the outer flame, the inner flame 

start to merge with the outer flame with relatively lower central air flow rate. By increasing the 

central air velocity even more, the flame structure stays similar to the previous case except that the 

inner flame is lifted a little bit higher than before. 

  The flame structures at various operation conditions where central air tube is raised to 1.27 cm 

are shown in the sequence of pictures in Figure 3.5. The delaying time for mixing of the central 

fuel and central air has almost doubled as the distance for central fuel needs to travel to tip of the 

air tube. More of high temperature region has been created on the stainless steel tube as it exposed 

to the flat flame if there is no central air flowing at the center. The gaseous fuel starts to break up 

almost right after it makes contact with the red hot region of the tube as it is shown in the second 

picture. The pyrolysis is occurring along the tube tip similarly to the previous case. By introducing 

a small amount of central air flow to flame (b), the cooling effect decreases the area of hot region, 

and as the thermochemical break up process is reduced, the outer diffusion flame is formed. The 

inner diffusion flame is established at the central air exit and immediately connects with outer flame 

as the tube reaches almost the same elevation of the outer flame height. With increasing the flow 

rate of central air to flame (d), the hot region on the stainless tube is completely eliminated, also 

the double flame structure has been formed. The inner flame front was formed around the tube. The 

upper part of outer flame starts to fade as now the central air stronger momentum jet attracts the 

weaker fuel momentum jet, so the mixture is burning at the tip of the tube instead of occurring as 

upper part of outer flame. To explore this phenomenon furthermore, the central air velocity has 

been increased to even higher level in flame (e). The outer flame has disappeared in this case, and 
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all the gaseous fuel are entrained to the central air flow field, so only one diffusion or partially-

premixed flame is formed at the tip of the tube. In the described above the two tube offset cases, 

the flame front still has formed indicating that the flameless oxidation did not occur. 

  The main issue to be considered at this stage is that just increasing the mixing delay is not enough. 

In the above cases, the mixing region of the co-flow combustion products and central fuel is still 

limited to the two jets narrow contact area. To improve the mixing conditions, the inverted cone 

has been introduced which can provide both, extended mixing time, and the enlarged mixing region 

as well. A sample sequence of flame images with inverted cone installed is shown in Figure 3.6. 

The cone height has the same height as the raise fuel tube to 1.27cm. When the cone is exposed to 

the flat flame, there is still a large hot area being created, similarly to the offset tube case. It causes 

the fuel to pyrolyze almost right at the exit of the fuel nozzle which is shown in the flame (b). When 

the small amount of central air starts flowing, the thermochemical decomposition effect start to 

diminish, and outer diffusion flame is formed. Due to the heat accumulated in the cone, still some 

of the fuel is broken up when flowing over the hot spots, so the soot particles are formed right 

beside the inner diffusion flame, flame (c). When the central air velocity is increased even more, 

flame (d) and (c), the two flames are merging together as a ‘water drop’ shape of flame, and the 

cooling of central air eliminates the hot spot on the cone. Further increasing of the central air 

velocity causes the diffusion flame to break apart again, flame (e), due to the strong air jet attraction 

of the weaker fuel jet to form the inner diffusion flame above the cone. With this geometrical 

configuration, the flame front still can be clearly observed, so the flameless oxidation mechanism 

is still not occurring. 

   To obtain a  closer look at the structure of the flames for various operation conditions with co-

flowing air and combustion products, the temperature profiles has been produced from 

thermocouple measurements. The ideal flameless oxidation would have a uniformed temperature 

distribution inside the reaction zone, as the oxidation reaction happens across the entire volume 

instead of located only in the narrow flame front area. Figure 3.7 shows the temperature contour  
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Operation Conditions 

Picture # ucentral fuel (cm/s) ucentral air  (cm/s) 

a 0 4.06 

b 0.861 12.585 

c 4.306 29.772 

d 2.584 12.585 

e 0.861 12.585 

Table 3.5: Central air and fuel running conditions for Figure 3.6 

Figure 3.6: Sample sequence images for the flames which the burner has inverted cone been 

installed, with various central air and fuel velocities for the flixed flat flame (co-flowing mixture at 

fixed velocity uco-flow air=3.15 cm/s, uco-flow fuel=0.865 cm/s 

(a)                                    (b)                                    (c) 

(d)                                     (e) 
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for a half of flame, and it covers 1.5 cm of the total flame height. This temperature contour field is 

compared with one of the numerical simulation results from Johnson (2009) as the reference. The 

maximum temperature of both experimental and simulation results are at the same level, around 

1900K. As far as the flame location is concerned, the inner flame in the experiment is twice as high 

as the simulated flame, and the experimental outer diffusion flame is further away from the center 

axis when comparing to the results from simulation. There is a larger area with temperatures lower 

than simulation inside the outer diffusion flame. In both cases, the high temperature are clearly 

depicted to indicate the flame fronts. With co-flow air, the flameless oxidation is unlikely to 

happen, as combustion occurs in the thin mixing region of the central fuel jet with central air and 

co-flow air. There is not enough time for fuel and air to mix and form a homogenous mixture. 

  Figure 3.8 shows temperature fields for two operation conditions with co-flow combustion 

products from measurements. It compares with and without the inverted cone. The temperature 

profile is still shows half of the flame starts from the centerline. The figure on the left is the case 

without the cone. The high temperature region is formed along the mixing region of central air and 

central fuel, and central fuel and co-flowing combustion products as well. The ultra-high 

temperature region occurs at the inner flame which is located at 1.5 mm above the burner surface 

where maximum temperature is around 1800K. In this case, the high temperature region located at 

0.2 - 0.8 cm in the horizontal direction. When compared with co-flow air case in Figure 3.7, the 

high temperature regions are even narrower. With the inverted cone installed, there is no clearly 

indication that inner flame has formed as there is no high temperature region along the central air 

and central fuel mixing path. The location of the outer flame has been pushed about 2 mm 

horizontally, but the combustion still occurs at the mixing region of co-flow combustion products 

and central fuel. The outer diffusion flame forms at the 0.4 to 1 cm in the horizontal direction. 

When the central air and central fuel jet mix and start the reaction, the flame merges with outer 

diffusion flame, and in this case the double flame structure is showing as a single unified  
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Temperature (K) 

Figure 3.7: Temperature profile of IDF with co-flowing air, the central fuel velocity ucf=18.4 cm/s, 

and central air velocity uca=54.3 cm/s. The co-flow air velocity is 16.72 cm/s in this case. The 

picture on the top is the experimental measurement results, and on the bottom is numerical 

simulation results of Johnson (2009) 

Center Axis 
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(mm) 

Figure 3.8: Temperature profile of IDF with co-flowing combustion products, the central fuel 

velocity ucf=18.4 cm/s, and central air velocity uca=54.3 cm/s. The co-flowing combustion products 

have equivalence ratio 𝝋 = 𝟎. 𝟕𝟖. The case on the top has all jets flush, and on the bottom, it is for 

the inverted cone installed to guide the annular fuel flow 

(mm) 

(mm) 

Temperature (K) 

Center Axis 
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flame. The high temperature region is formed extending from the bottom of the cone to more than 

1cm above the cone. The maximum temperature is over 1750 K. The temperature region is still 

narrow, and it coincides with the mixing zone of central air and central fuel, central fuel and co-

flowing combustion products. From Figure 3.8, the temperature of combustion products entering 

the flow field is over 1300K, and flow field mostly covered by high temperature region which is 

above 1200K. 

  For all the operation conditions presented and discussed in this chapter, the flameless oxidation is 

hard to identify based on the flame images and temperature profiles from thermocouple 

measurements. The area of high temperature are formed as flame fronts and not as uniform 

distributed reaction zones with much lower temperature. Initial idea for solving this was to delay 

the mixing time. However with the inverted cone mounted, the thin flame front is still exist in the 

mixing zone. In conclusion, delaying mixing is not enough to achieve flameless oxidation. The hot 

combustion products emerging from the lean flat flame have temperature over 1300K which acts 

as the heat source to increase the temperature of the entire flow field. To explore the fuel 

reformation aspect of the IDF under these operation conditions, the parallel work (Barks et al., 

2013) was set-up with the use of 2-D simulation to find out the evidence of fuel reformation. The 

major species indicating fuel reformation are hydrogen and carbon monoxide. Results have shown 

that for the parallel co-flow case, there is a region which CO and H2 are produced, and in the angled 

co-flow case, these two species are consumed very fast at higher elevations. The amount of 

hydrogen and carbon monoxide produced in both cases are still very small amount compare to the 

other species. These two species produced inside the reaction zone are really hard to differentiate 

if coming from fuel reformation or the thermochemical decomposition since the amounts are quite 

small. Because of the high temperature across the flow field, the two species generation is most 

likely due to the thermal break up instead of fuel reformation since the optimum temperature to 

obtain partial oxidation reformation is around 1100K, and the temperature profiles are clearly 

showing temperature much higher in the mixing zone.  
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  As the co-flowing combustion products are the major heat source to warm up the flow field, to 

overcome the high temperature issue, the temperature of the co-flowing combustion products has 

to decrease to the level of temperatures that are conducive to the flameless oxidation and fuel 

reformation. The delay of mixing did not show much of effect as far as flameless oxidation and 

fuel reformation are concerned.  
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CHAPTER 4 

Flame Characteristics with Pre-heated Co-flow of Simulated Combustion Products  

4.1 Flame Structure Based On Digital Imaging 

Co-flowing combustion products from the premixed lean flat flame might be too hot for fuel 

reformation and flameless oxidation to occur. To overcome this issue, the simulated combustion 

products have been introduced. In this chapter, the experiments on IDFs with co-flowing air, 

nitrogen and simulated combustion products will be discussed.  The primary objectives are to 

explore the variable flame structures and to find those that can favour fuel reformation and 

flameless oxidation. 

  For all experiments, the simulated combustion products have fixed composition, 7.62% of carbon 

dioxide, 4.26% of oxygen, and 88.12% of nitrogen by volume. The results of experiments will be 

compared with the operating conditions with co-flowing combustion products from the lean flat 

flame with the similar composition. 

Figure 4.1: Diffusion flames with only central fuel flowing ucf=9.47 cm/s. The picture on the 

left is with co-flowing air and the picture on the right is with co-flowing simulated 

combustion products 
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  To demonstrate with the impact for feeding simulated combustion products into the co-axial 

flows, Figure 4.1 shows flames for the fixed central fuel flow rate, and with different selection of 

co-flow gases with same flow rate. With simulated combustion products flowing, the diffusion 

flame lifts off to a higher elevation compare with co-flowing air, since in simulated combustion 

products. When the outside air is entrained into the flow field, the flammable mixture can finally 

be established at the flame base to form the diffusion flame. Thus the simulated combustion 

products are acting like a shield to prevent the mixing of central fuel stream and oxygen from 

surroundings, forcing the mixture to burn at higher elevation.   

  Figure 4.2 shows the second feature change when the simulated combustion products are mixing 

with central fuel and central air. The shatter speed of the camera is exactly the same when taking 

these two pictures, but picture on the right shows images of several flames in the same frame, 

because the flame on the right is oscillating up and down all the time. The flame base is not stable 

because of the low oxygen concentration at lower elevation, the randomized entrainment of air 

produces the flammable mixture at different elevation. With simulated combustion products, the 

IDF is transfered from stable flame to the unstable region. Because the IDF constantly struggles 

for finding the oxygen, with high simulated combustion products, the flame can be completely 

Figure 4.2: Inversed diffusion flames for the fixed flow rate of central air uca=41.95 cm/s and 

central fuel ucf =9.47 cm/s. The picture on the left has no co-flow flowing, and on the right the 

simulated combustion products are flowing, uco-flow=0.755 cm/s 
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blown-off. Comparing with the co-flowing air case, the blow-off condition can only be achieved 

by ultra-high flow rate of air. 

  To explore the feasible flame structures for IDFs with the flow of simulated combustion products, 

the space diagram has been found. The space diagram serves the purpose to illustrate how the flame 

structure changes with variation of the velocity of co-flows. As the fuel reformation and flameless 

oxidation mechanisms are favored by temperature higher than 1000K, the co-flowing simulated 

combustion products have been pre-heated. Due to the temperature limit of the experimental setup, 

all experiments with pre-heating, the pre-heat levels are close 700K. Total of eight distinct flames 

have been identified with co-flowing air and co-flowing simulated combustion products cases with 

both non-preheating and pre-heating operating conditions. The eight distinct structures are 

categorized by the relative position of inner flame and outer diffusion flame, and they are:  

○1 No inner flame, outer flame attached to the burner lip. 

○2 Inner flame and outer flame both attached to the burner lip. 

○3 Inner flame lifted from the burner lip, and outer flame

 

attached to the burner lip. 

○4 Joined flame attached to the burner lip. 

○5 No inner flame, outer flame lifted from the burner lip. 

○6 Inner flame attached to the burner lip, outer flame lifted

 

from the burner lip. 

○7 Inner flame and outer flame both lifted from the burner lip. 
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  The ‘jointed flame’ is when as the inner flame merged with the outer flame to form an 

‘overlapped’ flame. In experiments reported here, the central fuel flow rate is fixed as ucf =9.47 

cm/s. The flame structures which inner flame could attach to the burner lip need to a relatively 

small central fuel velocity. In this study, the volume flow rate of 0.1 liters per minute is selected 

which is the flow velocity of 9.47 cm/s after conversion.  

 

○8 Joined flame lifted from the burner lip. 

Figure 4.3: Space diagram for IDFs with co-flowing air at ambient temperature 
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  Figure 4.3 and Figure 4.4 shows the space diagram of IDFs with co-flowing air and simulated 

combustion products without any pre-heating, and illustrate how the central air velocity and co-

flow velocity affect the flame structure. Comparing these two figures, the change of scale of co-

flow velocity needs to be noticed. For the co-flowing simulated combustion products velocities 

beyond 2.5 cm/s, the IDF will be extinguished as it enters the blow off region. In contrast, for the 

co-flowing air case, there is no blow-off region unless the co-flow air running with ultra-high speed. 

Below the blow-off region, the figures have been divided horizontally to upper part and lower part 

by the line which represents the separation point of the outer diffusion flame attachment to the 

burner lip and outer diffusion flame lifted away from the burner surface for all the operating 

conditions. For the co-flowing air case, the separation occurs at co-flowing air velocity around 60 

cm/s, and for co-flowing simulated combustion products, the separation point is around co-flow 

velocity at 0.75 cm/s. Above the separation curve, the outer flame is always lifted, or both flame 

Figure 4.4: Space diagram for IDFs with co-flowing simulated combustion products 

at ambient temperature 
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are lifted when the central air velocity is increased. Below the separation curve one of flame is 

always attached to the burner nozzle or both are attached. As the outer diffusion flame is formed 

by the mixing of central fuel jet and co-flow, the lift-off characteristic of the outer diffusion flame 

is governed by the co-flow velocity for the central fuel velocity is constant. Similarly, the inner 

partially premixed flame is formed by the mixture of central air jets and central fuel jets, the lift off 

characteristic is controlled by the central air flow rate at fixed central fuel velocity. For flame 

configuration ○1  to ○2  or ○5  to ○6  in the space diagram, with the central air velocity increasing 

from 0, the IDF starts with no inner flame, then inner flame is established inside the outer diffusion. 

Because of the hysteresis behavior of the inner flame, the first occurrence of inner flame starts at 

the lifted position from the burner surface. The hysteresis effect has been discussed in Johnson 

(2009). By reducing the central air flow rate, the inner flame position jumps back to the burner top. 

For making the space diagram, the hysteresis effect is discarded, so for all the conditions the inner 

flame position starts as attached to the burner top. As Figure 4.3 and Figure 4.4 show, from flame 

configuration ○2  to ○4  or ○6  to ○8  in the space diagram, once the inner flame is presented in the 

IDFs, with central air velocity increasing the inner flame position is lift off and eventually merges 

with outer diffusion flame to form the joined flame. For same inner flame cases, there are dash lines 

extending across the boundary to the lifted outer diffusion flames. When IDFs enters the lifted outer 

flame diffusion flame region, the flame structure is really hard to be evaluated just by the visual 

images, so the dash line separates the potentially different flame structures. In this work, these 

operating conditions under which the dash line occurs were not explored in details. Even if the co-

flowing air and co-flowing simulated combustion products are sharing the same type of flame 

structure, but the shape of outer diffusion flames are quite different because the co-flow velocities 

are in different scales. 

  Figure 4.5 and Figure 4.6 show the space diagram for both types of co-flow with pre-heating to 

673 K. Compared with the non-preheating cases, both IDFs with co- flowing air and co-flowing 
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Figure 4.5: Space diagram for IDFs with pre-heated co-flowing air at 673K 

Figure 4.6: Space diagram for IDFs with pre-heated co-flowing simulated 

combustion products at 673K 
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simulate combustion products do not for flame configuration ○1  and ○5  in the space diagram (no 

inner flame and attached outer flame). Instead the space diagram starts (at low central air velocities) 

with region ○2  (inner and outer flame attached) for low co-flow velocities, and region ○6  (inner 

flame attached and outer flame lifted) for the co-flow velocities above the threshold level. This 

indicates that at low central air flow rate, pre-heating prevents establishing of the attached outer 

flame when co-flow has a low velocity, or a lifted outer flame when the co-flow velocity is higher, 

when there is no inner flame. For the co-flowing air pre-heating case, the separation points for lifted 

flame and attached flame show large variations with different central air velocities. There is no 

dash line in this space diagram, as the all the structure types are clearly identify till the upper 

boundary. Trends in the structure changes are same as the non-preheating case with increasing both 

central air and co-flowing air velocity. For pre-heated co-flowing simulated combustion products, 

the operating conditions are still limited to small range of co-flow velocities, and there are some 

region of operation conditions that outer diffusion flame is lifted and the flame structure cannot be 

clearly identified. Compare with the non-preheating case, the space diagram follows the same 

trends in flame structure changes as well. For all the IDFs with pre-heated co-flows, the flame 

structures become more unstable, especially with co-flowing simulated combustion products as 

central fuel jet struggled to mix with oxygenate flows to create the mixture in the flame limit region. 

The shaded line indicates region in which the flame structure is poorly identified as the flame is 

highly unstable. All the curves are thickened, and they are not necessarily represent the boundaries. 

The flame structures here have has some differences compared with the non-preheating case.  

  Figure 4.7 and Figure 4.8 show the details of the flame structure of inversed diffusion flames with 

both co-flowing air and co-flowing simulated combustion products in non-preheating condition. 

The flames with co-flowing air case are much brighter than the flames with co-flowing simulated 

combustion products as there is much more oxygen to mix with central fuel flow. The flame front 

is much clear with co-flowing air flames which indicates the temperature is also higher since most  
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○5                   ○6                ○7                   ○8  

○1                  ○2                  ○3                   ○4  

Figure 4.8: Sample image sequence of eight types flame structure for IDFs with co-flowing 

simulated combustion products at 297K 

○5                  ○6                  ○7                 ○8  

○1                  ○2                 ○3                  ○4  

Figure 4.7: Sample image sequence of eight types flame structure for IDFs with co-flowing air 

at 297K 
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of the reaction are happening around the thin narrow flame front region. Haynes and Wagner (1981) 

concluded that the production of carbon black requires a maximum yield of soot from the flame 

pyrolysis of a hydrocarbon feedstock. The temperatures between 1500 and 2500 K with carbon 

present in the fuel create condition for formation of large amount of soot. Soot emissions from a 

practical combustion appliance reflects poor combustion conditions and a loss of efficiency. In 

Figure 4.7 ○1 and○2 , this two flame structures have large amounts of soot as the fuel stream is 

exposed to the high temperature at the flame front. These are typical the diffusion flame, so the 

amount of oxygen is not sufficient to oxidize the carbon particles at the soot formation region. In 

Figure 4.8 ○1 and○2 , with simulated combustion products, the soot formation is suppressed as there 

is less oxygen mixing with central fuel to form the high temperature reaction region. The outer 

appearance is dramatically different in co-flowing air case, as the velocity of co-flow is increased. 

With co-flowing air, the outer diffusion flame is much harder to lift off compare with co-flowing 

simulated combustion products. Stable IDFs with co-flow air can be formed with small amount of 

co-flow, as the mixture of central fuel and co-flow is within the flammable limit region when co-

flow velocity increases, the outer diffusion flame remains stable. The high co-flow velocity can 

help to create a much leaner mixture below the lifted outer flame, which there is no combustion 

occurring. On the contrary, with co-flowing simulated combustion products, there is much less 

oxygen inside the co-flow, the mixture is at the lower flammable limit region to begin with. 

Comparing flame configurations ○5  to ○8  in Figure 4.7 and Figure 4.8, increasing the velocity of 

co-flowing simulated combustion products can easy lead to the formation of mixture leaner than 

the lower limit, so with small amount of co-flowing simulated combustion products, the outer 

diffusion flame is much easier to lift up compare to co-flowing air cases. The equivalence ratio 

𝜙 = 0.57 is the lower flammable limit for methane air mixture, and much larger amount of lean 

combustion products are needed to reach the flammable limit for methane and lean combustion 

products mixture, since less oxygen concentration inside the combustion products. Because of the 
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high co-flowing air velocity for flame configurations ○5  to ○8  in Figure 4.7, the lifted outer flame 

structures are compressed to a much smaller flame compare IDFs with co-flowing simulated 

combustion products. In Figure 4.7 flame configurations○5  to ○8 , and Figure 4.8 flame 

configurations○5  to ○8 , the inner flame of both co-flowing air and simulated combustion products 

remains almost the same with increasing co-flow velocity when the flow rate of central air is fixed. 

In the space diagram, flame structures in the explored region clearly show the thin flame fronts as 

the temperature for the mixture is not in the region where fuel reformation and flameless oxidation 

occurs, and the mixing of central fuel and air jets with co-flow is not well distributed to form a 

uniformed mixture. The pre-heating is needed to get closer to the flameless oxidation and fuel 

reformation operation region, and better mixing strategy as well. 

  To pre-heat the co-flowing to over 1000K is above the maximum temperature limit of the 

experimental setup in this work. The pre-heating temperature is set to around 673K which is the 

maximum temperature that currently can be achieved. In Figure 4.9 and Figure 4.10, the IDF 

structure with co-flowing air and simulated combustion products at 673K. As there is no cases with 

no inner flame, only six type of structures are presented in the space diagram. Compare flame 

configurations ○2  to ○4  and ○6  to ○8  in Figure 4.9 and Figure 4.10, the outer diffusion flame in co-

flowing air cases is still much brighter than it is in co-flowing simulated combustion products cases 

due to the oxygen concentration difference between these two co-flows. In the space diagram, 

because of the co-flow velocity scale difference, the outer flame heights shows the similar trend 

compare with non-preheating case as the outer flame is much shorter as it lifts from the burner 

surface. Soot emission in flame configurations ○2  and ○3  (in Figure 4.9), in co-flowing air case 

remains large as the high temperature around flame front breaks up the fuel to form a bright soot 

region, with co-flowing simulate combustion products the yellowish flame is only present in flame 

configuration ○2 , and it is much less luminescent as less soot has been produced. When the co-flow  
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○2                 ○3              ○4  

○6                ○7               ○8  

Figure 4.9: Sample image sequence of six types flame structure for IDFs with co-flowing air 

products at 673K 

 

○2                   ○3                   ○4  

○6                   ○7                    ○8  

Figure 4.10: Sample image sequence of six types flame structure for IDFs with co-flowing 

simulated combustion products at 673K 
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flow rate increases to lifted outer flame, the mixing of co-flow and central fuel is enhanced, the 

soot formation decreases dramatically as yellow color is eliminated from IDF. Comparing with pre-

heated co-flowing air case, pre-heating of co-flowing simulated combustion products makes the 

flame highly unstable as the flames in Figure 4.10 is highly non-symmetric. For these unstable 

flames with co-flowing simulated combustion products, the outer diffusion flame is lighter in color 

the non-preheating case. In contrast, for flames with co-flowing air, outer diffusion flame is shown 

a bright thin reaction zone except flame configuration ○6  in Figure 4.9. With outer diffusion flame 

lifted, the co-flow velocity is higher than the attached case. Because of the higher velocity, the 

interaction of co-flow and central fuel jet is increased, resulting in better mixing. Comparing flame 

configuration ○2  and ○6  in Figure 4.9, with smaller central air interact with central fuel jet, the 

lifted outer flame eliminated the thin flame front, and the outer flame is more distributed to two 

side of the burner compare with the non-preheating case. With co-flowing simulated combustion 

products, the outer flame is not presented as a bright thin reaction zone any more, instead it 

presented as a dim flame zone surrounds the inner flame, and reaction area gets extended comparing 

flame configuration ○6  with the non-preheating case. The flame configuration ○6  in Figure 4.10 

with co-flowing simulated combustion products has the outer diffusion flame which is distinct from 

other cases, as the outer flame is hard to visualize now, and the reaction zone extends to even wider 

position. From the visual image, the outer flame region is approaching the features of flameless 

oxidation. For simulated combustion products, the main component is nitrogen, and to identify the 

cause of flame structure difference between two different co-flows, the nitrogen co-flow has been 

introduced to explore the nitrogen concentration effect on the IDFs. 

  Figure 4.11 depicts the six types of flame structure, the attached inner flame with attached/lifted 

outer flame cases is not shown here. The outer flames of all flame structure types have distinct thin 

flame front, and is always lifted. With co-flow nitrogen, the outer flame can only be formed by 

combustion of the mixture of central fuel and entrained surrounding air, and nitrogen is acting as 
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the curtain gas here. For this case, the formation of outer flame is no different than that with non-

pre-heated co-flowing air case, except outer flame has always been lifted with co-flowing nitrogen 

as the extra distance is needed for central fuel jet travel to the higher elevation to mix with outside 

air entrained into the flow field. Figure 4.11 indicates the high concentration of nitrogen does not 

change the flame structure too much. The carbon dioxide and oxygen concentrations play a very 

important role in the flame structure formation as that is the major difference of co-flowing air and 

simulated combustion products. 

Table 4.1: Central air and co-flow running conditions for Figure 4.11 

Operation Conditions 

Picture # ucentral fuel (cm/s) uco-flow  (cm/s) 

1 0 0 

3 36.538 0.493 

4 147.5 0.493 

5 0 0.839 

7 36.538 0.667 

8 167.804 0.987 

○5                ○7               ○8  

○1                ○3                ○4  

Figure 4.11: Sample image sequence of six types flame structure for IDFs with co-flowing 

nitrogen at 297K, the central fuel velocity stays the same uccentral fuel=9.473 cm/s  
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4.2 Flame Structure Based On CH* Imaging 

  To explore the details of flame structure, the CH* contours can indicate the relative positon of 

inner flame and outer flame. The exposure time was adjusted to 20ms with 256 images being 

averaged. For unstable flame, short exposure times are needed to compensate for the flame position 

variation when the images are being taken. The same exposure time setting has been applied to all 

the other conditions. The relative chemiluminescence intensity has been used to process all the CH* 

images instead of the absolute chemiluminescence intensity. The reconstructed flame shapes and 

locations are processed based on the relative chemiluminescence intensity of CH* images as well. 

An artificial filter has been applied on each image during image processing. The area of CH* 

intensity value less than 20% of highest CH* intensity value has been filtered out. The regular CH* 

images have been inverted, so the dark region corresponding to high levels of CH* intensity 

emission. Based on the space diagram with 4 different co-flow conditions, the CH* images are 

sampled for each flame structure category at various operation condition. 

  In the following figures, the first picture in each group is the inverted CH* image, followed by 

the half of original CH* image after Abel transform divided by centerline, and the last picture is 

the CH* contour after image processing of the second picture.  

4.2.1 Cold Co-flowing Air 

  With co-flowing air at ambient temperature, there is an outer diffusion flame always existing in 

each case which indicated by the dark region along the central fuel and co-flow mixing region. The 

inner partially premixed flame appears as a ‘bubble’ shape of flame attach to the burner surface as 

dark black region at the center (uca=20.3 cm/s). As the central air velocity increases, the inner flame 

moves higher till reaches the outer flame. For outer diffusion flame, increasing the co-flow velocity 

results for a short lifted of the flame position, and dramatically shrink the flame size, and position 

is moving towards the centerline. With increasing the co-flow air velocity, the outer flame moves 

upwards and then just stays at a certain elevation, as the co-flow velocity is large enough to trap  
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Figure 4.12: Sample image of flame configuration ○1 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity and co-

flow velocity are 0, and central fuel velocity ucf=9.47 cm/s 

Figure 4.13: Sample image of flame configuration ○2 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=20.3 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=95.75 cm/s 
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Figure 4.14: Sample image of flame configuration ○3 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=29.77 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=5.88 cm/s 

Figure 4.15: Sample image of flame configuration ○4 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=132.62 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=98.56 cm/s 
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Figure 4.17: Sample image of inverted flame configuration ○6 , inverted CH* image (left), CH* 

image after Abel transform (middle) and CH* contour (right). In this case, central air velocity 

uca=20.3 cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=6.84 cm/s 

Figure 4.16: Sample image of flame configuration ○5 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity is 0, 

central fuel velocity ucf=9.47 cm/s, and co-flowing air velocity uco-flow=94.6 cm/s 
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Figure 4.18: Sample image of flame configuration ○7 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=29.77 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=95.58 cm/s 

 

Figure 4.19: Sample image of flame configuration ○8 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=47.36 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=5.88 cm/s 
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the central fuel jet at this height, and force the mixing and reaction occurs at this particular location. 

With high of central air and co-flow velocity, the double flame merges together to form a flame 

which flame center is hollowed as a ring shape eventually. The outer flame lifting distance is quite 

small comparing with the non-lifting case, so in the CH* contours the bottom of outer flame locates 

around a small height rage.  

  After the inner flame presents in the reaction zone, the position change can be clearly identified. 

The inner flame is much sensitive to central air velocity change comparing with influence of outer 

flame by co-flow. The different mixing characteristics results in dramatic sensitivity difference 

between inner flame and outer flame. When central air velocity start increasing from 0, the mixture 

start from infinite rich condition, when the equivalence ratio enter the flammable region and inner 

flame presents. The outer flame is formed at the very beginning as a diffusion flame when co-flow 

velocity is 0. Sufficient amount of oxygen exists at the surrounding is making sure the equivalence 

ration of outer flame always falls in the flammable limit region. Higher the co-flow velocity, the 

stronger the co-flow jets become, as fuel jet velocity is fixed in a small value, the weaker fuel jet 

gets pushed towards the center axis. Rapid mixing of central fuel jet and co-flowing air jets allows 

the outer flame occurs at a very large range of co-flow velocity, only extreme high co-flow velocity 

will distinguish the outer flame which is not showing in the space diagram and will not be discussed 

in this work. From all the CH* contours showing above, the distinct outer flame presents in all 

flame types which gets proved again from the colored images. 

4.2.2 Hot Co-flowing Air 

To favor to flameless oxidation mechanism, the co-flow get pre-heated to a higher temperature. 

The chain effect of pre-heating the co-flow is both central air and central fuel jets gets pre-heated 

as well. Temperature at the exit of both jets is around 200℃ since at the time co-flow gets pre-

heated at premix chamber, the entire burner has been heated up which including the stainless steel 

pipes delivering central air and central fuel. In results, the flame structure is quite different from  
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Figure 4.20: Sample image of flame configuration ○2 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=14.89 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=95.61 cm/s 

Figure 4.21: Sample image of flame configuration ○3 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=47.36 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=9.81 cm/s 
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Figure 4.23: Sample image of flame configuration ○6 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=14.89 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=9.93 cm/s 

Figure 4.22: Sample image of flame configuration ○4 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity 

uca=147.51 cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=96.76 cm/s 
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Figure 4.24: Sample image of flame configuration ○7 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=47.36 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=96.78 cm/s 

Figure 4.25: Sample image of flame configuration ○8 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity 

uca=146.15 cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=9.79 cm/s 
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the non-pre-heating case. With co-flowing air, the outer flame still cannot be lifted without a high 

co-flow velocity which the similar characteristic are shared with non-preheating case as well. The 

outer flame position gets pushed away from center axis when co-flow velocity is low, but 

eventually the high co-flow velocity squishes the out flame back towards the center axis to end up 

with tiny flame ball shape which ends up similar to the non-preheating co-flowing air case with 

high co-flow velocity. The double flame cannot be blew off unless the ultra-high co-flow velocity 

presents, which as the space diagram shows, the blow-off region remains unidentified in this case. 

From Figure 4.20 and Figure 4.25, the CH* level of outer flame has a dramastic decrease, and no 

thin flame front can be identified from CH* contour, scattered CH* species is crowded at the tip of 

the outer flame along the center axis.CH* contour of Figure 4.21 does not pick up two much CH* 

species around outer flame region due to the aritifical filter has been applied on. CH* image after 

Abel transform has more clear indication of the CH* species distribution. By increasing co-flowing 

air velocity, the bright outer flame is reformed which is the black region of the inverted CH* images, 

and thin flame front occurs in reaction zone. In some cases, the flame is too bright which after Abel 

transform, large portion of CH* species has been blocked like Figure 4.22. When co-flow velocity 

is high, the central fuel jet expansion gets limited, and the mixture gets pushed towards the center 

axis again. The oxygen and fuel mixture are highly concentrated at a small region to form a normal 

diffusion flame at the outer flame region which CH* species are crowed in this region as well. Thin 

flame fronts can still be identified at each case except flame configuration○6 . To explore the 

potential operation conditions for fuel reformation and flameless oxidation, the pre-heated 

simulated combustion products is introduced to compare with co-flowing pre-heated air case. 

4.2.3 Cold Co-flowing Simulated Combustion Products 

  With non-preheated simulated combustion products case, the oxygen concentration changes to 

make the flame structure different from the non-preheating air case as the figures show as followed. 

The velocity range of co-flowing simulated combustion products has been limited to a much  
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Figure 4.27: Sample image of flame configuration ○2 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=27.07 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=0.75 cm/s 

Figure 4.26: Sample image of flame configuration ○1 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity and co-

flow velocity are 0, central fuel velocity ucf=9.47 cm/s 
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Figure 4.28: Sample image of flame configuration ○3 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=29.77 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=0 

Figure 4.29: Sample image of flame configuration ○4 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=44.65 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=0.91 cm/s 
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Figure 4.31: Sample image of flame configuration ○6 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=23 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=0 

Figure 4.30: Sample image of flame configuration ○5 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity is 0, central fuel 

velocity ucf=9.47 cm/s, and co-flowing air velocity uco-flow=1.14 cm/s 
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Figure 4.32: Sample image of flame configuration ○7 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=31.13 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=0.76 cm/s 

 

Figure 4.33: Sample image of flame configuration ○8 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=46.01 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=0 
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narrower range compare with co-flowing air as the mixture is surpassing the upper limit of the 

flammable region with a much smaller co-flow velocity. Low concentration of oxygen makes the 

equivalence ratio of mixture easily getting into the fuel rich region resulting the outer flame gets 

lifted up as the flammable mixture can be formed when surrounding air gets entrained, so when the 

co-flow velocity is higher, the harder air can get entrained to the same level. From the CH* 

contours, the outer flame is much more easy to lift up comparing with co-flowing air case. The 

outer flame is formed mainly by the mixture of central fuel and surrounded air instead of just central 

fuel with simulated combustion products. At lower levels, the flammable mixture is hardly to form 

when co-flow is running. The flame structure of attached and lifted outer flame case are very similar 

except the flame heights are different. For Figure 4.27 and Figure 4.31, the inner flames are a little 

bit offset from the tip of central air pipe, especially the inner flame in Figure 4.27, it is lifted with 

outer flame. After several experimental test for the same case, the inner flame cannot independently 

exists underneath the outer flame when co-flowing simulated combustion products are running, the 

entrainment of co-flow eliminates the central “bubble” shape of flame by lowering down the 

oxygen concentration. As the figure shows, the inner flame can only presents at the bottom edge of 

the flame. Distinct thin outer flame still can be clearly identified from the CH* contours, by 

introducing simulated combustion products as co-flow, the chemical reaction gets delayed as 

combustion occurs at higher elevation for outer flame. Entrainment of ambient air brought the low 

oxygen concentration mixture back to flammable limit region and diffusion flame gets immediately 

formed so the thin reaction zone occurs. No evidence of flameless oxidation has been shown in all 

the flame types in this operation condition with non-preheated co-flowing simulated combustion 

products. 

4.2.4 Hot Co-flowing Simulated Combustion Products 

  With pre-heated simulated combustion products, the flame structure turns to be quite different 

comparing with all the other cases. For co-flowing pre-heated air case, the outer flame start to 
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oscillate at a very low frequence which short exposure time can reduce the uncertainty when image 

gets captured, but with co-flowing simulated combustion products, the outer flame becomes highly 

unstable which the flame oscillate at much higher frequency. In some CH* images, multiple outer 

flames with different location have been captured in a single frame. In Figure 4.34, it shows at least 

two outer flame has been captured when pre-heated co-flowing simulated combustion products is 

running with a small velocity. This is primary due to the co-flow which got pre-heated at the premix 

chamber does not have a uniformed velocity at the exit of burner top since the heating of co-flow 

is done at the wall surface, and low oxygen concentration co-flowing simulated combustion 

products mix with central fuel to form the mixture which is too rich,  reaction can only occur when 

the mixture travels to the higher elevation to mix with the entrained air. To compare with the other 

co-flow conditions, the outer flame distributed away from center axis similar to pre-heated co-

flowing air case, and also CH* emission is much lower which the dark outer flame from inverted 

CH* pictures turns to light gray color. This kind of outer flame only appears at flame configuration 

○6  in pre-heated co-flowing air case which the effect of co-flowing air is not dominating outer 

flame. The low CH* emission at outer flame located occurs in all flame types with pre-heated co-

flowing simulated combustion products running. With different composition of co-flow gas, the  

Figure 4.34: Sample inverted CH* image of lifted outer flame with co-flowing simulated 

combustion products at the exposure time of 40 ms with 256 loops 
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Figure 4.36 : Sample image of flame configuration ○3 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=29.77 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=1.05 cm/s 

Figure 4.35: Sample image of flame configuration ○2 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=17.59 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=3.53cm/s 
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Figure 4.38: Sample image of flame configuration ○6 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=17.59 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=0.96cm/s 

Figure 4.37: Sample image of flame configuration ○4 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity 

uca=121.79 cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=3.36 cm/s 
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Figure 4.39: Sample image of flame configuration ○7 , inverted CH* image (left), CH* image 

after Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=41.95 

cm/s, central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=3.34 cm/s 

Figure 4.40: Sample image flame configuration ○8 , inverted CH* image (left), CH* image after 

Abel transform (middle) and CH* contour (right). In this case, central air velocity uca=94.73 cm/s, 

central fuel velocity ucf=9.47 cm/s, and co-flow velocity uco-flow=0.89 cm/s 
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CH* behaviour at outer flame changes dramastically. Low oxygen concentration mixture of central 

fuel and co-flow mixture delays combustion which provides extra mixing time, and higher the 

chance more distributed reaction zone can be created.Another factor plays that an important role is 

pre-heating of co-flow, comparing with non-preheating simulated combustion products, igniting 

the mixture of central fuel and co-flow at ambient tempeature only forms outer flame with thin 

flame fronts. As co-flow gets pre-heated, the velocity of co-flow at exit of the nozzle is increasing 

spontenously, and density of co-flow is deceasing as well. By pre-heating the co-flow, the phsical 

properties of the laminar jet becomes quite different comparing with ambinent conditions. In reality 

of the experiments, the co-flow is pre-heated inside the burner, meanwhile ambient air surrounded  

the burner gets pre-heated as well. In results, the hot laminar co-flow jet expands away from center 

axis after exiting the nozzle, more distributed reaction zone can be formed when combustion occurs, 

and that is the primary reason in pre-heated co-flowing air case, a low CH* emission outer flame 

can be observed for flame flame configuration ○6 . By the book of “Combustion and Mass Transfer” 

(Spalding, 2013), it points out the correlation between the width of a jet and radius at which the jet 

velocity has one half its axial velocity: 

                                                      
𝑟1

2

𝑥
= 1.287(

8𝜐

3𝐼𝑢
)

1

2                                                       (4.1) 

where 𝑟1

2

 is the radius at which the jet velocity has one half its axial velocity, x is the width of the 

jet, 𝜐 is defined as 𝜐 ≡  
𝜇

𝜌
=

Γ

𝜌
, and 𝜇 is viscosity,  𝜌 is density, Γ is exchange coefficient of fuel 

gas, 𝐼𝑢  is defined as 𝐼𝑢 ≡ 𝜐−1 ∫ 𝑢2𝑟𝑑𝑟
∞

0
 and u is axial velocity and r is the radius. When the 

laminar flow gets pre-heated, viscosity and density is decreasing, and axial velocity is increasing, 

if assuming 𝑟1

2

  does not change in this case, the width of the jet is increasing, and the jet travels to 

wider position which favors to form a unified mixture of central fuel and co-flow gas. 
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                 ○6                                                ○7                                             ○8  

                 ○2                                                  ○3                                            ○4  

Figure 4.41: Sample images of six flame types CH* image with pre-heated co-flowing simulated 

combustion products case when 5% of artificial filter has been applied 



 

78 

 

  From Figure 4.35 to Figure 4.40, relative CH* contours with 20% filter on is a little bit miss 

leading because outer reaction zone or outer flame region do exist in these conditions, but they get 

filtered out to look like there is no reaction in these region. When only values low than 5% of the 

peak pixel value are filtered, the CH* contours show the distribution of CH* at outer flame region 

more close to the actual acquired images. In all cases, they shows no clear thin flame front which 

existed in non-preheating cases and pre-heated co-flowing air case, instead small CH* pockets is 

formed and concentrated at the region outside inner flame. Especially in flame configuration ○6  in 

Figure 4.41, the CH* is minimum outside inner flame. The pockets of CH* distributed from center 

axis to almost 8 mm in radius. The characteristics of outer flame region in this flame type is match 

with the description of a distributed reaction zone. Despite there is a very dim visible flame exists 

in the outer flame region, the CH* contours shows the characteristics which can also been identified 

in flameless oxidation mode. With pre-heated co-flowing simulated combustion products, the flame 

structures are changed towards a more uniformed reaction as the reaction does not occur at one 

particular thin region, and the reaction occurs across the center axis to further more away from it. 

4.3 Flame Structure Based On Temperature Measurements 

  To find out more firm evidence of flame structure change which towards flameless oxidation 

mode, temperature measurements has also been introduced to explore the temperature distribution 

inside reaction zone. Temperature data points have been measured at four different elevation for 

flame configuration ○6  in Figure 4.41 as under this operation condition, the flame structure is 

showing most promising behaviour that flameless oxidation could happen. As Figure 4.42 

indicates, the peak temperature appears above 1200℃  since inner flame presented at lowest 

elevation. Moving to higher elevation, 3 mm and 5 mm above the burner surface, the measured 

points located in the gap between inner flame and outer flame which is shown in Figure 4.43. There 

is no reaction occurring in the gap region, so the temperature of these two levels is not higher  
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Figure 4.42: CH* contour of flame configuration ○6  for IDF with pre-heated co-flowing 

simulated combustion products (top); temperature profile of flame configuration ○6  for IDF 

with pre-heated co-flowing simulated combustion products at 1mm, 3mm, 5mm and 10mm 

above burner surface 
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than  900℃ . Without heat transfer of both inner flame and outer flame to gap region, the 

temperature in this zone could be much lower. At the level of 10mm away from burner surface, the 

peak temperature becomes much higher as it enters outer flame region. CH* distribution of this 

flame indicates outer flame radius is no more than 6mm, and the difference between peak and 

minimum temperature inside the outer. flame is around 300℃. Temperature contour inside outer 

flame indicates the temperature is more uniformly distributed, and peak region appears close to the 

edge of outer flame The uniform distribution of temperature is the essential feature when distributed 

reaction zone occurs, and temperature distribution at 10 mm away from burner top is tending to 

match the feature. Both CH* distribution and temperature contour of this flame type somehow 

confirms the flameless oxidation occurs at the outer flame region in this type of flame structure.  

  Meanwhile as the temperature contours help to confirm the flameless oxidation, there are 

experimental uncertainties caused by the nature of temperature measurements. Figure 4.44 shows 

how the thermocouple and flame interact with each other, and in results the uncertainty occurs. 

When thermocouple in this setup expose to the high temperature region when flame presents, the 

entire exposed wire gets heated up, and this phenomenon affects the temperature reading from the  

Gap between inner flame 

and outer flame 

Figure 4.43: Inverted CH* image with flame configuration ○6  for IDF with pre-heated co-

flowing simulated combustion products 
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bead. In Figure 4.44, the four pictures on the left shows how the thermocouple presents at different 

height when temperature measurements have been taken. In all four pictures, the thermocouple 

wire is more or less got heated up. In results, due to the heat transfer on the wire, the measured 

temperature is higher than actual temperature. Another feature which is the cause of uncertainty 

occurring is when thermocouple enters the flow field of the flame, it changes flame position as the 

flow has been changed as well. As the last picture in Figure 4.44 is showing, when flame moves to 

the higher elevation when thermocouple presents inside the flame, the actual position of the flame 

should be lower in this picture. Because of the same reason, the temperature measurement results 

at 3mm and 5mm away from the burner surface in Figure 4.42 looks similar. At the level of 5mm, 

the bottom edge of outer flame is supposed to be located at, and the peak temperature should be 

higher than the measured data. In reality, when thermocouple traversed at 5mm level, the entire 

outer flame moved to higher elevation, so the gap between inner flame and outer flame became 

larger. In results, the temperature measured at 5 mm level is the temperature in the gap region 

instead of the temperature at the bottom of the flame. Flame with small mass flow rate of fuel and 

oxidizer, the intrusion of thermocouple could result in a large flow field change. When 

thermocouple expose to the region where large amount of soot get produced from the flame, the 

soot would accumulate on the thermocouple wire which is another source can measurement 

uncertainty could have. Because of these uncertainties which temperature measurement could have, 

the temperature measurement results is mainly served as a reference to validate CH* distribtuion 

measurement.  

  



 

83 

 

CHAPTER 5 

Summary/Conclusions/Future Work 

The structure of nominally non-premixed methane-air flames with several co-flow selections was 

studied experimentally under different operating conditions and reactant delivery configurations 

which favour flameless oxidation and fuel reformation. The flow arrangement of the burner is 

inversed delivery of methane and air, surrounded with co-flow. Several delivery methods have been 

studied with the central air tube raised above the burner surface, and angled fuel stream delivery 

with an inverted cone installed. Four kinds of co-flow have been tested namely air, nitrogen, 

combustion products produced a premixed lean flat methane/air flame at 𝜑 = 0.78 and simulated 

combustion products. The simulated combustion products have the same composition of exhaust 

gas generated from the premixed lean flat flame, except the water portion is replaced by nitrogen. 

The co-flow is pre-heated to temperature which enhance flameless oxidation and fuel reformation 

mechanisms. 

 Co-flow of combustion products from the premixed flame 

  With co-flow of combustion products produced by the premixed lean flat flame at 𝜑 = 0.78, the 

flame is comprised of an inner inversed flame and an outer normal diffusion flame. As fuel flow 

enters the combustion products from a flat flame, the outer diffusion flame broadens its radius. The 

broadening of this diffusion flame is even more pronounced for the angled fuel delivery with 

inverted cone installed. By raising the central air tube to the same level, the broadening 

phenomenon is less pronounced than what can be observed from the angled fuel delivery. The extra 

mixing time provided by delaying the combustion taking place between fuel and oxidizer from 

angled fuel delivery allows to form a more homogeneous mixture. The broadening phenomenon is 

strongly related to the homogeneity of fuel and oxidizer mixture. The temperature of combustion 

products directly coming from the flat flame is far greater than the temperature which fuel 

reformation and flameless oxidation could occur.  
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 Co-flow of simulated and pre-heated combustion products and air 

  Distinct eight flame structures have been identified for varied central air and co-flow velocities 

when no pre-heating was applied. Pre-heating (both air and combustion products) brings in an 

additional destabilizing effect. The number of the stable flame structures is reduced to six, as two 

of the original structures are replaced with more stable configurations. The inversed diffusion flame 

space diagram is proposed to illustrate these configurations, and the relation of flame structure 

change with variation of central air and co-flow velocities. Replacing co-flow of air with co-flow 

of simulated combustion products introduces instability; stable flame structures are feasible only at 

dramatically reduced co-flow velocities. Experimental CH* distributions indicate that at some 

operating conditions (pre-heated combustion products and higher flow velocities) the flameless 

oxidation can indeed occur. The CH* is scattered across the extended reaction zone as no flame 

front can be identified. The temperature measurement results confirmed this trend and the potential 

for flameless oxidation. The area of ultra-high temperature region has reduced with more uniformed 

temperature distribution across the reaction zone, and peak temperature has decreased. With co-

flowing simulated combustion products, the mixing time of fuel, oxidizer and co-flow gets 

extended to form a more homogeneous mixture before combustion taking place. The extended 

reaction zone favours flameless oxidation to occur. Pre-heating of co-flow reduces the co-flow 

density, and co-flow can expand more broadly to mix with other jet. This mixing enhancement 

helps to form the extended reaction zone as well. As the extended reaction zone in the inner flame 

region strongly depends on the co-flow conditions, precise specification of all the co-flows is 

critical to achieve flameless oxidation and fuel reformation. 

 Future Work 

  For the follow up work, by careful adjustments of the pre-heating temperature and flow rate of 

the co-flowing combustion products, the flameless oxidation zone can be verified, and fuel 

reformation zone will be finally identified with numerical simulation. Optimizing the data selection 

by improving online image processing program is needed to overcome the instability of the 
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inversed diffusion flame. The mixing time of central fuel and co-flow can be further elongated by 

different flow arrangement before combustion occurs. 
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APPENDICES  

Appendix A 

Modified Chemiluminescence Imaging 

  The modification of chemiluminescence imaging program is based on a PhD dissertation 

project (Johnson, 2009). The CH* radical from flame chemiluminescence is imaged with Di-Cam 

Pro ICCD camera. This appendix provides a detailed description of modifications for the imaging 

processing program of Johnson (2009). 

A.1 Centerline Finding 

bw=im2bw(flame,60/250); 

bwcrop=imcrop(bw,[1 678 1024 0]); 

counter=0; 

counter1=0; 

for i=1:645 

d=bwcrop(i); 

if d==0 

 counter=counter+1; 

else 

 break 

end 

end 

rbw=imrotate(bwcrop, 180); 

for j=1:645 

d=rbw(j); 

if d==0 

 counter1=counter1+1; 

else 

 break 

end 

end 

centerline=(1024-counter-counter1)/2+counter; 

 

  An example MATLAB codes to find the centerline from a flame image. The MATLAB image 

tool has been used to predetermine the pixel level where flame has the most symmetrical shape. 
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That value in this example is 678, and this value has later on be used to be the reference pixel level 

to determine the centerline. As the first line of the MATLAB code shows, the preloaded flame first 

gets converted to a binary image with the threshold value of 60/250. All the flame region converts 

to white color, and the rest is black. The binary image then gets cropped to a line of pixels and this 

location of the pixel line is chosen by the reference pixel level which has predetermined. Two 

Figure A.1: Sample flame image conversion process to find centerline 
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counters has been introduced to count from two side of the binary image, and they count the number 

of black pixels before they reaches the white pixels which is actually the flame region. The flame 

region can be determined from this pixel level, and the centerline is set to be half way of this flame 

region. This centerline determined from this reference pixel level is set as the centerline of this 

flame image. 

A.2 CH* Contour Plot 

c=[0.2]; 

dat=load(strcat('H:/141202/Process_Data/Abel_141202_',num2str(run),'.mat')); 

figure;contour(dat.r,dat.z,dat.CHl,[c],'Linecolor','k'); 

axis image 

ylim([0 20]); 

ylabel('z [mm]'); 

set(gca,'YTick', (0:5:20)); 

set(gca, 'YTicklabel',(0:5:20)); 

xlim([0 8]); 

xlabel('r [mm]'); 

set(gca,'XTick',(0:2:8)); 

set(gca, 'XTicklabel',(0:2:8)); 

  This an example MATLAB code to plot the CH* contour. After completing the Abel transform, 

the transformed CH* image is saved with total radial length r and height z. The variable c is the 

filtering threshold value when the artificial filter has applied on the processed CH* image. The final 

CH* contour is plotted based on the threshold value c, total radial length r and height z. 
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A.3 CH* Image Color Inversion 

for run=2 

flame=imread(strcat('H:/141202/141202_',num2str(run),'.tif')); 

[hei,wid] = size(flame); 

flame2=double(flame); 

for i=1:hei 

for j=1:wid 

f=flame2(i,j); 

g(i,j)=4096-f; 

end 

end 

inverse=mat2gray(g); 

figure,imshow(inverse) 

end 

  

Figure A.2: Sample CH* contour plotted 
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  This is an example MATLAB code for CH* image color inversion. As the flame image gets loaded 

to the program, the size of the image height and width is saved as hei and wid. Pixel value of flame 

image is formatted by function “double”, the pixel value is falling in the range from 0 to 4096. The 

image later converts to the matrix f, and g matrix invert the f the pixel value. Function “mat2gray” 

brings g matrix back to a grayscale image. The inverse becomes the CH* image with color inversion 

image.  

Figure A.3: Sample flame image and flame image with color inversion 
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Appendix B 

Temperature Monitoring and Measurement Program 

In Chapter 2, it describes the temperature monitoring and meausrement system is conducted with 

a specified LabVIEW program. This appendix provide a detailed description of the LabVIEW 

program. 

  Figure A.4 shows the front panel of this LabVIEW program. It is in charge of controlling the 

traverse mechanism, monitoring burner temperature and temperature measurement of the flame. 

The module at the left corner controls the traverse mechanism. Two axis can be controlled, axis #1 

is horizontal axis, and axis #2 is normal axis. The target position input sets the destination of 

traverse mechanism. The temperature chat on the right is displaying burner temperature from 

thermocouple inserted to the burner and temperature measured by thermocouple from the flame 

field. The standard deviation of flame temperature has been calculated as well by the program. The 

temperature monitoring of burner is running all the time once the program starts, and thermocouple 

measurement of the flame has an on and off button which is showing on the bottom right corner of  

Figure A.4: Front panel of LabVIEW program for temperature monitoring and measurement 
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Figure A.5: Block diagram for burner monitoring and flame temperature measurement 

Figure A.6: Block diagram for flame temperature recording 
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Figure A.4. The readings are saved to an Excel sheet which the path has been set initially. The 

number of reading which will be write to Excel sheet can be modified in “# of readings”. From 

Figure A.5 to Figure A.7, they shows the block diagram of three different modules of the LabVIEW 

program. The modules are running independently to control the traverse mechanism, measure and 

monitor temperatures and record the measured temperature. 

  

Figure A.7: Block diagram for controlling traverse mechanism 
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Appendix C 

Flame Stability Measurement Program 

The flame stability program has been explained in Chapter 2, the flame images are recorded through 

a webcam. This appendix describes the detail of the MATLAB program controlling the flame 

stability measurement system and online image processing. 

 

clear all 

clc 

webcamlist; 

cam=webcam(1); 

counter=0; 

for i=1:100 

f=snapshot(cam); 

imwrite(f,strcat('H:/Test/IMG_',num2str(i),'_snapshot.jpg')); 

s=imread(strcat('H:/Test/IMG_',num2str(i),'_snapshot.jpg')); 

fcrop=s(327:334,408:430,:); 

imwrite(fcrop,strcat('H:/Test/IMG_',num2str(i),'_crop.jpg')); 

BW=im2bw(fcrop,100/256); 

q=nnz(BW); 

total=numel(BW); 

percentage_of_intrusion=q/total; 

Y(i)=percentage_of_intrusion; 

if sum(sum(BW))>1 

    counter=counter+1; 

else 

    counter=counter; 

end 

num_of_pictures=counter; 

end 

Probability=counter/100 

totalI=sum(Y) 

clear('cam') 
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  The MATLAB code showing above are serving the purpose for acquiring and processing the 

flame images. The stability measurement identifies an unstable flame which jumps into the region 

underneath certain flame height. The number of frames which flame jump into this region has been 

counted and how much is intrusion percentage has been calculated over 100 frames. The intrusion 

area is counted from converted image which acquired by the webcam. 

  The flame stability measurement quantifies the instability of a flame. Normally acquiring data 

from an unstable flame could have high uncertainty. The selection of data acquired from the 

unstable flame can be made based on the flame stability measurement to eliminate some sources 

for experimental uncertainty.  

  The image tool from MATLAB has been used to predetermine the capture area from image 

acquired by the webcam. In this case, it from pixel 327 to pixel 334 in normal direction, and from 

pixel 408 to pixel 430 in horizontal direction. This 22 pixels by 7 pixels region is preset to be the 

area of interest. 

  Once the acquiring and processing starts, the webcam will capture the first image. The first image 

then is cropped that only area of interest is left. Function “im2bw” converts the cropped image to 

binary image with a threshold value which in this case is 100/256. After this process, the flame 

region in the cropped image becomes white, and rest is black. Function “nnz” counts number of 

white pixels in the cropped image, and function “numel” is taking charge of counting the total 

pixels in the cropped image. The percentage of total white pixels in the image which is defined as 

intrusion level per frame is calculated by: 

𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤ℎ𝑖𝑡𝑒 𝑝𝑖𝑥𝑒𝑙𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 

The total intrusion level is calculated by the summation of intrusion percentage over 100 frames. 

Another parameter can be calculated is number of times flame jump into the area of interest over 

100 frames. After the cropped image converts to binary image, an if loop start to count number of 
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frames which flame has intruded over 100 frames. The percentage of flame intrusion is calculated 

by:  

%Probability=counter/100% 

 The calculation of flame intrusion percentage and total intrusion level helps the selection of 

experimental data. The primary selection reference is intrusion percentage, because there is much 

less chance of flame will jump into the area of interest in a stable. Sometimes, the percentage of 

flame intrusion could be the same from two measurements. The total intrusion level serve the purple 

to distinguish this two measurements. As more stable the flame is, the value of total intrusion level 

would be less. Figure A.8 shows how the acquired images gets processed in the MATLAB program.  

Figure A.8: Sample original size of flame image acquired by webcam (top), and original size for 

area of interest as a cropped image (bottom) 
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