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ABSTRACT OF DISSERTATION

COMPUTER METHODS FOR PRE-MICRORNA SECONDARY STRUCTURE
PREDICTION

This thesis presents a new algorithm to predict the pre-microRNA secondary struc-
ture. An accurate prediction of the pre-microRNA secondary structure is important
in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs
(NCM), to predict RNA secondary structure, we propose and implement a Modified
NCM (MNCM) model with a physics-based scoring strategy to tackle the problem
of pre-microRNA folding. Our microRNAfold is implemented using a global optimal
algorithm based on the bottom-up local optimal solutions.

It has been shown that studying the functions of multiple genes and predicting the
secondary structure of multiple related microRNA is more important and meaningful
since many polygenic traits in animals and plants can be controlled by more than a
single gene. We propose a parallel algorithm based on the master-slave architecture
to predict the secondary structure from an input sequence. The experimental results
show that our algorithm is able to produce the optimal secondary structure of poly-
cistronic microRNAs. The trend of speedups of our parallel algorithm matches that
of theoretical speedups.

Conserved secondary structures are likely to be functional, and secondary struc-
tural characteristics that are shared between endogenous pre-miRNAs may contribute
toward efficient biogenesis. So identifying conserved secondary structure is very mean-
ingful and identifying conserved characteristics in RNA is a very important research
field. After the characteristics are extracted from the secondary structures of RNAs,
corresponding patterns or rules could be dug out and used.

We propose to use the conserved microRNA characteristics in two aspects: to im-
prove prediction through knowledge base, and to classify the real specific microRNAs
from pseudo microRNAs. Through statistical analysis of the performance of clas-
sification, we verify that the conserved characteristics extracted from microRNAs’
secondary structures are precise enough.

Gene suppression is a powerful tool for functional genomics and elimination of
specific gene products. However, current gene suppression vectors can only be used
to silence a single gene at a time. So we design an efficient poly-cistronic microRNA
vector and the web-based tool allows users to design their own microRNA vectors



online.
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Dianwei Han

June 15, 2012



COMPUTER METHODS FOR PRE-MICRORNA SECONDARY STRUCTURE
PREDICTION

By

Dianwei Han

Jun Zhang, Ph.D.

Director of Dissertation

Raphael Finkel, Ph.D.

Director of Graduate Studies

June 15, 2012

Date



RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgements.

Extensive copying or publication of the dissertation in whole or in part also requires
the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure
the signature of each user.

Name Date



ACKNOWLEDGEMENTS

The work with this dissertation has been extensive and trying, but in the first place

it is exciting, instructive, and fun. Without help, support, and encouragement from

other people, I would have never been able to finish this work. Here is my pleasure

to express my gratitude to all of them.

First of all, I would like to thank my supervisor, Dr. Jun Zhang, for his inspiring

and encouraging way to guide me to a deeper understanding of knowledge, and his

invaluable comments during the whole work with this dissertation.

Besides my advisor, I would like to thank the rest of my Advisory Committee:

Dr. Xuguo Zhou, Dr. Dakshnamoorthy Manivannan and Dr. Ruigang Yang who

always give insightful comments and useful suggestions on my work. I would also

like to thank the outside examiner Dr. Qiang Ye for his helpful comments on my

dissertation.

Thanks also to all the friendly members in our lab who made the lab a great

place to work. Let me say “thank you” to the following people: Dr. Ying Wang,

Dr. Ning Kang, Dr. Wensheng Sheng, Dr. Shuting Xu, Dr. Eun-Joo Lee, Dr. Jie

Wang, Mr. Ning Cao, Mr. Hao Ji, Mr. Pengpeng Lin, Ms. Ruxin Dai and other

group members in our lab. Working together with all of you has been not only a

unforgettable experience, but a great pleasure as well.

Last, but not least, I would like to thank my parents, for giving me life in the

first place, for educating me, for unconditionally supporting and encouraging me to

pursue my interests. Specially, I also would like to thank my wife for her love and

support.

The research work with this dissertation was supported in part by:

• Kentucky New Economy Safety and Security Initiative (NESSI) Consortium.

• Kentucky Science and Engineering Foundation.

iii



Table of Contents

Acknowledgements iii

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 MicroRNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research work and the motivations . . . . . . . . . . . . . . . . . . . 2

1.2.1 Predicting single microRNA structure . . . . . . . . . . . . . . 2
1.2.2 Predicting multiple microRNAs’ structure . . . . . . . . . . . 3
1.2.3 Using conserved microRNA characteristics . . . . . . . . . . . 5
1.2.4 A novel artificial poly-cistronic microRNA vector prediction

and its application in silencing multiple genes in Arabidopsis . 6
1.3 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . 6

2 Techniques used in predicting the secondary structure of RNAs 9
2.1 MFE method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Partition function method . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Stochastic Context Free Grammars (SCFG) . . . . . . . . . . . . . . 11

3 Predicting single pre-microRNA structure 12
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Prediction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Definition of NCMs . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Definition of MNCMs . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 From energy-based models to MNCMs . . . . . . . . . . . . 17
3.2.4 Features of microRNAfold . . . . . . . . . . . . . . . . . . . . 20
3.2.5 Soundness of combination of MNCM and MFE . . . . . . . . 20
3.2.6 Global optimal algorithm based on bottom-up local optimal

solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.7 Accuracy metrics . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.8 Our microRNAfold accessibility . . . . . . . . . . . . . . . . . 26

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Predictive power of microRNAfold associated with different se-

quence lengths . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Predictive power of microRNAfold associated with different

hairpin loop lengths . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Comparison to other methods . . . . . . . . . . . . . . . . . . 28

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Taking into account auxiliary information and more parameters 30
3.4.2 Some issues with scoring strategy . . . . . . . . . . . . . . . . 32

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



4 Predicting the Secondary Structure of Polycistronic MicroRNAs 35
4.1 Parallel prediction of secondary structure of poly-cistronic miRNAs . 36

4.1.1 Predicting multiple microRNAs’ structure by using single mi-
croRNA prediction method . . . . . . . . . . . . . . . . . . . 36

4.1.2 Parallel algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Soundness of parallel strategy . . . . . . . . . . . . . . . . . . 40
4.1.4 Time complexity analysis . . . . . . . . . . . . . . . . . . . . . 41

4.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Real world dataset . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Speedup trend . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 When to get benefit from parallel computing? . . . . . . . . . 49
4.3.2 Linear speedup . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Classification of real and pseudo human pre-microRNAs based on
structure’s characteristics with SVM 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 SVM Classification . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Prediction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Classification based on local structure-sequence features . . . . 55
5.3.2 Classification based on conserved characteristics . . . . . . . 56

5.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.1 Human miRNA precusor and pseudo miRNA datasets . . . . . 57
5.4.2 Training and test sets for classification experiments . . . . . . 58
5.4.3 Extract features from each subject . . . . . . . . . . . . . . . 59
5.4.4 SVM classification . . . . . . . . . . . . . . . . . . . . . . . . 60

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Improving prediction based on conserved microRNA characteristics
in human 63
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Conserved characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Probabilities of unpaired base . . . . . . . . . . . . . . . . . . 66
6.2.2 Relationship between the sequence length and loop size . . . . 66
6.2.3 Relationship between the sequence length and score . . . . . . 67

6.3 Creation and building of Knowledge Base . . . . . . . . . . . . . . . . 68
6.3.1 The definition of Knowledge Base . . . . . . . . . . . . . . . . 68
6.3.2 Difference between Knowledge Base and Database . . . . . . . 69
6.3.3 Soundness of using KB instead of database . . . . . . . . . . . 69
6.3.4 Creation of an effective Knowledge Base . . . . . . . . . . . . 70

6.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.1 Human pre-miRNAs . . . . . . . . . . . . . . . . . . . . . . . 73

v



6.4.2 Improvement in terms of CPU usage . . . . . . . . . . . . . . 74
6.4.3 Improvement in terms of accuracy . . . . . . . . . . . . . . . . 75

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7 A novel artificial poly-cistronic microRNA vector prediction and its
application in silencing multiple genes in Arabidopsis 79
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Methods and Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 82

7.2.1 Construction of poly-cis miRNA vector using computer algo-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3.1 Construction of poly-cis miRNA vector . . . . . . . . . . . . 85
7.3.2 Expression of microRNAs from a monocistronic (miR168 back-

bone) microRNA vector . . . . . . . . . . . . . . . . . . . . . 87
7.3.3 Expression of microRNAs from a poly-cis microRNA vector . 88

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8 Conclusion and Future Work 94
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendix 97

Bibliography 108

Vita 119

vi



List of Tables

4.1 The time cost with different number of slave processors (in minutes). 50

5.1 Extracted features from real human pre-miRNAs. . . . . . . . . . . . 59
5.2 Extracted features from pseudo human pre-miRNAs. . . . . . . . . . 60

6.1 The performance comparison between prediction with KB and without
KB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vii



List of Figures

1.1 Secondary structure of a pre-microRNA . . . . . . . . . . . . . . . . . 2

3.1 The definition of interfaces for MNCMs. The pair G·C is the only
interface for the lone pair MNCM (a). The pair U·A is an interface for
(b) and the pair G·C is another interface for (b). . . . . . . . . . . . 15

3.2 The selection of valid lone pair. (a) is a valid lone pair. (b) is an
invalid lone pair. (c) is an invalid lone pair. . . . . . . . . . . . . . . 17

3.3 Prediction of conformational free energy for an RNA. The total
free energy is the sum of each increment. . . . . . . . . . . . . . . . 18

3.4 The construction of cycles in the MNCM model. . . . . . . . 19
3.5 The possible hairpin loops. A sequence of nucleotides: S1, S2, ..,

S8. T2[1] represents one loop which starts with S2 and ends with S4.
T2[2] represents another loop which starts with S2 and ends with S5. 21

3.6 The bottom-up algorithm.(a) denotes a lone pair (the hairpin loop).

(b1) displays the first initial structure that the program constructs with a

given input sequence. (b2) denotes another structure when we backtrack the

stack pointer. (bi) denotes that at the ith step, this structure is produced by

the program. (bn) denotes the last structure that is built by the program.

(c) shows the part of structure that remains unchanged from (b1) to (bi).

(d) is the stem part of the last structure based on the current lone pair.

Compared to the previous structures, the modified part is shown by the

shadowed area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7 microRNAfold predictions for hsa-let-7a. The top five structures

generated by microRNAfold for hsa-let-7a. The structures are shown
in dot-bracket notation. A parenthesis represents a canonical base
pair; a dot represents an unpaired nucleotide. A dot-bracket can be
converted to a secondary structure representation. Negative floating
point numbers on the right hand side denote the corresponding scores. 27

3.8 The pre-microRNAs used in our test set. . . . . . . . . . . . . 28
3.9 The specific performance of microRNAfold based on different

sequence lengths. We divide the sequence lengths into three groups:
case(a) (63-84), case(b) (85-110), and case(c) (111-184). . . . . . . . 29

3.10 The Matthews coefficient ratio performance of microRNAfold
based on different hairpin loop lengths. We divide the loop
lengths into three groups: case(a), case(b), and case(c). The case(a)
indicates that the length range is 3-21, the case(b) indicates that the
length range is 22-44, and the case(c) indicates that the length range
is 45-83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.11 Comparison of the predictive power with other prediction
methods. The predictions are compared over 1651 base pairs. For
each approach, the best predicted structures are analyzed. In each row,
we use bold font to represent the best value. MC-FOLD software is
available at http://www.major.iric.ca/MC-Tools.html. CONTRAfold
is available at http://contra.stanford.edu/contrafold/server.html. . . 31

viii



3.12 ROC plot comparing sensitivity and specificity for several
RNA structure prediction methods. . . . . . . . . . . . . . . . . 32

3.13 Prediction of a specific structure. (a) is the sequence of the struc-
ture, (b) is the predicted structure by microRNAfold, and (c) is the
proposed structure by the database. . . . . . . . . . . . . . . . . . . 32

3.14 The result of microRNAfold with the input of the pre-microRNA
dps-mir-6-3. (a) shows the best structure predicted by microR-
NAfold. (b) is the proposed structure by the database. (c) shows
the hairpin loop of (a) and the corresponding area of (b). . . . . . . 33

3.15 Comparison of the predicted hairpin loop of the pre-microRNA
dps-mir-6-3 with the corresponding area from the database.
(a) is the result of the database. (b) is the result of microRNAfold. . 33

4.1 Master processor and Slave processors. . . . . . . . . . . . . . . 38
4.2 An examples of two partitions. . . . . . . . . . . . . . . . . . . 39
4.3 Prediction of synthetic data. . . . . . . . . . . . . . . . . . . . . 43
4.4 The optimal structure with the score -8.86. . . . . . . . . . . . . . . . 44
4.5 Another structure with the score -5.6. . . . . . . . . . . . . . . . . . . 44
4.6 The third structure with the score -4.479. . . . . . . . . . . . . . . . . 44
4.7 The fourth structure with the score -4.479. . . . . . . . . . . . . . . . 44
4.8 Representative RNA secondary structure of polycistronic clus-

tered miRNAs’ precursors. Its score is -41.50, osa-MIRNA395n is
from 46 to 66, and osa-MIRNA395o is from 163 to 182 . . . . . . . . . 45

4.9 Prediction of AGO2 and AGO3 amiRNAs. Its score is -66.44,
microRNA A (from 6 to 135) is AGO2 amiRNA, and microRNA B
(219 - 298) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10 Prediction of AGO2 and AGO3 amiRNAs. Its score is -82.78,
microRNA A (from 6 to 135) is AGO2 amiRNA, and microRNA B
(212 - 303) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11 Prediction of AGO2 and AGO3 amiRNAs. Its score is -101.52,
microRNA A (from 6 to 135) is AGO2 amiRNA, and microRNA B
(204 - 311) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.12 Prediction of AGO2 and AGO3 amiRNAs. Its score is -124.18,
microRNA A (from 6 to 135) is AGO2 amiRNA, and microRNA B
(194 - 324) is AGO3 amiRNA. . . . . . . . . . . . . . . . . . . . . . . 49

4.13 The experimental results for efficiency. . . . . . . . . . . . . . . 51
4.14 The experimental results for speedup. Theoretic values are rep-

resented in circles, and the actual values are denoted in hexagons. . . 52

5.1 Triplet Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Statistics of each feature. . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 SVM classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.1 Prediction based on KB support. . . . . . . . . . . . . . . . . . 65
6.2 Mismatch position. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Different sequence lengths and corresponding loop sizes. . . 67

ix



6.4 Different sequence length ranges and corresponding loop sizes.
68

6.5 Different sequence lengths and corresponding scores. . . . . 68
6.6 A small example of using frame. . . . . . . . . . . . . . . . . . . 71
6.7 One example of using production rule. . . . . . . . . . . . . . . 72
6.8 Production rule example. . . . . . . . . . . . . . . . . . . . . . . 73
6.9 Prediction of hsa-mir-155. LP len indicates the loop size, and

status indicates whether the prediction program executes under this
case: O denotes: Yes, and - denotes: No . . . . . . . . . . . . . . . . 74

6.10 CONT Prediction of hsa-mir-155. LP len indicates the loop size,
and status indicates whether the prediction program executes under
this case: O denotes: Yes, and - denotes: No . . . . . . . . . . . . . . 75

6.11 CONT Prediction of hsa-mir-155. LP len indicates the loop size,
and status indicates whether the prediction program executes under
this case: O denotes: Yes, and - denotes: No . . . . . . . . . . . . . . 76

6.12 CONT Prediction of hsa-mir-155. LP len indicates the loop size,
and status indicates whether the prediction program executes under
this case: O denotes: Yes, and - denotes: No . . . . . . . . . . . . . . 77

6.13 An Production system with Conflict Set. . . . . . . . . . . . . 78

7.1 The basic structure of pre-miR168. The figure focuses on the guider
strand and passenger strand. The rest part is ignored here. . . . . . . 82

7.2 Predict the target miRNAs . . . . . . . . . . . . . . . . . . . . . . . . 83
7.3 Predict artificial miRNA* . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4 Predict primers from the secondary structure of pre-microRNA . . . . 84
7.5 Enter gene coding sequences. . . . . . . . . . . . . . . . . . . . . . . . 86
7.6 Choose an appropriate backbone. Up to 9 backbones are available.

The selection is based on the users application needs. . . . . . . . . . 87
7.7 Run BLAST before you select one good candidate target microRNA. 88
7.8 Check the result of running BLAST. . . . . . . . . . . . . . . . . . . 89
7.9 Select a candidate and convert it to antisense. . . . . . . . . . . . . . 90
7.10 Display the secondary structure of artificial pre-microRNA. . . . . . . 91
7.11 The primers: P1 and P2. . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.12 Prediction model for single-module (miR168 backbone) microRNA vector 92
7.13 Gene expressions of three main microRNAs produced from single-

module microRNA vector. wt denotes wild type. . . . . . . . . . . . . 92
7.14 Prediction model. Pre-microRNA-168 is used as the backbone for the

poly-cis miRNA vector. There are six modules on this model, which
use different PCRs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



1 Introduction

This thesis presents a new algorithm to predict the pre-microRNA secondary struc-

ture. Prior to 1982, RNA was thought to have three forms, which are mRNA, tRNA,

and rRNA. mRNA carries the genetic information copied from DNA in the form of

a series of three-base code words, each of which specifies a particular amino acid;

tRNA is the adapter that connects the codons of the mRNA to the amino acids of

the protein; and rRNA associates with a set of proteins to form ribosomes.

It has been shown that, for some functions, the absolute structure of the RNA

involved is not critical. For example, the sequence of mRNA controls the synthesis

of a given protein product; but the structure of the mRNA may not actually be

important for this process to occur properly [113]. However, RNA molecules are

involved in protein synthesis, and sometimes in order to understand the function of a

given RNA molecule, scientists often need to know its structure because they believe

that there is some relationship between the structure and function. RNA structures

can be determined by X-ray crystallography and NMR spectroscopy, but producing

RNA high-resolution structures by X-ray crystallography and NMR spectroscopy is

slow compared to sequencing [94]. So prediction methods for RNA structures have

to be developed and tested.

This chapter is organized as follows: MicroRNAs are introduced in Section 1.1.

Each work that has been done and the motivations of this dissertation research are ex-

plained in Section 1.2. Finally, the contributions and organization of the dissertation

are listed in Section 1.3.

1.1 MicroRNA

MicroRNAs (miRNAs) are newly discovered endogenous small non-coding RNAs (21-

25nt) that are derived from larger hairpin RNA precursors and target their comple-
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mentary gene transcripts for degradation or translational repression [16, 7, 46]. Mi-

croRNAs are found to play an important role in regulation of gene expression in plants

and animals [46]. Biologists assume that mammals have thousands of microRNAs in

their genomes. MicroRNAs are expressed at different levels in animal and plant cells

during cell differentiation, apoptosis, growth, and development [7, 16]. Understanding

microRNA pathways and microRNA biogenesis is considered to be a crucial aspect

in tool development for functional genomics and metabolic engineering.

At least three RNA species, primary miRNA (pri-miRNA), precursor miRNA (pre-

miRNA), and mature miRNA, are made from miRNA genes through transcription

and sequential endonucleolytic maturation steps [57]. Here, we focus on pre-miRNAs’

secondary structure prediction.

1.2 Research work and the motivations

1.2.1 Predicting single microRNA structure

Basically, there are three kinds of structure of RNAs: primary structure, secondary

structure, and three dimensional structure.

Primary structure is a sequence of nucleotides a, u, g and c. For example, GCU-

CUCGGAGAACAGGGAGCCACUCUGCGUUCACUCGGUGGGUAAUGAAGCGGGU-

GAACACAGCUGGUGGUAUCUCAGUUUUCUGAGGGC is the primary structure

of ame-mir-317.

Secondary structure (two dimensional structure) is shown in Fig.1.1.

Figure 1.1: Secondary structure of a pre-microRNA
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Primary sequence information helps people understand miRNA pathways. In-

depth understanding of structure-function relationships requires knowledge of three-

dimensional (3D) structure. It is very difficult and time-consuming to determine 3D

structures for natural RNA molecules. In addition, it has been reported that miRNA

genes are more conserved in the secondary structure than in the primary sequences

[124]. Secondary structural features should be more fully exploited in the homologue

search for new miRNA genes. RNA secondary structure can be predicted with some

accuracy using computers and many bioinformatics applications use certain notions

of secondary structure in the analysis of RNA [38].

There are some prediction methods, why do we still need to develop a new one?

Generally there are two classes of algorithms available to predict the secondary struc-

ture of RNAs. The first class is the prediction methods based on phylogenetic se-

quence comparison, represented by Covariation prediction (Eddy et al.) [33] and

Stochastic context free grammars (SCFG, Sakakibara et al.) [31, 105].

When not enough related sequences are available, however, the second class of

methods must be used, which are based on thermodynamics and represented by free

energy minimization method (Zuker et al.) [134] and partition function method (Mc-

Caskill et al.) [88].

The currently available leading prediction tools are designed for general RNA

structure prediction, which do not consider much the features of the pre-miRNA

secondary structures.

While the currently available leading prediction tools achieve good accuracies on

true positive cases, their accuracies on Matthews coefficient ratio are relatively low.

1.2.2 Predicting multiple microRNAs’ structure

For decades researchers have been studying the roles of a single gene in the devel-

opment of animals and plants. However, recently, researchers have found that many
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polygenic traits can be controlled by more than one single gene. In animals, it is

well known that human hair, eye, and skin color are very complex and difficult to be

predicted, because each of these traits is controlled by more than one gene. In plants,

most polygenic traits of crops, which include disease tolerance, yield, stress tolerance,

etc., are controlled by multiple genes [22, 108]. These genes can be regulated by

different microRNAs. So studying the structures of these microRNAs definitely helps

scientists better and more deeply understand the functions of microRNAs and the

genes regulated by these microRNAs.

In addition, recent studies on developing RNAi technologies have shown that

studying and analyzing the functions and structures of multiple microRNAs used to

suppress specific genes are very important and meaningful, especially when endoge-

nous microRNAs have been used to silence genes [55]. The discovery of RNAi and

microRNA pathways has caused intensive studies on developing RNAi technologies

for treating human diseases and for improving plant traits [54, 91, 115]. Currently

available RNAi vectors [35] are designed to produce either short siRNAs, such as

those produced by animal RNAi vectors, or long dsRNAs, such as those produced by

plant RNAi vectors. Both animal and plant RNAi vectors have shown great successes

in suppressing specific gene expression. In recent years, endogenous microRNAs have

been designed to silence genes at high efficiency and in more gene specificity (Tang

et al..) [115]. Fortunately, this new type of RNAi vectors based on the microRNA

structures provides us with a more stable and powerful tool for suppressing gene

expression.

However, to our best knowledge, the currently available leading prediction tools

are developed mainly for dealing with the general RNAs, and they could not directly

been used to predict the structure of multiple microRNAs.

Based on the above observation, we think studying and designing an efficient

algorithm to predict the structure of endogenous multiple microRNAs is needed. This
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will pose us a big challenge. When a sequence is very long a sequential algorithm could

not work very well. So a parallel algorithm is required. In Section 4, we demonstrate

what we have done about this study.

1.2.3 Using conserved microRNA characteristics

Conserved secondary structures are likely to be functional, and secondary structural

characteristics that are shared between endogenous pre-miRNAs may contribute to-

ward efficient biogenesis [125]. So identifying conserved secondary structure is very

meaningful and identifying conserved characteristics in RNA is a very important re-

search field [5, 10, 125]. After the characteristics are extracted from the secondary

structures of RNAs, corresponding patterns or rules could be dug out and used. For

example, there are differences in the sequence variation between loop regions and

helices. These patterns can be exploited in computational approaches [47] to discrim-

inate functional RNAs from other types of conserved sequences [125].

We propose to use the conserved pre-microRNA structure characteristics in two

aspects: to improve prediction, and to classify the real specific microRNAs from

pseudo microRNAs.

In the aspect of machine learning, using information extracted from the data set to

improve the prediction is a meaningful work. Especially when the conserved features,

which are from secondary structures, are used to aid in prediction of other secondary

structures, the performance of prediction system is expected to be improved. In

addition, this strategy will strengthen the power of the original algorithm and make

the prediction more accurate.

Furthermore, the conserved pre-microRNA structure features can be used in clas-

sification applications. We propose to carry out the classification of real and pseudo

human microRNA precursors (pre-mirna). Through statistical analysis of the per-

formance of classification, we can verify that the conserved characteristics extracted
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from microRNAs’ secondary structures are precise enough or not. The research work

is introduced in detail in Sections 5 and 6.

1.2.4 A novel artificial poly-cistronic microRNA vector pre-
diction and its application in silencing multiple genes

in Arabidopsis

Gene suppression is a powerful tool for functional genomics and elimination of specific

gene products. However, current gene suppression vectors can only be used to silence

a single gene at a time. Moreover, several recent studies showed that siRNAs and long

dsRNAs produced by these RNAi vectors tend to activate RNA-dependent protein

kinase pathway and cause nonspecific cell death [12]. Metabolic engineering for novel

plant natural products involves a regulation of carbon flow amongst many metabolic

pathways and thus requires a silence of multiple genes of these pathways to redirect

the metabolic flow to a specific pathway to overproduce specific gene products. In

addition, traditional gene mutation, T-DNA insertion can not fulfill this objective in

a short time. So, it is necessary for us to design a method through which artificial

poly-cistronic microRNA vector can be predicted.

1.3 Contributions of the Dissertation

My research work for the dissertation is focused on studying and designing computer

model to predict the secondary structure of pre-microRNAs. The contributions of

the dissertation are:

• I propose a novel algorithm to predict the secondary structure of pre-microRNAs.

It is the first computer model that combines the Modified NCM model with

thermodynamic scoring strategy to deal with this domain problem.

• I propose a parallel algorithm to predict the secondary structure of endogenous

polycistronic microRNAs. The actual speedups follow the theoretical speedup
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trends.

• I propose a new effective method that can distinguish the real premiRNAs from

pseudo pre-miRNAs and this approach is important for identifying novel and

specific miRNAs. It is the first time to use characteristics from the structures

themselves as features to perform classification.

• I propose to use Knowledge Base (KB) to support the pre-microRNA structure

prediction. The production rules come from the secondary structure conserved

characteristics and they are combined with fuzzy strategy. The prediction time

has been reduced greatly due to the support from KB.

• I propose and implement a web-based application system that allows users to

construct poly-cis miRNA vector online from gene sequence.

The organization of this dissertation is as follows:

• The main techniques we used in this thesis are introduced in Chapter 2.

There, we introduce all the main techinques that are related to our research or

some major techniques that we use in our research.

• In Chapter 3, we propose a novel algorithm that combines thermodynamics

based scoring function with Modified NCM model to predict the secondary

structure of pre-microRNAs. Instead of traditional dynamic programming method,

we use iterative approach to handle the structure prediction problem.

• It has been shown that clustered miRNAs can be either encoded in a single

polycistronic transcriptional unit or independently transcribed. In Chapter 4,

we propose an efficient algorithm to predict the structures of poly-cistronic

miRNAs. We also derive a series of theoretical speedups and analyze the actual

speedups after the experiment.
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• In order to study the important features that can be used to differentiate the real

pre-miRNAs from other hairpin sequences with similar stem-loops, we carry out

some experiments to classify the real pre-miRNAs and pseudo pre-miRNAs. In

Chapter 5, we propose a prediction method which uses the characteristics from

the secondary structures of pre-miRNAs as the features to do the classification

with SVM.

• Chapter 6 is an extension of Chapter 5 in which we extracted important features

and used those characteristics to construct the production rules. And these rules

are used to construct the knowledge base to support the prediction.

• In Chapter 7, we propose a novel artificial poly-cistronic microRNA vector

prediction and apply it to silence multiple genes in Arabidopsis.

• We conclude the dissertation in Chapter 8 and point out some directions for

future work.
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2 Techniques used in predicting the secondary structure of RNAs

Two categories of prediction algorithms are available. The first class is the prediction

methods based on phylogenetic sequence comparison, represented by Covariation pre-

diction (Eddy et al.) [33] and Stochastic context free grammars (SCFG, Sakakibara

et al.) [31][105]. Both of them are based on a probabilistic model and the assumption

that large numbers of homologous sequences from different organisms are available.

The second class of methods are based on thermodynamics and represented by free

energy minimization method (Zuker et al.) [134] and partition function method (Mc-

Caskill et al.) [88].

Some of them will be introduced as follows.

In this chapter, we introduce several popular techniques that are related to our

research domain. In Section 2.1, we introduce the Minimum Free Energy method.

Then, Partition Function method is given in Section 2.2. Finally, the Stochastic

Context Free Grammar technique is presented in Section 2.3.

2.1 MFE method

Minimum Free Energy is one of the deterministic methods and is the most popular

method. There is a hypothesis, an RNA molecule will fold into a secondary structure

that minimizes its free energy. The free energy of structure (at fixed temperature,

ionic concentration) is the sum of each base pair and loop energies. Tables of pair

and loop energies are used to calculate the energy of a structure. In MFE algorithm,

the dynamic programming technique has been used.

W(i,j): energy of MFE structure from i to j.

V(i,j): energy of MFE structure from i to j, if any, in which the ith and jth bases are

paired, otherwise ∞
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W(i, j) =







0, if i = j
min{V (i, j), mini≤k≤j{W (i, k) +W (k + 1, j)}},
otherwise

(2.1)

V(i,j)=







∞, if pair at i, j is not AU, CG, or GU or if j ≤ i+ 2
−1 +min{V (i+ 1, j − 1), 1.1 +W (i+ 1, j − 1)}
otherwise

(2.2)

2.2 Partition function method

The free energy of a secondary structure is assumed additive in terms of its loops [88]

F (S) =
∑

L⊂S

FL. (2.3)

where the free energies FL have been obtained from experiments with model com-

pounds.

According to the McCaskills Algorithm[88], the partition function Z can be com-

puted as:

Z =
∑

S⊂Q

e−
F (S)
RT . (2.4)

where Q is a set of all possible states, R = 8.3146 joules per degree Kelvin, and

T is absolute temperature in degree Kelvin.

The partition function can be related to thermodynamic properties because it has

a very important statistical meaning. Boltzmann probability of a given secondary

structure S0 is
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Pr[S0] =
e−

F (S0)
RT

Z
. (2.5)

The partition function thus plays the role of a normalizing constant (note that it

does not depend on s), ensuring that the probabilities sum up to one [95].

∑

S

Ps =

∑

S e−
F (S)
RT

Z
=

Z

Z
= 1. (2.6)

2.3 Stochastic Context Free Grammars (SCFG)

In the RNA secondary structure prediction problem, we are given an input sequence,

and our goal is to predict the optimal structure based on the input. For the techniques

based on probabilistic parsing, we need to compute the conditional probability P (y|x),

which is the probability of getting structure y given the sequence x [31].

SCFGs defines a set of transformation rules, and probability distribution over the

transformation rules, and a mapping from derivations to secondary structures [31].

The following example shows how to predict the secondary structure using SCFGs.

(1) Transformation rules:

S → aSu|uSa|cSg|gSc|gSu|uSg|aS|cS|gS|uS|ǫ. (2.7)

(2) Transformation probability. S → aSu :PS→aSu.

(3) Mapping from parses to structures.

If the input is agucu and structure is ((.)), the parse is

S → aSu → agScu → aguScu → agucu. (2.8)

The joint probability of getting parse σ is P (x, σ).

P (x, σ) = PS→aSu.PS→gSc.PS→uS.PS→ǫ =
1

11

4

.
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3 Predicting single pre-microRNA structure

In this chapter, we propose a new pre-microRNA secondary structure prediction

method based on Modified NCMs (MNCMs), which makes use of thermodynamics-

based scoring function, implemented as a computer program: microRNAfold. Mi-

croRNAfold employs a bottom-up algorithm to compute many local optimal solu-

tions. The global optimal solution is produced by sorting these local optimal solu-

tions. Our experimental results show that this algorithm is very efficient in predicting

pre-microRNA secondary structure.

The structure of this chapter is as follows: In Section 3.1, we present the back-

ground to our research and research question. In Section 3.2, we introduce our MNCM

model, a global optimal algorithm based on bottom-up local optimal solutions, and

some evaluation metrics used in our study. The experiments and results are presented

in Section 3.3. A brief discussion is given in Section 3.4. We sum up our work in

Section 3.5.

3.1 Introduction

MicroRNAs (miRNAs) are newly discovered endogenous small non-coding RNAs (21-

25nt) that are derived from larger hairpin RNA precursors and target their comple-

mentary gene transcripts for degradation or translational repression [7][16][46]. Mi-

croRNAs are found to play an important role in regulation of gene expression in plants

and animals [46]. Biologists assume that mammals have thousands of microRNAs in

their genomes. MicroRNAs are expressed at different levels in animal and plant cells

during cell differentiation, apoptosis, growth, and development [7][16]. Understanding

microRNA pathways and microRNA biogenesis is considered to be a crucial aspect

in tool development for functional genomics and metabolic engineering (Tang et al.)

[114]. While the primary sequence information helps people understand miRNA path-
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ways, in-depth understanding of structure-function relationships requires knowledge

of three-dimensional (3D) structure. It is very difficult and time-consuming to de-

termine 3D structures for natural RNA molecules. In addition, it has been reported

that miRNA genes are more conserved in the secondary structure than in the pri-

mary sequences [124]. Secondary structural features should be more fully exploited

in the homologue search for new miRNA genes. RNA secondary structure can be

predicted with good accuracy using computers and many bioinformatics applications

use certain notions of secondary structure in the analysis of RNA [38] [92].

Generally there are two classes of algorithms available to predict the secondary

structure of RNAs. The first class is the prediction methods based on phylogenetic

sequence comparison, represented by Covariation prediction (Eddy et al.) [33] and

Stochastic context free grammars (SCFG, Sakakibara et al.) [31][105]. Both of them

are based on a probabilistic model and the assumption that large numbers of homol-

ogous sequences from different organisms are available. When not enough related

sequences are available, however, the second class of methods must be used, which

are based on thermodynamics and represented by free energy minimization method

(Zuker et al.) [134][135] and partition function method (McCaskill et al.) [88].

We examined several different theoretical strategies and studied their merits. Re-

cent attempts to replace thermodynamics by statistical scores [11] led to similar or

only slightly improved predictive power. More recently, Major et al. [94] proposed

a new approach termed nucleotide cyclic motif (NCM), and developed MC-FOLD

software to predict RNA structures. However, MC-FOLD can only deal with short

RNA input sequences. In addition, there are several other RNA structural prediction

software packages, such as Vienna package by Hofacker et al. [48], Mfold by Zuker

et al. [134], CONTRAfold by Do et al. [31]. To better and more specifically predict

pre-microRNA secondary structure, in our opinion, the following aspects remain to

be further investigated:
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(1) The currently available leading prediction tools are designed for general RNA

structure prediction, which do not consider much the features of the pre-microRNA

secondary structures. There is a need to develop a more specific tool for pre-microRNA

secondary structure prediction.

(2) While the currently available leading prediction tools achieve good accuracies

on true positive cases, their accuracies on Matthews coefficient ratio [87] are relatively

low.

Based on these observations, we decide to develop a new approach that will specif-

ically deal with the pre-microRNA secondary structure prediction.

We propose a new pre-microRNA secondary structure prediction method based on

Modified NCMs (MNCMs), which makes use of thermodynamics-based scoring func-

tion, implemented as a computer program: microRNAfold. MicroRNAfold employs

a bottom-up algorithm to compute many local optimal solutions. The global optimal

solution is produced by sorting these local optimal solutions. Our experimental re-

sults show that this algorithm is very efficient in predicting pre-microRNA secondary

structure.

3.2 Prediction Methods

In this section, firstly, we demonstrate the use of MNCMs for RNA secondary struc-

ture prediction by showing how it arises as a natural extension of the recently devel-

oped NCMs. Secondly, we show how to convert from energy-based model to MNCMs,

which is the hybrid model of traditional energy-based scoring schemes and MNCM

structures. Finally, we introduce a global optimal algorithm which is based on the

bottom-up local optimal solutions.
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(a) Lone pair MNCM has one interface (b) Double stranded MNCM has two interfaces

Figure 3.1: The definition of interfaces for MNCMs. The pair G·C is the only
interface for the lone pair MNCM (a). The pair U·A is an interface for (b) and the
pair G·C is another interface for (b).

3.2.1 Definition of NCMs

In the work of Major et al. [94], the NCM database contains lone pair NCMs and

double-stranded NCMs. Lone pair NCMs are defined to be up to six nucleotides,

which are denoted by the syntax “L- <sequence>”, where L is the length of the loop

and <sequence> is the sequence. There are 4 types and 5440 lone pair loops: 64

3-loops (3-AAA, 3-AAC, ..., 3-UUU); 256 4-loops; 1024 5-loops; and 4096 6-loops.

On the other hand, they use the syntax “L1 L2-<sequence> ” to denote double-

stranded NCMs, where L1 is the length of the 5’-strand, L2 is the length of the

3’-strand, and <sequence> is the sequence. NCM-database contains 15 types and

407808 different double-stranded NCMs. For example, the 2 2-<sequence> NCMs

represent 256 tandems: 2 2-AAAA, 2 2-AAAC, ..., 2 2-UUUU.

3.2.2 Definition of MNCMs

Compared to the definition of standard NCMs [94], we make some modifications

(reasons are explained later in this section). We change the definition of NCMs

based on the specific properties of microRNA precursors and the requirement of our

algorithm. A valid lone pair MNCM must meet the following constraints:

(1) The first nucleotide and the last nucleotide in a lone pair must be Watson-

15



Crick base pair or wobble base pair (G·U or U·G). This constraint is based on the

requirement of the implementation of our algorithm. We extend the secondary struc-

ture of an miRNA by stacking MNCM blocks. We just consider canonical base pair

as base pair. We propose a new term interface, which is the boundary pair between

two MNCMs (MNCM is referred to as a specific nucleotide cyclic motif and to as a

model as well). There is one interface for a lone pair MNCM. As shown in Fig. 3.1,

G·C is the interface of a lone pair MNCM 5’gaacac 3’. It is obvious that the first nu-

cleotide and the last nucleotide in a lone pair form the interface. On the other hand,

a double stranded MNCM has two interfaces. Consider a double stranded MNCM

5’ugag3’

3’aaac5’
(see Fig. 3.1b) as an example, the pair U·A is interface1 and the pair G·C

is interface2. In order to effectively employ our algorithm, we assume that all the

interfaces should be a canonical base pair.

(2) The second unpaired pair is considered as the first mismatched pair of tradi-

tional minimal free energy algorithm. The second pair of a lone pair MNCM is the first

mismatched pair of the hairpin loop according to the traditional thermodynamics-

based models. The second constraint is based on the requirement of applying the

traditional thermodynamics-based models.

(3) The length of a lone pair ranges from 3 to a half of the length of the given

sequence. In fact, the hairpin loop of a pre-miRNA may be very long and it contains

far more than 6 nucleotides. The third constraint is formulated based on the pre-

miRNA feature, computational-based experiments by us and experimental results by

the other research groups [131].

The definition of a lone pair MNCM is different from the one in MC-FOLD [94],

and is not the same as the hairpin loop in traditional Minimal Free Energy (MFE)

either. Fig. 3.2 depicts the selection of a valid lone pair. Let us focus on the parts

within the dotted line rectangle (hairpin loop). (a) is a valid lone pair according to

our preset rules. (b) is an invalid lone pair because the second pair G·C behind the
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A C G G    U

U G C C    U
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A C G G    A

A

A

A     U

Figure 3.2: The selection of valid lone pair. (a) is a valid lone pair. (b) is an
invalid lone pair. (c) is an invalid lone pair.

first pair U·A is a Watson-Crick base. (c) is an invalid lone pair because the first pair

U·U is not a Watson-Crick base pair.

We use the same syntax “L1 L2-<sequence> ” to denote the double-stranded

MNCMs as Major et al. [94] do. But a valid double stranded MNCM structure must

meet one constraint: Each interface of a double stranded MNCM must be a canonical

base pair. The 2 2-<sequence> represents a base pairing tandem. For example, 2 2-

CGCG represents a double stranded MNCM
5’cg3’

3’gc5’
. The 3 2-<sequence> represents

a 5’-strand single-nucleotide bulge, and the 2 3-<sequence> represents a 3’-strand

single-nucleotide bulge. Similarly, the 4 4-<sequence> represents 2x2 internal loop.

For example, 4 4-CAAGCGGG represents a double stranded MNCM
5’caag3’

3’gggc5’
.

3.2.3 From energy-based models to MNCMs

In order to describe the traditional energy-based model, we use an example.

Fig. 3.3 depicts the computation and model of free energy. This example is from

Mathews et al. [84] and a similar strategy was adopted by Xia et al. [128]. The hairpin

loop of four nucleotides AACA has an initiation of 5.6 kcal/mol. The dangling end

(3’-most G) provides -1.3 kcal/mol of stability. The first mismatched pair A·A within

dotted line in the hairpin loop is worth -1.1 kcal/mol. The 2x2 internal loop here

destabilizes the structure, and its score is positive 1.0 kcal/mol.

The model that we use for our microRNAfold program is MNCMs. However,

we use the experimentally measured thermodynamic parameters as scores instead
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5’

3’

Energy = −1.3 −3.3 −2.1 −0.6 +1.0 −3.3 −1.1 +5.6 

             = −5.1 kcal/mol

5’ CCUUGAGGAACACCAAAGGGG3’
C     C     U     U

G     G     G     G     A
A     A
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G     G     

C     C     

A

A

−3.3 −0.6

−3.3−1.3

−1.1

5.6

1.0

−2.1

Figure 3.3: Prediction of conformational free energy for an RNA. The total
free energy is the sum of each increment.

of the probabilities of each motif or their operations. We use the same example to

show how to convert an energy-based model to an MNCM. Fig. 3.4 describes the

procedure of constructing cycles (stems) for the structure of an RNA. We use this

example to show how to construct the structure by MNCM model, and to show that

the way the structure is constructed by using MNCM model is more natural and

easily understood.

(1) Construct a lone pair (cycle m): 5’gaacac 3’. As we mentioned earlier, the

definition of our lone pair is different from that in the traditional energy-based model.

The scoring function for a lone pair [86][128] is still adopted by the MNCM model:

f( lone pair) =















∆Go
37initiation(n) +∆Go

37( stacking of the first mismatch)

+∆Go
37bonus( U·U or G·A first mismatch, but not A·G)

+∆Go
37bonus( special G·U closure)

+∆Go
37penalty( oligo-C loops)

The only difference is that the first mismatch in traditional energy-based model

is referred to as the second unpaired pair in MNCM model (see the 2nd constraint).

(2) Construct a double stranded MNCM (cycle n):
5’gg3’

3’cc5’
. For this double helix,

we use the identical scoring rule as Mathews et al. [86] do.

(3) Merge cycle m and cycle n into cycle p: 5’ ggaacacc 3’. We update the total

score.
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Figure 3.4: The construction of cycles in the MNCM model.

(4) Construct a double stranded MNCM (cycle q):
5’ugag3’

3’aaac5’
. We use the same

scoring function as the one used by Xia et al. [128] and Mathews et al. [86] for this

tandem mismatches.

(5) Merge cycle p and cycle q into cycle s: 5’ ugaggaacaccaaa 3’. We update the

total score. The similar scoring strategies are applied from step (6) to step (11).

(6) Construct a double stranded MNCM (cycle t):
5’uu3’

3’ga5’
.

(7) Merge cycle s and cycle t into cycle u: 5’ uugaggaacaccaaag 3’.

(8) Construct a double stranded MNCM (cycle v):
5’cu3’

3’gg5’
.

(9) Merge cycle u and cycle v into cycle w: 5’ cuugaggaacaccaaagg 3’.

(10) Construct a double stranded MNCM (cycle x):
5’cc3’

3’ggg5’
.

(11) Merge cycle w and cycle x into cycle y: 5’ ccuugaggaacaccaaagggg 3’.
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3.2.4 Features of microRNAfold

The microRNAfold program applies MNCMs for pre-microRNA secondary structure

prediction. The features in microRNAfold include:

(1) base pairs,

(2) helix closing base pairs,

(3) loop lengths,

(4) bulge loop lengths [36][42][80],

(5) internal loop lengths,

(6) internal loop asymmetry,

(7) terminal mismatch interactions, and

(8) dangling end.

Based on the features of the pre-microRNA structures, we do not deal with pseudo

knots and multi-branch loops.

Generic base pairs

In order to shorten our parameter tables and simplify our model, we merge canonical

base pairs and terminal mismatches into one category: base pair. In fact we just

consider mismatches as non-canonical base pairs.

The 2x2 internal loops

We merge A·U/U·A cases and G·U/U·G cases together. We construct the table

according to the publicly available data, and in other cases, just give the estimated

value 2.8 [86] [128][129].

3.2.5 Soundness of combination of MNCM and MFE

Based on the specific features of pre-microRNA structure and the requirement of our

algorithm, we modify the definition of NCMs and obtain MNCMs. For example,

the hairpin loop of a pre-miRNA may be very long and it contains far more than 6
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T2[1]

Sequence:   S1      S2     S3     S4     S5     S6     S7     S8

T6[1]

T3[1]

T3[2]

T4[1]

T4[2]

T5[1]

T5[2]

T2[1]

T2[2]

Figure 3.5: The possible hairpin loops. A sequence of nucleotides: S1, S2, .., S8.
T2[1] represents one loop which starts with S2 and ends with S4. T2[2] represents
another loop which starts with S2 and ends with S5.

nucleotides. In order to effectively implement our algorithm, we assume that all the

interfaces should be a canonical base pair. By using MNCM, we deal with a block

(at least four nucleotides) instead of a single nucleotide each time. In addition to

its efficiency, construction of the structures can be viewed more naturally and much

easier to understand. Compared to probabilistic-based methods, the MFE methods

for modeling RNA structures have obtained higher accuracy. Furthermore, the ther-

modynamic parameters for free energy are publicly available. For these reasons, we

propose to use MNCM model with MFE’s scoring strategy to predict the secondary

structure of microRNA precursors.

3.2.6 Global optimal algorithm based on bottom-up local op-
timal solutions

We implement our microRNAfold using a new recursive algorithm instead of the

Waterman-Byers algorithm [127], which lists all near-optimal policies. We solve the

problem by a backtracking method.
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Construction of secondary structures

To generate a possible structure, we first determine the hairpin loop, which can be

assigned a lonepair MNCM (see Fig. 3.5). The number of possible hairpin loops is the

number of possible structures, which is O(N2), where N is the length of the sequence.

In Fig. 3.5, there are eight nucleotides. There are two possible hairpin loops, which

are T2[1] and T2[2], in the case that the starting nucleotide is S2. If the starting

nucleotide is S3, S4, or S5, there are two possible hairpin loops. But if the starting

nucleotide is S6, there is only one possible hairpin loop T6[1]. Then, we randomly

select a valid double stranded MNCM from the rest of the sequence to merge it into

the hairpin loop (lonepair MNCM) and get an extended structure. We do not use

the optimal stem to construct the structure because we do not need to construct

the minimum energy structure at this step. We update the scores after we merge,

add a new stem each time, and repeat this process until we obtain a whole complete

structure. That means there is no nucleotide in the rest of the sequence. This is the

first structure generated with the input sequence. We obtain the optimal structure

by backtracking over the stem variables in the first structure. The first structure is

composed of many levels of stems. The top level of stems is the hairpin loop, and

the bottom level of stems is the last stem of the structure. For the bottom level, we

pick different candidate stem from a list P to substitute the old stem to reconstruct

the structure. If it is possible to add this stem into the current structure and obtain

another new whole structure, we continue the current construction and keep going

toward the bottom; otherwise we try the next candidate stem or if no more stem in

the list is available, we backtrack to the previous level, and then we go deeper. We

repeat the process and generate another lists of structures. We stop until we reach

the top level (hairpin loop). A schematic algorithm is given as follows in Algorithm

4.1.1.
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Description of algorithm

Algorithm 3.2.1. Global optimal algorithm based on bottom-up local optimal so-

lutions [1]

1. for all possible starting stems

2. Do:

3. select one starting stem (hairpin loop)

4. while <current structure is not a valid complete structure ?>

5. Do:

6. construct a cycle as the next MNCM

7. if this cycle satisfies the preset rules, the current cycle

is added into the current structure, else try the next cycle

8. endDo

9. construct a complete structure

10. apply a bottom-up algorithm to enumerate all the candidate solutions recursively

sort them to obtain a local optimal solution

Note: The local optimal solution is based on the specific hairpin loop

11. endDo

12. sort the sub-optimal structures according to their scores

13. obtain a global optimal solution from many possible sub-optimal structures

In Step 7, if the current cycle is satisfied with our preset rules which are different

from the Waterman-Byers condition, we will add this current candidate cycle into

the current structure. Preset rules specify that the interface of each cycle must be

valid (canonical base pair). A searching program is used to guarantee that the path

created from hairpin loop to current stem is a new one. Waterman-Byers condition
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Figure 3.6: The bottom-up algorithm.(a) denotes a lone pair (the hairpin loop). (b1)
displays the first initial structure that the program constructs with a given input sequence.
(b2) denotes another structure when we backtrack the stack pointer. (bi) denotes that at
the ith step, this structure is produced by the program. (bn) denotes the last structure that
is built by the program. (c) shows the part of structure that remains unchanged from (b1)
to (bi). (d) is the stem part of the last structure based on the current lone pair. Compared
to the previous structures, the modified part is shown by the shadowed area.

requires an a priori threshold ε and reports all path of score less than Emin+ ε. Emin

is E(1, N), which is the minimal energy, and is determined by dynamic programming.

The Waterman-Byers strategy is to trace back all paths from the sink to the source

in a recursive fashion. The essential idea of the Waterman-Byers algorithm is to

limit the traceback to only those paths of score not greater than Emin + ε. One new

cycle (stem) is added each time. Meanwhile, the total score needs to be adjusted. A

backtracking technique is used here, which is a bottom-up algorithm.
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As shown in Fig. 3.6, the bottom-up (BU) algorithm is introduced by using an

example. We starts with a lone pair MNCM depicted in Fig. 3.6a. Then we repeatedly

select a valid double stranded MNCM and add this MNCM to the current structure

until we construct a complete structure (see Fig. 3.6b1). At this moment, the stack

pointer is at the beginning. We consider the beginning as the bottom and the lone

pair as the top or head. We backtrack to the previous MNCM and rebuild the next

possible structure (see Fig. 3.6b2). When we compare (b2) to (b1), we notice that the

shadowed part is modified. When we go deep toward the lone pair, we can construct

the structures shown in Fig. 3.6bi to Fig. 3.6bn. The local optimal structure with the

minimum score among the candidates (b1, b2, ..., bi, ..., bn) is chosen. Based on the

different lone pairs, we obtain many different local optimal structures. The global

optimal solution is obtained by applying the insertion-sort algorithm. The structure

with the minimal score is the global optimal solution. Among the sorting algorithms,

the insertion-sort algorithm is relatively easy to implement and seems better for small

set. So we choose the insertion-sort algorithm.

3.2.7 Accuracy metrics

In order to precisely assess the predictive power of prediction methods, we use some

typical measures, which have been extensively applied in the field of bioinformatics.

Measures used in our study include True Positive rate, False Positive rate, True

Negative rate, and False Negative rate, in addition to some more important metrics

Matthews, Sensitivity, and Specificity. Sensitivity is defined as

Sensitivity =
number of correct base pairings

number of true base pairings
. (3.1)

We see that sensitivity is equal to True Positive rate here.

Specificity is defined as

Specificity =
number of correct base pairings

number of predicted base pairings
. (3.2)
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Matthews coefficient ratio [87] is written as:

Matthews =

√

TP × TP

(TP + FN)× (TP + FP )
, (3.3)

where FP is the number of false positive cases, FN is the number of false negative

cases, and TP is the number of true positive cases.

3.2.8 Our microRNAfold accessibility

Web service is freely available at http://www.cs.uky.edu/∼ dianweih/rnaprediction/server.html.

3.3 Experimental Results

We evaluated the predictive power of microRNAfold by using known secondary struc-

tures of non-coding RNA taken from the miRBase database [39][40][41]. Our testing

data set came from Arabidopsis thaliana, Brassica napus, Triticum aestivum, Homo

sapiens, Gallus gallus, Glycine max, Apis mellifera, Drosophila melanogaster, and

Physcomitrella patens. The pre-microRNAs’ names are listed in Fig. 3.8. The se-

quence lengths of the testing data set range from 63 to 184. We implemented the

microRNAfold by using ANSI C code and the program was run on a Linux-based ma-

chine. We used Pseudoviewer to view our structures (http://pseudoviewer.inha.ac.kr/)

[98]. Our best solution was from the first one among several hundreds of sorted pos-

sible structures (see Fig. 3.7).

3.3.1 Predictive power of microRNAfold associated with dif-
ferent sequence lengths

In our study, we considered only au, gc, and gu base pairs because there is no suffi-

cient knowledge concerning the non-canonical base pairs even though non-canonical

base pairs might be important and play some roles in determining 3D structures of

RNAs [94].
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−−−−−−−−−−    RESULT    −−−−−−−−−−

Top 5 scores:

> MicroRNAfold (input file is from hsa−let−7a sequence)

(((((.(((((((((((((((((((((...........................)))))))))))))))))))))))))) −14.037429

(((((.(((((((((((((((((((((.(.......................).)))))))))))))))))))))))))) −13.846993

(((((.((((((((((((((((((((.((......................))..))))))))))))))))))))))))) −10.686993

(((((.((((((((((((((((((((............................).)))))))))))))))))))))))) −7.517427


(((((.(((((((((((((((((...((..........................))..)))))))))))))))))))))) −7.516992

Sequence : UGGGAUGAGGUAGUAGGUUGUAUAGUUUUAGGGUCACACCCACCACUGGGAGAUAACUAUACAAUCUACUGUCUUUCCUA


Figure 3.7: microRNAfold predictions for hsa-let-7a. The top five structures
generated by microRNAfold for hsa-let-7a. The structures are shown in dot-bracket
notation. A parenthesis represents a canonical base pair; a dot represents an unpaired
nucleotide. A dot-bracket can be converted to a secondary structure representation.
Negative floating point numbers on the right hand side denote the corresponding
scores.

Fig. 3.9 shows the specific performance of microRNAfold based on different se-

quence lengths. It shows that our microRNAfold does best when the lengths of the

input sequences range from 85 to 110 which are the average lengths for normal mi-

croRNA precursors. The Matthews value in case (b) increases to 95% from 94%,

compared to case (a). Compared to case (a) and case (b), the Matthews value in

case (c) drops dramatically and the True Positive rate drops slightly. It makes sense

because it is always a challenge for a prediction approach when the input sequence is

very long.

3.3.2 Predictive power of microRNAfold associated with dif-

ferent hairpin loop lengths

Fig. 3.10 depicts the comparison of the microRNAfold performance based on the

hairpin loop lengths. We just used the Matthews value as the metric to assess the

effectiveness and the performance of our method. It seems that microRNAfold ob-

tained the best Matthews coefficient ratio when the hairpin loop is relatively small.
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Human (10)

hsa−mir−139

hsa−mir−151

hsa−mir−196a

hsa−mir−299

hsa−mir−491

hsa−let−7a

hsa−mir−24−1

hsa−mir−31

hsa−mir−101−2

dme−mir−3

dme−mir−5 

 dme−mir−31a

 dme−mir−284

hsa−mir−518a

D.melanogaster (4)

ath−mir−166a

Arabidopsis (12)

ath−mir−157a

 ath−mir−1886

Fowl (Gallus gallus) (4)

gga−mir−16−1

 gga−mir−18a

 gga−mir−24

 gga−mir−26a

ath−mir−168a
ath−mir−171a
ath−mir−393a

 ath−mir−396a
 ath−mir−771

 ath−mir−158a
 ath−mir−165a

ath−mir−778
ath−mir−782

gma−mir−156d

 gma−mir−396a

 gma−mir−482

 gma−mir−1513

Colza (4)

bna−mir−161

 bna−mir−1140a

 bna−mir−166a

 bna−mir−169a

Soybean (4)

Wheat (4)

tae−mir−159a

 tae−mir−1121

 tae−mir−1131

 tae−mir−1136

Moss (4)

ppt−mir−156a

 ppt−mir−1048

 ppt−mir−1215

 ppt−mir−2084

Honeybee (3)

ame−let−7

 ame−mir−282

 ame−mir−317

Figure 3.8: The pre-microRNAs used in our test set.

For example, in case (a), TP is 769, FN is 52 , and FP is 29, so the Matthews value

is
√

TP×TP
(TP+FN)×(TP+FP )

= 95%.

3.3.3 Comparison to other methods

We compared the performance of microRNAfold with the other three leading methods:

two adopt the probabilistic-based strategy, and the other chooses the free energy min-

imization strategy. For benchmarking experiments, we used MC-FOLD [94], CON-

TRAfold [31], and Mfold (http://mfold.bioinfo.rpi.edu/cgi-bin/rna-form1.cgi) [134],

with default parameters for each program. All benchmarks were conducted on Intel-

based servers running a GNU/Linux operating system. Whenever a program returned

multiple possible structures (e.g., Mfold and MC-FOLD), we chose the structure with

the minimum score.

Fig. 3.11 shows the comparison of the predictive power of different methods. Com-

pared to the thermodynamic approach and the probabilistic methods, MicroRNAfold

obtained a higher Matthews coefficient ratio, a higher True Negative rate and a lower
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97%

94%
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88%

93%
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Figure 3.9: The specific performance of microRNAfold based on different
sequence lengths. We divide the sequence lengths into three groups: case(a) (63-
84), case(b) (85-110), and case(c) (111-184).

False Negative rate, despite a lower True Positive rate and a higher False Positive

rate. In particular, microRNAfold achieved statistically significant improvements of

over 11% in specificity relative to the best current method, Mfold. In the aspect of

the True Positive rate, MC-FOLD, CONTRAfold, and MFold worked better than

microRNAfold.

A paired t-test was performed to determine if the difference between the specificity

of microRNAfold and that of MFOLD is significant. The mean difference (M=0.1147,

SD =0.1588, N= 49) was significantly greater than zero, t(49)=5.06, two-tail p =

0.00007, providing evidence that microRNAfold achieved statistically significant im-

provements in specificity relative to MFold. The confidence level is 95%.

We also constructed an auROC plot shown in Fig. 3.12. The best possible pre-

diction method would yield a point in the upper right corner or coordinate (1,1) of

the ROC space. A completely random guess would give a point along the diagonal

line from the right bottom to the top left corners. The microRNAfold method clearly

shows the best among MC-FOLD, CONTRAfold, Mfold, and microRNAfold.
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83%

95%

3 − 21

Figure 3.10: The Matthews coefficient ratio performance of microRNAfold
based on different hairpin loop lengths. We divide the loop lengths into three
groups: case(a), case(b), and case(c). The case(a) indicates that the length range is
3-21, the case(b) indicates that the length range is 22-44, and the case(c) indicates
that the length range is 45-83.

3.4 Discussion

Although we have obtained encouraging results compared to other prediction ap-

proaches, there are still some issues that need to be discussed in detail. The first

thing that we would like to mention is the auxiliary information. As we know, all the

parameters and understanding of RNA secondary structure come from experimental

results. Experimental results and the related analysis based on the experimental facts

may help us design a more accurate model and prediction algorithm. How to get this

knowledge is still a challenge for us. The second thing is the scoring strategy. During

our testing phase, we found some proposed structures from the database could not

be generated from our results based on the current scoring function.

3.4.1 Taking into account auxiliary information and more
parameters

Sometimes we could not successfully predict the secondary structure of an RNA

because “our knowledge of the contributions of various RNA motifs to the total free

energy of RNA structures is still incomplete” [128]. Due to the limitation of this
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Prediction Methods:

= Sensitivity

(Modified NCM 
plus thermodynamics)(Thermodynamics)(probabilistic_based)

CONTRAfold MFoldMC−FOLD

(NCM)

microRNAfold

True Positive rate 97.99 % 92.61 %

2.01% 7.39 %

True Negative rate 70.76 %

False Negative rate 29.24 %

Specificity

Matthews coefficient ratio

93.91 %

58.82 %

73.11 %

96.51 %

3.49 %

69.20 %

30.80 %

83.42 % 84.82%

89.13 %

10.87 %

90.04 %

41.18 %

False Positive rate 6.09 %

61.92 % 75.25 % 78.22 % 89.69 %

Figure 3.11: Comparison of the predictive power with other predic-
tion methods. The predictions are compared over 1651 base pairs. For
each approach, the best predicted structures are analyzed. In each row,
we use bold font to represent the best value. MC-FOLD software is avail-
able at http://www.major.iric.ca/MC-Tools.html. CONTRAfold is available at
http://contra.stanford.edu/contrafold/server.html.

kind of knowledge, we could not give all the thermodynamic parameters concerning

free energy. Thus it could affect our prediction negatively. For example, when we

predicted the microRNA precursor hsa-mir-196a, we failed to achieve the proposed

structure of
5’uuag3’

3’agcc5’
.

Fig. 3.13 shows the comparison of the predicted structure by microRNAfold with

the structure proposed by the database. According to our current scoring function,

the sum of the two parts (b1) and (b2) is -0.07 and the score of the structure (c) is

0.95. Therefore, we took (b) as the solution. When we calculated the score for the

structure (c), we used the following formula proposed by Xia et al. [129]:

∆Go
37predict(c) = [∆Go

37loop(c1) + ∆Go
37loop(c2)] ∗

1

2
+ ∆. (3.4)

In order to solve this problem, we need to refine scoring function [4][31] or incor-

porate auxiliary information. Based on the statistical and theoretical analysis of the

experimental data, we may incorporate biological constraints to help the prediction

[135].
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Figure 3.12: ROC plot comparing sensitivity and specificity for several RNA
structure prediction methods.

3.4.2 Some issues with scoring strategy

During our study, we found that some of the best structures did not come from

the first structure whose score is minimal. For example, according to the miRBase

database, the structure of pre-microRNA dps-mir-6-3 should be (b) in Fig. 3.14. But

the result from microRNAfold showed that the proposed structure should be (a) in

Fig. 3.14.

3’ A                  C

5’ U                  G

G     C

U     A

 U   U

 A   G

5’ UUAG 3’

3’ AGCC 5’

5’ U   U
A

C

G

C

A
U           G

C
G           C

(a) (b)

+
  U                  A

  A                  U
G     U

U     G
   G                  C

   C                  G

A     C

C     A

(c)

(c2)(b1) (b2) (c1)

3’ A   G + 

Figure 3.13: Prediction of a specific structure. (a) is the sequence of the struc-
ture, (b) is the predicted structure by microRNAfold, and (c) is the proposed structure
by the database.
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Sequence: CAAAAAGAAGGGAACGGUUGCUGCUGAUGUAGUUCAAGUUUUGCACAAUUUAUAUCACAGUGGCUGUUCUUUUUUGUUUG

(.(((((((((((((((((((((.((((((((.................)))))))))))))))))))))))))).)))) (a)

((((.(((((((((((((..(((.((((((((.....(.....).....)))))))))))..))))))))))))).))))

MicroRNAfold’s result on dps−mir−6−3

(b)

(c)

Figure 3.14: The result of microRNAfold with the input of the pre-
microRNA dps-mir-6-3. (a) shows the best structure predicted by microRNAfold.
(b) is the proposed structure by the database. (c) shows the hairpin loop of (a) and
the corresponding area of (b).
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Figure 3.15: Comparison of the predicted hairpin loop of the pre-microRNA
dps-mir-6-3 with the corresponding area from the database. (a) is the result
of the database. (b) is the result of microRNAfold.

Fig. 3.15 displays the different hairpin loops between the database and our pre-

diction approach. Let us see our scores. According to our strategy, the score for the

hairpin loop of (b) (in Fig. 3.15) is 6.2 while the score for the hairpin loop and that

5x5 internal loop of (a) (in Fig. 3.15) is 6.66. So, we chose (b) as the structure of the

hairpin loop based on our current scoring function. In order to improve our prediction

algorithm we have to refine the scoring function [4][31].
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3.5 Conclusion

The experimental results show that microRNAfold provides an alternative approach

to the prediction of miRNA secondary structure, which has the following advantages:

(1) it achieved higher Specificity, (2) it obtained higher Matthers coefficient ratio, and

(3) receiver operating characteristic (ROC) plot showed that microRNAfold is the best

among MFold, MC-FOLD, CONTRAFold, and microRNAfold. The predictive power

of microRNAfold was evaluated in terms of input sequence lengths as well. Our model

obtains the best performance when the length of the input sequence is average. In

addition, we conducted experiments to assess the prediction performance with the

different hairpin loop lengths. It seems that the model is ideal when the hairpin

loop is small. If domain knowledge could be incorporated into our model it would

improve the prediction a lot. Knowledge of secondary structure will provide enough

structural constraints to the building of three-dimensional structure. In the future,

we can consider formulating a hybrid statistics/thermodynamic model, which could

use the statistical frequencies as a priori for selecting competing thermodynamically

favorable configurations.
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4 Predicting the Secondary Structure of Polycistronic MicroRNAs

There are some differences between plant miRNAs and animal miRNAs. Animal

miRNAs are often encoded within introns of protein genes [1, 56, 89, 102], while

most plant miRNAs are encoded in intergenic loci. In plants, miRNAs are mainly

generated from independent transcripts [1, 89]. On the other hand, about 40 to 50%

miRNAs in human, zebrafish and mammals, are located within clusters and encoded

in independent hairpins or in both arms of the same hairpin [3, 1]. To our knowledge,

miRNA clusters in plants have not been analyzed in detail. However, recently, a

few miRNA clusters in plants have been reported [23, 43]. It has been shown that

clustered miRNAs can be either encoded in a single polycistronic transcriptional unit

or independently transcribed [3, 7, 89].

Based on these observations, an efficient algorithm should be available to pre-

dict the structures of poly-cistronic miRNAs. Both the classes of prediction methods

based on phylogenetic sequence comparison [31, 33, 105] and the classes of prediction

methods based on thermodynamics [11, 88, 134], however, face the same challenge:

predicting the secondary structure of a single RNA is usually very time-consuming.

We extend our previous work [44] by using a parallel algorithm to predict the sec-

ondary structure of multiple microRNAs located on a single polycistronic transcript.

In this chapter, we propose a new master-slave algorithm to tackle this problem.

Among the parallel architectures, the master-slave architecture is easy to implement

[50]. So we choose the master-slave architecture. First, the master processor parti-

tions the input sequence into subsequences. Then the master processor distributes

the subsequences to the slave processors and the slave processors begin predicting

the structure of miRNAs. Afterwards, the master processor receives the returned

structures from these slave processors, and merges partial structures into a list of

whole structures. Finally, the master processor sorts these structures according to
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their scores and obtains the optimal solution.

The organization of the chapter is as follows: In Section 4.1, we introduce a parallel

algorithm, analyze the time complexity for sequential approach and parallel approach,

and derive the speedup by using the proposed parallel method. The experiments and

the results are presented in Section 4.2. A brief discussion is given in Section 4.3,

followed by some concluding remarks in Section 4.4.

4.1 Parallel prediction of secondary structure of

poly-cistronic miRNAs

In this section, we first describe how to predict the structure of multiple microRNAs

by using the single microRNA prediction method. Next, we present a master-slave

parallel algorithm for predicting the structure of multiple microRNAs. Finally, we

analyze the time complexity of both sequential way and parallel way and derive the

theoretic speedup under the ideal conditions.

4.1.1 Predicting multiple microRNAs’ structure by using sin-

gle microRNA prediction method

When predicting a single microRNA secondary structure, the prediction program is

executed only once because the input sequence contains a single microRNA primary

structure. On the other hand, when predicting the structure containing multiple

microRNAs, the situation becomes more complicated. The input sequence contains

more than one microRNA primary structures and other nucleotides. So the first task

is to partition the input sequence into subsequences, and each subsequence contains

a single microRNA primary structure. Then the subsequences (subtasks) are pre-

dicted respectively. When every subtask has been done, multiple partial results are

merged into a candidate structure. So the single prediction algorithm could be run

multiple times. There are many such partitions. So the big issue to the practical

implementation of predicting multiple microRNAs’ structure is that the number of
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partitions may be large. We propose an effective algorithm to solve this problem by

using parallel processing techniques.

4.1.2 Parallel algorithm

The master processor will partition a task (it is a sequence in our study) into subtasks

and distribute them to the slave processors. The slave processors compute the sec-

ondary structures based on the subtasks received. The optimization processes, such

as merging substructures and sorting the candidate structures, are performed by the

master processor. The schematic algorithm is given in Algorithm 4.1.1.

Algorithm 4.1.1. Parallel algorithm based on the master-slave architecture for

predicting the structure of multiple microRNAs. [1]

Master Processor:

1. partition the input sequence into subsequences;

2. distribute the subsequence into multiple slave processors;

3. ... wait ...

7. receive the results from multiple slave processors;

8. merge partial structures into a whole structure with minimal score;

9. sort the candidate structures based on their scores;

10. obtain a global optimal solution.

Slave processors:

4. receive task from master processor;

5. compute the local optimal structure with score based on the assigned task;

Global optimal algorithm based on bottom-up
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Input sequence

... ... ... ...

P11 P12 Pn2Pn1

Partition the sequence

Slave processor:Master processor:

Distribute the subsequences 

... ...

...

processing ...

processing ...

processing ...

processing ...

S2, S3, ..., Sn.

Receive results from slave processors Send result to Master processor
Merge results into a whole structure S1,

Sort the candidate structures to get the optimal one

Figure 4.1: Master processor and Slave processors.

6. return the result to master processor;

It is easily seen that Steps 4, 5, and 6 are executed by the slave processors and

must be finished before Step 7. The global optimal algorithm based on the bottom-up

strategy, which is used by the slave processors, is briefly described in Chapter 3 (See

[44] for detail).

Partitioning sequence

Basically, a sequence is a discrete structure used to represent an ordered list. The

RNA sequence used in our study is referred to as a function from a subset of the
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S2

ACUCUGGA
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Free nucleotides

ACCAAUGC
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ACC

S2

AAUGCGCG

One partition Another partition

Figure 4.2: An examples of two partitions.

set of A, U, C, G. For example, sequence 1 can be denoted as aaugc, sequence

2 aaguc, and sequence 3 gcuaa. In Fig. 4.1, the first step is to partition the

input sequence into multiple subsequences by the master processor. Suppose there

is a sequence acucuggaaccaaugcgcg with the length of 19. We can partition

it into two subsequences s1, and s2. And we consider the rest of nucleotides as

free nucleotides. We partition the sequence with two constraints: The length and

the number of subsequences are 8 and 2, respectively. Two partitions are shown in

Fig. 4.2. All possible partitions will be examined by the algorithm.

Cost of partitioning sequence

Let n be the length of sequence, m be the number of subsequences, q be the subse-

quence length. The number of free elements will be n−mq.

We use NP to denote the number of partitions, which is:

NP =











































































(n−mq + 1)
+(n−mq + 0)
+(n−mq − 1) + ... + (n−mq − (n−mq − 1))

=

n−mq−1
∑

i=−1

(n−mq − i)

= (n−mq + 1)(n−mq) + 1 + 0− 1− 2− 3..
−(n−mq + 1)
= (n−mq)2 + (n−mq) + 1− (0 + 1 + 2 + 3
+...+ (n−mq + 1))
= (n−mq)(n−mq + 3)/2
≈ (n−mq)2
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4.1.3 Soundness of parallel strategy

With respect to the computational methods for RNA secondary structure prediction,

generally there are two classes of algorithms, which are represented by combinatorial

and recursive folding [32] and by dynamic programming [86]. The combinatorial

and recursive methods are extremely time consuming and generally are limited to

folding about 200 nucleotides. Its advantage is that it considers all the possible

structures. The dynamic programming method is much better than the combinatorial

and recursive algorithm in terms of time cost. More challenges will be encountered

and the time cost is still a big issue when we deal with the prediction for multiple

RNAs.

Due to the dramatic increase in available computing power over the last decade,

prediction or simulation with parallel processing techniques has become a feasible way

of overcoming the problem of expensive time cost. A number of studies have reported

on the success of such techniques in bioinformatics and computational biology [19,

133]. Considering the problem itself, the proposed algorithm will certainly benefit

from parallelization. In order to obtain the optimal secondary structure, we need to

partition the input sequence. There are altogether (n−mq)2 partitions, where n is the

length of the input sequence, m is the number of microRNAs, and q is the length of

a single microRNA. If sequential approach is applied the total prediction cost should

be (n−mq)2 times of the prediction time for a single microRNA. It is definitely very

large if n−mq is large. On the other hand, the problem itself is suitable for parallel

computation, as each prediction is independent of the other predictions. Therefore,

if we perform prediction by applying parallel processing strategy the computational

cost could be largely reduced.

The parallel strategy we proposed combines the advantage of combinatorial and

recursive method and the advantage of dynamic method. It considers all the possible

partitions of sequence. The algorithm that the slave processor uses is presented in
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Chapter 3.

4.1.4 Time complexity analysis

We first analyze the time complexities of both sequential and parallel algorithms. The

speedup of the parallel method is then derived. We define some related notations as

follows:

n : the length of input sequence;

m : the number of microRNAs;

q : the length of a single microRNA;

NP : the number of partitions;

p : the number of slave processors;

n−m ∗ q : the number of free nucleotides in one partition;

tavesingle : the average execution time of a single microRNA prediction;

tavecomm : the average communication time between the master processor and a slave

processor; Communication is needed when the master processor distributes subse-

quences and receives results from the slave processors.

tpartition : the time for the master processor to partition sequence;

tsort : the time for the master processor to sort candidate structures;

T ave
s : the average time complexity of the sequential algorithm;

T ave
p : the average time complexity of the parallel algorithm;

Save : the average speedup.

With respect to the sequential way, the program partitions the input sequence

into subsequences. Then the subsequences are distributed and computed. As we

mentioned early, the total number of partitions is NP ; In each partition, m microR-

NAs will be predicted. This is the most time consuming part in the whole program.

When every subsequence is constructed into structures the program sorts them and

gets the optimal structure. Based on this procedure, we derive the average time
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complexity of the sequential algorithm.

The average time complexity of the sequential algorithm is:

T ave
s = tpartition +NP ∗m ∗ tavesingle + tsort

= tpartition + (n−mq)(n−mq + 3)/2 ∗m ∗ tavesingle + tsort

≈ tpartition + (n−mq)2 ∗m ∗ tavesingle/2 + tsort

The parallel algorithm can distribute the subsequence tasks to the slave processors.

Therefore, The whole prediction time could be significantly reduced. However, the

parallel algorithm needs additional communication time NP ∗m ∗ tavecomm between the

master processor and the slave processors. We derive the average time complexity of

the parallel algorithm.

T ave
p = tpartition +

NP ∗m ∗ tavesingle

p
+NP ∗m ∗ tavecomm + tsort

≈ tpartition + (n−mq)2 ∗m ∗ tavesingle/2p

+ (n−mq)2 ∗m ∗ tavecomm/2 + tsort

The average speedup is:

Save

=
T ave
s

T ave
p

≈
tpartition + (n−mq)2mtavesingle/2 + tsort

tpartition + (n−mq)2mtavesingle/2p+ (n−mq)2mtavecomm/2 + tsort
In this study, the average time of partitioning the sequence and the sorting time are

much smaller than the average time of single microRNA prediction. In addition, since

the master processor only distributes the subsequences to the slave processors and

receives the returned structures from the slave processors, the communication time is
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..................((((((...............)))))).....(((((...)))))................................   −8.860000


......(.(.(((.((((.((.......)).)))).))).).).............................(..................)...   −4.479999


......(.(.(((.((((.((.......)).)))).))).).)............................(...................)...   −4.479999


......................((((................)))).....((((...)))).................................   −3.909999


........(.(((.((((.((.......)).)))).))).).............(((.(((((............)))....)))))........   −3.859999
 

..................((((((...............)))))).........................(..................).....   −3.040000


Top 7 scores:

−−−−−−−−−−    RESULT    −−−−−−−−−−

SEQUENCE : AGUCUCACCAUCGGGCUCGGAUUGGGCUUCAGAGUGUGGCGAUCCAAUUCGGCUGACACAGCCUCAUUCCCGUAUGGCACCGUGGUCGAGAAAUA

..................((((((...............)))))).....((((...))))..................................   −5.600000

Figure 4.3: Prediction of synthetic data.

relatively small. So, the speedup can be simplified as follows:

Save ≈
(n−mq)2 ∗m ∗ tavesingle/2

(n−mq)2 ∗m ∗ tavesingle/2p+ (n−mq)2 ∗m ∗ tavecomm/2

=
tavesingle

tavesingle/p+ tavecomm

= p[
1

1 + p tavecomm

tave
single

]

When
tavecomm

tavesingle

is small enough (tavecomm is much smaller than tavesingle), Save is near p. At

this moment, the speedup is almost linear.

4.2 Experiments and Results

We conducted some experiments to verify the effectiveness of our parallel algorithm.

First, we used some synthetic dataset. It is a sequence of 95 nucleotides. Two miRNAs

with the length of 45. Second, we used a sequence of 183 nucleotides which include two

endogenous poly-cistronic miRNAs osa-MIRNA395n and osa-MIRNA395o. Third,

we used a sequence of 328 nucleotides which include two artificial miRNAs that were

validated to be expressed to target the Arabidopsis AGO2 and AGO3 gene transcripts.

Finally, we performed some experiments to test the performance of our approach with

respect to speedup. Fig. 4.3 shows the first 7 structures with the top score in our first

set of experiments.
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4.2.1 Synthetic dataset

Fig. 4.4 shows the optimal structure with the minimal score -8.86. Another structure

in Fig. 4.5 has one shorter microRNA which starts with the 51st nucleotide and ends

with the 61st nucleotide. This structure is less stable than the optimal one just

because its second microRNA is less stable than the corresponding one in the optimal

structure.

Figure 4.4: The optimal structure with
the score -8.86.

Figure 4.5: Another structure with the
score -5.6.

The third structure and the fourth structure are shown in Fig. 4.6 and Fig. 4.7

respectively. Both of them have the same microRNA stem-loop structure (7-43 nu-

cleotides). However, they are a little different in the second microRNA structure. We

ranked them randomly.

Figure 4.6: The third structure with
the score -4.479.

Figure 4.7: The fourth structure with
the score -4.479.

4.2.2 Real world dataset

We performed an experiment to predict the secondary structure of putative poly-

cistronic clustered pre-miRNAs (osa-MIRNA395n and osa-MIRNA395o). 990 struc-
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Figure 4.8: Representative RNA secondary structure of polycistronic clus-
tered miRNAs’ precursors. Its score is -41.50, osa-MIRNA395n is from 46 to 66,
and osa-MIRNA395o is from 163 to 182 .

tures with scores were obtained. The optimal structure was shown in Fig. 4.8 [43].

AGO2 and AGO3 are two important proteins that constitute small RNA pathways

in Arabidopsis. To study their functions, two artificial miRNAs (amiRNAs) can be

designed to target them for silencing. We conducted some experiments to evaluate

the performance of our algorithm in prediction of the secondary structures of the two

amiRNAs in a transcript. 1225 structures with scores were obtained. The algorithm

obtained the same results when different number of slave processors were used. Some

of the obtained structures were listed as follows. MicroRNA A in Fig. 4.9 is AGO2

amiRNA. MicroRNA B consisted of a big loop and a short stem.

Compared to the microRNA B in Fig. 4.9, the microRNA B in Fig. 4.10 is rel-
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Figure 4.9: Prediction of AGO2 and AGO3 amiRNAs. Its score is -66.44,
microRNA A (from 6 to 135) is AGO2 amiRNA, and microRNA B (219 - 298) .

atively more stable than that in Fig. 4.9 because it has a smaller loop and a longer

stem which is consisted of more canonical bases.

We focus on the microRNA B (because the microRNA A is the same as that

in other cases) in Fig. 4.11 as well. Compared to the two previous examples, this

microRNA has a longer stem and a smaller loop. This structure is relatively stable.

The optimal structure is shown in Fig.4.12. It is clear that the miRNA A (i.e.,

AGO2 amiRNA) structure is the same as the ones in the previous three figures.

In addition, the program successfully predicted the secondary structure of AGO3
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Figure 4.10: Prediction of AGO2 and AGO3 amiRNAs. Its score is -82.78,
microRNA A (from 6 to 135) is AGO2 amiRNA, and microRNA B (212 - 303) .

amiRNA.

4.2.3 Speedup trend

Experiments were performed to show the performance with respect to speedup of the

proposed approach. They were simulated in C programming language on a super-

computer. The supercomputer is an IBM HS21 blade cluster, which has 340 blades

with 4 processor cores per blade. It uses an intel processor (3.0 GHz, 8 GB/node

RAM) running a linux OS (2.6.5-7.244-smp). Table 4.1 shows the different time cost

with different number of slave processors for predicting the structure of AGO2 and

AGO3 amiRNAs. Fig. 4.14 displays the speedup when running simulations in parallel

approaches. Because of the overhead associated with running a simulation in parallel,
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Figure 4.11: Prediction of AGO2 and AGO3 amiRNAs. Its score is -101.52,
microRNA A (from 6 to 135) is AGO2 amiRNA, and microRNA B (204 - 311) .

the actual values (shown in hexagons) are different from the theoretic values (shown

in circles).

Fig. 4.13 shows the different efficiencies with the number of slave processors. When

the number of slave processors is 1 the speedup is 1.00 and the efficiency is 1.00/2 =

50%. Then with the increase of number of slave processors, the efficiency increases

as well. When the number of slave processors is 4, the efficiency reaches 76%, which

is the highest. However, after that, the efficiency decreases with the number of slave

processors increasing.

The results (Fig. 4.14) demonstrate clear benefits from running simulations in par-

allel. The program obtained the largest speedup when the number of slave processors

was 128. The trend is correct. Moreover, it can be easily observed that the speedup

increased almost linearly along with the number of slave processors when the number

of slave processors is less than 32. The speedup increases slowly when the number of
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Figure 4.12: Prediction of AGO2 and AGO3 amiRNAs. Its score is -124.18,
microRNA A (from 6 to 135) is AGO2 amiRNA, and microRNA B (194 - 324) is
AGO3 amiRNA.

slave processors is greater than 32.

4.3 Discussion

4.3.1 When to get benefit from parallel computing?

Since the number of partitions is (n−mq)(n−mq+3)/2, it is obvious that the number

of partitions is directly related to the number of free nucleotides (see the partitioning

sequence cost). Apart from the number of free nucleotides, the overall prediction time

is much influenced by the length of a single microRNA m. That means the prediction

time will be much longer if the single microRNA sequence is long. So the length of a

single microRNA m and the number of free nucleotides n−mq are the main factors

that affect our judgement: use parallel approach or sequential approach?

In general, if the subsequence is short (m is moderately small) and the number of

free nucleotides n −mq is not very large, the benefit of using the parallel algorithm
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Table 4.1: The time cost with different number of slave processors (in minutes).
Num of slave processors Total

1 137.5
2 72.5
4 36.8
8 21.3
16 12.13
32 8.9
64 8.7
128 8.3

to predict the structure of RNAs is relatively small.

4.3.2 Linear speedup

Many factors influence the effect of parallel computing on speedup. In general, the

communication overhead between the slave processors and the master processor can

be omitted because it is very small compared to computing time used by a single

slave processor. The big issue here is the load balancing. Speedup is generally limited

by the speed of the slowest node. So an important consideration is to ensure that

each node performs approximately the same amount of work, i.e., the system is load

balanced. In our study, it is almost impossible to guarantee that each node uses the

similar or same amount of time. Let us do some theoretic analysis in the first place.

The average speedup can be written as follows under the ideal conditions.

Speedup ≈
tpartition + (n−mq)2 ∗m ∗ tavesingle/2 + tsort

tpartition + (n−mq)2 ∗m ∗ tavesingle/2p+ tsort

To be simple, we partition the computational time as two parts: Tserial and Tparallel.

So, the Speedup can be rewritten approximately as

Tserial + Tparallel

Tserial + Tparallel/p

Assume that the program uses µ/128 seconds on the serial part and µ seconds on
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Figure 4.13: The experimental results for efficiency.

the parallel part. So when p = 1, the speedup is

µ/128 + µ

µ/128 + µ
= 1

We get a series of theoretical speedups when p is different (see Fig. 4.14). We can see

that the speedup line (dotted line) becomes flatter when p becomes bigger (bigger than

32 in our case). Actual experimental results also indicate this trend (see Fig. 4.14).

4.4 Conclusion

The experimental results show that our algorithm is able to produce the optimal sec-

ondary structure of poly-cistronic microRNAs. When there are many possible parti-

tions of sequence it may be beneficial to use parallel algorithm instead of sequential

algorithm. The experimental results show that sometimes multiple structures with

the same score could be obtained. In the future, we may apply parallel algorithm to

the endogenous poly-cistronic miRNAs from plants and animals for their secondary
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structure prediction and validation. The trend of speedups of our parallel algorithm

matches that of theoretical speedups. Knowledge of secondary structure will provide

more structural constraints to the building of 3D structure. We can consider building

a 3D structure model based on the secondary structure prediction in the future.
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5 Classification of real and pseudo human pre-microRNAs based on
structure’s characteristics with SVM

5.1 Introduction

According to the current understanding, miRNAs are initially expressed as part of

transcripts termed primary miRNAs (pri-miRNAs) [67]. The long primary miRNA is

processed into 607̃0 nt miRNA precursor by nuclear RNase III Drosha [67, 68]. The

pre-miRNA then is cleaved into 2̃2 nt deplexes [7]. The important characteristics

of pre-miRNAs is the stem-loop hairpin structure. The hairpin structure of pre-

miRNA acts as not only the structure motif for Exportin-5 in nuclear-cytoplasm

transportation, but also a substrate for Dicer enzyme [132]. It indicates that the

secondary structures are very important in the miRNA biogenesis processing [130].

Computational methods are becoming more and more important due to the fact

that it is difficult to systematically detect miRNAs from a genome by experimental

approaches. Many computational methods used comparative genomics information

to identify miRNAs [63, 64]. The general idea is to use comparative genomics to filter

most of hairpins that are not conserved in related species [130].

In order to study the important features that can be used to differentiate the real

pre-miRNAs from other hairpin sequences with similar stem-loops, we want to carry

out some experiments to classify the real pre-miRNAs and pseudo pre-miRNAs. To

our best knowledge, some other groups [130] performed research in this study and

reported some good results. But they used a relatively large feature space and the data

structure depends on the sequence data. Therefore, we want to use the characteristics

from the secondary structures of pre-miRNAs as the features to do the classification

with support vector machine (SVM).

This chapter is organized as follows: We briefly review the classification algorithms

used in our prediction system in Section 5.2. The proposed prediction method is
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described in Section 5.3. The computational experiments are carried out and the

results are discussed in Section 5.4. A discussion on the results is introduced in

Section 5.5. We sum up this chapter in Section 5.6.

5.2 Classification

In this section, we briefly review the classification algorithms we use in the system.

5.2.1 SVM Classification

The SVM (Support Vector Machine) is an effective classification method based on a

structural risk minimization theory [119]. It has been successfully applied to many

applications like face identification, text categorization, bioinformatics, etc [13, 14,

71].

In SVM classification the goal is to find a hyperplane that separates the examples

with maximum margin. Given l examples (x1, y1), ..., (xl, yl), with xi ∈ Rn and

yi ∈ {−1, 1} for all i, SVM classification can be stated as a quadratic programming

problem:

minimize
1

2
‖ w ‖2 +C

l
∑

i=1

ξi

subject to







yi(< w, xi > +b) ≥ 1− ξi
ξi ≥ 0
C > 0

where C is a user-selected regularization parameter, w is the weight vector, and ξi

is a slack variable accounting for errors. After solving it, we can get the following

decision function:

f(x) =
l

∑

i=1

αiyi < xi, x > +b. (5.1)

where 0 ≤ αi ≤ C.

For the nonlinear case, we apply a kernel function, K(x, xi) =< Φ(x),Φ(xi) >,

which maps the input space into some reproduced kernel feature space. Then Equa-
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tion (5.1) can be rewritten as:

f(x) =
l

∑

i=1

αiyiK(x, xi) + b. (5.2)

The above methods only work for classifying two classes. If the matrix features

are to be classified into more than two classes, we have to use one of the multi-

class classification methods [51, 96, 121]. Two of the commonly used multi-class

methods are “one-against-one” and “one-against-all”. Suppose there are n classes,

“one-against-all” method constructs n classifiers. Classifier i divides the data into

the class belonging to class i and those not belonging to class i. The “one-against-

one” method constructs classifiers for each of the class pairs, thus totally constructing

n(n−1)/2 classifiers. Hsu et al. showed in [51] that “one-against-one” is more suitable

for practical use. However, a recent publication [100] argued that “one-against-all”

is as accurate as any other approaches. Since using “one-against-all” can save more

training time, we adopt the “one-against-all” method in this chapter.

5.3 Prediction Method

Before we introduce our prediction method we would like to introduce aother method

proposed by aother group.

5.3.1 Classification based on local structure-sequence fea-

tures

In 2005, Xue et al. proposed a method to classify the real human pre-miRNAs

and pseudo pre-miRNAs. They proposed a set of features that combine the local

contiguous structures with sequence information to characterize the hairpin structure

[130]. The features focus on the information of every 3 adjacent nucleotides. There

are 8 possible structure compositions: (((, ((., (.., (.(, .((, .(., ..(, and .... There are

32 (4*8) possible structure-sequence combinations, which they denoted as U(((, A((.,

etc. Fig. 5.1 shows how triplet method extracts the features of pre-miRNAs.
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Figure 5.1: Triplet Method.

5.3.2 Classification based on conserved characteristics

In order to make use of the conserved characteristics of human microRNAs, we will

perform the classification of real and pseudo human microRNA precursors. We will

take the following steps:

Test all the known microRNAs in human

In this step, test all the structures in human except for the structures that represent

the similar RNA sequence or predicted energy score is higher than a preset threshold

value.

Extract features from each subject

Define some features according to the conserved characteristics. For example, Pre-

microRNAs names, Length of pre-microRNAs, Number of base pairs, Number of

mis-matched, Size of loop, Degree of base, Ratio of loop to whole sequence, Distance
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from the 5 strand to the loop, energy score. We then form a matrix.

Normalize the feature matrix

If there are multiple features in a sample and the scales of some features are different,

normalization process is needed. Normalization processing allows underlying charac-

teristics of the data sets to be compared: this allows data on different scales to be

compared, by bringing them to a common scale. There are different formula to get

the normalized data. Our formula is listed as follows.

sum =

√

√

√

√

n
∑

i=1

x2
i

xi =
xi

sum

Train the training set and build the learning model

Support Vector Machine (SVMs) model will be used in this study. SVM is a relatively

new learning process influenced highly by advances in statistical learning theory [120].

Predict the testing set

The LibSVM package [18] will be used. To obtain SVM classifier with optimal per-

formance, the penalty parameter C and RBF kernel parameter will be tuned based

on the training set.

5.4 Experiments and Results

5.4.1 Human miRNA precusor and pseudo miRNA datasets

Sets of human pre-miRNAs and pseudo-miRNA hairpins are collected to train SVMs

and to evaluate the classification performance.

Human pre-miRNAs

The sequences of human pre-miRNAs are downloaded from the mirBase database

(http://www.mirbase.org/cgi-bin/mirna summary.pl?org=hsa), which contains 510
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reported pre-miRNA entries from Homo Sapiens. Only the pre-miRNAs whose sec-

ondary structures do not contain multiple loops, the number of bases are greater

than 15, their scores are less than -14.50, and the lengths are between 65 and 110,

281 pre-miRNAs are considered.

Human pseudo pre-miRNAs

The dataset of human pseudo pre-miRNA hairpins are built. They are sequence

segments that have similar stem-loop structures as real pre-miRNAs. And the dataset

is collected from protein coding regions. The protein coding sequences (CDs) of

human RefSeq genes with no known alternative splice events are collected. The

CDs are extracted according to the UCSC refGene annotation tables [53, 97]. We

join the CDs together and extract non-overlapping segments from them. And we

make the length distribution of the chosen segments identical with that of human

real pre-miRNAs. The secondary structures of the extracted segments are predicted

using microRNAFold [44]. The criteria for selecting the pseudo-microRNAs are: the

minimum number of base pairs on the stem is 15, their score is less than -14.5, there

is no multiple loops, the lengths range from 65 to 110. As far as we know that all

reported micorRNAs are located in non-coding regions or intergenic regions, we take

the hairpins collected from CDs as correct examples of pseudo pre-miRNAs.

5.4.2 Training and test sets for classification experiments

For the classification experiments, one training set and one test set are built using

the data set explained above. The training set includes 224 real human pre-miRNAs

(positive samples) and 144 pseudo human pre-miRNAs (negative samples) randomly

selected from 281 real human pre-miRNAs and 180 pseudo human pre-miRNAs. The

test set consists of the remaining real human pre-miRNAs and pseudo human pre-

miRNAs.
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5.4.3 Extract features from each subject

Some important features, which include Pre-microRNAs names, Length of pre-microRNAs,

Number of base pairs, Number of mis-matched, Size of loop, Degree of base, Ratio

of loop to whole sequence, Distance from the 5 strand to the loop, and energy-score,

are extracted from each subject. Table 5.1 lists the part of the feature matrix of

real human pre-miRNA, and Table 5.2 lists the part of the feature matrix of pseudo

human pre-miRNA.

Table 5.1: Extracted features from real human pre-miRNAs.
Pre-Name Pre-len BP # Mis # Lp SZ Deg-BP Dist Ratio L/Seq Score
hsa-let-7b 83 26 31 30 0.627 26 0.361 -26.49
hsa-let-7c 84 27 30 17 0.643 34 0.202 -17.84
hsa-let-7d 87 27 33 26 0.621 31 0.299 -21.17
hsa-let-7e 79 24 31 23 0.608 28 0.291 -19.22
hsa-let-7f-2 83 28 27 26 0.675 29 0.337 -21.7
hsa-let-7i 84 30 24 9 0.714 35 0.310 -28.11
hsa-mir-7-1 110 40 30 16 0.727 47 0.255 -23.76
Hsa-mir-9-2 87 34 19 10 0.781 39 0.115 -20.18
hsa-mir-19a 82 30 22 12 0.732 34 0.146 -18.16
hsa-mir-20a 71 27 17 11 0.761 30 0.155 -22.84
Hsa-mir-21 72 27 18 13 0.750 30 0.181 -20.53
hsa-mir-23a 73 27 19 10 0.740 31 0.137 -17.69
Hsa-mir-24-1 68 23 22 13 0.676 28 0.191 -21.32
hsa-mir-26a-1 77 28 11 7 0.727 32 0.091 -20.8
Hsa-mir-28 86 31 24 16 0.721 35 0.186 -39.6

hsa-mir-29b-1 81 31 19 13 0.765 35 0.160 -21.11
hsa-mis-30e 92 34 24 9 0.739 41 0.098 -18.14
Hsa-mir-31 71 27 17 8 0.761 31 0.113 -31.32
Hsa-mir-32 70 27 16 16 0.771 28 0.229 -17.3

We performed statistical analysis on the feature matrices of each category. The

mean, median, and standard deviation values are listed in Fig 7.4.
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Table 5.2: Extracted features from pseudo human pre-miRNAs.
Pre-Name Pre-len BP # Mis # Lp SZ Deg-BP Dist Ratio L/Seq Score
NM032291 68 17 34 6 0.500 32 0.088 -14.7
NM052998 69 17 35 11 0.493 37 0.159 -22.5
NM013943 65 17 31 4 0.523 23 0.062 -25.8

NM001145278 63 19 25 3 0.603 34 0.048 -20.0
NM001145277 72 25 22 3 0.694 34 0.042 -24.9
NM032785 67 15 37 6 0.448 28 0.090 -17.4

NM001080379 66 18 30 6 0.545 32 0.091 -28.1
NM018090 69 22 25 3 0.638 34 0.043 -22.9
NM001918 68 20 28 8 0.588 23 0.118 -22.4
NM003243 69 19 31 14 0.551 27 0.203 16.4
NM030806 72 19 34 5 0.528 32 0.069 -14.9
NM021222 73 17 39 8 0.466 26 0.110 -15.3
NM022457 89 22 45 6 0.494 48 0.067 -14.5

NM001001740 67 17 33 5 0.507 24 0.075 -18.8
NM173083 71 18 35 4 0.507 24 0.056 -22.2
NM012405 65 19 27 5 0.585 30 0.077 -25.0
NM022114 70 15 40 5 0.429 35 0.071 -14.5
NM017891 66 15 36 11 0.455 31 0.167 -15.1
NM015215 87 22 43 9 0.506 37 0.103 -24.8

NM001033581 64 16 32 7 0.500 40 0.109 -22.9

5.4.4 SVM classification

We test how accurate our SVM classifier is, compared with the other SVM classifer

built with triplet model. SVM is chosen due to its good generalization [119]. We use

5-fold cross validation and choose the parameter C in SVM to be 10000 according to

the results of the 5-fold cross validation.

Fig. 5.3 shows the accuracy comparison using a RBF kernel (γ = 0.13). The figure

indicated that our method improved the accuracy by 5% in terms of Positive Correct

and Negative Correct. Basically, that was statistically significant improvement.
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Feature
Real         Pseudo

SDMedian

5’ miR to loop

Ratio of loop

Real         Pseudo

Average

Real         Pseudo

0.124 0.086 9.118 0.07 0.06 0.05

Pre−miRNAs Length 87.80 78.70 87.00 77.00 10.6 11.13

Number of mis−matched 24.50 38.90 24.00 39.00 7.40 7.87

Number of base pair 31.65 19.91 32.00 18.00 4.30 4.70

Degree of base pair 0.72 0.504 0.73 0.49 0.06 0.08

Loop size 10.60 6.74 10.00 6.00 5.20 4.09

Distance from end of
38.23 34.68 38.00 34.00 6.62 8.03

Score −27.33 −22.11 −24.80 −20.40 9.30 9.96

Figure 5.2: Statistics of each feature.

Approach

Positive Correct

Triplet

Our Method
98%

92%

Positive Correct 93%

87%Negative Correct

Negative Correct

Samples Accuracy (%)

Figure 5.3: SVM classification.

5.5 Discussion

We obtained better results on classification of real and pseudo human pre-miRNAs

using our approach compared with other method, such as triplet-SVM. Through a

careful observation and study, we found the reasons why our model outperforms

triplet-SVM model. Firstly, our approach uses many fewer features than triplet-SVM

model. In triplet-SVM model, all 32 features get involved in prediction, while in

our model, only 8 features are included instead and the feature name is extracted

only for statistical purpose. Triplet-SVM approach does not use feature selection

algorithm to filter out the features that are considered less important because all of
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them are equally important. On the other hand, our model uses only 8 features so

it is not necessary to use feature selection. Our model using fewer features makes

it more accurate. Secondly, our model is much better than triplet-SVM in terms of

generalization since data set is from characteristics of structure itself. On the other

hand, triplet-SVM uses sequence-structure as features. So it depends more on the

sequence data than our model. In addition, this factor will have a negative impact

on the accuracy of classification.

5.6 Conclusion

A major characteristics of pre-miRNAs is the hairpin structures. But there are so

many similar hairpins that can be formed from segments in genomes. Therefore, an

effective method that can distinguish the real pre-miRNAs from pseudo pre-miRNAs

is important for identifying novel and specific miRNAs. Based on this reason, some

conserved features are extracted and SVM classifier was built with these features to

perform classification between real vs. pseudo pre-miRNAs. The experimental results

showed that our method achieved 98% accuracy on positive correct and 92% accu-

racy on negative correct. Moreover, compared with triplet-SVM classifier, our method

outperforms it, which uses sequence-structure as features in terms of accuracies. The

other advantages that our method has include: our model uses fewer features (9 fea-

tures) while triplet method used 32 features, and our model decreases the dependency

on the sequence data because it just uses the characteristics from the secondary struc-

tures of pre-MiRNAs. Finally, our results indicated that there are some discriminative

and conserved characteristics that separate the real pre-microRNAs from the pseudo

ones effectively, such as the 8 features.
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6 Improving prediction based on conserved microRNA characteristics in
human

In this chapter we focus on improving the prediction based on the secondary structure

characteristics itself. It shows that the conserved characteristics from the secondary

structure can contribute positively to the prediction. So extracting and identifing

these features are the first step, which is the most important step as well. Then

we construct the knowledge base (KB) based on the rules from the characteristics

combined with some other pre-microRNA secondary structure features. In order to

make the KB robust, we incorporate fuzzy techniques when we construct it. Our aim

in this chapter is to improve the prediction with knowledge base support whose rules

are extracted from the secondary structure themselves.

This chapter is organized as follows: Section 6.1 introduces the research that

had been performed by the other groups and the structure of our improved predic-

tion system. The characteristics extracted from the human pre-microRNA secondary

structures will be shown and explained in Section 6.2. The KB is constructed in

Section 6.3. The experiments are carried out and the results are reported in Section

6.4. In Section 6.5, we discuss the issue of conflict set. Conclusion of this chapter is

in Section 6.6.

6.1 Introduction

Computing the consensus structure common to several related RNA sequences and

identifying conserved characteristics in RNA can drastically improve the prediction

[5, 10, 94]. After the characteristics are extracted from the secondary structures

of RNAs, corresponding patterns or rules could be dug out and used. To our best

knowledge, some studies using conserved structure to improve prediction have been

reported [9, 104, 130]. Even though they were trying to utilize the features from

the secondary structures to enhance the prediction, we first time propose to use
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the important features through knowledge base with fuzzy techniques to achieve our

goal: improving the prediction accuracy. Here, We will focus on the pre-microRNAs

in human.

Four steps required are described below.

(i) Test all the pre-microRNAs in human: In this step, we test all the structures

(about seven hundred structures) in human except for the structures that represent

the similar RNA sequence or its predicted score is higher than a preset threshold

value.

(ii) Obtain conserved characteristics: After statistical analysis, we can get some very

important conserved characteristics. Many other conserved characteristics should be

extracted as well.

(iii) Derive rules from the characteristics and further build a knowledge base: Rules

can be derived through these observed characteristics.

(iv) Predict the testing set with the support of the knowledge base (KB) Our prediction

algorithm goes through the KB in order to try to find some helpful information. This

information can be applied into the prediction so that the prediction time cost will be

reduced. Testing set should be different from the data set from which characteristics

are extracted. The performance of improved prediction algorithm will be measured

by comparing the experimental results in this step (step iv) with the corresponding

ones in step (i).

Our current method to solve this problem is to extract important features from the

secondary structures and perform statistical analysis on the features. Based on these

useful and conserved characteristics and other biological constraints regarding pre-

miRNAs (human), we create an effective knowledge base. When we run the prediction

program the KB provides support to speed up the prediction. The construction of

effective KB poses a new challenge but it will make our algorithm more stable and

efficient (see Section 6.3 for the detail).
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Figure 6.1: Prediction based on KB support.

6.2 Conserved characteristics

MicroRNAs are found to play an important role in regulating gene expression in

plants and animals. They regulate gene expression by two ways: mRNA cleavage

or translational repression. There are four steps for miRNAs to become mature.

First, enzymatic processing of long non-coding hairpin transcripts (called primary

miRNAs) yields pre-miRNA [30]. Second, pre-miRNAs are exported to the cytoplasm.

Third, precursors are cut into double-stranded miRNA:miRNA* duplexes. Finally,

the duplexes are unwounded, the miRNA strands are incorporated into RNA induced

silencing complex (RISCs).

It is more likely that efficient biogenesis of miRNAs requires molecular signatures.

For example, the enzymatic processing of pri-miRNAs may require certain character-
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istic primary or secondary structure featurs from pri-miRNAs [104]. Similarly, the

export efficiency may depend on the secondary structure features or primary features.

Our goal is to find all the conserved structural characteristics that make miRNAs ef-

fective regulators in vivo and help identify the other pre-miRNAs. We attempted

to use these characteristics to construct a Knowledge Base that supports effective

prediction.

It has been shown that several characteristics are conserved in pre-miRNAs. First,

the probabilities of unpaired base in the stem is conserved. Second, internal loops and

bulges are more prevalent at specific positions. Finally, the double-stranded structure

is conserved throughout the first 13 nt flanking the stem.

6.2.1 Probabilities of unpaired base

First, let us take a look at the probability distribution of mismatched bases. Fig. 6.2

indicated that the positions 2-9 are highly likely to be mismatched. This seed region

is verified by many published reports [1, 9]. And nucleotide 1 is the most likely to be

mismatched. Base-pairing at the first base in the precursor and at positions 10-12,

corresponding to the middle area of the duplex, has a higher probability of being

disturbed by the internal loops and bulges. This result matched the report by [104].

On the other hand, positions 13-21 have high probability of being base-pairing. And

this result is supported by [104].

6.2.2 Relationship between the sequence length and loop size

Fig. 6.3 shows the relationship between the loop size and the sequence length. It

is interesting to learn that almost all the loop sizes are around 10 and when the

sequence length is between 65 and 69 the loop size increases along with sequence

length increases. But after the sequence length is 70 the pattern is much like a saw

tooth. Fig. 6.5 is more clear to demonstrate that all the means across every length

segments are larger than 10, which matched the research result. The length segment
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Figure 6.2: Mismatch position.

Figure 6.3: Different sequence lengths and corresponding loop sizes.

(71-80) has the highest mean in terms of loop size. With the bigger sequence length,

the secondary structure is more likely to have a longer stem and so the loop is smaller.

6.2.3 Relationship between the sequence length and score

There are two high score areas (83-89) and (95-98), and their means are around -30.10

and -29.56 respectively. The area (78-80) is the low score area. In addition, when

the sequence lengths are 65, 66, 70, 72, 102, or 106 their scores are as low as -20.00

or below that. Unfortunately, we could not apply this information in our knowledge

base to improve our prediction.
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Figure 6.4: Different sequence length ranges and corresponding loop sizes.

Figure 6.5: Different sequence lengths and corresponding scores.

6.3 Creation and building of Knowledge Base

6.3.1 The definition of Knowledge Base

A knowledge base (KB) is a special kind of database for knowledge management,

providing the means for the computerized collection, organization, and retrieval of

knowledge [60].

Knowledge bases are categorized into two major types: machine-readable knowl-

edge bases and human-readable knowledge bases. Machine-readable knowledge bases

store knowledge in a computer-readable form, usually for the purpose of having au-

tomated deductive reasoning applied to them. They contain a set of data, often in

68



the form of rules that describe the knowledge in a logically consistent manner [60].

Human-readable knowledge bases are designed to allow people to retrieve and use

the knowledge they contain.

We want to build a small scale machine-readable knowledge base, which contains

a set of data in the form of rules that are derived from conserved characteristics.

6.3.2 Difference between Knowledge Base and Database

(1) A database is an organized collection of data for one or more purposes, usually

in digital form [29]. Database keeps structured related data. Knowledge base keeps

knowledge. Data is extracted and displayed, but knowledge is learning and answering.

Data is not information; information is not knowledge. Data is the collection of facts,

figures and statistics related to an object [25]. Data can be processed to create useful

information. Data is information that has been translated into a form that is more

convenient to move or process [26]. Knowlege is information with guidance for action

based upon insight and experience [20].

(2) A knowledge base is not a static collection of information, but a dynamic

resource that may itself have the capacity to learn, as part of an artificial intelligence

expert system [59]. Knowledge can be used to change the intelligence agent’s status

because of the learning process involved, but data cannot. Data-based systems only

process data and don’t output information. Knowledge base poses challenges.

6.3.3 Soundness of using KB instead of database

Using KB to support the prediction is due to the reasons as follows.

First of all, the very useful and conserved features can be extracted from the

characteristics. It is easy and convenient to construct rules from these important

features. Our prediction will be improved based on the support from KB in terms

of CPU time and accuracy. Second of all, we generally use query to retrieve data

from databases and then we can perform some statistical analysis on the data. In our
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case, we don’t need this kind of analysis. On the contrary, the ability to learn makes

knowledge base extremely valuable to our prediction because prediction process will

be time consuming especially when the input sequence is relatively long. Finally, as

people understand how miRNAs regulate the gene expression more deeply, people’s

knowledge about the miRNAs’ structure and function will also get updated. So,

knowledge base fits our requirement more than database.

6.3.4 Creation of an effective Knowledge Base

Different knowledge representation languages and challenges of Knowledge
Base

The key factors for knowledge based systems are knowledge acquisition, knowledge

representation, and application of large bodies of knowledge to the problem domain.

Basically, four bottlenecks exist in knowledge acquisition [122, 123, 126].

(1)Narrow bandwidth. The channels that exist to convert organizational knowledge

from its source (either experts, documents, or transactions) are relatively narrow.

(2) Acquisition latency. The slow speed of acquisition frequently is accompanied by

a delay between the time when knowledge (or the underlying data) is created and

when the acquired knowledge becomes available to be shared.

(3) Knowledge inaccuracy. Experts make mistakes and so do data mining technologies

(finding spurious relationships). Furthermore, maintenance can introduce inaccura-

cies or inconsistencies into previously correct knowledge bases.

(4) Maintenance trap. As the knowledge in the knowledge base grows, so does the

requirement for maintenance. Furthermore, previous updates that were made with

insufficient care and foresight (hacks) will accumulate and render future maintenance

increasingly more difficult [65].

The major techniques used on knowledge representation include the Frame For-

malism, Production Rule Systems, and Semantic Networks. A frame can be thought

of a remembered framework which can be adapted to fit a given situation by changing

70



Figure 6.6: A small example of using frame.

the aspects of the frame as necessary [90].

Frames

Frames can be thought of as named lists of slots into which values can be placed.

There are two types of frames: individual and generic frames. Individual frames

represent single objects, whereas generic frames represent categories or classes of

objects [118].

We could represent some knowledge about elephant in frames (Fig. 6.6) as follows:

A particular frame (such as elephant) has a number of attributes or slots such as

color and size where these slots may be filled with particular values, such as grey. We

have used a “*” to indicate those attributes that are only true of a typical member

of the class, and not necessarily every member.

ProductionRules

One of the most popular approaches to knowledge representation is to use pro-

duction rules. The production rules consist of a set of if-then rules, and a working

memory. The working memory represents the facts that are currently believed to

hold, while the if-then rules typically state that if certain conditions hold (e.g., cer-
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Figure 6.7: One example of using production rule.

tain facts are in the working memory), then some action should be taken (e.g., other

facts should be added or deleted).

Some of the benefits of IF-THEN rules are that they are modular, each defining a

relatively small and, at least in principle, independent piece of knowledge. New rules

may be added and old ones deleted usually independently of other rules.

Fig. 6.7 shows an example of using production rule. If both Fact 1 and Fact 2 are

satisfied we get decision 1. Similarly, if both Fact 3 and Fact 4 are satisfied we get

decision 2. If decision 1 and decision 2 are satisfied, we get decision 3.

SemanticNetworks A semantic network is a directed graph consisting of vertices,

which represent objects, individuals, or abstract classes; and edges, which represent

semantic relations [118]. The most important relations between objects are subclass

relations between classes and subclasses, and instance relations between particular

objects and their parent class.

Construction of an effective Knowledge Base

Based on our problem requirements, we choose to use production rules to build the

knowledge base.

We did not use regular if-then rules, instead, we used if-then rules with fuzzy

strategy.

One of the rules is shown in Fig. 6.8: if all the three conditions are satisfied
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Figure 6.8: Production rule example.

the action is supposed to be performed, which calculate the acceptable loop size and

judge whether the passed loop size is fine or not.

There are 42 production rules regarding the loop size. To go into them in detail,

go to the Appendix part.

The other rules are concerning the mis-matched base and specific biological con-

straints from miRNA features.

6.4 Experiments and Results

Sets of human pre-miRNAs hairpins are collected to evaluate the prediction perfor-

mance with the support of KB.

6.4.1 Human pre-miRNAs

The sequences of human pre-miRNAs are downloaded from the mirBase database

(http://www.mirbase.org/cgi-bin/mirna summary.pl?org=hsa), which contains 710

reported pre-miRNA entries from Homo Sapiens. Only the pre-miRNAs whose sec-

ondary structures do not contain multiple loops, the number of bases are greater

than 15, their scores are less than -14.50, and the lengths are between 65 and 110,

are considered.
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Figure 6.9: Prediction of hsa-mir-155. LP len indicates the loop size, and status
indicates whether the prediction program executes under this case: O denotes: Yes,
and - denotes: No

6.4.2 Improvement in terms of CPU usage

Since we used Knowledge Base to support the prediction, the computing time had

been greatly reduced. Take prediction on hsa-mir-155 as an example, when we used

prediction software without the KB, we got 171 structures based on different loops,

which used 2.0 seconds. Instead, we got 56 structures, which used 0.65 seconds, when

we used the same prediction software with the support of KB. Thus, we reduced the

CPU time as one third as original. Let us see how it works in detail.

Fig. 6.9 shows the situation when we selected the loop that starts with 11, 12,

13, 14, 15, and 16. The sequence length is 65 so the rule1 is applied. Our fuzzy rate

is 0.5 and threshold value is 14. All the computing whose LP Len is less than 14 will

be blocked. So only 16 structures will be generated.

Fig. 6.10 shows the situation when we selected the loop that starts with 17, 18,

19, 20, 21, and 22. All the computing whose LP Len is less than 14 will be blocked.

So 13 structures will be generated.
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Figure 6.10: CONT Prediction of hsa-mir-155. LP len indicates the loop size,
and status indicates whether the prediction program executes under this case: O
denotes: Yes, and - denotes: No

Fig. 6.11 shows the situation when we selected the loop that starts with 23, 24,

25, 26, 27, and 28. All the computing whose LP Len is less than 14 will be blocked.

So 14 structures will be generated.

Fig. 6.12 shows the situation when we selected the loop that starts with 29, 30,

31, 32, 33, and 34. Again, all the computing whose LP Len is less than 14 will be

blocked. So 13 structures will be generated.

6.4.3 Improvement in terms of accuracy

In our algorithm, we added some production rules in KB to improve the predic-

tion accuracy. For example, we extract production rules from characteristics con-

cerning mismatched base pairs and other production rules that are from microRNA

features.Table 6.1 shows the performance comparison between prediction with KB

and without KB. In terms of True positive rate, the prediction with support of KB

achieved 3% improvement. In terms of True Negative rate, it achieved 4% improve-
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Figure 6.11: CONT Prediction of hsa-mir-155. LP len indicates the loop size,
and status indicates whether the prediction program executes under this case: O
denotes: Yes, and - denotes: No

ment.

Table 6.1: The performance comparison between prediction with KB and without
KB.

Prediction Algorithms TP rate FP rate TN rate FN rate
Without KB 92% 8% 89% 11%
With KB 95% 5% 93% 7%

6.5 Discussion

From the experimental results, we can see that the prediction system with the support

of KB obtained a lot of improvements in terms of accuracy and CPU time. However,

we need to resolve the issue of conflict set. Fig. 6.13 shows a production system

with conflict set. First, a pattern matcher looks at data and rules to make sure
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Figure 6.12: CONT Prediction of hsa-mir-155. LP len indicates the loop size,
and status indicates whether the prediction program executes under this case: O
denotes: Yes, and - denotes: No

whether some rules’ conditions have been satisfied. After matcher produces a list

of rules (conflict set) whose conditions have been satisfied, the conflict resolver will

determine (select) the best rule and fire (execute) it. In our original design, we use

naive algorithm: try all the rules in sequence, stoping at the first match. In the

future, we will use conflict resolution strategy. Strategies vary from the simple to

complex. We want to use order approach, which assign weights or priorities to rules

and sort the conflict set.

6.6 Conclusion

Identifying conserved characteristics in RNA can drastically improve the prediction

[5, 10, 94]. After the characteristics are extracted from the secondary structures of

human pre-microRNAs, rules are constructed from the features and further are used to

create KB. We still used the original prediction algorithm, but this time we predict the

secondary structure with the support from our KB. We conducted some experiments

to evaluate the effectiveness and the efficiency of our new strategy. The experimental
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Figure 6.13: An Production system with Conflict Set.

results showed that with the support of KB the prediction algorithm can predict

the secondary structures much faster and more accurately. More importantly, regular

production rules are not adopted in the KB, instead fuzzy strategy is applied to them.

The fuzzy rate is obtained from training data set. In the future, we will construct

more stable and powerful KB that will incorporate more biological characteristics and

features from the pre-miRNAs’ structure to handle this domain problem.
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7 A novel artificial poly-cistronic microRNA vector prediction and its
application in silencing multiple genes in Arabidopsis

Artificial microRNA (miRNA)-directed gene silencing has advantages over traditional

inverted-repeats gene silencing vector in terms of more gene silencing specificity and

less off-target effects. Here we report the design of a novel poly-cistronic (poly-

cis) miRNA vector that can mediate multiple gene silencing in plants. The poly-cis

vector contains six modules that were modified from Arabidopsis miR168a (module

0) and the transcripts were able to be folded up into six independent stem-loop

structures (module 0-5). Each module was modified to have unique sequences that

allow the construction of the six modules simply by six consecutive polymerase chain

reactions (PCRs) with the help of six unique restriction sites introduced to the poly-cis

miRNA vector. A dedicated web-based poly-cis miRNA vecotor design interface was

established to help the users to design their poly-cis miRNA-directed gene silencing

construct to silence multiple genes of interest. Finally, the poly-cis miRNA vector

was successfully applied to silence two Arabidopsis argonaute (AGO2 and AGO4)

simultaneously. Thus, a new approach of using artificial miRNAs to silencing more

than one gene at a time was made possible.

This chapter is organized as follows: Section 7.1 introduces the background and

current major issues concerning this study. Section 7.2 introduces our algorithm to

design a novel poly-cistronic (poly-cis) miRNA vector that can mediate multiple gene

silencing at a time in plants. The experiments are carried out and the results are

reported in Section 7.3. Conclusion of this chapter is in Section 7.4.

7.1 Introduction

MicroRNAs (miRNAs) are newly discovered endogenous small non-coding RNAs (21-

25 nt) that regulate gene expression by targeting one of more mRNAs for translational

repression or cleavage. To date, thousands of miRNAs have been found in animals
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and plants. It has been shown that microRNAs play a very important role in regu-

lation of gene expression [21, 70]. MicroRNAs are expressed at high levels in animal

and plant cells during cell differentiation, apoptosis, growth, and development. Gene

suppression is a powerful tool for functional genomics and silencing of specific gene

products. RNA interference (RNAi) and microRNA pathways are efficient mecha-

nisms of gene suppression, whose application in gene silencing is one of the current

focuses in functional genomics and metabolic engineering [114]. With thousands of

microRNA genes identified and genome sequences of diverse eukaryotes available for

comparison, people begin to pay more attention on the origin and evolution of RNAi

[107]. RNAi is a highly evolutionally conserved process of post transcriptional gene

silencing by which double stranded RNA (dsRNA) causes efficient sequence-specific

silence of gene expression through the cleavage and degradation of any mRNA that

shares the same sequence of the dsRNA. It was first discovered in 1998 by Fire et

al. [37]. MicroRNA pathway was discovered to have similar functions to the RNAi

in down-regulating gene expression [7, 8]. The miRNA genes are located often in

intergenic regions and sometimes in the intron of a coding gene [7, 8]. First, miRNA

is transcribed into primary miRNA (pri-miRNA) by RNA polymerase II (pol II) [66].

Second, the pri-miRNA is processed into miRNA precursor (pre-miRNA) and then

mature miRNA duplex by Dicer [67]. The short mature miRNAs interact with cellular

proteins to form RISC termed miRNA associated RISC (miRISC) [52, 116]. miRISC

finds its specific target mRNA and then cleaves and destroys the target mRNA in cells.

Consequently, specific cellular mRNA is silenced by specific miRNA [76, 82, 116]. The

discovery of RNAi and microRNA pathways has caused intensive studies on devel-

oping RNAi technologies for treating human diseases and for improving plant traits

[54, 91, 115]. Currently available RNAi vectors [35] are designed to produce either

short siRNAs, such as those produced by animal RNAi vectors, or long dsRNAs, such

as those produced by plant RNAi vectors. Both animal and plant RNAi vectors have
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shown great successes in suppressing specific gene expression. However, the RNA-

dependent protein kinase (PKR) is activated by dsRNA [12, 27, 109]. In addition,

in some RNA interference experiments, it has been shown that siRNAs might cause

certain off-target effects through activation of PKR [99, 103]. Avoiding activation of

the PKR pathway in cells, therefore, remains a major challenge to the development of

RNAi technologies [115]. Another major problem associated with the current plant

RNAi vectors is that the RNAi-mediated gene suppression progeny often suffers from

the instability in the gene suppression suppressed [93].

In recent years, endogenous miRNAs have been designed to silence genes at high

efficiency and in more gene specificity [116]. Fortunately, these modified miRNA

vectors in plants and animals do not show adverse effects on their growth and devel-

opment [2, 7, 8, 115]. It seems that the PKR pathway is not triggered due to the

selective evolution of miRNAs. This new type of RNAi vectors based on the miRNA

structures provide us with a more stable and powerful tool for repressing gene ex-

pression. Furthermore, most miRNA duplexes are highly asymmetric [72], which

predestines one strand to enter the RISC to its maximum, while the other strand

is destroyed [106] to reduce the off-target effects. Even though currently available

RNAi and miRNA vectors have been widely used in both animals and plants, they

have limitations. For example, most of these vectors can only be used to silence one

gene at a time.

We propose to design a novel poly-cistronic (poly-cis) miRNA vector that can

mediate multiple gene silencing at a time in plants. (1) design an artificial multi-

module microRNA-based gene-silencing vector. (2) test the new poly-cis miRNA

vectors for gene silence in Arabidopsis. The feasibility of this new approach was

evaluated by showing that the poly-cis miRNA vector was successfully applied to

silence two Arabidopsis argonaute (AGO2 and AGO4) simultaneously.
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7.2 Methods and Algorithms

Developing a poly-cis miRNA vector is a novel idea that is currently not explored

in plants. The idea is based on the observations that such poly-cis miRNA clusters

naturally exist in both humans [45, 117] and plants [69]. The development of a poly-

cis miRNA vector will not only simplify the gene silencing process, but also produce

a high throughput tool for gene silencing in functional genomics. We present two

parts in this section. Firstly, we describe how to design and implement the poly-

cis vector by using computer techniques. Secondly, we show how to conduct the

experiments and analyze the results. Overall, these essential steps are taken: (1)

select a template. (2) design two DNA primers P1 and P2 that cover the stem-loop

region from the template. (3) assembly the primers and promoter, terminator on this

small vector. (4) construct plasmids. (5) bring the poly-cis miRNA vector containing

multiple artificial miRNAs into the 5941 binary vector with XbaI site. (6) Northern

blot analysis of miRNA expression and processing.

7.2.1 Construction of poly-cis miRNA vector using computer

algorithms

Based on the miRNA array analysis established by Tang’s lab, we choose pre-microRNA168

as the template in our work. We have many other candidate pre-microRNAs that

can be used as the template. The following Fig. 7.1 shows the pre-microRNA 168

structure:

Figure 7.1: The basic structure of pre-miR168. The figure focuses on the guider
strand and passenger strand. The rest part is ignored here.

Fig. 7.1 only shows the basic parts of pre-microRNA168. We may ignore the
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other nucleotides in this structure for the time being. In the designing part, we need

to implement some basic modules before we get two final primers P1 and P2. The

first major algorithm is to predict the miR (miRNA transcript) sequence from gene

coding sequence. The following pseudocode describes this algorithm.

Figure 7.2: Predict the target miRNAs

The input is the gene coding sequence and the output should be a set of artificial

microRNAs which are of 21 nucleotides. In the very beginning, we need to select an

appropriate backbone. Choosing a good backbone is heavily based on the requirement

and the application. When we generate pattern library we should take the constraints

which are from the template into account. For example, according to the guider of

pre-miRN 168 (t c g c t t g g t g c a g g t c g g g a a) the 19th letter is g, so the 19th

letter of our candidate artificial miRNA must be G or C. Sometimes we have to face

such a problem: how to do if we get so many artificial microRNAs that we do not know

which one is a good choice. Our solution is to let users run Basic Local Alignment

Search Tool (BLAST) to go through the database and then to make a decision. Select

the artificial microRNAs and run BLAST for the targeting specificity. Choose those

artificial microRNAs that are only complementary to the target gene transcripts but
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have no complementarity to other gene transcripts genome-wide around the 5’ end

of those artificial microRNAs. The second algorithm is to predict artificial miR*

sequence from miR.

Figure 7.3: Predict artificial miRNA*

The first step could be very difficult because it needs domain expertise. For

example, suppose we select the first candidate as the miRNA: TGGGAGGTCAAG-

GATTAGCAC. We get its miRNA*: GCTGTCCGGTTCTTCATCGTA. The last

step is easy to understand and easy to implement as well. Algorithm 3 depicts this

work.

Figure 7.4: Predict primers from the secondary structure of pre-microRNA
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7.3 Experiments and Results

To validate our approach, we conducted some experiments to evaluate the efficacy

of single-module miRNA vector and poly-cis miRNA vector. Firstly, we present the

results generated by our web application. And then we analyze the results [110, 111]

by applying single-module vector for silencing several gene and poly-cis miRNA vector

for silencing more than one gene at a time.

7.3.1 Construction of poly-cis miRNA vector

In the very beginning, the user should input their gene coding sequences, as depicted

in Fig. 7.5. The server will get the anti-sense of the sequence.

As shown in Fig. 7.6, the user may choose an appropriate backbone for their

vector. Pre-microRNA 168 is selected in our prediction model (see Figure 12a) based

on the miRNA array analysis established by Tang’s lab. It is possible that server

returns so many artificial miRNA candidates from a gene coding sequence that the

user does not know which one is the best.

In order to select a good candidate that meets certain criteria, the user is sup-

posed to run BLAST program (see Fig. 7.7) to achieve this goal. The purpose of

running BLAST is to choose those artificial microRNAs that are only complementary

to the target gene transcripts but have no complementarity to other gene transcripts

genome-wide around the 5’ end of those artificial microRNAs.

The results returned from BLAST are shown in Fig. 7.8. Selection of a good

artificial miRNA largely depends on the user’s needs and her/his domain knowledge.

Take the result shown in Fig. 7.8 for example, we found that there are up to 11

matches between nucleotides 2 to nucleotide 11, and it is not a good candidate because

it could trigger off-target effect.

After the user selected a candidate and converted it to an antisense the server

predicts the secondary structure of the artificial pre-microRNA (see Fig. 7.7, Fig.
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Figure 7.5: Enter gene coding sequences.

7.9, and Fig. 7.10).

The Fig. 7.10 shows the secondary structure of the artificial pre-microRNA. The

red nucleotides denote the miRNA and the blue nucleotides denote the miRNA*.

And they form the stem. We can see that this structure is a typical stem-loop

structure. The Fig. 7.11 showed the final primers. The server is built on a Linux-

based machine and programming languages are C and PERL. Our web site is available

at http://www.cs.uky.edu/ ∼ dianweih/microRNA vector/submit.htm.
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Figure 7.6: Choose an appropriate backbone. Up to 9 backbones are available. The
selection is based on the users application needs.

7.3.2 Expression of microRNAs from a monocistronic (miR168

backbone) microRNA vector

We conduct some experiments to evaluate the efficacy of specific gene expression by

using single module microRNA vector. As shown in Fig. 7.12, the backbone of this

vector is microRNA 168. And this vector is expected to produce the following three

microRNAs: 1. Ago2: small RNA associated protein. Among the Argonaute family,

the Ago2 is usually considered important because Ago2 is a critical component of

RISC [75]. And it is one of major reasons that Ago2 had been mainly tested and
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Figure 7.7: Run BLAST before you select one good candidate target microRNA.

analyzed in our experiments.

As shown in Fig. 7.13, the expression of Ago2 artificial miRNA*, ACD artificial

miRNA and Terpene synthase artificial miRNA was sufficient to silence specific genes.

For the AGO2 artificial miRNA, the expression was not very significant maybe be-

cause of the noise. Overall, The results indicated that this model works very well for

silencing some specific genes of interests.

7.3.3 Expression of microRNAs from a poly-cis microRNA
vector

While single-module microRNA vector appears to work well and it plays some role in

silencing several genes in cell [24], single-module vector has a limitation on the number

of genes silenced or mediated because it contains only one module. Therefore, we

sought to overcome this limitation by using a poly-cis microRNA vector to mediate

or silence multiple genes of interest at one time. As shown in Fig. 7.14, 6 different

modules were used to construct a poly-cis vector. Each module was modified to
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Figure 7.8: Check the result of running BLAST.

have unique sequences that allow the construction of the six modules simply by six

consecutive polymerase chain reactions (PCRs) with the help of six unique restriction

sites introduced to the poly-cis miRNA vector. Pre-microRNA-168 is used as the

backbone on this prediction model.

A goal of this work is to create a plasmid capable of expressing multiple miRNAs

targeting different regions while retaining efficacy against off-target effects. We used

synthetic microRNAs in our vector to mimic the functions of natural endogenous

miRNAs. Fig. 7.14b shows that Arabidopsis transgenic plants that are applied to

this poly-cis vector are capable of producing specific miRNAs. When using AGO2-

AGO6 artificial miRNA vector in ago2-6 transgenic lines, the expression of Ago2 is

stronger than that of Ago6 (See Fig. 7.14b(1)). Likewise, as shown in Fig. 7.14b(2),

when AGO2 artificial miRNA vector is used in ago2-7 transgenic lines, the expression
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Figure 7.9: Select a candidate and convert it to antisense.

of Ago2 is very high. Fig. 7.14b(4) shows the different cases corresponding to differ-

ent transgenic lines applied by an AGO2 artificial miRNA vector: the expression of

AGO2-amiRNA is much higher in ago2 and ago2-6 transgenic lines than in others.

In summary, AGO artificial miRNA vector in associated transgenic lines successfully

produce sufficient microRNAs as expectation.

7.4 Conclusion

Based on the results, we demonstrate that it is possible to achieve efficient expression

and processing of three different miRNAs (Ago2, Ago5, and Ago7) from a poly-cis

microRNA vector. This study and the novel poly-cis miRNA gene vector will have

greater significant applications in terms of functional genomics and plant improve-

ment. And the new gene suppression vectors will be powerful in dissecting plant

natural product pathways or metabolic engineering [114]. Rational engineering of

complicated metabolic networks has largely depended on our understanding of tar-

get pathways and their associate genes, regulatory proteins and enzymes [101, 114].

The first step to metabolic engineering is to identify target pathways and their con-

stituent genes through omics analysis. The second step is to select the target genes
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Figure 7.10: Display the secondary structure of artificial pre-microRNA.

in the pathways for engineering. The selected genes will be processed through being

expressed or silenced individually or simultaneously. Poly-cis microRNA vector di-

rected multiple gene silencing techniques will become a powerful and efficient tool in

this step in silencing multiple unwanted genes simultaneously.
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Figure 7.11: The primers: P1 and P2.

Figure 7.12: Prediction model for single-module (miR168 backbone) microRNA vec-
tor

Figure 7.13: Gene expressions of three main microRNAs produced from single-module
microRNA vector. wt denotes wild type.
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Figure 7.14: Prediction model. Pre-microRNA-168 is used as the backbone for the
poly-cis miRNA vector. There are six modules on this model, which use different
PCRs.

93



8 Conclusion and Future Work

8.1 Conclusion

This dissertation introduces our research work on studying and designing computer

model to predict the secondary structure of pre-microRNAs. We have conducted

some research in the following directions:

• We have designed and implemented the pre-microRNA secondary structure pre-

diction system based on energy-scoring strategy. This algorithm uses modi-

fied NCM structures and recursive method in predicting the optimal secondary

structure of given sequence. The experimental results show that our prodiction

algorithm achieves very encouraging performance.

• We have proposed a parallel processing technique to predict the secondary struc-

ture of endogenous polycistronic microRNAs. The benefit from using paral-

lel computing is obvious. We use master-slave architecture and the trend of

speedups of our parallel algorithm matches that of theoretical speedups.

• We have proposed a new effective method that can distinguish the real pre-

miRNAs from pseudo pre-miRNAs and this approach is important for identi-

fying novel and specific miRNAs. Our algorithm outperforms the triplet-SVM

classifier, which uses sequence-structure as features in terms of accuracies. The

other advantages that our method has include: our model uses fewer features

(9 features) while triplet method uses 32 features, and our model decreases the

dependency on the sequence data because it just uses the characteristics from

the secondary structures of pre-MiRNAs.

• We have proposed an efficient and improved prediction algorithm that predicts

the secondary structure with the support of knowledge base. The production
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rules come from the characteristics of secondary structure and biological con-

straints from pre-microRNAs. The new algorithm improves the accuracy and

reduces the computing time greatly.

• We have proposed a novel artificial poly-cistronic microRNA vector prediction

and applied it to silence multiple genes in Arabidopsis.

• We designed and developed a web-based online tool for predicting the secondary

structure of pre-microRNAs. Users can download the binary code and install

our software on their machines as well. Users can run binary code on any Linux-

based computer. The input is the sequence (primary structure) of pre-miRNAs

and the output is predicted the secondary structure of sequence. Our state-of-

the-art prediction software has intuitive and user-friendly interface, generates

forecasting with just two clicks. In addition, it provides sufficient flexibility for

researchers by generating five best structures based on the energy scores.

• We have implemented a web site that allows users to construct poly-cis miRNA

vector on line from gene sequence. The web application is at www.cs.uky.edu/∼

dianweih/microRNA vector/submit.htm.

8.2 Future Work

We have done some fundamental research related to the secondary structure predic-

tion of pre-microRNAs and obtained some encouraging results. More work needs to

be fulfilled to make the prediction algorithm more mature, more accurate, and more

powerful. Future work may follow the directions listed below:

• If domain knowledge could be incorporated into our model it would greatly

improve the prediction. In the future, we can consider formulating a hybrid

statistics/thermodynamic model, which could use the statistical frequencies as

a priori for selecting competing thermodynamically favorable configurations.
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• Apart from the above, we also plan to develop an algorithm that can obtain

the most appropriate structure from a list of structures with the same score.

Even though very few researches related to this aspect has been done, we do

not think this issue is a trivial one, especially when the optimal solution is

among such structures. In order to reach this goal, a machine learning model

should be built. Some new challenges will be encountered when we work out

this problem, such as how to select a better structure from two structures with

the same energy score. The final judgement relies heavily on the experience of

experts and the current related knowledge.

• In our experiment to predict the secondary structure of polycistronic microR-

NAs, our speedups is more flat than the theoretical values. We want to find the

hidden factors that affect our algorithm performance negatively and propose

new strategy to handle this problem. Also, we want to extend our test on more

endogenous poly-cistronic miRNAs from plants and animals for their secondary

structure prediction and validation.

• We also applied Knowledge Base to supporting the prediction. Due to the time

limitation, we only chose human pre-miRNAs as data set. We want to choose

all the mammals as data set so the Knowledge Base will be more powerful and

we will take more production rules into consideration in the future.

• In order to validate and evaluate the predictive power of our system, we would

like to consider a new identification algorithm, which focus on selecting the gene

sequence, filtering the secondary structures, and validating the novel microR-

NAs. This ability to find new microRNAs using our prediction algorithm can

give us more insight on designing the more reasonable and efficient algorithms.
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Appendix: Production Rules
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