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ABSTRACT 

Numerical solutions for fluid dynamic problems must be validated using 

experimental results. Uncertainties of the numerical scheme and in the experimental data 

as well as the physical input parameter values must be considered. The American Society 

of Mechanical Engineers published a standard procedure which accounts for these 

factors. This standard is used here as the basis for a procedure to determine the 

uncertainty in velocity magnitude values obtained from a numerical simulation of air 

flow within a small room using a commercial solver. The interior of the room includes 

occupants, computers, desks, cabinets and ceiling lights. Cold air is supplied to the room 

through a diffuser on one of the walls while warm air exits through a vent in the ceiling. 

The relative importance each factor contributes to the overall uncertainty is investigated 

to demonstrate the technique. Aspects of the standard are investigated and modifications 

suggested which simplify its application.  
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CHAPTER 1 Introduction 

 

In the developed world, there has been an increased effort to achieve the goal of 

improving building energy efficiency by minimizing energy usage in heating, ventilating 

and air-conditioning (HVAC) applications, while maintaining or improving occupant 

comfort. In order to achieve this goal, building design optimization needs to be 

considered. It is unrealistic to build numerous experimental facilities to evaluate different 

methods and arrangements. A more efficient approach is to use computational fluid 

dynamics (CFD). To encourage this practice and assist designers in its implementation, 

the American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE) includes sections on CFD, meshing, boundary conditions, modeling 

techniques as well as verification, validation and reporting results in its chapter on Indoor 

Environmental Modeling starting with the 2009 edition of their Fundamentals Handbook 

[1]. 

When numerically modeling HVAC problems, however, numerous difficulties 

arise. Some of these include the proper treatment of natural convection from heated 

surfaces, flow turbulence and radiation heat transfer as well as the vast differences in 

length scales of geometry. To understand and evaluate the performance of the simulation 

results, numerical data validation is critical. This can be accomplished through the 

completion of experimental studies and comparison with numerical work. Once the 

techniques have been validated they can be applied to new designs. In order to establish a 

standard procedure for determining numerical data validation, the American Society of 

Mechanical Engineers (ASME) has developed a general industry standard specific to 

CFD and heat transfer problems [2]. This thesis is an investigation of an application of 
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that procedure to a specific office HVAC problem for which experimental data is 

available. 

1.1  Scope 

This thesis is organized in the following manner. Chapter 2 includes a review of 

pertinent literature regarding topics of importance to this thesis. It begins with a brief 

historical account of the development of error estimation techniques associated with 

CFD, and more specifically CFD for office building studies. Finally, the specific 

objectives of this work are presented along with directions to be taken to accomplish 

these objectives. This is followed by Chapter 3, which describes the numerical study 

portion of this work, and gives specific details regarding the geometry of the room, the 

grid, boundary conditions, model setup, and the numerical experiments completed. 

Chapter 4 discusses the results of the experimental and total/overall uncertainties, and 

also gives insight into streamline plots generated around an anomalous point. Chapter 5 

includes conclusions drawn from the aforementioned work and recommendations for 

future work.  
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CHAPTER 2 Literature Review and Objectives 

 

The focus of this work relates to literature in the following areas: 1) the 

development of numerical verification and validation techniques and 2) the rise in 

importance and application of CFD to building ventilation studies along with validation 

techniques used. The topics are briefly considered independent of one another in the 

remainder of the chapter. The chapter concludes with specific objectives that have been 

formulated through the evolution of this work. 

2.1 Validation and Uncertainty in Computational Fluid Dynamic Methods 

The rise of CFD is associated with the advent of the digital computer which dates 

back to the late 1960's. According to Freitas [3], the first record of an event which 

addresses numerical uncertainty is the set of papers edited by S.J. Kline et al. [4]. 

Another early paper presented on this topic was by Ghia et al. [5] at the 1981 ASME 

Winter Annual Meeting. In this early work the focus was on trying to correlate CFD 

results with experimental results and understand the discrepancies between them.  

Interest in improving the accuracy of computational methods, as opposed to 

determining the uncertainty of the numerical solution, predates the modern digital 

computer. Prior to the availability of computers, calculations were completed manually 

using mechanical calculators. This was evident in early work conducted by Richardson, 

which was first published in 1910 [6]. This century old work is considered to be the first 

documented iterative CFD solution [7]. The work that Richardson conducted is a method 

for obtaining a higher-order estimate of the final value to be determined as grid spacing 

approaches zero, from a lower-order discrete value [8]. This method is termed 

Richardson Extrapolation (RE). 
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Roache discussed the estimation of errors in CFD in a general way, including 

such factors as the order of the discretization as well as grid convergence. His most 

important contribution to this study is the incorporation of Richardson’s work in his 

development of a generalized approach to numerical "uncertainty" estimation associated 

with the solution grid size. He referred to this as Grid Convergence Index (GCI) [5-7].   

Although error estimates and uncertainty estimates are related, they are not 

equivalent. The difference between them is that error is supposed to provide 

improvement in the result, whereas uncertainty provides the range surrounding the 

estimated value, , where the true value,   , exists with a specific probability value [2]. In 

standard practice, the common uncertainty probability target for both experiments and 

computations is 95%. This yields the interval of       . This 95% confidence level is 

compatible with the range of    in a Gaussian distribution; however, the method does not 

necessarily depend on this or any other type of distribution. 

The GCI is estimated by multiplying the absolute value of the generalized RE by 

a determined factor of safety,   . The purpose of this factor of safety is to convert an 

estimate of error into an uncertainty estimate, with 95% confidence. The value of the 

factor of safety is somewhat arbitrary and depends upon the number of grid sizes used to 

determine the estimate.  

Roache’s use of RE assumes that the true values are based on a power series 

representation in the grid spacing,  . If the formal order of accuracy of the code is 

known, two grids are sufficient for determination of the GCI. However, when the order of 

accuracy is not known, a minimum of three grids is necessary in order to observe 

convergence and the associated error estimate. One of the advantages of Roache’s 
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technique is that the typical, but difficult to achieve, approach to grid refinement by 

doubling or halving the grid to reach grid independence is not necessarily required. Prior 

to calculating the estimated discretization error, iterative convergence is mandatory. 

Incomplete iteration can be detrimental to the uncertainty estimation, generating false 

values. In addition, the use of the RE magnifies incomplete iteration errors. 

During the 1980's and 1990's considerable effort was put into understanding the 

verification and validation of computational fluid dynamic simulations to provide 

guidance in their determination. This initiative includes an array of papers and journals 

[9-11] along with textbooks on the subject, such as [12]. The most recent and 

comprehensive document was published by ASME in 2009 [2]. This document provides 

a general method applicable to various levels of computational modeling (simple lumped 

parameter models to 1-D steady laminar flows to 3-D unsteady turbulent flows). The 

procedures followed in the current thesis are based on this document, which includes 

some terminology such as validation, code verification, solution verification, error and 

uncertainty which are explained below.  

Validation is defined as the determination of the degree to which a model is an 

accurate representation of the real situation. The objective is to estimate the range within 

which the simulation modeling error lies. To accomplish this, the simulation solution 

must be compared with experimental data for defined validation variables under specified 

conditions. Code verification is a determination of whether the code accurately solves the 

physical model that is represented by the code. Solution verification is an estimate of the 

numerical accuracy of a particular calculation. Error is the difference between the 
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prediction and the true value, while the uncertainty is a parameter which characterizes the 

dispersion of the predicted values that could reasonably be expected to occur. 

The objective is to quantify the degree of accuracy of the simulation of a 

particular variable to be validated at some validation point for the conditions of the actual 

experiment. This can be described using Figure 2.1.  

 

 
 

Figure 2.1 Relationship between errors in the variable of interest 

 

The error in the numerical solution, which is the difference between the numerical 

solution value and the experimentally measured value, E, can be seen to be related to the 

true value, T, and the errors in the simulated and experimental values,    and   , as 

follows:  

                                                                                          (2.1)                

 

The error in the simulation,   , is assumed to be the sum of the errors due to 

modeling assumptions and approximations,       ,  the numerical solution of the 
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equations,      and the errors in the simulation input parameters (geometrical, dynamic 

and fluid properties),        , that is, 

                                                                                                        (2.2) 

It is desired to determine model from the other error values and hence   

                                                                                                  (2.3) 

While the value of E is known, the other quantities in the equation are not. The 

uncertainties of the other quantities, however, can be estimated as     ,        and   .  

Also, the uncertainty of the model validation,     , can be defined as an estimate 

of the standard deviation of the parent population of the combination of errors (     

         ). If they are independent, then 

     √    
        

    
                                                     (2.4) 

From the equation above,  

                                                                                                          (2.5) 

 

Details of how the values required for determining the uncertainty in the 

validation are calculated and provided as needed throughout the thesis. 

2.2 Building Ventilation Studies and CFD 

Before the introduction of computational fluid dynamics, ventilation within rooms 

and buildings was determined using both analytical and empirical methods, some of 

which are still in use today. Recently, Chen et al. [13] presented an overview of tools 

used to determine building ventilation performance. He identified the following 



 

8 
 

classifications; analytical models, empirical models, experimental models (small-scale 

and full-scale), multi-zone network models, zonal models, and Computational Fluid 

Dynamics (CFD) models. Analytical models are some of the oldest methods for 

predicting ventilation performance. This type of method affords easy interpretation as it 

directly relates to fundamental physical laws and there is little need for computational 

resources. It is, however, limited to simple geometrical configurations. Empirical models 

of common flows such as jets and plumes are used to estimate velocities at various places 

within the occupied spaces caused by inflows through diffusers and other situations. 

Experimental scale models have been used for determining ventilation flow fields but are 

generally associated with analysis rather than prediction and full-scale models are often 

used for mathematical model validation. Multi-zone models involve the solution of the 

mass, energy and chemical-species conservation equations in zones (or rooms) to 

determine airflow and contaminant transport between the zones of a building as well as 

between the building and the outdoors. The models assume still air with a uniform 

temperature and concentration within the zone and also ignore the momentum effects. 

Zonal models typically divide a room into less than one thousand three-dimensional cells. 

The models use mass and energy balance equations to determine air temperature and 

velocity values which predict the non-uniform distribution in the space. Computational 

fluid dynamic models use various approaches to solve the partial differential equations 

(PDE) which represent the velocity, temperature and concentrations fields within the 

building spaces.  Chen investigated the relative popularity of these techniques [14]. The 

results indicated in Table 2.1 are extracted from his paper. The popularity of CFD is quite 

evident. 
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Table 2.1 Percentage of research papers regarding building  

ventilation studies listed by model type in 2007 

Method 
Percentage 

of Papers 

Analytical 3 

Empirical 2 

Experimental 15 

Multi-Zone 7 

Zonal 3 

CFD 70 

 

Early CFD code development focused on the aerospace industry in the 1960s and 

1970s, and gradually spread to other industries. Nielsen et al. [15] and Nielsen [16] 

initiated some of the first work which utilize computers to solve numerical problems 

associated with building ventilation. The fact that this publication appeared in an 

ASHRAE journal indicates its acceptance as a valid approach for use in building heating 

and ventilation applications.  

Throughout the years, usage of computational fluid mechanics in predicting 

building ventilation has steadily increased. This is evident by investigating statistics 

regarding the number of papers published per year since the early work. To give an idea 

of the trend, a search was conducted using Compendex with the following keywords 

appearing in the title, abstract or keywords: computational fluid dynamics, building and 

ventilation. The results are presented for five year periods in Figure 2 and show the 

gradual increase in popularity of the approach. 
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Figure 2.2 Number of CFD building ventilation publications per year ranges 

There are many examples of papers within this group that have validated their 

numerical results using experimental data [15, 17-20]. The numerical approaches include 

such methods as finite differences and large eddy simulation (LES) techniques. 

One of these studies, which included a particularly extensive experimental study, was 

conducted by Chen et al. [21] as part of an ASHRAE sponsored research project. The 

experiment involved simulated heat sources from people, office equipment and light 

fixtures which complicated the room flow patterns through the introduction of natural 

convection.  Details of the room geometrical configuration, the experimental test initial 

and boundary conditions that were used as well as particulars regarding the measurement 

equipment used are well documented. A simple numerical method was also included in 

the report for comparison with the data. Although there was general agreement in the 

trends between the results, no systematic effort was made to explain the differences 

between the experimental and numerical results. In view of the above mentioned 

information, the room configuration and conditions used in this reference was selected to 

be simulated in this thesis and the uncertainties in the simulation have been evaluated to 

determine the validity of the solution in comparison with the experimental data.  
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 Most of the computational fluid dynamic papers cited in the literature include 

some form of grid independence study and validation scheme. No paper concerning CFD 

in buildings, however, could be found which applied the techniques outlined in the 

ASME Standard. 

2.3 Objectives 

The following are the objectives of this study: 

 To investigate the application of the numerical uncertainty estimation technique 

found in the ASME V&V 20-2009 Standard for the case of a building ventilation 

situation which in turn requires: 

o Development of a numerical finite volume model to solve the problem. 

o Determination of grid and time independence suitable for efficient 

calculations. 

o Identification of the information from the original experiments necessary 

for the current uncertainty estimates, and  

o Collection of data obtained from experiments conducted using the 

numerical model in order to determine the various components required 

for uncertainty estimates.  

 To evaluate the relative contribution of the various factors affecting the values of 

the uncertainties considered. 

 To investigate features of the flow field within the room and identify those 

features which are responsible for certain anomalous behaviour associated with 

the determination of uncertainty values.  
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 To identify and discuss any difficulties in the use of the standard procedure along 

with how they can be overcome.  
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CHAPTER 3 Methodology of the Numerical Study 

The numerical study conducted to demonstrate the ASME uncertainty 

methodology is a simulation of the experimental facility used by Chen et al. [21]. His 

work was conducted as an ASHRAE research project, and included the construction of an 

experimental room. The experimental room is essentially a box with dimensions of 3.65 

m x 5.16 m x 2.43 m, and was built in an environmental test facility at the Massachusetts 

Institute of Technology in the late 1990’s.  

The test facility is a well-insulated enclosure with a forced air ventilation inlet, 

exhaust outlet at the centre of the ceiling, a double-glazed window on the wall opposite to 

the inlet, two computers, two occupants, six overhead lights, and office furniture: two 

tables and two cabinets. The occupants are simulated using rectangular boxes containing 

light bulbs as heat sources. A list of all of the interior objects and their respective 

dimensions is given in Appendix B along with specific coordinate information to locate 

them in the room. 

The numerical geometry of the room is created using the Computer Aided Design 

(CAD) software Catia V5 and a wireframe representation of the room and its contents 

shown in Figure 3.1. The room’s contents are composed of the following items: inlet (1), 

outlet (2), lights (3), desks (4), cabinets (5), occupants (6), computers (7) and a window. 

The coordinate system is shown in the upper right portion of Figure 3.1. The lower corner 

of the room at the back and on the right of the diagram is identified to be the origin. The 

three-dimensional coordinates of the items are all specified from the origin to the closest 

point on the item. All of these dimensions are presented in Appendix C. 
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Figure 3.1 Wireframe geometry of office room 

 

The room also has various pieces of instrumentation located throughout the 

domain to collect velocity data. Hot-sphere anemometers are used to measure air 

velocity. This equipment is rated for a measurement range of 0.05 to 5 m/s, with a 

repeatability of 2% (or 0.01 m/s), and cannot reliably measure velocity when it reaches 

levels below 0.1 m/s. The probes are 0.003 m in diameter. Moveable poles are placed 

throughout the room in nine different locations as shown in Figure 3.2 to collect air 

velocity data. Each pole is configured with six hot-sphere anemometers at different 

heights which are the same height on every pole.  
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Figure 3.2 Measurement pole locations in office room 

 

The data is measured in the steady state by allowing the test room to stabilize 

thermal and fluid conditions for half a day before recording any data.  

3.1 Numerical Mesh and Nominal Boundary Conditions 

 

The grid generated to model the flow field is constructed using the ANSYS 

meshing software Gambit. All of the grids employ a structured, hexahedral form. The 

four meshes constructed through this methodology have the following element count: 

229,766; 716,538; 1,834,309; and 5,576,928. These grids are required in order to select 

the grid used in the remainder of the uncertainty study as well as in the determination of 

the Grid Convergence Index (GCI). The meshes and their associated maximum skewness 

factors are presented in Table 3.1. Skewness is a measure of the difference between the 
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cell and a perfect cube with equivalent volume and is determined here using the 

Normalized Equiangular Skewness definition [22]. Since this mesh utilizes hexahedral 

elements, the ideal case would be for all cells to be cubes (which is not the case). The 

maximum cell skewness in a 3-D simulation should not exceed 0.9, which all meshes 

remain well under this value [22]. If the value exceeds 0.9, then the mesh will have to be 

modified because accuracy will be affected and there could be convergence issues. As the 

mesh gets finer, the skewness value decreases, which is expected, since the cells within a 

mesh become less distorted as they become close to a cube [22].  

 

Table 3.1 Grids and skewness factors 

Grid 
Element 

Count 

Maximum 

Skewness 

N1 5576928 0.182710 

N2 1834309 0.197133 

N3 716538 0.292164 

N4 229766 0.380430 

 

All grids are developed in a similar manner, and maintain a consistent cell size 

variation throughout the geometry. All areas within the domain are treated the same and 

no clustering or focus was placed on any specific area of the grids.  

The nominal boundary condition values were determined using information based 

on Yuan et al. [23], and all other supplemental information was taken from Chen et al. 

[21]. The inlet flow rate is specified as air changes per hour (ACH). Along with the inlet 

width and height dimensions from Appendix C, this produces an average inlet velocity of 

0.0864 m/s. No turbulence characteristic information is specified at the inlet diffuser. As 

it is intended to use the               turbulence model it is necessary to specify an 

inlet turbulence intensity level, along with a hydraulic diameter,   [24]. The inlet 
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diffuser is specified to be perforated and Zhang et al. [25] have reported that for 

perforated plates and grills, typical inlet turbulence intensity values are, respectively, 8 

and 10 percent. Since the literature only specifies perforated, but does not specify if it is a 

plate, an average value (9%) is taken. The hydraulic diameter is defined as [26]: 

 

                                  
                         

                        
                                                 (3.1) 

 

In the case of a rectangular cross-section, equation (3.1) simplifies to: 

 

                                                    
  

   
                                                              (3.2) 

 

where   is the width, and   is the height which, in this case, gives a value of 0.717 m. 

The outlet from the room is considered to be a pressure outlet, and is assumed to 

be at a value of 0 kPa gauge pressure. All of the desks and cabinets are considered to be 

adiabatic. The vertical walls, ceiling and floor have specified temperatures, as provided 

by Chen et al. [21]. The temperature values were as given in the experimental setup at 

various locations on each surface. For the purpose of this work, those values are averaged 

over the entire surface, as denoted in Table 3.2. The experiments, carried out by Chen et 

al. [21], made use of two different case studies for the test room: cooling and heating. 

Only the cooling case data are used in this work.  
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Table 3.2 Average wall temperature values used in CFD 

Surface Location 

Experimental 

Temperature (°C) 

Measurement 

Average 

Temperature (°C) 

for CFD 

South Wall 

1 23.31 

25.05 

2 24.41 

3 25.73 

4 26.02 

5 25.78 

East Wall 

1 24.18 

26.15 

2 24.64 

3 27.22 

4 28.13 

5 26.57 

North Wall 
1 25.05 

25.50 
2 25.95 

West Wall 1 25.37 25.37 

Floor 

1 21.54 

23.72 

2 23.34 

3 23.90 

4 24.24 

5 24.72 

6 23.80 

7 24.11 

8 24.01 

9 23.86 

Ceiling 

1 25.16 

25.55 

2 25.40 

3 26.19 

4 25.87 

5 26.13 

6 24.90 

7 24.95 

8 25.50 

9 25.89 

 

 

The occupants are simulated using rectangular boxes, and contain three 25 W 

light bulbs to generate a heat source equivalent to that typically released by a human. 
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Computer 1 has a heat dissipation of 108.8 W and computer 2 has a heat dissipation rate 

of 173.4 W and they are situated on the desks. The lights are of the general fluorescent 

type with 2 lamps (34 W) per unit. The heat sources are all modeled as heat fluxes on the 

box surfaces determined using the following equation: 

 

                                            
               

                 
                                                        (3.3) 

 

3.2 Numerical Method of Solution 

 

The finite volume method (FVM) as implemented in the ANSYS Fluent 13.0 [22] 

computational software package is used in this work. Unsteady flow is considered to 

allow the presence of oscillations as observed in similar studies [27]. The unsteady mass 

conservation equation, along with the x, y and z momentum equations and the energy 

equation are solved in order to determine the values of temperature, pressure and the 

three components of velocity. The turbulence model selected is the              . 

The reason for this choice is that standard k-epsilon is based on the assumption of high 

Reynolds number flow, whereas the RNG version is valid for both high and low 

Reynolds number flows, such as in the office area considered here [24]. This also 

involves the use of separate transport equations which lead to length scales and turbulent 

viscosities computed independent of one another. 

The air in the office room is assumed to be incompressible and have a density of 

1.225 kg/m
3
. In order to account for natural convection, the Boussinesq approximation is 

used. This model treats density as constant in all of the equations, except in the 

momentum equation’s buoyancy term. It induces fast convergence in the solver, and is 

quite accurate providing changes in the actual density are negligible [22]. The 
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gravitational force is taken into account and given the constant value of 9.81 m/s
2
 in the 

downward vertical direction. 

The discretization scheme is second-order upwind which increases the numerical 

accuracy compared to first-order schemes. For flows of this type, it is suggested for 

pressure-based solvers, that PRESTO! be used as the spatial discretization method [22]. 

This method also works well for iterative time-advancement problems with small time 

steps. PISO was used for pressure-velocity coupling along with second-order implicit 

method for increased accuracy of the transient formulation. By means of a time 

independence study, using all of the same inputs and grid N3 the differences between a 

time step of 0.5 seconds and 1.0 second is considered to be negligible and a time step of 

0.5 seconds was selected for use in the remainder of the calculations in this study. 

Finally, the computation time difference between 0.5 seconds and 1.0 second was 

minimal, so this further solidified the selection of 0.5 seconds.  

3.3 Numerical Experiments and Determination of Uncertainty Contributions 

 

This section begins with the initial calculations that are conducted to determine 

when the steady state solution has been reached. These conditions are used in the 

remainder of the numerical experiments. The rest of this chapter describes the procedures 

followed to obtain the data necessary for determining estimates of the contribution to the 

uncertainty in the final result due to the input parameters,        , grid convergence, 

        and experimental results,   . 

3.3.1 Determining Steady State Values 

 

As mentioned previously, the unsteady forms of the equations are solved to obtain 

the final steady state solution. This requires the adoption of a technique for determining 
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when the steady state condition has been reached. The absolute residual values should not 

be used for this purpose as they are global values. Instead, the velocity magnitude values 

at 54 points scattered throughout the room are continuously monitored until a repeated 

pattern is observed. These 54 points correspond to 9 different pole locations, used in the 

earlier experimental work. These results are presented and discussed in Chapter 4. 

3.3.2 Procedure for Obtaining the Uncertainty Due to the Inputs,        

 

The procedure for determining the overall uncertainty in a calculated result 

described in the ASME Standard includes an estimation of the uncertainty due to the 

inputs to the model, or       . In the current study, the experimentally determined values 

of the boundary conditions for the numerical solution are considered likely to have the 

greatest effect on this value. The boundary conditions chosen for consideration in this 

study are: inlet velocity, inlet temperature, heat sources, wall temperatures, turbulence 

intensity, and outlet pressure. The method of estimating the uncertainties in each of these 

quantities is described below. 

In the experimental setup, the inlet flow rate is stated to be 4 ACH. Normally 

when a number is specified, the implied error can be taken to be ±0.5 of the least 

significant digit, or ±0.5 ACH in this case. Using the room dimensions to calculate 

volume, the inlet flow rate,       , becomes 0.0509 m
3
/s. Using the ACH uncertainty, the 

uncertainty of the inlet flow rate,        
 is determined to be ±0.00636 m

3
/s. 

Since the diffuser width and height are 0.53 m and 1.11 m respectively, the inlet 

velocity is 0.0864 m/s. If it is assumed that the uncertainty in the width and height are 

each taken to be ±0.005 m, the uncertainty of the inlet velocity is determined as follows: 
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For the heat sources, which include the overhead lights, computers, and mocked 

up version of the occupants, the uncertainty is determined to be ±10% of the device 

wattage. This estimate is based on North American Standards. In the United States and 

Canada [28], the nominal voltage at the source is specified to be 120V with an allowable 

range of ±5%, giving the range of 114V to 126V (RMS). Assuming that the device 

resistance is constant: 

                                           
       

     
   

        

       
                                                   (3.5) 

 

The above equation (3.5) gives the uncertainty of power equal to ±10% of the 

device wattage. This not only applies to the overhead lights and computers, but also to 

the experimental approximation of occupants, which consist of three 25W light bulbs per 

occupant. 

Considering the wall temperatures and inlet temperature, the experimental setup 

in Chen et al. [21] states that the temperature data taken from these locations is subject to 

the limitations of the equipment, which has an uncertainty of ±0.44°C.  

The wall temperature values specified were average measured values at a number 

of points on each wall. The uncertainty is based on the standard deviation of temperature 

values used along with the Student's t value (95% level). 

It was also suggested to consider the turbulence intensity of the inlet diffuser.  

Zhang et al. [25], provides information regarding diffusers of the grill and perforated-

panel type. Since the diffuser on hand is listed as perforated, but does not specify further, 
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a nominal value between both cases is used. The perforated panel has a turbulence 

intensity of 8%, while the grill has an intensity of 10%. The nominal value between this 

is 9%, so the value used in the parametric study is 9%±1%. The hydraulic diameter was 

calculated based on equation (3.1), and uses the same length uncertainty of ±0.005m as 

used in determining the inlet velocity.  

Finally, the outlet pressure as well as the atmospheric conditions of the room air 

are assumed to have an extremely small influence on the results. It is also assumed that 

there is no effect of uncertainty in the room size or any other geometrical location of the 

objects included within the rooms. Thus, both of these types are considered to have 

negligible impact on the results of the final solution and parametric study. In order to 

account for all of these parameters, Table 3.3 provides a summary of the above 

information. 

Table 3.3: Summary of input parameters 

 

Parameter Basis of Estimation Parameter Value Uncertainty 

Inlet Velocity 

Experimental ACH (4 ±0.5) and the 

height (0.53 ±0.005 m) and width 

(1.11 ±0.005 m) of the diffuser 

0.086 m/s ±0.01 m/s 

Inlet 

Temperature 
Experimental value specified 15.0°C ±0.44 °C 

Inlet 

Turbulence 

Intensity 

Average of data for two possible 

types of inlet diffuser and difference 

is uncertainty 

9% ±1% 

Inlet Hydraulic 

Diameter 

Correlation with hydraulic diameter 

and its estimate based on inlet sizes 
0.717 m ±0.005 m 

Wall 

Temperatures 

Average measured values at a number 

of points on each wall – uncertainty 

based on standard deviation of the 

temperature values used along with 

the Student's t value (95% level) 

North Wall - 25.5°C 

East Wall    - 26.1°C 

West Wall  - 25.4°C 

South Wall - 25.0°C 

±0.86 °C 

Heat Sources 

(lights, 

computers and 

occupants) 

Simulated using incandescent lights. 

Resistance assumed constant and 

voltage varied by ±5% 

Occupant        - 75 W 

Computer 1  - 108 W  

Computer 2  - 174 W 

Light               - 34 W 

±10% of  

wattage value 



 

24 
 

The numerical method described in Section 3.2 is used to determine the overall 

uncertainty based off the model inputs,       . If the inputs are considered to be truly 

independent, the uncertainties may be estimated as follows: 
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        P(%)                        (3.6) 

where    values are the inputs and the    
  and    

  values are the solution values at    

decreased and increased by their uncertainty, respectively. In order to numerically 

determine the velocity uncertainties using the aforementioned equation,    is considered 

to be the steady state value of velocity at one of the 6 locations on pole 4. As per Table 

3.3, there are 6 input values with 6 values of     at each location (36 for all 6 locations). It 

is required to determine the    
  and    

  values for each of the 6 input parameters resulting 

in 12 numerical runs. Finally, the baseline case,    , must also be included resulting in a 

total of 13 runs that must be completed in order to assess all input parameter uncertainty. 

3.3.3 Procedure for Obtaining the Uncertainty in the Numerical Solution,      

 

The ASME Standard requires that the uncertainty in the numerical solution of the 

equations, num, be estimated. This consists of three parts, round-off error, iterative 

convergence and discretization error. Round-off error is a consequence of the finite 

precision of the computer used and assumed to be negligible. Iterative convergence, in 

the global sense, is often determined  by requiring that the value of the residuals of the 

solved equations decrease by at least two to three orders of magnitude over the entire 

domain. For time-dependent simulations, local iterative convergence of the final steady 

state value,    , is determined by collecting data points at each time step and then plotting 
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them to observe convergence. In the case of oscillatory convergence the average of a 

suitably large number of the oscillatory steady values can be taken. This is what is done 

in the current study. Discretization error,    , is a consequence of the transformation of 

the continuum equations into a system of algebraic equations. The ASME Standard 

recommends the use of Roache’s GCI method to estimate this quantity. As described in 

the ASME Standard [2], the iteration convergence is at least two orders of magnitude 

smaller than the discretization error estimate:  

                                                                    (3.7) 

otherwise  

                                                                  (3.8) 

Usually the discretization error is the dominant contribution. 

As the GCI method uses Richardson extrapolation, it is necessary for the local 

values to follow a smooth, monotonic dependence on grid resolution. Determination of 

the GCI is a five step procedure. The first is to define the cell size. In order to define the 

cell, mesh or grid size, this problem will consider the non-structured grid (since it is 

assumed that the grids will not be exactly geometrically similar). The formula for 

estimating the grid size,  , is: 

  [
(∑    
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                                                       (3.9) 

 

where N is the total number of cells and     is the volume of the     cell.  

At least three different grid sizes are required since the order of convergence, p, is 

unknown. The second step, therefore is to determine the Grid Refinement Factors (GRF), 

    and     . If we let  
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                                                                (3.10) 
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 ,                                                             (3.12) 

 

and     
  

  
                                                           (3.13) 

    

These values should be greater than 1.3 for practical problems (based on Celik et 

al. [29]) and the refinement should be structured, even if the grid is not. This not being 

the case could increase convergence time.  

The third step is to calculate the apparent order, p, as follows. 
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The values      and   are the numerical solution results of the quantity for 

which the final uncertainty is desired. The solution requires an initial guess for      

which is usually taken to be zero.            

 Step four involves determining the extrapolated values     
  , using  

    
   

(   
 

     )

(   
 

  )
                                                           (3.19) 

 

Step five requires calculating and reporting the error estimates   
  and     

  using 

the observed p value (using dimensional form). 

  
   |     | and                                                      (3.20) 
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  |                                                             (3.21) 

The next step in the calculation is to determine the Grid Convergence Index, 

       
   as 

       
   

     
  

   
 

  
 .                                                     (3.22) 

 
This equation gives the GCI applicable to the fine grid or that corresponding to h1 

which is usually the grid used to report the answer to the problem. Since this GCI 

corresponds to the solution obtained with h1 and was determined using the results of grids 

corresponding to h1 and h2, it is given the symbol,     
  . Roache [12] also presents an 

equation for the GCI applicable to the coarse grid corresponding to h2 which is based on 

solutions obtained using the results of grids corresponding to h1 and h2, as:  

 



 

28 
 

     
            

   
     

     
 

   
 

  
                                       (3.23) 

 
Another estimate can be made of this GCI value for the solution obtained with h2 that was 

determined using the results of grids corresponding to h2 and h3 as 

        
          

   
     

  

   
 

  
                                             (3.24) 

 
In this case     

  ,    
   and     

   are calculated using equations (3.19) to (3.21) inclusive 

except that the 2's are replaced by 3's and the 1's are replaced by 2's. In order to solve for 

 ,        
   and          

   are equated. This assumes that the   is equal for both GCI 

values.    

 Likewise an estimate can be made of the GCI value for the solution obtained with 

h3 that was determined using the results of grids corresponding to h2 and h3 as 

       
            

   
     

     
 

   
 

  
                              (3.25) 

    
Since the solution of interest in this study is that determined using h3,      

   is 

used to determine    as follows  

      
    

  

 
                                                      (3.26) 

 
where the factor "2" is referred to as an expansion factor associated with the confidence 

level of the uncertainty [2]. The last step is to calculate      using equation (3.8).  

In this thesis, calculations are done for four different grid sizes. The reasons for 

the four grids will be discussed in the results section. As mentioned previously, the four 

values of N are 5576928, 1834309, 716538 and 229766. It is not practical to consider the 
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uncertainty at all of the solution points and hence six points on one pole were selected for 

study. These are the points at heights of 0.1, 0.6, 1.1, 1.5, 1.9 and 2.3 m on pole 4. The 

average values of the last 400 time steps, as described previously, were used as the final 

steady state values.  

3.3.4 Procedure for Obtaining the Uncertainty in the Experimental Results,    

 

Finally, the last term required for determining the total uncertainty is that for the 

experimental results,   . As noted in the beginning of this chapter, hot-sphere 

anemometers with a probe size of 3.175 mm (1/8 inch) were used in the experiment, with 

a measurement range of 0.05 to 5 m/s and a repeatability of 2%. Thus, the uncertainty 

due to this equipment is calculated as follows: 

                                                             (3.27) 

 

where    is defined in Section 3.3.2 as the average velocity over the last 400 values. At 

each height along the pole, the uncertainty due to the experimental equipment is 

calculated from this equation. 
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CHAPTER 4 Results and Discussion 

 
In this chapter the results of the numerical experiments outlined in Section 3.3 are 

presented and discussed. The information is organized into sub-sections in the same 

manner as in that chapter.  

4.1 Determining Steady State Values and Selection of Specific Points of Consideration 

 

The predicted velocity results are obtained for all of the 54 measuring points 

mentioned previously using mesh N3.  It is not practical to attempt a presentation of all of 

the results; hence the results of predicted velocity at one specific pole location, number 4, 

are given in Figure 4.1 which covers a time span of 5400 seconds or 90 minutes.  

 
Figure 4.1 Pole location number 4: velocity vs. time plot [30] 

 

The existence of oscillatory convergence is observed and the final value depends 

where the oscillatory convergence plot ends. Comparisons of only the final values would 

lead to erroneous conclusions.  In order to quantify the degree of convergence, results in 

sets of 400 consecutive seconds were grouped and averaged. This time interval was 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1000 2000 3000 4000 5000 6000

V
el

o
ci

ty
 (

m
/s

) 

Flow Time (s) 

z = 0.1 m z = 0.6 m z = 1.1 m z = 1.5 m z = 1.9 m z = 2.3 m



 

31 
 

determined by increasing the number of seconds until the changes in the average were 

negligible. The comparison of consecutive group averages revealed that the change in 

velocity values for all heights at all pole locations was below 0.25%. The pole location 

which had the lowest change was pole location number 4, which gave a change of only 

0.03% of the previous value. In order to minimize the effect of these differences on 

further calculations only pole location number 4 will be considered further in this study. 

The nominal values of the simulated velocities and experimental data can be 

found in Figure 4.2. In the next sections, the uncertainties will be reviewed and analyzed, 

to determine if they can explain the discrepancies between simulated and experimental 

results.  

Figure 4.2 Experimental velocity vs. simulated velocity on pole 4 
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4.2 Input Parameter Sensitivity Study and Input Uncertainty,        

 
The    

  and    
  values for each of the 6 input parameters as well as the baseline, 

   , value are determined using the Fluent solution previously mentioned with the N3 

grid. The different terms in equation (3.6), as discussed in Section 3.3.2, are then used to 

determine the total uncertainty caused by uncertainties in each of the input quantities.  

Table 4.1 presents the square of these values for all of the parameters used at each 

specific point on pole 4. The percent contribution for each parameter is shown in 

brackets. These values are tallied at the bottom of the chart for the combined overall 

effect. Analyzing the data indicates that the largest contribution to the input uncertainty 

depends on the measured location on the pole.  

Analyzing the averages of the percentage values over all locations on the pole 

indicates that the temperatures of the walls, floor and ceiling have the highest average 

effect with a value of 41.6% followed by the heat source values at 37.4% and finally by 

the inlet velocity with 19.2%. The effect of the heat sources is dominant near the lower 

portion of the pole (due to the pole’s close proximity to the heat sources at these 

locations), while the higher end of the pole proves to have dominant effect from the 

temperatures of the walls, floor and ceiling. The only exception is at height 1.9 m, where 

the inlet velocity is the most prominent. As for the inlet temperature and turbulence 

values, they appear to have an overall negligible effect on this pole.  

The nominal values of the simulated velocities and experimental data can be 

found in Figure 4.3. The input uncertainty values,        , at each height on the pole 4 are 

represented by the error bars. It is noted that at heights of 0.1 m and 1.1 m, the simulated 

data with the error bar falls out of the uncertainty range versus the experimental. This 
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indicates that the input uncertainty error bar alone is not capable of accounting for the 

difference in the simulated result when compared with the experimental data at these 

points. In the next sections, the numerical and experimental uncertainties will be 

reviewed and analyzed, with the intent to determine if the discrepancies between 

simulated and experimental can be attributed to either of these uncertainties. 

Table 4.1 Contribution of input uncertainties in velocity at pole 4 [30] 

Simulation Input, Xi 

Contribution to Input Uncertainty in Inlet,(      )
 
,                                 

(% of total) at each Height Location (m/s)^2 

0.1 0.6 1.1 1.5 1.9 2.3 

Inlet 

Velocity 
2.337E-05 

(24.7) 

7.491E-08 

(0.0) 

7.707E-05 

(21.6) 

1.622E-07 

(0.7) 

9.103E-07 

(58.8) 

1.780E-06 

(9.5) 

Temperature 
3.212E-06 

(3.4) 

9.390E-06 

(1.8) 

5.635E-07 

(0.1) 

1.135E-06 

(4.8) 

8.027E-10 

(0.1) 

1.283E-08 

(0.1) 

Turbulence 

Intensity 

1.416E-08 

(0.0) 

3.868E-09 

(0.0) 

1.427E-09 

(0.0) 

1.844E-11 

(0.0) 

1.690E-12 

(0.0) 

1.131E-11 

(0.0) 

Hydraulic 

Diameter 

4.689E-13 

(0.0) 

3.167E-12 

(0.0) 

2.338E-12 

(0.0) 

1.908E-11 

(0.0) 

3.641E-13 

(0.0) 

4.810E-15 

(0.0) 

Walls, Floor & 

Ceiling 

2.002E-05 

(21.2) 

1.318E-05 

(2.5) 

1.873E-07 

(0.1) 

2.252E-05 

(94.5) 

6.379E-07 

(41.1) 

1.703E-05 

(90.4) 

Heat Sources 
4.787E-05 

(50.7) 

5.111E-04 

(95.7) 

2.798E-04 

(78.2) 

4.929E-12 

(0.0) 

1.184E-12 

(0.0) 

1.927E-14 

(0.0) 

Overall or Total 9.449E-05 5.337E-04 3.576E-04 2.382E-05 1.549E-06 1.883E-05 
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Figure 4.3 Experimental velocity vs. simulated velocity with error bars on pole 4 [30] 

4.3 GCI Study and Numerical Uncertainty,      

This section presents the results for the calculation of the numerical uncertainty in 

the simulation as discussed in section 3.3.3. The values of  determined using equation 

(3.8) and corresponding to each of the meshes can be found in Table 4.2.  

Table 4.2 GCI   values at different mesh sizes 

Mesh    (m) 

N1 1.986E-02 

N2 2.877E-02 

N3 3.936E-02 

N4 5.750E-02 

 

The next step in the procedure involves a determination of the GRF values for this 

study which are calculated using equations (3.12) and (3.13) and tabulated in Table 4.3. 
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These meet the ASME Standard guidelines since the GRF for each case is above the 

required value of 1.3.  

Table 4.3 Grid refinement factor values 

GRF 

r21 1.461 

r32 1.368 

r43 1.449 

 

Step 3 is a determination of the observed order,  . This requires calculation of the 

values of    ,     ,   and      using equations (3.14) thru (3.18) in Chapter 3. The values 

required in the calculation and the resulting values are presented in Table 4.4. 

The          
   values are also determined using equation (3.25) and included in 

Table 4.4. These are required to estimate the uncertainty associated with grid N3 and are 

also used in determining the       . The values     
   and     

    are quantities included in 

the ASME Standard but not used in the determination of the uncertainty. They are 

included in Table 4.4 for completeness. 
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Table 4.4 GCI uncertainty analysis values – grids N1, N2 & N3  

Variable 
Height (m) 

0.1 0.6 1.1 1.5 1.9 2.3 

1 (m/s) 8.858E-02 4.537E-02 2.267E-02 1.185E-02 1.623E-02 3.922E-02 

2 (m/s) 9.307E-02 4.707E-02 5.699E-02 1.961E-02 2.413E-02 3.384E-02 

3 (m/s) 9.458E-02 4.930E-02 8.284E-02 2.194E-02 2.494E-02 3.418E-02 

ε21 (m/s) 4.495E-03 1.698E-03 3.432E-02 7.768E-03 7.895E-03 -5.374E-03 

ε32 (m/s) 1.509E-03 2.238E-03 2.585E-02 2.330E-03 8.169E-04 3.394E-04 

 1 1 1 1 1 -1 

 
-2.664 1.295 -0.342 -2.984 -5.969 -7.335 

 

1.015E-01 2.052E-01 1.562E-01 9.527E-02 5.050E-02 3.688E-02 

 

9.573E-02 4.262E-02 3.101E-01 2.344E-02 2.509E-02 3.422E-02 

 

1.622% 4.755% 45.362% 11.880% 3.386% 1.003% 

 

2.777% 10.428% 81.624% 16.320% 3.843% 1.101% 

 

-1.544% 17.748% -498.518% -9.528% -0.763% -0.138% 

 

From the values in this table the following points are noted.  

1) For a height of 2.3 m, the   value is -1 indicating a non-monotonic condition.  

2) At certain heights the value of   and hence GCI are negative. A search of the 

literature indicates that negative   values, although undesirable, are possible.  In 

fact, a paper [29],  by  many of the same authors of the ASME Standard, 

published just one year before the Standard was published, used a slightly 

different equation for   as indicated below 

   [
 

       
] |  |

   

   
|      |                                        (4.1) 

 

The only difference in equation (4.1) and (3.14) is the absolute value of the terms 

in the second set of parentheses, which are found in equation (4.1). 

When recalculating the observed value   and values that depend upon  , the 

values change considerably. This is evident in Table 4.5, which has very different GCI 
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values at every height with the exception of 0.6 m. Also, it is evident in the   values, 

which are mostly negative in Table 4.4, but are all positive in Table 4.5.  

Table 4.5 GCI uncertainty analysis values using absolute  

equation (4.1) – grids N1, N2 & N3 [30]   

Variable 
Height (m) 

0.1 0.6 1.1 1.5 1.9 2.3 

1 (m/s) 8.858E-02 4.537E-02 2.267E-02 1.185E-02 1.623E-02 3.922E-02 

2 (m/s) 9.307E-02 4.707E-02 5.699E-02 1.961E-02 2.413E-02 3.384E-02 

3 (m/s) 9.458E-02 4.930E-02 8.284E-02 2.194E-02 2.494E-02 3.418E-02 

ε21 (m/s) 4.495E-03 1.698E-03 3.432E-02 7.768E-03 7.895E-03 -5.374E-03 

ε32 (m/s) 1.509E-03 2.238E-03 2.585E-02 2.330E-03 8.169E-04 3.394E-04 

 
1 1 1 1 1 -1 

 

2.293 1.295 0.294 2.570 5.155 6.532 

 

2.393E-01 2.052E-01 1.742E-01 2.493E-01 3.531E-01 3.350E-01 

 

9.165E-02 4.262E-02 -2.098E-01 1.774E-02 2.393E-02 3.379E-02 

 

1.622% 4.755% 45.362% 11.880% 3.386% 1.003% 

 

1.556% 10.428% 127.160% 10.543% 0.839% 0.147% 

 

3.942% 17.748% 641.932% 26.772% 5.273% 1.437% 

 

 

Because of the non-monotonic nature at a height of 2.3 m, it was decided to 

utilize another grid triplet to determine the uncertainty value. This requires the generation 

of one additional grid, N4, for which the   value can be found in Table 4.2. The 

calculations using the grid triplet N2, N3, & N4 are shown in Table 4.6. In this case, the 

observed order equation for   utilizes equation (4.1) which includes the absolute value. 

The equations are the same as used previously except that the 1's are replaced by 2's, the 

2's are replaced by 3's and the 3's are replaced by 4's. 
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 In order to estimate the uncertainty of grid N3 using this grid triplet, it is 

necessary to use grids N4 and N3 to determine the GCI value on grid N3 as indicated 

below. 

                                                      
          

   
     

  

   
 

  
                                             (4.2) 

Table 4.6 GCI uncertainty analysis values using absolute equation – grids N2, N3 & N4 

Variable 
Height (m) 

0.1 0.6 1.1 1.5 1.9 2.3 

2 (m/s) 9.307E-02 4.707E-02 5.699E-02 1.961E-02 2.413E-02 3.384E-02 

3 (m/s) 9.458E-02 4.930E-02 8.284E-02 2.194E-02 2.494E-02 3.418E-02 

4 (m/s) 8.253E-02 3.836E-02 3.965E-02 2.837E-02 2.965E-02 3.467E-02 

ε32 (m/s) 1.509E-03 2.238E-03 2.585E-02 2.330E-03 8.169E-04 3.394E-04 

ε43 (m/s) -1.205E-02 -1.094E-02 -4.319E-02 6.424E-03 4.708E-03 4.927E-04 

 
-1 -1 -1 1 1 1 

 

5.608 4.326 1.448 2.365 4.758 0.543 

 

-3.120E-01 -2.250E-01 -5.739E-02 -2.695E-01 -2.538E-01 -2.019E-01 

  
9.276E-02 5.195E-02 1.420E-01 1.751E-02 2.401E-02 3.202E-02 

 

12.741% 22.191% 52.137% 29.274% 18.874% 1.441% 

 

0.336% 5.086% 41.671% 25.350% 3.881% 6.749% 

 

2.167% 6.699% 89.301% 25.279% 4.670% 7.903% 

 

As observed in Table 4.6, the last three heights are monotonic. In view of this 

fact, one would expect the calculated GCI to be relatively close to the corresponding 

monotonic values in the first grid triplet. As expected, the GCI values at 1.5 m, for the 

first grid triplet is 26.772% which is very close to the 25.279% for the second grid triplet. 

Also, for a height of 1.9 m, the first grid triplet is 5.273%, whereas the second grid triplet 

is 4.670%. Finally, the values for the height of 2.3 m are now monotonic in the second 

grid triplet. 
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Finally, the      is calculated by adding the discretization error,     and iteration 

convergence,    as indicated in equation (3.8).   

All GCI values were calculated using          
  , except the last height, 2.3 m 

which uses        
  . These resulting values are shown in Table 4.7.  

Table 4.7 Calculation of numerical uncertainty  

Variable 
Height (m) 

0.1 0.6 1.1 1.5 1.9 2.3 

 

3.942% 17.748% 641.932% 26.772% 5.273% 7.903% 

  (m/s) 2.906E-05 -1.673E-06 8.468E-06 1.508E-03 7.092E-05 -9.213E-05 

   (m/s) 1.864E-03 4.375E-03 2.659E-01 2.937E-03 6.576E-04 1.370E-03 

     (m/s) 1.893E-03 4.377E-03 2.659E-01 4.446E-03 7.285E-04 1.462E-03 

 

4.4 Estimation of Experimental Uncertainty,    

 

The experimental uncertainty,   , is calculated using equation (3.24), with the 

same values of     used in the parametric study. The results for pole 4 can be found in 

Table 4.8. 

Table 4.8 Uncertainty due to experimental setup at pole 4 

Variable 
Height (m) 

0.1 0.6 1.1 1.5 1.9 2.3 


 
 (m/s) 9.458E-02 4.930E-02 8.284E-02 2.194E-02 2.494E-02 3.418E-02 

   (m/s) 1.8917E-03 9.8608E-04 1.6567E-03 4.3887E-04 4.9888E-04 6.8364E-04 

 

The largest uncertainty due to experimental setup is at height 0.1 m, which is the 

highest recorded velocity.  

 

 

         
   



 

40 
 

4.5 Total or Overall Uncertainty,        

 

Finally, the total or overall uncertainty can be calculated using equation (2.4). All 

of the values are presented in Table 4.9, which provides the overall uncertainty at the 

different height locations on pole 4. 

Table 4.9 Overall uncertainty along pole 4 heights 

Uncertainty 

(m/s) 

Height (m) 

0.1 0.6 1.1 1.5 1.9 2.3 

       9.4486E-05 5.3372E-04 3.5762E-04 2.3817E-05 1.5490E-06 1.8825E-05 

     -7.010E-04 4.374E-03 -2.065E-01 4.630E-04 -2.422E-05 -1.158E-04 

   1.892E-03 9.861E-04 1.657E-03 4.389E-04 4.989E-04 6.836E-04 

       9.9275E-03 2.3533E-02 2.0735E-01 4.9217E-03 1.3411E-03 4.3938E-03 

 

Based on the total uncertainty that was calculated, the error bars are now indicated 

with the previous results for velocity and presented in Figure 4.4. The results indicate that 

the discrepancy between the experimental and CFD simulated results can be attributed to 

the overall uncertainty at all points on the pole except for the one closest to the floor.  A 

possible reason for this discrepancy could be the way the numerical model treats 

conditions at the wall.  
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Figure 4.4 Experimental vs. CFD simulated (mesh N3) with error bars 

4.6 Analysis of the Flow Field Around an Anomalous Point 

 

Although the uncertainties in the numerical solution are capable of explaining 

almost all of the differences between the experimental and numerical results, it is of 

interest to investigate the changes in the flow field that account for the large changes in 

the velocity at a height of 1.1 m. As seen previously in Figure 4.4, the simulated result at 

this location provides the largest discrepancy when comparing to the experimental 

results. However, as the mesh gets finer (from N3 to N1), the difference reduces. The 

intent of this section is to investigate changes in the flow field that occur with changes in 

the grid size to understand the phenomena occurring at this location.  
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To accomplish  this, stream traces of particles which pass through the point of 

interest are shown within a one meter cubed volume surrounding the focused point for 

each of the N3 (grid used in the study) , N2 (a finer grid) and N1 (the finest grid) grids. In 

order to better understand the changes in the flow patterns the stream traces were 

observed in the x-y, z-y and z-x planes as well as with a perspective view. All of the 

stream trace views can be found in Appendix D. The isometric views of the stream traces 

for meshes N1, N2 and N3 for the height of 1.1 m which exhibited an anomalous 

behaviour and 1.5 m which is the height immediately next to 1.1 m are presented in 

Figure 4.5 and 4.6, respectively. In the case of the 1.1 m height, the change in shape and 

direction of the stream trace as the mesh size is decreased are clearly seen by comparing 

Figures 4.5 a, b and c. The flow changes from passing around the nearby occupant to up 

and over it as the grid size is reduced.  For the next height location up, 1.5 m, no such 

change in direction is noticed. It is therefore concluded that the influence of grid size on 

the flow pattern over the occupant closest to the point in question at the height of 1.1 m, 

is related to the discrepancy witnessed between the different meshes. 
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Figure 4.5 Isometric view of anomalous point on pole 4 – height of 1.1 m; a) location of 

stream trace, b) mesh N3, c) mesh N2, d) mesh N1  

 

 

 

 

 

 

a)  b)  

c)     d)  
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Figure 4.6 Isometric view of anomalous point on pole 4 – height of 1.5 m; a) location of 

stream trace, b) mesh N3, c) mesh N2, d) mesh N1  

 

The technique for determining the numerical uncertainty described in the ASME 

V&V 20-2009 Standard was investigated in detail and applied with some modifications, 

to the case of a computational fluid dynamic solution of the flow pattern within a small 

office space. The technique comprised of determining the three parts of the uncertainty: 

the experimental measurements, the input parameters and the numerical model. Details of 

the changes in the flow pattern around a point which exhibited an anomalous behaviour 

with changes in grid size were also investigated.   

a)  b)  

c)            d)  
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CHAPTER 5 Conclusions and Recommendations  

 

Conclusions regarding each of these factors as well as general conclusions are 

presented below. 

 The uncertainty in the experimental measurements alone was not capable of 

explaining the differences between the computational and numerical results. 

  The input uncertainty alone was also not capable of explaining the differences 

between the numerical and experimental results.   

 Regarding the influence of specific types of input uncertainty, it was found that: 

1. Considering pole average values, the temperatures of the walls, floor and ceiling 

have the highest average effect with a value of 41.6% followed by the heat source 

values at 37.4% and finally by the inlet velocity with 19.2%. 

2. Generally, the effect of the heat sources on velocity are dominant near the lower 

portion of the pole (due to the pole’s close proximity to the heat sources at these 

locations), while the temperatures of the walls, floor and ceiling have a dominant 

effect on the upper end of the pole. The only exception is at height of 1.9 m, 

where the inlet velocity is the most prominent.  

3. The inlet temperature and turbulence values have a negligible effect.   

In the process of determining the model uncertainty it was discovered that: 

1. Although not explicitly stated in the Standard, the model uncertainty (and hence 

GCI value) must be estimated for the same grid size used for estimating the input 

and other uncertainties. 
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2. GCI values required for determining the model uncertainty require that the results 

for the three different grid sizes vary in a monotonic manner which may preclude 

model uncertainty estimation with those grids. 

3. If adjacent grid triplets are each monotonic, the GCI values determined at shared 

points have approximately the same value regardless of which grid triplet is used.   

4. Where it is not possible to estimate the GCI value using the         formula with 

a particular set of grids it is possible to estimate the GCI value for that grid size 

by performing one more calculation at a different grid size and use the formula for 

         . 

In general it can be concluded that 

1. Combination of the experimental, input and model uncertainties is capable of 

explaining the differences between the numerical and experimental data at all but 

the lowest height on pole 4. 

2. The unexplained differences between the experimental and numerical results near 

the floor are speculated to be due to invalid assumptions being made in modelling 

the flow near the floor. This is evident when observing the experimental data 

versus N1, N2 and N3, which can be found in Appendix E. As the grid gets finer, 

the velocity at the closest point on the floor hardly changes.  

3. A careful study of the flow pattern changes with mesh size around the anomalous 

point at height 1.1 m was found to be due to the solution inaccuracies in close 

proximity of a geometrical shape in the room (one of the occupants).  
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Finally, use of the ASME V&V 20-2009 Standard has been shown to be a useful aid 

in explaining the differences between experimental and numerical measurements in 

indoor spaces.  

5.1 Recommendations for Use of the ASME Standard  

 

From the experiences gained during the course of this work, the following 

recommendations are made regarding the use of the ASME V&V 20-2009 Standard: 

1. Although not specifically mentioned in the Standard, it is obvious that the 

contribution to the uncertainty due to the input parameters and boundary 

conditions,        , must be evaluated using the same grid used to determine the 

contribution due to the numerical aspects such as iteration convergence and grid 

spacing,     .    

2. The equations provided in the Standard for determining       using the GCI 

approach only mention        
  , which applies to the smaller of the two grids 

used in its determination. In order to satisfy the condition in point #1 above, this 

means that the sensitivity study used to determine        must be done on the 

fine grid, which is very time consuming. This might not be feasible in industry 

depending upon the particular case.  

3. Using the value of           
   , as done in this thesis, avoids this problem while 

still providing an estimate of the uncertainty in the result. 

4. The importance of obtaining monotonicity of the solution results, as indicated in 

the early papers dealing with the GCI, is not explicitly stated in the Standard and 

should be noted by its users. 
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5. Determination of the approximate order of the equations,  , associated with 

obtaining the GCI value, should be evaluated using the absolute value as 

indicated in equation (4.1). This procedure provides estimates of the uncertainty 

of the numerical calculation for a particular grid size, using larger and smaller 

grids, which are close to one another. 
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APPENDIX A 
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APPENDIX B 
 

Table B.1 Object sizes 

Item 
Dimension (m) 

Length, 

∆x 

Width, 

∆y 

Height, 

∆z 

Room 5.16 3.65 2.43 

Window 0.02 3.35 1.16 

Diffuser 0.28 0.53 1.11 

Exhaust 0.43 0.43 0 

Occupants 0.4 0.35 1.1 

Computers 0.4 0.4 0.4 

Tables 2.23 0.75 0.01 

Cabinet 1 0.33 0.58 1.32 

Cabinet 2 0.95 0.58 1.24 

Lights 0.2 1.2 0.15 
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APPENDIX C 

 
Table C.1 Location of objects within the room [21] 

 

Item 
Dimension (m) Location (m) 

Length, ∆x Width, ∆y Height, ∆z Length, ∆x Width, ∆y Height, ∆z 

Room 5.16 3.65 2.43 0 0 0 

Window 0.02 3.35 1.16 5.16 0.15 0.94 

Diffuser 0.28 0.53 1.11 0 1.51 0.03 

Exhaust 0.43 0.43 0 2.365 1.61 2.43 

Occupant 1 0.4 0.35 1.1 1.98 0.85 0 

Occupant 2 0.4 0.35 1.1 3.13 2.45 0 

Computer 1 0.4 0.4 0.4 1.98 0.1 0.74 

Computer 2 0.4 0.4 0.4 3.13 3.15 0.74 

Table 1 2.23 0.75 0.01 0.35 0 0.74 

Table 2 2.23 0.75 0.01 2.93 2.9 0.74 

Cabinet 1 0.33 0.58 1.32 0 0 0 

Cabinet 2 0.95 0.58 1.24 4.21 0 0 

Light 1 0.2 1.2 0.15 1.03 0.16 2.18 

Light 2 0.2 1.2 0.15 2.33 0.16 2.18 

Light 3 0.2 1.2 0.15 3.61 0.16 2.18 

Light 4 0.2 1.2 0.15 1.03 2.29 2.18 

Light 5 0.2 1.2 0.15 2.33 2.29 2.18 

Light 6 0.2 1.2 0.15 3.61 2.29 2.18 
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APPENDIX D  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1 XY Plane view of an anomalous point on pole 4 – height of 1.1 m; a) location 

of stream trace, b) mesh N3, c) mesh N2, d) mesh N1 
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Figure D.2 ZX Plane view of an anomalous point on pole 4 – height of 1.1 m; a) location 

of stream trace, b) mesh N3, c) mesh N2, d) mesh N1 
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Figure D.3 ZY Plane view of an anomalous point on pole 4 – height of 1.1 m; a) location 

of stream trace, b) mesh N3, c) mesh N2, d) mesh N1 
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Figure D.4 XY Plane view of an anomalous point on pole 4 – height of 1.5 m; a) location 

of stream trace, b) mesh N3, c) mesh N2, d) mesh N1 
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Figure D.5 ZX Plane view of an anomalous point on pole 4 – height of 1.5 m; a) location 

of stream trace, b) mesh N3, c) mesh N2, d) mesh N1 

 

 

 

 

a)  b)  

c)              d)  

 

 

 

 

 

 

 



 

61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.6 ZY Plane view of an anomalous point on pole 4 – height of 1.5 m; a) location 

of stream trace, b) mesh N3, c) mesh N2, d) mesh N1 
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APPENDIX E 
 

 

Figure E.1 - Experimental velocity vs. simulated velocity on pole 4 for N1, N2 & N3
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