
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2008

DATA ASSIMILATION AND VISUALIZATION FOR ENSEMBLE DATA ASSIMILATION AND VISUALIZATION FOR ENSEMBLE

WILDLAND FIRE MODELS WILDLAND FIRE MODELS

Soham Chakraborty
University of Kentucky, sohaminator@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Chakraborty, Soham, "DATA ASSIMILATION AND VISUALIZATION FOR ENSEMBLE WILDLAND FIRE
MODELS" (2008). University of Kentucky Master's Theses. 529.
https://uknowledge.uky.edu/gradschool_theses/529

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

DATA ASSIMILATION AND VISUALIZATION

FOR ENSEMBLE WILDLAND FIRE MODELS

This thesis describes an observation function for a dynamic data driven application
system designed to produce short range forecasts of the behavior of a wildland fire. The
thesis presents an overview of the atmosphere-fire model, which models the complex
interactions between the fire and the surrounding weather and the data assimilation
module which is responsible for assimilating sensor information into the model.
Observation plays an important role in data assimilation as it is used to estimate the
model variables at the sensor locations. Also described is the implementation of a
portable and user friendly visualization tool which displays the locations of wildfires in
the Google Earth virtual globe.

KEYWORDS: Observation function, Atmosphere-fire model, Dynamic Data-Driven

 Application System, Google Earth, Data Assimilation

 Soham Chakraborty

 04/18/2008

DATA ASSIMILATION AND VISUALIZATION

FOR ENSEMBLE WILDLAND FIRE MODELS

By

Soham Chakraborty

 Dr. Craig C. Douglas

 Director of Thesis

 Dr. Raphael Finkel

 Director of Graduate Studies

 04/18/2008

RULES FOR THE USE OF THESIS

Unpublished theses submitted for the Master’s degree and deposited in the University
of Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but
equations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgements.

 Extensive copying or publication of the thesis in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the
signature of each user.

Name Date

THESIS

Soham Chakraborty

The Graduate School

University of Kentucky

2008

Title Page

DATA ASSIMILATION AND VISUALIZATION

FOR ENSEMBLE WILDLAND FIRE MODELS

THESIS

A thesis submitted in partial fulfillment of the requirements for the Master

of Science in the College of Engineering at the University of Kentucky

By

Soham Chakraborty

Lexington, Kentucky

Director: Dr Craig C. Douglas, Professor of Computer Science

Lexington, Kentucky

2008

Copyright © Soham Chakraborty 2008

iii

Acknowledgements

I would like to thank my Thesis Chair, Dr. Craig C. Douglas for his invaluable assistance
and guidance at every stage of the thesis process. I also express my sincere gratitude to
Dr. Janice Coen for her timely and insightful advice, at a very critical juncture, which
allowed me to complete the project on schedule.

iv

TABLE OF CONTENTS

Acknowledgements... iii

LIST OF FIGURES ... v

LIST OF FILES ... vii

Chapter One: Introduction ... 1

Chapter Two: Background ... 3

2.1 Atmosphere-Fire Model ... 4

2.1.1 Model Overview .. 4

2.1.2 Tracking fire line propagation ... 5

2.2 Data Assimilation ... 11

2.2.1 An overview of data assimilation .. 11

2.3 Data Sources .. 12

Chapter Three: Observation Function ... 14

3.1 Overview of the observation function scheme .. 14

3.2 Extracting the model variables .. 16

3.2.1 Levels of data storage ... 16

3.3 Determining the sensor position ... 19

3.4 Determining the model variables at the sensor position .. 21

3.4.1 Determining values of vector model variables ... 22

3.4.2 Determining values of scalar model variables .. 25

Chapter Four: Visualization .. 28

4.1 Overview .. 28

4.2 Google Earth .. 29

4.3 Customizing Google Earth .. 30

4.4 Implementation overview .. 32

4.4.2 Data extraction and creation of KML files .. 33

4.4.3 Instructions ... 37

v

Chapter Five: Conclusion ... 41

Appendix A. .. 44

References ... 45

Vita ... 49

vi

LIST OF FIGURES

Figure 2.1. Schematic diagram of the wildfire DDDAS application .. 3

Figure 2.2. Basic fuel cell .. 5

Figure 2.3. Fire line spanning multiple fuel cells. Virtual coordinates

are used to define the fire line in the cell ... 6

Figure 2.4. Cells (1, 1), (1, 2) and (2, 2) from the grid in Figure 2.3,

 with the burning areas within each cell shaded in grey ... 7

Figure 2.5. Figure depicting the 2 triangles (blue) and the quadrilateral (grey) that

 define the burning region within the cell. ... 8

Figure 2.6. Figure showing the normal vectors directed away from the fire line 9

Figure 3.1. Figure showing the sensor S in the model grid .. 22

Figure 3.2. Bilinear interpolation scheme .. 24

Figure 3.3. Determining values of scalar model variables ... 26

Figure 4.1. Google Earth user interface ... 29

Figure 4.2. Screenshot showing the marker object as

 described by the sample KML file .. 31

Figure 4.3. Navigation tools in Google Earth ... 38

Figure 4.4. Figure showing a display box indicating the latitude and longitude of the

 wildfire ... 39

Figure 4.5. Figure showing the location of a wildfire after zooming in ... 39

vii

LIST OF FILES

File 1. Thesis.pdf

Thesis.pdf
Thesis.pdf

1

Chapter One: Introduction

We describe a scheme for the implementation of an observation function and a

visualization paradigm in a Dynamic Data-Driven Application System (DDDAS) to predict

the behavior of wildland fires. Producing a short range forecast of the behavior of a

wildfire is a challenging problem because it is a rapidly changing phenomenon [13].

There is also the added difficulty of assimilating data from disparate remote sensors,

which is often out of order and of questionable accuracy, into the model and use it to

drive the simulations [13].

At the heart of the DDDAS is a coupled atmosphere-fire model consisting of a numeric

weather prediction model and a fire behavior model [12]. The coupled atmosphere-fire

model simulates the complex interactions between a wildland fire and the local

weather. The model does not directly use sensor data to make its predictions. Since

sensors have errors and are unevenly distributed in time and space, the system uses

data assimilation to compare the observed data with the last forecast (synthetic data)

and make corrections to this forecast. The corrected forecast serves as the basis for the

model’s next forecast. Synthetic data, required by the data assimilation module, is

extracted from the model state by the observation function. The observation function

examines the positions of the sensors within the model grid and approximates the

values of various quantities like temperature, wind velocity, and atmospheric pressure

at these locations from the model variables located at the grid points. This forms the

synthetic data that is compared with the real sensor data by the data assimilation

module. A key component of this research is to create a wildland fire code independent

observation function system.

2

The thesis also describes the implementation of a software tool to display the positions

of wildfires in Google Earth. Google Earth is a free mapping tool released by Google and

is available on many platforms. It presents a 3-D virtual globe which the users can

rotate, zoom in, and zoom out of. Google Earth incorporates a powerful set of tools that

allow customized images and objects to be displayed on the virtual globe. The

visualization tool allows anyone with a Google Earth client to follow the progress of a

wildfire in near real time.

Section 2 provides a lengthy overview of NCAR models, which have been developed

over the past 40 years. In section 3 we see new research to translate a static model into

a dynamic data-driven model. And in section 4 we present a new way of easily

visualizing fires on a wide variety of devices and platforms.

3

Chapter Two: Background

This dissertation is part of an ongoing attempt to build a Dynamic Data-Driven

Application System (DDDAS) for short term prediction of wild fire behavior. The system

is built upon NCAR’s (National Center for Atmospheric Research) coupled atmosphere-

fire model which simulates the spread of the fire taking into consideration the effect of

the fire on the surrounding atmosphere as well as the effects of the fire-induced winds

on the fire itself [12]. This model’s earliest ancestor dates back to 1990. The system has

been adapted to accept real-time weather information, images and sensor streams, and

changes the prediction, if necessary, when fresh data is made available [13]. In addition,

components for saving, modifying, and restoring the state of an atmosphere-fire model

have been added. Other features allow modification of ensemble member states using

ensemble data assimilation algorithms by comparing the synthetic data generated from

member states with real world data (from sensors) and adaptation of the computational

results to suit different user needs.

 Figure 2.1. Schematic diagram of the wildfire DDDAS application [12]

4

2.1 Atmosphere-Fire Model

2.1.1 Model Overview

The coupled atmosphere-fire model has two components: a numerical weather

prediction model and a fire behavior model that simulate the spread of a wildfire based

on weather, fuel conditions, and topography [14, 15]. Heat and water vapor from

wildfires affect the surrounding atmosphere, giving rise to fire winds. Atmospheric

winds in turn drive the spread of the wildfire. Hence, a two-way coupled atmosphere-

fire model is used to simulate this complex interaction between a wildfire and its

surrounding atmosphere. Evolving atmospheric information predicted by the weather

model drives the propagation of the simulated fire line. At the same time, heat and

moisture information generated by the fire model is fed to the modeled atmosphere,

thus affecting the atmospheric motions.

 The weather prediction model is an extension of the atmospheric fluid dynamics model

of Clark [14]. The model solves prognostic equations to predict the values of variables

pertaining to momentum, thermodynamic energy, water vapor and precipitation by

advancing these fields in time at grid points in nested spatial domains. The nested

domains can be refined in both horizontal and vertical directions. The outermost

domains deal with large scale features such as weather fronts and mesoscale convective

systems. Inner domains concentrate on fine scale atmospheric features such as vortices

and clouds within a fire line. The innermost domain deals with fluid dynamics and

interacts directly with the fire model.

In each time step wind velocities from the fluid dynamics model are passed into the fire

model. The fire model determines the spread of the fire and advances the fire line. Heat

5

and moisture generated, because of the combustion, is fed into the fluid dynamics

model as heat and moisture fluxes.

2.1.2 Tracking fire line propagation

For the purpose of tracking the fire line, the land surface within each atmospheric model

cell is subdivided into grids called fuel cells. The fuel cells can be smaller than the

atmospheric model cells by any integer ratio [14]. The characteristics of the fuel

correspond to 13 different standard fuel types [16]. Four tracers are assigned to each of

the fuel cells to keep track of the fire line. The tracers define the vertices of the polygon

representing the burning region within each fuel cell.

Figure 2.2. Basic fuel cell [14]

Tracers are capable of moving within the boundaries of the fuel cell. This allows for the

smooth progression of the fire lines through the fuel cells without significant distortion

effects because of the finite size and shape of the grid. The tracers must remain within

the boundaries of its cell. However, temporary movement of a tracer outside its cell can

6

occur. For example, it may cross the x = -0.5 boundary, while its y coordinate remains

within the range -0.5 and 0.5. When this happens, the x coordinate of tracer 1 is fixed to

corner 1 and remaining motion may only occur in the y-direction. Also, the neighboring

cell may catch fire if it isn’t already burning. The code is so formulated that the tracers

move towards the grid corner with their corresponding number. The arrows joining the

tracers give a directional sense to the fire line. As we move in the direction of the

arrowhead the fire line will lie on our left. Figure 2.2 depicts the special case of a sub-

grid fire. In such cases the tracer positions correspond to the coordinate points of the

fire line. Most forest fires span across multiple fuel cells and the condition depicted in

Figure 2.2 does not normally occur.

Figure 2.3. Fire line spanning multiple fuel cells [14]. Virtual coordinates

are used to define the fire line in the cell (2,2).

Figure 2.3 depicts a fire line which spans multiple cells. As in Figure 2.2, the arrows give

a sense of direction to the fire line with the fires lying to the left of the arrows.

7

 Figure 2.4. Cells (1,1), (1,2) and (2,2) from the grid in Figure 2.3

 with the burning areas within each cell shaded in grey.

Figure 2.4 shows how the burning region within each cell is represented using tracers in

situations where the fire line spans multiple cells. Notice that in cells (1,1) and (1,2) four

tracers are sufficient to represent the area under fire. However, in cell (2,2) tracers from

neighboring cells are needed to adequately represent the burning area.

Each of the fuel cells is assigned a class that is defined by two numbers (NCT/ICLS). NCT

represents the number of tracers that are at their limiting corner positions. ICLS refers

to the number of free coordinates. For example, in cell (1,1) tracers 1 and 2 are at their

limiting corner positions whereas tracers 3 and 4 are free to move in the y-direction.

Thus 2 coordinates (y coordinates of tracers 3 and 4) are free and two of the tracers are

bound to their corners. Hence, NCT /ICLS for this cell is 2/2. Similarly in cell (2,2) three of

the tracers (tracers 1, 2 and 3) are in their corner positions whereas tracer 4 is free to

move in both the x and y directions. Hence the class of this cell is 3/2. The fuel cell

depicted in Figure 2.2 is of class 0/8. This class has not been taken care of in the present

code [14]. The active classes are 4/0, 3/1, 3/2, 2/2, 2/3, and 1/4.

8

Since virtual coordinates are used to define the burning region within each cell, two

different formulae are used to determine the area. In the simplest case the burning

region is a quadrilateral whose area Aq can be determined as follows:

where x1, .., x4 and y1, .., y4 are the coordinates of tracers 1, 2, 3 and 4 respectively. For

the calculating the area of the burning region in cell (2,2) we need take into account the

area of the two triangles formed by the tracers of the cell and those of the neighboring

cells along with the area of the quadrilateral formed by the tracers of the cell.

Figure 2.5. Figure depicting the 2 triangles (blue) and the quadrilateral (grey) that define

the burning region within the cell.

The area of the burning region Af is calculated as follows:

where the characters with superscripts represent the coordinates of the tracers from

the neighboring cells. The area under combustion within each fuel cell is used to

estimate the mass of fuel consumed in the last time step. Using the combustion

coefficient data and the mass of fuel burned, the heat generated in the last time step is

9

estimated. This in turn is converted into heat fluxes and entered into the atmospheric

fluid dynamic model.

In order to define the fire line it is necessary to first identify the fuel cells that are a part

of the fire line. A fuel cell is considered to be a part of the fire line if the area Aq under

fire is less than one. In order to take into account cases where the fire line occurs along

the grid boundary, cells with Aq 1 are considered to be a part of the fire line if at least

one of its neighbors have not been ignited. Fuel cells belonging to the fire line are

marked with the flag NFL = 1. The remaining cells have the NFL flag set to 0.

Figure 2.6. Figure showing the normal vectors directed away from the fire line

The next step is to determine the set of vectors directed away from the fire line (as

shown in Figure 2.6). Normal vectors are used in calculating the spread of the fire.

10

Normal vectors are determined by fitting a circular arc to three points. The two end

points of the fire line are used to determine the arc. The number of fire line points in a

cell depends on its class. For example, classes 1/4 and 3/1 have three points each,

whereas class 4/0 has two points.

2.1.2.1 Determining the rate of spread of the fire

The rate of spread of the fire depends upon wind speed, humidity, slope of the terrain,

fuel type, and fuel moisture. This rate is determined at each coordinate point of the fire

line. The Rothermel algorithm is used to calculate the rate of spread of the fire. The

algorithm takes the form [26],

,

where is the spread rate in zero wind and zero slope conditions, is the

adjustment made for wind, and is the adjustment made for slope.

2.1.2.2 Identifying ignition of new fuel cells

This step involves cycling through all the fuel cells with NFL = 1 and checking to see if

any of their tracers have moved into a neighboring cell. Once such occurrences have

been identified, the algorithm checks to see if any of the new cells were already ignited,

in which case it has to further investigate whether the situation represents a

convergence of fire lines. For example, if the ignition occurs across the y= -0.5 boundary

(west boundary) of a cell with NFL=1 and if corners 1 and 3 are not occupied by their

respective tracers, then this is treated as convergence of a fire line from the west since

the eastern part of the cell was already burning. After all the cases of fire line

convergence have been treated, the algorithm looks at the cells which have been freshly

ignited. In the case of freshly ignited cells, the code has to determine which fire line

segment has to be used to ignite the cell. The fire line segment through a newly ignited

cell can be ill defined if it represents the end of a sharply curving region of the fire line.

In order to prevent premature ignition of fuel cells, the code only accepts the ignition of

a fresh fuel cell if the extrapolated fire line covers only one corner of the cell. The code

11

also accepts the ignition of a cell where the fire line covers more than one corner and

the burning area of the igniter cell is greater than 95%.

2.2 Data Assimilation

2.2.1 An overview of data assimilation

Data assimilation may be defined as an analysis technique in which observed

information is accumulated into the model state by taking advantage of consistency

constraints with laws of time evolution and physical properties [19]. Data assimilation is

an important technique to estimate the true initial state of the system especially in

systems where measurements of the various model parameters are irregularly

distributed over space and time [20]. The DDDAS Wildfire application is designed to

work all the time and incorporate new measurement data as soon as it arrives. This,

coupled with the complex and nonlinear nature of the problem, makes it particularly

suitable for Bayesian filtering [18].

The state of the system is represented by set of physical variables and parameters

mostly at mesh points [18]. To incorporate out of sequence data, a snapshot of the

system state at various time intervals is saved in a time state vector x. Knowledge of the

system's time state is represented by a probability density function p(x) which is

represented in the model with an ensemble of time state vectors x1,….,xn [18]. The

number of system states maintained by the model will thus be equal to the number

snapshots saved for incorporating out of order data times the ensemble size. Each of

these system states are advanced over time through separate simulations. Sequential

filtering involves successively updating the model state using sensor data via Bayes

theorem.

12

The probability density pf()x representing the current state of the model is called a prior

or forecast. The data supplied to the model includes measurements y along with the

information regarding the distribution of measurement errors and how the measured

quantities are derived from the system state x. This information is represented by the

vector y and the conditional probability density function p(y|x). The updated probability

density pa()x , known as the posterior or analysis, is derived using Bayes theorem as

follows:

This then becomes the new state of the model. Advancing the model in time and

injecting new data are decoupled operations.

2.3 Data Sources

Data measuring temperature, radiation, and local weather conditions come from fixed

sensors. These sensors are designed to survive a burn over by a low intensity fire [13].

The sensor measurements are supplemented by data from fixed weather stations. The

raw data is transmitted in comma separated ASCII format. Data in the form of images

taken from satellite and aircraft based platforms are also collected. Images are

processed using a variety of image processing algorithms that determine which of the

pixels form a part of the fire and the energy radiated by it. The original pixel values, the

computed probability of ignition of a pixel, and the geographic coordinate information is

stored in the GeoTIFF image format or the HDF data format [13].

Information about previous fires are stored in a data center in a variety of formats

(GeoTIFF, Ms Excel, text files or CSV). All the information coming in from sensors is

13

timestamped to identify the time when the data was collected. If the incoming

information does not have a timestamp, it is given one when it is received at the data

center.

Information received at the data center may have to go through as many as 6 stages of

processing. These are [13]:

(a) Retrieval – This entails getting the information directly from a sensor or via an

intermediate computer system or storage device (eg an external hard disk drive).

(b) Extraction – This step involves extracting the relevant information from the raw data

obtained from the sensors.

(c) Conversion – In the event that the received information is in a unit that is unsuited

for the wildfire application; it is converted into a suitable unit.

(d) Quality Control – This step involves removing or repairing corrupted data.

(e) Store – Data must be archived to the right medium, for example, a tape drive or a

disc drive. The archival process also takes into account the expected period of time for

which the information will be archived (long term or short term storage).

(f) Notification – If a simulation is using data which is coming into the storage center, it

must be notified whenever new data becomes available.

The sensor network operates either in active mode, in which case it actively streams

data to registered end users, or in passive mode, wherein it only transmits data upon

request.

14

Chapter Three: Observation Function

This section presents new research to develop an observation function which is

independent of a specific wildfire code.

3.1 Overview of the observation function scheme

The observation function subroutine is passed a vector containing the model state and

an integer, known as a tag, as input parameters. Depending on the value of the tag, it

calls the appropriate weather observation function or the image observation function

[24]. The subroutine definition for an observation function is as follows:

obs_function (syn_data,num_obs,nstate,tag)

Syn_data, which stands for synthetic data, is an output parameter containing the values

computed by the observation function. Num_obs is also an output parameter indicating

the length of the syn_data vector. The parameter state is a vector of length nstate

containing the model state. Tag is an integer array of size tag_length (defined in the

header file obs_params.h). The tag parameter contains a set of integers called tags

which would be used to select the appropriate observation functions.

At this point it is important to note that the observation function cannot access the

model state directly as it is not part of the model executable [24]. The model state is

read from a checkpoint file as an input parameter. We restrict ourselves to the

observation function dealing with weather station data, which is defined as follows:

 weather_obs (ws_temp, ws_pressure, ws_windx, ws_windy,

15

 ws_vapor, state, nstate, ws_lat, ws_lon, ws_alt, ws_time)

The parameters ws_temp, ws_pressure, ws_windx, ws_windy and ws_vapor contain the

return values of the subroutine. The ws_temp parameter stands for weather station

temperature and it is used to return the synthetic potential temperature determined by

the subroutine. Similarly, parameters ws_pressure and ws_vapor are used to return the

synthetic values for atmospheric pressure and the vapor mixing ratio. Parameters

ws_windx and ws_windy correspond to the west-east and north-south velocity

components [14]. The rest of the parameters provide the subroutine with a weather

station’s latitude, longitude, altitude, and the timestamp of the observation. The chief

function of the weather_obs subroutine is to determine the offsets into the state vector

where the pressure, temperature, vapor mixing ratio, and the u and v components of

the wind velocity are located. The subroutine then calls another routine,

weather_obs_w, which determines the actual synthetic data.

Most of the functionality for determining the synthetic data is present in the

weather_obs_w subroutine. It processes the geographic coordinates of the

sensor/weather station to determine its location with the model grid. Once the cell

containing the sensor is determined, the synthetic values for the temperature, pressure,

wind velocities, and other weather station data is determined by linearly interpolating

the station location with respect to the grid points. The process for determining the

position of the station within the model and calculating the values of the model

variables at the station’s location is detailed in the following sections.

16

3.2 Extracting the model variables

Before we discuss the procedure for extracting specific model variables we need to

understand how variables are arranged in the model memory. The model memory is

organized into three levels [14], which is explained in Section 3.2.1. Section 3.2.2 will

explain the typical set of steps followed for extracting any variable from the model

memory. Finally, in Section 3.3.3 we will see how the model variables pertaining to the

weather station observation function are extracted.

3.2.1 Levels of data storage

As mentioned before, the model uses three levels of storage. These are as follows.

3.2.1.1 First level

The first storage level consists of variables which can be accessed directly by the model

code. These are stored on the computer’s main memory *25+. It contains only a fraction

of the total model variables [14].

3.2.1.2 Second level

The second level is used to store data which may be word packed. Word packing

compresses the data and frees up memory, allowing simulations of larger domains [14].

It also helps to reduce the number of disc accesses required to move data back and

forth between level two and level three of the data storage. The second level is also

stored in the main memory.

17

3.2.1.3 Third level

The third level refers to the model data stored on discs and tape drives. This level is only

used for the storage of data and is not utilized during execution of the model code [25].

3.2.2 Procedure for extracting model variables

In this section we describe a particular code implementation for extracting data. Similar

mechanisms can be implemented in other wildfire codes. We are primarily interested in

extracting model variables during the execution of the model code. Therefore, our focus

will be on the data storage levels one and two. Storage level two can be thought of as a

table [25]. There are two forms of this table: (a) a table for the analysis cycle and (b) a

table for the generator cycle. Since our focus is on the generator cycle, we have only

included the table for the generator cycle in Appendix A. Each table has 16 file groups

and each of these file groups contains three fields. The 16 file groups can be thought of

as 16 three dimensional arrays. The face of the structure is partitioned into 3 NX by NZ

slabs, corresponding to the 3 fields in each file group [25]. The depth is partitioned into

NY/2 double slabs [25]. NX, NY and NZ represent the number of grid points in the x, y

and z directions and is defined in the model code [14].

Variables stored in level two are not directly accessible by the model code. Before a file

group can be read it must be prepared by calling the RDRSET subroutine. It accepts only

one parameter, an integer containing the file group number (1 – 16). RDRSET brings the

file group into a buffer from where it can be accessed by the model code [25]. Any

previous version of a file group in the buffer will be over written if RDRSET is called again

for the same file group name.

Data is read from the buffer using the RDDR3 subroutine. The use of RDDR3 and RDRSET

18

will be made clear by the following code example, which describes the typical procedure

for reading and extracting model variables from level two storage. Before looking at the

code, we need to go over the following variable definitions [14]:

 NX, NY and NZ – The number of grid points in the x, y and z directions.

 N2 is defined as 2 * NX * NZ in the code

 N4 = 2 * N2 and N6 = 3 * N2

 NP1, …, NP15 – are the indices of the starting location minus one. NP1=0, NP2 =

NY/2, NP3 = 2 NY/2, ……, NP15 = 14 NY/2

 JD is the slab index

 I, J and K are do-loop indices in the x, y and z directions respectively

 MX, MY and MZ are the maximum x, y and z direction dimensions in the model.

The following piece of FORTRAN 77 code demonstrates how data can be retrieved from

file group 6.

1. REAL A(MZ,MX,2)

2. CALL RDRSET(6)

3. DO 100 JJ=1,NYM,2

4. JD=(JJ+1)/2

5. CALL RDD3(A,N2,NP6+JD,1)

6. 100 CONTINUE

In line 1 we are declaring an array A of type real. MX and MZ represent the maximum x

and z direction dimension in the calculation respectively [14]. Line 2 is a call to RDRSET

which prepares file group 6 for reading. Lines 3 to 6 loops through the 3-D array and

stores the extracted data in array A. As mentioned earlier N2 is defined as 2 * NX * NZ in

the code. RDD3 (A, N2, NP6+JD, 1) reads N2 words from starting index NP6 of field 1.

This code can be altered to extract the model variables required by the weather station

19

observation function by substituting the starting index of the variable of interest in place

of NP6 in the call to the function RDD3 and putting the variable’s file group number in

the call to RDRSET. The file group number and the starting index for a variable in the

generator cycle can be determined from the table given in appendix A.

Currently only values that directly affect the weather station observation function are

extracted. These include (a) horizontal wind velocity, (b) pressure, (c) theta (theta is the

non-dimensional normalized potential temperature. This field or BUOYANCY field may

be used to calculate temperature), (d) buoyancy, and (e) QV (QV is the water vapor

mixing ratio. It is used to determine relative humidity).

3.3 Determining the sensor position

Here we discuss the process for converting the latitude and longitude of the sensor into

the coordinate system used by the model. As mentioned earlier, the atmosphere-fire

model has several domains 1, 2, 3, . . ., N (1 being the innermost domain). The first step

is to find the distance (in kilometers) of the sensor from the center of domain 1. Let the

station distances be represented by DXST and DYST. They are determined as follows:

The code for of the above equations is as follows:

DXST = (STLON (IST) – TLONUD) * 111.319 * COS (TLATUD* /180)

DYST = (STLAT (IST) – TLATUD) * 110.942,

20

where STLON is an array containing the longitudes of all the sensors and STLAT is the

array containing the latitudes of all the sensors. IST is a loop counter and its values

range from 1 to ISTA. ISTA is a constant denoting the maximum number of sensors.

TLONUD and TLATUD denote the longitude and latitude of the center of domain 1. The

sensors are sequentially numbered from 1 to ISTA. Given that the equatorial radius is

6378.137 kilometers, the distance between each degree along the equator is 111.319

kilometers. The polar radius is 6356.75 kilometers. Thus the distance between each

degree along the north-south meridian is 110.942 kilometers. If we consider the north-

south direction to be the y-direction, the distance along y between the model center

and the sensor becomes .

While calculating DXST, we have to multiply 111.319 (the length of a degree along the

equator) by a cosine factor. This is because as we move away from the equator the lines

of latitude get smaller in length. To account for this we multiply the distance along the

equator by the cosine of the angle of latitude at the model center.

 times gives us the latitude in radians.

The next step is to calculate the distance of the center of domain 1 from the south-west

corner of domain 1 (we call this the reference point), which is assumed to be the point

of reference. This is carried out as follows:

XCNTR = (XOMDL (1) + (NXSET (1) – 2) * DXSET (1)/2)*SLNGTH*1.E-5

YCNTR = (YOMDL (1) + (NYSET (1) – 2) * DYSET (1)/2)*SLNGTH*1.E-5

Where XCNTR and YCNTR are the distances (in kilometers) of the center of domain 1

from the reference point in the x direction and the y direction respectively. XOMDL (k) is

the displacement of domain k from the reference point in the x-direction. XOMDL for

domain 1 is 0. NYSET (1) gives us the number of points in the x-direction in domain 1.

We subtract 2 from NYSET (1) in order to account for the shadow domain. DXSET (k)

21

contains the length of a grid side in domain k. Therefore, the expression (NXSET (1) – 2)

* DXSET (1)/2 determines the length of one half of domain 1. Because values are stored

in the model without a dimension, the expression XOMDL (1) + (NXSET (1) -2) * DXSET

(1)/2 is multiplied by SLENGTH, which converts the value of the expression into

centimeters. To convert this to kilometers we further multiply by .

Thus the distance of the sensor from the reference point, in the x-direction, can be

obtained from the sum of XCNTR and DXST. This value is stored in the variable STX (STY

for the distance along the y-direction). The only thing left to do now is to identify the

atmospheric grid cell enclosing the sensor. This can be found by dividing STX (the

distance of the sensor from the reference point in the x-direction) by the length of the

grid (DXSET). The code for this is:

I_ISTX (IST, MODEL) = STX (IST)/ (DXSET (MODEL)*SLENGTH*1.E-5)

J_ISTX (IST, MODEL) = STY (IST)/ (DYSET (MODEL)*SLENGTH*1.E-5)

In the code both I_ISTX and J_ISTX are of type real so that we can use the fractional

remainder to interpolate with neighboring points containing the model variables. This is

further discussed in Section 3.4. To identify the grid cell containing the station we can

assign I_ISTX and J_ISTX to integer variables so that the fractional part is truncated.

3.4 Determining the model variables at the sensor position

In Section 3.3 we discussed how to identify the atmospheric grid cell containing a sensor

given its latitude and longitude. The position of a sensor within the model is given by a

set of three real numbers representing the sensor’s distance (in km) from lower left

corner of domain 1. Values of the various model variables such as the potential

temperature, vapor mixing ratio, and u component of the wind velocity are available at

22

specific points in an atmospheric grid cell. Scalar variables such as pressure and

temperature are located at the center of the cell, whereas vectors such as the u and v

components of the wind velocity are respectively centered on the right hand side and

the top side of a cell. Since the position of a sensor can be randomly distribute in the cell

and not necessarily at any of these points, we need to derive the value of a model

variable at the sensor location from the nearby points. This is done by interpolating at

the points where the model variables occur using the location and data of the sensor.

3.4.1 Determining values of vector model variables

Here we examine the procedure for determining the u and v components of the wind

velocity at the sensor location. We will refer to the u and v components of the velocity

at any point by and respectively. Let and be the x and y coordinates of sensor

S in the model. And let and be the x and y coordinates of the lower left corner of

the grid cell (EFGH) enclosing S.

 Figure 3.1. Figure showing the sensor S in the model grid

23

 and represents the u component of the velocity in grid and

respectively. Recall that the u – component of the velocity is located on the right hand

side of each grid box centered on the vertical. Therefore and are located at the

coordinates and respectively (at positions A and B in

Figure 3.1). Similarly the velocities at C and D are represented by and

respectively.

One way to determine at is to do a linear interpolation including the points

, and and assume that the value of at

is the value of at . While this method is simple, it is inaccurate

because we are using the value of at to approximate the value of

at S. In order to obtain a more accurate approximation of at S, we have used an

interpolation technique known as bilinear interpolation [27].

24

Figure 3.2. Layout of the bilinear interpolation scheme

Bilinear interpolation works as follows. With reference to Figure 3.2 assume that we

have been tasked to find the value of some real quantity at the position . We

denote this value as . Similarly we denote the value of at the grid points by

where . The values of will be available to us from the variables extracted

from the model state. We can estimate from the values of as follows. First, we

will find the value of at point a (we will call this).

 (1)

Since the sides of the grid cell are of length one 10010 (1) can be re written as

 (2)

25

 Similarly we can calculate the value of as follows:

 (3)

Once we have determined the values of and we can determine by

 (4)

In order to apply bilinear interpolation to the problem at hand we need to first identify

the quadrilateral enclosing the sensor’s location (to avoid confusion please note that

when a reference is made to the quadrilateral enclosing S it refers to the square formed

by the four neighboring points containing the model variables which surrounds S) . To

do this we need to first identify the points neighboring S where is defined in the

model. In Figure 3.1 we see that these points are A, B, C, and D. The procedure for

determining the coordinates of these points is as follows: first, we determine the x and y

coordinates of the lower left corner of the grid box enclosing S (point E in Figure 3.1).

This is accomplished by assigning and to two integer variables say and . This

causes the decimal portion of to be truncated giving , the coordinates of

E. Next we compare to (assuming that the length of each side of a grid is

one). If , then the coordinates of A are . Coordinates of B are

determined by adding one to the x coordinate of A. The coordinates of C and D are

similarly determined by adding one to their coordinates. If then A is

. B, C, and D are derived from the coordinates of A as explained above. Once

we have determined the coordinates of quadrilateral enclosing S, we use equations (2) –

(4) to determine the value of the model variable at S.

3.4.2 Determining values of scalar model variables

The procedure for approximating the values of scalar variables at S is almost identical to

that of the vector variables. The main difference in the two cases is in the location of the

model variables within the grid. Unlike vectors, the scalars occur at the center of each

26

grid box. This leads to a slight difference in the procedure for determining the

coordinates of the quadrilateral enclosing the sensor.

Figure 3.3. Determining the values of scalar model variables

In Figure 3.3, q1, q2, q3, and q4 represents the four quadrants of the grid box EFGH.

Since scalars are located at the centers of the grid boxes we need to find the quadrant

where sensor S is located in order to determine the four neighboring points containing

the model variables. This is done by comparing both to the center coordinates

of EFGH . Recall that is the coordinate of the sensor S. In

Figure 3.3 we see that S lies in quadrant q3 therefore the four neighboring points

containing the model variables must be the points denoted by A, B, C, and D. Once the

quadrant is determined we can find the lower left corner of the quadrilateral enclosing S

using the following logic: If the quadrant is q1, then the lower left corner is given by

. In the case of q2, q3, and q4 it is given by ,

27

 and respectively. The other three corners of the

enclosing quadrilateral are determined by adding the grid length to the x and y

coordinates of the lower left corner, as explained in Section 3.4.1. Once coordinates of

the quadrilateral enclosing the station is determined we can follow the procedure laid

down in Section 3.4.1 to approximate the value of the model variable at sensor S.

28

Chapter Four: Visualization

4.1 Overview

Effective presentation of the data for consumption by the end users is an important

aspect of any software system. Predictions made by the DDDAS wildfire program will

ultimately be used by firemen to effectively combat forest fires. Due to the hazardous

nature of fighting forest fires it is important to get the information to the users in an

easy to use and timely manner.

Developing an intuitive graphical user interface for the visualization tool was an

important design goal of our project. The interface should overlay the fire location

information on the appropriate map and include the geographical coordinates. There

should be a simple mechanism for zooming in and out of regions and scrolling along the

map.

The visualization tool needs to have the ability to accept information from different

sources. Information about fire location can come from various types of sensors or from

fire fighters. Also there is the need to accept the forecast generated by the wildfire

code.

Ease of installation is an important objective since the primary users of this program

probably will not be computer experts. The goal is to provide an installation package

that allows the user to install the program with minimal effort and technical knowledge.

An important requirement for the visualization tool is cross platform compatibility and

29

portability. We envisaged a system which would work seamlessly on many platforms

include mobile ones.

Another requirement of our project was to keep the overall cost of the system low. With

this in mind, we decided to restrict ourselves to software tools that are open-source or

are available free of charge.

Keeping the above constraints in mind we decided to display the wildfire information

using the most basic form of Google Earth.

4.2 Google Earth

Google Earth is a desktop application that allows the user to seamlessly explore the

Earth’s surface. It presents a virtual globe by superimposing images from satellite

imagery and aerial photography onto a 3-D sphere. Users can rotate the globe and zoom

in or out of places of interest. Google Earth can be customized to display user defined

objects (3-D models, images) on the virtual globe [1].

Figure 4.1. User interface for Google Earth

30

There are some distinct advantages in using Google Earth for displaying the wildfire

information. Firstly, it has an intuitive GUI which allows the user to access information

through a simple point and click mechanism. A map can be navigated by simply clicking

and dragging it using a mouse or any other pointing device. It is also very easy to zoom

in and out of locations.

Secondly, the Google Earth client software is available on many different platforms.

Further, the basic version of Google Earth is available free of charge. The feature

supported by this version meets all our requirements.

Third, the Google Earth client has the ability to check the server for updates and refresh

the displayed information as often as every 4 seconds.

Lastly, Google Earth uses a XML style configuration file to store geospatial information.

Information from any source can be displayed by simply entering the type of object

(icons, images, or place-marks) to be displayed along with its geographic coordinates in

this file. This allows us to easily incorporate data from many different sources.

4.3 Customizing Google Earth

Google Earth uses a configuration file with the extension .kml to describe the

information displayed on the virtual globe. KML (keyhole markup language) is a file

format used to display geographic data in an Earth browser, such as Google Earth,

Google Maps, and Google Maps for Mobile [2]. It can be used to overlay images, display

3-D objects such as buildings, and control the rate at which the displayed information is

updated. The structure of a kml file is based on the XML standard where information is

presented in a tag based format with nested attributes and properties. For example, a

31

KML file entry for displaying a marker on a certain location on the virtual globe will look

like this:

<?xml version="1.0" encoding="UTF-8"?>

<kml xmlns="http://earth.google.com/kml/2.1">

 <Placemark>

 <name>Marker</name>

 <description>This is a marker.</description>

 <Point>

 <coordinates>20.0822,10,0</coordinates>

 </Point>

 </Placemark>

</kml>

Figure 4.2. Screenshot showing the marker object as described by the sample KML file

See [7] for a complete reference to the various tags used in KML files.

32

4.4 Implementation overview

The current version of the visualization program is designed to display the locations of

wildfires in North America. Details about this implementation are further discussed in

Section 4.4.1 and Section 4.4.2.

4.4.1 Information gathering

All the information pertaining to the locations of wildfires is collated from the website of

the National Oceanic and Atmospheric Administration or NOAA. NOAA’s website

provides a daily update of the locations of wildfires throughout North America. This data

is stored in a file named modeislatest24hr.dbf and can be downloaded from the URL [8].

We have used the GNU Wget utility to download modeislatest24hr.dbf from NOAA’s FTP

site. GNU Wget is a free utility that permits non interactive downloads from the web. It

supports HTTP, HTTPS, and FTP protocols [3]. We put a Wget command in a shell script

and used a crontab file to run the script every 10 minutes. The Wget utility checks to see

if there is any modification to the file and downloads it only if changes have been made.

A line in a crontab file has the following syntax [4]:

 Minute Hour Day-of-month Month Day-of-week command to be executed

Our crotab file has the entry:

 0-50/10 * * * * /usr/local/GoogleEarth/downloadtrans >/dev/null 2>&1

The portion “0-50/10 * * * *” tells the Cron utility to execute the script every hour at

minutes 0 to 50 skipping 10 values. Therefore the script will run every hour at 0, 10, 20,

30, 40 and 50 minutes [5]. Thus, the downloadtrans script will be executed every 10

minutes. Every time the Cron utility executes a job specified in the crontab file it sends

33

an email to the user. To disable this feature the command “>/dev/null 2>&1” has been

included.

The downloadtrans script file contains commands for the execution of the Wget utility

and for running a Python script. It contains the following entries:

cd <path to the directory containing the code>

wget -N --limit-rate=20k <URL to the FTP site hosting the wildfire location data>

.<path to the directory containing python script>/Python run.py

For now we will limit our discussion to the entry dealing with execution of the Wget

utility. The third line which executes a Python script is discussed in Section 4.3.2. Wget is

an utility that permits non-interactive downloads from the web. It can be set up to run

in the background and download files from the web while the user is not logged in. It

supports HTTP, HTTPS, and FTP protocols *3+. The “-N” option turns on a feature known

as timestamping. When timestamping is enabled, the Wget utility checks to see if the

file being downloaded exists locally. If yes, it asks the server for the last modified date of

its copy of the file. If this file is newer than the local version of the file then it is

downloaded and the local file is overwritten with the new one *3+. The “--limit-rate”

option is used to limit the download rate. Here the upper limit on the download rate has

been set to 20K or 20000 bytes per second.

4.4.2 Data extraction and creation of KML files

In this section, we examine how data is extracted from the modislatest24hr.dbf file and

how the KML data files are created. DBF stands for dBase File Structure. This format was

34

originally developed to serve as the underlying file format for the dBase database

management system [6]. DBF files are used by a number of applications which are

collectively referred to as XBase. One such application is the Geographic Information

System (GIS) [9]. The structure of the DBF file format is available at the URL [10]. We

have used a Python script called dbfreader [11] to read and extract information from the

modislatest24hr.dbf file. This script is available free of charge at the URL [11].

Recall, from Section 4.3.1, that the last line of the downloadtrans file contains an entry

for the execution of a Python script called run.py. This script functions as the main

subroutine of our program. It has two major functions:

1. Extract information from the modislatest24hr.dbf file.

2. Use the information extracted in 1 to generate the fires.kml file.

 We will examine the working of the run.py subroutine with the aid of the pseudo code

given below.

1. Open the modislatest24hr.dbf file and store a pointer the file in variable f.

2. Call subroutine dbfreader using variable f as the input parameter and store the

return value in variable db. Variable db contains a set of records. The first and

second records contain field names and field datatypes respectively. The records

following record two contain the actual data.

3. Close modislatest24hr.dbf.

4. Store all the records, following record 2, in variable records.

5. Initialize an empty set of records called lon_lat.

6. Iterate through each record in variable records.

7. Since we are only interested in wildfire data pertaining to the North American

continent, we only consider records for which the latitude lies between 20 and

70 degrees and the longitude lies between -135 and -30 degrees. If a record

meets the above criteria it is append it to the set lon_lat. The system has been

deliberately restricted to display only fire locations in North America because

35

inclusion of a larger geographical area (such as the entire planet) significantly

slows down the system response time.

8. After the iterations are complete create a new file called fires.kml and store the

file pointer in variable f.

9. Call subroutine writeKML using variables f and lon_lat as input parameters.

10. Close fires.kml.

Recall from Section 4.2 that the geographic information displayed on the Google Earth

virtual globe is stored in the KML file format. Information stored in a KML file can be

viewed on the virtual globe by simply opening the file using Google Earth. As mentioned

earlier, we have employed Python scripts to generate a KML file (named fires.kml) using

the wildfire location data extracted from modislatest24hr.dbf. All the user has to do in

order to view the wildfire locations on the virtual globe is to open fires.kml in Google

Earth.

However, this approach makes it difficult to continuously update the fire location

information. In order to get the latest information, the user would have to periodically

download new versions of the fires.kml file from the server and reopen it in Google

Earth. To resolve this problem we decided to make two different KML files. One of them

is the fires.kml file, described earlier, and the second one is called doc.kml. Unlike

fires.kml which is updated periodically, the content of doc.kml does not change. The

later essentially contains a link to the server location where the fires.kml file is stored.

When doc.kml is opened in Google Earth, it downloads fires.kml from the link provided

and displays its contents on the virtual globe. The doc.kml file includes a timer attribute

which instructs Google Earth to download a new version of fires.kml from the server

after a certain time interval and update the display. All of this is carried out

automatically by Google Earth and relieves the user from having to manually check for

new updates. A portion of doc.kml is given below.

36

<NetworkLink>

 <name>Fires</name>

 <open>1</open>

 <URL>

 <href><URL hosting the file fires.kml ></href>

 <refreshMode>onInterval</refreshMode>

 <refreshInterval>300</refreshInterval>

 </URL>

</NetworkLink>

The URL listed between the <href></href> tags points to the location of the fires.kml

file.

The <refreshInterval> tag acts as a timer. It sets the time interval after which Google

Earth has to download a new version of fires.kml. The tag <refreshMode> tells Google

Earth on what event to refresh the screen. Here its value is set to onInterval, which

means that the screen will be refreshed every time the time interval specified by the

<refreshInterval> tag elapses. In other words the screen will be refreshed whenever

Google Earth downloads a new copy of fires.kml.

Google Earth has a built in utility that allows the user to create a compressed file out of

an ordinary KML file. This compressed file has the extension .kmz. A KMZ file may also

be used to store any icons or images that maybe used by Google Earth. This has the

37

advantage of allowing the KML file and all the images and icons used by it to be

packaged in a single file. Once a KMZ file has been created, it can opened using Google

Earth in the same manner as a KML file. There is no need to uncompress the KMZ file

before using it. We have packed the doc.kml file and all the icons and images needed by

our project in a file called fires.kmz. Users who wish to utilize our visualization tool need

only to download this file.

4.4.3 Instructions

We will now go over the procedure to setup and use the wildfire visualization tool. The

first step is to install the Google Earth client software. Google Earth can be downloaded

free of charge from the URL [7]. A link to this site is provided on our application’s

website. Next, the user needs to download the fires.kmz file from the application’s

website. The user then has to open the fires.kmz file in Google Earth to start the

visualization tool.

4.4.3.1 Virtual globe navigation

Next, we will familiarize ourselves with the Google Earth client and learn how to

navigate the virtual globe.

38

Figure 4.3. Navigation tools in Google Earth

Figure 4.2 shows controls for navigating the Google Earth virtual globe. To zoom in and

out of the screen use the vertical slide bar indicated by control 3 in the figure. Users

equipped with a mouse that has a scroll wheel can use it to control the zoom function.

The globe can be rotated by left-clicking on the globe and dragging the pointer in the

desired direction of rotation while keeping the left-click button pressed down. An

alternate way to rotate the globe is to use control 2, shown in Figure 4.2.

4.4.3.2 Viewing wildland fire data

In order to bring up the wildland fire positions the user needs to double click on the

node labeled wildfires in the navigation tree on the left hand side of the screen

(designated as control 1 in Figure 4.2). This will bring up all the current wildfire locations

in North America on to the screen. To view the details of a particular wildfire on the

screen, click on the fire icon on the globe. This will bring up a box displaying the latitude

and longitude of the fire. To zoom-in on the fire location, double click on the fire icon.

39

Figure 4.4. Figure showing a display box indicating the latitude and longitude of the

wildfire

Figure 4.5. Figure showing the location of a wildfire after zooming in.

The area covered by the darkened circular region, immediately below the fire icon,

roughly corresponds to 90 sq kilometers (about 22240 acres) and represents the area

under fire. This is not an accurate representation of the burning region. Later versions of

40

the visualization tool will be able to present a more accurate depiction of the region

under combustion.

41

Chapter Five: Conclusion

This thesis has explained the software implementation of an observation function for

the data assimilation module of the DDDAS wildfire simulation system. We have seen

the important role played by data assimilation in determining the state of the model at

the start of a forecast and in absorbing sensor data into the model. The main purpose of

data assimilation is to provide the base condition that will produce the best possible

model forecast. Data gathered from sensors contain inaccuracies and are often

unevenly distributed in time and space. Also sensor data may arrive out of order. The

DDDAS wildland fire system maintains snapshots of the system’s state over time *18+.

These are known as time-state vectors. A time-state vector contains a collection of

physical variables and properties of interest. Time-state vectors permit the injection of

out of order data into the system.

The observation function plays a critical role in data assimilation as it estimates the

values of the model variables at the sensor locations. The data produced by the

observation function from the model state is known as synthetic data. Synthetic data is

compared with the sensor data by the data assimilation module and the result is used to

adjust the initial state of the model prior to a forecast. The software implementation of

the observation function is split into two executables. One part resides in the model

executable and is called by the main function during the generator cycle. Currently this

module extracts the model variables corresponding to the horizontal wind velocity,

pressure, , buoyancy and the QV field. Temperature can be derived from either

buoyancy or fields and the QV field is used to determine the relative humidity. The

current implementation extracts these variables as they are required for the weather

station observation function. These values are written into a checkpoint file.

42

The part of the observation function that resides in the second executable does the bulk

of the processing. First, it maps the latitude and longitude of the weather stations to the

model grid coordinates. Second, it reads the vectors containing the model variables

from the checkpoint files and loads them into 3-D arrays. And third, it estimates values

of the model variables at the weather station coordinates. A multipoint interpolation

technique known as bilinear Equation is used to estimate the model variables at the

weather station coordinates from the model variables at the neighboring grid points.

 Our visualization tool makes use of Google Earth mapping tool to display the locations

of wildfires in real time. The software presents a virtual globe, which the users can

rotate and zoom in and out of. Google Earth allows users to overlay custom images and

3D models on the virtual globe. All the objects displayed on the virtual globe and their

properties are recorded in a configuration file which has the extension .kml. The

structure of a .kml is similar to XML and is used by applications such as Google Earth and

Google Map to store geographic information.

The visualization tool uses the GNU Wget tool to gather information on wildfire

locations from the Internet. The tool is executed automatically at set intervals using the

Crond background daemon. Before fetching the new data, Wget checks to see if it

differs from the data that was last fetched. If a change is detected, the new data is

fetched and the fire location data recorded in the .kml file is updated.

Google Earth is made available free of charge by Google Inc. It is available on many

platforms. The navigation tools in Google Earth are intuitive and user friendly. Currently

the visualization tool is configured to refresh the information displayed in Google Earth

once every ten minutes. However, the system can be configured to update the displayed

information as often as once every minute. Thus the software meets the original design

43

goals of developing a cost effective, portable and easy to use system for displaying

wildfire location information on a virtual map in real time.

Even though the system currently limits itself to displaying wildfire location information

gathered from the internet, it will be expanded to allow it to display the spread of a

wildfire as predicted the DDDAS wildland fire simulation system. The output of the

DDDAS will be in a netCDF file format. A server side script will download the output file

generated by the system at set intervals. A netCDF file reader will extract the

coordinates of the fire lines and write the information into the .kml file using the

existing kml file writer.

44

Appendix A.

The table below represents the level 2 data structure for the analysis code [14].

File Group Contents Index Locations

1 (1, 2, . , p)

2 (p+1, . , 2p)

3 (2p+1, . , 3p)

4 (3p+1, . , 4p)

5 (4p+1, . , 5p)

6 (5p+1, . , 6p)

7 (6p+1, . , 7p)

8 (7p+1, . , 8p)

9 (8p+1, . , 9p)

10 (9p+1, . , 10p)

11 (10p+1, . , 11p)

12 (11p+1, . , 12p)

13 (12p+1, . , 13p)

14 (13p+1, . , 14p)

15 (14p+1, . , 15p)

16 (15p+1, . , 16p)

45

References

1. Google Earth homepage,

http://earth.google.com, 03/03/2008

2. KML Documentation Introduction,

http://code.google.com/apis/kml/documentation/index.html, 03/03/2008

3. GNU Wget Manual,

http://www.gnu.org/software/wget/manual, 03/03/2008

4. Crontab – quick reference,

http://www.adminschoice.com/docs/crontab.htm, 03/03/2008

5. Information on crontab configuration,

http://www.ss64.com/bash/crontab.html, 03/03/2008

6. Description of .dbf file format,

http://filext.com/file-extension/dbf, 03/03/2008

7. KML Tutorial,

http://code.google.com/apis/kml/documentation/kml_tut.html, 03/03/2008

8. FTP server URL for downloading the .dbf file containing the wildfire location

data,

ftp://gp16.ssd.nesdis.noaa.gov/pub/FIRE/MODIS/GIS/modislatest24hr.dbf,

03/03/2008

9. Data formats and GIS,

http://coastwatch.noaa.gov/cw_form_shp.html, 03/03/2008

10. DBF File structure,

http://www.dbf2002.com/dbf-file-format.html, 03/03/2008

11. Raymond Hettinger: Reading Dbf file in Python,

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/362715,

03/03/2008

12. Craig C. Douglas, Jonathan D. Beezley, Janice Coen, Deng Li, Wei Li, Alan K.

Mandel, Jan Mandel, Guan Qin, and Anthony Vodacek: Demonstrating the

46

validity of a Wildfire DDDAS,

Computational Science – ICCS 2006. Volume 3993/2006.

Springer Berlin/Heidelberg, May 10, 2006. 522-529

13. Janice Coen, Jonathan Beezley, Lynn S. Bennethum, Craig C. Douglas, Minjeong

Kim, Robert Kremens, Jan Mandel, Guan Qin and Anthony Vodacek: A wildland

fire dynamic data-driven application system,

11th symposium on integrated observing and assimilation systems for the

atmosphere, oceans and land surface. American Meteorological Society, January

14-17, 2007. San Antonio. CD-ROM, Paper 3.12.

14. Terry L. Clark, William D. Hall, Janice Coen: Source code documentation for the

Clark-Hall Cloud-Scale Model,

Code version G3CH01. NCAR Tech. Note. NCAR/TN-426+STR, 1996, 174 pp

15. Janice Coen: Simulation of the Big ELK Fire using coupled atmosphere-fire

modeling,

International Journal of Wildland Fire. Volume 14, Number 1, 2005. 49-59

16. Anderson, H: Aids to determining fuel models for estimating fire behavior,

USDA Forest Service, Intermountain Forest and range Experiment Station, INT-

122 (1982)

17. http://www.metoffice.gov.uk/research/nw/analysis/, 03/03/2008

18. Jan Mandel, M. Chen, L.p. Franca, C. Johns, A. Puhalskii, J.L. Coen, C.C. Douglas,

R. Kremens, A. Vodacek, W. Zhao: A note on Dynamic Data Driven Wildfire

Modeling,

Computational Science – ICCS 2004. Volume 3038/2006.

Springer Berlin/Heidelberg, May 12, 2004. 725-731

19. F. Bouttier and P. Courtier: Data Assimilation concepts and methods,

http://www.ecmwf.int/newsevents/training/rcourse_notes/DATA_ASSIMILATIO

N/ASSIM_CONCEPTS/Assim_concepts2.html#962570, November 2007

20. http://www.pnas.org/cgi/content/full/97/21/11143, 03/03/2008

47

21. Geir Evensen: Sampling strategies and square root analysis schemes for EnKF,

Ocean Dynamics (2004) 54: 539-560 DOI 10.1007/s10236-004-0099-2

22. Geir Evensen: The Ensemble Kalman Filter: Theoretical formulations and practical

implementation,

Nansen Environmental and Remote Sensing Center, Bergen Norway.

23. Jan mandel and Craig W. Johns: A two-stage Ensemble Kalman Filter for smooth

data assimilation,

 Environmental and Ecological Statistics, Volume 15, Number 1, 2008. 101-110

24. Jan Mandel: Overall documentation file for the wildfires project

25. Janice Coen, C.C. Douglas and Adam Zones: Access and Modification of Data in

the Wildfire Code

26. Terry L. Clark, Janice Coen and Don Lantham: Description of a Coupled

Atmosphere-Fire Model

27. Gernot Hoffmann (University of Applied Sciences, Emden): Interpolations for

Image Wrapping

http://www.fho-emden.de/%7Ehoffmann/bicubic03042002.pdf,

January, 2008

28. David Kidner, Mark Dorey and Derek Smith: What’s the point? Interpolation and

extrapolation with a regular grid DEM

http://www.geovista.psu.edu/sites/geocomp99/Gc99/082/gc_082.htm,

January 2008

29. W.Z. Shi, Q.Q. Li and C.Q. Zhu: Estimating the propagation error of DEM from

higher-order interpolation algorithms,

International Journal of Remote Sensing. Volume 26, number 14, 2005. 3069-

3084

30. Terry L. Clark, Mary Ann Jenkins, Janice Coen, and David Packham: A Coupled

Atmosphere-Fire Model: Convective Feedback on Fire-Line Dynamics

Journal of Applied Meteorology, volume 35, June 1996, 887 -899

48

31. Jan Mandel, Jonathan D. Beezley, Lynn S. Bennethum, Soham Chakraborty,

Janice L. Coen, Craig C. Douglas, Jay Hatcher, Minjeong Kim, and Anthony

Vodacek: A Dynamic Data Driven Wildland Fire Model,

Computational Science – ICCS 2007. Volume 4487/2007.

Springer Berlin/Heidelberg, July 13, 2007. 1042-1049

32. Jan Mandel, Lynn S. Bennethum, Jonathan D. Beezley, Janice L. Coen, Craig C.

Douglas, Minjeong Kim, and Anthony Vodacek: A wildland fire model with data

assimilation,

CCM Report 233, revised March 2007

33. Jan Mandel, Lynn S. Bennethum, Mingshi Chen, Janice L. Coen, Craig C. Douglas,

Leopoldo P. Franca, Craig J. Johns, Minjeong Kim, Andrew V. Knyazev, Robert

Kremens, Vaibhav Kulkarni, Guan Qin, Anthony Vodacek, Jianjia Wu, Wei Zhao,

and Adam Zornes: Towards a Dynamic Data Driven Application System for

Wildfire Simulation,

Computational Science – ICCS 2005. Volume 3515/2005.

Springer Berlin/Heidelberg, May 04, 2005. 632-639

34. Jonathan D. Beezley and Jan Mandel: Morphing Ensemble Kalman Filters,

Tellus. Volume 60A, 2007. 131-140

35. Jan Mandel and Jonathan D. Beezley, Predictor-Corrector and Morphing

Ensemble Filters for the Assimilation of Sparse Data into High-Dimensional

Nonlinear Systems,

11th Symposium on Integrated Observing and Assimilation Systems for the

Atmosphere, Oceans, and Land Surface (IOAS-AOLS), CD-ROM, Paper 4.12, 87th

American Meteorological Society Annual Meeting, San Antonio, TX, January 2007

49

Vita

Soham Chakraborty

Date of Birth: 08/23/1981

Place of Birth: Calcutta, India

Education:

Manipal Institute of Technology, Manipal, India June, 2004

Degree: Bachelor of Engineering

Major: Computer Science and Engineering

Professional Positions:

Infosys technologies Ltd, Bhubaneshwer, India 08/ 2004- 12/2005

Position: Software Engineer

University of Kentucky, Lexington, KY 09/2006 - 05/2007

Position: Research Assistant

Epic Systems Corporation, Verona, WI 11/2007 - Present

Position: EDI Interface Analyst

50

Publications:

Jan Mandel, Jonathan D. Beezley, Lynn S. Bennethum, Soham Chakraborty, Janice L.

Coen, Craig C. Douglas, Jay Hatcher, Minjeong Kim, and Anthony Vodacek: A Dynamic

Data Driven Wildland Fire Model,

Computational Science – ICCS 2007. Volume 4487/2007.

Springer Berlin/Heidelberg, July 13, 2007. 1042-1049

Craig C. Douglas, Divya Bansal, Jonathan D. Beezley, Lynn S. Bennethum,

Soham Chakraborty, Janice L. Coen, Yalchin Efendiev, Richard E. Ewing, Jay Hatcher,

Mohamed Iskandarani, Christopher R. Johnson, Deng Li, Minjeong Kim,

Robert A. Lodder, Jan Mandel, Guan Qin and Anthony Vodacek,

Dynamic data-driven application systems for empty houses, contaminant tracking, and

wild land fire line prediction,

Grid-based problem Solving Environments. Volume 239/2007.

Springer Berlin/Heidelberg, Nov 16, 2007. 255-272

	DATA ASSIMILATION AND VISUALIZATION FOR ENSEMBLE WILDLAND FIRE MODELS
	Recommended Citation

	ABSTRACT OF THESIS
	Title Page
	Acknowledgements
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF FILES
	Chapter One: Introduction
	Chapter Two: Background
	2.1 Atmosphere-Fire Model
	2.1.1 Model Overview
	2.1.2 Tracking fire line propagation
	2.1.2.1 Determining the rate of spread of the fire
	2.1.2.2 Identifying ignition of new fuel cells

	2.2 Data Assimilation
	2.2.1 An overview of data assimilation

	2.3 Data Sources

	Chapter Three: Observation Function
	3.1 Overview of the observation function scheme
	3.2 Extracting the model variables
	3.2.1 Levels of data storage
	3.2.1.1 First level
	3.2.1.2 Second level
	3.2.1.3 Third level

	3.3 Determining the sensor position
	3.4 Determining the model variables at the sensor position
	3.4.1 Determining values of vector model variables
	3.4.2 Determining values of scalar model variables

	Chapter Four: Visualization
	4.1 Overview
	4.2 Google Earth
	4.3 Customizing Google Earth
	4.4 Implementation overview
	4.4.2 Data extraction and creation of KML files
	4.4.3 Instructions
	4.4.3.1 Virtual globe navigation
	4.4.3.2 Viewing wildland fire data

	Chapter Five: Conclusion
	Appendix A.
	References
	Vita

