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ABSTRACT 

The traditional finite difference method has an important limitation in practical 

applications, which is the requirement of a structured grid. The purpose of this thesis is to 

improve the finite difference scheme for application on complex domains. The analysis of 

the Finite Difference method is carried out for 1D model problems governed by the 

convection-diffusion equation. The Stencil Mapping method is developed for complex 

domains. One of the features of this new scheme is that the value at a node can be 

calculated by using only the neighbouring values on the 3-point stencil. This allows finite 

differencing for arbitrary nodal distribution in the mesh, and is developed for 2
nd

-order and 

4
th

-order differencing schemes. The numerical solutions for typical boundary and initial 

value problems are compared with exact solutions. Local truncation error is introduced as 

an effective parameter to assess accuracy of the scheme. An adaptive meshing procedure is 

also presented.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Generally, for Computational Fluid Dynamics (CFD), there are three types of mesh-based 

discretisation methods: Finite Difference, Finite Volume and Finite Element. Each 

method has their strengths and weaknesses. Among these methods, Finite Difference is 

the most efficient and, since it is a relatively straightforward method, it is often used in 

developing numerical formulations to deal with initial and boundary value problems. 

Another strength of the finite difference method is that Taylor series expansion can be 

easily applied to analyze local truncation errors. This property can be exploited to analyze 

the accuracy of the solution. But there is an important limitation in applying the finite 

difference method, which is the requirement of a structured grid. Therefore, the method 

cannot easily be applied on complex domains, making the finite difference method 

unpopular in commercial CFD software. However, since the finite volume and finite 

element methods are also not without restrictions, some researchers have preferred to 

improve the traditional finite difference method to make it useful for a wider range of 

applications. This has led to the development of structured grid generation techniques, 

algorithms for solution of the governing equations in curvilinear coordinates and multi-

block methods. The fundamental concepts of the finite difference and finite volume 

methods are explained in details in many CFD books, eg., Hoffmann and Chiang
[1]

, 

Ramshaw
[2]

, Lomax et al.
[3]

, Anderson et al.
[4]

, Roache
[5]

, Anderson
[6]

, Versteeg and 

Malalasekera
[7]

, Ferziger and Peric
[8]

, Chung
[9]

 and Patankar
[10]

. 

The general convection-diffusion equation is often used to study the utility of new 

algorithms for the Navier-Stokes equations (eg. see [7, 8, 10]). The convection-diffusion 

equation is also popular for the study of some specific issues in numerical schemes, such 

as Kalita’s
[11]

 study on the effects of clustering on simulations, the significance of 

“wiggles” in the numerical results by Gresho and Lee
[12]

, Thiart’s
[13]

 research on solving 

fluid flow and heat transfer problems on non-staggered grids, and the work of Date
[14]

 on 

collocated variables for unstructured meshes. A variety of new methods have been 

developed by researchers attempting to find an approach that makes the application to 
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complex meshes easier. For example, Chai and Yap
[15]

 developed a distance-function-

based Cartesian (DIFCA) grid finite volume method for irregular geometries and applied 

the algorithm on the convection-diffusion equation. A mesh-free finite difference method 

based on the Poisson equation has been developed by Seibold
[16]

. 

Due to the significant commonalities among the governing equations of the flow of a 

Newtonian fluid, such as the continuity equation, momentum equations and energy 

equation, it is convenient to introduce a general variable φ to express the conservative 

form of these equations. The general conservative form of the convection-diffusion 

equation can be written as 

  

  
                           .   (1.1) 

Equation (1.1) is the general transport equation for incompressible flow. Property φ can 

stand for velocity components, temperature or some other variable in physical problems. 

To be precise, if φ equals to 1, Γ = 0 and Sφ = 0, equation (1.1) is the mass conservation 

equation; if φ equals to u, Γ = ν (viscosity) and       
 

 

  

  
, equation (1.1) is the x-

momentum equation; if φ equal to  , Γ = ν and       
 

 

  

  
, equation (1.1) is y-

momentum equation; if φ equal to w, Γ = ν and       
 

 

  

  
, equation (1.1) is z-

momentum equation; if φ equal to et, Γ = κρ and       
 

 

 
 

            

 
, equation (1.1) is 

the energy equation.  

Equation (1.1) also clearly emphasizes the physical background in fluid mechanics for 

transport processes: (rate of increase of φ in the fluid element) + (net rate of flow of φ out 

of the fluid element) + (rate of increase of φ due to diffusion) = (rate of increase of φ due 

to sources). 

1.2 One-dimensional Models 

The focus in this thesis is the development of a new generalized finite difference 

methodology. This new approach is explained and subsequently validated using one-

dimensional mathematical models. The following examples illustrate how these model 

equations are obtained from the transport equation (1.1) and are representative of the 

equations typically encountered in engineering and physical problems. 
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Example 1.Nondimensional 1D Transport Equation 

If the general transport equation is used to express the x-momentum equation, equation 

(1.1) becomes  

  

  
                  

 

 

  

  
    .     (1.2) 

Re-arranging equation (1.2) using differentiation rules, 

  

  
                           

 

 

  

  
   .     (1.3) 

Due to the conservation of mass,         = 0. Therefore, equation (1.3) is  

  

  
                  

 

 

  

  
    .               (1.4) 

The one-dimensional (1D) version of this equation is 

  

  
  

  

  
  

   

     
 

 

  

  
    .   (1.5) 

The numerical modeling of equation (1.5) is simplified if it is expressed in 

nondimensional form. Generally, there are three major advantages in 

nondimensionalization: reduce the total number of parameters; nondimensionalized 

parameters have a more transparent meaning; parameters and variables can be rescaled to 

make the computed quantities have relatively similar magnitudes
[17]

. Furthermore, the 

nondimensional transport equation can be applied to problems with the same boundary 

conditions for different cases and the results from these cases can be easily compared. 

For nondimensionalization, a set of dimensionless variables needs to be defined. 

Define reference velocity magnitude U, length L, and dimensionless variables   ,   ,   ,    

by    
 

 
 ,    

 

 
 ,    

 

   
 ,    

 

   . Substituting these expressions into equation (1.5), 

the nondimensional x-momentum equation in 1D is the convection-diffusion equation 

   

   
   

   

   
 

 

  

    

    
  

   

   
   

    (1.6) 

where    is the velocity,   
  

 
 is the Reynolds number,  

   

   
 is the pressure gradient 

and   
  is a source term.  
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This transport equation is classified as a non-linear partial differential equation (PDE) 

since it includes a product of the dependent variable and its derivative.  

Example 2. Linear 1D Initial Value Problem/ Boundary Value Problem 

A model linear PDE is obtained by assuming that the convective speed, which is the 

coefficient of the 
  

  
 term, is constant. Combining the pressure gradient with the source 

term in (1.5), the 1D linear transport equation becomes 

  

  
  

  

  
  

   

          (1.7) 

where a is the constant convective velocity. Let us consider equation (1.7) on         

with initial and boundary conditions          ,            and            

respectively. Here uLB and uRB are constant values. Figure 1.1 shows the physical domain 

and the imposed boundary conditions.  

 
Figure 1.1 Boundary conditions and domain in 1D 

 

Define dimensionless variables    
     

  
 ,    

 

 
 ,    

  

 
  ,    

 

  
 ,    

 

      , where 

          .  Note that    , is mapped to      and     is mapped to     .  

Using             , substitute u into equation (1.7) to obtain the nondimensional 

PDE 

   

   
   

   

   
 

 

 

    

    
                                    (1.8) 

where    is the constant wave speed,     
 

     
 is called the “diffusion” coefficient and 

the nondimensionalized domain becomes a unit domain,          .  

The initial condition becomes                    , which can be re-arranged to give 

                      (1.9) 
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Similarly, the nondimensional boundary conditions become 

           and                (1.10) 

Example 3. 1D Heat Conduction in a Solid Material 

Using the nondimensional partial differential equation (1.8), take      
 

 
        . 

Then the governing heat conduction equation is written as  

   

   
  

    

    
         (1.11) 

where κ is the thermal conductivity. 

1.3 Classification of Model Equations 

The above three examples show how the general transport equation can be 

nondimensionalized, and how the nondimensional transport equation corresponds to 

specific mathematical models. These second-order PDEs can be further classified. The 

classification is crucial when deciding how to discretize these second-order PDEs so that 

the physics of the phenomenon is properly modeled. Clarifying the different types of 

PDEs is also beneficial since different forms of boundary and initial conditions are 

required to formulate the problems with different types of PDEs. 

Dropping the bars from the notation for convenience, the 1D nondimensional transport 

equation (1.8) becomes 

  

  
  

  

  
 

 

 

   

     .   (1.12) 

a. If the value for D goes to infinity, the diffusion term drops out and the equation 

becomes the hyperbolic equation  

  

  
  

  

  
   .    (1.13) 

From a geometric interpretation, there are two real characteristic curves for a hyperbolic 

PDE. Two initial conditions and two boundary conditions restrict the solution domain, 

which is a conic section. In fluid mechanics problems, when the Reynolds number 

becomes quite high, the solution is dominated by the convection terms. For hyperbolic 

equations, the information propagates in certain directions at a certain speed
[1]

.  
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b. If the value for a, which is the coefficient of the convection term, equals to 0, the 

equation is the parabolic equation 
 

  

  
 

 

 

   

      .    (1.14) 

From a geometrical aspect, only one characteristic curve exists for a parabolic equation. 

The solution domain will be an open region. The solution forms from the initial plane of 

data to downstream within the domain, propagating forward in time, meanwhile restricted 

by the specified boundary conditions 
[1]

. 

c. The third classification is elliptic equation. For an elliptic PDE, the characteristic 

curves are imaginary. Any disturbance propagates to every direction in the region at 

infinite speed. The solution domain is a closed region 
[1]

. Elliptic equations, which 

describe equilibrium phenomena, can be divided into two groups: Poisson equation and 

convection-diffusion equation. Setting a = 0, and taking steady conditions, equation (1.8) 

becomes the Poisson equation  

              (1.15) 

Otherwise, the elliptic equation is the steady convection-diffusion equation  

    
 

 
           (1.16) 

1.4 Clustering Functions 

Mesh quality is an important consideration for all mesh-based numerical simulation 

methods. If the solution is smooth with small gradients, a uniform mesh will usually 

suffice. However, if the solution undergoes large gradients, such as in boundary layer 

flows on no-slip walls, the mesh must be appropriately designed. This usually entails 

creating a mesh with variable spacing, perhaps small spacing close to the physical 

boundary and larger spacing further away from the boundary. These grids are referred to 

as clustered or stretched grids. 

The new generalized finite difference method developed in this thesis is designed to 

easily handle arbitrary grid spacing without any knowledge of the clustering functions 

used to generate the mesh or, in fact, for nodes that are randomly placed without using 

any clustering function. However, for the purpose of comparison between the traditional 
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finite difference method and the proposed method, the following two clustering functions 

have been used in this thesis: 

            
                 

           
   (1.17) 

and 

            
   

      

      
 

   
   

   
 

    (1.18) 

Both of these functions map         into        , with clustering at x = 0 and x = 1. 

The mesh obtained from equation (1.17) is referred to as mesh 01 in Chapter 2; the mesh 

generated from equation (1.18) is called mesh 02. The parameter  in (1.17) is related to 

the number of nodes in the mesh,  = 0.5(M + 1) where M is the number of nodes in the 

mesh including endpoints. The parameter B in equation (1.18) must satisfy the condition 

1 < B < 2. B controls the degree of clustering, with more clustering of the nodes near x = 

0 and x = 1 as B  1. 

1.5 Research Objectives 

The objective of this research is to develop a new generalized finite difference method 

which can be used to solve any PDE in an arbitrarily discretized domain. Although this 

research is focused only on one-dimensional (1D) problems, it is essential to guarantee 

that the new method can be applied effectively in 2D and 3D without any potential 

problems. The development of the algorithm starts by considering the general 

convection-diffusion equation since it is a model for many physical phenomena 

encountered in engineering and science. The 1D formulation is easy to derive and the 

code programming is not as complicated as the 2D or 3D cases. Finding the potential 

problems in a 1D model and resolving them in a manner that can be extended to higher 

dimensions can ensure applicability in 2D or 3D. 

Two types of finite difference schemes are formulated and analyzed, the Cell-Centred 

Finite Difference (CCFD) method and the Stencil Mapping method. The research begins 

with the CCFD method, which has been developed for 2D Poisson equations by Salih
[18]

 

and Situ
[19]

. Their investigations have shown that the method is very successful for 

Laplace equations, but loses accuracy for the convection-diffusion equation. After testing 
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several cases, our research has identified the interpolation scheme as the source of this 

inaccuracy. Lakner and Plazl
[20]

 proposed a symbolic-numerical solution procedure based 

on the finite difference method to solve PDEs on irregular domains. Their concept uses 

the theory of splines to develop appropriate interpolation schemes, which we have also 

taken into consideration for the CCFD method. However, although the interpolation 

problem can be solved by applying the theory of splines 
[21]

, it is time-consuming for 

computer calculation and cannot be easily applied in 2D and 3D. Thus, the research is re-

directed to the development of a new generalized finite difference method which we refer 

to as the Stencil Mapping method. Spotz
[22]

 showed that knowing the mapping 

derivatives is especially meaningful to the accuracy of the finite difference method. In the 

proposed Stencil Mapping method, each difference stencil is mapped individually to a 

generic computational stencil, rather than the entire physical domain being mapped to a 

computational domain. This is accomplished using a quadratic mapping function, from 

which the mapping derivatives can be analytically determined.  

In this thesis, the proposed Stencil Mapping method is also applied to the development of 

4
th

-order accurate finite difference schemes. High order finite difference schemes usually 

require non-compact stencils, which use grid points that are not adjacent to the node at 

which the differencing equations are applied. For example, Castillo et al.
[23][24]

 developed 

mimetic and support-operator differencing methods for 4
th

-order schemes on a non-

compact stencil. However, non-compact differencing schemes for higher-order accuracy 

always need special treatment for nodes near boundaries. Therefore, it is desirable to 

develop a compact stencil algorithm for higher-order schemes. The compact stencil 

algorithm only uses the two nodes adjacent to the node at which the differencing equation 

is formulated. In this way, no special equation is needed when applying the discretisation 

equation on the nodes near boundaries. Some researchers have worked on developing 

such differencing schemes. For example, Hemker
[25]

 developed a defect correction 

technique to implement a higher-order scheme compactly, Noye
[26]

 proposed a three-

point third-order accurate scheme and Spotz
[22]

 introduced a higher-order compact 

scheme. The Stencil Mapping method introduced in this thesis is applied to 4
th

-order 

differencing schemes, while retaining a compact 3-point stencil. The technique can be 
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applied on schemes that are more accurate than 4
th

-order, such as 8
th

-order, and the same 

3-point compact stencil can be preserved. 

1.6 Thesis Layout 

In this research, a computer code has been written for the finite difference method in C 

programming language, in order to compare the convenience of the proposed schemes 

from either the formulation or implementation aspect, and to assess the accuracy of the 

results.  

Chapter 2 covers details of the traditional finite difference method, focusing mainly on 

formulations, how it is implemented in a code, where the complexity is when dealing 

with a multi-block and clustered meshes and the accuracy of numerical results compared 

with the exact results.  

Chapter 3 discusses a recently proposed finite difference method called Cell-Centred 

Finite Difference (CCFD). The algorithm is developed for the general convection-

diffusion equation. Three types of interpolation – averaging, shifting and differencing, are 

formulated. Consistency is investigated for the steady convection-diffusion equation and 

stability is analyzed for the unsteady equation. 

Chapter 4 provides the formulation for the new Stencil Mapping method in 1D for the 

general convection-diffusion equation, applying both 2
nd

-order and 4
th

-order differencing 

schemes. The algorithm is implemented with either Dirichlet or Neumann boundary 

conditions on either a uniform mesh or clustered mesh to determine if the new scheme is 

applicable and if the results are accurate. The local truncation error is used to test the 

accuracy of the scheme.   
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CHAPTER 2 

TRADITIONAL FINITE DIFFERENCE METHOD 

As indicated in the introductory chapter, the convection-diffusion equation is often used 

to analyze new numerical methods for partial differential equations. In this chapter the 

1D form of the steady convection-diffusion equation,  

 
   

     
  

  
       (2.1) 

is used to discuss the traditional implementation of the Finite Difference (FD) method. 

This is equation (1.16) with R = aD and S redefined. Since the FD method is well-known, 

the emphasis in this chapter is to highlight the key issues that make the method more 

complicated when applied to complex geometries. 

In the Finite Difference methodology, the derivatives are approximated by finite 

differences, and the differential equation (2.1) is applied at each node in the discretised 

domain. Several types of 1D mesh, with different size of cells, are tested in this thesis. 

These mesh types, chosen because they are commonly used for finite difference CFD 

simulations in complex domains, are known as uniform, clustered and multi-block. After 

discussing the developments related to these mesh features, results from the various 

schemes are presented at the end of the chapter.  

2.1 Uniform Mesh 

To illustrate the basic FD method, consider the solution of the convection-diffusion 

equation (2.1) on a 1D domain with five cells, as shown in Fig. 2.1. The domain length is 

1 unit, with five cells in the domain, with four internal nodes and two boundary nodes.  

Since the grid spacing is equal, the length of each cell is Δx = 1/5. For Dirichlet boundary 

conditions, the west (left) boundary is set to be 0, and the east (right) boundary is set to 

be 1. As shown in Chapter 1, any Dirichlet boundary value problem associated with the 

convection-diffusion equation (2.1) can be set up in this generic way. 
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Figure 2.1 Single block 1D uniform mesh with five cells 

 

The second-order accurate central differencing formula is used to approximate the 

diffusion term in equation (2.1), and either the second-order central differencing or first-

order backward differencing scheme is applied for the convection term (assuming R > 0). 

The discretisation equation is 

             

      
                         

   
      (2.2) 

where index i refers to any node in the domain, i-1 refers to the left-side node of node i 

and i+1 refers to the right-side node of node i. If β = 0, central differencing is applied for 

the convection term, while β = 1 corresponds to backward differencing. 

After applying the discretisation equation (2.2) at every internal node, four coupled linear 

algebraic equations with four unknowns can be formed. The difference equation (2.2) can 

be re-arranged as  

                                                 . (2.3) 

Since the node numbers start from 1 and end at 6, u1 and u6 are the west and east 

boundary conditions, respectively, i.e., u1 = 0 and u6 = 1. Interior nodes run from node 

numbers 2 to 5. 

Therefore, at i = 2:  

                                              (2.4) 

At i = 3: 

                                              (2.5) 

At i = 4: 

                                              (2.6) 

At i = 5: 

                                              (2.7) 
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Since u1 and u6 are boundary nodes, their values are already known. Equations (2.4), 

(2.5), (2.6) and (2.7) can be written as a system of linear algebraic equations 

 

        

          
 
 

          

        

          
 

 
          

        

          

 
 

          

        

  

  

  
  

  

  

  

                 
  
  

                 

     (2.8) 

The value for β is set to 0 or 1, depending whether central differencing or backward 

differencing is chosen for discretisation of the convection term. Then, this tri-diagonal 

matrix equation (2.8) can be solved by applying Thomas’ Algorithm 
[1]

 to obtain the 

results for all nodal values.  

In general, suppose the uniform mesh has N cells, which means the mesh has (N-1) 

interior nodes. Applying difference equation (2.3) at each node leads to an (N-1)⨯(N-1) 

tri-diagonal matrix equation which can be expressed as 

                                           . 

2.2 Multi-block Mesh 

In order to use the Finite Difference method for complex domains, the multi-block 

technique is often implemented. For multi-block mesh problems, the domain is divided 

into several blocks. Each block (BLK) is then meshed with a structured grid. For 

purposes of the present discussion, and without loss of generality, the cells inside every 

block are assumed to be uniform, but the cells in one block can be different from the cells 

in other blocks. When solving multi-block problems, the key question is about how to 

deal with the block interfaces. Accurate inter-block communication is essential. The 

problem of transferring accurate information across block interfaces adds significantly to 

the complexity of the traditional FD method (TFDM) for practical applications. This is 

one of the motivations in the current research to develop a new finite difference method 

that can easily handle block interfaces. In this section, two methods to solve the interface 

problem are formulated within the context of the TFDM. 
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Figure 2.2 illustrates an example of a multi-block mesh, which has four blocks. This 

example will be used in the explanation of inter-block communication schemes.  

 
Figure 2.2 1D 4-block mesh 

 

The convection-diffusion equation (2.1) is applied on this 4-block mesh. The domain and 

the boundary conditions are the same as in section 2.1. The length of the cells in each 

block is denoted as ∆x1, ∆x2, ∆x3 and ∆x4 for BLK 1, BLK 2, BLK 3 and BLK 4, 

respectively. The number of cells in BLK i is denoted as Ni. 

2.2.1 Method A 

Method A deals with the evaluation of the interface nodes by introducing “ghost” or 

imaginary nodes and using an overlapping procedure. In this 4-block case, there are three 

interfaces, but four imaginary nodes should be taken into consideration to implement this 

overlapping method. To simplify the discussion, solution values in BLK J are denoted by 

uJ. The detailed iterative procedure is as follows: 

i. Initialize imaginary nodal values. Since there are three interfaces, there should be three 

initialized imaginary nodal values, which are regarded as the east end nodes of BLK 1, 

BLK 2 and BLK 3. These three imaginary nodes are placed so as to preserve the 

uniformity in each block, and the value at these nodes is denoted as u1N1+2, u2N2+2 and 

u3N3+2, respectively.  These “ghost” nodes are shown in Fig. 2.3.  

 
Figure 2.3 1D 4-block mesh with position of the “ghost” nodes 
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ii. After initializing the value for u1N1+2, the east boundary condition (at N1+2) for BLK 1 

is considered to be known. The west boundary condition for BLK 1 is the west boundary 

condition of the domain. Applying the discretisation equation at every interior node of 

BLK 1, nodal values on BLK 1 can be calculated by solving the resulting (N1-1)⨯(N1-1) 

tri-diagonal matrix.  

iii. From step ii, the first interface node value u1N1+1, which is also u21, is known. Since 

the nodal value u2N2+2 has already been initialized, the west boundary condition is u21 

and the east boundary condition is u2N2+2 for BLK 2. Apply the difference equation (2.3) 

at every node in BLK 2, from which all nodal values in BLK 2 can be calculated.  

iv. Apply the same procedure as in step iii to calculate all nodal values for BLK 3, 

including the interface node between BLK 3 and BLK 4.  

v. The last block in the domain, which is BLK 4, contains the east boundary condition (at 

N4+1) of the domain. Thus, the east boundary condition for BLK 4 is known, which is 

u4N4+1. The west boundary condition for BLK 4 is u40 at the fourth imaginary node, 

which is located on BLK 3 as shown in Fig. 2.3. Find the two neighbour nodes of the 

imaginary west boundary node located in BLK 3. The solution at these two neighbour 

nodes can be expressed as u3i and u3i+1, and the locations are x3i and x3i+1. The location 

for u40 is denoted as x40. Apply distance-weighted average to obtain the value for u40 as  

    

   
       

 
     

         
 

       
 

 

         

  .     (2.9) 

Therefore, the west boundary condition for BLK 4 is known. Apply the discretised 

equation (2.3) on every interior node in BLK 4. Solving the tri-diagonal matrix, the nodal 

values for BLK 4 can be obtained.  

vi. After solving for all the nodal values in BLK 4, the value u3N3+2 at imaginary node 

x3N3+2 needs to be updated. Find the two neighbour nodes adjacent to node x3N3+2 in BLK 

4. The notations for the values at these two nodes are u4i and u4i+1, and the locations of 

these two nodes are x4i and x4i+1. Use distance-weighted average to obtain the updated 

value for u3N3+2,  
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  .    (2.10) 

vii. Repeat similar calculations as in step iv in BLK 3 to update the nodal value for 

u2N2+2. Then perform similar calculations as in step iii to update the nodal value for 

u1N2+2. To complete this iteration, carry out similar calculations as in step ii to update the 

nodal values on BLK 1. 

viii. Repeat the calculations from step ii to vii to iteratively update the nodal values in the 

domain until the values for u1N1+1, u2N2+1 and u3N3+1 converge to within the user-

specified tolerance.   

2.2.2 Method B 

The same setup as shown in Fig. 2.3 is used to illustrate this method. Method A connects 

the blocks through imaginary nodes overlapping at each interface during the calculations. 

For Method B, the connection is at the interface node itself. Assume that the derivative of 

the solution from the west side of the interface node is the same as the derivative from the 

east side of the interface node, i.e., assume that the solution is differentiable at the 

interface node. This condition can be expressed as 

   

  
 

   

  
     (2.11) 

where – represents west and + represents east. 

For example, taking BLK 1 and BLK 2, and using one-sided difference approximations 

for the derivatives in equation (2.11) gives 

   

  
 

           

   
    (2.12) 

   

  
 

       

   
  .     (2.13) 

The interface node is the last node in BLK 1, but also the first node in BLK 2. Thus,  

           .    (2.14) 

Substituting equations (2.12), (2.13), (2.14) into equation (2.11) yields  

         
   

       
         

   

       
    .  (2.15) 

In this method, the nodal value of u22 should be initialized.  
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Considering the example illustrated in Fig. 2.3, the solution procedure is as follows: 

i. Initialize the three nodal values u22, u32 and u42.  

ii. Using the discretisation equation (2.3), set up the matrix system for BLK 1 similar to 

that in equation (2.8) and calculate the nodal values in BLK 1. 

iii. Using similar equations as (2.12), (2.13), (2.14) and (2.15), calculate the nodal values 

for BLK 2 and BLK 3.  

iv. After step iii, the nodal value for the third interface node u3N3+1, which is also the 

nodal value for u41, is known. Since the east boundary condition for the domain is 

already known, which is u4N4+1, the discretised equation (2.3) can be applied at every 

node in BLK 4. The nodal values for BLK 4 can be calculated by solving the tri-diagonal 

matrix.    

v. From step iv, the updated nodal value for u42 is available. Repeat the calculation from 

step ii to iv, until the nodal values u22, u32 and u42 converge to within the user-specified 

tolerance. 

2.3 Clustered Mesh 

In a clustered mesh, the length of the cells is different from each other. In the TFDM, the 

approach is to map the non-uniform mesh to a uniform one. Figure 2.4 demonstrates this 

mapping approach. The domain 0 ≤ x ≤ 1 is mapped to 0 ≤ ξ ≤ 1, with the same number 

of cells. This mapping of the domain can be expressed by a mapping function, 

       .     (2.16) 

The TFDM needs to be applied in the ξ system, where the nodes are uniformly 

distributed. As illustrated in Fig. 2.4, the length of every mesh cell in the ξ system is ∆ξ = 

1/N, where N represents the number of cells. To apply the standard finite difference 

formulae in this mapping approach, the governing differential equation must be 

transformed into the ξ system.  Using chain rules, the terms in the convection-diffusion 

equation (2.1) transform as  

   

   
 

 

  

 

  
 

 

  

  

  
  

 

   

   

   
 

  

   

  

  
         

  

  
   

 

  

  

  
  (2.17) 

where    
  

  
 and    

   

    are the metrics of the transformation (2.16). 
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Figure 2.4 Mapping a 1D non-uniform mesh to a uniform mesh 

 

Using equations (2.17), the governing differential equation (2.1) transforms to 

 

   

   

    
  

   

  

  
  

 

  

  

  
       (2.18) 

If the transformation function (2.16) is known analytically, such as the functions defined 

by equations (1.17) and (1.18), the metrics    and    can be evaluated exactly at all 

nodes. If the clustered mesh is obtained from grid generation equations, the metrics are 

approximated at any node, which is denoted by i in the ξ system, as 

  
  

  

  
   

         

   
     (2.19) 

  
  

   

      
             

      .    (2.20) 

Applying three-point central differencing to approximate the diffusion term and 

backward differencing to approximate the convection term, equation (2.18) is discretized 

as  

 

   
 
             

       
  

   
 
         

   
  

 

  
 
       

  
     (2.21) 

which can be re-arranged as 

 
 

   
 

    

    
 

   

  
        

 

   
 

   

  
     

 

   
 

    

    
               (2.22) 

After substituting equation (2.19) and (2.20) into (2.22), since the location of each node 

in the x-coordinate system is known, a system of linear algebraic equations can be 

derived. Taking the mesh in Fig. 2.4 as an example, there are N+1 nodes in the domain. 

The west and east Dirichlet boundary conditions are known, which are 0 and 1 
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respectively. Thus, after applying discretised equation (2.22) at every node in the domain, 

an (N-1)⨯(N-1) matrix system can be set up. Every nodal value in the domain can be 

evaluated by solving this matrix system.  

2.4 Examples 

In the following examples, the solution domain is from 0 to 1, the west boundary 

condition is 0 and the east boundary condition is 1. 

2.4.1 Uniform Mesh 

The uniform mesh is the simplest of all meshes, and forms the basis for the TFDM. This 

is primarily due to the fact that the classical finite difference formulae used to 

approximate derivatives lose at least one order of accuracy if the spacing is non-uniform. 

2.4.1.1 Laplace Equation 

The Laplace equation, obtained by setting R = 0 and S = 0 in equation (2.1), i.e.  

   

           (2.23) 

is solved on a uniform mesh by applying the traditional finite difference method. The 

number of cells is 40. Figure 2.5 shows the comparison between numerical results from 

the code and the exact solution, given by u(x) = x.  The numerical results are identical to 

the exact results.  

 
 

Figure 2.5 Comparison of exact and TFDM solutions of Laplace equation (uniform mesh; N = 40) 
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2.4.1.2 Convection-Diffusion Equation  

In this section, the homogeneous convection-diffusion equation  

   

     
  

  
       (2.24) 

is solved on a uniform mesh by applying the traditional finite difference method. The 

exact solution of the boundaryvalue problem is 

      
     

    
 .     (2.25) 

Figure 2.6 shows the comparison between the numerical results and the exact solution. 

The number of cells used for the simulation is 40. Central differencing is applied to the 

diffusion term, backward differencing is applied on the convection term, and R is set to 

10.   

As illustrated in Fig. 2.6, there are some differences between the numerical results and 

the exact solution. The largest absolute error has the value 0.042 and occurs at node 37. 

 
 

Figure 2.6 Comparison of exact and TFDM solutions of steady convection-diffusion equation  

(uniform mesh; N = 40; R = 10) 

 

2.4.2 Multi-block Mesh 

Consider the 4-block mesh on the interval [0,1] illustrated in Fig. 2.3. Boundary 

conditions are 0 for the west boundary and 1 for the east boundary. Block interfaces are 
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at x equal to 0.1, 0.4 and 0.8. The numbers of cells in each block are 8, 5, 5 and 5 for 

BLK 1, BLK 2, BLK 3 and BLK 4, respectively. The convergence tolerance is set to be 

10
-6

. After running the code using both Method A and Method B to deal with the 

interface problem, it was determined that Method A provides a better solution for both 

the Laplace equation and convection-diffusion equation. Therefore, only the results from 

Method A are shown for the following cases.  

2.4.2.1 Laplace Equation 

The Laplace equation (2.23) is solved on the 4-block mesh by applying the traditional 

finite difference method. Figure 2.7 illustrates the results from the numerical calculation 

and the exact solution. The numerical results are not exactly the same as the exact 

solution, but the largest absolute error is only 8.75x10
-6

, occurring at node 14. 

 
 

Figure 2.7 Comparison of exact and TFDM solutions of Laplace equation (4-block mesh; N = 24) 

 

2.4.2.2 Convection-Diffusion Equation 

The convection-diffusion equation (2.24) is solved on the same 4-block mesh by applying 

the TFDM with central differencing for the diffusion term and backward differencing for 

the convection term.  
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Figure 2.8 shows the comparison between the numerical calculation and the exact 

solution. The largest absolute error appears at node 21, with a value of 0.089. The 

solution of the convection-diffusion equation is not as accurate as the Laplace equation, 

but one should note that the discretization of the Laplace equation is fully second order, 

while the discretization of the convection-diffusion equation uses first order upwinding 

for the convective term. 

 
 

Figure 2.8 Comparison of exact and TFDM solutions of steady convection-diffusion equation  

(4-block mesh; N = 24; R = 10) 
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clustered mesh 02, with a value of 0.099. The TFDM does not predict the correct solution 

on these clustered meshes. 

 
 

Figure 2.9 Comparison of exact and TFDM solutions of Laplace equation  

(clustered mesh; N = 50) 

 

2.4.3.2 Convection-Diffusion Equation 

The convection-diffusion equation (2.24) is solved on the same clustered meshes by 

applying the TFDM with central differencing scheme applied to the diffusion term and 

backward differencing for the convection term. R is set to be 10.  

Figure 2.10 shows the comparison between the numerical calculation and exact solution. 

The numerical results are not accurate compared to the exact solution, especially for 
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Figure 2.10 Comparison of exact and TFDM solutions of steady convection-diffusion equation  

(clustered mesh; N = 50; R = 10) 

 

Figure 2.11 below shows the results from TFDM solutions on clustered meshes with 

different number of cells. These mesh files were generated based on the arcsinh function 

defined by equation (1.17). As shown in this figure, increasing the number of cells does 

not produce more accurate results in this particular example. In fact, the numerical results 

become worse as the number of grid points increases, even becoming negative for large 

N. This example confirms that clustered meshes can produce erroneous results if they are 

not properly designed, requiring considerable expertise on the part of the user. 
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Figure 2.11 Comparison of exact and TFDM solutions of steady convection-diffusion equation on 

meshes with different number of cells (clustered mesh; R = 10) 

 

The logarithmic function defined in equation (1.18) was used to create two clustered 

meshes with different values of B. Recall that 1 < B < 2 and the mesh becomes more 

clustered for B closer to 1. Results from the solutions on these two meshes are compared 

in Fig. 2.12. It is obvious that the results are more accurate with the higher value of B, 

which means the mesh is more uniform. This comparison demonstrates that the degree of 

clustering has an effect on the solution accuracy, as has been pointed out by Kalita
[11]

 and 

others. 

-1.6 

-1.1 

-0.6 

-0.1 

0.4 

0.9 

1.4 

0 0.2 0.4 0.6 0.8 1 

exact 

N=20 

N=30 

N=40 

N=100 



25 
 

 
 

Figure 2.12 Comparison of exact and TFDM solutions of steady convection-diffusion equation  

(clustered mesh with B = 1.2 and B = 1.75; N = 50; R = 10) 

 

Figure 2.13 illustrates the results from the solutions with different values for R. The 

clustered meshes are based on the function (1.18) with the same value for B = 1.75. The 

largest absolute error becomes higher when the value of R increases, with the value 0.077 

at node 45, 0.09 at node 49 and 0.11 at node 50, respectively. These larger errors can be 

attributed to the higher gradients near the east boundary for larger R. 

 
 

Figure 2.13 Comparison of exact and TFDM solutions of steady convection-diffusion equation 

(clustered mesh 02 with B = 1.75; N = 50; R = 10, 30, 50) 
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2.5 Summary 

The traditional finite difference method can be used to accurately solve the Laplace 

equation on either a uniform mesh or a multi-block mesh. For steady convection-

diffusion, although the results are not as accurate as the results for the Laplace equation, 

the error can still be kept small. Multi-block implementation is complicated due to the 

inter-block communication. The method to deal with the interface problem needs to be 

applied cautiously; otherwise, it may cause trouble in the programming and the accuracy. 

Applying the TFDM on a clustered mesh must also be done with care, since the results 

depend significantly on the functions used to generate the clustered mesh. One of the 

reasons for this is, in the TFDM, only one mapping function is applied to map the whole 

clustered mesh into a uniform mesh. The metrics are approximated based on the same 

mapping function, which is not always accurate for all cases, and this accuracy will affect 

the numerical results. Due to these reasons, a Cell-Centred Finite Difference Method, for 

which no mapping is needed when dealing with multi-block and clustered meshes, is 

investigated in the next chapter. 
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CHAPTER 3 

CELL-CENTRED FINITE DIFFERENCE METHOD 

Although the traditional finite difference method has been applied very successfully for 

many CFD applications, it has some weaknesses such as those illustrated in Chapter 2. 

The strengths of the method, in particular its simplicity in development and 

programming, are lost if one is interested in solving flows in very complex geometries. 

The main restriction that limits the applicability of the traditional finite difference method 

is that it cannot handle arbitrary mesh topologies. Since complicated flow domains are 

more easily meshed using arbitrary polygonal (2D) or polyhedral (3D) elements, the CFD 

community generally regards the finite difference method as non-applicable for industrial 

problems. For this reason, most commercial CFD codes are based on either the Finite 

Volume method or the Finite Element method, e.g., ANSYS Fluent
[28]

, STAR-CCM+
[29]

, 

CONVERGE
[30]

, FLOW-3D
[31]

 and COMSOL
[32]

. 

In an attempt to devise a finite difference scheme that can be implemented on an arbitrary 

mesh, Salih
[18]

 and Situ
[19]

 introduced the Cell-Centred Finite Difference (CCFD) method. 

In the CCFD method, the differential equation is approximated at the centre of each 

(arbitrary) cell in the domain by placing a local coordinate system at the cell centroid and 

aligning it with the global Cartesian coordinate system, with the local stencil arms cutting 

the edges of the cell, as shown in Fig. 3.1. The method derives its strength from the fact 

that the differencing stencil is confined to the cell. Instead of assembling a matrix system 

as in the traditional node-based finite difference method, a point-wise iterative approach 

is used in CCFD to determine the solution at all cell centres. Nodal values are then 

obtained by interpolation of the cell-centre values. Research by Salih
[18]

 and Situ
[19]

 

focused mainly on implementation issues for 2D elliptic (Laplace) and parabolic 

(unsteady heat conduction) PDEs. Their simulations demonstrated that the CCFD method 

can handle triangulated domains as well as uniform and clustered Cartesian grids. 

However, there were some issues with accuracy for convection-diffusion equations, 

which may be related to the interpolation schemes used to determine the nodal values. 
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Figure 3.1 Cell-Centred stencils in an arbitrary 2D mesh 

 

This chapter is devoted to a fundamental analysis of the CCFD method. In particular, the 

main source of inaccuracy due to numerical modeling errors is identified and some 

simple procedures to alleviate the problem are proposed. This analysis is carried out for 

the 1D model problems discussed in Chapter 1. 

3.1 General 1D CCFD Formulation 

In the Cell-Centred Finite Difference method, the differencing stencil is kept within each 

cell. Therefore, whether the mesh is uniform or not does not affect how the method 

works. The discretized equations are valid for every cell in the domain. Take an arbitrary 

1D mesh and consider the general unsteady convection-diffusion equation (1.12). Figure 

3.2 shows two cells in the arbitrary mesh with cell-centres and nodes denoted as ci-1 and 

ci, and as i-1, i and i+1 respectively. 

 
Figure 3.2 Two adjacent cells in a 1D arbitrary mesh 

 

Applying three-point central differencing on cell-centres for the diffusion term and 

backward differencing on the convection term, the discretized form of equation (1.12) at 

any cell-centre ci is: 

   

  
 
  

 
 

 
 
       

     

 
   
 

 
     

   
   

   
 

     
 .   (3.1) 
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Implementation of the CCFD method proceeds as follows: 

Step 1: Make an initial guess for the solution at all internal nodes. 

Step 2: Use discretisation equation (3.1) to determine the values at the cell-centres. 

Step 3: Use distance-weighted averaging to update the nodal values, i.e., for each i, 

   

     
       

 
   

     

 

       
 

 

     

  .     (3.2) 

Then repeat the second and third steps until the differences for the nodal values between 

two successive iterations converge to within the specified tolerance.   

Both the multi-block mesh and the clustered mesh problems can be solved based on the 

same procedures as for the uniform mesh. For the multi-block mesh, the interface nodes 

do not cause any complexity. For the clustered mesh, a mapping is no longer required to 

evaluate the nodal values. The procedures for CCFD calculations are much simpler, and 

programming the code is much more straightforward to accomplish. In brief, this CCFD 

method is much easier to implement compared with the traditional finite difference 

method.  

3.2 Examples for Steady Equations 

3.2.1 Uniform Mesh 

For the following examples, the domain is of unit length, with west and east boundary 

conditions as 0 and 1, respectively. The number of cells in the domain is 50.  

3.2.1.1 Laplace Equation 

The Laplace equation (2.23) is solved on a uniform mesh by applying the above steps for 

the Cell-Centred Finite Difference method. Figure 3.3 shows the comparison between the 

numerical results from the code and the exact results. The numerical results perfectly 

match the exact solution u(x) = x.  
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Figure 3.3 Comparison of exact and CCFD solutions of the Laplace equation  

(uniform mesh; N = 50; averaging method) 

 

3.2.1.2 Steady Convection-Diffusion Equation 

Consider the steady convection-diffusion equation (2.1) with R = 10 and S = 0. Second 

order central differencing is applied for the diffusion term and backward differencing is 

applied for convection term. Figure 3.4 shows the comparison between numerical results 

from the code and the exact solution given by equation (2.25).   

As illustrated in Fig. 3.4, there are some significant differences between the numerical 

results and the exact results. The largest absolute error appears at node 44, with a value of 

0.246. This corresponds to a large relative error of 1.0. This result is analyzed in section 

3.3 below. 
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Figure 3.4 Comparison of exact and CCFD solutions of convection-diffusion equation  

(uniform mesh; N = 50; averaging method) 

 

3.2.2 Clustered Mesh 

The clustered meshes are generated from a separate code, using the functions defined in 

equations (1.17) and (1.18) to build the mesh files 01 and 02 as described in Chapter 1. 

The number of cells in each mesh is 50 and the domain has unit length. Boundary 

conditions are 0 and 1 at west and east, respectively, and both meshes are clustered 

towards the boundaries. 

3.2.2.1 Laplace Equation 

The Laplace equation (2.23) is solved on the clustered meshes by following the steps 

outlined above for the CCFD method. Figure 3.5 shows the comparison between the 

numerical results and the exact results. The numerical results perfectly match the exact 

solution u(x) = x. 
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Figure 3.5 Comparison of exact and CCFD solutions of Laplace equation 

(clustered mesh; N = 50; averaging method) 

 

3.2.2.2 Steady Convection-Diffusion Equation 

Set R = 10 and S = 0 in the steady convection-diffusion equation (2.1) and approximate 

second derivative with three-point second order central differencing, and first derivative 

with backward differencing. Figure 3.6 shows the comparison between the numerical 

results from the code and the exact solution. As seen from Fig. 3.6, the numerical results 

are obviously higher than the exact results at many nodes in the mesh. For mesh 01, the 

largest absolute error occurs at node 35, and the value is 0.2464. For mesh 02, the largest 

absolute error occurs at node 41, and the value is 0.2462. 
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Figure 3.6 Comparison of exact and CCFD solutions of steady convection-diffusion equation  

(clustered mesh; N = 50; averaging method) 

 

3.3 Analysis of CCFD Results 

From the above figures, it is clear that the CCFD method can accurately solve the 

Laplace equation. However, if CCFD is applied to the convection-diffusion equation, the 

results are not accurate enough. In order to find the reasons for this, consistency needs to 

be checked. If the finite difference equation (FDE) reverts back to the differential 

equation as the grid spacing tends to zero, it shows that the numerical scheme is 

consistent. Therefore, if consistency is checked, it can be found whether the FDE, which 

is applied in the code, can reflect the ODE (or PDE in higher dimensions) which is 

required to be solved. For this purpose, the modified differential equation needs to be 

derived. Since the results for Laplace equation are correct, only the convection-diffusion 

equation needs to be checked. 

The general procedure to derive the modified ODE (MODE) and check for consistency is 

as follows: 

Step 1: Derive the FDE by applying finite difference formulae to approximate the terms 

in the ODE at node i. 

Step 2: Expand each term in the FDE in a Taylor series about xi. 
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Step 3: Collect coefficients of ui and its derivatives. 

Step 4: Re-arrange the infinite series so that the terms in the original ODE appear on one 

side of the equation, and all other terms appear on the other side. This is the MODE. 

Step 5: Take the limit of the MODE as Δx→ 0.  If 

                 , 

then the numerical scheme is consistent. Otherwise it is inconsistent. 

Essentially, if a numerical scheme is not consistent, the FDE does not correctly represent 

the ODE and the solution of the FDE (if it exists) will be the solution of some other ODE.  

For the steady convection-diffusion equation (2.1), after applying second order central 

differencing on the diffusion term and allowing for central (β = 0), backward (β = 1) or 

forward (β = -1) differencing for the convection term, the discretisation equation becomes 

 
       

     

           
              

          

        
     

  (3.3) 

Re-arranging this equation gives 

                              
                       

    
.(3.4) 

Before introducing interpolations for the nodal values ui and ui+1, it is advisable to check 

equation (3.4) for consistency. Expanding ui and ui+1 in Taylor series about    
, equation 

(3.4) becomes (with Δx ≡ Δxi) 

                 
 

  

 
   

  
     

     
   

   
     

     
   

           

             
 

                  
 

  

 
   

  
     

     
   

   
     

     
   

                  
 (3.5) 

which simplifies to 

           
  

 
             .    (3.6) 

Equation (3.6) is the MODE for the steady convection-diffusion equation when the Cell-

Centred Finite Difference method is used to discretize the ODE. This proves that the 

CCFD method is consistent, since equation (3.6) tends to the ODE as Δx tends to zero. 

However, in the implementation of the CCFD method, all the nodal values need to be 

updated by applying some interpolation schemes, such as the distance-weighted average 
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defined by equation (3.2). For consistency analysis, the mesh is chosen to have uniform 

spacing Δx so that the equations used to update nodal values are only averaging the cell-

centre values, i.e., 

     
   

      

  

   
     

    

 
  

    (3.7) 

Substituting equations (3.7) into (3.4) gives 

                  
             

                   
        

.      

(3.8) 

The MODE obtained from the FDE (3.8) is 

     
 

 
   

 

 
  

  

 
             .   (3.9) 

Equation (3.9) shows an essential problem, the ODE is not the one which we are 

attempting to solve. There is an extra ½ factor in the coefficient of the convection term 

and the source term S, which means that the CCFD method with interpolation (3.7) does 

not satisfy the consistency requirement. Therefore, distance-weighted average applied to 

update the nodal values is not an acceptable method. Note, however, that consistency is 

satisfied for the homogeneous Laplace equation (R = 0, S = 0) considered in the above 

examples. Some alternative methods for the convection-diffusion equation are tested in 

the following section.  

3.4 Other Methods to Update Nodal Values 

The consistency analysis in section 3.3 confirms that the basic CCFD formulation is 

consistent, but the method will lose consistency if the nodal interpolation scheme is not 

properly chosen. Two alternative schemes to determine the nodal values are proposed in 

this section. 

3.4.1 Shifting Method 

In this method, cell-centres and nodes shift back and forth to calculate nodal values. 

Figure 3.7 shows the mesh with nodes placed at the domain boundaries, and Fig.3.8 

illustrates the mesh with cell-centres at the boundaries. 
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Figure 3.7 Mesh with nodes at domain boundaries 

 
Figure 3.8 Mesh with cell-centres at domain boundaries 

 

For the shifting method, the calculation begins by processing the data on the mesh in Fig. 

3.7. First, all the interior nodal values need to be initialized. Then the discretisation 

equation (3.1) is applied on cell-centres to calculate the cell-centre values. In the next 

step, the calculations shift to the mesh shown in Fig. 3.8, where all the nodes in Fig. 3.7 

become cell-centres and all the cell-centres change to nodes. Therefore, for the mesh in 

Fig. 3.8, all the nodal values are known. The same discretisation equation (3.1) is then 

applied on cell-centres to calculate the values on cell-centres in the mesh of Fig. 3.8. 

After this step, shift back to the mesh in Fig. 3.7, do the same calculations as the second 

step, and then shift back to Fig. 3.8. Continue the calculation until the differences for the 

nodal values in Fig. 3.7 between two iterations converge to within the specified tolerance. 

To test this shifting scheme, consider the same steady convection-diffusion equation (2.1) 

with R = 10 and S = 0 on a uniform 40-cell mesh, on a domain of unit length with 

boundary conditions 0 and 1. Second order central differencing is applied on both the 

diffusion and convection terms. Convergence tolerance was set at 10
-8

. 

Figure 3.9 reveals the comparison of results from the shifting scheme and the exact 

results. The numerical results and the exact results are very close for most nodes. The 

maximum error occurs at node 45 with the value 0.000308.  
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Figure 3.9 Comparison of exact and CCFD solutions of steady convection-diffusion equation  

(uniform mesh; N = 50; shifting method) 

 

3.4.2 Differencing Method 

The differencing method described in this subsection is similar to the shifting method, but 

is simpler to apply since it uses only one mesh. Also, the shifting method only applies on 

a uniform mesh and would likely be difficult to programme for higher dimensional 

problems. The differencing method does not have these restrictions. 

In the differencing method, after initializing all the nodal values in the domain, the 

discretisation equation is applied at all the cell-centres to achieve all the values of cell-

centres. Then, the same discretisation equation is applied at all the nodes to update the 

nodal values. The calculation continues, alternating between cell-centre and nodal values, 

until differences of the nodal values between two iterations converges to within the 

specified tolerance.   

3.4.2.1 Uniform Mesh 

Take the steady convection-diffusion equation (2.1) with backward differencing for the 

convective term (β = 1), no source term and the same boundary conditions as in previous 

examples. Discretisation equation (3.4), with uniform Δx, is applied on cell-centres to 

calculate cell-centre values. Then the equation 
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    (3.10) 

is applied to update the nodal values. Figure 3.10 shows the comparison between 

numerical and exact results for R = 10 on a uniform mesh with 50 cells. The maximum 

absolute error occurs at node 45 with the value 0.000306.  

 
 

Figure 3.10 Comparison of exact and CCFD solutions of steady convection-diffusion equation  

(uniform mesh; N = 50; differencing method) 

 

3.4.2.2 Clustered Mesh 

Solve the same steady convection-diffusion equation (2.1) on a clustered mesh, with the 

same domain, boundary conditions and R as the above example. The formulation for a 

clustered mesh is not exactly the same as the uniform mesh. The discretisation equation 

(3.4) is still applied on cell-centres after initializing all the nodal values. However, since 

the mesh is not uniform, nodal values are updated using the following equation, 

   
        

       
     

 
        

       
   

    (3.11) 

where     
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Figure 3.11 illustrates the results comparison. For mesh 01, the largest absolute error is 

0.00262 at node 30. For mesh 02, the largest absolute error is 0.000561 at node 41. 

 
 

Figure 3.11 Comparison of exact and CCFD solutions of steady convection-diffusion equation  

(clustered mesh; N = 50; differencing method) 

 

From Figs. 3.10 and 3.11, it is obvious that the numerical results are accurate either on a 

uniform mesh or clustered mesh, which means the differencing method, works well for 

solving the steady convection-diffusion equation. However, this method is actually 

another iterative version of the traditional finite difference method. But, unlike the 

TFDM, it can be implemented on a non-uniform mesh without mapping.  

3.5 Unsteady Problems 

In this section, the CCFD method is applied to unsteady equations to test if the averaging 

procedure can work for time-dependent problems. The unsteady convection-diffusion 

equation (1.17) is 

  

  
  

  

  
  

   

           .    (3.12) 

If a = 0, equation (3.12) is a parabolic equation. If ν = 0, the equation is hyperbolic. In the 

following examples, the source term S is taken to be zero. Averaging is applied to update 

nodal values.  
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3.5.1 Parabolic Equation 

Consider the parabolic equation (a = 0) applied on a uniform mesh. The explicit Euler 

scheme, or forward differencing, is applied for the time derivative, and central 

differencing is used for the space derivative. This formulation produces the FDE 

   

       

  
    

     
   

      

      
     (3.13) 

where Δt is the time step.  

3.5.1.1 Stability Analysis 

Explicit time-marching schemes are known to become unstable if the time step is too 

large. The procedure to determine the time step restriction is based on von Neumann 

stability analysis as presented in Hoffmann and Chiang
[1]

. 

Define the diffusion number 

  
   

          (3.14) 

and assume the solution can be represented by a Fourier series, so that terms in the FDE 

(3.13) can be expressed as 

   

              (3.15) 

   

                 (3.16) 

  
           

 

 
 
    (3.17) 

    
           

 

 
 
    (3.18) 

where U is the amplitude, θ is the phase and       . The condition for numerical 

stability is that the amplification factor Un+1/Un satisfies the inequality -1 ≤ Un+1/Un ≤ 1. 

Substituting (3.15), (3.16), (3.17) and (3.18) into (3.13) and re-arranging the equation 

yields the stability condition 

  
 

 
  .      (3.19) 

In other words, the CCFD method can be stable only when the condition (3.19) is 

satisfied. In terms of time and space increments, stability requires that Δt ≤ (Δx)
2
/4ν. 
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3.5.1.2 Example 

Equation (3.13) models the following fluid problem from Hoffmann and Chiang
[1]

. A 

fluid is bounded by two parallel plates extending to infinity such that no end effects are 

encountered. The plates and the fluid are initially at rest. Then the lower plate is suddenly 

accelerated in the x-direction. A spacial coordinate system is selected such that the lower 

plate includes the xz plane to which the y-axis is perpendicular. The spacing between the 

two plates is h = 0.04 m. The fluid is oil with a kinematic viscosity of 0.000217 m
2
/s. The 

velocity of the lower wall is specified as U0 = 40 m/s. Computing the velocity distribution 

within the plates is required. The analytical solution of this problem, subject to the 

imposed initial and boundary conditions, is 

                                     
   

 
                 (3.20) 

where    
 

    
 ,   

 

    
 . 

For this example, to satisfy the stability of the explicit Euler scheme, the time step should 

be              s. 

Using the time steps Δt = 0.00115 s and 0.0009 s, which both satisfy the stability 

condition, the solution based on equation (3.13) was marched to tmax = 0.18 s. The 

difference between the numerical solution and analytical solution is obvious in Fig. 3.12. 

The reason for this discrepancy is explained below in subsection 3.5.1.3. 

 

Figure 3.12 Solution of the model parabolic equation  

(uniform mesh; N = 40; averaging method; FTCS) 
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3.5.1.3 Analysis of Results 

From the above figure it is clear that if CCFD is applied to the parabolic equation, the 

results are not accurate enough even if the stability condition is satisfied. In order to find 

the reasons for this, consistency should be checked. The same procedure used to 

determine the consistency for the steady convection-diffusion equation is followed.  

The consistency is first checked before introducing interpolations for nodal values   
 and 

    
 . Expanding   

  and     
  in Taylor series about    

, equation (3.13) becomes (with 

Δx ≡ Δxi) 

    

    
  

  
 

     

  

   

    
     

  

   

               

   

 
    

          

  
  

 

  

  
 

     

     

   

    
     

     

   

                

   

     

  
  

 

  

  
 

     

     

   

    
     

     

   

                    (3.21) 

which simplifies to 

  

  
  

   

                 .    (3.22) 

Equation (3.22) is the modified PDE for the parabolic equation. It confirms that the 

scheme is consistent before interpolation. Applying the average to update the nodal 

valuesby substituting equations (3.7) into (3.13) yields 

   

       

  
    

           

      

       

    .  (3.23) 

The modified PDE for equation (3.23) is  

  

  
   

   

                  .    (3.24) 

Equation (3.24) shows the reason why these results are not accurate, the PDE is not the 

one we are attempting to solve, which is similar as the problem for the steady convection-

diffusion equation. This means that the CCFD method with the distance-weighted 

interpolation cannot satisfy the consistency requirement for the unsteady diffusion 

equation.  

3.5.2 Hyperbolic Equation 

Consider the hyperbolic equation (3.12) with ν = 0 and S = 0 applied on a uniform mesh. 

The explicit Euler scheme, or forward differencing, is applied for the time derivative, and 
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backward differencing is used for the space derivative. This formulation produces the 

FDE 

   

       

  
    

  
    

      
      (3.25) 

where Δt is the time step.  

3.5.2.1 Stability Analysis 

Explicit time-marching and backward differencing for space scheme is known to be 

conditionally stable. Von Neumann stability analysis is applied to determine the time step 

restriction using the same procedures as for the parabolic equation.  

Define the Courant number 

  
   

  
.      (3.26) 

The analysis leads to a condition on the Courant number, 

  
 

 
  .      (3.27) 

Thus, the CCFD method will only be stable when    
  

  
 .  

3.5.2.2 Example 

In this example, a is the speed of sound with a value of 250 m/s. A disturbance of a half 

sinusoidal shape is generated at time t = 0 
[1]

. Initial condition is specified as  

 

                                                                          

                 
    

  
                         

                                                                      

  

The number of cells is 80 and the domain is from 0 to 400 m.  

The analytical solution of this problem, subject to the imposed initial and boundary 

conditions, is 

             
            

  
  .                (3.28) 

To satisfy the stability condition of explicit Euler time-marching with backward 

differencing for space discretisation, the time step for this problem should be less than 

0.01 s. Using the time steps Δt = 0.01 s and 0.005 s, which satisfy the stable condition, 
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the solution based on equation (3.25) was marched to tmax= 0.5 s and the results are 

shown in Fig. 3.13. 

 

Figure 3.13 Solution of model hyperbolic equation  

(uniform mesh; N = 80; averaging method; FTCS) 

 

3.5.2.3 Analysis of Results 

From Fig. 3.13, it is seen that there is an obvious gap between the numerical solution and 

analytical solution. Since stability has been satisfied, consistency is another possible 

reason for this inaccuracy which needs to be checked. The same procedure is followed as 

the consistency check for the steady convection-diffusion equation and parabolic 

equation. Before applying interpolation, the CCFD method for the hyperbolic equation 

can be shown to satisfy the consistency condition. After introducing interpolation, the 

discretisation equation becomes 

   

       
   

   
    

  
   

   
     

  .   (3.29) 

The modified PDE for equation (3.29) is  

  

  
 

 

 

  

  
              .    (3.30) 

As seen in equation (3.30), there is an extra ½ factor. Therefore, the CCFD method, after 

introducing interpolation, is inconsistent. This explains the obvious error in Fig. 3.13.  
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3.6 Summary 

For CCFD, using averaging to update nodal values is reasonable when solving the 

Laplace equation. However, if it is used to solve the steady convection-diffusion 

equation, the results are not correct because of inconsistency. Although this issue can be 

resolved by applying a differencing method to update nodal values, this method is 

actually a version of the traditional finite differencing method. The same inconsistency 

problem exists for solving unsteady equations, when apply averaging to update the nodal 

values, even if the stability requirement is satisfied. Due to these reasons, the CCFD 

method is not a satisfactory method for general implementation in a CFD code. However, 

another method can be devised which takes advantage of the main strength of the CCFD 

method. This proposed stencil mapping method is explained in next chapter.  
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CHAPTER 4 

A NEW STENCIL MAPPING METHOD 

The classical implementation of a finite difference formulation on a non-uniform mesh 

uses a coordinate mapping function to map the non-uniform mesh in the physical domain 

to a uniform mesh in the computational domain. The same mapping function is used to 

transform the differential equation to be solved from the physical coordinate system to 

the computational coordinate system. This transformed differential equation contains the 

metrics of the transformation and additional derivative terms. Although this approach has 

been very successful, it requires a high level of user expertise, both in grid generation 

techniques and computer programming. Furthermore, as shown in Chapter 2 and by other 

researchers, the choice of clustering function can have a significant effect on the accuracy 

of the numerical solution 
[11, 22,32].

 

In 1D applications, a prescribed clustering or stretching function is used to map the 

unequally spaced nodes with physical x-coordinates to equally spaced computational ξ-

coordinates. These 1D mapping functions can also be used for Cartesian meshes in 2D 

and 3D. The main motivation for the development of the Cell-Centred Finite Difference 

scheme was to obtain a finite difference formulation that could handle an arbitrary 

distribution of nodes in a mesh without having to introduce coordinate transformations. 

Despite its success for unstructured meshes, simple interpolation schemes may cause the 

numerical scheme to lose consistency. In order to overcome this problem, more 

complicated interpolations are needed, making the method less attractive for higher 

dimensional problems. 

The concept of a stencil lies at the core of all finite difference formulations. In this 

chapter, one of the key elements of the cell-centred scheme, namely that the value at a 

node should be calculated only by using the neighbouring values on the 3-point stencil (in 

1D), is exploited to derive a generalized finite difference method for arbitrary nodal 

distribution in the mesh.    
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4.1 The Stencil Mapping 

The proposed Stencil Mapping method can be applied on an arbitrary mesh. Therefore, to 

explain the concept of this method, an arbitrary mesh is selected. Figure 4.1 shows a 1D 

mesh, in which N+1 nodes are distributed randomly along the x-axis.   

 
Figure 4.1 Arbitrary mesh along x-axis 

 

In the stencil mapping method, for each individual set of three consecutive nodes (i.e., the 

stencil), a unique map is constructed that transforms the 3-point non-uniform stencil 

comprised of these three nodes to a 3-point uniform stencil 
[18,19]

.  Figure 4.2 shows how 

a representative non-uniform stencil (a) in the physical x-coordinates transforms to a 

uniform stencil (b) in the computational ξ-coordinates.  

 
Figure 4.2 Stencil map 

 

The transformation is based on a mapping function x = x(ξ). This mapping function is a 

quadratic function which satisfies the three conditions x(-1) = xW, x(0) = xP and x(1) = xE, 

i.e., 

     
                                                        (4.1) 

where      ,             , and                 . Each stencil has its 

own unique quadratic mapping function and metrics. 
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4.2 Transformed Equation and Boundary Conditions 

Under the mapping described above, the PDE (1.12) transforms to  

   

  
 
 

 
 

 
 

 

  
  

  
  

   
 
 

 
  

  

  
  

   

  
 
 
  

 

  
 
   

  
 
 

                              (4.2) 

where xʹ and xʺ are the derivatives of x with respect to ξ obtained from equation (4.1) and 

all quantities are evaluated at node P. It is interesting to note that xʺ = xW - 2xP +xE is a 

measure of the non-uniformity of the mesh, and xʺ= 0 if the mesh is uniform. 

Two types of boundary conditions are considered, Dirichlet and Neumann. 

(a) Dirichlet Boundary Condition 

For Dirichlet boundary conditions the boundary values are known. These values can be 

used in the calculation directly.    

(b) Neumann Boundary Condition 

The Neumann boundary condition occurs when the normal derivative of the solution is 

prescribed on the boundary of the domain. For example, consider a Neumann condition 

on the west boundary shown in Fig. 4.3. 

 
Figure 4.3 West boundary for a 1D mesh 

 

Applying a Neumann boundary condition on the west side of the domain means that 

  

  
      at the west boundary, where g(t) is a known function and  

  

  
           is the 

derivative in the direction of the outward unit normal vector   . Since the normal vector at 

the west boundary points to the outside direction of the domain, 

   

  
 
 

          

  
 
 

       
 

  
   

  
 
 

         

  
 
 

                (4.3) 
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A similar condition can be derived for a Neumann condition on the east boundary. 

4.3 Discretisation and Implementation Issues 

4.3.1 FDE – Second Order Scheme 

The 1D unsteady convection-diffusion equation (4.2) is used to explain the algorithm. 

Using the 3-point central differencing formula for the diffusion term and 2-point 

backward differencing formula for the convection term, we can obtain the discretisation 

equation 

   

  
 
 

                                                    (4.4) 

where    
 

   
   

 

  
 ,    

 

   
   

  
  

    
   

 

  
 ,   and      

 

   
   

  
  

    
   . 

Boundary conditions are applied at node 1 and node N+1, as illustrated in Fig. 4.1. For 

the unsteady case, the solution is marched in time from the prescribed initial condition. 

For the steady case, after initializing all the interior nodal values, all the interior nodal 

values can be updated through equation (4.4) with the time derivative term equal to zero. 

The iteration continues until the differences between two iterations at every node 

converge to within the specified tolerance. 

A second order one-sided differencing formula is applied to equation (4.3) to 

approximate the boundary value u1 if the west boundary is Neumann. Therefore, for a 

west Neumann boundary condition,      
 

 
            

 
        . Similarly, for 

an east Neumann boundary condition,       
 

 
           

   
          . 

4.3.1.1 Local Truncation Error 

The local truncation error (L.T.E.) is an effective parameter used to evaluate the accuracy 

of the differencing method. In the stencil mapping method, the local truncation error is 

introduced to assess the accuracy of the scheme and to identify the nodes in the mesh 

which experience the largest errors. If the locations of the largest L.T.E. are known, the 

mesh can be refined in this region to further reduce the errors. This is referred to as 

adaptive meshing. To determine the local truncation error, the modified differential 
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equation needs to be derived. Substituting Taylor series expressions back into the finite 

difference equation, the final expression after some algebraic manipulation is the 

modified equation 
[1]

. In the modified differential equation, the dominant error can be 

clarified, namely the local truncation error.  

To illustrate the derivation of the local truncation error consider the steady convection-

diffusion equation in the form (2.1) 

 
   

     
  

  
    .              (4.5) 

The discretisation equation, after transforming to the ξ-coordinate, becomes  

                                                            (4.6) 

where    
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   . 

To get the modified ODE and the local truncation error, the Taylor series expansion at 

node P is substituted into equation (4.6): 

              

     

         
   

  
 

     

  

    

   
 

     

  

    

   
 

     

  

    

   
   

         
   

  
 

     

  

    

   
 

     

  

    

   
 

     

  

    

   
   

     

Re-arranging this equation, we get the modified differential equation 
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Noting the terms that appear in the original ODE, the remaining terms are the dominant 

terms in the local truncation error, i.e., 

       
 

   
 

    

   
 

  
  

   
  

    

   
 

 

   
 

    

   
 

 

    
  

    

   
.  (4.7) 

The first and third terms in the L.T.E. are due to the first order upwind approximation of 

the convective term and the first term is usually referred to as artificial diffusion. The 

second and fourth terms in (4.7) are the result of the second order differencing of the 

diffusion term in equation (4.5), and the second term includes the effect of non-uniform 

grid spacing. 

4.3.1.2 Calculation of Local Truncation Error 

As shown in equation (4.7), there are 2
nd

, 3
rd

 and 4
th

 order derivatives in the L.T.E. 

Instead of using more than three nodes to approximate the higher derivatives, we want to 

retain the 3-node stencil in the local truncation error calculation to avoid any problem 

when dealing with the nodes near boundaries. The procedures are as follows: 

After completing the calculation for all the nodal values in the domain, use these nodal 

values to approximate the 2
nd

 derivative at every node including those at the boundary. 

For the interior nodes, apply 3-point central differencing and, for the boundary nodes, 

apply 3-point forward and backward differencing for the west and east boundary nodes, 

respectively. Then apply central differencing formulae on the values of the 2
nd

 derivative 

to approximate the values of the 3
rd

 and 4
th

 derivatives at every interior node in the 

domain. Following this procedure, the local truncation error at every interior node can be 

calculated. 

4.3.2 FDE – Fourth Order Scheme 

Many CFD researchers are interested in extending their codes to higher-order 

differencing schemes 
[22,23,24,25,26]

. Besides the obvious benefit of producing a more 

accurate numerical solution on a given mesh, higher-order schemes are of particular 

interest in Direct Numerical Simulations where a very fine mesh is required to resolve the 

small scales of turbulence. The main difficulty with higher-order schemes arises from the 
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fact that higher-order difference formulae require more nodes, e.g., the 4
th

–order 

approximation of the 2
nd

 derivative uses a 5-point stencil. 

It is easy to extend the proposed stencil mapping method to higher-order schemes, while 

confining the stencil to three nodes. The same 3-node stencil shown in Fig. 4.2 is applied, 

with the same quadratic mapping function defined in equation (4.1). If a 4
th

-order 

differencing scheme is used for the diffusion term, five points along the 3-point stencil 

are needed to implement the scheme, positioned at xW, xL, xP, xR and xE, as shown in Fig. 

4.4a. 

 
Figure 4.4 Stencil with five discretisation points for the 4

th
-order scheme 

 

After mapping, if the physical stencil is not uniform, the midpoints on the arms of the 

computational stencil may not be the midpoints on the physical stencil. Generally, the 

location of xL and xR are  

   
 

 
   

 

 
   

 

 
      (4.8) 

   
 

 
   

 

 
   

 

 
  .    (4.9) 

In this section, a 4
th

-order central differencing formula is applied for the diffusion term 

and a 2
nd

-order backward differencing formula is applied for the convection term in the 

steady convection-diffusion equation (4.5). The discretisation equation can be written as 

                             (4.10) 

where    
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The 4
th

-order scheme still uses the same 3-point stencil as the 2
nd

-order scheme. Thus, 

when calculating the values for nodes adjacent to the boundaries, no special formulae are 

required.   

The next step is to use appropriate interpolations to estimate the values of   and   . 

Apply the 2
nd

-order central differencing formula for the diffusion term and 1
st
-order 

backward differencing formula for the convection term at the left (ξ = -1/2) and right (ξ = 

1/2) intermediate nodes. Then re-arrange the equation to get the values of uL and uR. 

Taking the steady convection-diffusion equation (4.5), the equations for uL and uR are 
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   .                   (4.12) 

4.3.2.1 Local Truncation Error 

Using the steady equation to calculate the local truncation error for the 4
th

-order scheme, 

the discretisation equation (4.10) is written as 

                                                  (4.13) 

where the coefficients are defined above. 

Then   ,   ,   , and    can be expanded in a Taylor series about node P. The left-hand 

side of equation (4.13) becomes:  
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(4.14) 

Re-arranging equation (4.14), setting Δξ = 1 and simplifying coefficients, we get  

 
 

  
  

    

   
 

  
  

  
  

   

  
 

 

  
 

   

  
  

 

      
  

    

   
 

 

     
 

    

   
 

  
  

     
  

    

   

 
 

    
 

    

   
 

 

    
 

    

   
 

  

     
 

    

   
    

Therefore, the local truncation error for the 4
th

-order accurate scheme is  

        
 

      
  

    

   
 

 

     
 

    

   
 

  
  

     
  

    

   
 

  

     
 

    

   
 

 

    
 

    

   
 

 

    
 

    

   
  

(4.15) 

4.3.2.2Calculation of the Local Truncation Error 

Follow the same idea as the implementation of the local truncation error for the 2
nd

-order 

differencing scheme. Using the procedure in section 4.3.1.2, the values for 3
rd

 and 4
th

 

derivatives can be evaluated.  For the local truncation error of the 4
th

-order scheme, there 

are also 5
th

 and 6
th

 derivative terms in equation (4.15). Values of 4
th

-order derivatives can 

be used to approximate the 5
th

 and 6
th

 derivatives in a manner similar to the above. Then 

the local truncation error at all the interior nodes can be calculated.  
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4.4 Results 

4.4.1 Poisson Equation 

Consider the solution of the Poisson equation  

   

                                       (4.16) 

on either a uniform mesh or a clustered mesh with 50 cells. 

There are two clustered mesh files tested for this stencil mapping method. The first 

clustered mesh is generated by the function arcsinh defined by equation (1.17) and the 

second clustered mesh is generated through the log function given by equation (1.18). As 

in previous chapters, these two meshes are denoted as mesh 01 and mesh 02, 

respectively. Both meshes are clustered at the two ends of the domain, with 50 cells in the 

mesh. 

Both Dirichlet and Neumann boundary conditions are applied on this Poisson equation. 

For Dirichlet boundaries, the boundary conditions are 0 and 1 for west and east, 

respectively. If the west boundary is set to be a Neumann boundary, the value for g is 1. 

If a Neumann condition is applied at the east boundary, the value for g is 6. These values 

are obtained from the exact solution of (4.16). The Neumann boundary condition is 

applied at only one side in the following cases, and the other side is a Dirichlet boundary 

condition. The domain is from 0 to 1. Results from the 2
nd

-order accurate scheme and 4
th

-

order scheme are compared for each mesh, along with the results from the exact solution 

            .  

4.4.1.1 Uniform Mesh 

(a) Dirichlet Boundary Conditions 

Figure 4.5 shows the comparison of the numerical solution with the exact solution on a 

uniform mesh. Local truncation errors for the 2
nd

-order and 4
th

-order schemes on the 

uniform mesh are illustrated in Fig. 4.6. Both schemes provide an accurate solution of the 

boundary value problem (BVP), but Fig. 4.6 shows that the 4
th

-order scheme has local 

truncation error which is four orders of magnitude smaller than the 2
nd

-order scheme. 
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Figure 4.5 Numerical and exact results for Poisson equation  

(uniform mesh; N = 50; Dirichlet boundaries) 

 

 
 

Figure 4.6 Local truncation error for Poisson equation  

(uniform mesh; N = 50; Dirichlet boundaries; 2
nd

-order vs. 4
th

-order scheme) 

 

(b) West Neumann Boundary Condition 

Figure 4.7 shows the results for the numerical solution and exact solution when the 

Neumann condition is applied at the west boundary. Figure 4.8 provides the details of 

local truncation error for the 2
nd

-order and 4
th

-order schemes. Comparing these figures 
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with Figs. 4.5 and 4.6, it is clear that the stencil mapping method can solve the Neumann 

BVP with the same accuracy as the Dirichlet problem. 

 
 

Figure 4.7 Numerical and exact results for Poisson equation  

(uniform mesh; N = 50; west Neumann boundary) 

 

 

 
 

Figure 4.8 Local truncation error for Poisson equation  

(uniform mesh; N = 50; west Neumann boundary; 2
nd

-order vs. 4
th

-order scheme) 
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 (c) East Neumann Boundary Condition 

Figure 4.9 shows the results from the numerical solution and exact solution. Local 

truncation errors for the 2
nd

-order and 4
th

-order schemes are compared in Fig. 4.10. There 

is no loss in solution accuracy when Neumann boundary conditions are imposed. 

 
 

Figure 4.9 Numerical and exact results for Poisson equation  

(uniform mesh; N = 50; east Neumann boundary) 

 

 
 

Figure 4.10 Local truncation error for Poisson equation  

(uniform mesh; N = 50; east Neumann boundary; 2
nd

-order vs. 4
th

-order scheme) 
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4.4.1.2 Clustered Mesh 

(a) Dirichlet Boundary Condition 

Figures 4.11 and 4.12 compare the solution results and the L.T.E. for clustered mesh 01. 

Figures 4.13 and 4.14 show the corresponding results for mesh 02. Figures 4.12 and 4.14 

demonstrate that the local truncation error for the 4
th

-order scheme is much smaller and 

more uniformly distributed across the mesh than the 2
nd

-order L.T.E. 

 
 

Figure 4.11 Numerical and exact results for Poisson equation  

(clustered mesh 01; N = 50; Dirichlet boundaries) 

 

 
 

Figure 4.12 Local truncation error for Poisson equation  

(clustered mesh 01; N = 50; Dirichlet boundaries; 2
nd

-order vs. 4
th

-order scheme) 
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Figure 4.13 Numerical and exact results for Poisson equation  

(clustered mesh 02; N = 50; Dirichlet boundaries) 

 

 
 

Figure 4.14 Local truncation error for Poisson equation  

(clustered mesh 02; N = 50; Dirichlet boundary; 2
nd

-order vs. 4
th

-order scheme) 

 

(b) West Neumann Boundary Condition 

Figure 4.15 shows the results from the numerical solution compared with the exact 

solution for mesh 01, and the same comparison for mesh 02 is demonstrated in Fig. 4.17. 
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Figures 4.16 and 4.18 provide the information for local truncation error. The improved 

accuracy obtained from the 4
th

-order scheme is again obvious. 

 
 

Figure 4.15 Numerical and exact results for Poisson equation  

(clustered mesh 01; N = 50; west Neumann boundary) 

 

 
 

Figure 4.16 Local truncation error for Poisson equation  

(clustered mesh 01; N = 50; west Neumann boundary; 2
nd

-order vs. 4
th

-order scheme) 
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Figure 4.17 Numerical and exact results for Poisson equation  

(clustered mesh 02; N = 50; west Neumann boundary) 

 

 
 

Figure 4.18 Local truncation error for Poisson equation  

(clustered mesh 02; N = 50; west Neumann boundary; 2
nd

-order vs. 4
th

-order scheme) 

 

 (c) East Neumann Boundary Condition 

Figures 4.19 and 4.21 show the results from the numerical solution compared with the 

exact solution for a Neumann condition at the east boundary. Figures 4.20 and 4.22 

illustrate the comparison of local truncation error for the 2
nd

-order and 4
th

-order scheme 

for mesh 01 and mesh 02, respectively. The superior performance of the 4
th

-order scheme 
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is obvious. It is important to note that the discretisation at the boundary is of the same 

order as the interior nodes, so the solution does not lose accuracy at the Neumann 

boundary. This can be seen in both the solution and the L.T.E. 

 
 

Figure 4.19 Numerical and exact results for Poisson equation  

(clustered mesh 01; N = 50; east Neumann boundary) 

 

 
 

Figure 4.20 Local truncation error for Poisson equation  

(clustered mesh 01; N =50; east Neumann boundary; 2
nd

-order vs. 4
th

-order scheme) 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 0.2 0.4 0.6 0.8 1 

exact 

numerical ( 2nd-order ) 

numerical ( 4th-order ) 

-0.4 

-0.2 

0 

0.2 

0.4 

0.6 

0 0.2 0.4 0.6 0.8 1 

 L. T. E. ( 2nd-order ) 

 L. T. E. ( 4th-order ) 



64 
 

 
 

Figure 4.21 Numerical and exact results for Poisson equation  

(clustered mesh 02; N = 50; east Neumann boundary) 

 

 
 

Figure 4.22 Local truncation error for Poisson equation  

(clustered mesh 02; N = 50; east Neumann boundary; 2
nd

-order vs. 4
th

-order scheme) 

4.4.1.3 Largest Absolute Error 

Table 4.1 provides details on the largest absolute error in each case considered in the 

previous two sections. It shows that, for all the cases, the largest absolute errors from the 

4
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-order scheme are much smaller than the largest absolute errors from the 2
nd

-order 
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condition, the largest absolute error from the 4
th

-order scheme is about two times the 

largest absolute error from the 2
nd

-order scheme. However, if we analyze the local 

truncation errors for this case, the 4
th

-order scheme produces lower local truncation errors 

compared with the 2
nd

-order scheme. Since, in most cases, there are no exact results to 

compare with, the local truncation error can precisely reflect the accuracy of the schemes. 

Table 4.1 Largest absolute error for each case for Poisson equation 

 Boundary conditions 2
nd

-order scheme 4
th

-order scheme 

Largest 

absolute 

error 

node Largest 

absolute 

error 

node 

Uniform 

mesh 

Dirichlet 0.0001 26 0.000014 26 

west Neumann 0.0004 1 0.000791 1 

east Neumann 0.0044 51 0.004009 51 

Clustered 

mesh 01 

Dirichlet 0.0255 27 0.002423 27 

west Neumann 0.0413 27 0.006576 1 

east Neumann 0.0912 51 0.011817 51 

Clustered 

mesh 02 

Dirichlet 0.00049 37 0.000013 42 

west Neumann 0.00046 37 0.000273 1 

east Neumann 0.0185 51 0.013484 51 

 

4.4.1.4 2
nd

-order scheme vs. 4
th

-order scheme 

The Poisson equation (4.16) has been solved on several uniform meshes with Dirichlet 

boundary conditions. Table 4.2 shows maximum local truncation error from the 2
nd

-order 

scheme compared with 4
th

-order scheme. The 4
th

-order scheme dramatically improves the 

accuracy and significantly reduces the number of cells needed to achieve a specified level 

of accuracy. For example, the 2
nd

-order scheme requires 400 cells to produce a maximum 

L.T.E. of -1.25x10
-5

, which is comparable to using 40 cells with the 4
th

-order scheme. 

Table 4.2 Maximum local truncation error for Poisson equation 

2
nd

-order 4
th

-order 

# of cells max L.T.E. # of cells max L.T.E. 

400 -1.250E-05 80 -2.604E-06 

200 -5.000E-05 40 -1.042E-05 

160 -7.813E-05 20 -4.167E-05 

80 -3.125E-04   

40 -1.250E-03   

20 -5.000E-03   
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4.4.2 Convection-Diffusion Equation 

Consider the solution of the convection-diffusion equation (4.5) on a uniform mesh or 

clustered mesh with 50 cells and S = 0, 

   

     
  

  
    .    (4.17) 

Only Dirichlet boundary conditions are considered, but the stencil mapping method 

works equally well for Neumann conditions. The west boundary condition is 0 and east 

boundary condition is 1. Both the 2
nd

-order accurate scheme and the 4
th

-order accurate 

scheme are applied. The exact solution of this BVP is u(x) 
     

    
 . The uniform mesh 

and clustered mesh files are identical to those applied for the Poisson equation in section 

4.4.1.  

4.4.2.1 Uniform Mesh 

Figure 4.23 shows the results comparison between the numerical solution and exact 

solution on a uniform mesh. Figure 4.24 reveals the comparison of the local truncation 

error between 2
nd

-order and 4
th

-order schemes. These figures illustrate the improvement 

achieved with the 4
th

-order scheme, particularly in terms of the L.T.E. near the east 

boundary. 

 
 

Figure 4.23 Numerical and exact results for steady convection-diffusion equation  

(uniform mesh; N = 50; Dirichlet boundaries) 
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Figure 4.24 Local truncation error for steady convection-diffusion equation  

(uniform mesh; N = 50; Dirichlet boundaries; 2
nd

-order vs. 4
th

-order scheme) 

 

4.4.2.2 Clustered mesh 

Details of the results and local truncation error comparison for mesh 01 and mesh 02 are 

shown in Figs.4.25, 4.26, 4.27 and 4.28. The L.T.E. plots clearly indicate the advantage 

of the 4
th

-order scheme and show that the 4
th

-order scheme L.T.E. only has small 

variations over all the nodes. The 2
nd

-order scheme, on the other hand, produces a wide 

range of L.T.E.s, especially near the east boundary where the solution gradients are high. 

 
 

Figure 4.25 Numerical and exact results for steady convection-diffusion equation  

(clustered mesh 01; N = 50; Dirichlet boundaries) 
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Figure 4.26 Local truncation error for steady convection-diffusion equation  

(clustered mesh 01; N = 50; Dirichlet boundaries; 2
nd

-order vs. 4
th

-order scheme) 

 

 
 

Figure 4.27 Numerical and exact results for steady convection-diffusion equation  

(clustered mesh 02; N = 50; Dirichlet boundaries) 
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Figure 4.28 Local truncation error for steady convection-diffusion equation  

(clustered mesh 01; N = 50; Dirichlet boundaries; 2
nd

-order vs. 4
th

-order scheme) 

 

4.4.2.3 Largest Absolute Error 

Table 4.3 shows the largest absolute error and the corresponding node number for the 

cases of the convection-diffusion equation. For solving the steady convection-diffusion 

equation on the same mesh, the largest absolute error from the 4
th

-order scheme is about 

one-third of the largest absolute error from the 2
nd

-order scheme. 

Table 4.3 Largest absolute error for each case for convection-diffusion equation 

 Boundary 

conditions 

2
nd

-order scheme 4
th

-order scheme 

Largest 

absolute error 

node Largest 

absolute error 

node 

Uniform 

mesh 

Dirichlet 0.0339611 46 0.0107388 46 

Clustered 

mesh 01 

Dirichlet 0.0125857 32 0.0040037 31 

Clustered 

mesh 02 

Dirichlet 0.0225428 41 0.0068516 41 

4.5 Adaptive Meshing 

When a coarse mesh produces results that are not accurate enough, one of the priority 

choices to resolve this problem is mesh refinement. In this section, a method is tested to 

adaptively refine the mesh, using the location of the largest L.T.E. as the indicator of 

where refinement is needed. Consider an initial uniform mesh with N = 20 cells as an 
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example and solve the steady convection-diffusion equation using the 2
nd

-order scheme 

described above. Dirichlet boundary conditions 0 and 1 are imposed at each end of the 

unit domain. The adaptive meshing procedure is as follows: 

Step1: Run the code to solve the differential equation on N cells.  

Step 2: Locate the node (#M) where the largest local truncation error occurs among the 

interior nodes. Add two nodes adjacent to node M, each of which is located at the centre 

of the cell connected with node M. Then re-calculate the numerical solution on this 

refined mesh. 

Step 3: If the results are not satisfactory, follow the same procedure outlined in step 2 to 

refine the mesh again and re-calculate the solution. Repeat this procedure until the results 

are acceptable.  

Figure 4.29 shows the absolute error comparison for the adaptive mesh solutions. It is 

obvious that, overall, the absolute errors keep reducing during the three refinements, 

although there is some bounce back for the third adaptive mesh (N = 26). Figure 4.30 

illustrates that the adaptive meshes produce accurate results compared with the exact 

solution. However, further refinement creates larger error near the east boundary. This is 

likely due to the fact that as the mesh is refined by the above procedure there may be a 

significant difference in the size of adjacent cells. It is expected that this problem can be 

resolved by employing a smoothing technique so that there is always a smooth transition 

between a cell and its neighbours. 
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Figure 4.29 Absolute error comparison for adaptive meshing  

(initial uniform mesh with N = 20; convection-diffusion equation) 

 

 

Figure 4.30 Numerical and exact results for adaptive meshes  

(initial uniform mesh with N = 20; convection-diffusion equation) 
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numerical solution. When the scheme is applied to solve practical physical problems, 

exact results may not be available for comparison, in which case the local truncation error 

is a convenient parameter which can be used to check the accuracy of the solution. The 

numerical schemes have been applied for the Poisson equation and the steady convection-

diffusion equation on either a uniform mesh or clustered mesh. For the Poisson equation, 

Dirichlet and Neumann boundary conditions are applied. Both 2
nd

-order and 4
th

-order 

scheme works well for all the cases. Local truncation error shows that the 4
th

-order 

scheme is more accurate than the 2
nd

-order scheme, following the same trend as the 

absolute error. For the steady convection-diffusion equation, only Dirichlet boundary 

conditions are imposed. The numerical results are acceptable even for the clustered 

meshes, which could not produce reasonable results with the traditional finite difference 

scheme. It is clearly shown that the 4
th

-order scheme produces more accurate results. An 

adaptive meshing procedure is illustrated for the steady convection-diffusion equation, 

and the results show the effectiveness of the method in reducing the error.  
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Based on the discussions in the previous chapters, the following conclusions can be 

drawn:  

1. For the Traditional Finite Difference method, multi-block implementation is 

complicated due to the inter-block communication. The method to deal with the interface 

problem needs to be applied cautiously; otherwise, it may cause trouble in the 

programming and the accuracy. Applying the TFDM on a clustered mesh must also be 

done with care, since the results depend significantly on the functions used to generate 

the clustered mesh.  

2. For the CCFD method, using averaging interpolation to update nodal values is a 

problem when solving the convection-diffusion equation, the results are not correct 

because of the inconsistency. The CCFD method is not a satisfactory method for general 

implementation in a CFD code. However, another method can be devised which takes 

advantage of the main strength of the CCFD method.  

3. A new generalized finite difference method, referred to as the Stencil Mapping 

method, has been proposed. It has been formulated for both 2
nd

-order and 4
th

-order 

schemes, and can easily be extended to higher order. Treatment of the near-boundary 

nodes is facilitated by confining the differencing stencil to three adjacent nodes. Local 

truncation error is introduced as an essential parameter to measure the accuracy of the 

scheme. Both 2
nd

-order and 4
th

-order schemes work well on uniform, multi-block and 

clustered meshes. Numerical solution for the 4
th

-order scheme is more accurate and has 

smoother local truncation error than the 2
nd

-order scheme. An adaptive meshing 

procedure is proposed for the steady convection-diffusion equation, and the results show 

the effectiveness of the method in reducing the error. 
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5.2 Recommendations 

This research has demonstrated that the Stencil Mapping method works well for steady 

convection-diffusion equations. Some directions for further investigations with the 

Stencil Mapping method are: 

 A complete analysis for the 1D unsteady convection-diffusion equation. This 

research should include a study of higher-order time marching schemes and 

application of the method to moving boundary problems 

 Extension to 2D and 3D 

 Development of higher-order schemes using the 3-point stencil 

 Implementation of a smoothing algorithm to improve the adaptive mesh 

procedure 

 Development of the method for the Navier-Stokes equations.  
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