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ABSTRACT OF THESIS 
 
 
 
 

3D RECONSTRUCTION USING MULTI-VIEW IMAGING SYSTEM 
 
 
 
 This thesis presents a new system that reconstructs the 3D representation of dental 
casts. To maintain the integrity of the 3D representation, a standard model is built to 
cover the blind spots that the camera cannot reach. The standard model is obtained by 
scanning a real human mouth model with a laser scanner. Then the model is simplified by 
an algorithm which is based on iterative contraction of vertex pairs. The simplified 
standard model uses a local parametrization method to obtain the curvature information. 
The system uses a digital camera and a square tube mirror in front of the camera to 
capture multi-view images. The mirror is made of stainless steel in order to avoid double 
reflections. The reflected areas of the image are considered as images taken by the virtual 
cameras. Only one camera calibration is needed since the virtual cameras have the same 
intrinsic parameters as the real camera. Depth is computed by a simple and accurate 
geometry based method once the corresponding points are identified. Correspondences 
are selected using a feature point based stereo matching process, including fast 
normalized cross-correlation and simulated annealing.  
 
KEYWORDS: Mesh simplification, Local parametrization, Surface curvature, 
Interpolation, Multi-view image reconstruction 
 
 
 

 
 
 

 
           Conglin Huang      

 
                 05/2009                  

 
 



 
 

 
 
 
 
 
 
 
 
 
 

3D RECONSTRUCTION USING MULTI-VIEW IMAGING SYSTEM 
 
 
 
 
 

By 
 

Conglin Huang 
 
 
 
 
 
 
 
 
 
 
 

     Director of Thesis 
                       Fuhua Cheng       

 

                              Director of Graduate Studies 
                  Andrew M Klapper 

 
                        05/27/2009           



 

 
 

 
 
 
 
 

RULES FOR THE USE OF THESIS 
 
 

Unpublished theses submitted for the Master’s degree and deposited in the University of 
Kentucky Library are as a rule open for inspection, but are to be used only with due 
regard to the rights of the authors. Bibliographical references may be noted, but 
quotations or summaries of parts may be published only with the permission of the author, 
and with the usual scholarly acknowledgments.  
 
 
Extensive copying or publication of the thesis in whole or in part also requires the 
consent of the Dean of the Graduate School of the University of Kentucky.  
 
 
A library that borrows this thesis for use by its patrons is expected to secure the signature 
of each user. 
 
Name                              
 

Date 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________

________________________________________________________________________ 



 

 
 

 
 
 
 
 
 
 
 
 
 

 
THESIS 

 
 
 
 
 
 
 
 
 
 

Conglin Huang 
 
 
 
 
 
 
 

 
 

The Graduate School 

University of Kentucky 

2009 

 
 

 
 
 
 
 
 



 

 
 

 
 
 
 
 
 
 
 

3D RECONSTRUCTION USING MULTI-VIEW IMAGING SYSTEM 
 
 
 

 
 
 

__________________________________ 
 

THESIS 
__________________________________ 

 
A thesis submitted in partial fulfillment of 

the requirements for the degree of Master of 
Science in the College of Engineering at the 

University of Kentucky 
 

 
By 

 
Conglin Huang 

 
Lexington, Kentucky 

 
Director: Dr. Fuhua Cheng, Professor of Computer Science 

 
Lexington, Kentucky 

 
2009 

 
Copyright© Conglin Huang 2009 

 
 
 
 



 

iii 
 

ACKNOWLEDGEMENTS 
 

The following thesis, while an individual work, benefited from the insights and 

direction of several people. I would like to thank all of the people who helped make this 

thesis possible.  

First, I especially would like to thank my advisor and thesis director, Dr. Fuhua 

Cheng, for all of his enlightening guidance, inspiring encouragement, and tremendous 

support, and for providing me with the unique opportunity to work in the research area of 

graphics and computer vision. His knowledge of graphics and considerable experience 

often came to the rescue.  

Next, I would like to thank my committee members, Dr. Yang and Zhang, for 

their acceptance of this task and for their helpful comments and suggestions. Each 

individual provided insights that guided and challenged my thinking, substantially 

improving the finished product. 

In addition to the technical and instrumental assistance above, I received equally 

important assistance from my family and friends. Special thanks to my parents for 

instilling in me the desire to obtain the Master’s. Special thanks to my friends for their 

constant support.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

iv 
 

TABLE OF CONTENTS 
 
Acknowledgements   ............................................................................................................ iii
 
List of Figures   .................................................................................................................... vi
 
Chapter 1 Introduction   ........................................................................................................ 1
 
Chapter 2 Conceptual Development   ................................................................................... 5

Background and Related Work   ....................................................................................... 5
Subdivision Surfaces   ................................................................................................... 5
Simplification   .............................................................................................................. 5
Surface Interpolation of Irregular Meshes   .................................................................. 6
Multi-view Imaging   .................................................................................................... 7

Algorithms and Geometric Fundamentals   ...................................................................... 8
The Loop Algorithm   ................................................................................................... 8
Parametrization of Loop Subdivision Surfaces  ......................................................... 10

 
Chapter 3 Simplification & Interpolation   ......................................................................... 15

Simplification   ................................................................................................................ 15
Basic Idea   .................................................................................................................. 15
Pair Selection   ............................................................................................................ 16
Approximating Error with Quadrics   ......................................................................... 16
Algorithm Summary   ................................................................................................. 16
Results   ....................................................................................................................... 17

Interpolation   .................................................................................................................. 17
Basic Idea   .................................................................................................................. 18
Local Interpolation   .................................................................................................... 19
Local Blending   .......................................................................................................... 21
Curvature Computation   ............................................................................................. 22

 
Chapter 4 3D Reconstruction Based on Multi-view Imaging System   .............................. 25

Early Trials  .................................................................................................................... 25
Cylindrical Mirror   ..................................................................................................... 25
Square Glass Mirror   .................................................................................................. 27

Imaging System   ............................................................................................................ 28
Overview   ................................................................................................................... 28
Geometric Depth Computation   ................................................................................. 30

Reconstruction   .............................................................................................................. 33
Camera Calibration   ................................................................................................... 33
Correspondence  ......................................................................................................... 37

 
Chapter 5 Implementation Results   .................................................................................... 47
 
Chapter 6 Concluding Remarks   ........................................................................................ 52
 



 

v 
 

References   ......................................................................................................................... 53
 
Vita   .................................................................................................................................... 55
 
 

 



 

vi 
 

LIST OF FIGURES 
Figure 2.1 Cylindrical Mirror Multi-view System.   ............................................................. 7
Figure 2.2 Mirrors of different shapes.   ............................................................................... 8
Figure 2.3 Subdivision Masks for triangle Splines.   ............................................................ 8
Figure 2.4 Surface patch near an extraordinary vertex with its control vertices.   ............. 10
Figure 2.5 The mesh of Figure 2.5 after one Loop subdivision step.   ............................... 12
Figure 2.6 Three regular meshes corresponding to the three shaded patches.   .................. 12
Figure 2.7 Partition of the unit square into an infinite family of tiles   .............................. 13
Figure 3.1 Edge contraction.   ............................................................................................. 15
Figure 3.2 Simplification Results.   .................................................................................... 17
Figure 3.3 Gaussian Curvature.   ........................................................................................ 24
Figure 4.1 Cylindrical mirror.   ........................................................................................... 25
Figure 4.2 Image taken using cylindrical mirror.   ............................................................. 26
Figure 4.3 Square glass mirror.   ......................................................................................... 27
Figure 4.4 Image taken using square glass mirror.   ........................................................... 27
Figure 4.5 Double reflection.   ............................................................................................ 28
Figure 4.6 Square Tube Mirror.   ........................................................................................ 29
Figure 4.7 Overview of the multi-view imaging system.   ................................................. 29
Figure 4.8 Collinear relationship between a pixel and its corresponding points.   ............. 31
Figure 4.9 Geometric depth computation.   ........................................................................ 33
Figure 4.10 Image taken by the Square Tube Mirror.   ....................................................... 42
Figure 4.11 Image area labeling.   ....................................................................................... 42
Figure 4.12 Continuousness of the corresponding points on the same scanline.   .............. 45
Figure 5.1 Mirror calibration.   ........................................................................................... 48
Figure 5.2 Reconstruction of a single, non-textured tooth.   ............................................... 49
Figure 5.3 Original object and feature point cloud (from different angles).   ..................... 50
Figure 5.4 Original object and the disparity map.   ............................................................ 51



 

1 
 

Chapter 1 Introduction 

The purpose of this thesis is to present a system of reconstructing the 3D image of 

dental casts. The system includes simplification and interpolation of the standard model 

and a single-camera based multi-view imaging reconstruction process. 

Dental casts are widely used in dentistry to plan treatment for the patients. Three 

dimensional models provide a convenient and fast way to build prostheses. Furthermore, 

a 3D representation of dental casts is extremely useful for both doctors and patients.  

Some applications have already been used as a routine technique for dental examinations. 

Such as oral and maxillofacial radiology, including methods like computed tomography 

(CT), tomosynthesis [1] and tuned-aperture CT (TACT) [2]. Although the radiology 

techniques provide complete information of the jaw, the equipment is rather expensive. 

Moreover, the resolution is too low for 3D modeling.  

Recently, many efforts have focused on computer-vision based diagnosis in 

dentistry. Goshtasby et al. [3] presented a system that uses a range scanner to reconstruct 

the cast. The scanner is based on white light. The system uses a string that moves over 

the cast so that the scanner can capture the shadow profiles to create the model. D. 

Laurendeau and D. Possart [4] designed a computer-vision based technique for the 

acquisition of jaw data from inexpensive dental wafers. That system was capable of 

obtaining imprints of human teeth. David Tasman and Allan G. Farman [5] presented a 

technique using a sequence of optical images. The approach uses a modified shape from 

shading (SFS) algorithm which uses camera calibration and perspective projection to 

compute the 3D points.  
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Our approach relies on the images that were captured by the camera, which means 

some part of the jaw or teeth will be hard to reach.  To solve this problem, a standard 

model is needed. The model is obtained by scanning real teeth and gum plastic models. 

The laser scanner provides complex, highly detailed meshes in order to maintain a 

convincing level of realism. However, the full complexity of such models is not always 

necessary. So we applied a thinning process [6] to get simplified models. 

The algorithm maintains surface error approximations using quadric matrices and 

iteratively contract vertex pairs to simplify models. The steps are as follows: 

1. A fundamental error quadric K is computed for every point on the mesh which 

can be used to find the squared distance of any point in the space to the planes incident on 

the point. In other words, the cost of contracting a pair of vertices is computed as the sum 

of distances between the new point and the planes incident on the original vertices. The 

cost is represented as Q. 

2. Vertex pairs are considered as edges in our implementation.  Compute the 

optimal contraction target v for each pair. The point v minimizes the cost (Q) for both 

vertices of this pair. Place all the pairs in a heap keyed on cost with the minimum cost 

pair at the top.  

3. Iteratively remove the pair of the least cost from the heap, contract this pair, 

and update the costs of all valid pairs involving the vertices in this pair.  

In order to apply future process to the simplified model such as segmentation, 

reconstruction, and registration, curvature estimation is necessary. Curvature information 

can be easily obtained if the local parametrization is known. The method [7] used in our 

project is to interpolate the interested region of the given mesh with a C2 -continuous, 
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locally blended Loop subdivision surface [8] and use curvature of the locally blended 

Loop surface as an approximation to the curvature of the given mesh. The constructed 

surface faithfully reflects the shape of the interested region of the given mesh. Actually, 

since the locally blended Loop surface has continuous curvature everywhere, one can 

compute curvature for any point of the given mesh in any direction. The construction of 

the locally blended Loop surface requires two steps. First, a Loop subdivision surface that 

interpolate vertices of the interested region of the given mesh is constructed using a 

technique similar to the progressive interpolation technique for B-splines [9],[10],[11]. A 

blending technique similar to the one used for Catmull-Clark subdivision surfaces [12] is 

then applied to vicinities of the extra-ordinary points to ensure boundedness and 

continuity of curvature at the extraordinary points. Then each triangular face of the given 

mesh is parametrized using parametrization of the corresponding patch of the locally 

blended Loop surface.  

Our imaging system consists of a digital camera and a square tube mirror in front 

of the camera. A bracket is built to support the camera and the tube mirror as well as the 

human jaw. The bracket has wheels so that each part of the system can be moved freely 

to adjust the distance between them. The mirror is made of stainless steel in order to 

avoid double reflections.  

The imaging system for capturing 3D shapes is based on stereopsis. The classic 

computer stereo vision uses two cameras to take pictures of the same scene. They are 

separated by a distance - just like our eyes. A computer compares the images while 

shifting the two images together over top of each other to find the parts that match. The 

shifted amount is called the disparity. The disparity at which objects in the image best 
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matches is used by the computer to calculate their distance. Although the system has only 

one camera, the reflected areas of the image are considered as the images taken by the 

virtual cameras. The square tube mirror creates four areas that are reflected only once, so 

the image can be considered as five views taken by five different cameras. The mirror not 

only gives us the multi-view images but also gives us advantageous properties that can be 

used in the depth computation. In most camera configurations, finding corresponding 

points requires a search in two dimensions. However, if the two cameras are aligned to 

have a common image plane, the search is simplified to one dimension - a line that is 

parallel to the line between the cameras. In our system, if the mirror plane and the optical 

axis of the camera are parallel, the virtual cameras and the real camera shares the same 

image plane. This will give us image rectification [33]. At this time, all corresponding 

points are at the same scan line. Using this property, a very simple but accurate geometry 

depth computation method (mentioned in Chapter 4) can be applied.  

The virtual cameras have the same intrinsic parameters as the real camera so only 

one camera calibration is needed. Correspondences are selected by using a feature point 

based matching process. Building a 3D representation does not require the depth of all 

pixels, in fact, if the depths of all pixels in the image are computed, a large number of 

them will have incorrect results. Especially when dealing with objects with solid color 

and produces specular reflection like human teeth. So building the 3D model based on the 

feature points will give us better results and enough points for the model. Canny edge 

detection is used to identify the feature points. Fast normalized cross-correlation and 

simulated annealing are used for stereo matching of the feature points as well as the 

constraint conditions. 
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Chapter 2 Conceptual Development 

Background and Related Work 

Subdivision Surfaces 

Subdivision surface is a method of representing a smooth surface via the 

specification of a coarser piecewise linear polygon mesh. The smooth surface can be 

obtained from the control mesh by recursively subdividing each polygonal face into 

smaller faces that better approximate the smooth surface. The ability to model arbitrary 

topology surfaces makes them more suitable than classical spline surfaces in some 

applications. There are subdivision methods using approximating schemes, such as the 

Catmull-Clark subdivision scheme [13] proposed in 1978, which is the generalization of 

bi-cubic spline surface. The Doo-Sabin subdivision method [14] is the generalization of 

quadratic spline surface. Later, the Loop subdivision scheme [8] was developed for 

triangular meshes which generalize the Box splines. There are also interpolating 

subdivision schemes that interpolate the given mesh, including the butterfly subdivision 

method [15] which was modified subsequently to generate smoother interpolation 

surfaces in [16]. An interpolating scheme for quadrilateral meshes was proposed in [17]. 

 

Simplification 

Surface mesh simplification is the process of reducing the number of faces used in 

the surface while keeping the overall shape, volume and boundaries preserved as much as 

possible. It is the opposite of subdivision. Over the past several years a large amount of 

works have been done on mesh simplification. The methods have various algorithms and 

can be classified into several different categories. Jarek Rossignac and P. Borrel [18] 
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introduced a vertex clustering method which group vertices into clusters and determine a 

single representative vertex. Iteratively merge clusters into larger clusters until only a 

single cluster/vertex remains. The algorithm is fast and simple but open has bad output 

quality. William J. Schroeder [19] presented a decimation algorithm which iteratively 

removes vertices that pass a certain distance/angle criterion. Among all the simplification 

algorithm categories, edge collapse is considered as the most often used primitive 

operation. The vertices connected by an edge are collapsed into a single representative 

vertex. Michael Garland and Paul S. Heckbert [6] uses a remarkable error metric that can 

be used for efficient generation of multiple levels of detail for a given triangle mesh of 

arbitrary topology.  

 

Surface Interpolation of Irregular Meshes 

Interpolation is widely used in many computer graphics fields such as surface 

design and shape modeling. Plenty of publications have discussed the interpolation 

problem using various surface representations. Interpolation algorithms based on 

subdivision surfaces have also been developed as the appearance of recursive subdivision 

surfaces. There are methods which are required to solve a global system of linear 

equations, like [20, 21]. To avoid the computational cost of solving a large system of 

linear equations, in [22], an always-working method solved the problem by using a two-

phase subdivision method. The method presented in [23] avoids solving a system of 

linear equations by using the concept of similarity. There is also an approach that [24] 

avoids solving a system of linear equations by using quasi-interpolation. 
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Multi-view Imaging 

Normal computer stereo vision uses two cameras takes the same scene from 

different angles. Then the computer can calculate the distance of the object by comparing 

the two images and find the disparity of the object on the images. Multi-view imaging 

system uses only one camera but it is still able to calculate the object depth. In most cases 

the system uses specially designed mirrors to create virtual cameras. Using the scene that 

is captured by the real camera and the virtual cameras the computer can use the same 

scheme as the normal computer vision to calculate the object depth. Yuuki Uranishi 

introduced a multi-view imaging system [25] that uses a cylindrical mirror. The object is 

placed inside the cylindrical mirror, see Figure 2.1. A camera which uses a fish eye lens 

captures from the top of the mirror.  

   

Figure 2.1 Cylindrical Mirror Multi-view System 
 

Correspondence can be found on the radial lines of the captured image. Shree K. 

Nayar [26] presented a system that is similar. Instead of placing the object inside of the 

mirror, the object is placed outside on the other end of the mirror. The camera looks 
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through a hollow cone that is mirrored on the inside. The mirror has different shapes, 

shown in Figure 2.2. 

 

Figure 2.2 Mirrors of different shapes.  
 

Algorithms and Geometric Fundamentals 

The Loop Algorithm 

 This algorithm generalizes the subdivision of a regular triangular mesh [8].  A 

triangular mesh is a control point mesh whose faces are all triangles. Derivation of the 

generalized subdivision rules for Loop algorithm begins with an abstraction of the 

geometric properties of the subdivision masks. These masks are as follows (Figure 2.3): 

 

 

Figure 2.3 Subdivision Masks for triangle Splines. 
 

http://en.wikipedia.org/wiki/Subdivision_surface�
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Mask A generates new control points for each vertex, and masks of B generate new 

control points for each edge of the original regular triangular mesh. 

 The masks of B compute the new edge points as convex combinations of the 

vertices of the two triangles that share the edge. In an arbitrary triangular mesh, each 

edge will be shared by two triangles. Therefore, an obvious generalization is to leave this 

subdivision rule intact. Like the Catmull-Clark algorithm, generalization of a vertex point 

is more difficult. 

 To derive the new vertex point rule, consider mask A. The new vertex point V , 

can be computed as a convex combination of the old vertex, and all old vertices that share 

an edge with it. Alternatively, this same point may be found indirectly as a convex 

combination of two points. These points are: V , the old vertex point, and Q , the 

average of the old points that share an edge with V . The new vertex point is computed 

as  

QVV
8
3

8
5

+=                            (2.1) 

This can be applied to an arbitrary triangular mesh. 

 In the special case of a regular triangulation, the algorithm is equivalent to binary 

subdivision of a surface. Three iterations of the algorithm based on the rules just 

described are shown in Figure 2.3. As subdivision proceeds, the triangular control point 

mesh becomes locally regular, except at a fixed number of extraordinary points. For this 

new algorithm, only extraordinary points correspond to vertices of the original mesh 

rather than its faces. The surface of this algorithm is locally 2C -continuous everywhere, 

except at the extraordinary points. 
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Parametrization of Loop Subdivision Surfaces 

Jos Stam presented a parametrization method for Loop subdivision surfaces [27]. 

By using Loop subdivision rules any triangular mesh can be refined. In the limit of an 

infinite number of subdivisions, a smooth surface is obtained. The original Loop 

subdivision can only be parametrized by avoiding extraordinary vertices (whose valence 

N is not 6). The method provides a way to efficiently evaluate parametrizations near 

extraordinary points.  

The initial mesh used in this method is assumed to be subdivided at least twice, in 

order to isolate the extraordinary vertices so that each face contains at most one 

extraordinary vertex. The situation around an extraordinary vertex of valence N is 

depicted in Fig. 2.5. The shaded triangle in this figure is defined by the 6+= NK  

control vertices surrounding the patch. The extraordinary vertex corresponds to the 

parameter value u = 1. Since the valence of the extraordinary vertex in the middle of the 

figure is 7=N , there are 13=K  control vertices in this case.  

 

Figure 2.4 Surface patch near an extraordinary vertex with its control vertices. 
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The initial control points set is denoted by matrix ),,( ,01,00 K
T ccC = ,where 

6+= NK . After one subdivision, a new set of 6+= KM control points (see Figure 2.6) 

will be generated. Subsets of these new vertices are the control vertices of three regular 

triangular patches. Therefore, three-quarters of the surface patch is parametrized. This 

new set of vertices is denoted by ),,( ,11,11 K
T ccC = and ),,,( ,11,111 MK

TT ccCC += . 

Then, the subdivision step is simplified to a multiplication process: 

01 ACC = ,                            (2.2) 

where matrix A  is a KK × subdivision matrix. It has the following block structure: 

  







=

1211

0
SS

S
A .                          (2.3) 

The additional points needed to evaluate the three triangular patches are defined using a 

bigger matrix A of size KM × : 

01 CAC = ,                             (2.4) 

where 

 















=

2221

1211

0

SS
SS

S
A .                           (2.5) 

The subdivision step of Equation 2.2 can be repeated to create an infinite sequence of 

control vertices: 01 CAACC n
nn == −  and 0

1
1 CAACAC n

nn
−

− == , 1≥n . 
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Figure 2.5 The mesh of Figure 2.5 after one Loop subdivision step.  
 

 
Figure 2.6 Three regular meshes corresponding to the three shaded patches.  

 

 As noted above, for each level 1≥n , a subset of 12 vertices of nC  form the 

control vertices of a regular triangular patch. These control vertices can be defined by the 

following three 312× matrices: nknk CPB =, , where kP is a M×12  “picking” matrix 
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and 3,2,1=k . Then, the surface patch corresponding to each matrix of control vertices is 

defined as: 

),(),(),( ,, wvbPCwvbBwvs T
k

T
n

T
nknk == ,                    (2.6) 

where ),( wvb is the vector of basis functions. ]}1,0[,]1,0[|),{( vwvwv −=∈∈=Ω    

and 3,2,1=k .  

 

Figure 2.7 Partition of the unit square into an infinite family of tiles 
 

As shown in Figure 2.8 we can partition the parameter domain into an infinite set of tiles 

{ }n
kΩ , with 1≥n and 3,2,1=k . The surface patch is then defined by its restriction of each 

of these triangles: 

)),,(()()),((),( ,
1

0,, wvtbAAPCwvtswvs kn
Tn

k
T

knknn
k

−
Ω

==      (2.7) 

where the transformation knt , maps the tile n
kΩ onto the unit squareΩ : 
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 The eigenstructure of matrix A can be written as 1−Λ= VVA . Let 0
1

0
ˆ CVC −=  

be the projection of the initial control vertices onto the eigenspace of A and let ),( wvΦ  

be the K-dimensional vector of eigenbasis functions defined by: 

)),(()(|),( ,
1 wvtbVAPwv kn

T
k

n
n
k

−
Ω

Λ=Φ   1≥n  and .3,2,1=k  

So the basis function can be evaluated as: 

),()2/,2/( wvwv ΛΦ=Φ .    (2.8) 

Now triangular surface patch can be written as: 

    ),(ˆ),( 0 wvCwvs TΦ= .      (2.9)
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Chapter 3 Simplification & Interpolation 

Simplification 

Basic Idea 

Since the scanning system cannot take images from every angle of the teeth of 

patients, building a standard model is necessary in order to maintain the integrity of the 

3D representation. Every tooth as well as the upper and lower gum of the standard model 

is scanned separately by a laser scanner, which provides highly detailed results. Each 

tooth has about 10,000 vertices and about 20,000 faces. This large amount of data will 

make the future computation extremely slow and it would also be a waste of storage 

space. In order to reduce the complexity but also keep the accuracy of the model, a 

quadric error based simplification process is used.   

The basic idea of the simplification algorithm [6] is based on the iterative 

contraction of vertex pairs. A pair contraction (Figure 3.1) moves the vertices v1 and v2 

to the new position , connects all their incident edges to v1, and deletes the vertex v2. 

Subsequently, any edges or faces which have become degenerate are removed. 

       

Figure 3.1 Edge contraction. 
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Pair Selection 

We have chosen to select the set of valid pairs at initialization time, and to 

consider only these pairs during the course of the algorithm. In our case, all vertices that 

share one edge are considered as a pair.  

 

Approximating Error with Quadrics 

In order to select which pair to contract during the iteration, we need to define the 

cost of contract for each pair. The contract cost is defined as the error at each vertex. We 

associate a symmetric 4×4 matrix Q  with each vertex, and we define the error at vertex 

T
zyx vvvv ]1[=  to be the quadratic form Qvvv T=∆ )( . Note that )(v∆ is the error with 

respect to Q . For a given contraction vvv →),( 21 , we must derive a new matrix Q  

which approximates the error at v . Here we chose to use the simple additive rule 

21 QQQ += . 

 

Algorithm Summary 

The algorithm maintains surface error approximations using quadric matrices and 

iteratively contract vertex pairs to simplify models. The steps are as follows: 

1. A fundamental error quadric K is computed for every point on the mesh which 

can be used to find the squared distance of any point in the space to the planes incident on 

the point. In other words, the cost of contracting a pair of vertices is computed as the sum 

of distances between the new point and the planes incident on the original vertices. The 

cost is represented as Q. 
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2. Vertex pairs are considered as edges in our implementation.  

3. Compute the optimal contraction target v for each pair. v is the point that can 

minimize the cost (Q) for both vertices of this pair.  

4. Place all the pairs in a heap keyed on cost with the minimum cost pair at the top.  

5. Iteratively remove the pair of the least cost from the heap, contract this pair, 

and update the costs of all valid pairs involving the vertices in this pair.  

 

Results 

The algorithm provides efficiency as well as good results: 

 

  Figure 3.2 Simplification Results.  
 

Interpolation 

Interpolation can provide us the local parametrization of the teeth mesh, which 

can be used to get curvatures of the mesh surface. The interpolation technique guarantees 

that the resulting surface reflects the local shape of the mesh, including features such as 

edges and corners.  
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Basic Idea 

First, we use a progressive interpolation technique [9],[10],[11] to find a Loop 

subdivision surface [8] that interpolates the interested region of the given triangular mesh. 

The idea is to view the given triangular mesh as the control mesh of a Loop subdivision 

surface, and iteratively upgrade locations of the vertices of this mesh until a new control 

mesh whose limit surface interpolates the given mesh is obtained. The limit of the 

iterative interpolation process has the form of a global method, but the control points of 

the limit surface can be computed using a local approach. Therefore, the interpolation 

technique enjoys the advantages of both a local method and a global method.  

With the technique for evaluating Loop subdivision surfaces at arbitrary 

parameter values being available [27], we can find the parametrization of each triangular 

surface of the control mesh. The computations of the first and second fundamental forms 

are easy since the parametrization of the surfaces are known. 

However, a standard Loop subdivision surface is only C1 -, not C2 -continuous at 

extraordinary points. To avoid infinite curvature at the extra-ordinary points, the surface 

is then modified by applying a local blending technique similar to the one used for 

Catmull-Clark subdivision surfaces [12] to vicinities of extra-ordinary points of the given 

mesh. The blending process is done by blending the Loop surface with a low degree 

polynomial defined locally over a characteristic map of the extra-ordinary point [28]. The 

modified Loop surface is C2 -continuous everywhere and, hence, has bounded and 

continuous curvature at the extra-ordinary points. This blending process does not change 

the value of the Loop surface at the extra-ordinary points. Therefore the modified Loop 

surface still interpolates all the vertices of the interested region of the given mesh. 
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Note that, with the parametrization known, we can compute not only the Gaussian and 

Mean curvatures at every point of the original mesh, but also curvatures in any direction 

at any point on the limit surface. 

 

Local Interpolation 

The process of constructing an interpolating Loop subdivision surface based on 

progressive interpolation technique is described below. 

Given a 3D triangular mesh 0MM = . To interpolate the vertices of a region of 

0M  with a Loop subdivision surface, one needs to find a control mesh M whose Loop 

surface passes through all the vertices of that region of 0M  . Without loss of generality, 

we shall assume that region is 0M  itself. The job of finding the relationship between the 

vertices of M  and the vertices of 0M  will be achieved through an iterative process, 

instead of a direct process. 

First, we consider the Loop surface 
0S  of 0M  . For each vertex 

0V  of 0M  , 

we compute the distance between this vertex and its limit point 
0
∞V  on 

0S  , 

000
∞−= VVD , 

and add this distance 
0V  to get a new vertex called 

1V  as follows: 

001 DVV −= . 

The set of all the new vertices is called 1M  . We then consider the Loop surface 
1S  of 

1M  and repeat the same process. 
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In general, if kV  is the new location of 
0V  after k iterations of the above 

process and kM  is the set of all the new kV  's, then we consider the Loop surface kS  

of kM  . We first compute the distance between 
0V  and the limit point kV∞  of kV  on 

kS  

kk VVD ∞−= 0 . 

We then add this distance to kV  to get 1+kV  as follows: 

kkk DVV +=+1 . 

The set of new vertices is called 1+kM  . 

This process generates a sequence of control meshes kM  and a sequence of 

corresponding Loop surfaces kS  . kS  converges to an interpolating surface of 0M  if 

the distance between kS  and 0M  converges to zero. Therefore the key task here is to 

prove that kD  converges to zero when k tends to infinity. This will be done in the 

Appendix. 

Note that for each iteration in the above process, the main cost is the computation 

of the limit point kV∞  of kV  on kS . For a Loop surface, the limit point of a control 

vertex V with valence n can be calculated as follows: 

QVV nn )1( ββ −+=∞ , 

where 

))2cos
4
1

8
3(

8
3(811

3
2

n

n π
β

++×−
= , 

and 
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∑
=

=
n

i
iQ

n
Q

1

1 . 

iQ  are adjacent vertices of V . This computation involves nearby vertices only. Hence 

the progressive interpolation process is a local method and, consequently, can handle 

meshes of any size. 

Another point that should be pointed out is, even though this is an iterative 

process, one does not have to repeat each step strictly. By finding out when the distance 

between 0M  and kS  would be smaller than the given tolerance, one can go directly 

from 0M  to kM , skipping the testing steps in between. 

 

Local Blending 

With the construction of the Loop subdivision surface in the previous section, we 

can define a local (u, v) parameterization for each triangular face of the given mesh [27]. 

In case one of the vertices is an extra-ordinary point, then (0,0) is set at the extraordinary 

point. The limit surface S(u,v) is C2 -continuous for (u, v) different from (0,0) and C1

Then a low degree polynomial P(u, v) is calculated to approximate the original 

Loop limit surface S(u,v) near the extraordinary point. For simplicity, and also to avoid 

unexpected oscillations, quadratic polynomials are used here for P(u, v) . We calculate 

limit points on the subdivision surface after 3 levels of recursive subdivision. Knowing 

the values of the limit points and the (u, v) parameter values we can calculate the 

coefficients of P(u, v) by a least-squares fit.  

 -

continuous at (0,0) . We assume each face has at most one extra-ordinary vertex here. If 

this is not the case, simply perform one subdivision on the constructed Loop surface first. 
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Using an approach similar to the one used for Catmull-Clark subdivision surfaces 

[12], the modified surface S  is defined as: 

S (u,v) =S(u,v)W(u,v)+P(u,v)(1 - W(u,v)), 

where 0 <W(u, v) <1, is a C2

S

 continuous weight function that decays to zero at (0,0) , 

thereby canceling the irregularity of S(u,v) . Since the modified surface  coincides 

with P at the origin, P(0,0) =S(0,0) . 

The following formula is chosen to define W(u, v) : 

)683(),( 22 +−= ρρρvuW   ,  1,/22 ≤+= ρλρ vu . 

λ  is the sub-dominant eigenvalue of the subdivision matrix related to an extraordinary 

vertex of valence n . 

At the extraordinary point itself, the modified surface S  coincides with P up to 

its second-order derivatives, due to the interpolation requirement S(0,0) =P(0,0) . Thus, 

for evaluating S  and its derivatives at the extraordinary point, we only need to evaluate 

the polynomial P at (0,0) . 

 

Curvature Computation 

After applying local blending on each extraordinary point, we have the 

parametrization for each face that gives C2

The first fundamental form: 

 -continuity. Hence, we are able to compute the 

Gaussian and Mean curvature at all points on the original mesh:  

,, >=< uu XXE  

,, >=< vu XXF  
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., >=< vv XXG  

The second fundamental form: 

,, >=< uuXNe  

,, >=< uvXNf  

., >=< vvXNg  

Normal of a vertex can be computed either using the standard approximation technique of 

averaging the normals of adjacent faces, or by acquiring the cross product of uX  and 

vX  at that vertex. It turns out that, as expected, getting the cross product of two 

directional derivatives based on the parametrization is much more precise.  

Based on the equations of Weingarten, we obtain Gaussian curvature K and Mean 

curvature H as follows: 

),/()( 22 FEGfegK −−=  

)).(2/()2( 2FEGgEfFegH −+−=  

The principle curvatures 1k and 2k are the roots of the quadratic equation: 

022 =+− KHkk , 

that is, 

KHHk −±= 2 . 

 Figure 3.3 shows the Gaussian curvature of a tooth: 
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   Figure 3.3 Gaussian Curvature.
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Chapter 4 3D Reconstruction Based on Multi-view Imaging System 

Early Trials 

 3D reconstruction has been widely used and has its applications in almost every 

industry. Many different methods have been developed and used in reconstruction of 

artifacts, buildings, industry measurement, human body, etc. All these technologies have 

their own advantages. Our case, which is building the 3D representation of human teeth, 

requires a safe, convenient and efficient way to reconstruct. Since image based 3D 

reconstruction satisfies these factors, plus the cameras nowadays can provide high 

resolution pictures even if they are small enough to be put into a human mouth, we 

choose computer vision method in our application.  

 Although cameras can be made fairly small, putting several cameras into a 

patient’s mouth is not a convenience way. Therefore, to obtain multi-view image, we use 

mirrors to provide “virtual cameras” from the reflections.  

 

Cylindrical Mirror 

 First we tried the cylindrical mirror in the previously mentioned Shree K. Nayar’s 

work [26]. The mirror was made so both the rear and the near openings are the same size.  

 

Figure 4.1 Cylindrical mirror. 
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Figure 4.2 Image taken using cylindrical mirror. 
 

Figure 4.1 is a picture of the cylindrical mirror and figure 4.2 shows the image that is 

taken using the mirror. The advantage of this mirror is that you can always find the 

corresponding points on the same diameter line of the image, for each radial slice of the 

captured image has its unique virtual cameras. This property requires that the optical axis 

must pass through the center of the mirror and be parallel to every mirror surface tangent 

plane. Although it sounds every easy to achieve, we found it very hard to calibrate. 

Furthermore, as we can see in Figure 4.2, the image is heavily blurred. This is because 

the distance between the object and the virtual camera are much longer than the distance 

between the object and the real camera, but the focusing distance of the real and virtual 

cameras are still the same. The blurring makes correspondence work very difficult. Due 

to the drawbacks of the cylindrical mirror, we decided to come up something new.  
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Square Glass Mirror 

To find a design that is easy to calibrate and be able to provide us less blurring 

image is our goal. So we tried something shown in Figure 4.3: we taped four same flat, 

rectangular glass mirrors together to make them like a tube mirror. Figure 4.4 is the 

image taken using this mirror.  

 

Figure 4.3 Square glass mirror. 
 

 

Figure 4.4 Image taken using square glass mirror. 
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This design gives us a much less complicated scheme because there are only four virtual 

cameras instead of many. Moreover, the reflected image looks much less blurred than the 

one reflected by cylindrical mirror. Still there is one drawback of this design. As you can 

see in Figure 4.4, the reflections have double images. This is because the surface of the 

mirror is glass. Shown in Figure 4.5, the glass surface will reflect part of the light, and 

refract the other light to the mirror surface. When the other part of the light being 

reflected back, they won’t have the same trace as the part that is reflected by the glass 

surface.  

 

Figure 4.5 Double reflection.  
 

Imaging System 

Overview 

 To overcome the drawbacks of these early trials, we changed the material of the 

square mirror to stainless steel. Figure 4.6 shows the look of the square tube mirror and 

Figure 4.7 is an overview of the entire system. The camera, the mirror and the object are 

all on the same bracket with each of them has a standalone, movable support underneath. 

One can adjust the distances between them freely without calibrate the centers again. 
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Figure 4.6 Square Tube Mirror.  
 

 

Figure 4.7 Overview of the multi-view imaging system. 
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Geometric Depth Computation 

In our case, we can consider that the reflections are images taken by the virtual 

cameras. Since they are reflections, the geometry we have here posses some properties 

that we can take advantage of.  

1. Since the virtual cameras can be considered as the reflections of the camera itself, the 

virtual cameras will have the same properties of the real camera. Once the position 

and the direction of the mirrors are known, we only need to do the calibration of the 

real camera to find the intrinsic parameters. Once the parameters of the real camera 

are known, the parameters of the virtual cameras are known. 

2. Between two cameras there is a problem of finding a corresponding point viewed by 

one camera in the image of the other camera. In most camera configurations, the two 

cameras are aligned to have a common image plane, so that the corresponding points 

will be on the same scanline. This is called image rectification. In our multi-view 

imaging system, mirror reflection properties give the same advantage of image 

rectification without calibrating between the real and the virtual cameras. As shown 

in figure 4.8, the scene point and its corresponding points are always on the same 

scanline.  
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Figure 4.8 Collinear relationship between a pixel and its corresponding points. 
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With these special properties of our system, we found out a geometry based depth 

computing method. It is easier and faster than the classic stereo vision depth computing 

approach.  

A cross section of the square tube mirror is shown in Figure 4.9. The optical axis lies 

in the center of the tube mirror. The angles between the optical axis and the mirrors are 

both g. O is the real camera center (center of projection), L and R are the virtual camera 

centers of left and right respectively. A is a point on the object. Assume that the length of 

AP is a’, and the length of AI is c’. The width of the mirror at the rear end (distance 

between the left and the right mirror) is w. Since OP is in the center, we have:  

ghdwca tan)(
2

'' −+=+ .    (4.1) 

B is the projection of A on the image plane, assume the length of BN is c. According 

to the properties of perspective projection,  OBN∆  is similar to OAI∆ , we have:  

     
d
h

c
c
=

'
.     (4.2) 

Substitute (4.2) into (4.1):  ghdw
h
dca tan)(

2
' −+=+ .   (4.3) 

Since h can be obtained by an easy calibration process, c is known, if a’ can be computed, 

d is solved. Using triangle similarity, 
xk
kd

b
a

+
−

=
'

 .     (4.4) 

Here, ghwb tan
2
−= .         (4.5) 

If we can get k and x, a’ is obtained. 

Again, using triangle similarity, 
kh

k
a
b

−
= , so 

ba
bhk
+

= .    (4.6) 
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Looking closely at triangles XYL and XYO we can get: ggbx cossin2= . (4.7) 

Substitute (4.4) (4.5) (4.6) (4.7) into (4.3) we get an equation with only d is unknown. 

 

Figure 4.9 Geometric depth computation.  
 

Reconstruction 

Camera Calibration 

Camera calibration is a necessary step in computer vision in order to obtain the 

parameters of the camera. In 1998, Zhengyou Zhang presented a technique for camera 

calibration [30]. It doesn’t require specialized knowledge of computer vision or 3D 

geometry. It provides good results and it is very easy to use. First we introduce the 

notation used in the calibration process. 

 

1. Notation 
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A 2D and a 3D point are denoted by Tvum ],[=  and TzyxM ],,[=  respectively. 

Tvum ]1,,[~ =  and TZYXM ]1,,,[~ =  are the augmented vectors by adding 1 as the last 

element. A camera is considered as a pinhole, so the relationship between a 3D point M 

and its image projection m is given by 

MtRAms ~][~ = ,    (4.8) 

where s is an arbitrary scale factor. ),( tR  is the rotation and translation which relates 

the world coordinate system to the camera coordinate system. It is called the extrinsic 

parameters. A, which is called the camera intrinsic matrix, is given by 
















=

1
0

0

v
u

A β
γα

, 

with ),( 00 vu  the coordinates of the principal point. The principle point is the 

intersection of the optical axis and the image plane. α and β  are the scale factors in 

image u and v axes, which are related to the focal length f. γ  the parameter describing 

the skewness of the two image axes. 

 

2. Homography between the model plane and its image 

In this calibration process, the camera needs to observe a planar pattern shown in a 

few different orientations. The plane which pattern lies on is called the model plane.  

The model plane is assumed on Z = 0 of the world coordinate system. The ith column of 

the rotation matrix R is denoted by ri. From (4.8), we have 
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1
0

1
21321 Y

X
trrA

Y
X

trrrAv
u

s . 

For a point M on the model plane, we have TYXM ],[= since Z is always equal to 0. In 

turn, TYXM ]1,,[~ = . Therefore, a model point M and its image m are related by a 

homography H: 

   MHms ~~ =  with ][ 21 trrAH = .   (4.9) 

The 3×3 matrix H is defined up to a scale factor. 

 

3. Constraints on the intrinsic parameters 

A homography can be estimated by giving an image of the model plane. It is denoted by 

][ 321 hhhH =  here. From (4.9), we have 

][][ 21321 trrAhhh λ= , 

where λ  is an arbitrary scalar. Using the knowledge that 1r  and 2r  are orthonormal, 

we have 

02
1

1 =−− hAAh TT ,      (4.10) 

2
1

11
1

1 hAAhhAAh TTTT −−−− = .    (4.11) 

These are the two basic constraints on the intrinsic parameters, given one homography. 

Because a homography has eight degrees of freedom and there are six extrinsic 

parameters (three for rotation and three for translation), we can only obtain two 

constraints on the intrinsic parameters.  
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4. Solving Camera Calibration 

Here we ignore the lens distortion to make the computation simpler. 

Let 
















≡= −−

332313

232212

131211
1

BBB
BBB
BBB

AAB T  

























++
−

−
−

−
−

−
−

−+−

−
−

=

1
)()(

)(1

1

2

2
0

22

2
00

2
0

22
00

2
00

2
0

22
00

222

2

2

2
00

22

ββα
βγ

ββα
βγγ

βα
βγ

ββα
βγγ

ββα
γ

βα
γ

βα
βγ

βα
γ

α

vuvvuvuv

vuv

uv
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Notice that B is symmetric, so here we define b, a 6D vector 

    TBBBBBBb ],,,,,[ 332313221211= .   (4.13) 

Denote the ith T
iiii hhhh ],,[ 321= column vector of H by . Then we have 

bvBhh T
ijj

T
i = ,     (4.14) 

with 

   T
jijijijiji

jijijijiij

hhhhhhhhhh

hhhhhhhhv

],,

,,,[

3332233113

22122111

++

+=
. 

Therefore, (3) and (4) can be rewritten as: 

    .0
)( 2211

12 =








−
b

vv
v

T

T

    (4.15) 

 If we have n images of the model plane, by stacking n such equations as (4.15) we 

have 

      ,0=Vb     (4.16) 
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where V is a 62 ×n  matrix. If 3≥n  we will have in general a unique solution b 

defined up to a scale factor. In fact normally we take 7 - 15 pictures of the pattern and use 

around 10 images for calibration to obtain a more accurate result. The solution to (4.16) 

is the eigenvector of VV T  associated with the smallest eigenvalue.  

Once b is estimated, A can be computed.  

Once A is computed, we can compute the extrinsic parameters for each image: 

1
1

1 hAr −= λ , 

2
1

2 hAr −= λ , 

213 rrr ×= , 

3
1hAt −= λ , 

here,  
2

1
1

1

11
hAhA −−

==λ . 

 

Correspondence 

As the camera parameters are known, the only challenge is to find the corresponding 

points between the images. Unfortunately, the reliable identification of corresponding 

points is a very difficult problem. Especially with objects that have solid color and 

specular reflection material, like human teeth. We use a feature point based approach to 

achieve better results.  

 

1. Canny Edge Detection 
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The Canny edge detection [31] algorithm is known to many as the optimal edge 

detector. The purpose of the method is to detect edges with noise suppressed at the same 

time. The Canny Operator has the following goals: 

(a) Good Detection: the ability to locate and mark all real edges.  

(b) Good Localization: minimal distance between the detected edge and real edge.  

(c) Clear Response: only one response per edge. 

The approach is based strongly on convolution of the image function with Gaussian 

operators and their derivatives. This is a multi step procedure.  

Consider the Gaussian function in two dimensions: 

2

22

2
22

1),( σ

πσ

yx

eyxG
+

−
=  .     

The directional derivative of G(x,y) along n is: 

            

  ),(),(),( yxGn
n

yxGyxGn ∇⋅=
∂

∂
= ,      

where Tn )sin,(cos θθ= , 
T

y
yxG

x
yxGyxG )),(,),((),(

∂
∂

∂
∂

=∇ . 

After the convolution filtering with G(x,y),  f(x,y) has a directional derivative along n: 

   ),(*)],(*),([ yxfG
n

yxfyxG
n=

∂
∂

.     

We change the direction of n in order to get the maximum of ),(* yxfGn , which is the 

vertical gradient. From  
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0
)],(*),(sin),(*),([cos

)],(*[
=

∂
∂

∂
+

∂
∂

∂
=

∂
∂

θ

θθ

θ

yxf
y

yxGyxf
x

yxG
yxfGn  

we get 

    ),(*)/),((
),(*)/),((tan

yxfxyxG
yxfyyxG

∂∂
∂∂

=θ ,   

    |),(*),(|
),(*)/),((cos

yxfyxG
yxfxyxG

∇
∂∂

=θ ,  

    |),(*),(|
),(*)/),((sin

yxfyxG
yxfyyxG

∇
∂∂

=θ .  

Therefore, the vertical gradient of ),(*),( yxfyxG  is 

    
|),(*),(|

),(*),(
yxfyxG
yxfyxGn

∇
∇

=  .   

Substitute n into the directional derivative equation:  

 |),(*),(sin),(*),(cos|),(*| yxf
y

yxGyxf
x

yxGyxfGn ∂
∂

+
∂

∂
= θθ    

  ),(*),(| yxfyxG∇= .  

Here we can see that the key of canny operator is to compute ),(*),( yxfyxG∇ . We 

separate the two dimensional convolution ),(*),( yxfyxG∇  into two one dimension 

filter: 

)()(),(
21

22 2

2

2

2

yhxhekxe
x

yxG yx

==
∂

∂ −−
σσ ,    

)()(),(
21

22 2

2

2

2

xhyhekye
y

yxG yx

==
∂

∂ −−
σσ ,     
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where k is a constant, 

   
2

2

2
1 )( σ

ω

ωω
−

= ekh , 
2

2

2
2 )( σ

ω

ω
−

= ekh .   

Then we get the convolution of f(x,y) and these two templates separately: 

  ),(*)]()([),(*),(),( 21 nmfnhmhnmf
x

nmGnmEx =
∂

∂
= ,  

  ),(*)]()([),(*),(),( 21 nmfmhnhnmf
y

nmGnmEy =
∂

∂
= .  

The above-mentioned convolution can be acquired along the x axis and y axis 

respectively. 

Let 

  
),(
),(

tan),(,),(),(),( 122

nmE
nmE

nmnmEnmEnmA
x

y
yx

−=+= θ .  

 Canny operator sets two thresholds to detect the edge points. The steps are as 

follows: 

1. Compute the gradient mask and the direction of gradient for each point of the 

image. 

2. Use non-maximum suppression to extract local extreme points. 

3. Set two thresholds to extract the edge. 

The edge points are considered as feature points. Because of the feature they have, it is 

much easier to find their corresponding points. 

 

2. Constraint Conditions 

Figure 4.10 shows an image taken by our system. In Figure 4.11 each area of the 

image is labeled. Area 0 is the real image; area 1, 2, ,3 , 4 are the images reflected once 
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by the upper left, right, lower mirror respectively; area 5, 6, 7, 8 are the images reflected 

twice which we ignored since the geometry of these reflections are too complicated. 

Assume that on scanline L, we have two points A and B, and both have their 

corresponding points A1, B1 in area 3 and A2, B2 in area 2. A3 and A4 are the 

corresponding points of A in area 1 and 4. The corresponding points in our system should 

have the following constraints [32]: 

(1). Ordering Constraint: For opaque surfaces the order of neighboring 

correspondences on the corresponding epipolar lines is always preserved. For example, if 

the index on the scanline l: BA uu < , then 11 BA uu > , 22 BA uu > . This is because the 

mirror reflection makes the image inversed.  

(2). Disparity Limit: The search band is restricted along the epipolar line because the 

observed scene has only a limited depth range. For example, if we are looking for the 

corresponding point of A in area 2, we don’t need to search the entire scanline in area 2, 

we only need to search pixels in a certain threshold depending on the depth range.  

(3). Variance limit: The difference of the depth computed by the corresponding point 

in each area should be less than a threshold. For example, A1, A2, A3, A4 each can be 

used as a corresponding point of A and compute a depth of A. We compute the variance 

of the four depth and it must be smaller than a threshold otherwise at least one of the 

depth is wrong. 
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Figure 4.10 Image taken by the Square Tube Mirror. 
 

 

Figure 4.11 Image area labeling. 
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3. Stereo Matching 

After the feature points are determined, the correspondence of these points can be 

found using stereo matching approaches. The constraints of the previous section can be 

used to reduce the computation complexity and refine the existing results. We use two 

intensity based approaches for stereo matching: 

(1) Fast Normalized Cross-Correlation 

Normalized cross-correlation [34] is an effective and simple method as a 

similarity measure. In our application, the mirror reflection factor gives intensity 

reduction to the reflected image, but normalized cross-correlation is invariant to linear 

brightness and contrast variations. This approach provides good matching results for our 

feature points.  

The use of cross-correlation for template matching is motivated by squared Euclidean 

distance: 

∑ −−−=
yx

tf vyuxtyxfvud
,

22
, )],(),([),( , 

where f is the source image in the region and the sum is over x,y under the region of 

destination image t positioned at u,v.  

Here we expand d2

∑ −−+−−−=
yx

tf vyuxtvyuxtyxfyxfvud
,

222
, )],(),(),(2),([),(

: 

, 

where the term ),(2 vyuxt −−∑  is constant. If the term ),(2 yxf∑  is 

approximately constant then the remaining cross-correlation term  

    ∑ −−=
yx

uyuxtyxfvuc
,

),(),(),(    (4.17) 
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is a measure of the similarity between the source image and the destination image. 

 Although (4.17) is a good measure, there are several disadvantages to using it for 

matching: 

1). If the image energy ),(2 yxf∑  varies with position, matching using (4.17) 

can fail. For example, the correlation between the destination image and an exactly 

matching region in the source image may be less than the correlation between the 

destination image and a bright spot. 

  2). The range of ),( vuc  is dependent on the size of the region. 

3). Equation (4.17) is not invariant to changes in image amplitude such as those 

caused by changing lighting conditions across the image sequence. 

The correlation coefficient overcomes these difficulties by normalizing the image and 

feature vectors to unit length, yielding a cosine-like correlation coefficient: 

{ } 5.0

,
22

, ,

, ,

]),([]),([

]),([]),([
),(

∑∑
∑

−−−−

−−−−
=

yxyx vu

yx vu

tvyuxtfyxf

tvyuxtfyxf
vuγ ,   (4.18) 

where t is t he mean of the destination image in the region and vuf ,  is the mean of 

),( yxf  in the region under the feature. (4.18) is what we referred as the normalized 

cross-correlation. 

(2) Simulated Annealing 

As mentioned in the previous section, the corresponding points in the source image 

and the destination image must lie on the same scanline. If we take a close look at the 

intensity profiles from the corresponding scanline of the image pair, the intensity profiles 

differ only by a horizontal shift and a local foreshortening [36].  
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Figure 4.12 Continuousness of the corresponding points on the same scanline. 



 

46 
 

As shown in Figure 4.12, the similarity of the pair is continuous, which means an 

optimization process would be suitable. Actually, in 1987, Barnard [35] attempted 

matching the parallel stereo images using simulated annealing. He defined an energy 

function as: 

|),(||)),(,(),(| jiDjiDjiIjiIE RLij ∇++−= λ , 

where ),( jiI L  denotes the intensity value of the source image at (i,j), and ),( kiI R  

denotes the intensity value of the destination image at the same row but at the k-th 

column; D(i,j) is the disparity value (or horizontal shift in this case) at the ij-position of 

the source image. So this is a constrained optimization problem in which the only 

constraint being used is a minimum change of disparity values D(i,j). 
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Chapter 5 Implementation Results 

The camera used for implementation is Nikon D80 with an AF-S DX NIKKOR 

18-55mm f/3.5-5.6G VR lens. We chose the 18-55mm lens is because it has the shortest 

focusing distance (0.28m) among all non-wide-angle Nikon lenses. Shorter focusing 

distance means the object can be placed closer to the camera and also it makes the angle 

of view larger. The larger the angle of view is, the wider the reflection areas are. As 

shown in Figure 4.10, the lens provides reflected areas almost the same size as the 

directly captured area.  

Before capturing the images of teeth, one must make sure the optical axis of the 

camera is parallel to the mirrors. After the calibration, the intrinsic parameters of the 

camera are known. If the extrinsic parameters of the real and virtual cameras can be 

computed, the orientation and position of the mirrors are known. As shown in Figure 5.1, 

we put a chess board in front of the mirror and took several pictures.  
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Figure 5.1 Mirror calibration. 
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From the region extraction, the extrinsic matrix of the real camera and virtual cameras are 

obtained. Notice that when doing the region extraction of the reflected areas, the image 

must be flipped because of the reverse of mirror.  

At first we tried to reconstruct a single, non-textured tooth. As shown in Figure 

5.1, because of the specular reflection and the solid colored surface the tooth had, the 

results are almost non-acceptable.   

 

 

Reflected image          Real image    Depth map 

Figure 5.2 Reconstruction of a single, non-textured tooth.  
 

The challenge of reconstructing the human teeth is not only overcoming the 

surface they have, but also the small distance variation on the teeth compare to the focal 

length. This makes the results very vulnerable because an error of one pixel in the 

disparity will give the distance an error of 3mm. Even a large human tooth is only about 

10-20mm long/wide. So adding more features on the surface is necessary. Figure 5.3 and 

5.4 shows the results of a colored tooth.  
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 Figure 5.3 Original object and feature point cloud (from different angles).  
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Figure 5.4 Original object and the disparity map. 
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Chapter 6 Concluding Remarks 

A new system of reconstructing the 3D image of dental casts as well as the 

simplification and interpolation of the standard model are presented. The scanned 

standard model is simplified by an iterative vertex pair contraction process using quadric 

error metrics. Then in order to acquire the curvature of the teeth surface, an interpolation 

process is applied to obtain the local parametrization of each point on the surface. Once 

the local parametrization is obtained, the surface curvature of any direction is known. The 

multi-view imaging system uses a square tube mirror to capture multi-view images. 

Depth can be computed by finding the corresponding points in the real area and the 

reflected areas. Notice that it is very difficult to find the corresponding points for objects 

with solid color and specular reflection like human teeth. In this case, structured light can 

create variation for the intensity and gives many more feature points. Although good 

results are achieved so far, there is more work to be done. Features of each tooth must be 

found in order to differentiate them and identify which teeth are reconstructed during the 

process. Because the camera cannot capture all parts of the teeth, the known shape should 

be used to transform the standard model. 
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