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ABSTRACT OF DISSERTATION

REQUIREMENTS TRACING USING

INFORMATION RETRIEVAL

It is important to track how a requirement changes throughout the software lifecycle.

Each requirement should be validated during and at the end of each phase of the software

lifecycle. It is common to build traceability matrices to demonstrate that requirements are

satisfied by the design. Traceability matrices are needed in various tasks in the software

development process. Unfortunately, developers and designers do not always build trace-

ability matrices or maintain traceability matrices to the proper level of detail. Therefore,

traceability matrices are often built “after-the-fact.”

The generation of traceability matrices is a time consuming, error prone, and mun-

dane process. Most of the times, the traceability matrices are built manually. Consider the

case where an analyst is tasked to trace a high level requirement document to a lower level

requirement specification. The analyst may have to look through M x N elements, where

M and N are the number of high and low level requirements, respectively. There are not

many tools available to assist the analysts in tracing unstructured textual artifacts and the

very few tools that are available require enormous pre-processing.

The prime objective of this work was to dynamically generate traceability links for

unstructured textual artifacts using information retrieval (IR) methods. Given a user query

and a document collection, IR methods identify all the documents that match the query. A

closer observation of the requirements tracing process reveals the fact that it can be stated



as a recursive IR problem.

The main goals of this work were to solve the requirements traceability problem

using IR methods and to improve the accuracy of the traceability links generated while

best utilizing the analyst’s time. This work looked into adopting different IR methods and

using user feedback to improve the traceability links generated. It also applied wrinkles

such as filtering to the original IR methods. It also analyzed using a voting mechanism

to select the traceability links identified by different IR methods. Finally, the IR methods

were evaluated using six datasets. The results showed that automating requirements tracing

process using IR methods helped save analyst’s time and generate good quality traceability

matrices.

KEYWORDS: Requirements, Requirements Tracing, Requirements Traceability Matrix

(RTM), Traceability Links Generation, Information Retrieval.
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Chapter 1

Introduction

It is important to track how a requirement changes throughout the software lifecycle.

Each requirement should not only be validated during each phase of the software lifecycle,

but also at the end of the software lifecycle. It is common to build traceability matrices

to demonstrate that requirements are satisfied by the design. Traceability matrices are

also used to verify that design and code satisfy the requirements. They are also used in

risk analysis, impact analysis on proposed changes, criticality assessment, and test coverage

analysis. Unfortunately, developers and designers do not always build traceability matri-

ces or maintain traceability matrices to the proper level of detail. Therefore, traceability

matrices are often built “after-the-fact” by Verification and Validation (V&V) analysts and

Independent Verification and Validation (IV&V) analysts.

As mentioned in [30], the objective of Verification and Validation (V&V) and Inde-

pendent Verification and Validation (IV&V) is to ensure that the right processes have been

used to build the right system. Once built, traceability matrices should be maintained to

keep track of all the changes made to their elements throughout the software lifecycle.

The most common tracing method currently used by V&V or IV&V analysts works

as follows. Assume that the objective is to trace a high level requirement document (such

as a System Specification) to a lower level requirement specification (such as a Software

Requirement Specification). At first, the requirements are extracted from the documents.

An analyst selects a high level requirement and compares it with every low level requirement.

If the analyst finds them to be similar, the high-low level pair being compared is added to

the link list. This process is repeated for all the high level requirements. The analyst has

to look through M x N elements, where M is the number of high level requirements and N

is the number of low level requirements. Even if there are only 25 high level requirements

and 30 low level requirements, the analyst still has to make 750 comparisons. This process
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can be tedious, mundane, and error-prone.

It is also common to use a keyword matching algorithm instead of manually going

through each high-low level requirement pair. In this case, an analyst goes through each

high level requirement and low level element and assigns keywords, respectively. At times,

analysts may use word processing tools to assign keywords. Using a keyword matching

technique, a list is built of low level elements that may potentially satisfy a given high level

requirement. These are called candidate links.

Next, the candidate links generated manually or by the keyword matching technique

are reviewed by the analyst to determine if they are true links or false positives. In order

to evaluate candidate links, the analyst goes through each link and checks if the high level

and the low level requirement under consideration are related. The evaluation is completely

based on the analyst’s judgment. Thus, it’s prone to human error. Once the candidate links

are evaluated, a report listing the high level requirements without a child and the low level

requirements without a parent is generated.

From the previous paragraphs, It is clear that the current approaches to after-the-

fact tracing have many disadvantages. In the case of manual tracing, the analyst has to

go through every high-low level requirement pair. It is a time-consuming and error-prone

process. If keyword matching techniques are used, the analyst does not have to compare

the requirement elements, but the analyst needs to assign keywords to each high level and

low level requirement. In either case, in order to evaluate candidate links, the analyst might

have to perform interactive searches and use word processing tools. The keyword matching

algorithms are not efficient in returning all the correct links and they tend to return many

false positives. They do not provide a means to keep track of the changes made to the

requirement elements. In order to ensure requirement completion and to facilitate change

impact assessment, risk analysis, and criticality assessment, a method for easy after-the-fact

requirements tracing is needed.

It can be seen that the generation of candidate links is the time consuming, but

critical, part of the tracing process. If candidate links can be generated automatically

without returning a significant number of false positives, much time and effort can be

saved. Even with automated candidate links generation, the analyst still has certain critical

responsibilities such as candidate link evaluation, making decisions on whether or not to
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look for more links, identifying if a requirement has been completely satisfied and deciding

if the tracing process is complete. Hayes et al. [27] mention that “the key to successful

automation lies not in removing the human decision-maker from the loop, but rather, in

introducing an automated agent that takes care of the mundane, time-consuming parts of

the process and allows the analyst to concentrate on the parts that really require human

decision-making.”

A close observation of the candidate link generation process reveals that it can be

stated as an Information Retrieval (IR) problem. In a nutshell, Information Retrieval meth-

ods identify all the documents in a given document collection that match a given query. If

each high level requirement is considered as a query and the set of all low level requirements

is considered as a document collection, candidate link generation becomes an Information

Retrieval problem. There are already well-established methods to solve Information Re-

trieval problems. There are well-established measures to evaluate the performance of the

IR methods and the quality of the results generated. Hence, Information Retrieval methods

can be used to automate and improve the quality of the tracing process. However, these

methods may not be used directly to generate candidate links due to the characteristics

of the tracing process and the size of the document collection used in tracing. Even with

automated candidate link generation, in order to complete the trace, the analyst needs to

go through each link generated to determine if it is indeed a link. This process is called

candidate link evaluation.

1.1 Problem Statement

The generation of traceability links is a time consuming, error prone, and mundane process.

There is a lack of tools for generating traceability matrices for unstructured textual artifacts.

There is also a lack of standard measures to assess the quality of the traceability matrices.

The very few tools that are available require enormous pre-processing.

1.2 Research Thesis

The problem of dynamic generation of traceability links for unstructured textual artifacts

can be addressed using information retrieval methods with an emphasis on improving the

accuracy of the traceability links generated while best utilizing the analyst’s time.
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The objective of this work was to automate the generation of candidate link lists

resulting in an insignificant number of false positives by adapting various IR algorithms.

We compared different IR methods to identify which ones perform better under a particular

scenario. Sometimes, the performance of certain IR methods varied depending on the size

of the datasets. We also analyzed the traditional measures used in the IR world in assessing

the quality of the candidate links generated. We incorporated feedback methods to further

refine the candidate links generated using as minimal input from the analyst as possible.

1.3 Overview of Dissertation

The report is organized as follows. Chapter 2 discusses requirements tracing and Infor-

mation Retrieval methods in detail. Related work in requirements tracing is presented in

Chapter 3. Chapter 4 explains the research approach. Chapter 5 discusses the validation

methods and datasets to be used in assessing this work. Chapter 6 discusses all the results

obtained. Chapter 7 presents the conclusion and future work.

Copyright c© Senthil Karthikeyan Sundaram 2007
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Chapter 2

Background

2.1 Requirements Tracing

Figure 2.1 shows a project document hierarchy for a typical large software project.

In the given hierarchy, how do we make sure that the Software Design Specification satisfies

all the Product Requirements? The Software Design Specification can be traced to the

Software Requirement Specification to ensure that the Software Design Specification satisfies

the Software Requirement Specification. In turn, the Software Requirement Specification

can be traced to the Product Requirement. The relation “satisfies” is transitive, and, hence,

both the traces mentioned above will determine if the Software Design Specification satisfies

all the product requirements.

IEEE standard for software verification and validation plans [1] defines verification

as “confirmation by examination and provisions of objective evidence that specified require-

ments have been fulfilled.” Further, it defines validation as “confirmation by examination

and provisions of objective evidence that the particular requirements for a specific intended

use are fulfilled.” Hence, V&V and IV&V analysts ensure that the right product is built us-

ing the right process. Building the requirements traceability matrix (RTM) is the backbone

of IV&V and V&V.

A sample RTM is shown in Table 2.1. An RTM is a table mapping any pair of

software artifacts.

Requirements tracing is defined as “the ability to describe and follow the life of a

requirement, in both a forward and a backward direction, through the whole systems life

cycle [35].” The prime motive of requirements tracing is to ensure that all the requirements

are being satisfied by the system being built and also to perform impact analysis on proposed
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Figure 2.1: Project Document Hierarchy

Design Elements Requirement Elements
R1 R2 R3 R4 R5

D1 X
D2 X X
D3 X
D4 X
D5 X X

Table 2.1: RTM
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Figure 2.2: Unsatisfied Requirements

changes. At the end of a requirements tracing process, a requirements traceability matrix

(RTM) is generated. It is necessary that the RTM reflect all the changes made to the

elements represented in it and the traceability information is updated accordingly. Hence,

the RTM evolves throughout the software lifecycle.

Many people in the software industry need to generate traceability links. For exam-

ple, an IV&V analyst should generate an RTM for a set of artifacts such as the Software

Design Specification and the Software Requirement Specification. A V&V analyst might

trace two API specifications to each other to make sure that they are consistent. A test

engineer might have to identify traceability links between test cases and requirements. A

software designer might have to make sure that the design is consistent with proposed code

changes. Having an efficient requirement traceability process will make life easier for many

software professionals.

At every stage in the software lifecycle, each element in the high level artifact must

have at least one child element in the low level artifact and each element in the low level

artifact must have at least one parent in the high level artifact. Figure 2.2 shows the scenario

where one of the requirements is not satisfied by any design element. This might result in

the system being built incompletely. Whereas, Figure 2.3 shows the scenario where one of

the design elements does not correspond to any requirement. In this case, effort and time

7



Figure 2.3: Unintended Functions

might be wasted on implementing an unintended functionality. In order to identify the

above mentioned scenarios, tracing should be performed in both directions, forward and

backward.

Forward tracing can be defined as tracing high level project artifacts to low level

project artifacts. Whereas, backward tracing can be defined as tracing low level project

artifacts to high level project artifacts. Figure 2.4 and Figure 2.5 show examples of forward

and backward tracing, respectively. In the forward tracing example, requirements are traced

to design specifications. In Figure 2.5, design specifications are traced to requirements.

In order to understand the requirements tracing process better, let us look at the

responsibilities of an analyst who has been tasked to perform a requirements trace. Let us

assume that the analyst has been asked to perform a trace between two sets of requirements

documents. Without loss of generality, let us call one set of requirements high level and

the other low level. Consider the case that high level requirements should be traced to low

level requirements.

The process of requirements tracing is described in Table 2.2 [30]. The analyst

first goes through both high and low level documents to identify the requirement elements

and assign identifiers to them. The analyst goes through each high level requirement and
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Figure 2.4: Forward Tracing

Figure 2.5: Backward Tracing
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Step Task

1 identify each requirement
2 assign a unique identifier to each requirement
3 for each high level requirement, locate all matching low level

requirements
4 for each low level requirement, locate a parent element in the

collection of high level requirements
5 determine if each high level requirement has been completely

satisfied
6 prepare a report that presents the traceability matrix
7 prepare a summary report that expresses the level of traceability

of the document pair

Table 2.2: Requirements Tracing Process

identifies all the matching low level requirements. Similarly, for each low level requirement, a

parent element should be found in the collection of high level requirements. A requirements

traceability matrix, along with a summary report, is built to summarize the traceability

links.

Let us examine the above mentioned steps and see if any of those can be automated.

A tool can be used to identify requirements and assign identifiers to them. Similarly,

generation of a requirements traceability matrix and traceability summary reports can also

be automated. There are a number of tools available, such as SuperTrace Plus (STP) [23, 37]

that address these activities. That leaves steps 3, 4, and 5 in Table 2.2 to be addressed.

In fact, the remaining steps are of greater importance to researchers and practitioners as

these steps require the analyst to compare each high level requirement with every low level

requirement. As the number of high level and low level requirements grow, the number of

traceability links that an analyst should consider increases significantly.

The primary goal of this work is to study the ways in which requirements tracing can

be automated. We can see that steps 3, 4, and 5 are the primary candidates for automation.

However, it should be noted that even with automation, the analyst still has to evaluate the

candidate links; make decisions on whether or not all the candidate links have been found;

make decisions on whether or not a requirement has been completely satisfied by the links

found; and decide if the traceability matrix generated is acceptable. So, it is obvious that

the requirements tracing process cannot be completely automated and that analysts still

have critical responsibilities.
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In this work, we focus on the dynamic generation of candidate links using an au-

tomated process. We analyze various Information Retrieval methods and adopt them to

generate candidate links. An ideal automated process should only generate true candidate

links and no false positives. Even though we strive to attain perfection with automation, it

is highly likely that there will be some false positives among the candidate links generated.

It is also possible that the automated process might not find all the true links.

This work also focuses on using the analyst’s feedback on the candidate links gener-

ated in order to improve the result. In other words, the analyst will go thorough some of

the candidate links generated and mark them as “Link” or “Not A Link” based on his/her

judgment. This information will be used to look for more candidate links that are similar

to the ones marked as “Link” and to discard the candidate links similar to the ones marked

as “Not A Link.” The feedback process can be repeated until the analyst feels that all the

possible candidate links have been found.

2.2 Information Retrieval (IR)

Information Retrieval is a field that studies the problem of identifying relevant doc-

uments in a document collection that match given queries. The exponential growth of the

World Wide Web (WWW) lead to enormous growth of information and document reposi-

tories and made the obtaining of desired information from the WWW has become tougher.

Baeza-Yates et al. [7] and Frakes et al. [19] give an excellent introduction to information

retrieval and explain how to develop an IR system.

The most-studied and commonly used keyword-based IR methods identify important

keywords for each document in the document collection. Similarly, keywords are identified

for the queries and these keywords are compared with the ones assigned for the documents to

identify matches. In most keyword-based methods, the relevance of a document to a query

is expressed in terms of a similarity measure. The result is list of documents in descending

order of their relevance to the query. The quality of an IR method depends on the number

of possible matches found and the percentage of false positives in the result. Precision and

recall are commonly used to measure the quality of the result. Recall is defined as the ratio

of the number of links returned by the IR method to the total number of possible links.

Recall =
Number of matches found by the IR method

Total number of possible matches
(2.1)
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Precision is computed as the fraction of the relevant documents in the list of all docu-

ments returned by the IR method.

Precision =
Number of true links found

Total number of links returned by the IR method
(2.2)

For a query, given the candidate links, it is easy to measure precision. However,

in order to measure recall, one needs knowledge of the entire document collection. For

example, measuring recall for the result of a web search is a daunting task. An ideal IR

method should produce as high precision and recall as possible.

There is a wide array of keyword-based IR models. The ones listed below are very

famous:

• Boolean model

• Vector space model

• Vector space model with thesaurus

• Probabilistic model, and

• Latent Semantic Indexing.

Let us discuss these methods in detail.

2.2.1 Boolean Model

The Boolean model is one of the simplest models. It is based on set theory and

Boolean algebra. Each document D in a document collection contains a set of keywords.

Each keyword has a weight of 1 if it is present in the document or 0 if it is not present. Hence,

all the keywords are equally important. A query Q is represented as a Boolean expression

containing terms and Boolean operators. A document D will be termed as relevant to Q

only if it satisfies Q’s Boolean expression. Though the Boolean model is easy to implement,

it only identifies exact matches. The Boolean model will not identify partial matches.

2.2.2 Vector Model

The vector model is an extension of the Boolean model. The vector model assigns a

weight to each keyword that signifies its importance to the document collection. Equation

2.3 shows how the weight is calculated. At first, important keywords are extracted from the
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documents. Each keyword is assigned a weight factor and, finally, documents are ranked

with respect to the query based on their similarity.

Tf-idf

We now consider a standard vector space model in detail. Each document d in the

document collection D is represented as a vector d={w1,w2...wN}, where N is the total

number of terms in the vocabulary of the document collection and wi is the weight of the

ith term. The weight is calculated as follows:

wi = tfi(d) · idfi (2.3)

where tfi(d) is the term frequency of the ith keyword in document d and idfi is the

inverse document frequency of the ith term in the document collection. Term frequency is

the normalized number of occurrences of the keyword in the document collection. Inverse

document frequency of the ith term is calculated as:

idfi = log2

(
n

dfi

)
(2.4)

where n is the total number of documents in the document collection and dfi is the

document frequency of term ki, i.e., the number of documents in which ki is found. The

importance of a keyword is decided based on how often the keyword occurs in a document

and how many documents contain that particular keyword. If a term occurs more often in

a document, it is likely to be more important to the document. Also, if a term occurs more

commonly in the document collection, it is less discriminating. Similarly, the user query

is also converted into a vector q = (q1, . . . , qN ). The same formula is used to compute the

weight for keywords in the given query.

Given a query vector q = (q1, . . . , qN ) and a document vector d = (w1, . . . , wN ),

the similarity between them is computed as the cosine of the angle between q and d in

N-dimensional space:

sim(q, d) = cos(q, d) =
∑N

i=1 qi · wi√∑N
i=1 q2

i ·
∑N

i=1 w2
i

(2.5)

The vector space model can be extended by modifying the computation of term weights

in the document and query and the computation of similarity between the document and

query vectors. In this work, we used two more weighting schemes in our experiments. One
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of the weighting schemes used was proposed within the Okapi [46] information retrieval

system. The following is the formula used in the Okapi system:

wi =
tfi(d)

0.5 + 1.5 dl
avg dl + tf

log(
n− dfi + 0.5

dfi + 0.5
) (2.6)

where tfi(d) and dfi are term frequency and document frequency of the ith term, n is

the total number of elements, dl is the length of current element, and avg dl is the average

length of an element in the collection.

The other weighting scheme used is linear threshold unit (LTU ) [33]. The LTU

formula is:

wi =
(log(tfi(d)) + 1)log( n

dfi
)

0.8 + 0.2 dl
avg dl

. (2.7)

Tf-idf with thesaurus

The classical vector space model compares only the individual occurrences of key-

words in the documents and the queries. However, it is quite possible that a query may

not have an exact matching term to a keyword in the document, but it might have a syn-

onymous term. In this case, the classical vector space model will fail to find the match.

For example, the keyword error will not match the term fault but these terms may be very

relevant. A thesaurus can be used to provide information about the relationship between

different terms.

The vector space model can be extended by using a thesaurus to account for the

presence of synonyms, antonyms, abbreviations, subcategories, etc. The thesaurus can be

incorporated in the vector space model in many different ways, based on its type. As

shown in Figure 2.6, a simple thesaurus T is a set of triplets <ti,tj ,s>, where ti and tj

are matching thesaurus terms and s is the similarity coefficient between them (e.g., <error,

fault, 0.5>). Thesaurus terms can either be single keywords or key phrases (i.e., sequences

of two or more keywords). The similarity (relevance) formula is modified to account for the

thesaurus matches as follows:

sim(q, d) = cos(q, d) =

∑N
i=1 qi · wi +

∑
<ki,kj ,αij>∈T (wi · qj + wj · qi)√∑N
i=1 q2

i ·
∑N

i=1 w2
i

. (2.8)
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Figure 2.6: Thesaurus

2.2.3 Probabilistic IR

The probabilistic IR model matches documents and queries based on their probability

of relevance, which is measured using the number of occurrences of terms in documents and

queries. The Probability Rank Principle (PRP) [45] states that the probabilistic methods

are effective when an estimate of the probability of their relevance to the given query is

used to rank the matching documents. Similar to the Vector Space Model, the probabilistic

methods assign a weight to each query term which corresponds to the probability of that

term retrieving a matching document for the given query. Hence, the probabilities of all

the query terms contribute to the probability of retrieving a matching document.

Binary Independence Model

The Binary Independence Model (BIM) [47, 44] estimates the odds ratio of a document

and a query being a link versus not being a link. The quality of the results returned by

this method for small datasets largely depends on the initial estimates of two quantities:

the probability of a true link containing a specific keyword, and the probability of a false

positive link containing a specific keyword.

Each document d in the document collection D is represented as a binary vector d

= {d1,d2,. . . ,dN}, where N is the total number of terms in the vocabulary of the document

15



collection, di = 1 if term i is present in the vector, and di = 0 if term i is not present in

the vector. Similarly, the user query is also converted into a binary vector q = (q1, . . . , qN ).

BIM will assign to each document d in the document collection D a probability of

relevance (similarity) value which is computed as follows:

sim(q, d) =
P (d is relevant to q)

P (d is not relevant to q)
. (2.9)

Let q be the given query, R be the set of documents that are relevant to the given

query, and NR be the set of documents that are not relevant. Let P(R|d) be the probability

that the document d is relevant to q and P(NR|d) be the probability that the document d

is not relevant to the query q. Now, the similarity value can be calculated as follows:

sim(q, d) =
P (R|d)

P (NR|d)
. (2.10)

The conditional probability for two events X and Y can be obtained by the Bayes’

theorem as follows:

P (X|Y ) =
P (Y |X) · P (X)

P (Y )
(2.11)

where P(X) is the prior probability of X, P(Y) is the prior probability of Y, P(X|Y )

is the conditional probability of X given Y, and P(Y |X) is the conditional probability of Y

given X.

Applying Bayes’ theorem to the equation (2.10),

sim(q, d) =
P (d|R) · P (R)

P (d|NR) · P (NR)
, (2.12)

where P(d|R) is the probability of randomly selecting a document d from the set R

of relevant documents, P(d|NR) is the probability of randomly selecting a document d

from the set NR of non-relevant documents, P(R) is the probability of randomly selecting

a relevant document from R and NR, and P(NR) is the probability of randomly selecting

a non-relevant document from R and NR. It can be seen that P(R) and P(NR) are the

same for all the documents in the document collection. Considering P(R) and P(NR) as

contstants, we can re-write the similarity formula as follows:

sim(q, d) ∼ P (d|R)
P (d|NR)

. (2.13)
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In the equation (2.13), the right hand side can be estimated as follows:

P (d|R)
P (d|NR)

=
N∏

i=1

P (di|R)
P (di|NR)

. (2.14)

sim(q, d) ∼
N∏

i=1

P (di|R)
P (di|NR)

. (2.15)

Since di = 0 or 1,

sim(q, d) ∼
N∏

i:di=1

P (di = 1|R)
P (di = 1|NR)

·
N∏

i:di=0

P (di = 0|R)
P (di = 0|NR)

. (2.16)

Let pi = P(di = 1|R) and ui = P(di = 1|NR). Considering the fact that pi + ui = 1,

the equation (2.16) can be written as:

sim(q, d) ∼
N∏

i:di=1

pi

ui
·

N∏
i:di=0

1− pi

1− ui
. (2.17)

sim(q, d) ∼
N∏

i:di=1,qi=1

pi · (1− ui)
(1− pi) · ui

. (2.18)

Taking the logarithm:

sim(q, d) ∼
N∑

i:di=1,qi=1

log
pi

1− pi
+ log

1− ui

ui
. (2.19)

R and NR are not known in the beginning. Hence, there should be a way to compute

pi and ui. One such approach is stated in [7]. The approach assumes that pi is a constant

for all the index terms. It also assumes that “the distribution of index terms among non-

relevant documents can be approximated by the distribution of index terms among all the

documents in the collection [7].” Hence,

pi = 0.5 (2.20)

and

ui =
ni

N
(2.21)

where n is the number of documents containing the index term di and N is the total

number of doucments in the collection.
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Imroving on the initial estimates

The above mentioned process can be used to generate the list of documents that match a

given query. The initial list generated can be improved by adjusting the initial estimates of

pi and ui. Let us look into the approach mentioned in [7] for improving the initial estimates.

Let M be the set of documents initially identified as matches. Let Mi be the subset of

M that includes all the documents that contain the term index di. pi can be approximated

by the distibution of index term di among the documents retrieved initially and ui can

be approximated by considering that all the non-retrieved documents are not relevant [7].

Hence, pi and ui can be recalculated as follows:

pi =
Mi

M
, (2.22)

and

ui =
ni −Mi

N −M
. (2.23)

The above mentinoed process can be applied without any human assistance. Instead,

we can also use analyst feedback to prune the initial list. In this case, the pruned list will

be considered as M. The analyst feedback will be explained in later chapters. This process

can be repeated as many times as needed.

Note that when Mi and M have very small values, computing pi and ui can be

problematic. This problem can be overcome in many ways. A constant adjustment factor

can be added to the equations (2.22) and (2.23) [7] as follows:

pi =
Mi + 0.5
M + 1

, (2.24)

and

ui =
ni −Mi + 0.5
N −M + 1

. (2.25)

Another way to avoid this problem is to use the fraction ni/N as the adjustment [7]:

pi =
Mi + ni

N

M + 1
(2.26)

and
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ui =
ni −Mi + ni

N

N −M + 1
. (2.27)

2.2.4 Latent Semantic Indexing

Vector space model and probabilistic model match documents and queries based on

the occurence of keywords. It could be possible that a pair of documents may be discussing

the same concept, but still not share any common keywords. Conversely, a pair of unrelated

documents may be sharing many keywords. In the first case, the matching documents may

not be retrieved. In the later case, false positives will be generated.

Latent Semantic Indexing (LSI) [20] matches the documents based on their concepts

rather than keywords. Similar to vector space model, LSI also builds a term-by-document

matrix to represent each document in the document collection. LSI uses a dimension-

reduction technique called Singular Value Decomposition (SVD) to reduce the term-by-

document matrix into a lower dimension space of concepts. Hence, LSI is capable of iden-

tifying matching documents that do not share any common keywords, provided that they

both share the same concepts.

The original matrix is transformed into a product of two orthogonal matrices and a

diagonal matrix of Eigenvalues. It can be mathematically proved that any matrix can be

decomposed as mentioned above. A smaller matrix is obtained as an approximation of the

original matrix by considering only the top few Eigenvalues. Rows of the matrix can be

compared to each other using the cosine similarity described above.

For example, if L is a document-by-term weight matrix of dimension A × B, its

SVD is written as L = TSD′, where T is a matrix with orthogonal rows, D′ is a matrix

with orthogonal columns, and S is a diagonal matrix of Eigenvalues of L. We can trim the

list of Eigenvalues of L from rank(L) to a smaller number k and obtain a decomposition

Lk = TSkD
′, where Sk is the diagonal matrix of size kXk with the k largest Eigenvalues

of L on the diagonal. Rows of the matrix TS2
kD′ can be compared to each other using the

cosine similarity as defined above. Use of the matrix TS2
kD′ instead of the original matrix

L reduces the dimensionality of the document vectors from B to k. Identifying the ideal

value for k is of research interest. In this work, we will experiment with different values for

k to obtain the best possible results.
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Chapter 3

Related Work

This section is divided into two sub-sections. The first section looks into some very

early research in requirements tracing. The second section discusses the application of

information retrieval methods to solve requirements tracing problems.

3.1 Requirements Tracing

This section provides an overview of the research on requirements analysis and trace-

ability in chronological order. Some of the research discussed here was conducted over a

decade ago and pre-dates the application of information retrieval methods to tracing and

the measures currently used to assess the accuracy of tracing methods. This section presents

traceability research in historical context in order to give an idea of how research on au-

tomating traceability emerged.

In 1978, Pierce [38] designed a tool to facilitate requirements analysis. The main

purpose of the tool was to simplify system verification, however, it also helped in recording

changes in software requirements and estimating schedule and cost impact of those changes.

The tool used a requirements database to store and maintain requirements. The database

contained all the requirements and the documents produced throughout the software life-

cycle. It supported three types of matching, namely matching high level requirements with

their low level requirements, matching requirements of the same level, and matching require-

ments to code. Thus, it provided a detailed mapping of each requirement to design and

code. The tool was originally written as a batch program in ANSI Standard FORTRAN.

Hayes et al. [23] built a front-end for a requirements tracing tool called the Soft-

ware Automated Verification and Validation Analysis System (SAVVAS). The name of their

front-end tool was SFEP, for SAVVAS Front-End Processor. SAVVAS used an Ingres rela-

tional database to store the requirements and SFEP was written in Pascal. SFEP extracted
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the text from the requirements stored in the database of SAVVAS. It assigned keywords to

each requirement using link words such as “shall,” “will,” etc. It matched the requirements

based on keyword similarities. SFEP considered two requirements to be relevant only when

their keyword similarity was above a threshold limit. Later, the tool was re-written using

Microsoft Access and Visual Basic. The SFEP tool was continually enhanced and it is still

being used in several projects. Mundie and Hallsworth [37] describe the SFEP tool in detail.

Brouse [9] examined current requirement engineering approaches and developed a

process to address the shortcomings in the commonly used approaches. Brouse came up

with a domain-independent multimedia requirements traceability to support a requirements

elicitation and identification process. She also performed a case study in the transportation

domain and demonstrated the applicability of the method. Brouse’s model supported the

assignment of non-domain specific and domain specific attributes for all the requirements.

Ramesh and Dhar [42] suggest that capturing the history of the design decisions in

a structured manner might help designers, maintenance personnel, project managers, and

executives. They came up with a conceptual model called REMAP (representation and

maintenance of process knowledge) to capture the process knowledge and its effects on the

decisions made during the requirements engineering process.

Casotto [10] examined the run-time tracing design activity using requirement cards

organized into linear hierarchical stacks. Her approach also supported retracing.

Gotel and Finkelstein [21] analyzed the requirements traceability problem based on

empirical studies. The empirical exercises involved more than 100 practitioners whose work

areas covered various aspects of software engineering. The authors surveyed the literature

and reviewed various commercial and research tools available for requirements tracing. They

also used focus groups and questionnaires in understanding the problem and its nature.

They discussed their findings on the support available for requirements traceability.

According to the authors, the lack of common definition of “requirements traceability”

was one of the major issues. The authors believed that everyone seemed to have their

own understanding of requirements traceability. They also believed that there was no

consensus among the researchers on the main cause of the requirements traceability problem.

The authors provided a framework explaining the multi-faceted nature of the requirements

traceability problem. They proposed a definition for requirements traceability that reflected

21



most of the commonly used definitions for requirements traceability. They also introduced

the concept of pre-requirements specification (pre-RS) traceability and post-requirements

specification (post-RS) traceability.

“Pre-RS traceability is concerned with those aspects of a requirement’s life prior to

its inclusion in the RS (requirement production) [21].”

“Post-RS traceability is concerned with those aspects of a requirement’s life that

result from its inclusion in the RS (requirement deployment) [21].”

The authors argued that most of the existing support for requirements traceability

covered post-RS traceability and there was hardly any support for pre-RS traceability. They

emphasized the need for improved pre-RS traceability. They listed the problems confronting

pre-RS traceability from the providers as well as the end users’ view point. They explained

how increasing awareness of information, obtaining and recording information, organizing

and maintaining information, and accessing and presenting information can all improve

pre-RS traceability. In summary, Gotel and Finkelstein strongly believed that the solution

to the requirements traceability problem existed in improving the pre-RS traceability.

Watkins and Neal [54] explained the why and how of requirements tracing. They

strongly emphasized the importance of requirements tracing. They explained in detail

about the basic concepts of requirements tracing such as forward tracing, backward tracing,

vertical tracing, and horizontal tracing. Bohner [8] analyzed change impact analysis using

graphing techniques that could be used in maintaining an RTM.

Anezin [4] proposed a process and the methods to assist forward and backward trac-

ing. She also developed a prototype incorporating the forward tracing mechanisms that she

identified in her research. Among the mechanisms used for forward tracing, mechanisms

that can be used for backward tracing were identified and incorporated into the prototype.

Generally, high/system level requirements were decomposed into detailed low level require-

ments. The changes made to high level requirements had to be reflected in the low level

requirements and vice-versa. Anezin also tried to analyze mechanisms to support the suc-

cessful decomposition and composition of requirements. The main hypothesis of Anezin’s

dissertation was to identify what an analyst should know about requirements in order to

trace them. An experiment was conducted to review existing requirements in order to un-

derstand the aspects of the requirements. Based on the similarities found, the author came
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up with a strategy to compare and match requirements. A knowledge base was established

and used in identifying similarities between requirements.

Pohl [40] came up with an approach to trace requirements to their origins called

pre-traceability. He built a requirements engineering environment called PRO-ART that

supported pre-traceability. PRO-ART was based on a three-dimensional framework for

requirements engineering. PRO-ART also enabled selective trace retrieval and automated

trace capture.

Pinheiro and Goguen [39] built an object-oriented tool for tracing requirements.

TOOR (for Traceability of Object Oriented Requirements) was based on principles from

hyper-programming and hyper-requirements. TOOR operated in three trace modes, namely

selective tracing, interactive tracing, and non-guided tracing. Selective tracing focused

on selected patterns or objects and relations, while interactive tracing enabled interactive

browsing through the objects in both forward and backward directions. Non-guided trac-

ing was used to go from any object to any other object. The authors designed TOOR

by keeping in mind that requirements issues occur throughout the software lifecycle and

that requirements continue to evolve during the software lifecycle. TOOR also supported

semantic information about links between objects.

Ramesh [41] analyzed the factors influencing the practice of requirements traceabil-

ity. His work mainly focused on environmental and organizational factors. It also captured

the trends and practices in requirements tracing. The author reported the results from the

empirical studies conducted and aimed to develop reference models to guide better practice.

Based on his analysis, the author classified the participants of the study into two distinct

groups, namely high-end and low-end traceability users, with respect to requirements trace-

ability practice. The author demonstrated that there was a significant difference in the

traceability practice of the two groups. He also suggested that a transition from a low-end

practice to a high-end practice would bring significant benefits such as increased process

maturity and lower life cycle costs.

Tsumaki and Morisawa [53] proposed a framework for requirements tracing using

UML. They examined how to trace use-cases, class diagrams, and sequence diagrams from

the business model to the analysis model and to the design model [53]. Our research does

not focus on tracing non-textual artifacts. Hence, it is not possible to directly compare our

work with that of Tsumaki et al.
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Cleland-Huang et al. [11] proposed an event-based traceability technique supporting

impact analysis of performance requirements. They used a performance model to deter-

mine the impacts by the proposed changes. They believed that the performance models

that were affected by the change needed to be identified and re-designed to reflect the pro-

posed changes. In order to do that, traceability links needed to be maintained between the

performance models and the requirements specification.

Huang et al. [11] proposed a dynamic traceability scheme that was capable of spec-

ulatively driving the performance models that were affected by a proposed change. Their

framework had a central requirements repository containing key data from within the indi-

vidual performance models. The links were established and maintained between the data

in the repository and those in the performance models. Whenever a change was proposed,

the values of the corresponding requirements were modified accordingly in the repository

and the change was propagated into the related performance models by following the links.

The performance of the models was assessed using the modified data-values.

Based on the case study, Huang et al. stated that event-based traceability had the

ability to identify the performance models impacted by a proposed change, propagate the

data into those models, and re-run the models to reflect the changes. They believed that

the scarcity of truly executable modeling environments was one of the main constraints for

their approach.

Egyed et al. [16] used Trace Analyzer [15] for automating requirements tracing.

Trace Analyzer [15] used trace reasoning and shared use of “common grounds” such as

source code to define trace dependencies. Their technique took known dependencies between

software artifacts and common grounds to build a graph where nodes represented those

common grounds and their overlaps. The graphs were manipulated by moving known

artifacts between the nodes. Trace Analyzer used various rules to move nodes around in

an iterative fashion. If there was at least one common node between two artifacts, the

documents were termed as related. The more nodes the artifacts have in common, the

stronger the dependency. Egyed et al. presented a case study using a video-on-demand

system. The authors mentioned the following as the benefits of their approach:

• Tracing non-functional requirements,

• Aiding identification of conflicting requirements,
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• Verifying requirements,

• Identifyig missing requirements,

• Determining change impact,

• Determining impact of new requirements,

• Understanding level of strength of dependencies,

• Distinguishing domain specific code vs. generic code,

• Determining artifacts needing attention, and

• Balancing granularity of requirements.

The main objective of the work of Egyed et al. [16] was to find out the dependencies

between requirements and code. Their work also focused on the similarity between model

elements and code. Our work focuses on the similarities between unstructured textual

artifacts.

Spanoudakis [49] used heuristic traceability rules to automatically trace requirements

artifacts to object models. This work was an extension of the work mentioned in [57]. The

heuristic rules syntactically matched textual requirements to related elements in object

models such as classes, attributes, and operations. Spanoudakis measured three types of

beliefs in this paper, namely belief in rule satisfiability, belief in correctness, and belief in

traceability relation. In [49], the author mentioned that these beliefs could assist the users

of the traceability system in deciding whether to de-activate or modify specific rules.

Spanoudakis et al. [50] described their approach that automatically traced textual

requirements artifacts to use cases and analysis object models. Their approach used two

types of rules to automate the generation of traceability relations. It used requirements-to-

object-model (ROTM) rules to trace textual requirements and use cases to an analysis object

model. Also, it used inter-requirements traceability rules (IREQ) to trace requirements

and use cases. Spanoudakis et al. came up with a prototype system that incorporated

the rules mentioned earlier to generate traceability relations. The system used XML to

represent requirements, use case specification documents, and the analysis object model.

They reported all the experiments that they conducted to evaluate the prototype.
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Hoffman et al. [31] presented a requirement catalog for requirement management

tools based on their experience in the automotive industry, the aircraft industry, and with

defense systems. The catalog was helpful in selecting requirements management tools for

one’s specific needs. Hoffman et al. defined and described requirements management tools

from the point of views of developers, project administrators, and tool administrators. They

discussed the tools that addressed various requirements management functionalities such

as information model, views of the data, format, change management, documentation of

history, baselines, tool integration, document generation, workflow management, installa-

tion and administration of projects, database, encryption, etc. Our research focuses mainly

on candidate link list generation and it does not focus on any requirements management

activities. Hence, the requirements presented by Hoffman et al. do not directly apply to

our research work.

3.2 Information Retrieval in Requirements Tracing

Some of the research discussed not only focused on requirements tracing, but also

on the overall problem of requirements management. Also, manual techniques were often

used to improve requirements tracing. The research discussed earlier that did look into

automating requirements tracing process did not use information retrieval. This sub-section

discusses the research that uses information retrieval to improve the requirements tracing

process. This sub-section is also organized in chronological order.

Antoniol et al. [5] apply two IR methods, namely, probabilistic model and vector

space model (tf-idf), to recover traceability links between code and documentation. Antoniol

et al. believe that the documentation and the free text in the code might help to capture

the association between high-level concepts and program concepts.

Their approach works as follows. All documents undergo text normalization that

include transforming all upper case letters into lower case letters, removing stopwords,

converting plurals into singulars, etc. Stopwords are those words that do not add any sig-

nificance to the characteristics of the elements. A vocabulary is built using the keywords in

the processed document collection and the documents are indexed. The indexed documents

are input to the IR methods as the document collection and each source code component is

passed as the query. The query is constructed by first extracting all the identifiers, splitting

identifiers that are composed of more than one word, and applying text normalization as
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described for the document collection. The similarity between each document in the doc-

ument collection and the given query is computed using a classifier and a list of matching

documents for each query, ordered by decreasing similarity, is generated.

Two case studies are reported in [5] where one of them traces C++ source code onto

manual pages and the other case study traces JAVA code to functional requirements. Both

case studies support the author’s hypothesis that IR methods can be used in retrieving

traceability links between the source code and documentation. The authors also investigate

the use of IR methods to support change impact analysis.

Marcus and Maletic [34] use the Latent Semantic Indexing (LSI) technique to study

requirements-to-code traceability. They compare the results obtained from their experi-

ments with the results obtained by Antoniol et al. [5]. Marcus et al. use the same dataset

as Antoniol et al. in [5]. However, Marcus et al. [34] trace the links from the manual to the

source code where as Antoniol et al. trace the links from the source code to the manual.

Marcus et al. report that though LSI requires less computation as compared to Antoniol’s

methods, it performs as well as the methods used by Antoniol et al.

Marcus et al. mention that LSI can be applied without significant preprocessing of

the input as it does not rely on a predefined vocabulary or grammar for the input. They

also use the internal documentation in the source code. They state that it helps them

achieve better results with one of their datasets. LSI performs as well as the methods used

by Antoniol et al. on the dataset that had almost no internal documentation. They believe

that the results can be further improved by using structural information in the source code.

Though our research is closely related to that of Marcus et al. [34] and Antoniol et

al. [5], there are significant differences too. While Marcus et al. [34] and Antoniol et al. [5]

focus on tracing requirements to code, our work focuses on tracing non-structured textual

requirements between different documents in the project document hierarchy. It should also

be noted that one of the key aspects of our research is the feedback process. Antoniol et al.

do not use feedback in their work.

All researchers applying IR methods to tracing use precision and recall measures to

assess the quality of the candidate link lists generated. However, Marcus et al. and Antoniol

et al. calculate precision and recall differently. They do not have an answerset manually

verified by an analyst against which to measure, but we do. Also, we use different datasets
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for our work. Hence, comparing the precision and the recall numbers from our experiments

to theirs may not be very meaningful. At the same time, we also adopt the tf-idf method

and LSI to generate candidate link lists do as Marcus et al. In fact, they show that LSI

outperforms the tf-idf method. It will be interesting to observe if the same holds for our

experiments. In addition to recall and precision, we also introduce a few more measures to

analyze the quality of the candidate link lists generated. In [26], we compare the results of

the tf-idf method to that of a manual tracing process.

Huang et al. [13] propose an approach to maximize the return on investment of the

traceability effort by applying a heterogeneous set of traceability techniques based on the

requirements of the system. The authors discuss different traceability techniques and the

advantages and disadvantages of those techniques.

Huang et al. discuss their prototype called TraCS (traceability for complex systems)

that allows the users to define their strategy. Based on the strategy assigned, TraCS traces

project artifacts using traceability techniques that satisfy those strategies. TraCS incorpo-

rates user-defined links that are traced manually, dynamic links that are generated using

IR techniques developed by the author, and links generated by Event Based Traceability

[11, 12]. Huang et al. also explain their model for comparing the traceability costs of TraCS.

Settimi et al. [48] focus on dynamically generating traces using information retrieval

techniques. Their main focus is to trace requirements to UML models. They also discuss

using different information retrieval techniques to trace requirements to code and test cases.

They analyze the vector space model and pivot normalization techniques. They also analyze

if the use of a thesaurus will improve the results. Their experimental results suggest that

their methods are more effective in establishing traceability links to UML models than to

code. They suggest that it is a good idea to establish traceability links to code through

UML models. In a way, their work is similar to ours. They use the vector space model

to generate traces like we do. They also analyze the use of a thesaurus, which is similar

to our work. However, they trace requirements to UML models whereas our work does

not support tracing non-textual/graphical/structured artifacts. Hence, it is not possible to

directly compare our work with theirs.

Hayes et al. [28] define and discuss the importance of secondary measures to analyze

the quality of a given trace and how secondary measures affect the analyst’s perception
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of the quality of the given trace. Hayes et al. [24, 29] discuss about the importance of

the analyst’s decisions on the final outcome of a tracing task. They state that though

researchers have been working on automating the tracing process, the analysts still need to

make critical decisions such as if all the links have been identified, etc.

Hayes et al. [25] present an experimental framework for evaluating requirements

tracing and traceability studies. They use their framework to describe and compare exper-

imental studies reported in [5, 6, 26, 34]. They also use their framework to identify areas

for future research and future experimentation.
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Chapter 4

Research Approach

This section explains the methods that we adopted, with significant modification,

from the IR world. These methods were never used by any other researchers to solve the

requirements tracing problem. The feedback algorithm, which is one of the unique features

of this work as far as the requirements tracing problem is concerned, is also explained in

detail. The later part of the section explains how we use information retrieval methods to

solve requirements tracing problems.

4.1 Keyword Extraction by χ2

Matsuo and Ishizuka [56] propose a method to extract keywords from a single doc-

ument. Their approach uses word co-occurrence statistical information to identify the im-

portance of the keywords. At first, they stem keywords using the Porter algorithm [36]

and extract phrases. They remove all the stop words included in the stop list used in the

SMART system [22]. They identify frequent terms by selecting the top frequent terms up to

f % of all the keywords. Then, they cluster the similar frequent terms using similarity-based

clustering and pairwise clustering. Clustering is an unsupervised learning method to group

similar objects or keywords in a collection. Finally, they calculate expected probability and

χ2 and output the keywords in descending order of their χ2 value.

Matsuo and Ishizuka [56] assume that important keywords show a more irregular

pattern of co-occurrence with different terms than generic words. They use the χ2 value to

measure the irregularity of such patterns. They state that “if the probability distribution

of co-occurrence between term a and the frequent terms is biased to a particular subset of

frequent terms, then term a is likely to be a keyword. The degree of bias of a distribution is

measured by the χ2-measure [56].” The main advantage of the keyword extraction method

is that it identifies important keywords without using a corpus.
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Here are the steps involved in calculating the χ2 value to identify the important

keywords:

1. Stop words are removed and the keywords are stemmed to their root.

2. The top frequent terms up to 30% of the total terms are selected.

3. The frequent terms are clustered. Two types of clustering techniques are used. A pair

of terms are clustered, if their Jensen-Shannon divergence is above a certain threshold

value. Also, a part of the terms are clustered if their mutual threshold is above a

particular threshold value. Jensen-Shannon divergence is calculated as follows [56]:

J(w1, w2) = log 2 +
1
2
·

∑
w′∈C

h(P (w′|w1) + P (w′|w2))− h(P (w′|w1))− h(P (w′|w2)).

(4.1)

Mutual information is calculated as follows [56]:

M(w1, w2) = log
P (w1, w2)

P (w1) · P (w2)
(4.2)

M(w1, w2) = log
Ntotal · freq(w1, w2)
freq(w1) · freq(w2)

. (4.3)

In the above equations, Ntotal is the total number of running terms in the document

and C is the cluster being identified.

4. The number of terms (nc) co-occuring with frequent terms c ∈ C is counted. Using

nc, expected probability is calculated as follows:

pc =
nc

Ntotal
. (4.4)

5. Finally, a χ2 value for each term is calculated as follows [56]:

χ2(w) =
∑
c∈G

(freq(w, c)− nw · pc)2

nw · pc
−max

c∈G

(freq(w, c)− nw · pc)2

nw · pc
(4.5)

where freq(w,c) is the co-occurrence frequency of w with c ∈ C and nw is the total

number of terms in the sentences.

This method can be extended in a straightforward manner to identify the important

keywords in the collection of documents that are being traced. False positives in the traces

are generated by coincidental matches. Identifying important keywords and using only

those keywords while matching documents may help reduce the number of false positives

generated.
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In the classic vector space model, only the document collection is used to build

the vocabulary base as the queries are not known in advance. We later explain, in the

case of requirements tracing, how we can use both the documents and the queries to build

vocabularies. Similarly, if we are tracing high level documents to low level documents, we

can identify the important keywords in the high level document collection or both the high

level and the low level document collection. In order to identify the important keywords

in the high level document collection only, we can combine all the high level documents

and consider the entire collection as a single high level document. In order to identify the

important keywords in both the high level and the low level document collections, we can

consider both the document collections as a single document. In both these cases, we will

use the above mentioned keyword extraction process to identify the important keywords in

the single document generated from the document collections.

Hence, we use the approach explained above to generate the list of keywords in

descending order of their χ2 value. The higher the χ2 value, the more important the

keyword. The top x% of the keywords in the list will be selected. We do not know what

the ideal value for x will be. The query and document vectors will be built only with the

selected keywords. Then, cosine similarity shall be computed as mentioned in the vector

space model section. For each high level document, the list of low level documents in the

order of their similarity value will be generated.

Let us look at some critical steps taken to adopt the approach proposed by Matsuo

and Ishizuka [56]. They consider two words to be co-occurring if the words appear in the

same sentence. In our modified method, we consider two words to be co-occurring if they

occur in the same element. Also, our modified method does not cluster the frequent terms.

Since the keyword extraction method considers only important keywords above a certain

χ2 value and ignores other keywords, it may not produce better recall (the percentage of

correct links found) than the vector space retrieval method. However, it is possible that

this method might produce better precision (the percentage of relevant links retrieved) as

it avoids keywords that are not important.

4.2 Keyword Extraction by idf

This method is extended from the tf-idf method. In the tf-idf method, term frequency

and inverse document frequency are used to compute the weight of a keyword. Inverse

document frequency measures how commonly a keyword occurs in the document collection.
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If a keyword occurs very often in the document collection, it may not convey any specific

information about a particular document. Hence high inverse document frequency means

that the keyword occurs only in very few documents and that it might be an important

keyword.

In order to consider only the important keywords, the keywords with low idf value

can be used while building document and query vectors. In our experiments, all terms with

df = 1 are excluded and keywords with top x% of idf are extracted. Then, document and

query vectors are built based only on the keywords that have been extracted. The cosine

similarity between the vectors of high-level and low-level elements is computed. Either both

high-level and low-level elements or just the high-level elements can be used in constructing

the initial vocabulary.

4.3 Initial estimates for Probabilistic IR

Let us say that each document d in the document collection D is represented as a

binary vector d = {d1,d2,. . . ,dN}, where N is the total number of terms in the vocabulary

of the document collection, di = 1 if term i is present in the vector, and di = 0 if term i

is not present in the vector. Also, consider that the user query is converted into a binary

vector q = (q1, . . . , qN ). As mentioned earlier, the similarity between q and d is calculated

as follows:

sim(q, d) ∼
N∑

i:di=1,qi=1

log
pi

1− pi
+ log

1− ui

ui
, (4.6)

where pi = P(di = 1|R) (i.e,) the probability that the keyword di is present in a

document randomly selected from the set R of relevant documents and ui = P(di = 1|NR)

(i.e,) the probability that the keyword di is present in a document randomly selected from

the set NR of irrelevant documents.

We do not know the value of pi and ui at the start. Hence, we need to derive an initial

estimate for pi and ui. We estimate ui for two cases, when the number of documents is

more than the number of queries and vice-versa. When the number of documents is higher,

ui is calculated as the ratio of the number of documents in which the keyword di occurs to

the total number of documents. When the number of queries is higher, ui is calculated as

the ratio of the number of documents in which the keyword di occurs to the total number

of documents.
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Let us say that Di is the number of documents in which the keyword ki occurs, n

is the number of keywords in the query being considered, ADL is the average length of

the documents in the document collection, TotalWords is the total number of words in the

vocabulary, N is the number of queries, and M is the number of documents. Hence, when

M > N

ui =
Di ·N

(N − 1) ·M
, (4.7)

and when M 6 N

ui =
Di

(M − 1) ·M
. (4.8)

Let L be the product of the average length of the documents in the document collec-

tion and the ratio of the number of documents to the number of queries. If there are more

queries than documents, L is equal to the average length of the documents in the document

collection:

L = Max(1,
M

N
) ·ADL. (4.9)

In this work, we come up with three different estimates for pi. The first estimate

calculates pi as the ratio of the average length of the documents in the document collection

to the total number of words in the vocabulary. When the number of queries is greater than

the number of documents, the estimate is multiplied by the ratio of the number of queries

to the number of documents:

pi =
L ·N

M · TotalWords
. (4.10)

The second estimate calculates pi as the ratio of the average length of the documents

in the document collection to the total number of words in the vocabulary and the number

of keywords in the query under consideration. Just as in the previous case, when the number

of queries is greater than the number of documents, the estimate is multiplied by the ratio

of the number of queries to the number of documents:

pi =
2 · L ·N

(TotalWords + n) ·M
. (4.11)
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The third estimate calculates pi as follows:

pi =
N

M
· (1− (

n− 1
n

)α·Max(1, M
N

)·AvgDocLength). (4.12)

The list of documents matching the given query q is generated using the pi and ui

values. The list is improved by adjusting the initial estimates of pi and ui, as explained in

Chapter 2.

4.4 Vocabulary Base

Standard IR models use only the document collection to create the vocabulary base

(the collection of keywords that will be used to match documents and queries). This is

mainly due to the fact that the query is not known until it is provided by the user. For

example, internet search engines use the WWW to create and maintain vocabulary bases

so that the user search can be handled quickly.

In the case of requirements tracing, all the queries are known at the start. Hence,

both documents and queries can be used to create vocabulary bases. In this work, we

create vocabulary bases using both the approaches mentioned above to see if there is any

significant difference in the final result.

4.5 Relevance Feedback

Tracing is a significant part of the V&V and IV&V process. The analyst must go

through the generated links to verify the output of the IR methods. The output may have

two types of errors:

• errors of commission - a false link is included in the output, and

• errors of omission - a true link is not included in the output.

We observed that the analyst can verify the candidate list and provide minimal

information regarding the accuracy of the links which can be used to further improve the

quality of the candidate list. The information provided by the analyst can be used to fix

some errors of commission, errors of omission, and to restructure the candidate list such

that true links have higher relevance weight than false positives. This procedure is called

relevance feedback analysis.
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Relevance feedback is commonly used in the IR world to utilize user information to

improve the quality of the information retrieval algorithm. Relevance feedback algorithms

adjust the keyword weight of query vectors based on the feedback information provided.

For example, if a link is termed as irrelevant (“Not A Link”), the weight of all the keywords

appearing in that query will be reduced. Whereas if a link is termed as relevant (“Link”),

the weight of all the keywords related to that particular query will be increased. In order

to identify new links similar to the links termed as relevant, the feedback process adds

keywords in the relevant documents to the query vector matching those documents.

The feedback process can be defined as follows: Let q be a query vector and Dq be a

list of document vectors returned by an IR method given q. Now, consider that the analyst

has indicated that D has two subsets: Drel of size R is the subset of documents relevant to

q and Dirr of size S is the subset of irrelevant documents to q. A document from D cannot

be in both Dirr and Drel and the analyst does not have to provide feedback information

for all the documents in D. The Standard Rochio [7] feedback method used in our research

modified the query vector as follows:

qnew = α · q + (
β

R

∑
dj∈Drel

dj)− (
γ

S

∑
dk∈Dirr

dk). (4.13)

As mentioned earlier, it can be seen in the above formula that the query vector is ad-

justed by adding to it the sum of all document vectors that are relevant to it and subtracting

the sum of all irrelevant document vectors from it.

Once the query vectors are fixed, the similarity between query vectors and document

vectors are computed again to generate the new candidate link list that reflects the feedback

information. Adding new terms to the query vector will result in new potential relevant

links. This will fix errors of omission. Whereas deleting terms from the query vector will

drop the potential irrelevant links. This will fix errors of commission. The feedback process

can be repeated until the analyst believes that all the potential links have been found.

4.6 Voting Tool

In this work, we adapted more than one infromation retrieval method to generate

traceability links. For a particular dataset, certain methods may perform better than others.

For a given dataset, we do not know which information retrieval methods will perform well.
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We developed a voting tool to take advantage of the availability of multiple information

retrieval methods in our RETRO tool.

Consider the scenario where high level elements are traced to low level elements. As

stated in [14], each of the methods that we adapted to generate traceability links can be

considered a filter. For each high level element and low level element pair, the methods

decide if the pair of elements under consideration is a link or not. Hence, each method F

can be viewed as a function [14]:

F : H × L → {True, False} (4.14)

where F (i, j) = True means that the method identifies the high level element hi and

the low-level element lj as links.

In this work, we have implemented five information retrieval methods to generate

traceability links. In order to build a voting tool that uses all these methods, we first need

to idenfity a voting scheme. The voting scheme is a decision rule that will determine if a

given pair of a high level element and low level element are linked or not.

There are different decision rules that can be expressed. We can treat each method

equally and simply count for each link (i,j) the total number of F (i, j) which evaluate to

True. An alternative is to assign a weight to each method while calculating the total number

of F (i, j) which evaluate to True. In this case, the decision rule will consider a high level

element and low level element pair as a link iff this number reaches a certain threshold. For

example, a majority rule will consider a pair of elements as a link if it is recovered by more

than one half of all available methods, three methods in our case.

The voting tool is written in JAVA. It takes the results generated by the information

retrieval methods in the RETRO toolbox. It also takes a parameter for the decision rule

and the list of methods to be included in the decision process. The output of the voting

tool is the candidate link list that corresponds to the decision rule selected.

4.7 Automating Requirements Tracing

Let us revisit the requirements tracing process explained in Table 2.2 and see how

it can be automated. A word processing tool can easily assist the analyst in identifying

the requirements elements and assigning unique identifiers for the extracted requirements.
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Once an RTM is generated, there are tools such as SuperTracePlus [23, 37] etc., that can

be used to create summary reports. There are some tools that assist analysts in identifying

the candidate links and generating the RTM, but most of them require the analyst to go

through each high level and low level element to assign keywords or require some additional

task prior to the tracing process. It will be ideal to automate this process without requiring

the analyst to do any manual preprocessing. Hence, this becomes an interesting problem

for researchers.

Most of the times, requirements tracing is performed for mission- and safety-critical

projects. In those cases, it becomes crucial to identify if all the requirements are satisfied.

Even though the generation of the RTM can be automated, the analyst should still evaluate

the candidate list generated to see if the list is complete, to see if all the requirements are

satisfied, or to see if it is necessary to look for more links. Hence, the automated tool should

contribute in reducing the analysts’ involvement in the tedious and mundane parts of the

process and assist the analyst in the effective decision making parts of the process.

The requirements tracing process is highly unreliable as the quality of the resultant

RTM depends on the analyst’s effort which cannot be controlled. Even a very experienced

analyst can have a bad day or make mistakes on a good day. Instead, if we can generate

candidate links using automated methods, there will always be consistent effort applied.

Requirements Tracing as an Information Retrieval Problem

In order to understand if IR methods can assist the requirements tracing process,

the concept of requirements “similarity” needs to be examined. While an analyst uses this

notion of requirements similarity to determine the trace, IR methods rely on the notion of

document relevance to match queries and documents. IR methods identify matches purely

by arithmetical means whereas human analysts can use any tool available to determine

the trace. Requirements tracing can be considered as a repetition of the IR process where

high level requirements are considered as queries and all the low level requirements are

considered as a document collection. During each iteration, a high level requirement is

compared against all the low level requirements in the document collection to generate the

candidate list for the high level requirement being considered. At the end of this repetitive

process, a candidate list is generated for all the high level requirements.
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Figure 4.1: Automated Tracing using IR
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Figure 4.2: Forward Tracing as an IR Problem

Let us revisit the notion of forward tracing and backward tracing. Let us consider

the situations stated in Figure 2.4 and Figure 2.5. In the case of forward tracing, each

requirement will be considered as a query and design specifications will become the docu-

ment collection as shown in Figure 4.2. Similarly, in the case of backward tracing, design

specifications will become queries and requirements will form the document collection, as

shown in Figure 4.3.

While there are many similarities between the information retrieval problem and

the tracing problem, there are many unique features of tracing that cannot be found in

information retrieval problems. We discuss those next.

Size of the domain

Most of the Information Retrieval algorithms are designed to work on large document

collections. The number of requirements or design elements in a large scale software project

may be in the order of thousands. But a typical IR problem contains documents in the order

of hundreds of thousands and millions. In most cases, the requirement and design elements

are only a few sentences long. In IR, the documents are way larger than two sentences long.

There is also a huge difference in the size of the vocabulary.
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Figure 4.3: Backward Tracing as an IR Problem

Information Retrieval algorithms are robust on large data collections. Their perfor-

mance on smaller datasets might not be as good. It is possible that coincidental matches

might outscore the true matches.

Query independence

In a traditional IR system, the queries are considered as being independent. Consider

an internet search engine where the user query cannot be predicted earlier. However, in

requirements tracing, the queries are known before-hand. This information can be used to

improve the IR methods.

4.8 RETRO

RETRO (REquirements TRacing On-target) is a special purpose tool that we de-

signed exclusively for requirements tracing. Given a list of high level and low level docu-

ments, RETRO will produce traceability matrices. RETRO does not focus on requirements

management. However, it generates traceability matrices in an easy-to-use XML format

which can be used by other requirement management tools, such as DOORS [52], Req-

uisitePro [43], QSSrequireitIt, etc. Figure 4.4, Figure 4.5, Figure 4.6, Figure 4.7, and

Figure 4.8 show screenshots of the RETRO Graphical User Interface (GUI).
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Figure 4.4: Retro
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Figure 4.5: Retro - Starting a new Project
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RETRO contains an IR toolbox that comprises of a collection of implementations of

IR methods adapted for the purposes of the requirements tracing process. Currently, the

IR toolbox contains the following methods:

• Vector space model,

• Vector space model with thesaurus,

• Keyword extraction using χ2, and

• Keyword extraction using IDF.

The IR methods are implemented in VC++ on the Windows platform. The GUI mod-

ule of RETRO is implemented in JAVA. The GUI can be used to select the IR method and

also to pass the information about the documents to be traced. On appropriate Application

Programming Interface (API) calls, IR methods in the toolbox generate the candidate list

in Extensible Markup Language (XML) format. The candidate list generated is parsed by

the GUI and the list is shown to the analyst.

RETRO can work in one of the following three modes:

• Trace mode,

• View mode, and

• Browse mode.

Trace mode is the most commonly used mode as it contains the main functionalities

such as starting, running, and terminating a trace. RETRO offers flexibility in displaying

the candidate lists generated. The list can be filtered based on the weight factor of the link

or the rank of the link. The analyst can also choose to view the content of all the matching

low level documents for the high level document selected either based on the order in which

they occur in the document collection or based on the weight factor.

As soon as a trace is started, the trace mode shows the list of high level as well as

low level documents. Selecting a high or low level document will display the content of

the corresponding document. There are buttons at the bottom of the screen to control the

tracing activity. Once the analyst presses the “Trace All” button, the candidate lists for all

the high level requirements are generated and displayed on the screen.
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Figure 4.6: Retro View Mode
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Figure 4.7: Retro Trace Mode
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Figure 4.8: Retro Browse Mode
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Figure 4.9: Retro Architecture
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To begin with, the status of the candidate link is set to “Default.” The analyst can

make a decision on whether the candidate link under consideration is indeed a link or not by

right clicking on the low level document element and changing the status of the candidate

link to either “Link” or “Not A Link.” This information is accumulated and, upon analyst

request, is fed into the feedback processing module in the IR toolbox.

When the analyst presses “Trace All” again, the accumulated information is sent to

the feedback process and the candidate list is recalculated for all the candidate links. If the

“Trace Current” button is pressed, only the information related to the candidate link under

consideration is sent to the feedback process and the candidate list is recalculated only for

that particular candidate link.

The “Save Trace” option allows the analyst to save the trace in its current state and

reload it later. If “Complete Trace” is selected, the RTM will be saved after throwing out

all the candidate links that have been marked as “Not A Link.” The XML generated by the

IR toolbox can be displayed by selecting “Show XML” under the “Action” menu. RETRO

can also generate reports on completed traces.

The browse mode allows the analyst to go through each high level and low level

element separately. It also has a search feature that can be used to look for a specific keyword

in the collection of documents. The view mode shows the candidate list generated along

with the content for each low level and high level document. It also provides functionality

to search low level documents for the high level document selected. The view mode can be

selected only after the trace has been performed, whereas the browse mode can be selected

at any time.

Copyright c© Senthil Karthikeyan Sundaram 2007
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Chapter 5

Experimental Setup and Validation

In order to establish that our automated process indeed helps the analyst in the

requirements tracing process, we need to validate the candidate links generated by our

methods. As mentioned previously, precision and recall are the most commonly used mea-

sures to assess the quality of a search result in the IR world. Though these two measures

indicate the quality of the result to some extent, they do not provide sufficient information

to totally understand the quality of the candidate links generated. Hence, we came up with

a few measures to get an insight into the results. In this section, we discuss all the measures

and the datasets that we use to validate our methods. The next subsection explains the

format of the datasets used, the format of the candidate list generated (XML), and the

DTD (Document Type Definition) that defines the candidate list (XML).

5.1 Datasets

The experiments will be conducted using the following datasets: Modis dataset, CM1

dataset, and four subsets of the CM1 dataset. The Modis and CM1 datasets are available

on the PROMISE website [51, 32].

The Modis dataset has been constructed by selecting 19 high level requirements and

49 low level requirements from two publicly available high level requirements [3] and low

level requirements [2] documents for NASA’s Moderate Resolution Imaging Spectrometer

(Modis). A typical requirement in this dataset contains one or two sentences. The Flesch

Reading Ease of a typical Modis requirement is 32.1 and the Flesch-Kincaid Grade Level is

12 [17, 18]. A theoretical true trace for the Modis dataset has been constructed and verified

manually. The theoretical true trace contains 41 links. Figure 5.1 shows a requirement from

the Modis dataset.
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Figure 5.1: Modis

The CM1 dataset was made available by the Metrics Data Program (MDP) [55]

and it contains a complete requirements (high level) document and a complete design (low

level) document for a NASA scientific instrument. The documents have been sanitized

by NASA in order to hide the identity of the instrument. A typical high level element

of the CM1 dataset is one or two sentences in length whereas a typical design element is

several paragraphs in length. The Flesch Reading Ease of a typical CM1 requirement is

40.5 and the Flesh-Kincaid Grade Level is 12 [17, 18]. The CM1 dataset contains 235 high

level requirements and 220 design elements. Again, a theoretical true trace containing 361

links has been constructed and verified manually for the CM1 dataset. Figure 5.2 shows a

requirement from the CM1 dataset.

Figure 5.2: CM1

Four datasets have been constructed from the above-mentioned CM1 dataset. All

the high level requirements and the low level elements in the subsets occur continuously

in requirements and design documents, respectively. The theoretical true traces for these

datasets have been generated from the theoretical true trace for the CM1 dataset. Table 5.1

shows the number of high level elements, low level elements, and true links for each CM1

subset generated. The smallest of the subsets is approximately equal to the Modis dataset

in size.
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Dataset High level elements Low level elements Trace links

Modis 19 49 41
CM1 235 220 361
CM1-subset1 22 52 35
CM1-subset2 61 91 92
CM1-subset3 120 120 117
CM1-subset4 181 165 239

Table 5.1: Datasets

5.2 Input Format and Candidate List Format

RETRO takes the name of the folder containing high level elements and the name

of the folder containing low level elements as input. Each element is stored in a seperate

file. RETRO currently handles flat text files only. It does not support any graphic input.

Figure 5.3 shows the input folders for one of the experiments.

One of the final products of the requirement tracing process is the requirements

traceability matrix (RTM) or candidate link list. Our tool generates RTM in XML format.

XML offers a universal standard and it can be easily read by using freely available XML

parsers. If we have to load the RTM generated by our tool in some other tool, XML and

the corresponding DTD can be passed on to the receiving tool. It makes the integration

very easy. We already demonstrated that our tool can be easily integrated with SuperTrace

Plus [23, 37].

Figure 5.4 shows the DTD describing the format of the XML file generated by

RETRO and Figure 5.5 shows a sample XML file generated by the RETRO tool. Each

high and low tag contains the name of the high level and low level element, respectively.

The high tag also contains an attribute named “freeze.” The analyst can set the value to one

of the following: “Satisfied,” “Not Satisfied,” “Postponed,” or “Partially Satisfied.” “Sat-

isfied” means that the high level requirement has been satisfied by the children elements.

In other words, the analyst feels that all the low level requirement elements found for this

high level requirement element cover the essence of the high level requirement element.

“Not Satisfied” means that the list of low level requirement elements satisfying the high

level requirement element under consideration is not complete. Even if the list contains

all the low level requirement elements satisfying the high level requirement element under

consideration, those low level requirement elements may not adequately address the high

level requirement element. “Partially Satisfied” means that some of the matching low level
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Figure 5.3: Input Format
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Figure 5.4: DTD

requirement elements have been found. It may also mean that all the matching low level

requirement elements have been found, but they do not address all aspects of the high level

requirement element. “Postponed” means that the analyst does not currently want the

tool to consider this particular high level requirement element while running the feedback

process.

Each low tag contains a tag named weight that represents the relevance factor of

the link under consideration. The weight tag contains an attribute named “change.” This

attribute can take the following values: “Default,” “Link,” “Not A Link.” When the link is

originally generated by the tool, “change” attribute has the value “Default.” The analyst

can modify the value to “Link,” if he considers the link to be true. Otherwise, the analyst

can mark it as “Not A Link.” The feedback process will use this information in improving

the candidate link list. Figure 5.6 shows a candidate link list with feedback information.

5.3 Measures

In this work, we focus on the following measures to track the quality of the candidate

list generated by various methods.

5.3.1 Overall Precision and Overall Recall

These measures calculate how many true links have been captured and how many of

the captured links are false positives. Overall recall is a ratio of the total number of true
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Figure 5.5: Candidate Link List
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Figure 5.6: Candidate Link List with Feedback Information
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links found for all queries to the total number of possible true links for all queries. Overall

precision is computed as the fraction of the true links in the list of all links returned for all

queries.

5.3.2 Selectivity

While performing a requirements tracing task manually, an analyst should compare

each high and low level pair. Selectivity shows the improvement of an IR method over

this number. Selectivity can be defined as the ratio of the total number of candidate links

returned for each high level requirement to the total number of high and low level pairs. Let

H be the number of high level requirements and L be the number of low level requirements.

For a given high level element h, nq will be the number of candidate links generated. The

selectivity can be calculated as follows:

selectivity =

∑M
q=1 nq

H · L
. (5.1)

5.3.3 Average Precision and Average Recall

Precision and recall values are calculated for each high level requirement (query)

separately and the average of precision and recall for all the queries gives average precision

and average recall, respectively. These measures give an indication of the average number

of links captured for each query.

5.3.4 Average Expected Precision

Hayes et al. [27] mention that filtering the lists of candidate links using a set threshold

α will show how many true links are at the top of the list. If there were two candidate lists

with the same recall and precision, the one with more true links at the top of the list will

be preferred to the other. Average expected precision allows for the effects of filtering to be

incorporated into a single measurement of a candidate link list. It is a secondary measure

to evaluate the quality of a given candidate list.

Let Q be a list of high level requirements, D be a list of low level requirements, and

L = {〈q, d〉, sim(q, d)} be a list of candidate links from D for Q, then average expected

precision of L is computed as follows. For each q ∈ Q we consider the ordered list Dq =

(d1, . . . , ds) of candidate links, such that 〈q, di, sim(q, di)〉 ∈ L and sim(q, d1) > sim(q, d2) >

. . . > sim(q, ds). Some of d1, . . . , ds are relevant to q while the remaining elements of Dq
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are false positives. A recall level is any position 1 6 i 6 s such that di is relevant (i.e.,

〈q, di〉 is a true link).

An expected precision Ep(q) of Dq is the mean of precisions computed at each recall

level of Dq. The mean of expected precisions Ep(q) for all q ∈ Q gives the average expected

precision.

For example, let us assume that there were candidate link lists for two high-level

requirements (query) q1 and q2 with five elements each. Also, consider that in the list

Dq1 recall levels are 1, 3, and 5. In the list Dq2 , recall levels are 2, 4, and 5. Then, for

q1, precisions at recall levels are 1
1 = 1, 2

3 = 0.67, and 3
5 = 0.6, and therefore Eq1 =

(1 + 0.67 + 0.6)/3 = 0.757. For q2, precisions at recall levels are 1
2 , 2

4 = 1
2 , and 3

5 . Hence

Eq2 =
1
2
+ 1

2
+ 3

5
3 = 8

15 = 0.533. Therefore, the average expected precision for q1 and q2 is
0.757+0.5333

2 = 0.645. Figure 5.7 shows how to calculate average expected precision.

5.3.5 F-measure

An ideal candidate list should have 100% recall and 100% precision. Unfortunately,

it is highly unlikely that a method will always produce an ideal candidate list. Often, recall

of a candidate list can be improved by sacrificing some precision and vice-versa. Low recall

means that many true links are missing in the candidate list while low precision means that

the candidate list contains too many false positives. In order to fix a candidate list with

low precision, an analyst has to go through the candidate list to identify the false positives

and drop them from the list. To fix a candidate list with low recall, the analyst must notice

that there are few links and manually search for them by going through low level and high

level artifacts.

Consider a dataset with 100 low-level and 50 high-level artifacts with a candidate

list containing about 500 links. If the candidate list has low precision, the analyst must go

through 500 links. At the same time, if the candidate list has low recall, the analyst must go

through approximately 4500 (100× 50 less 500) links to identify the missing links. Clearly,

identifying false positives is easier than finding missing links. Sundaram et al. [51] argue

that achieving high recall is more important in tracing tasks than achieving the highest

possible precision.
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Figure 5.7: Average Expected Precision Calculation
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F-measure is defined as a harmonic mean of precision and recall:

F =
2 · precision · recall

precision + recall
. (5.2)

It can be seen that achieving high precision and high recall is a balancing act. The above

mentioned formula puts equal preference to both recall and precision. The β parameter is

introduced in the above formula to tilt the balance one way or the other. The parameter β

can be altered to set desirable significance for either recall or precision:

Fβ =
(β + 1) · precision · recall

recall + β · precision
. (5.3)

If β > 1, the recall will be valued more than precision, and if β < 1, the precision will

be valued more than recall.

5.3.6 Analysis Tool

We implemented an analysis tool in JAVA to automatically generate the above men-

tioned measures. The tool takes the XML file generated by RETRO and the answerset as

inputs and prints the measures to a text file. We use a script to run the analysis tool on

all the results generated by RETRO at once. The analysis tool can also generate results in

different formats convenient for analysis and plotting graphs.

5.4 Experimental Setup

The objectives of our experiments were to determine whether our methods are ca-

pable of producing accurate tracing results, to determine whether our methods are capable

of separating true links from false positives as a result of a feedback process, to identify

if one method performs better than other methods for datasets of a particular size and

characteristics, and to observe if the methods scale well.

Table 5.2 shows the list of IR methods that have been implemented. In our exper-

iments, each high level element and low level element was stored in a separate file. The

names of the files are the unique identifiers of the corresponding low level element and high

level element. First, for each dataset, all the high level elements and low level elements were

extracted from the original documents and saved in a format readable by RETRO.

The words that do not add any significance to the characteristics of the elements,

called stopwords, were removed. If the stopwords had not been removed, this might con-

tribute to the generation of coincidental links. For example, two elements might be termed
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Method

Vector space retrieval (tf-idf)
Vector space retrieval plus thesaurus
Keyword extraction
IDF
LSI
Probabilistic IR

Table 5.2: Information Retrieval Methods

as related just because they both had the words “and,” “the,” and “a.” In order to avoid

this situation, common stopwords such as “and,” “a,” “the,” etc. were removed. Finally,

the elements were stemmed using Porter’s algorithm [36]. The purpose of stemming key-

words to their root is to convert all forms of the same word to a single form. For example,

“computed,” “computable,” and “compute” were all stemmed to “comput.” After the pre-

processing stage, each high level element and low level element was converted to a vector

of term weights.

Once the vectors were created, the selected IR method went through each high level

element vector and low level element vector to produce the list of candidate links for each

high level element. When an analyst uses RETRO to trace a pair of software artifacts, the

candidate list generated is displayed in the RETRO GUI. The analyst goes through the

candidate list and provides feedback on each link. The feedback information is then fed to

the feedback process and the candidate list is corrected accordingly. In other words, the

feedback method looks for more of the links similar to the ones that are termed as “Link”

by the analyst. Similarly, the links similar to the ones termed as “Not A Link” by the

analyst are discarded.

All the datasets used in our experiments have a true answerset verified by an analyst.

For experimental purposes, we replaced the human analyst with an automated feedback

simulator. The feedback simulator was provided with a copy of the answerset for the

dataset under consideration. The feedback simulator acted as an ideal analyst. In other

words, the feedback provided by the simulator was always correct.
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5.4.1 Feedback

We studied four different feedback strategies: Top 1, Top 2, Top 3, and Top 4. Using strategy

Top i, the feedback process examined, for each high level element, the top i unexamined

candidate links in the list, and specified whether each examined link is a true link or a

false positive. This information was used by the feedback process to update the query

vectors appropriately. Once query (high level element) vectors were updated, the selected

IR method went through each high level element vector and low level element vector and

regenerated the candidate list. Each experiment ran eight iterations of the above mentioned

process.

5.4.2 Filter

We also produced candidate link lists with relevance higher than one of the predefined

levels: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5. We call this process “filtering.”

Filtering offers an insight into the quality of the candidate link list. Let us say that two

candidate link lists, list A and list B, have the same recall and precision. If the true links

appear at the top of list A compared to list B, then clearly list A will be preferred to list B

by an analyst. Figure 5.8 shows how filtering works. For the filter value 0.8, only the links

above the first line will be included in the candidate list. Similarly, for the filter value 0.4,

the links above the second line will be included in the candidate list and for the filter value

0.1, the links above the third line will be included.

As mentioned earlier, the ideal candidate link list needs to achieve 100% recall and

100% precision. However, it is very hard to achieve the ideal result. Instead, we prefer

to have as high precision and recall as possible. We also calculated the F-measure for all

the candidate link lists generated. We calculated the F-measure with β value 1, 2, and 3.

This allows us to identify which IR method produced results with better harmonic mean of

precision and recall.

5.4.3 Thesaurus

We analyzed the tf-idf method and tf-idf+thesaurus method to identify if a thesaurus

impacts the result significantly. We also included the feedback process in these experi-

ments to see if there is any difference in the results generated by the tf-idf method and

tf-idf+thesaurus method after feedback processing. This shows us if it is worth spending
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Figure 5.8: Filter Example
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the time and effort to build a thesaurus. If the same results can be achieved without using

a thesaurus but with minimal feedback, it might be better to opt for the latter option.

5.4.4 Vocabulary Base

In the IR world, only the document collection is used to build the vocabulary base because

the query is not known beforehand. However, in the case of the requirements tracing

process, we know both the document and the query collection in advance. We can use this

additional information to build the vocabulary base. In other words, both the documents

and the queries can be used to build the vocabulary base. We ran experiments with both

types of vocabulary bases to identify if they produce significantly different results.

5.4.5 Weight Method

We extended the vector space model (tf-idf) by modifying the computation of term weights

in the document and query and the computation of similarity between the document and

query vectors. Totally, we used three weighting schemes in our experiments. In addition

to the regular tf-idf weighting scheme, we also used the Okapi [46] and LTU [33] weighting

schemes.

5.4.6 Voting Tool

We also ran experiments with the voting tool. We formed a committee of methods with all

the methods implemented in the RETRO tool box. We came up with different rules to see

which one works better. We ran experiments with majority, parity, and consensus rules.

The results from these experiemnts have been published in [14]. The rules we used can be

defined as follows:

• majority - at least more than half the number of methods need to identify the link,

• parity - exactly half the number of methods or more need to idenfity the link, and

• consensus - all the methods need to identify the link.

The voting tool allows new rules to be framed. The consensus rule may help reduce

the false positives significantly, but at the same time it is quite possible that it may also

throw away true links. At the same time, including a link as a candidate link if it is found by

at least one of the methods may reduce the precision significantly. We believe that picking
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Study Dataset Measure

Feedback for small datasets Modis F-measure
Feedback for large datasets CM1 F-measure
Feedback with filter for small datasets Modis F-measure
Feedback with filter for large datasets CM1 F-measure
Comparison of weight methods CM1 Recall
Comparison of weight methods CM1 Precision

Table 5.3: Empirical Study List

the correct rule depends on the needs of the type of trace being performed. It should be

noted that the rules discussed above give equal weight to all the methods.

5.4.7 Empirical Assessment

We conducted an empirical study to assess the effect of using feedback and the effect using

feedback with filter. We also conducted an empirical study to assess the effectiveness of the

tf-idf, Okapi, LTU weight methods. Totally we conducted six studies as shown in Table 5.3.

In the first study, we compared the F-measure obtained for the MODIS dataset by

the tf-idf method, tf-idf + thesaurus, KE, IDF, LSI, and probabilistic IR at iteration 0

(when no feedback was used) and the F-measure obtained by these methods at iteration 8

(when the feedback was used). In the second study, we compared the F-measure obtained

for the CM1 dataset by the tf-idf method, KE, IDF, LSI, and probabilistic IR at iteration

0 and the F-measure obtained by these methods at iteration 8. The third and the fourth

studies were similar to the first and the second studies, respectively, except that we also

combined the feedback with filter. We used the F-measure value obtained at iteration 8

with filter value 0.15. In fifth and the sixth studies, we compared the recall and precision

obtained by the tf-idf, Okapi, and LTU weighting schemes, respectively.

Dependent and Independent Variables

The independent variable for the first two studies was the use of feedback. The independent

variable for the third and the fourth study was the use of feedback and filter. The inde-

pendent variable for the last two studies was the weighting schemes used. The dependent

variable in the first four studies was the F-measure. The dependent variables in the fifth

and sixth studies were the recall and the precision, respectively.
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Hypotheses

The null and alternative hypotheses for these studies are:

• H01 - There will be no difference in the F-measure obtained for the MODIS dataset

by using feedback and by not using feedback.

• HA1 - There will be a difference in the F-measure obtained for the MODIS dataset

by using feedback and by not using feedback.

• H02 - There will be no difference in the F-measure obtained for the CM1 dataset by

using feedback and by not using feedback.

• HA2 - There will be a difference in the F-measure obtained for the CM1 dataset by

using feedback and by not using feedback.

• H03 - There will be no difference in the F-measure obtained for the MODIS dataset

by using feedback and filter and by not using feedback and filter.

• HA3 - There will be a difference in the F-measure obtained for the MODIS dataset

by using feedback and filter and by not using feedback and filter.

• H04 - There will be no difference in the F-measure obtained for the CM1 dataset by

using feedback and by not using feedback.

• HA4 - There will be a difference in the F-measure obtained for the CM1 dataset by

using feedback and by not using feedback.

• H05 - There will be no difference in the recall obtained by tf-idf, Okapi, and LTU

weighting schemes.

• HA5 - There will be a difference in the recall obtained by tf-idf, Okapi, and LTU

weighting schemes.

• H06 - There will be no difference in the precision obtained by tf-idf, Okapi, and LTU

weighting schemes.

• HA6 - There will be a difference in the precision obtained by tf-idf, Okapi, and LTU

weighting schemes.
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Statistical Analysis

We used paired t-test to analyze the effect of using feedback and the effect of using feedback

and filter together. Hence, we used paired t-test to validate the null hypotheses H01, H02,

H03, and H04. For the paired t-test, we assumed that our data was obtained from a Gaussian

distribution. We used Kruskal-Wallis test to analyze the effect of using different weighting

methods. As the recall and the precision values generated by the different weighting methods

did not follow a normal distribution, we could not use Analysis of Variance (ANOVA).

We performed all pairwise comparisons using Dwass-Steel-Chritchlow-Fligner and Conover-

Inman. Hence, we used Kruskal-Wallis to validate the null hypotheses H05 and H06.

The factor for the first two studies was the use of feedback and the factor for the

third and the fourth studies was the use of feedback with filter. Whereas, the factor for the

fifth and the sixth studies was the weight method used. The treatments in all the studies

were the IR methods used. In the case of paired t-test, if the t value was less than tcritical

for a given α value, the null hypothesis was accepted. If the t value was greater than tcritical

for a given α value, the null hypothesis was rejected and the alternative hypothesis was

accepted. In our case studies, we used 0.05 as α value.

Threats to Validity

Let us look at various threats to the validity of our experiments.

External Validity The IR methods used in this work do no depend on any domain

specific information. However, the thesaurus used in the tf-idf method is domain specific,

but the tf-idf method can be run without a thesaurus. The stopword file we used in our

experiments included the stopwords for the English language only. In order to use our

approach to trace requirements that are not written in English, a new stopword file may

have to be built.

Internal Validity For our feedback experiments, we simulated the analyst behavior using

the answerset. Hence we avoided validity threats due to human factors. The answersets

used to calculate the F-measure, recall and precision were built by human analysts. Hence,

there was a potential for bias. Also, the answersets may not be accurate. However, the

answersets were verified by multiple analysts to address these concerns. LSI typically works

well for large datasets with thousands and millions of documents. The largest dataset we
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used had only 235 high-level elements and 220 low-level elements. Hence, it is possible that

the results obtained for LSI may not show the actual capability of LSI.

Construct Validity Okapi and LTU weighting schemes use document length as a factor

in calculating the weight for each keyword. All the datasets used in our work had documents

that were only two or three sentences long. For these weighting schemes to work well, it

may be necessary to have documents that are longer than two or three sentences.

Conclusion Validity The paired t-test requires that the data points used be drawn from

a Gaussian distribution. We assume that our data points follow a Gaussian distribution.

This is a threat to the validity of our empirical analysis.

5.4.8 Objectives

All the results were archived. The analysis tool was used to collect metrics from the results.

We conducted various experiments on our datasets using all the IR methods that we adopted

to identify the quality of the candidate lists generated. As explained earlier in this section,

the objectives of these experiments were quite different. We can summarize our experiments

based on their objectives as follows:

• Compare the quality of the results generated by all the IR methods on each of the

datasets,

• Compare the effect of the feedback process using all the IR methods,

• Analyze the effect of the thesaurus,

• Use filters to better quantify the results,

• Compare the effect of different weighting schemes,

• Compare different vocabulary bases, and

• Conduct empirical study and analyze the results.

In the following chapter, we report the most interesting results obtained in our

experiments. The results of the empirical studies are also discussed in the following chapter.

More results and graphs can be found in the appendix section.

Copyright c© Senthil Karthikeyan Sundaram 2007
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Chapter 6

Results

Hayes et al. [30] discuss what constitute good values for recall and precision. Obtain-

ing high recall is more significant than obtaining high precision, as it is harder for an analyst

to search for the links that were not found than to identify the false positives. Hayes et al.

[30] consider 60% - 69% recall as acceptable, 70% - 79% recall as good, and 80% - 100% as

excellent. Similarly, they consider 20% - 29% precision as acceptable, 30% - 49% precision

as good, and 50% - 100% precision as excellent. We will use the classication proposed by

Hayes et al. [30] to assess our results.

Before we start analyzing the results, let us look at the abbreviations used in the

tables. Following is the list of abbreviations used in the tables:

• Rec - Recall,

• Pr - Precision,

• Sel - Selectivity,

• AEPr - Average Expected Precision,

• AvPr - Average Precision,

• AvRec - Average Recall,

• f1 - F-measure with β = 1,

• f2 - F-measure with β = 2, and

• f3 - F-measure with β = 3.
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Figure 6.1: Recall vs Precision - Modis
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Figure 6.2: Recall vs Precision - CM1
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Figure 6.3: Recall vs Precision - CM1 Subset1

6.1 Analysis of IR methods

Table 6.1 and Table 6.2 show the performance of the tf-idf method, KE, LSI, prob-

abilistic IR, and IDF on all the datasets. Evidently, IDF produced very low recall with

fair precision. It can be noticed that there was no difference in the performance of the

tf-idf method and KE. They both produced the same recall and precision values except for

the CM1 Subset 2 dataset. For the Modis dataset, the tf-idf method and KE were able

to achieve good recall with poor precision. For the CM1 dataset and its subsets, the tf-idf

method and KE produced excellent recall and poor precision.

Figure 6.1, Figure 6.2, Figure 6.3, Figure 6.4, Figure 6.5, and Figure 6.6 show the

recall vs. precision graphs for the tf-idf method, KE, LSI, probabilistic IR, and IDF running

on all the datasets. Also, Figure 6.7, Figure 6.8, Figure 6.9, Figure 6.10, Figure 6.11, and

Figure 6.12 show the average recall vs. average precision graphs for the tf-idf method, KE,

LSI, probabilistic IR, and IDF running on all the datasets. Average recall and average

precision for the tf-idf method and KE behaved the same way as recall and precision. The

tf-idf method and KE produced the same average recall and average precision for the Modis,

CM1, CM1 Subset1, CM1 Subset3, and CM1 Subset4. However, for the CM1 Subset2, the
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tf-idf method produced slightly better average recall and average precision.

6.1.1 Observations

• It can be seen clearly that keyword extraction using IDF performs poorly compared

to other methods, especially keyword extraction using χ2. Hence, it can be concluded

that using IDF to identify important keywords in the document collection is not a

useful idea.

• All the methods are able to produce good or excellent recall and average recall values.

• None of the methods is able to produce good precision and average precision values.
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Figure 6.4: Recall vs Precision - CM1 Subset2

6.2 Feedback Analysis

We can see that all the methods were able to produce candidate link lists with good recall,

but with poor precision. We believe that we can use the feedback process to address

this issue. In our experiments, we found the Top 2 strategy to be a good balance of

quality of results and amount of feedback per iteration. Results for the Top 1 strategy
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Dataset: Modis
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.756 0.087 0.383 0.775 0.113 0.768 0.155 0.297 0.426
tf-idf+thesaurus 1.0 0.11 0.401 0.791 0.132 1.0 0.197 0.381 0.552
KE 0.756 0.087 0.384 0.787 0.114 0.769 0.155 0.297 0.426
IDF 0.317 0.164 0.084 0.833 0.225 0.611 0.216 0.267 0.290
LSI 0.854 0.069 0.544 0.815 0.093 0.977 0.242 0.261 0.400
Probabistic IR 0.365 0.091 0.176 0.739 0.231 0.660 0.194 0.228 0.281

Dataset: CM1
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.980 0.012 0.565 0.639 0.022 0.990 0.023 0.057 0.109
KE 0.980 0.012 0.565 0.624 0.022 0.990 0.023 0.057 0.109
IDF 0.470 0.084 0.038 0.775 0.177 0.539 0.143 0.246 0.323
LSI 0.801 0.012 0.464 0.591 0.018 0.818 0.027 0.057 0.106
Probabilistic IR 0.941 0.012 0.542 0.534 0.020 0.952 0.029 0.058 0.109

Dataset: CM1 Subset1
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 1 0.043 0.697 0.706 0.062 1 0.084 0.186 0.314
KE 1 0.043 0.697 0.711 0.062 1 0.084 0.186 0.314
IDF 0.485 0.166 0.089 0.886 0.304 0.505 0.248 0.351 0.407
LSI 0.857 0.061 0.430 0.668 0.087 0.838 0.140 0.237 0.371
Probabilistic IR 0.828 0.127 0.199 0.707 0.174 0.822 0.219 0.394 0.534

Table 6.1: Results Obtained by the Tf-idf, Tf-idf with Thesaurus, Keyword Extraction,

IDF, LSI and Probabilistic Methods on Modis, CM1, and CM1 Subset1
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Dataset: CM1 Subset2
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.989 0.024 0.667 0.648 0.066 1 0.047 0.111 0.200
KE 0.956 0.023 0.663 0.611 0.042 0.954 0.046 0.108 0.195
IDF 0.532 0.103 0.085 0.814 0.26 0.600 0.173 0.291 0.376
LSI 0.869 0.031 0.458 0.550 0.050 0.889 0.703 0.137 0.237
Probabilistic IR 0.989 0.024 0.660 0.526 0.067 1.0 0.598 0.112 0.202

Dataset: CM1 Subset3
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.991 0.014 0.548 0.742 0.038 0.994 0.029 0.069 0.129
KE 0.991 0.014 0.548 0.725 0.038 0.994 0.029 0.069 0.129
IDF 0.589 0.094 0.050 0.847 0.280 0.605 0.163 0.288 0.387
LSI 0.846 0.015 0.459 0.674 0.029 0.873 0.036 0.069 0.129
Probabilistic IR 0.854 0.040 0.123 0.636 0.105 0.879 0.073 0.171 0.285

Dataset: CM1 Subset4
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.983 0.013 0.578 0.676 0.028 0.991 0.026 0.064 0.120
KE 0.983 0.013 0.578 0.664 0.028 0.991 0.026 0.064 0.120
IDF 0.485 0.081 0.047 0.769 0.185 0.550 0.139 0.243 0.324
LSI 0.799 0.013 0.462 0.606 0.022 0.824 0.029 0.064 0.119
Probabilistic IR 0.815 0.040 0.159 0.571 0.082 0.858 0.075 0.170 0.281

Table 6.2: Results Obtained by the Tf-idf, Tf-idf with Thesaurus, Keyword Extraction,

IDF, LSI, and Probabilistic IR Methods on CM1 Subset2, CM1 Subset3, and CM1 Subset4
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Figure 6.5: Recall vs Precision - CM1 Subset 3
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Figure 6.6: Recall vs Precision - CM1 Subset 4
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Figure 6.7: Average Recall vs Average Precision - Modis
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Figure 6.8: Average Recall vs Average Precision - CM1
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Figure 6.9: Average Recall vs Average Precision - CM 1 Subset1
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Figure 6.10: Average Recall vs Average Precision - CM 1 Subset2
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Figure 6.11: Average Recall vs Average Precision - CM 1 Subset3
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Figure 6.12: Average Recall vs Average Precision - CM 1 Subset4

78



were significantly worse, while results for Top 3 tended to be very similar to those of Top

2, occasionally reaching the same precision/recall numbers one or two iterations earlier.

Hence, we only include the Top 2 strategy results in this report.

Table 6.5 shows all the results achieved by the tf-idf method on the Modis, CM1, and

CM1 Subset1, when feedback was used. It can be seen that recall and precision improved at

each iteration. Table 6.6 and Table 6.7 shows the results obtained at the eighth iteration of

the feedback process. For the Modis and CM1 Subset1, the precision improved significantly,

but for the other datasets, the increase in precision was insignificant.

Figure 6.13 and Figure 6.14 show the recall and precision values obtained over it-

erations for all the datasets for tf-idf with feedback. For the MODIS dataset, the recall

value reduces slightly, but the precision goes from poor to acceptable. For CM1 and CM1

Subset1, recall improved significantly. For CM1, the precision did not improve significantly.

For CM1 Subset1, the precision value doubled from 5% to 10%. There was no significant

improvement in recall and precision for CM1 Subset2, CM1 Subset3, and CM1 Subset4.

Figure 6.15 and Figure 6.16 show the f-measure obtained for all the datasets at each

iteration of the feedback. The f-measure increased from 0.3 to 0.62 for the MODIS dataset.

The f-measure increased significantly for the CM1 Subset1 also. However, there was no

significant increase in the f-measure for CM1 Subset2, CM1 Subset3, CM1 Subset4, and

CM1 datasets.

Figure 6.17 and Figure 6.18 show the effect of feedback on average recall and average

precision for all the datasets. For the MODIS dataset, we were able to achieve 40% average

precision while maintaining the average recall at 75%. Similarly, we were able to achieve

22% average precision while maintaining the average recall at 95%. There was no significant

increase in the average recall and the average precision values for CM1 Subset2, CM1

Subset3, CM1 Subset4, and CM1 datasets.

Figure 6.19 and Figure 6.20 show the average expected precision values obtained

at each iteration of the feedback process. For the MODIS and CM1 datasets, the average

expected precision improved from around 78% to 97%-99%. Whereas, for the CM1 Subset1,

the average expected precision improved from 70% to 97%. Similarly, for the CM1 Subset2,

CM1 Subset3, and CM1 Subset4, we were able to achieve around 95% average expected

precision.
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Figure 6.20 compares the selectivity and f-measure (f2) obtained at each iteration

of the feedback for the Modis, CM1, and CM1 Subset1 datasets. Remember that we want

to obtain as low selectivity as possible with as high f-measure as possible. Figure 6.20

As desired, the selectivity decreases significantly over the iterations, while the f-measure

increases. Figure 6.20 compares the selectivity and f-measure (f2) obtained at each iteration

of the feedback for the CM1 Subset2, CM1 Subset3, and CM1 Subset4 datasets. Notice

that, for the CM1 subset2, CM1 subset3, and CM1 subset4, the selectivity and f-measure

follow the same pattern as with the other three datasets.

6.2.1 Statistical Analysis

Table 6.3 and Table 6.4 show the data used for the statistical analysis and the result of the

studies using the MODIS and CM1 datasets, respectively. Now let us analyze the result to

see if the feedback increased the F-measure.

We used the F-measure obtained by five IR methods listed in Table 6.3 at iteration

0 and iteration 8. The t-statistic obtained for the first study using MODIS dataset was -

5.4006. We carried out paired t test for α value 0.05. The degree of freedom for this test was

5. The tcritical value obtained for one-tail test was 0.00147 and the tcritical value obtained

for two-tail test was 0.00294. We can see that, in the case of one-tail and two-tail tests,

|t| > tcritical. Hence, we reject the null hypothesis H01 and accept the alternative hypothesis

HA1. Hence, In the case of the MODIS dataset, the difference between the F-measure of

the candidate link lists obtained by using feedback and the F-measure of the candidate link

lists obtained by not using feedback was statistically significant. The Pearson correlation

shows a strong positive correlation between the F-measure obtained at iteration 0 and the

F-measure obtained at iteration 8.

We used the F-measure obtained by tf-idf, KE, IDF, LSI, and probabilistic IR at

iteration 0 and iteration 8. Table 6.4 shows that the t-statistic obtained for the second

study using CM1 dataset was 0.51197. In this study, we used 0.05 as our α value. The

degree of freedom for this test was 4. The tcritical value obtained for one-tail test was 2.1318

and the tcritical value obtained for two-tail test was 2.7764. In the case of one-tail as well

as two-tail tests, |t| < tcritical. Hence, we cannot reject the null hypothesis H02. Hence,

In the case of the CM1 dataset, the difference between the F-measure of the candidate link

lists obtained by using feedback and the F-measure of the candidate link lists obtained by

not using feedback was not statistically significant. We can conclude that, in the case of
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Method Iteration 0 Iteration 8

Tf-idf 0.297 0.616
Tf-idf + Thesaurus 0.381 0.634
KE 0.297 0.614
IDF 0.267 0.363
LSI 0.261 0.392
Probabilistic IR 0.228 0.39

Groups Observations Sum Mean Variance

Iteration 0 6 1.731 0.2885 0.002716
Iteration 8 6 3.009 0.5015 0.017386

Metric Value

Pearson Correlation 0.783543
df 5
t Stat -5.400574263
P(T <= t) one-tail 0.00147045
tcritical one-tail 2.015048372
P(T <= t) two-tail 0.0029409
tcritical two-tail 2.570581835

Table 6.3: Modis - No Feedback vs. Feedback - Paired T-test

CM1 dataset, using feedback did not increase the F-measure. Notice that, similar to the

first study, the Pearson correlation shows a very strong positive correlation between the

F-measure obtained at iteration 0 and the F-measure obtained at iteration 8.

6.2.2 Observations

• All the measures improved significantly for the MODIS and CM1 Subset1 datasets.

It should be noticed that these are the smallest of the six datasets. It shows that

feedback works really well for small datasets.

• Recall, precision, f-measure, average recall, and average precision did not improve

significantly for CM1 Subset2, CM1 Subset3, CM1 Subset4, and CM1 datasets. Hence,

feedback did not really help in improving these measures for the large datasets.

• Average expected precision improved significantly for all the datasets. Recollect that
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Method Iteration 0 Iteration 8

Tf-idf 0.057 0.057
KE 0.057 0.057
IDF 0.246 0.208
LSI 0.057 0.066
Probabilistic IR 0.058 0.065

Groups Observations Sum Mean Variance

Iteration 0 5 0.475 0.095 0.0071
Iteration 8 5 0.453 0.0906 0.0043

Metric Value

Pearson Correlation 0.998051072
df 4
t Stat 0.51197414
P(T <= t) one-tail 0.317819826
tcritical one-tail 2.131846782
P(T <= t) two-tail 0.635639652
tcritical two-tail 2.776445105

Table 6.4: CM1 - No Feedback vs. Feedback - Paired T-test
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the high average expected precision value means that the true links occur at the top

of the candidate list. Hence, it can be concluded that feedback helps in improving the

similarity measures of the true links.

• Feedback decreases selectivity while increasing the f-measure. Hence, feedback im-

proves the qualify of the trace results.

• The statistical analysis shows that, in the case of the MODIS dataset, there is a

significant increase in the F-measure when the feedback was used. However, in the

case of the CM1 dataset, there is no significant increase in the F-measure. Hence,

we can see that the feedback increases the quality of the traces in the case of small

datasets, but not in the case of large datasets.
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Figure 6.13: Feedback Analysis - Recall/Precision - Modis, CM1 and CM1 Subset1

6.3 Filter Analysis

Now, let us analyze the filtering results. Table 6.10 and Table 6.11 display the results ob-

tained by the tf-idf method on all the datasets using the predefined filter values as mentioned

in the experimental setup section. Note that these results were obtained without using the
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Dataset: Modis
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 0.756 0.087 0.383 0.775 0.114 0.769 0.156 0.298 0.427
1 0.780 0.096 0.359 0.833 0.113 0.773 0.171 0.321 0.455
2 0.878 0.121 0.320 0.888 0.131 0.788 0.212 0.390 0.540
3 0.902 0.139 0.286 0.917 0.149 0.792 0.241 0.430 0.583
4 0.854 0.157 0.240 0.986 0.202 0.736 0.265 0.452 0.591
5 0.854 0.177 0.213 0.990 0.323 0.736 0.293 0.483 0.617
6 0.854 0.200 0.188 0.992 0.351 0.736 0.324 0.516 0.643
7 0.878 0.242 0.160 0.971 0.419 0.757 0.379 0.575 0.695
8 0.878 0.281 0.137 0.976 0.351 0.757 0.426 0.616 0.724

Dataset: CM1
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 0.981 0.012 0.565 0.639 0.023 0.990 0.024 0.058 0.109
1 0.981 0.010 0.662 0.709 0.015 0.990 0.020 0.050 0.094
2 0.981 0.010 0.653 0.767 0.015 0.990 0.021 0.050 0.096
3 0.981 0.011 0.636 0.813 0.015 0.990 0.021 0.052 0.098
4 0.986 0.011 0.622 0.856 0.015 0.993 0.022 0.053 0.101
5 0.989 0.011 0.607 0.886 0.016 0.995 0.022 0.054 0.103
6 0.989 0.012 0.592 0.904 0.016 0.994 0.023 0.056 0.105
7 0.986 0.012 0.577 0.927 0.016 0.993 0.024 0.057 0.108
8 0.986 0.012 0.571 0.926 0.016 0.993 0.024 0.058 0.109

Dataset: CM1 Subset1
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 1.000 0.044 0.698 0.706 0.062 1.000 0.084 0.187 0.314
1 1.000 0.044 0.691 0.785 0.055 1.000 0.085 0.188 0.316
2 1.000 0.049 0.623 0.900 0.059 1.000 0.094 0.205 0.340
3 1.000 0.056 0.548 0.906 0.071 1.000 0.106 0.228 0.372
4 1.000 0.063 0.483 0.929 0.078 1.000 0.119 0.253 0.403
5 0.971 0.073 0.407 0.958 0.093 0.978 0.136 0.281 0.435
6 0.971 0.087 0.343 0.956 0.138 0.978 0.159 0.320 0.481
7 0.943 0.103 0.279 0.977 0.234 0.956 0.186 0.359 0.521
8 0.943 0.113 0.256 0.977 0.194 0.956 0.201 0.381 0.543

Table 6.5: Feedback Analysis, Tf-idf - Modis, CM1, and CM1 Subset1
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Dataset: Modis
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.878 0.281 0.137 0.975 0.350 0.756 0.426 0.616 0.724
tf-idf+thesaurus 0.975 0.264 0.162 0.914 0.443 0.916 0.416 0.634 0.769
KE 0.878 0.279 0.138 0.995 0.494 0.756 0.423 0.614 0.722
IDF 0.317 0.866 0.016 1.0 0.888 0.611 0.464 0.363 0.338
LSI 0.780 0.131 0.262 0.959 0.212 0.965 0.216 0.392 0.522
Probabilistic IR 0.390 0.390 0.044 0.922 0.661 0.747 0.385 0.390 0.390

Dataset: CM1
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.986 0.012 0.570 0.926 0.016 0.992 0.023 0.057 0.108
KE 0.986 0.012 0.573 0.916 0.016 0.992 0.023 0.057 0.108
IDF 0.554 0.059 0.064 0.953 0.155 0.582 0.107 0.208 0.303
LSI 0.797 0.014 0.392 0.809 0.021 0.811 0.0395 0.066 0.122
Probabilistic IR 0.925 0.014 0.467 0.587 0.023 0.940 0.039 0.065 0.121

Dataset: CM1 Subset1
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.942 0.112 0.256 0.976 0.194 0.955 0.201 0.381 0.542
KE 0.971 0.096 0.306 0.971 0.176 0.977 0.176 0.346 0.510
IDF 0.657 0.239 0.083 0.952 0.484 0.611 0.351 0.487 0.559
LSI 0.885 0.159 0.169 0.990 0.208 0.861 0.294 0.464 0.609
Probabilistic IR 0.7428 0.097 0.234 0.771 0.146 0.711 0.198 0.319 0.446

Table 6.6: Results Obtained by the Tf-idf, Tf-idf with thesaurus, Keyword Extraction, IDF,

LSI and Probabilistic IR Methods on MODIS, CM1, and CM1 Subset1 at Iteration 8
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Dataset: CM1 Subset2
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.978 0.035 0.458 0.934 0.043 0.975 0.068 0.154 0.266
KE 0.945 0.035 0.438 0.922 0.044 0.929 0.068 0.155 0.266
IDF 0.663 0.083 0.131 0.973 0.134 0.676 0.148 0.278 0.392
LSI 0.880 0.047 0.307 0.873 0.073 0.901 0.929 0.195 0.319
Probabilistic IR 0.891 0.043 0.341 0.610 0.117 0.868 0.108 0.181 0.300

Dataset: CM1 Subset3
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.974 0.016 0.468 0.969 0.031 0.969 0.033 0.078 0.146
KE 0.974 0.016 0.475 0.970 0.034 0.969 0.032 0.077 0.144
IDF 0.649 0.085 0.062 0.971 0.179 0.631 0.150 0.279 0.390
LSI 0.846 0.020 0.332 0.879 0.040 0.873 0.048 0.094 0.169
Probabilistic IR 0.863 0.020 0.253 0.672 0.077 0.888 0.052 0.092 0.166

Dataset: CM1 Subset4
Method Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

tf-idf 0.983 0.014 0.551 0.949 0.020 0.990 0.028 0.067 0.126
KE 0.983 0.014 0.554 0.945 0.020 0.990 0.027 0.067 0.125
IDF 0.581 0.066 0.070 0.960 0.123 0.603 0.118 0.227 0.326
LSI 0.778 0.017 0.369 0.860 0.027 0.804 0.039 0.077 0.141
Probabilistic IR 0.958 0.017 0.436 0.644 0.050 0.962 0.053 0.081 0.150

Table 6.7: Results Obtained by the Tf-idf, Tf-idf with thesaurus, Keyword Extraction, IDF,

LSI, and Probabilistic IR Methods on CM1 Subset2, CM1 Subset3, and CM1 Subset4 at

Iteration 8
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Figure 6.14: Feedback Analysis - Recall/Precision - CM1 Subset2, CM1 Subset3 and CM1

Subset4
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Figure 6.15: Feedback Analysis - F-measure - Modis, CM1 and CM1 Subset1
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Figure 6.16: Feedback Analysis - F-measure - CM1 Subset2, CM1 Subset3 and CM1 Subset4
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Figure 6.17: Feedback Analysis - Average Recall/Average Precision - Modis, CM1 and CM1

Subset1
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Figure 6.18: Feedback Analysis - Average Recall/Average Precision - CM1 Subset2, CM1

Subset3 and CM1 Subset4
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Figure 6.19: Feedback Analysis - Average Expected Precision - Modis, CM1 and CM1

Subset1
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Figure 6.20: Feedback Analysis - Average Expected Precision - CM1 Subset2, CM1 Subset3

and CM1 Subset4
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Figure 6.21: Feedback Analysis - F-Measure vs. Selectivity - Modis, CM1, and CM1 Subset1
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Figure 6.22: Feedback Analysis - F-Measure vs. Selectivity - CM1 Subset2, CM1 Subset3

and CM1 Subset4
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feedback process. It can be seen that the recall value decreased and the precision value

increased as the filter value increased. Observe that for filter 0.5 for the Modis dataset, the

recall and precision values achieved were 4.9% and 100%, respectively. This means that

only 4.9% of the true links had relevance values higher than 0.5, but all the links that had

relevance values of more than 0.5 were true links. This was true for all the datasets.

In an attempt to improve both precision and recall, we combined the feedback process

with the filter. The feedback process and the filter significantly improved the recall and the

precision, respectively. Table 6.12 and Table 6.13 show the results obtained by running the

feedback process using filter 0.1 on all the datasets. The Modis dataset and CM1 Subset1

achieved excellent recall (80%-100%) and precision (50%-100%). The rest of the datasets

achieved excellent recall (80%-100%) and good precision (30%-50%).

Figure 6.23, Figure 6.24, and Figure 6.25 display the effect of filtering and feedback

on recall and precision. It can be seen that the filtering decreases recall and increases

precision. However, when it is combined with feedback, it produces high recall-precision

value pairs. For example, for the MODIS dataset, we are able to achieve about 82% recall

and 82% precision at iteration 8. Similarly, for CM1 dataset, we are able to achieve about

85% recall and 50% precision. The same effect can be seen for other datasets too.

Figure 6.26, Figure 6.27, and Figure 6.28 show how f-measure behaves when both

filtering and feedback are used. Both with and without feedback, the f-measure increases

for filter values going from 0.0 to 0.1, but it decreases for filter values going from 0.1 to

0.5. The highest f-measure value achieved for the MODIS dataset at filter value 0.1 is 0.85.

Similarly, the highest f-measure achieved for CM1 dataset at filter value 0.1 is 0.7. The

highest f-measure value obtained for other datasets range from 0.6 to 0.8.

Figure 6.29, Figure 6.30, and Figure 6.31 show the effect of filtering and feedback on

average precision and average recall. Strangely, for all the datasets, average precision and

average recall decrease with filtering. The average recall and average precision values for

iteration 8 are very high compared to those of iteration 0. However, even at iteration 8, the

filtering still has the same effect on all the datasets. Figure 6.32 shows that, in the case of

iteration 0, the average expected precision reaches 100% at filter 0.3. Whereas, in the case

of iteration 8, the average expected precision reaches 100% at filter 0.1.
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Figure 6.23: Filter Analysis - Recall/Precision (a) Modis and (b) CM1
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Figure 6.24: Filter Analysis - Recall/Precision (a) CM1 Subset1 and (b) CM1 Subset2
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Figure 6.25: Filter Analysis - Recall/Precision (a) CM1 Subset3 and (b) CM1 Subset4
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Figure 6.26: Filter Analysis - F-measure (a) Modis and (b) CM1
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6.3.1 Statistical Analysis

We already saw in the previous section that, in the case of CM1 dataset, the feedback did

not really increase the F-measure. Now, let us analyze if using feedback with filter helped to

overcome this issue. Table 6.8 and Table 6.9 show the data used for the statistical analysis

and the results of the studies using the MODIS and CM1 datasets, respectively.

We used the F-measure obtained by five IR methods listed in Table 6.8 at iteration

0 and iteration 8. The t-statistic obtained for the study using MODIS dataset was -4.3264.

We carried out paired t test for α value 0.05. The degree of freedom for this test was 5. The

tcritical value obtained for one-tail test was 0.00376 and the tcritical value obtained for two-tail

test was 0.00752. We can see that, in the case of one-tail and two-tail tests, |t| > tcritical.

Hence, we reject the null hypothesis H03 and accept the alternative hypothesis HA3. Hence,

In the case of the MODIS dataset, the difference between the F-measure of the candidate

link lists obtained by using feedback with filter and the F-measure of the candidate link

lists obtained by not using feedback and filter was statistically significant. The Pearson

correlation shows a strong positive correlation between the F-measure obtained at iteration

0 and the F-measure obtained at iteration 8.

We used the F-measure obtained by tf-idf, KE, IDF, LSI, and probabilistic IR at

iteration 0 and iteration 8. Table 6.9 shows that the t-statistic obtained for the study

using CM1 dataset was -2.8907. In this study, we used 0.05 as our α value. The degree of

freedom for this test was 4. The tcritical value obtained for one-tail test was 0.02226 and

the tcritical value obtained for two-tail test was 0.04453. In the case of one-tail as well as

two-tail tests, |t| > tcritical. Hence, we can reject the null hypothesis H04 and accept the

alternative hypothesis HA4. Hence, In the case of the CM1 dataset, the difference between

the F-measure of the candidate link lists obtained by using feedback and the F-measure of

the candidate link lists obtained by not using feedback and filter was statistically significant.

Notice that the Pearson correlation obtained for this study was negative and close to zero.

Hence, in the case of the CM1 dataset, there is a weak negative correlation between the

F-measure obtained at iteration 0 and the F-measure obtained at iteration 8. In both the

cases, using feedback with filter increased the F-measure significantly.
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Method Iteration 0 Iteration 8

Tf-idf 0.297 0.812
Tf-idf + Thesaurus 0.381 0.891
KE 0.297 0.792
IDF 0.267 0.367
LSI 0.261 0.482
Probabilistic IR 0.228 0.406

Groups Observations Sum Mean Variance

Iteration 0 6 1.731 0.2885 0.002716
Iteration 8 6 3.75 0.625 0.053718

Metric Value

Pearson Correlation 0.833592694
df 5
t Stat -4.326428351
P(T <= t) one-tail 0.003762361
tcritical one-tail 2.015048372
P(T <= t) two-tail 0.007524721
tcritical two-tail 2.570581835

Table 6.8: Modis - No Feedback vs. Feedback + Filter - Paired T-test
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Method Iteration 0 Iteration 8

Tf-idf 0.057 0.721
KE 0.057 0.71
IDF 0.246 0.458
LSI 0.057 0.366
Probabilistic IR 0.058 0.066

Groups Observations Sum Mean Variance

Iteration 0 5 0.475 0.095 0.0071
Iteration 8 5 2.321 0.4642 0.0737

Metric Value

Pearson Correlation -0.017133225
df 4
t Stat -2.890685856
P(T <= t) one-tail 0.022266113
tcritical one-tail 2.131846782
P(T <= t) two-tail 0.044532227
tcritical two-tail 2.776445105

Table 6.9: CM1 - No Feedback vs. Feedback + Filter - Paired T-test
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6.3.2 Observations

• Filtering increases precision, average precision, and average expected precision. It

decreases recall and average recall.

• Filtering increases the f-measure for smaller values of the filter, but decreases f-

measure for higher values of filter.

• When filtering is combined with feedback, the recall and the precision values improved

significantly for all the datasets.

• The statistical analysis shows that, in the case of the MODIS and CM1 datasets,

the F-measure increased significantly when the filtering was combined with feedback.

Hence, we can conclude that combining filtering and feedback improves the quality of

the traceability links obtained for both, the large and the small datasets.

6.4 Selectivity

One of the main objectives of this work is to reduce the workload of the analyst. Let us

analyze the selectivity values to find out how much of the analyst’s work was decreased by

our methods. Figure 6.35 shows the selectivity values achieved by the tf-idf method for all

the datasets. Note that the lower the selectivity, the fewer the number of links the analyst

needs to analyze. When the filter was not used, the tf-idf method achieved selectivity

values of less than 0.7 for all the datasets. The selectivity decreased when the filter value

was increased. In the case of filter 0.1, the selectivity for all the datasets ranged from 4.8%

to 9.9%. This indicates that our methods are capable of reducing the analyst’s workload

significantly.

6.5 Weight Analysis

The results obtained by the tf-idf method using the Okapi and LTU weighting schemes are

listed in Table 6.16. Figure 6.36 compares the results obtained by the tf-idf method while

using different weighting schemes. It is very clear that there is no significant difference

between the performances of the weighting schemes. In our experiments, we observed that

the behavior of the weighting schemes were the same for the other datasets too.
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Dataset: Modis
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.756 0.087 0.383 0.775 0.114 0.769 0.156 0.298 0.427
0.05 0.488 0.100 0.216 0.790 0.084 0.679 0.165 0.274 0.351
0.1 0.415 0.185 0.099 0.859 0.072 0.596 0.256 0.332 0.369
0.15 0.244 0.345 0.031 0.958 0.050 0.535 0.286 0.259 0.251
0.2 0.195 0.615 0.014 1.000 0.043 0.490 0.296 0.226 0.209
0.25 0.171 0.700 0.011 1.000 0.040 0.448 0.275 0.201 0.185
0.3 0.146 0.750 0.009 1.000 0.030 0.365 0.245 0.174 0.159
0.35 0.098 1.000 0.004 1.000 0.020 0.198 0.178 0.119 0.107
0.4 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.45 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.5 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054

Dataset: CM1
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.981 0.012 0.565 0.639 0.023 0.990 0.024 0.058 0.109
0.05 0.889 0.046 0.134 0.678 0.019 0.915 0.088 0.191 0.315
0.1 0.723 0.120 0.042 0.771 0.016 0.754 0.205 0.360 0.480
0.15 0.512 0.236 0.015 0.925 0.011 0.546 0.323 0.415 0.459
0.2 0.330 0.415 0.006 0.956 0.007 0.363 0.367 0.344 0.337
0.25 0.247 0.593 0.003 0.993 0.006 0.265 0.348 0.279 0.262
0.3 0.152 0.753 0.001 0.996 0.003 0.165 0.253 0.181 0.166
0.35 0.089 0.800 0.001 0.994 0.002 0.093 0.160 0.108 0.097
0.4 0.047 0.895 0.000 1.000 0.001 0.051 0.089 0.058 0.052
0.45 0.028 1.000 0.000 1.000 0.001 0.033 0.054 0.034 0.031
0.5 0.017 1.000 0.000 1.000 0.000 0.024 0.033 0.021 0.018

Dataset: CM1 Subset1
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 1.000 0.044 0.698 0.706 0.062 1.000 0.084 0.187 0.314
0.05 0.914 0.122 0.229 0.758 0.056 0.922 0.215 0.398 0.555
0.1 0.743 0.243 0.094 0.852 0.045 0.756 0.366 0.526 0.616
0.15 0.571 0.435 0.040 0.979 0.034 0.567 0.494 0.538 0.554
0.2 0.286 0.526 0.017 0.976 0.015 0.306 0.370 0.314 0.299
0.25 0.257 0.818 0.010 1.000 0.014 0.289 0.391 0.298 0.276
0.3 0.200 1.000 0.006 1.000 0.011 0.233 0.333 0.238 0.217
0.35 0.114 1.000 0.003 1.000 0.006 0.172 0.205 0.139 0.125
0.4 0.086 1.000 0.003 1.000 0.004 0.150 0.158 0.105 0.094
0.45 0.029 1.000 0.001 1.000 0.002 0.067 0.056 0.035 0.032
0.5 0.029 1.000 0.001 1.000 0.002 0.067 0.056 0.035 0.032

Table 6.10: Filter Analysis - Modis, CM1, and CM1 Subset1

103



Dataset: CM1 Subset2
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.989 0.025 0.668 0.648 0.067 1.000 0.048 0.112 0.201
0.05 0.826 0.087 0.158 0.708 0.058 0.880 0.157 0.305 0.445
0.1 0.587 0.177 0.055 0.803 0.023 0.658 0.272 0.401 0.477
0.15 0.380 0.302 0.021 0.960 0.014 0.439 0.337 0.362 0.371
0.2 0.207 0.463 0.007 0.990 0.008 0.247 0.286 0.232 0.219
0.25 0.152 0.737 0.003 0.986 0.006 0.154 0.252 0.181 0.165
0.3 0.098 0.692 0.002 0.976 0.004 0.104 0.171 0.118 0.107
0.35 0.087 0.889 0.002 0.972 0.004 0.098 0.158 0.106 0.096
0.4 0.033 0.750 0.001 1.000 0.001 0.040 0.063 0.040 0.036
0.45 0.022 1.000 0.000 1.000 0.001 0.031 0.043 0.027 0.024
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dataset: CM1 Subset3
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.991 0.015 0.548 0.742 0.039 0.994 0.029 0.069 0.130
0.05 0.940 0.045 0.169 0.763 0.034 0.950 0.086 0.189 0.315
0.1 0.761 0.103 0.060 0.840 0.027 0.800 0.181 0.333 0.463
0.15 0.530 0.211 0.020 0.963 0.019 0.563 0.302 0.407 0.460
0.2 0.410 0.495 0.007 0.975 0.016 0.439 0.449 0.425 0.417
0.25 0.325 0.864 0.003 0.994 0.013 0.368 0.472 0.371 0.346
0.3 0.188 0.880 0.002 0.991 0.006 0.238 0.310 0.223 0.204
0.35 0.128 0.938 0.001 0.987 0.005 0.165 0.226 0.155 0.140
0.4 0.009 1.000 0.000 1.000 0.000 0.006 0.017 0.011 0.009
0.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dataset: CM1 Subset4
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.983 0.014 0.579 0.676 0.028 0.991 0.027 0.064 0.121
0.05 0.887 0.047 0.151 0.709 0.024 0.932 0.089 0.194 0.318
0.1 0.669 0.112 0.048 0.814 0.017 0.744 0.192 0.336 0.447
0.15 0.473 0.217 0.017 0.950 0.012 0.547 0.298 0.383 0.423
0.2 0.322 0.450 0.006 0.967 0.009 0.377 0.376 0.342 0.332
0.25 0.238 0.704 0.003 0.978 0.007 0.281 0.356 0.275 0.255
0.3 0.159 0.844 0.002 0.995 0.004 0.203 0.268 0.190 0.173
0.35 0.092 0.917 0.001 0.991 0.002 0.122 0.167 0.112 0.101
0.4 0.038 0.900 0.000 1.000 0.001 0.056 0.072 0.047 0.042
0.45 0.021 1.000 0.000 1.000 0.000 0.030 0.041 0.026 0.023
0.5 0.013 1.000 0.000 1.000 0.000 0.023 0.025 0.016 0.014

Table 6.11: Filter Analysis - CM1 Subset2, CM1 Subset3, and CM1 Subset4
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Dataset: Modis
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 0.415 0.185 0.099 0.859 0.072 0.596 0.256 0.332 0.369
1 0.463 0.292 0.070 0.921 0.080 0.652 0.358 0.415 0.438
2 0.439 0.500 0.039 1.000 0.086 0.631 0.468 0.450 0.444
3 0.439 0.563 0.034 1.000 0.102 0.631 0.493 0.459 0.449
4 0.488 0.714 0.030 1.000 0.163 0.662 0.580 0.521 0.504
5 0.634 0.897 0.031 0.999 0.299 0.685 0.743 0.674 0.653
6 0.707 0.906 0.034 0.999 0.338 0.713 0.795 0.740 0.723
7 0.780 0.889 0.039 0.998 0.406 0.725 0.831 0.800 0.790
8 0.829 0.872 0.042 0.998 0.342 0.732 0.850 0.837 0.833

Dataset: CM1
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 0.723 0.120 0.042 0.771 0.016 0.754 0.205 0.360 0.480
1 0.734 0.144 0.036 0.868 0.011 0.754 0.241 0.403 0.521
2 0.734 0.172 0.030 0.927 0.010 0.752 0.279 0.444 0.554
3 0.748 0.213 0.025 0.964 0.011 0.766 0.331 0.498 0.598
4 0.756 0.256 0.021 0.979 0.011 0.769 0.383 0.544 0.633
5 0.776 0.303 0.018 0.994 0.011 0.795 0.435 0.591 0.671
6 0.795 0.359 0.015 0.995 0.012 0.806 0.495 0.640 0.709
7 0.809 0.418 0.014 0.998 0.013 0.820 0.551 0.681 0.740
8 0.837 0.410 0.014 0.997 0.013 0.845 0.551 0.693 0.758

Dataset: CM1 Subset1
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 0.743 0.243 0.094 0.852 0.045 0.756 0.366 0.526 0.616
1 0.771 0.307 0.077 0.932 0.042 0.722 0.439 0.592 0.670
2 0.771 0.355 0.066 0.949 0.042 0.722 0.486 0.625 0.691
3 0.800 0.431 0.057 0.976 0.050 0.800 0.560 0.683 0.737
4 0.829 0.527 0.048 0.984 0.066 0.867 0.644 0.744 0.784
5 0.857 0.600 0.044 0.987 0.082 0.883 0.706 0.789 0.822
6 0.886 0.689 0.039 1.000 0.130 0.917 0.775 0.838 0.861
7 0.886 0.795 0.034 1.000 0.228 0.917 0.838 0.866 0.876
8 0.886 0.721 0.038 1.000 0.187 0.917 0.795 0.847 0.866

Table 6.12: Filter Analysis, Filter 0.1 - Modis, CM1, and CM1 Subset1
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Dataset: CM1 Subset2
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 0.587 0.177 0.055 0.803 0.023 0.658 0.272 0.401 0.477
1 0.620 0.221 0.046 0.931 0.018 0.673 0.326 0.455 0.525
2 0.641 0.225 0.047 0.950 0.019 0.685 0.333 0.468 0.541
3 0.663 0.238 0.046 0.963 0.020 0.714 0.351 0.489 0.563
4 0.717 0.269 0.044 0.977 0.024 0.755 0.392 0.538 0.615
5 0.761 0.287 0.044 0.992 0.028 0.811 0.417 0.572 0.653
6 0.793 0.315 0.042 0.994 0.032 0.836 0.451 0.608 0.689
7 0.815 0.333 0.041 0.995 0.034 0.857 0.473 0.632 0.712
8 0.826 0.317 0.043 0.996 0.035 0.870 0.458 0.625 0.712

Dataset: CM1 Subset3
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 0.761 0.103 0.060 0.840 0.027 0.800 0.181 0.333 0.463
1 0.761 0.130 0.048 0.948 0.017 0.783 0.222 0.386 0.512
2 0.786 0.168 0.038 0.971 0.017 0.818 0.276 0.452 0.574
3 0.803 0.225 0.029 0.979 0.018 0.831 0.351 0.530 0.639
4 0.846 0.278 0.025 0.992 0.020 0.864 0.419 0.601 0.703
5 0.880 0.334 0.021 0.996 0.023 0.899 0.485 0.664 0.757
6 0.897 0.392 0.019 0.998 0.025 0.911 0.545 0.713 0.795
7 0.915 0.451 0.016 0.999 0.028 0.924 0.605 0.759 0.829
8 0.923 0.425 0.018 1.000 0.030 0.929 0.582 0.748 0.826

Dataset: CM1 Subset4
Iteration Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0 0.669 0.112 0.048 0.814 0.017 0.744 0.192 0.336 0.447
1 0.711 0.145 0.039 0.881 0.012 0.768 0.240 0.399 0.511
2 0.715 0.182 0.031 0.932 0.012 0.769 0.290 0.451 0.553
3 0.741 0.234 0.025 0.969 0.013 0.791 0.355 0.516 0.608
4 0.762 0.283 0.021 0.989 0.013 0.813 0.413 0.569 0.652
5 0.791 0.346 0.018 0.996 0.014 0.831 0.482 0.629 0.701
6 0.812 0.413 0.016 0.998 0.016 0.863 0.547 0.680 0.740
7 0.824 0.464 0.014 1.000 0.016 0.870 0.593 0.713 0.765
8 0.849 0.461 0.015 1.000 0.017 0.898 0.598 0.727 0.783

Table 6.13: Filter Analysis, Filter 0.1 - CM1 Subset2, CM1 Subset3, and CM1 Subset4
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Figure 6.27: Filter Analysis - F-measure (a) CM1 Subset1 and (b) CM1 Subset2
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Figure 6.28: Filter Analysis - F-measure (a) CM1 Subset3 and (b) CM1 Subset4
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Figure 6.29: Filter Analysis - Average Recall/Average Precision (a) Modis and (d) CM1
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Figure 6.30: Filter Analysis - Average Recall/Average Precision (a) CM1 Subset1 and (d)

CM1 Subset2
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Figure 6.31: Filter Analysis - Average Recall/Average Precision (a) CM1 Subset3 and (d)

CM1 Subset4
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Figure 6.32: Filter Analysis - Average Expected Precision (a) Modis and (b) CM1
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6.5.1 Statistical Analysis

Let us analyze if the difference among the recall and precision values of the results obtained

by tf-idf, Okapi, and LTU weight methods were statistically significant. Table 6.14 and

Table 6.15 show the data used for the statistical analysis and the results of the studies.

For the weight analysis using recall and precision, we had totally 33 observations in three

groups, namely, tf-idf, Okapi, and LTU. Also the degree of freedom for these studies was 2.

The columns in Table 6.14 show the recall values obtained by each weighting method.

The T and P values obtained for the study comparing the recall values were 0.249392 and

0.8828, respectively. When adjusted for ties, the T and P values obtained were 0.24981 and

0.8826, respectively. The all pairwise comparisons using Dwass-Steel-Chritchlow-Fligner

and Conover-Inman tests showed no significant difference among the recall values obtained

by tf-idf, Okapi, and LTU weighting methods. Hence, we cannot reject the null hypothesis

H05.

The columns in Table 6.15 show the precision values obtained by each weighting

method. The T and P values obtained for the study comparing the recall values were

0.910063 and 0.6344, respectively. When adjusted for ties, the T and P values obtained

were 0.945455 and 0.6233, respectively. The all pairwise comparisons using Dwass-Steel-

Chritchlow-Fligner and Conover-Inman tests showed no significant difference among the

precision values obtained by tf-idf, Okapi, and LTU weighting methods. Hence, we cannot

reject the null hypothesis H06.

Since, the difference among the recall and the precision values obtained by tf-idf, Okapi,

and LTU weighting methods is not statistically significant, we can conclude that there is

no advantage in using one weighting method over the other.

6.6 Thesaurus Analysis

Figure 6.37 compares the recall and precision obtained by the tf-idf method and the tf-

idf+thesaurus method. The usage of the thesaurus improved the recall and precision. Also,

few links would not have been found without the thesaurus. Unlike the tf-idf method, the

tf-idf+thesaurus method was able to achieve 100% recall.
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Tf-idf Okapi LTU

0.9806 0.9806 0.9806
0.8892 0.8947 0.8864
0.7230 0.6620 0.6814
0.5125 0.4681 0.4792
0.3296 0.2909 0.3019
0.2465 0.1911 0.2022
0.1524 0.1080 0.1274
0.0886 0.0471 0.0582
0.0471 0.0194 0.0332
0.0277 0.0111 0.0166
0.0166 0.0111 0.0111

Groups Count Sum Average Variance

Tf-idf 11 4.0138 0.3649 0.1277
Okapi 11 3.6842 0.3349 0.1321
LTU 11 3.7784 0.3435 0.1297

Groups df Observations T P T (ties) P (ties)

3 2 33 0.24932 0.8828 0.24981 0.8826

All Pairwise Comparisons (Dwass-Steel-Chritchlow-Flinger)
Critical q (range) = 3.314493

Tf-idf vs. Okapi Not significant
(| − 0.60413| > 3.314493) P = 0.9043
Tf-idf vs. LTU Not significant
(| − 0.511043| > 3.314493) P = 0.9306
Okapi vs. LTU Not significant
(|0.371983| > 3.314493) P = 0.9626

All Pairwise Comparisons (Conover-Inman)
Critical t (30 df) = 2.042272

Tf-idf and Okapi Not significant
(2.045455 > 8.662705) P = 0.6331
Tf-idf and LTU Not significant
(1.227273 > 8.662705) P = 0.7743
Okapi and LTU Not significant
(0.818182 > 8.662705) P = 0.8483

Table 6.14: CM1 - Recall - Weight Methods Comparison - Kruskal-Wallis
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Tf-idf Okapi LTU

0.0121 0.0121 0.0121
0.0462 0.0475 0.0436
0.1195 0.1245 0.1218
0.2357 0.3288 0.2993
0.4146 0.6402 0.5989
0.5933 0.8519 0.8295
0.7534 1.0000 0.9020
0.8000 1.0000 1.0000
0.8947 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000

Groups Count Sum Average Variance

Tf-idf 11 5.8696 0.5336 0.1472
Okapi 11 7.0050 0.6368 0.1800
LTU 11 6.8072 0.6188 0.1754

Groups df Observations T P T (ties) P (ties)

3 2 33 0.910063 0.6344 0.945455 0.6233

All Pairwise Comparisons (Dwass-Steel-Chritchlow-Flinger)
Critical q (range) = 3.314493

Tf-idf vs. Okapi Not significant
(|1.227146| > 3.314493) P = 0.6607
Tf-idf vs. LTU Not significant
(|1.032051| > 3.314493) P = 0.7458
Okapi vs. LTU Not significant
(| − 0.481046| > 3.314493) P = 0.9382

All Pairwise Comparisons (Conover-Inman)
Critical t (30 df) = 2.042272

Tf-idf and Okapi Not significant
(3.818182 > 8.572104) P = 0.3702
Tf-idf and LTU Not significant
(2.727273 > 8.572104) P = 0.5208
Okapi and LTU Not significant
(1.090909 > 8.572104) P = 0.7967

Table 6.15: CM1 - Precision - Weight Methods Comparison - Kruskal Wallis
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Figure 6.33: Filter Analysis - Average Expected Precision (a) CM1 Subset1 and (b) CM1

Subset2
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Figure 6.34: Filter Analysis - Average Expected Precision (a) CM1 Subset3 and (b) CM1

Subset4
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6.7 Vocabulary Base Analysis

The results obtained by the tf-idf method when both the documents and the queries were

used to build the vocabulary base is shown in Table 6.17 and Table 6.18. Figure 6.38,

Figure 6.39, and Figure 6.40 compare the precision and recall values obtained by both

types of vocabulary bases for the tf-idf method. In the case of the tf-idf method with no

filter, the difference in the vocabulary base did not seem to impact the results. However,

the recall and precision values are slightly better for some of the filter values when both

the documents and the queries were used to build the vocabulary base. This means that

the new vocabulary base did not identify any new true links. However, it increased the

relevance value of the true links.
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Figure 6.35: Selectivity
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Dataset: Modis Weight 2
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.756 0.086 0.386 0.784 0.113 0.769 0.155 0.296 0.426
0.05 0.488 0.091 0.236 0.805 0.083 0.679 0.153 0.260 0.340
0.1 0.317 0.135 0.103 0.820 0.060 0.612 0.190 0.250 0.280
0.15 0.244 0.294 0.037 0.979 0.049 0.535 0.267 0.253 0.248
0.2 0.220 0.643 0.015 1.000 0.046 0.532 0.327 0.253 0.235
0.25 0.146 0.667 0.010 1.000 0.035 0.365 0.240 0.173 0.159
0.3 0.122 0.714 0.008 1.000 0.026 0.282 0.208 0.146 0.133
0.35 0.098 1.000 0.004 1.000 0.020 0.198 0.178 0.119 0.107
0.4 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.45 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.5 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054

Dataset: Modis Weight 3
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.756 0.086 0.386 0.794 0.113 0.769 0.155 0.296 0.426
0.05 0.488 0.092 0.234 0.812 0.083 0.679 0.154 0.262 0.341
0.1 0.415 0.173 0.105 0.881 0.072 0.603 0.245 0.324 0.364
0.15 0.244 0.313 0.034 0.979 0.049 0.535 0.274 0.255 0.249
0.2 0.220 0.600 0.016 1.000 0.046 0.532 0.321 0.251 0.234
0.25 0.171 0.700 0.011 1.000 0.040 0.448 0.275 0.201 0.185
0.3 0.122 0.714 0.008 1.000 0.026 0.282 0.208 0.146 0.133
0.35 0.098 1.000 0.004 1.000 0.020 0.198 0.178 0.119 0.107
0.4 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.45 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.5 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054

Table 6.16: Weight Analysis - CM1 Subset2 Filter 0.1, CM1 Subset3 Filter 0.1, and CM1

Subset4 Filter 0.1
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Dataset: Modis
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.756 0.087 0.383 0.794 0.114 0.769 0.156 0.298 0.427
0.05 0.488 0.153 0.141 0.811 0.084 0.679 0.233 0.339 0.400
0.1 0.220 0.321 0.030 1.000 0.047 0.532 0.261 0.234 0.227
0.15 0.146 0.667 0.010 1.000 0.031 0.365 0.240 0.173 0.159
0.2 0.146 0.857 0.008 1.000 0.031 0.365 0.250 0.175 0.160
0.25 0.073 1.000 0.003 1.000 0.014 0.194 0.136 0.090 0.081
0.3 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.35 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.4 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.45 0.049 1.000 0.002 1.000 0.008 0.111 0.093 0.060 0.054
0.5 0.024 1.000 0.001 1.000 0.003 0.083 0.048 0.030 0.027

Dataset: CM1
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.981 0.012 0.565 0.630 0.023 0.990 0.024 0.058 0.109
0.05 0.895 0.048 0.131 0.665 0.020 0.918 0.090 0.196 0.322
0.1 0.662 0.124 0.037 0.814 0.015 0.698 0.210 0.355 0.462
0.15 0.468 0.329 0.010 0.934 0.010 0.515 0.386 0.432 0.449
0.2 0.291 0.640 0.003 0.984 0.007 0.325 0.400 0.326 0.308
0.25 0.191 0.852 0.002 1.000 0.004 0.208 0.312 0.226 0.207
0.3 0.108 1.000 0.001 1.000 0.002 0.134 0.195 0.131 0.119
0.35 0.047 1.000 0.000 1.000 0.001 0.053 0.090 0.058 0.052
0.4 0.019 1.000 0.000 1.000 0.001 0.027 0.038 0.024 0.021
0.45 0.011 1.000 0.000 1.000 0.000 0.019 0.022 0.014 0.012
0.5 0.011 1.000 0.000 1.000 0.000 0.019 0.022 0.014 0.012

Dataset: CM1 Subset1
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 1.000 0.044 0.698 0.711 0.062 1.000 0.084 0.187 0.314
0.05 0.886 0.166 0.163 0.775 0.055 0.906 0.279 0.474 0.618
0.1 0.514 0.367 0.043 0.981 0.031 0.511 0.429 0.476 0.495
0.15 0.257 0.529 0.015 1.000 0.014 0.289 0.346 0.287 0.271
0.2 0.171 0.857 0.006 1.000 0.009 0.217 0.286 0.204 0.186
0.25 0.114 1.000 0.003 1.000 0.006 0.178 0.205 0.139 0.125
0.3 0.114 1.000 0.003 1.000 0.006 0.178 0.205 0.139 0.125
0.35 0.057 1.000 0.002 1.000 0.003 0.089 0.108 0.070 0.063
0.4 0.029 1.000 0.001 1.000 0.002 0.067 0.056 0.035 0.032
0.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.17: Vocabulary Base Analysis - Modis, CM1, and CM1 Subset1
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Dataset: CM1 Subset2
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.989 0.025 0.668 0.635 0.067 1.000 0.048 0.112 0.201
0.05 0.804 0.098 0.136 0.689 0.032 0.842 0.174 0.329 0.467
0.1 0.489 0.232 0.035 0.879 0.019 0.554 0.315 0.400 0.440
0.15 0.228 0.438 0.009 0.971 0.009 0.266 0.300 0.252 0.240
0.2 0.141 0.650 0.004 0.955 0.005 0.167 0.232 0.168 0.153
0.25 0.065 0.857 0.001 1.000 0.003 0.081 0.121 0.080 0.072
0.3 0.043 1.000 0.001 1.000 0.001 0.067 0.083 0.054 0.048
0.35 0.033 1.000 0.001 1.000 0.001 0.042 0.063 0.040 0.036
0.4 0.011 1.000 0.000 1.000 0.000 0.008 0.022 0.014 0.012
0.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dataset: CM1 Subset3
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.991 0.015 0.549 0.725 0.039 0.994 0.029 0.069 0.130
0.05 0.923 0.052 0.146 0.742 0.033 0.929 0.098 0.211 0.343
0.1 0.641 0.129 0.040 0.882 0.023 0.681 0.215 0.358 0.459
0.15 0.427 0.331 0.010 0.962 0.013 0.453 0.373 0.404 0.415
0.2 0.316 0.597 0.004 0.951 0.010 0.361 0.413 0.349 0.332
0.25 0.222 0.867 0.002 0.992 0.007 0.265 0.354 0.261 0.240
0.3 0.103 0.857 0.001 0.981 0.003 0.119 0.183 0.124 0.112
0.35 0.017 0.667 0.000 0.833 0.000 0.011 0.033 0.021 0.019
0.4 0.009 0.500 0.000 1.000 0.000 0.006 0.017 0.011 0.009
0.45 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dataset: CM1 Subset4
Filter Rec Pr Sel AEPr AvPr AvRec f1 f2 f3

0.0 0.983 0.014 0.579 0.665 0.028 0.991 0.027 0.064 0.121
0.05 0.870 0.052 0.133 0.701 0.023 0.916 0.099 0.211 0.340
0.1 0.582 0.133 0.035 0.867 0.015 0.658 0.217 0.348 0.435
0.15 0.368 0.310 0.010 0.947 0.008 0.428 0.337 0.355 0.361
0.2 0.247 0.488 0.004 0.958 0.005 0.306 0.328 0.274 0.260
0.25 0.163 0.780 0.002 0.995 0.004 0.201 0.270 0.194 0.177
0.3 0.109 0.839 0.001 0.992 0.002 0.146 0.193 0.132 0.119
0.35 0.038 0.818 0.000 0.979 0.001 0.054 0.072 0.047 0.042
0.4 0.025 0.857 0.000 1.000 0.001 0.038 0.049 0.031 0.028
0.45 0.013 1.000 0.000 1.000 0.000 0.023 0.025 0.016 0.014
0.5 0.013 1.000 0.000 1.000 0.000 0.023 0.025 0.016 0.014

Table 6.18: Vocabulary Base Analysis - CM1 Subset2, CM1 Subset3, and CM1 Subset4
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Figure 6.36: Weight Analysis
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Figure 6.37: Thesaurus Analysis
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Figure 6.38: Vocabulary Base (a) Modis and (b) CM1
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Figure 6.39: Vocabulary Base (a) CM1 Subset1 and (b) CM1 Subset2
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Figure 6.40: Vocabulary Base (a) CM1 Subset3 and (b) CM1 Subset4
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Figure 6.41: Voting Method - CM1 (a) With IDF and (b) Without IDF
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Figure 6.42: Voting Method - CM1 Subset4 (a) With IDF and (b) Without IDF
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Figure 6.43: Voting Method - CM1 Subset3 (a) With IDF and (b) Without IDF
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6.8 Voting Tool Analysis

Table 6.19 shows the recall and precision values obtained for the CM1 dataset by tf-idf,

KE, IDF, LSI, and probabilistic IR at filter 0.05. It also shows the recall and precision

values obtained by the voting rules majority, super majority, and consensus. Table 6.19

also shows the recall and precision values obtained by super majority when tf-idf, KY, IDF,

and LSI were used. Notice that LSI and IDF produced acceptable and excellent precision,

respectively. However, LSI and IDF produced acceptable and poor recall, respectively.

Conversely, for tf-idf, KE, and probabilistic IR, had excellent recall, but they had very poor

precision. Notice that, we were able to achieve 79% recall and 17% precision with majority

rule.

Figure 6.41 compares the recall and precision obtained for the CM1 dataset by tf-idf,

KE, IDF, LSI, and probabilistic IR with that of majority, super majority, and consensus

rules. Since, the consensus rule is very strict, it produced poor recall and good precision.

The super majority rule produced acceptable recall and precision. The majority rule pro-

duced good recall and poor precision. When tf-idf, KE, IDF, and LSI methods were used,

the super majority rule produced good recall and poor precision. Though the precision

produced by most of the voting rules were poor, the precision still increased significantly

with an insignificant decrease in recall.

Table 6.20 shows the recall and precision values obtained for the CM1 subset4 dataset

by tf-idf, KE, IDF, LSI, and probabilistic IR at filter 0.05. It also shows the recall and

precision values obtained by the voting rules majority, super majority, consensus, and super

majority when IDF was not used. Again, IDF had excellent precision and LSI had acceptable

precision. Also, LSI had acceptable recall and IDF had poor recall. The other three methods

had very poor precision with excellent recall. The majority rule produced 80% recall and

17% precision.

Figure 6.42 compares the recall and precision obtained for the CM1 subset4 dataset

by tf-idf, KE, IDF, LSI, and probabilistic IR with that of majority, super majority, and

consensus rules. It can be seen from the graph that majority rule outperformed other rules

when all the five methods were used. When IDF was not used, the super majority rule

produced good recall with excellent precision.
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Method Recall Precision
Tf-idf 0.92 0.08
KE 0.91 0.06
IDF 0.49 0.63
LSI 0.61 0.23
Probabilistic IR 0.93 0.014

Rule Recall Precision
Majority 0.79 0.15
Super majority 0.61 0.21
Consnsus 0.32 0.29
Super majority without IDF 0.77 0.17

Table 6.19: Voting Tool Analysis - CM1 - Comparison of Recall/Precision values obtained

by different methods and rules

Method Recall Precision
Tf-idf 0.92 0.09
KE 0.93 0.08
IDF 0.53 0.69
LSI 0.60 0.42
Probabilistic IR 0.95 0.018

Rule Recall Precision
Majority 0.80 0.17
Super majority 0.64 0.23
Consnsus 0.31 0.34
Super majority without IDF 0.78 0.19

Table 6.20: Voting Tool Analysis - CM1 Subset4 - Comparison of Recall/Precision values

obtained by different methods and rules
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Method Recall Precision
Tf-idf 0.94 0.08
KE 0.96 0.07
IDF 0.60 0.56
LSI 0.67 0.72
Probabilistic IR 0.85 0.02

Rule Recall Precision
Majority 0.84 0.20
Super majority 0.64 0.29
Consnsus 0.30 0.38
Super majority without IDF 0.81 0.23

Table 6.21: Voting Tool Analysis - CM1 Subset3 - Comparison of Recall/Precision values

obtained by different methods and rules

Table 6.21 shows the recall and precision values obtained for the CM1 subset3 dataset

by tf-idf, KE, IDF, LSI, and probabilistic IR at filter 0.05. It also shows the recall and preci-

sion values obtained by the voting rules majority, super majority, and consensus. Table 6.21

also shows the recall and precision values obtained by super majority when tf-idf, KY, IDF,

and LSI were used. Both, LSI and IDF had acceptable recall and excellent precision. Similar

to the previous cases, the other three methods had excellent recall and very poor precision.

The best recall-precision pair, 84% recall and 20% precision, was obtained by the major-

ity rule. When IDF was not used, the super majority rule produced 81% recall and 23%

precision.

Figure 6.42 compares the recall and precision obtained for the CM1 subset3 dataset

by tf-idf, KE, IDF, LSI, and probabilistic IR with that of majority, super majority, and

consensus rules. Notice that the majority rule obtained almost the same recall as the

probabilistic IR, but with 10 times better precision. The super majority rule without IDF

obtained slightly better precision compared to the majority rule using all the five methods.

Observations

• Voting mechanism improves the precision significantly without reducing the recall
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significantly.

• It is possible to obtain excellent recall and acceptable precision using methods that

have either, excellent recall and poor precision, or, poor recall and good precision.

• The consensus rule is very strict and it may not be effective when one of the methods

in the committee produces poor recall.

• The majority rule seems to strike a good balance balance between recall and precision.

• In our experiments, the super majority rule works better when IDF was not used.

Copyright c© Senthil Karthikeyan Sundaram 2007

133



Chapter 7

Conclusion and Future Work

This chapter summarizes this work with some concluding remarks, points out the contribu-

tions of this work, and discusses future work.

7.1 Conclusion

The primary objective of this work was to assist analysts in the traceability links generation

process using information retrieval techniques to improve the quality of the traceability links

generated and to save analysts’ time. We detailed the significance of the traceability links

generation process in the software development lifecycle. We illustrated the mundaneness

and lengthiness of the tracing process. We also explained the similarities of the tracing and

information retrieval processes and showed that the tracing process can be reduced to an

information retrieval process.

In this work, we adapted the vector space model (tf-idf), keyword extraction using

χ2, LSI, and probabilistic information retrieval methods. We also analyzed the use of a

thesaurus to improve the vector space model. We implemented keyword extraction using

IDF to cross check the validity of the keyword extraction using χ2. We also used filtering

and analyst feedback to improve the results generated by the above mentioned methods.

We looked at using different weighting schemes and vocabulary bases.

We implemented a requirements tracing tool, RETRO, containing all the methods

and features explained in the previous paragraph. Also, we developed a voting tool that

filters traceability links based on whether the links were generated by certain methods in

the IR toolbox. We validated our methods using six datasets. We also wrote a tool to

automatically collect metrics from the traceability links generated.
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From the selectivity values calculated for different methods, we see that, when using

RETRO, the analyst needs to verify fewer links. In [26], we compared the time taken by

an analyst to perform tracing using RETRO versus tracing manually. It is clear from the

results that the analysts’ workload has been greatly reduced. At the same time, we made

sure that the time saved was not at the cost of the quality of the traceability links generated.

Hence, we used recall, precision, and other secondary metrics to measure the quality of the

traceability links generated.

The vector space model produced results with good recall for the MODIS dataset.

However, the precision was poor. Using filters, we improved precision at the cost of recall.

At the same time, analyst feedback improved the recall significantly, but sometimes at the

cost of precision. When filters and analyst feedback were combined, we were able to obtain

good recall and precision values. The keyword extraction method using χ2 was able to

produce the same recall and precision values as the vector space model, but with better

similarity measures for the individual links. Also, the keyword extraction using IDF did

not perform well, as expected. This proved that using the keyword extraction method to

idenfity important keywords certainly provided good payoff.

7.2 Contributions

As discussed in the related works chapter, there are other researchers who use information

retrieval techniques to generate traceability links for different software artifacts. It should

be noted that most of this work was performed in parallell with our work, and we did

not refer to these works when we started our research. However, this dissertation has the

following unique contributions to the traceability research community:

• using analyst feedback to improve the quality of the treaceability links generated,

• using the keyword extraction technique to identify the important keywords and thus

obtain results with better secondary measures,

• using both the document and the query collection to build the vocabulary base, and

• using a committe of methods to decide on the traceability links to be included in the

candidate list.
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7.3 Future Work

This work focuses on the dynamic generation of traceability links for unstructured textual

artifacts. All the methods discussed in this work can be extended to generate traceability

links for other structured software artifacts such as design documents, source code, etc. For

example, in order to use our methods to trace design documents with design diagrams, the

infromation represented in the design diagrams should be interpreted and converted to a

format that our methods can read.

The structure of the textual software artifacts may contain useful information. This

information can be used to improve the trace results. For example, if a document is orga-

nized into sections and subsections, the hierarchical information can be used while gener-

ating traceability links. It is quite possible that two matching sections may have matching

sub-sections too.

Currently, our approach does not distinguish the links into different types. Classi-

fying the links into different types may make the traces more understandable. Also, our

approach does not identify if a particular element is completely satisfied by all the links

found. Identifying the traceability link satisfaction will help the analyst decide when to

stop tracing.

Copyright c© Senthil Karthikeyan Sundaram 2007
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Appendix A
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Figure A.1: Recall vs. Precision - Tf-idf - Modis, CM1, and CM1 Subset1.
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Figure A.2: Recall vs. Precision - Tf-idf - CM1 Subset2, CM1 Subset3 and CM1 Subset4.
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Figure A.3: Average Recall vs. Average Precision - Tf-idf - Modis, CM1, and CM1 Subset1.
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Figure A.4: Average Recall vs. Average Precision - Tf-idf - CM1 Subset2, CM1 Subset3

and CM1 Subset4.
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Figure A.5: Filter Analysis - Modis - Recall vs. Precision (Tf-idf)
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Figure A.6: Filter Analysis - CM1 - Recall vs. Precision (Tf-idf)
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Figure A.7: Filter Analysis - CM1 Subset1 - Recall vs. Precision (Tf-idf)
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Figure A.8: Filter Analysis - CM1 Subset2 - Recall vs. Precision (Tf-idf)
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Figure A.9: Filter Analysis - CM1 Subset3 - Recall vs. Precision (Tf-idf)
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Figure A.10: Filter Analysis - CM1 Subset4 - Recall vs. Precision (Tf-idf)
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Figure A.11: Filter Analysis - Modis - Average Recall vs. Average Precision (Tf-idf)
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Figure A.12: Filter Analysis - CM1 - Average Recall vs. Average Precision (Tf-idf)
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Figure A.13: Filter Analysis - CM1 Subset1 - Average Recall vs. Average Precision (Tf-idf)
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Figure A.14: Filter Analysis - CM1 Subset2 - Average Recall vs. Average Precision (Tf-idf)
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Figure A.15: Filter Analysis - CM1 Subset3 - Average Recall vs. Average Precision (Tf-idf)
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Figure A.16: Filter Analysis - CM1 Subset4 - Average Recall vs. Average Precision (Tf-idf)
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