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ABSTRACT OF DISSERTATION

PRIVACY PRESERVING DISTRIBUTED DATA MINING

Privacy preserving distributed data mining aims to design secure protocols which

allow multiple parties to conduct collaborative data mining while protecting the data

privacy. My research focuses on the design and implementation of privacy preserving

two-party protocols based on homomorphic encryption. I present new results in this

area, including new secure protocols for basic operations and two fundamental privacy

preserving data mining protocols.

I propose a number of secure protocols for basic operations in the additive secret-

sharing scheme based on homomorphic encryption. I derive a basic relationship be-

tween a secret number and its shares, with which we develop e�cient secure compar-

ison and secure division with public divisor protocols. I also design a secure inverse

square root protocol based on Newton's iterative method and hence propose a solu-

tion for the secure square root problem. In addition, we propose a secure exponential

protocol based on Taylor series expansions. All these protocols are implemented using

secure multiplication and can be used to develop privacy preserving distributed data

mining protocols.

In particular, I develop e�cient privacy preserving protocols for two fundamental

data mining tasks: multiple linear regression and EM clustering. Both protocols work

for arbitrarily partitioned datasets. The two-party privacy preserving linear regression

protocol is provably secure in the semi-honest model, and the EM clustering protocol

discloses only the number of iterations. I provide a proof-of-concept implementation

of these protocols in C++, based on the Paillier cryptosystem.

KEYWORDS: Privacy Preserving, Data Mining, Secure Computation, Multiple Lin-

ear Regression, EM Clustering
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Chapter 1

Introduction

1.1 Motivation

Privacy preserving distributed data mining aims to design secure protocols which

allow multiple parties to conduct collaborative data mining while protecting the pri-

vacy of their data. My research focuses on the design and implementation of privacy

preserving protocols based on homomorphic encryption. I have designed new secure

protocols for a number of basic operations, including comparison, inverse square root,

square root and the exponential function. Using these protocols I develop two funda-

mental privacy preserving data mining protocols: multiple linear regression and EM

clustering.

Data mining attempts to discover potentially useful and interesting patterns from

large quantities of data. Many useful techniques have been developed in this area,

include clustering, classi�cation, regression, association rule mining and outlier de-

tection. They have been been successfully applied in domains ranging from business

to science and engineering. For example, in market basket analysis, association rule

mining is used to �nd the purchase patterns of customers. The supermarket can use

such knowledge to plan product placement and promotional pricing.

In many applications data may be collected and owned by multiple parties. For

example, for a group of persons, the employer companies have their employment

information, banks have the �nancial information, and hospitals have the health data.

Suppose that the whole dataset can be represented as a matrix whose rows correspond

to subjects and whose columns correspond to attributes. It can be distributed among

the parties in two typical ways:

(a) Vertical partition. All the parties have the same set of subjects, but each party

has a di�erent set of attributes. The set of data held by employer companies, banks

1



and hospitals is an example of vertical partition.

(b) Horizontal partition. Multiple parties have disjoint sets of subjects, and each

party has the data of all the attributes for each subject he/she holds. For example,

di�erent colleges have information on disjoint sets of students.

In some cases the dataset may be arbitrarily partitioned among multiple parties.

That is, each party holds part of the dataset in an arbitrary way. This includes

vertical partition and horizontal partition as special cases.

When data are distributed among multiple parties, collaborative data mining has

the potential to produce more accurate knowledge than the use of data owned by a

single party. However, privacy concerns, due to con�ict of interests or legal regulation,

may prevent such applications. Consider the following examples:

(a) Two clinics, each of which has the patient data for one disease, conjecture that

these two diseases may be correlated. They wish to conduct a joint analysis to verify

the conjecture. However, due to law regulation, they are prohibited from disclosing

their individual data to each other (Zhang et al., 2006).

(b) The garment market is highly competitive. To raise their competitiveness

in this market, two companies would like to cooperate to analyze their joint sales

data to obtain knowledge such as how the sale of a particular category of garment is

distributed in di�erent regions. However, these two companies compete against each

other, so they may not be willing to disclose their data.

Privacy preserving distributed data mining addresses this issue and aims to design

secure protocols which allow multiple parties to conduct collaborative data mining

while protecting the privacy of their data. It has attracted much attention and has

become an active research area in recent years.

Secure computation aims to design secure protocols so that a set of parties can

perform joint computation privately. The concepts and techniques in secure compu-

tation can be applied to the area of privacy preserving distributed data mining. My

research focuses on the design of privacy preserving data mining protocols based on

homomorphic encryption.

1.2 Short Survey on Data Privacy

In this section, I brie�y introduce some related work in the area of privacy preserving

data mining, including privacy preserving distributed data mining, data perturbation,

anonymization and di�erential privacy.
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Privacy Preserving Distributed Data Mining. Lindell and Pinkas (2000)

�rst applied the concept of secure computation in the �eld of data mining and de-

veloped a provably secure two-party decision tree over horizontally partitioned data.

Since then, privacy preserving distributed data mining has attracted much attention

and many secure protocols have been proposed for speci�c data mining algorithms,

including support vector machines (Laur et al., 2006; Vaidya and Clifton, 2008a),

Bayesian network (Yang and Wright, 2006), k-nearest neighbor (Qi et al., 2008), k-

means (Vaidya et al., 2003; Bunn et al., 2007), EM -clustering (Lin et al., 2005),

regression (Du et al., 2004; Sanil et al., 2004; Hall et al. 2011), association rules min-

ing (Viadya and Clifton, 2002; Kantarcioulu and Clifton, 2004; Viadya and Clifton,

2005) and outlier detection (Vaidya and Clifton, 2004b).

Some of these protocols are provably secure in the semi-honest model, such as

the secure protocols for decision tree (Lindell and Pinkas, 2000), k-means (Bunn et

al., 2007) and support vector machine (Laur et al., 2006). Some protocols choose to

disclose additional information to achieve better e�ciency. For example, the secure

support vector machine proposed by Vaidya et al. (2008) discloses the kernel matrix.

Other protocols use algebraic techniques to protect the private data. For example,

a vector or matrix is protected by multiplying with random matrices (Viadya and

Clifton, 2002; Du et al., 2004). However, one should be cautious of using such methods

because they may leak signi�cant information (Goethals et al., 2004).

Data Perturbation. Suppose that a government agency would like to publish a

set of electronic health records which may facilitate research. One strategy for pro-

tecting the privacy of the individual records is to perturb the original data. Agrawal

et al. (2000) proposed an additive perturbation method which adds Gaussian noise

to the data and they constructed decision tree on the perturbed data to demonstrate

its utility. Chen et al. (2005) proposed a random rotation method which multiplies

the original data matrix with a random orthogonal matrix. This method can pre-

serve the distances of the original data points. Liu. et al. (2006) proposed a random

projection-based multiplicative perturbation method in which the set of data points

from high-dimensional space are projected to a randomly chosen low-dimensional

subspace.

Anonymization. One obvious way to protect the privacy of tabular data is to

remove the identity attributes such as social security number and name. However,

this is not su�cient because the combination of some attributes such as age, sex and

address can be linked with external data and discloses the identity of the record.

These attributes are called quasi-identi�ers. A table is said to be k-anonymous if

3



every record is indistinguishable from at least k − 1 other records over the quasi-

identi�er attributes (Sweeney, 2002a). To achieve k-anonymity, we can replace quasi-

identi�er attributes values with values that are less speci�c but semantically consistent

(Sweeeny, 2002b).

Di�erential Privacy. In the scenario of a statistical database, a trusted curator

collects a set of sensitive information (e.g. medical records). He/she answers the

queries issued by the users and provides the statistical information about the data.

But he/she doesn't want to compromise the privacy of individual records in the

database.

We can model the actions of the trusted curator as a randomized algorithm A.

A randomized algorithm A guarantees ε-di�erential privacy (Dwork et al., 2006) if,

when D1 and D2 are a pair of datasets that di�er on a single element, then for all

S ⊆ Range(A),

Pr[A(D1) ∈ S] ≤ exp(ε) ∗ Pr[A(D2) ∈ S]

where the probability is taken over the coin tosses of A. This means that for any two

datasets which are close to one another, a di�erentially private mechanism will behave

approximately the same on both datasets. This de�nition gives a strong guarantee

that the presence or absence of an individual (single element) will not a�ect the �nal

output of the query signi�cantly.

When the query is a real-valued function, one method to achieve ε-di�erential pri-

vacy is to add Laplace noise according to the sensitivity of the query function (Dwork

et al., 2006). When the query maps the database to some discrete structures such as

strings or trees, McSherry and Twalwar (2007) proposed an exponential mechanism

to provide ε-di�erential privacy.

1.3 Contributions

The focus of my research is to design privacy-preserving distributed data mining

protocols with secure computation techniques. I implemented privacy-preserving data

mining protocols based on homomorphic encryption. I have designed new secure

protocols for a number of basic operations and used these protocols to develop privacy

preserving distributed data mining protocols. I summarize our contributions below.

1. New secure protocols for basic operations. I derived a basic relation-

ship between a secret and its two shares when we used the additive secret-sharing

scheme based on homomorphic encryption (section 3.2.1). With this relationship we

4



developed two e�cient secure protocols: secure comparison (section 3.2) and secure

division with public divisor (section 4.5). The new secure comparison protocol needs

only 2L + O(1) secure multiplications when the comparands belong to a known in-

terval [0, 2L). Existing protocols require at least 12L + O(1) secure multiplications

(Bunn et al., 2007; Qi et al., 2008).

In addition, we designed a secure inverse square root protocol based on the Newton

iterative method and hence we proposed a solution for secure square root (section

4.6.1). I also developed an e�cient secure exponential protocol based on Taylor's

series explanation (section 5.4.2). All these protocols are implemented using secure

multiplication and can be used to develop privacy preserving data mining protocols.

2. Design and Implementation of fundamental privacy preserving data

mining protocols. I have developed privacy preserving protocols for two funda-

mental data mining tasks: multiple linear regression and EM clustering. Privacy

preserving linear regression and EM clustering have been studied in the literature.

Sanil et al. (2004) proposed a privacy preserving linear regression protocol based on

the Powell iterative method. It addresses only the case of vertical partition and dis-

closes aggregate information during each iteration. Du et .. (2004) proposed secure

matrix multiplication and secure matrix inverse protocols and hence designed pri-

vacy preserving linear regression protocols for vertically partitioned datasets. Their

method protects the data matrix by multiplying with random matrices, which can-

not provide theoretical guarantee about privacy. Hall et al. (2011) presented secure

linear regression protocols for arbitrarily partitioned datasets based on homomorphic

encryption. They designed a secure protocol to invert a matrix, which they used to

invert normal matrices and solve normal equations. Generally, it is not desirable to

solve normal equations by inverting the normal matrices because inverting a matrix

is more expensive and the normal matrix may be ill-conditioned. I designed privacy

preserving multiple linear regression protocols based on the stable QR-decomposition

method (chapter 4). They work for arbitrarily partitioned datasets The two-party

protocol is provably secure in the semi-honest model.

Lin et al. (2004) presented a privacy preserving EM clustering over horizontally

partitioned datasets. Their method chooses to disclose the means and the covariance

matrix. I proposed a privacy preserving EM clustering protocol over arbitrarily

partitioned datasets, which includes vertical partition and horizontal partition as

special cases. This is the �rst solution for vertically partitioned datasets. Our two-

party protocol discloses only the number of iterations.

Due to the computational cost of encryption/decryption operations and the com-
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plexity of data mining tasks, an important concern is whether privacy preserving data

mining protocols are practical or they are of only theoretical interest. I have imple-

mented our privacy preserving multiple linear regression and EM clustering algo-

rithms in C++ based on the Paillier cryptosystem and evaluated their performances

over benchmark datasets. Our experiments show that although the executions of

secure protocols are generally slow, they are feasible for small datasets. Further im-

provements and new techniques are needed to make them more practical for larger

datasets.

3. Application of the Schur Complement. When data are distributed among

multiple parties, the dataset can be represented as a block matrix with each block

held by a party. I explored the possibility of using the structure of the block matrix

to design e�cient privacy preserving data mining protocols. In particular, I studied

the potential application of the Schur Complement in the design of e�cient kernel

ridge regression protocol (chapter 6).

Copyright cOZhenmin Lin 2012
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Chapter 2

Secure Computation

2.1 Introduction

The focus of my research is to design privacy-preserving distributed data mining pro-

tocols with secure computation techniques. I design privacy-preserving data mining

protocols based on homomorphic encryption. In particular, I implement secure pro-

tocols using the Paillier cryptosystem. In this chapter, I introduce the background

knowledge in secure computation and the additive secret-sharing scheme based on

homomorphic encryption.

This chapter is organized as follows. I �rst introduce the concepts in secure com-

putation in section 2.2. In section 2.3.1, I describe the Paillier cryptosystem, which I

use to implement privacy preserving data mining protocols. It is homomorphic, and

semantically secure based on some computational assumption. I then describe the

additive secret-sharing scheme based on homomorphic encryption in section 2.3.2.

The presentation of secure computation in section 2.2 is based on the material from

(Goldreich, 2004).

2.2 Concepts in Secure Computation

Let f : ({0, 1}∗)m → ({0, 1}∗)m be an m-ary functionality 1 which maps m inputs

(x1, . . . , xm) to m outputs, (y1, . . . , ym) = f(x1, . . . , xm). Here f can be deterministic

or randomized. We write yi = fi(x1, . . . , xm). For the moment, we assume that

all xi are of the same length. I will discuss later the issues related to relax this

1In the area of secure computation, the notion of an m-ary functionality refers to a random

process which maps m inputs to m outputs, where functions mapping m inputs to m outputs are a

special case. Functionalities are randomized extension of ordinary functions.
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assumption. Suppose that there are m parties, each holding a local input xi. A

multi-party protocol for computing the functionality f is a protocol such that if all

the parties compute and communicate as speci�ed by the protocol, each party i will

obtain his/her desired output yi = fi(x1, ..., xm) when the protocol �nishes. We

assume that the functionality f is polynomial-time computable and the protocol runs

in polynomial time of the input length.

During the execution of the protocol, the participating parties need to communi-

cate with each other with messages. These message may contain sensitive information.

Secure computation is concerned about the privacy of the involved parties when they

interact with each other. A protocol is considered to be secure if the participating

parties don't disclose any information more than necessary. We require that what a

party can learn from the joint computation can be inferred from his/her own input

and output. More generally, we require that even if a subset of parties collude, what

they can learn from the joint computation can be inferred from their own inputs and

outputs.

To give a formal de�nition of privacy, we need the concept of computational

indistinguishability.

De�nition 2.1. (Goldreich, 2004) Let X = {Xk}k=1,2,... and Y = {Yk}k=1,2,... be two

probabilistic ensembles. X and Y are said to be computationally indistinguishable,

denoted by

{Xk}k=1,2,... ' {Yk}k=1,2,...,

if for every family of polynomial-size circuits {Ck}, every positive polynomial p and

all su�ciently large k, it holds that

|Prob(Ck(Xk) = 1)− Prob(Ck(Yk) = 1)| < 1

p(k)
. (2.1)

The formal de�nition of privacy can be given based on the simulation paradigm.

Suppose that thesem parties use a protocol Π to compute the functionality f(x1, . . . , xm).

Initially, each party i holds a local input xi and is supplied with some random coins

ri which are used as the random source for the execution of the protocol. In addition,

we also supply each party with a security parameter 1k. Then these parties perform

the computation and communication as speci�ed by the protocol Π and output the

results when the protocol �nishes.

Let x = (x1, . . . , xm). We denote the output of party i by Πi(1
k, x) and the outputs

of the protocol by Π(1k, x) = (Πi(1
k, x), . . . ,Πm(1k, x)). The view of party i during
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the execution of the protocol Π is de�ned as the collection of the security parameter

1k, his/her input xi, his/her internal coin toss ri and all the messages he/she has

received during the joint computation (m1, ...,mti),

V IEWΠ
i (1k, x) = (1k, xi, ri,m1, . . . ,mti).

Given a subset of parties I = {i1, . . . , is} ⊆ {1, 2, . . . ,m}, we let fI(x) = (fi1 , . . . , fis)

and de�ne

V IEWΠ
I (1k, x) = (V IEWΠ

i1
(1k, x), . . . , V IEWΠ

is (1k, x)).

Suppose that a subset of the parties I collude and they try to infer extra informa-

tion from the computation. We assume the semi-honest model. That is, we assume

that all the parties follow the protocol and the colluding parties only try to infer useful

information from the messages they have received during the joint computation.

Note that in the semi-honest model, all the information these colluding parties

obtain is contained in the view of these parties. We consider a protocol to be secure if

the view of these colluding parties I can be simulated based on the their own inputs

and outputs. That is, there exists a probabilistic polynomial time algorithm, given

the inputs and the outputs of the colluding parties I, can simulate the view of these

parties. We call this algorithm the simulator. The simulation here means that the

output of the simulator is computationally indistinguishable from the view of the

colluding parties I.

De�nition 2.2. Let Π be a protocol for m parties to compute the m-ary functionality

f . We say that Π privately 2 computes f if there exists a probabilistic polynomial time

algorithm, denoted by S, such that for every I ⊆ {1, . . . ,m}, it holds that

{(S(I, 1k, xI , fI(x)), f(x))}k=1,2,... ' {(V IEWI(1
k, x),Π(1k, x))}k=1,2,....

De�nition 2.2 says that even if a subset of parties I collude, the information they

can obtain can be e�ciently simulated based only on their own inputs and outputs.

Note that when we say Π is a protocol to compute f , we mean the output of the

protocol Π(x) is identically distributed with f(x). The above de�nition guarantees

both the correctness and the security of the protocol.

An important special case is secure two-party computation.

2In this paper, I use the terms secure and private, securely and privately interchangeably.
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De�nition 2.3. Suppose that f is a two-ary functionality (y1, y2) = f(x1, x2), y1 =

f1(x1, x2) and y2 = f2(x1, x2). Let Π be a protocol for 2 parties to compute f . We

say that Π privately computes f if there exists two probabilistic polynomial time algo-

rithms, denoted by S1 and S2, such that

{(S1(1k, x1, f1(x)), f(x))}k=1,2,... ' {(V IEW1(1k, x),Π(1k, x))}k=1,2,... (2.2)

{(S2(1k, x2, f2(x)), f(x))}k=1,2,... ' {(V IEW2(1k, x),Π(1k, x))}k=1,2,.... (2.3)

In the de�nition of secure computation we assume that all the inputs have the

same lengths. The reason is that in a protocol to compute any functionality, the

program of a party usually depends on the lengths of other parties' inputs. One way

to ensure this is to pad the inputs with zeros. Another method is simply to add the

lengths of all the inputs as a part of the input of each party. This is more practical in

the �eld of privacy preserving distributed data mining. For example, in the vertically

partitioned datasets, we assume that each party knows the number of objects and the

numbers of the attributes held by other parties.

Modular Composition of Secure Protocols. A protocol can be augmented

with access to an oracle for some functionality g. The access to an oracle means that

if each party i provides xi and they invoke the oracle, they will get the results of

g(x1, . . . , xm) instantly without any computational cost. We can de�ne the security

of an oracle-aided protocol in the same way as for the ordinary protocol except that

the results of the invocations of the oracles are treated as messages and are included

in the views of the parties.

Suppose that a protocol Π with an access to the oracle for the functionality g

privately computes the functionality f and a secure protocol Ψ privately computes g.

If we replace the access to the oracle for g in the protocol Π with the secure protocol Ψ,

the composition theorem (Goldreich, 2004, page 673) says that the resulting protocol

privately computes the functionality f .

To use the composition theorem, we need to show that Ψ securely computes g

and that the protocol Π with an access to the oracle for g privately computes f . The

composition theorem allows us to design secure protocols in a modular way. If the

functionality to be computed can be implemented using a number of procedures, we

can design new secure protocol or use existing protocol for each procedure and then

assemble them together to design a secure protocol for the whole functionality.

Feasibility Results. Yao (1988) proposed a general construction of secure pro-

tocol for any function in two-party cases. We know that every function can be rep-
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resented as a circuit. The �rst party constructs a "scrambled" circuit which consists

of pairs of encrypted secrets that correspond to the wires of the original circuit and

gadgets that correspond to the gates of the original circuit. The gadget is constructed

in such a way that the knowledge of secrets corresponding to the wire entering the

gates yields a secret corresponding to the wire that exists the gate. The �rst party

sends the "scrambled" circuit to the second party. The second party "evaluates" the

"scrambled" circuit from top (input wires) to bottom (output wires), obtaining the

result, and sends it to the �rst party.

Goldreich et al. (1987) extended the results by Yao and proposed a secure protocol

for any functionality in multi-party cases. The functionality is expressed as a circuit

which consists of only AND and NOT gates. Each bit corresponding to a wire is

shared by all the parties which each hold a random bit that sums to the secret mod 2.

The computation propagates from top (input wires) to bottom (output wires) along

the circuit. When a NOT gate is encountered, the �rst party �ips its bit and all other

parties maintain their bit values. The secure computation of an AND gate in the

multi-party case can be reduced to the secure computation of an AND operation in

two-party case, which can be implemented using oblivious transfer.

The existence of general construction of secure protocols for any functionality may

be su�cient for traditional cryptographic applications, such as secure exchange and

key management. However, data mining deals with large datasets and such general

constructions may be not e�cient. Design of e�cient secure protocols for speci�c

data mining tasks has been an active research topic in the past ten years.

2.3 Additive Secret-Sharing Scheme Based on Ho-

momorphic Encryption

I �rst introduce the Paillier cryptosystem in subsection 2.3.1. The Paillier cryptosys-

tem is homomorphic and semantically secure. I then describe the additive secret-

sharing scheme based on homomorphic encryption in subsection 2.3.2. I use this

scheme to design privacy preserving data mining protocols in the following chapters.

2.3.1 Paillier Cryptosystem and Homomorphic Encryption

An encryption scheme is a triple (G,E,D) of probabilistic polynomial-time algo-

rithms, where G is the key-generator algorithm, E is the encryption algorithm and

D is the decryption algorithm. Given input 1k, the algorithm G outputs a pair of
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bit strings (e, d) = G(1k), where e is the encryption key and d is the corresponding

decryption key. Here k is the security parameter. We often write G = (G1, G2) and

e = G1(1k) , d = G2(1k).

Given a pair of encryption/decryption keys (e, d), we can encrypt a message α ∈
{0, 1}k using E(e, α) and decrypt a ciphertext β using D(d, β). We may write E(e, α)

as Ee(α) and D(d, β) as Dd(β). When no confusion will be caused, we often omit the

encryption and decryption keys and write them as E(α) and D(β), respectively. The

encryption algorithm E and decryption algorithm D satisfy

Pr[D(d,E(e, α))] = α] = 1,

where the probability is taken over the internal coin tosses of the algorithms E and

D.

In the public-key encryption scheme, a party, say P , uses the algorithm G to

generate a pair of keys (e, d). He/she keeps the decryption key d private and publi-

cizes the encryption key e. Any other party can send party P private messages by

encrypting them using the public key e. Only party P can decrypt these messages

using his/her private key d, but nobody else can do that.

The particular cryptosystem we use in the design and implementation of secure

protocols is the Paillier cryptosystem. It was invented by Pascal Paillier in 1999. The

Paillier cryptosystem generates the pair of encryption/decryption keys as follows.

Given the security parameter 1k, the key generator G chooses randomly two large

prime numbers p and q such that gcd(pq, (p−1)(q−1)) = 1. Let the modulus n = pq

and λ = lcm(p− 1, q− 1). The security parameter k is the bit length of the modulus

n. The algorithm G then selects a random integer g from ∈ Z∗n2 and computes

µ = (L(gλ mod n2))−1 mod n, where the function L is de�ned as L(x) = b(x− 1)/nc.
The public (encryption) key is (n, g) and the corresponding private (decryption) key

is (λ, µ). Note that the modulus n is contained in the public key. If p and q are

of equal length, a simpler variant of the above key generation procedure is to set

g = n+ 1, λ = (p− 1)(q − 1) and µ = λ−1 mod n.

The Paillier cryptosystem is a probabilistic encryption scheme. To encrypt a

message m ∈ Zn, we select a random integer r ∈ Z∗n and compute the ciphertext

as c = E(m, r) = gmrn mod n2. We often omit the random number r and write

E(m, r) as E(m). Given a ciphertext c ∈ Z∗n2 , we can decrypt it using the formula

m = D(c) = L(cλ mod n2)µ mod n.

Proposition 2.1. The Paillier cryptosystem is a homomorphic cryptosystem.
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That is, given two messages m1,m2 ∈ Zn, we have

D(E(m1) · E(m2) mod n2) = (m1 +m2) mod n (2.4)

D(E(m1)m2 mod n2) = (m1m2) mod n. (2.5)

For convenience, we often write equations (2.4) and 2.5 as

E(m1 +m2) = E(m1)E(m2) (2.6)

E(m1m2) = E(m1)m2 . (2.7)

The homomorphic property allows us to perform operations on the encrypted

messages without decrypting them. This is an important property we use to design

secure protocols, as I will show in next section.

The security of the Paillier cryptosystem is based on the decisional composite

residuosity assumption (DCRA), which states that given a composite n and an integer

z, it is computationally intractable to decide whether z is an n-residual modulo n2 or

not, i.e., whether there exists y such that z = yn mod n2.

Proposition 2.2. If the decisional composite residuosity assumption holds, the Pail-

lier cryptosystem is semantically secure. That is, for every family of polynomial-size

circuits Ck and for every polynomial p, all su�ciently large k, any x, y ∈ {0, 1}k,

|Pr[Ck(G1(1k), EG1(1k)(x)) = 1]− Pr[Ck(G1(1k), EG1(1k)(y)) = 1]| < 1

p(k)
. (2.8)

Equation 2.8 states that the cryptosystem is secure against one message attack.

It is known that it implies that the cryptosystem is secure against multiple messages

attack (Goldreich, 2004). That is, for every family of polynomial-size circuits Ck,

for every polynomial p, all su�ciently large k, any two sequences of messages x =

(x1, . . . , xt(k)) and y = (y1, . . . , yt(k)) such that xi, yi ∈ {0, 1}k and t(k) is a polynomial

of k, it holds that

|Pr[Ck(G1(1k), EG1(1k)(x)) = 1]− Pr[Ck(G1(1k), EG1(1k)(y)) = 1]| < 1

p(k)
, (2.9)

where

EG1(1k)(x) = (EG1(1k)(x1), . . . , EG1(1k)(xt(k)))
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EG1(1k)(y) = (EG1(1k)(y1), . . . , EG1(1k)(yt(k))).

Note that equation 2.9 states exactly that (G1(1k), EG1(1k)(x)) and (G1(1k), EG1(1k)(y))

are computationally indistinguishable.

2.3.2 Additive Secret-Sharing Scheme

One important technique for the design and implementation of two-party secure com-

putation and privacy preserving data mining protocols is based on the additive

secret-sharing scheme using homomorphic encryption (Bansal et al., 2011; Hall

et al. 2011). To be concrete, I use the Paillier cryptosystem as the homomorphic

encryption scheme. Suppose that there are two parties, Alice and Bob. Alice has the

decryption (private) key d and both Alice and Bob know the encryption (public) key

e. The plaintext domain is Zn = {0, 1, . . . , n − 1} and the corresponding ciphertext

domain is Zn2 = {0, 1, . . . , n2 − 1}. Note that in the Paillier system e = (n, g) as

de�ned in last section.

In the additive secret-sharing scheme based on homomorphic encryption, we try

to maintain secret numbers between Alice and Bob in such a way that neither person

knows the number but they still perform basic operations on these numbers. For

each number x in the plaintext domain, Alice holds a number xA ∈ Zn and Bob

holds a number xB such that x = (xA + xB) mod n. We call xA Alice's share and

xB Bob's share. Since Alice only knows her share and Bob only knows his share,

neither of them knows the number x. In this way we can hide x as a secret between

Alice and Bob. As a convention, I use the subscript or superscript A to denote the

shares Alice holds and the subscript or superscript B to denote the shares Bob holds.

When no confusion will be caused, we omit the modulus in the expression and write

x = xA + xB.

I now discuss how to perform secure addition and secure multiplication in the

additive secret-sharing scheme. Given two secrets x = (xA + xB) mod n and y =

(yA + yB) mod n, it is straightforward to compute their sum. Alice adds her shares

zA = (xA + yA) mod n, Bob adds his shares zB = (xB + yB) mod n, then zA, zB

are shares of the secret z = x + y. Note that no encryption/decryption operation is

needed and no communication is invoked in this procedure at all.

It is more involved to privately multiple two secrets. Lindell and Pinkas (2000)

mentioned that private polynomial evaluation can be performed based on homomor-

phic encryption. Yang et al. (2006) and Goethals et al. (2005) presented secure

scalar product based on homomorphic encryption, respectively. Secure multiplication

14



is a special case of secure scalar product. I present secure multiplication below.

Protocol 2.1 Secure multiplication

Input: two secrets x and y are split between Alice and Bob, x = (xA + xB) mod n,
y = (yA + yB) mod n.

Output: Alice and Bob obtain their respective shares of z = xy.

1: Alice encrypts xA and yA, m1 = E(xA, s1), m2 = E(yA, s2), where s1 and s2 are
uniformly random numbers in Z∗n, and sends them to Bob.

2: Bob computes p1 = myB
1 mod n2 and p2 = mxB

2 mod n2.
Bob encrypts a uniformly random number r ∈ Zn, p3 = E(r, s3), where s3 is
uniformly random in Z∗n.
Bob computes m3 = (p1p2p3) mod n2 and sends it back to Alice.
Bob sets zB = (xByB − r) mod n.

3: Alice decrypts q = D(m3).
Alice sets zA = (q + xAyA) mod n.

Note that in Protocol 2.1,

m3 = p1p2p3 (mod n2)

= myB
1 mxB

2 E(r, s3) (mod n2)

= E(xA, s1)yBE(yA, s2)xBE(r, s3) (mod n2)

= (gxAsn1 )yB(gyAsn2 )xBgrsn3 (mod n2)

= gxAyB+yAxB+r(syB1 sxB2 s3)n (mod n2)

= E(xAyB + yAxB + r, syB1 sxB2 s3)

q = D(m3)

= xAyB + yAxB + r (mod n)

zA = q + xAyA (mod n)

= xAyB + xByA + xAyA + r (mod n)

zB = xAyB − r (mod n)

zA + zB = xy (mod n).

So zA and zB are shares of z = xy. We use Protocol 2.1 as a basic building block

to implement other secure protocols. At the very beginning of those secure protocols,

Alice generates a pair of keys (e, d) = G(1k) and sends the public key e to Bob. Then

Alice and Bob use the key pair (e, d) to encrypt and decrypt messages There are two

important facts about the secure multiplication which are used to prove the security

of protocols.
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(1) Alice receives only one message m3 = E(xAyB +yAxB +r, syB1 sxB2 s3) from Bob,

which is an encryption of a random number. If we choose any random number r′ in

Zn and another random number s′ in Z∗n, then E(r′, s′) is identically distributed with

m3 no matter what xA, xB, yA, yB are and no matter what s1 and s2 Alice has chosen

to encrypt messages.

(2) Bob receives two messages m1 = E(xA) and m2 = E(yA) from Alice. If we

encrypt two messages m′1 = E(0) and m′2 = E(0), then according to Proposition

2.2, (e,m1,m2) and (e,m′1,m
′
2) are computationally indistinguishable (e = G1(1k) is

treated as a random variable).

Now we know how to perform secure addition and secure multiplication in the

additive secret-sharing scheme based on homomorphic encryption. If any function

can be computed using addition and multiplication, then we are able to implement

a secure protocol for the function using secure addition and secure multiplication.

Inspired by this idea, I develop a number of new secure protocols for basic operations

and use these protocols to design privacy preserving distributed data mining protocols.

Because secure addition is trivial in the additive secret-sharing scheme, I often say

that we implement a secure protocol using secure multiplication, although secure

addition is also needed.

Copyright cOZhenmin Lin 2012
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Chapter 3

An E�cient Secure Comparison

Protocol

3.1 Introduction

Number comparison is a common operation in the implementation of data mining

algorithms. For example, the k-means clustering algorithm assigns a point to the

closest cluster, and the k-nearest neighbor method assigns a point to the class most

common in its k nearest neighbors, both of which need to compare distances. In

particular, many data mining and machine learning algorithms, such as support vector

machine and neural network, are implemented with iterative procedures, in which the

stopping criterion is usually to compare some quantity with a threshold.

Secure comparison is a fundamental problem in the area of secure computation

and privacy preserving data mining. Design of e�cient secure comparison protocol

is of practical importance in the implementation of privacy preserving data mining

protocols. In this chapter, I propose an e�cient secure comparison protocol based

on homomorphic encryption (Lin and Jaromczyk, 2012). This protocol requires 2L+

O(1) secure multiplications when the comparands belong to a known interval [0, 2L).

Previous protocols require at least 12L+O(1) secure multiplications. To demonstrate

the e�ciency of the new secure comparison protocol, I implement a privacy preserving

two-party k-means clustering protocol (Bunn et al., 2007). Experimental results show

that the new secure comparison protocol can improve the performance of the privacy

preserving k-means protocol substantially.

This chapter is organized as follows. In section 3.2, I derive a basic relationship

between a secret number and its shares and hence propose an e�cient secure com-

parison protocol. I discuss previous work on secure comparison in section 3.3 and
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then present the privacy preserving k-means clustering algorithm in section 3.4. Ex-

perimental results on secure comparison and privacy preserving k-means clustering

protocols are presented in section 3.5.

3.2 Secure Comparison

In this section, I �rst derive a basic relationship between a secret number and its

shares. With this relationship I propose an e�cient comparison protocol in section

3.2.2.

3.2.1 A Basic Relationship Between a Secret and Its Shares

Suppose that we are using the additive secret-sharing scheme based on homomorphic

encryption to design secure protocols (section 2.3.2). We denote the plaintext domain

of the underlying cryptosystem by ZN = {0, 1, . . . , N−1}1. To represent both positive
and negative integers in the domain ZN , a possible way is to make the assumption

that all the considered integers x have absolute values |x| < N/2. If x ≥ 0, it is

represented as x in ZN ; if x < 0, then it is represented as x+N in ZN . For example,

if x = −1, it is represented as N − 1. Now we make a little stronger assumption

that all the considered integers x have absolute values |x| < N/3. This assumption is

simple but very useful. As we shall see shortly, it enables us to derive a relationship

between a secret number and its shares, with which we are able to design an e�cient

secure comparison protocol.

Suppose that a secret x is split between Alice and Bob, x = xA + xB (mod N).

Note that xA ∈ [0, N), xB ∈ [0, N), and, by assumption, x ∈ (−N/3, N/3). We

consider the relationship between x and its two shares xA and xB without referring

to modular operations. There are three possibilities.

x = xA + xB;

x = xA + xB − 2N ;

x = xA + xB −N.

We divide the interval [0, N) into three sub-intervals [0, N/3), [N/3, 2N/3) and

[2N/3, N). According to the ranges of xA and xB, we are able to determine which

1Hereafter, I use N to denote the modulus of the cryptosystem and K to denote the security

parameter. I reserve n for the number of observations in datasets and k for the number of clusters

in clustering tasks.
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one of the above equations holds.

Theorem 3.1. Suppose that x ∈ (−N/3, N/3), xA, xB ∈ [0, N), x = xA + xB

(mod N). The following holds:

(i) If xA, xB ∈ [0, N/3), then x = xA + xB;

(ii) If xA, xB ∈ [2N/3, N), then x = xA + xB − 2N ;

(iii) In all other cases, x = xA + xB −N .

Proof. (i) If xA, xB ∈ [0, N/3), then xA + xB − N ∈ [−N,−N/3), xA + xB − 2N ∈
[−2N,−4N/3). Neither [−N,−N/3) nor [−2N,−4N/3) intersects with (−3/N,N/3).

So we must have x = xA + xB.

(ii) If xA, xB ∈ [2N/3, N), then xA + xB ∈ [4N/3, 2N), xA + xB −N ∈ [N/3, N).

Neither [4N/3, 2N) nor [N/3, N) intersects with (−N/3, N/3). So we have x = xA +

xB − 2N .

(iii) As an example, we consider the case when xA, xB ∈ [N/3, 2N/3). In this

case, xA + xB ∈ [2N/3, 4N/3), xA + xB − 2N ∈ [−4N/3,−2N/3). Note that x ∈
(−N/3, N/3), so we must have x = xA + xB − N . Similar arguments hold for other

cases.

Corollary 3.2. De�ne α = 1 if xA, xB ∈ [0, N/3) and 0 otherwise, β = 1 if xA, xB ∈
[2N/3, N) and 0 otherwise. Let γ = 1− α + β, then

x = xA + xB − γN. (3.1)

Proof. Note that in the �rst case in Theorem 3.1, α = 1, β = 0 and γ = 0. In the

second case, α = 0, β = 1 and γ = 2. In all other cases, α = 0, β = 0 and γ = 1.

Equation (3.1) is a basic relationship between a secret and its two shares. It is

used to develop an e�cient secure comparison protocol in next subsection. Later in

section 4.5, I use this relationship to design an e�cient secure division with public

divisor.

3.2.2 Secure Comparison

Suppose that we use the additive secret-sharing scheme based on homomorphic en-

cryption to design secure two-party protocols. We assume that Alice has the private

key and both Alice and Bob know the public key. Now suppose that two secrets

0 ≤ x, y < 2L are split between Alice and Bob, x = xA + xB (mod N), y = yA + yB
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(mod N). Alice and Bob wish to privately compare these two secrets. We assume

that the comparing result is that r = 1 if x ≤ y and r = 0 otherwise. Alice obtains

a share rA and Bob obtains a share rB such that r = rA + rB (mod N). Here we

assume that both x and y belong to a known interval [0, 2L) and have a maximum bit

length of L. The speci�cation of this interval and the maximum bit length L depends

on the application and is agreed on by both parties. The bit length L is typically

much smaller than the security parameter K. We also assume that x, y < N/3, as I

discuss in last subsection. Because N is typically a large number, this assumption is

easily satis�ed in real applications.

Now let z = y−x, zA = (yA−xA) mod N and zB = (yB−xB) mod N . We have

z = zA + zB (mod N). Note that z ∈ (−N/3, N/3). By Theorem 3.1, if we consider

the ranges of zA, zB, we have:

(i) If zA, zB ∈ [0, N/3), then z = zA + zB, so z ≥ 0 and x ≤ y.

(ii) If zA, zB ∈ [2N/3, N), then z = zA + zB − 2N , so −2N/3 ≤ z < 0 and x > y.

We can determine the order of x and y directly in these two cases. In all other

cases, we know that z = zA + zB − N . Note that −2L < z < 2L as we assume

that 0 ≤ x, y < 2L. If z ≥ 0, then the (L + 1)-th bit of 2K + z is 0; and it is 1

if z < 0. This is true as long as L < K holds. For example, let K = 10, L = 4,

then 210 + 3 = 10000000011 and 210 − 3 = 0111111111101. So to determine whether

0 ≤ z or not, we only need to compute the (L + 1)-th bit of 2K + z. Note that

2K + z = zA + zB + 2K −N .

Putting all things together, I present an e�cient secure comparison protocol in

Protocol 3.1. In the protocol, the comparison result r is a secret split between Alice

and Bob. Alice and Bob obtain their respective shares of r but neither of them knows

the secret r. This protocol will be used as a building block to design other secure

protocols.

In Protocol 3.1, α = 1 if and only if zA, zB ∈ [0, N/3). In this case, we have x ≤ y.

β = 1 if and only if zA, zB ∈ [2N/3, N). In this case, we have x > y. Lines 9-16

consider the case when z = zA + zB −N and compute the (L+ 1)-th bit of (2K + z).

Lines 11-16 perform the usual binary addition of p and q:

pL+1pL . . . p1
+ qL+1qL . . . q1

���������
d = dL+1dL . . . d1

ci is the i-th carry-over bit and di is the i-th bit of d = p + q. Line 14 says that if
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Protocol 3.1 Secure comparison

Input: two secret integers x and y such that 0 ≤ x, y < 2L are split between Alice
and Bob, x = xA + xB (mod N), y = yA + yB (mod N).

Output: Alice and Bob obtain their respective shares of the comparison result r
such that r = 1 if x ≤ y and 0 otherwise.

1: Alice: zA = (yA − xA) mod N .
2: Bob: zB = (yB − xB) mod N .

3: Alice: α1 = 1 if zA < N/3 and α1 = 0 otherwise.
4: Bob: α2 = 1 if zB < N/3 and α2 = 0 otherwise.
5: Alice and Bob use secure multiplication (Protocol 2.1) to privately compute α =
α1α2.

6: Alice: β1 = 1 if 2N/3 ≤ zA and β1 = 0 otherwise.
7: Bob: β2 = 1 if 2N/3 ≤ zB and β2 = 0 otherwise.
8: Alice and Bob use secure multiplication to privately compute β = β1β2.

9: Alice: let p = pL+1pL . . . p1 be the lowest L+ 1 bits of zA.
10: Bob: let q = qL+1qL . . . q1 be the lowest L+ 1 bits of zB + 2K −N .
11: c0 = 0
12: Alice and Bob use secure multiplication to privately compute the following loop
13: for i = 1 to L+ 1 do
14: ci = pici−1 + qi(pi + ci−1 − pici−1 − pici−1)
15: di = pi + qi + ci−1 − ci − ci
16: end for

17: Alice and Bob use secure multiplication to privately compute
r = 1− β − (1− α)(1− β)dL+1.
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at least two of pi, qi and ci−1 are 1, ci is 1; otherwise, ci is 0. Note that we need 2

multiplications to compute each ci. dL+1 is the (L+1)-th bit of (2K +z). If dL+1 = 0,

then x ≤ y; otherwise x > y.

Line 17 combines all three cases and it can be interpreted as follows. If β = 1,

which means x > y, so r = 0. Otherwise, β = 0 and r = 1 − (1 − α)dL+1. If α = 1,

we know that x ≤ y, so r = 1; otherwise α = 0, we have r = 1− dL+1.

Consider the following trivial example. Let N = 143, K = 8, L = 4, x = 5, xA =

70, xB = 78, y = 2, yA = 33, yB = 112. Then zA = (33 − 70) mod 143 = 106,

zB = (112 − 78) mod 143 = 34. In this case, α = 0 and β = 0. Now p = 01010,

q = 10011 because 106 = (1101010)2, 2K − N + zB = 147 = (10010011)2. So

d = p+ q = 11101, and we have r = 1− d5 = 0.

Th implementation of Protocol 3.1 is based on the additive secret-sharing scheme.

In the implementation, all the variables α, β, ci, di and r are secrets split between Alice

and Bob. Note that Protocol 3.1 involves only addition/subtraction and multiplica-

tion. Secure addition in the additive secret-sharing scheme is trivial. In the protocol

of secure multiplication, both the input and the output are secrets split between Alice

and Bob. We can use secure multiplication to implement Protocol 3.1. Protocol 3.1

needs 2L+O(1) invocations of secure multiplication.

As an example, I show how to implement line 17. We have inputs α = αA +

αB (mod N), β = βA + βB (mod N) and dL+1 = dAL+1 + dBL+1 (mod N) before the

execution of line 16. Alice �rst computes uA = (1 − βA) mod N and vA = (1 −
αA) mod N ; and Bob computes uB = (−βB) mod N and vB = (−αB) mod N . Then

uA and uB, vA and vB, wA are shares of u = 1 − β and v = 1 − α, respectively.

Alice and Bob invoke secure multiplication on (uA, vA) and (uB, vB) and obtain their

respective shares of s = uv. That is, Alice obtains a share sA and Bob obtains a share

sB such that s = sA + sB (mod N). Now Alice and Bob invoke secure multiplication

on (sA, d
A
L+1 and (sB, d

B
L+1) and obtain their respective shares of t = sdL+1. Alice

computes rA = (uA − tA) mod N and Bob computes rB = (uB − tB) mod N . Then

rA and rB ares shares of the desired comparison result r.

In the implementation of the secure comparison protocol, we can use the following

three precomputation techniques. They can reduce the running time drastically.

(1) In the secure multiplications of α = α1α2, β = β1β2 and pici−1, Alice needs

to encrypt α1, β1 and pi and sends them to Bob. Note that α1, β1 and pi are either

0 or 1 and they are held by Alice. Alice can compute a series of encryptions of 0

and 1 beforehand. During the execution of the protocol, Alice picks up the encrypted

numbers accordingly (Yang et al., 2006).
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(2) In secure multiplication, Bob needs to select and encrypt a random number.

These random numbers and their encryptions are independent of the execution of

secure protocols. So Bob can do these beforehand.

(3) In the Paillier cryptosystem, we encrypt a plaintext x as gxrN mod N , where

(N, g) is the encryption key and r is a random number in Z∗N . Note that rN is

independent of the execution of secure protocols. We can compute a large number

of numbers rN beforehand and use them when needed in the execution of secure

protocols (Paillier, 1999).

3.3 Previous Work

Secure comparison is a fundamental problem in secure computation and privacy pre-

serving data mining. In his seminal paper on secure computation (Yao, 1982), Yao

proposed the Millionaires' problem, in which two millionaires wish to know who is

richer but without revealing their asset values. The original solution is exponential

in time and space. Several e�cient protocols have been proposed and they focus on

the case when each party knows one number (Lin et al., 2005). The new secure com-

parison protocol presented in the previous section assumes that we use the additive

secret-sharing scheme based on homomorphic encryption and that the numbers are

secrets split between two parties. The adoption of homomorphic encryption enables

e�cient implementation of secure multiplication, which is a basic and almost indis-

pensable operation in the design of privacy preserving data mining protocols. The

new protocol assumes that both the input numbers and the output result are secrets

split between two parties, so that it can be used as a subprotocol in other privacy

preserving data mining protocols.

Bunn et al. (2007) proposed a secure comparison protocol based on homomorphic

encryption in the development of their secure k-means protocol. Their comparison

protocol assumes that two secrets x, y ∈ [0, 2L) are split between two parties and the

comparison result is that r = 0 if x < y, r = 1 if x > y, and r takes 0 or 1 randomly

when x = y. The result r is also a secret split between Alice and Bob.

Bunn et al. �rst proposed a secure protocol to privately transform a secret x into

its binary representation. It is assumed that the secret x ∈ [0, N/2) and x ∈ [0, 2L).

If we let α = 0 if xA, xB ∈ [0, N/2) and α = 1 otherwise, then x = xA + xB − αN .

Let xALx
A
L−1 . . . x

A
1 and xBLx

B
L−1 . . . x

B
1 be the lowest L bits of xA and xB, respectively,

and p = pLpL−1 . . . p1 be the lowest L bits of 2K −N . Then the binary representation

of x is computed as the following:
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xALx
A
L−1 . . . x

A
1

xBLx
B
L−1 . . . x

B
1

+α ∗ (pLpL−1 . . . p1)
����������

x = xLxL−1 . . . x1

The authors didn't give the exact details of how to compute the above formula.

One possible way is to lines 11-16 in Protocol 3.1 to perform binary addition twice

and it takes 4L + O(1) secure multiplications. I present the secure transformation

protocol in Protocol 3.2. In the protocol, β = 1− α.

Protocol 3.2 Secure transformation protocol

Input: a secret integer x such that 0 ≤ x < 2L and 0 ≤ x < N/2 is split between
Alice and Bob, x = xA + xB (mod N).

Output: the binary representation of x, x = xL . . . x1, whose bits xi are secrets split
between Alice and Bob.

1: Alice: β1 = 1 if zA < N/2 and β1 = 0 otherwise.
2: Bob: β2 = 1 if zB < N/2 and β2 = 0 otherwise.
3: Alice and Bob use secure multiplication (Protocol 2.1) to securely compute β =
β1β2. Alice obtains αA and Bob obtains βB such that β = βA + βB (mod N).

4: Alice: let p = pL . . . p1 be the lowest L bits of xA.
5: Bob: let q = qL . . . q1 be the lowest L bits of xB.
6: c0 = 0
7: for i = 1 to L do
8: ci = pici−1 + qi(pi + ci−1 − pici−1 − pici−1)
9: di = pi + qi + ci−1 − ci − ci

10: end for

11: for i = 1 to L do
12: if the i-th bit of (2K −N) is 1 then
13: si = 1− β
14: else
15: si = 0
16: end if
17: end for

18: c0 = 0
19: for i = 1 to L do
20: ci = dici−1 + si(di + ci−1 − dici−1 − dici−1)
21: xi = di + si + ci−1 − ci − ci
22: end for

Lines 4-10 computes dL . . . d1, the binary representation of d = xA + xB. Lines

11-17 computes the binary representation of α(2K−N). Note that both parties know
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2K −N . In line 12, if the i-th bit of (2K −N) is 1, Alice sets si,A = (1− βA) mod N

and Bob sets si,B = (−βB) mod N ; Otherwise, Alice and Bob set their shares of si as

0. s = sL . . . r1 is the binary representation of α(2K −N). Lines 18-22 compute the

binary representation of x = d+ s.

Alternatively, we can compute the binary representation of xA + xB, denoted

by uLuL−1 . . . u1, using lines 4-10; we then compute the binary representation of

xA+xB +2K−N , denoted by vLvL−1 . . . v1, using lines 4-10 with xB replaced by xB +

2K −N . Then the i-th bit of x is then (1−α)ui +αvi. When we use precomputation

techniques as we discuss in the previous subsection, this implementation may be more

e�cient because in line 8, pi and qi are numbers known by one party and the secure

multiplication can be simpli�ed, while in line 20, both di and ci are secrets.

After transforming x and y into their binary representations, x = xL . . . x1 and

y = yL . . . y1, Bunn et.al used the following formula to compare x and y:

r =(xL ⊕ yL)xL + (xL ⊕ yL ⊕ 1)(xL−1 ⊕ yL−1)xL−1

+ (xL ⊕ yL ⊕ 1)(xL−1 ⊕ yL−1 ⊕ 1)(xL−2 ⊕ yL−2)

∗ xL−2 + · · ·+ (xL ⊕ yL)...(x2 ⊕ y2 ⊕ 1)(x1 ⊕ y1)

+ (xL ⊕ yL ⊕ 1) . . . (x1 ⊕ y1 ⊕ 1)t,

where t takes 0 or 1 randomly and ⊕ is the XOR operation. Note that a ⊕ b =

a + b − 2ab. This formula needs 4L + O(1) invocations of secure multiplication. So

the secure comparison protocol takes 12L+O(1) secure multiplications totally.

Qi et al. (2008) proposed another secure protocol for comparison when Alice holds

x and Bob holds y. Let cj (dj) be 1 if the integer with binary representation xj..x1 is

greater (smaller) than the integer with binary representation yj...y1. They used the

following formula to compute cL and dL, If j = 1 then

cj = xj(1− yj), dj = yj(1− xj),

If j > 1 then

cj = (1− dj−1)(cj−1 + (1− cj−1xj(1− yj)))dj
= (1− cj−1)(dj−1 + (1− dj−1yj(1− xj))).

The above formula needs 6L + O(1) multiplications. When the secrets x and y

are split between Alice and Bob, we need to �rst transform them into their binary
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representations. So the secure comparison protocol takes 14L+O(1) secure multipli-

cations.

The three secure comparison protocols discussed so far are all based on homomor-

phic encryption. S. From (2006) proposed a secure multi-party comparison protocol

based on the Shamir's polynomial secret-sharing scheme. Suppose that two integers

x, y ∈ [0, 2L) have binary representations x = xLxL−1 . . . x1 and y = yLyL1 . . . x1, re-

spectively. To compare x and y, we only need to compute (L+1)-th bit of 2L+x−y.
It is 1 if y ≤ x and 0 otherwise. This can be computed by usual binary additions.

When the polynomials are de�ned on the Galois �eld GF (28), which has character 2,

S. From (2006) used the following formula to compute the i-th carry-over bit

ci = xiyi + ci−1(xi + yi),

which requires 2L multiplications. When the polynomials are de�ned over any prime

�eld Zp, S. From used the following formula:

ci = xiyi + xici−1 + yici−1 − 2xiyici−1,

which requires 4L multiplications. As the formula in line 14 in Protocol 3.1 shows,

this can be achieved with only 2L multiplications.

Nishide et al. (2007) proposed secure comparison protocols based on the Shamir's

secret-sharing scheme. Their method is derived from interval testing. In their paper

the polynomials are de�ned over some large �eld Zp (p is a prime number) so that

all the considered integers are in Zp. In contrast, S. From used polynomials over the

small �eld GF (28) to represent secrets of single bits.

Note that both in the additive secret-sharing scheme based on homomorphic en-

cryption and in the Shamir's polynomial secret-sharing scheme, the secure comparison

protocols presented here are all implemented using secure multiplication. However,

the implementations of secure multiplication in these two schemes are di�erent. In

the additive secret-sharing scheme, the implementation of secure multiplication is

based on the homomorphic property of cryptosystems; in the Shamir's secret-sharing

scheme, secure multiplication is implemented via multiplication of polynomials. Note

that in the Shamir's sharing scheme, secure multiplication and hence secure compar-

ison don't work in two-party cases. In contrast, the additive secret-sharing scheme

can be used in two-party cases.
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3.4 Privacy Preserving K-means Clustering

Bunn et al. (2007) proposed a privacy-preserving two-party k-means clustering proto-

col based on homomorphic encryption, The k-means protocol uses secure comparison

as a subprotocol. To demonstrate the e�ciency of the new secure comparison proto-

col, I implement a privacy preserving k-means clustering protocol based on the work

by Bunn et al. I present the protocol in this section.

3.4.1 K-means

K-means clustering is one of the most widely used clustering techniques. Suppose

that we have a dataset X = (x1, . . . , xn)T of n observation with p attributes. We

wish to cluster these observations into k groups, C = {C1, . . . , Ck}, such that the

observations in the same group are similar to each other. Let µj ∈ Rp be the center

(means) of the cluster Cj. The k-means method aims to �nd a clustering of the

dataset X which minimizes the error function E =
∑k

j=1

∑
x∈Cj
‖x− µj‖2

2.

The k-means algorithm is an iterative method for data clustering. Initially, it

selects k cluster centers in some manner. Then it alternates with two steps: assigns

each observation to the cluster with the closest center and then computes the new

cluster centers accordingly. I present the k-means clustering algorithm in Algorithm

3.3, in which µj denotes the current center of the j-th cluster and νj denotes the new

center.

Algorithm 3.3 K-means clustering

Input: a datasetX = (x1, . . . , xn) of n observations with p attributes and the number
of clusters k.

Output: a clustering of n observations into k groups Cj (j = 1, ..., k).

1: initialize the k means ν1, ..., νk.
2: repeat
3: µj = νj for j = 1, 2, ..., k
4: for each observation xi do
5: assign xi to cluster j such that ‖xi−µj‖2

2 is the minimum over all j = 1, . . . , k.
6: end for
7: compute the new cluster centers νj for j = 1, 2, ..., k.
8: until convergence

The initialization of the cluster centers is an important issue. It determines the

�nal solution and a�ects the speed of convergence. We can select the initial centers

randomly, or we can apply the k-means algorithm on a small sample of the dataset
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and use the results as the initial centers to cluster the whole dataset (Bradley et al.,

1996). The stopping criterion is that the di�erence between νj and µj is su�ciently

small, that is,
∑k

j=1‖νj − µj‖2
2 < ε for some prede�ned threshold ε. Here we use the

squared distance ‖νj − µj‖2
2 instead of the distance ‖νj − µj‖2 to avoid square root

operation.

3.4.2 Privacy Preserving Two-Party K-means

Consider a dataset X = (x1, ..., xn)T consisting of n observations with p attributes.

Here we represent each observation as a column vector. We assume that all the

attribute values are integers. For a dataset with real numbers, we represent each real

number r with br2P c, where P is the number of bits to represent the fractional parts

of real numbers.

Now suppose that the dataset X is vertically partitioned between Alice and Bob.

Alice has the �rst p1 attributes and Bob has the last p2 attributes (p1 + p2 = p).

We denote the set of integers by Z. For each observation xi, x
T
i = (xT

i,1, x
T
i,2), where

xi,1 ∈ Zp1 is the values of the �rst p1 attributes and held by Alice, xi,2 ∈ Zp2 is the

values of the last p2 attributes and held by Bob. Alice and Bob wish to apply the k-

means algorithm to cluster their joint dataset X into k groups but without disclosing

their con�dential data.

I now present a secure two-party k-means clustering protocol using the additive

secret-sharing scheme based on homomorphic encryption. We assume that the plain-

text domain of the underlying cryptosystem is ZN = {0, . . . , N − 1} and Alice has

the private key. As I discuss in section 3.2, a nonnegative integer m is represented as

m in ZN and a negative integer m is represented as N +m in ZN .

I �rst present a secure protocol to compute the squared distance between two

points. Suppose that two vectors x = (x1, . . . , xp)
T and y = (y1, . . . , yp)

T are split

between Alice and Bob, xi = xi,A + xi,B (mod N) and yi = yi,A + yi,B (mod N)

(i = 1, . . . , p). Alice and Bob wish to privately compute s = ‖x − y‖2
2 and obtain

their respective shares of s. Let z = x − y, then the two shares of zi are zi,A =
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(xi,A − yi,A) mod N and zi,B = (xi,B − yi,B) mod N . Note that

‖x− y‖2
2 = ‖z‖2

2

= 〈z, z〉

= 〈zA + zB, zA + zB〉

= 〈zA, zA〉+ 〈zB, zB〉+ 2〈zA, zB〉

=

p∏
i=1

z2
i,A +

p∏
i=1

z2
i,B + 2

p∏
i=1

zi,Azi,B.

According to this formula, we can use secure multiplication to implement a secure

protocol to compute squared distances. I present this protocol in Protocol 3.4.

Protocol 3.4 Secure squared distance

Input: two vectors x = (x1, . . . , xp)
T and y = (y1, . . . , yp)

T are split between Alice
and Bob, xi = xi,A + xi,B (mod N) and yi = yi,A + yi,B (mod N).

Output: Alice and Bob obtain their respective shares of s = ‖x− y‖2
2.

1: Alice: zi,A = (xi,A − yi,A) mod N (i = 1, . . . , p).
2: Bob: zi,B = (xi,B − yi,B) mod N (i = 1, . . . , p).
3: Alice: sA = (

∏p
i=1 z

2
i,A) mod N .

4: Bob: sB = (
∏p

i=1 z
2
i,B) mod N .

5: for i = 1 to p do
6: Alice and Bob use Protocol 2.1 to compute r = zi,Azi,B.

Alice obtain her share rA and Bob obtain his share rB.
7: Alice: sA = (sA + rA + rA) mod N .
8: Bob: sB = (sB + rB + rB) mod N .
9: end for

To implement the privacy preserving k-means protocol, we need a secure division

protocol which privately computes the quotient when both the dividend and the di-

visor are secrets. Bunn et al. proposed a solution based on homomorphic encryption.

Suppose that both the dividend b and the divisor d belong to a known interval [0, 2L).

Their solution simulates the ordinary binary division to compute bb/dc. Let b0 = b.

We �nd the largest a1 ∈ [0, L) such that 2a1d ≤ b, which is represented as a character-

istic vector δ1 ∈ ZL such that the a1-th element in δ1 is 1 and all other elements are 0.

Let b1 = b0 − 2a1d. This procedure iterates for i = 1, 2, . . . , L. The quotient has the

binary representation δ =
∑L

i=1 δi. This protocol needs O(L2) secure multiplications.

I now present the privacy preserving two-party k-means clustering protocol in

Protocol 3.5. In the protocol, µj, νj ∈ Zp denote the current and the new centers

of cluster j, respectively, and sj denotes the size of cluster j. The vector φ ∈ Zk
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indicates the assignment of an observation to the closest center. If xi is assigned to

cluster t, then φt = 1, and φj = 0 for j 6= t. The vector c ∈ Zn represents the

clustering of the n observations. If ci = t, it means that we assign the observation xi

to cluster t. In the implementation of the protocol, all the variables µ, ν, s, φ, c are

secrets split between Alice and Bob during each iteration. Only at the end of the

protocol, Alice and Bob exchange their shares of c to get the �nal clustering results.

The initialization of the cluster centers is an important issue in k-means clustering.

The original secure k-means algorithm by Bunn et al. (2007) privately selects the

initial centers according to some probability distribution (Ostrovksy et al., 2006).

In Protocol 3.5, for simplicity, Alice and bob simply initialize the cluster centers

randomly (lines 1 and 2).

Protocol 3.5 invokes Protocol 3.6 in line 10. Protocol 3.6 privately assigns each

point xi to the closest cluster. In Protocol 3.6, the variable φj in line 4 is the compari-

son result of dj and m. In line 5, the variable m is assigned the minimum of m and dj.

Lines 7-11 set φt = 1 if t is the closest cluster and φj = 0 for all j 6= t. For example,

suppose that we have a vector φ = (0, 1, 1, 0, 1, 0) after the execution of line 6, then

we scan this vector from right to left. We don't change the �rst 1 we encounter and

set all the remaining entries to be 0. The vector φ becomes (0, 1, 0, 0, 0, 0).

The new cluster centers are computed privately in lines 18-20, Protocol 3.5. Al-

ice and Bob then use the secure squared distance protocol to compute privately∑k
j=1‖νj − µj‖2

2 and invoke secure comparison to check privately whether
∑k

j=1‖νj −
µj‖2

2 < ε. The comparison result is disclosed to both parties so that they can decide

whether to stop the loop or not. When they exist the loop, Alice and Bob exchange

their shares of c and both parties obtain the clustering results.

We can implement Protocol 3.5 and 3.6 using secure multiplication, secure squared

distances, secure comparison and secure division. It discloses only the number of

iterations. If we �x the number of iterations, the privacy preserving k-means protocol

is provably secure in the semi-honest model.

The privacy preserving two-party k-means presented here is based on the work

by Bunn et al. (2007). To test the performance of the privacy preserving k-means

protocol, I implement the protocol in C++ based on the Paillier system. My imple-

mentation is slightly di�erent from the original protocol by Bunn et al. I summarize

the di�erences below.

1. The secure protocol by Bunn et al. privately selects the initial cluster centers

according to some probability distribution (Ostrovksy et al., 2006). In Protocol 3.5,

for simplicity, we select k observations randomly as the initial centers. For large
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Protocol 3.5 Privacy preserving two-party k-means clustering

Input: a dataset consisting of n observations with p attributes, X = (x1, . . . , xn)T,
is vertically partitioned between Alice and Bob. Alice has the �rst p1 attributes
and Bob has the last p2 attributes. Both Alice and Bob know the number of
clusters k.

Output: Alice and Bob obtain a clustering of these n observations into k groups Cj
(j = 1, ..., k).

1: Alice randomly selects k indices from {0, . . . , n}, denoted by l1, . . . , lk,
and sends these indices to Bob.

2: Alice and Bob set νj = xlj (j = 1, ..., k).

3: repeat

4: for j = 1 to k do
5: µj = νj
6: νj = 0
7: sj = 0
8: end for

9: for each observation xi do
10: Alice and Bob invoke Protocol 3.6 (see below) to privately assign xi to the

closest cluster t. The result is a vector φ ∈ Rk such that φt = 1 and φj = 0
for j 6= t.

11: ci = 0
12: for j = 1 to k do
13: νj = νj + φjxi
14: sj = sj + φj
15: ci = ci + jφj
16: end for
17: end for

18: for j = 1 to k do
19: Alice and Bob invoke secure division to compute νj = νj/sj
20: end for

21: until
∑k

j=1‖νj − µj‖2
2 < ε

22: Cj = {i|ci = j} (j = 1, ..., k)
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Protocol 3.6 Secure protocol to privately assign a point to the closest cluster
Input: an observation x ∈ Zp that vertically partitioned between Alice and Bob;

k clusters centers µj ∈ Zp (j = 1, . . . , k) that are split between Alice and Bob.
Output: φ ∈ Zk such that if x is closest to cluster t, then φt = 1 and φj = 0 for

j 6= t. φ are secrets split between Alice and Bob.

1: m =∞
2: for j = 1 to k do
3: Alice and Bob use Protocol 3.4 to securely compute dj = ‖x− µj‖2

2.
4: Alice and Bob use secure comparison (Protocol 3.1) to securely compare dj

with m. The result is that φj = 1 if dj ≤ min and 0 otherwise.
5: m = (1− φj)m+ φjdj
6: end for

7: δ = 1
8: for j = k downto 1 do
9: φj = δφj

10: δ = δ(1− φj)
11: end for

datasets, we �rst run the privacy preserving k-means protocol on a sample of the

dataset and use the results as the initial centers to cluster the whole dataset.

2. The original protocol by Bunn et al. uses a secure comparison protocol which

requires 12L+O(1) secure multiplications. I use the new secure comparison protocol

that needs 2L + O(1) secure multiplications. Secure comparison is a frequent and

costly operation in the privacy preserving k-means algorithm and it becomes the

bottleneck in the execution of the secure protocol. Experimental results presented in

next section show that the new secure comparison protocol improves the performance

of the privacy preserving k-means protocol substantially.

3. The k-means protocol by Bunn et al. uses a secure division protocol which

requires O(L2) secure multiplications. I implement a secure division protocol based

on homomorphic encryption using Newton's iterative method, which requires O(L)

secure multiplications. I present the secure division protocol in section 4.6 after I

discuss how to perform secure operations of real numbers. I use this secure division

protocol in the implementation of the privacy preserving k-means protocol.

3.5 Experimental Results

I have implemented secure comparison protocols and the privacy preserving two-party

k-means clustering protocol in C++ based on the Paillier cryptosystem (Paillier,
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1999). I used the GMP library (Torbjorn Granlund et al.) for big integers. I ran

the protocols on two computers both with Intel Pentium 4 CPU (3.2GHz) and the

Linux operating system. These computers are in a network connected by 100Mbps

Ethernet with average message latency less than 1ms.

I �rst compared the performances of the new secure comparison protocol with

those of Bunn et al. (2007) and Qi et al. (2008) without using precomputation

techniques. Table 3.1 reports the execution time when we use security parameter

K = 512. Table 3.2 reports the results with security parameter K = 1024. In

the tables, each column corresponds to the maximum bit length of the comparands.

Then I compared the performances of these secure comparison protocols using the

precomputation techniques that I present in section 3.2. I report the results in Table

3.3 and 3.4. The results show that the secure comparison protocol is several times

faster than the existing protocols.

Table 3.1: Execution time of secure comparison protocols (K = 512)

Maximum bit length L
Protocol 10 20 30 40 50

new 0.13s 0.34s 0.49s 0.63s 0.71s
Bunn et al. 3.63s 7.04s 10.45s 13.88s 20.88s
Qi et al. 4.62s 9.23s 13.86s 18.47s 23.26s

Table 3.2: Execution time of secure comparison protocols (K = 1024)

Maximum bit length L
Protocol 10 20 30 40 50

new 0.63s 1.17s 1.66s 2.20s 2.71s
Bunn et al. 5.17s 10.20s 15.20s 20.42s 25.47s
Qi et al. 6.17s 12.38s 18.64s 25.04s 31.27s

Table 3.3: Execution time of secure comparison protocols with precomputation (K =
512)

Maximum bit length L
Protocol 10 20 30 40 50

new 0.034s 0.054s 0.075s 0.098s 0.12s
Bunn et al. 0.44s 0.84s 1.26s 1.67s 2.07s
Qi et al. 0.55s 1.09s 1.65s 2.18s 2.73s
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Table 3.4: Execution time of secure comparison protocols with precomputation (K =
1024)

Maximum bit length L
Protocol 10 20 30 40 50

new 0.22s 0.34s 0.47s 0.60s 0.74s
Bunn et al. 2.76s 5.32s 8.01s 10.57s 13.10s
Qi et al. 3.48s 6.92s 10.41s 13.88s 17.27s

I tested the privacy preserving two-party k-means clustering protocol on 4 datasets

available in the UCI machine learning repository: Wisconsin Breast Cancer (WBC),

Glass Identi�cation, Stalog Australian Credit Data and Wine (Frank and Asuncion).

These datasets are vertically partitioned between Alice and Bob. I describe the

datasets and their partitions in Table 3.5 in which n denotes the number of instances,

p is the number of attributes, and k is the number of clusters. Alice holds the �rst

p1 attributes and Bob holds the last p2 attributes. The observations in the Glass

dataset are classi�ed into 6 groups. Here we consider two broad classes: window and

non-window.

In the following experiments I used security parameter K = 512 and set the

threshold in the stopping criterion as ε = 2−10. When I apply the secure comparison

protocol, I assume that all the numbers belong to [0, 250) (L = 50).

Table 3.5: Benchmark datasets for k-means

Dataset n p p1 p2 k

WBC 699 9 5 4 2
Glass 214 9 5 4 2
Credit 690 14 7 7 2
Wine 178 13 7 6 3

I �rst tested the privacy preserving k-means protocol with di�erent secure com-

parison protocols on small subsets of the WBC dataset. The subset of size n consists

of the �rst n observations from the WBC dataset. On these small subsets of ob-

servations, I chose the �rst 2 observations as the initial cluster centers. The results

are reported in Table 3.6. We can see that the privacy preserving k-means protocol

using the new secure comparison protocol is several times faster than using existing

comparison protocols. This veri�es that secure comparison is the bottleneck in the

implementation of the privacy preserving k-means clustering protocol.

I then tested the privacy preserving k-means protocol on the WBC, Glass, Aus-
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Table 3.6: Execution time of privacy preserving k-means with di�erent secure com-
parison protocols

Size
Protocol 60 90 120 150

new 72s 129s 133s 163s
Bunn et al. 540s 1010s 1072s 1339s
Qi et al. 699s 1301s 1385s 1703s

tralian Credit and Wine datasets. I normalized the Australian Credit and the Wine

dataset by dividing each attribute with its standard deviation. As we assume that the

datasets are vertically partitioned, each party holds all the data for his/her attributes

and can normalize them locally. I used the �rst k observations in the datasets as the

initial centers when I tested the Glass and Wine datasets. For the WBC and German

Credit datasets, I �rst ran the protocol on the �rst 120 observations in the datasets

and used the results as the initial cluster centers to cluster the whole datasets. I

report the running time and clustering accuracies of the privacy preserving k-means

protocol in Table 3.7. All these datasets contain class labels for their observations.

The clustering accuracy is computed as the percentage of correctly clustered obser-

vations. I also report the clustering accuracies using the kmeans function in the

Matlab. We can see that the clustering accuracies of the privacy preserving k-means

protocol are similar to the Matlab kmeans function.

Table 3.7: Experimental results of privacy preserving k-means on benchmark datasets

Dataset
Measure WBC Glass Credit Wine

Running Time 862s 400s 1715s 831s
Secure Protocol Accuracy 95.99% 88.32% 84.20% 95.51%
kmeans (Matlab) Accuracy 95.99% 88.32% 84.06% 96.63%

The running time of secure comparison is determined by the maximum bit length

of the comparands L. To see how the assumption of the maximum bit length a�ects

the overall running time of the privacy preserving k-means clustering protocol, I

tested the privacy preserving k-means protocol on the WBC and Glass dataset with

di�erent assumptions of the maximum bit length. The results are reported in Figure

3.1 and Figure 3.2, which show that the overall running time of the privacy preserving

k-means protocol grows linearly with the maximum bit length.
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Figure 3.1: Scalability of privacy pre-
serving k-means with respect to the
maximum bit length of the comparands
(WBC)

Figure 3.2: Scalability of privacy pre-
serving k-means with respect to the
maximum bit length of the comparands
(Glass)

Copyright cOZhenmin Lin 2012
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Chapter 4

Privacy Preserving Multiple Linear

Regression

4.1 Introduction

Multiple linear regression is an approach to model the relationship between a response

variable and a set of explanatory variables. It assumes that the response variable

depends linearly on the explanatory variables and aims to �nd the linear predictor

function. Multiple linear regression is one of the most successful tools in statistical

analysis and has wide applications in many areas. For example, in �nance, the well-

known capital asset pricing model uses linear regression to analyze and quantify the

systematic risk of investments; in economics, the predictions of consumption spending

and the demand for liquid assets are also based on linear regression models.

There are three typical computational methods to solve the problem of multiple

linear regression: solving normal equations, QR-decomposition and singular value

decomposition (SVD) (Seber, 2003; Demmel, 1997). Normal equations can be solved

using the Cholesky decomposition method. Solving normal equations is fastest and

least accurate. It is adequate when the condition number of the normal matrix is

small. QR-decomposition is the standard method and is employed in the software

packages such as Matlab, R and S-PLUS. The SVD method is the most accurate in

practice but is more expensive.

In many situations, the data to be analyzed are distributed among several parties.

For example, one party has a subset of explanatory variables and the other party has

the rest of explanatory variables and the response variable. If these parties cooperate

with each other and analyze the data jointly, they are able to achieve more accurate

statistical models. However, due to privacy concerns, the data holders may not be
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willing to disclose their con�dential data. In such cases, it is necessary to develop

privacy preserving linear regression protocols which allow these parties to perform

linear regression jointly while protecting their data privacy.

Privacy preserving multiple linear regression has been studied in the literature. Du

et al. (2004) proposed secure matrix multiplication and secure matrix inverse proto-

cols, and hence designed privacy preserving linear regression protocols for vertically

partitioned datasets. Their method protects the data matrix by multiplying with

random matrices, which cannot provide theoretical guarantee about privacy. Hall

et al. (2011) presented secure linear regression protocols for arbitrarily partitioned

datasets based on homomorphic encryption. They designed a secure protocol to in-

vert a matrix, which they used to invert normal matrices and solve normal equations.

Sanil et al. (2004) proposed another privacy preserving linear regression protocol for

vertically partitioned datasets based on the Powell's iterative method. Their protocol

discloses aggregate information during each iteration.

I have developed privacy preserving multiple linear regression protocols based on

the QR-decomposition method. The protocols use the additive secret-sharing scheme

based on homomorphic encryption. In this chapter, I �rst present a two-party privacy

preserving linear regression protocol and prove that it is secure in the semi-honest

model. I then extend the two-party protocol to the multi-party cases.

The organization of this chapter is as follows. Section 4.2 and section 4.3 in-

troduce multiple linear regression and the QR-decomposition method, respectively.

Section 4.4 discusses previous work on privacy preserving multiple linear regression.

Section 4.5 describes how to perform secure operations of real numbers and section

4.6 presents secure inverse square root, secure square root and secure division proto-

cols. Section 4.7 presents privacy preserving multiple linear regression protocols and

section 4.8 presents experimental results on benchmark datasets.

4.2 Multiple Linear Regression

In regression analysis, we are interested in studying how a variable, called the response

variable, depends on a set of variables called the explanatory variables. A linear

regression model assumes that the relationship between the response variable and

the explanatory variables is linear. The goal of linear regression analysis is to learn

this linear function from a training set, with which we can predict the value of the

response variable given the values of the explanatory variables.

Suppose that we have a training dataset consisting of n observations with p ex-
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planatory attributes and an additional response attribute,

X =


x11 x12 · · · x1p

x21 x22 · · · x2p

...
... · · · ...

xn1 xn2 · · · xnp

 ∈ Rn×p, Y =


y1

...

yn

 ∈ Rn,

where each row corresponds to an observation, each column in X corresponds to

an explanatory attribute and the vector Y corresponds to the response attribute.

The i-th observation consists of the values of the p explanatory attributes, xi =

(xi1, . . . , xip)
T ∈ Rp, and the corresponding response attribute value yi. The linear

regression model aims to �nd the coe�cients

β =


β1

...

βp

 ∈ Rp

which best �t the linear relationship

Y = Xβ + ε, (4.1)

where

ε =


ε1
...

εn

 ∈ Rn

are error terms.

The regression analysis very often incorporates a constant factor in the model.

That is, it tries to �nd α ∈ R and β ∈ Rp that best �t the relationship

Y = α1 +Xβ + ε, (4.2)

where 1 is the vector of all 1s. This is equivalent that we add an additional explana-

tory attribute in the model 4.1 with �xed values 1s. Without loss of generality, we

focus on the model 4.1.

The least squares method estimates the regression coe�cients β by minimizing

the residual sum of squares (RSS)

f(β) = (Xβ − Y )T(Xβ − Y ).
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The estimated coe�cients β are the solution of the normal equation

(XTX)β = XTY, (4.3)

namely,

β = (XTX)−1XTY. (4.4)

Here we assume that X has full rank and XTX is symmetric and positive. Note

that in numerical computation, we typically don't use equation 4.4 to compute β

because inverting the normal matrix XTX is more expensive than solving the normal

equation itself. The normal equation can be solved using the Cholesky-decomposition

method. It is adequate when the condition number of the normal matrix XrmTX is

small. However, the normal matrix is often ill-conditioned and strongly in�uenced by

roundo� errors. Solving normal equations directly is not desirable in this case.

There are two stable methods to solve the multiple linear regression problem:

QR-decomposition and singular value decomposition (SVD). QR-decomposition is the

standard method and is employed in the software packages such as Matlab, R and

S-PLUS. The SVD method is the most accurate in practice but is more expensive. I

develop privacy preserving linear regression protocols based on the QR-decomposition

method and I will describe this method in detail in next section. See the classic text-

book (Seber, 2003) for details about linear regression and its computational methods.

4.3 QR-decomposition

Given an n× p matrix X, its QR-decomposition is a decomposition of the form

X = Q

(
R

0

)
, (4.5)

where Q is an n× n orthonormal matrix and R 1 is a p× p upper triangular matrix.
If we write Q = (Qp, Qn−p), where Qp is an n× p matrix and Qn−p is an n× (n− p)
matrix, then

X = QpR. (4.6)

Equation 4.6 is called the thin form of QR-decomposition and equation 4.5 is called

the fat form.

1In this chapter, R denotes both the upper triangular matrix in QR-decomposition and the set

of real numbers. Its meaning is clear from the context.
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Given the regression dataset X ∈ Rn×p and Y ∈ Rn, the regression coe�cients

β are estimated according to equation 4.4. If we have the QR-decomposition of X,

then

β = (XTX)−1XTY

= ((QpR)T(QpR))−1(QpR)TY

= (RTR)−1RTQT
p Y

= R−1rp,

(4.7)

where we let rp = QT
p Y . So the coe�cients are the solution of the linear system

Rβ = rp.

QR-decomposition can be performed via the Gram-Schmidt orthogonalization pro-

cess, the Householder transformation and the Givens transformation. They provide

similar computational accuracies. I develop privacy preserving regression protocols

based on the Householder transformation. I describe the Householder transformation

below.

To factorX into its fat form 4.5, the Householder transformation actually produces

QTX =

(
R

0

)
.

We write X = (c1, . . . , cp), where ci = (x1i, . . . , xni)
T. To transform X into the correct

form, we �rst convert the �rst column c1 into the correct form, that is, all the entries

in c1 except the �rst one are zeros. Let

θ = (−c11/|c11|)‖c1‖2,

where c11 is the �rst entry in c1, and

w = c1 − θe

where e = (1, 0, . . . , 0)T ∈ Rp. Also let

η =
√

2/‖w‖2,

v = ηw,

H1 = In − vvT,
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where In is the n × n identity matrix. The Householder matrix H1 is orthonormal

and symmetric. Then

H1X = (H1c1, . . . , H1cp).

It can be shown that the �rst column H1c1 is (θ, 0, . . . , 0). The i-th column H1ci is

computed as

H1ci = (I − vvT)ci

= ci − vTciv.
(4.8)

We write

H1X =



t11 t12 · · · t1p

0
...

0

X1

,


where X1 is an (n− 1)× (p− 1) matrix.

Similarly, let S2 be the Householder matrix chosen to convert the �rst column of

X1 into the correct form and let

H2 =


1 0 · · · 0

0
...

0

S2


Then

H2H1X =



t11 t12 · · · t1p

0 t22 · · · t2p

0
...

0

0
...

0

X2


.

Continuing on in this way, we are able to transform X into its correct form:

Hp . . . H1X =

(
R

0

)
.
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Let Q = H1 . . . Hp, then

X = Q

(
R

0

)
.

To compute rp = QT
p Y , we de�ne r = QTY ∈ Rn and rn−p = QT

n−pY , then

rT = (rT
p , r

T
n−p). Note that r = QTY = Hp . . . H1Y and, similar to equation (4.8),

H1Y = (In − vvT)Y

= Y − vTY v.

The residual sum of squares is computed as

RSS = (Xβ − Y )T(Xβ − Y )

= (QpRβ − Y )T(QpRβ − Y )

= (Qprp − Y )T(Qprp − Y )

= rT
pQ

T
pQprp − rT

pQ
T
p Y − Y TQprp + Y TY

= Y TY − rT
p rp (4.9)

I summarize the procedure in Algorithm 4.1. The algorithm outputs R and rp,

which we use to compute the regression coe�cients β. In the algorithm, I use Matlab-

like notations to denote matrices and vectors. For example, X[i, i] is the (i, i)-th entry

in X, X[i : n, i] is the sub-vector of the i-th column in X, and X[i : n, i : p] denotes

the sub-matrix of X. ei denotes the vector (1, 0, . . . , 0)T of length n− i+ 1.

Algorithm 4.1 Householder transformation
Input: an n× p matrix X and an n-vector Y .
Output: the p × p upper triangular matrix R in the QR-decomposition of X, X =

QpR, and the p-vector rp = QT
p Y .

1: r = Y
2: for i = 1 to p do
3: θ = −X[i, i]/|X[i, i]| ∗ ‖X[i : n, i]‖2

4: w[i : n] = X[i : n, i]− θ ∗ ei
5: η =

√
2/‖w[i : n]‖2

6: v[i : n] = η ∗ w[i : n]
7: X[i : n, i : p] = X[i : n, i : p]− (v[i : n]T ∗X[i : n, i : p]) ∗ v[i : n]
8: r[i : n] = r[i : n]− (v[i : n]T ∗ r[i : n]) ∗ v[i : n]
9: end for

10: {R = X[1 : p, 1 : p], rp = r[1 : p]}

The linear system Rβ = rp can be solved using the back-substitution method, as
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presented in Algorithm 4.2.

Algorithm 4.2 Back-substitution algorithm for solving linear system of equations

Input: a p× p upper triangular matrix and a p-vector b.
Output: the solution of the linear system Rβ = b

1: for i = p downto 1 do
2: β[i] = b[i]/R[i, i]
3: b[1 : i− 1] = b[1 : i− 1]− β[i] ∗R[1 : i− 1, i]
4: end for

4.4 Previous Work

Du et al. (2004) considered the problem of privacy preserving multivariate statisti-

cal analysis, including linear regression and classi�cation, over vertically partitioned

datasets. They proposed secure matrix multiplication and secure matrix inverse pro-

tocols which can be then used to design privacy preserving linear regression protocols.

Du et al. used algebraic techniques to design secure matrix multiplication and

secure matrix inverse protocols. Suppose that Alice has a p × n matrix S and Bob

has another n × q matrix T . Alice and Bob jointly generate an invertible n × n

matrix M . Let M = (Mleft,Mright), where Mleft,Mright are n × n/2 matrices, and

M−1 = (MT
inv−top,M

T
inv−bottom)T, where Minv−top,Minv−bottom are n/2 × n matrices.

Alice computes S1 = SMleft, S2 = SMright and sends S1 to Bob. Bob computes

T1 = Minv−topT , T2 = Minv−bottomT and sends T2 to Alice. Now Alice computes

VA = S2T2 and Bob computes VB = S1T1. It can be shown that VA + VB = ST .

When S and T are both square matrices, Alice and Bob can use the secure matrix

multiplication to privately compute (S+T )−1. Bob �rst chooses two random matrices

F and G. Alice and Bob use secure matrix multiplication to multiply S + T with F

and G and let Alice obtain the matrix F (S+T )G . The purpose of random matrices

F and G is to prevent Alice from learning the matrix S + T . Now Alice computes

W = G−1(S + T )−1F−1. Then Alice and Bob use secure matrix multiplication to

multiply W with F and G. The result is that Alice obtain VA and Bob obtain VB

such that VA + VB = (S + T )−1.

The solution of the multiple linear regression is β = (XTX)−1XY . It is clear that

we can privately compute β using secure multiplication matrix and secure matrix

inverse protocols. Note that the matrix multiplication and matrix inverse protocols

try to protect matrices by multiplying them with random matrices. However, it is
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generally not a good idea to hide a number or matrix by multiplication because such

methods may leak information (Kiltz et al., 2005).

Hall et al. (2011) proposed secure multiple linear regression protocols for arbi-

trarily partitioned datasets based on homomorphic encryption. They noticed that

the inverse of a matrix S can be computed using the following coupled iteration:

Ut+1 = 2Ut − UtVt, U0 = c−1I

Vt+1 = 2Vt − V 2
t , V0 = c−1S

where Vt = UtS and c is chosen by the user, for example, as the trace of S.

Based on these iterative formulas, Hall et al. developed secure protocols for linear

regression based on homomorphic encryption. Their protocols disclose the number of

iterations, which is related to the condition number of the covariance matrix XTX.

Sanil et al. (2004) considered the scenario where the explanatory attributes are

partitioned among m (m > 2) parties and the response attribute is known by all

parties. That is, all the parties know Y and the dataset X is vertically partitioned

among these parties, X = (X1, . . . , Xm), where the j-th party holds Xj. As we

know, the least squares method estimates the regression coe�cients β by minimizing

the function f(β) = (Xβ − Y )T(Xβ − Y ). Sanil et al. noticed that the Powell's

iterative method can be used to minimize the quadratic function f(β). A basic step

in the Powell minimization process is to compute Xβ. If each party j knows the

regression coe�cients corresponding to the attributes he/she holds, denoted by βj,

then each party j can compute Xjβj locally and all the participating parties can

use secure sum to jointly compute Xβ =
∑m

j=1Xjβj. Based on this idea, Sanil

et al. proposed a secure linear regression protocol. Their protocol doesn't employ

cryptographic techniques and can be implemented e�ciently. However, each party

obtains aggregate information such as Xβ during each iteration. If we only want

to compute the regression coe�cients β, the protocol will disclose more information

than necessary.

4.5 Representing Real Numbers in the Plaintext Do-

main

My research focuses on the design and implementation of privacy preserving dis-

tributed data mining protocols based on homomorphic encryption. The plaintext
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domain of the cryptosystem, denoted by ZN = {0, 1, . . . , N − 1}, is a set of natural

numbers. However, in data mining tasks, we deal mostly with real numbers, and we

need a way to represent them in the plaintext domain.

In section 3.2, I discuss how to represent a signed integer v in the plaintext domain

ZN . The integer v is represented in ZN as v if v ≥ 0 and as N + v if v < 0. To

represent a real number x in the plaintext domain ZN , we use the representation of

the signed integer bx2P c in ZN , where P is some positive integer. That is, if x ≥ 0,

it is represented in ZN as bx2P c; if x < 0, it is represented as N + bx2P c. Such

representation is similar to the way we represent real numbers in computers and P

is the number of bits we use to represent the fractional parts of real numbers and

determine the accuracy of the representations. We use the notation [x] to denote the

representation of a real number x in the plaintext domain. Hereafter, when we say

that an integer x is split between Alice and Bob, we mean that x = xA+xB (mod N).

When we say that a real number x is split between Alice and Bob, we mean that its

representation [x] is split between Alice and Bob, [x] = xA + xB (mod N), where

Alice holds the share xA and Bob holds the share xB.

We now consider secure addition and secure multiplication of real numbers. Sup-

pose that two real numbers, x and y, are split between Alice and Bob, [x] = xA + xB

(mod N), [y] = yA + yB (mod N). Alice and Bob wish to obtain their respective

shares of s = x + y and the shares of r = xy. The secure addition of x and y is just

the secure addition of [x] and [y]. Alice computes sA = (xA + yA) mod N and Bob

computes sB = (xB + yB) mod N , then sA and sB are shares of s = x+ y.

To privately compute r = xy, we �rst use secure multiplication of integers (Pro-

tocol 2.1) to multiply [x] and [y]. Note that [x] and [y] are the representations of the

signed integers bx2P c and by2P c, respectively. The secure multiplication of [x] and [y]

results in two shares of v = bx2P cby2P c. Note that [xy] = bxy2P c ≈ bx2P cby2P c/2P .
To obtain (the shares of) [xy], we need to divide v by 2P privately. Before I present

a secure division with public divisor protocol, I �rst prove the following theorem.

Theorem 4.1. Suppose that a secret signed integer v (|v| < N/3) is split between

Alice and Bob, v = vA + vB (mod N), and M is a public positive integer. Let α = 1

if vA, vB ∈ [0, N/3) and 0 otherwise, β = 1 if vA, vB ∈ [2N/3, N) and 0 otherwise,

γ = 1− α + β. Let

r = bvA/Mc+ bvB/Mc − γbN/Mc.

Then

|r − v/M | < 2.
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Proof. According to Corollary 3.2,

v = vA + vB − γN.

So

v/M = vA/M + vB/M − γN/M.

Let

vA/M = bvA/Mc+ ε1

vB/M = bvB/Mc+ ε2

N/M = bN/Mc+ ε3

such that ε1, ε2, ε3 ∈ [0, 1). Then

v/M = vA/M + vB/M − γN/M

= bvA/Mc+ ε1 + bvB/Mc+ ε2 − γ(bN/Mc+ ε3)

= r + ε1 + ε2 − γε3

.

So

|r − v/M | = |ε1 + ε2 − γε3|.

Note that 0 ≤ γ ≤ 2. We have

|ε1 + ε2 − γε3| < 2,

namely,

|r − v/M | < 2.

Suppose that γA, γB are the shares of γ, γ = γA + γB (mod N). Then

r = bvA/Mc+ bvB/Mc − (γA + γB)bN/Mc (mod N)

= bvA/Mc − γAbN/Mc+ bvB/Mc − γBbN/M c (mod N)

If we let rA = (bvA/Mc−γAbN/Mc) mod N and rB = (bvB/Mc−γBbN/Mc) mod N ,

then rA and rB are the two shares of r. If v/M is su�ciently large, r is a good approx-
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imation of v/M . Based on this idea, I propose a secure division with public divisor

protocol (Protocol 4.3). We can implement Protocol 4.3 using secure multiplication

(Protocol 2.1). Note that this protocol only computes an approximation of v/M and

it is only useful when we know that v/M is su�ciently large.

Protocol 4.3 Secure division with public divisor

Input: a signed integer v is split between Alice and Bob, v =A +vB (mod N), and
a public positive integer M .

Output: Alice and Bob obtain their respective shares of r = v/M .

1: Alice: α1 = 1 if xA < N/3 and α1 = 0 otherwise;
2: Bob: α2 = 1 if xB < N/3 and α2 = 0 otherwise;
3: Alice and Bob use Protocol 2.1 to securely compute α = α1α2 and obtain the

shares αA and αB, respectively.

4: Alice: β1 = 1 if 2N/3 ≤ xA and β1 = 0 otherwise;
5: Bob: β2 = 1 if 2N/3 ≤ xB and β2 = 0 otherwise;
6: Alice and Bob use Protocol 2.1 to securely compute β = β1β2 and obtain the

shares βA and βB, respectively;

7: Alice: γA = (1− αA + βA) mod N ;
8: Bob: γB = (−αB + βB) mod N ;
9: Alice: rA = (bxA/Mc − γAbN/Mc) mod N ;

10: Bob: rB = (bxB/Mc − γBbN/Mc) mod N.

I continue to discuss the secure multiplication of two real numbers. After we

use secure multiplication of integers (Protocol 2.1) to multiple [x] and [y], we can

now use Protocol 4.3 to privately divide the product v = bx2P cby2P c by 2P . Note

that typically we tens of bits to represent the fractional parts of real numbers. The

di�erence between v/2P and r is negligible and r is a good approximation of [xy].

Some clari�cation is in order. The representation of a signed integer x in the

plaintext domain ZN is x if x ≥ 0 and N + x if x < 0, while the representation of a

real number x in ZN is bx2P c if x ≥ 0 and N + bx2P c if x < 0. Secure multiplication

of two integers x and y means that we use Protocol 2.1 to multiple x and y. When

we say secure multiplication of two real numbers x and y, we mean that we �rst use

Protocol 2.1 to multiply [x] and [y] and then use Protocol 4.3 to privately divide the

product by 2P . In some cases, we use Protocol 2.1 to multiple an integer x and the

representation of a real number y. The result is the (shares of) representation of the

real number xy.
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4.6 Subprotocols

In this section, I �rst propose new secure protocols for inverse square root and square

root operations. I then present the general secure division protocol.

4.6.1 Secure Inverse Square Root and Secure Square Root

Inverse square root 1/
√
x is a basic operation in data mining algorithms and statistical

analysis. For example, the correlation coe�cient of two random variables u and v is

de�ned as ρuv = σuv/
√
σuσv, where σu, σv and σuv are the variances and covariance of

u and v, respectively. We want to design a secure protocol to privately compute 1/
√
x

when x is a secret real number split between two parties. For ease of presentation,

I �rst consider the case when x is an integer. Suppose that the integer x is split

between Alice and Bob, x = xA + xB (mod N). Alice and Bob wish to privately

compute z = 2M/
√
x, for some public integer M and obtain their respective shares

of z. I propose a secure inverse square root based on Newton's iterative method

(Kincaid, 2002). Let

f(z) = 22M/z2 − x.

Then 2M/
√
x is the zero of the function f(z). We can use Newton's iterative method

to �nd this zero:

zt+1 = zt − f(zt)/f
′(zt)

= zt(3 · 22M − xz2
t )/2

2M+1.

Note that the operations involved in the iterative formula are multiplication, subtrac-

tion and division with constant divisor. We can compute this formula privately using

secure multiplication and secure division with public divisor.

One issue with the iterative method is that we need to choose a good initial point.

We assume that x belongs to a known interval (0, 2L). We �nd an integer B such that

22B ≤ x < 22(B+1) and the initial point can be chosen as 3/2 · 2M−B−1 = 3 · 2M−B−2.

Note that Newton's iterative method converges quadratically. If we execute T =

O(logM) iterations , it will compute a good approximation of 2M/
√
x.

I present the secure protocol of inverse square root in Protocol 4.4. Lines 1-5

compute the initial point z1. We �rst use Protocol 3.2 to securely transform x into

its binary representation x = xLxL−1 . . . x1 and then scan this binary string from the

lowest bits to the highest bits. If xi = 0, we don't change z1; otherwise, z1 is set to
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be 3/2 · 2M−(i+1)/2 = 3 · 2M−(i+1)/2−1. We then execute line 7 with a �xed number of

iterations. Clearly, we can implement Protocol 4.4 using secure multiplication and

secure division with public divisor.

In Protocol 4.4 we assume that x is an integer. When we consider a real num-

ber x and apply Protocol 4.4 on its representation [x] = bx2P c, then the result is

2M/
√
bx2P c. Note that 2M/

√
bx2P c ≈ 2M−P/2/

√
x, so the result is the representa-

tion of the real number 2M−3P/2/
√
x. When we need to compute the representation

of the real number 2M/
√
x, we can replace M with M + 3P/2 in the protocol.

Protocol 4.4 Secure inverse square root

Input: a secret integer x ∈ (0, 2L) is split between Alice and Bob.
Output: Alice and Bob obtain their respective shares of z = 2M/

√
x.

1: Alice and Bob use Protocol 3.2 to securely transform x into it binary representa-
tion x = xLxL−1 . . . x1, whose bits xi are split between Alice and Bob.

2: z1 = 3 · 2M−1

3: for i = 1 to L do
4: z1 = (1− xi) · z1 + xi · 3 · 2M−(i+1)/2−1

5: end for

6: for t = 1 to T do
7: zt+1 = zt(3 · 22M − xz2

t )/2
2M+1

8: end for

Noticing that
√
x = 1/

√
x · x, we are able to implement a secure protocol for the

square root operation, which I present below.

Protocol 4.5 Secure square root

Input: a secret integer x is split between Alice and Bob, x = xA + xB (mod N).
Output: Alice and Bob obtain their respective shares of

√
x.

1: Alice and Bob use Protocol 4.4 to privately compute y = 2M/
√
x for some su�-

ciently large M and obtain their respective shares of y.
2: Alice and Bob use Protocol 2.1 to privately compute z = xy and obtain their

respective shares of z.
3: Alice and Bob use Protocol 4.3 to privately divide z by 2M . Alice and Bob return

the shares they obtain at this step.

In Protocol 4.5, M is chosen su�ciently large to provide su�cient accuracy. For

example, if we assume that x < 2L and we use P bits to represent the fractional parts

of real numbers, we can choose M = P + L. Protocol 4.5 privately computes the

square root of an integer. If we wish to compute the square root of a real number
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x, we can apply Protocol 4.5 on [x], the result is
√

[x] =
√
bx2P c. We can securely

multiply it with 2P/2 to obtain the representation of the real number
√
x.

Both inverse square root and square root are basic operations in many data mining

and machine learning algorithms. Han et al. (2009) proposed secure protocols for

both operations in their design of a secure SVD protocol. In their solution, Alice �rst

selects a random r. Alice and Bob use secure multiplication to privately compute

t = rxB and obtain their respective shares of t. Alice sends rxA + tA to Bob. Bob

computes rx = rxA + tA + tB. Then Alice and Bob use secure multiplication to

compute
√
x = 1/

√
r ·
√
rx. Kiltz et al. (2004) pointed out that it is not a good idea

to hide a secret by multiplication. We notice that if x is a small number as in most

applications, then Bob will be able to factor rx and guess the secret x.

4.6.2 Secure Division

Suppose that two secrets x and y are split between Alice and Bob; they wish to

privately compute z = y/x and obtain their respective shares of z. Note that y/x =

((2M/x) ·y)/2M . So we only need a secure protocol to compute 2M/x for some public

integer M .

Bunn et al. (2007) proposed a secure division protocol to compute by/xc based
on the general division procedure, which I present in section 3.4. Their protocol takes

O(L2) secure multiplications when x, y belong to a known interval [0, 2L). When L is

large, this protocol is not e�cient.

S. From (2006) proposed a secure division protocol based on Newton's iterative

method. Let f(z) = 1/z − x/2M . Then 2M/x is the zero of f(z). This zero can be

computed using Newton's iterative formula:

zt+1 = zt(2
M+1 − ztx)/2M .

The initial point is chosen as z1 = 3/2 · 2M−B−1 = 3 · 2M−B−2 if 2B ≤ x < 2B+1. The

protocol is implemented using the Shamir's polynomial secret-sharing scheme, which

can guarantee privacy as long as the majority of the parties are honest. Note that

the protocols in the Shamir's secret-sharing scheme don't work in the two-party case.

It is easy to adapt the idea to implement a secure division protocol based on

homomorphic encryption, which I present in Protocol 4.6. We can implement Pro-

tocol 4.6 using secure multiplication, secure division with public divisor. This pro-

tocol computes an approximation of 2M/x. As Newton's iterative method converges

quadratically, we execute line 7 with a �xed number of iterations T = O(logM).
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Protocol 4.6 Secure division
Input: a secret integer x ∈ (0, 2L) is split between Alice and Bob,

x = xA + xB (mod N).
Output: Alice and Bob obtain their respective shares of z = 2M/x.

1: Alice and Bob use Protocol 3.2 to securely transform x into it binary representa-
tion x = xLxK−1 . . . x1, whose bits xi are split between Alice and Bob.

2: z1 = 3 · 2M−1

3: for i = 1 to L do
4: z1 = (1− xi) · z1 + xi · 3 · 2M−i−1

5: end for
6: for t = 1 to T do
7: zt+1 = zt(2

M+1 − xzt)/2M
8: end for

Protocol 4.6 securely computes 2M/x when x is an integer. If we apply Protocol

4.6 on the representation of a real number x, the result is 2M/[x]. Note that 2M/[x] =

2M/bx2P c ≈ 2M−P/x. So the result is the representation of 2M−2P/x. If we want to

privately compute the real number 2M/x, we simply replace M with M + 2P in the

protocol.

4.7 Privacy Preserving Multiple Linear Regression

In this section, I �rst present a privacy preserving two-party multiple linear regression

protocol for arbitrarily partitioned datasets. I prove that it is secure in the semi-honest

model. I then show how to extend it to the multi-party cases.

4.7.1 Two-Party Cases

The linear regression model aims to estimate the coe�cients β given the training set

(X, Y ), where X ∈ Rn×p consists of n observations with p explanatory attributes

and Y ∈ Rn consists of n corresponding response attribute values. Now we suppose

that the regression dataset (X, Y ) is arbitrarily distributed between Alice and Bob,

X = X1 +X2 and Y = Y1 +Y2, where Alice holds X1 and Y1 and Bob holds X2 and Y2.

We assume that the attribute values held by Alice and Bob don't overlap. If one party

doesn't know a attribute value, he/she simply sets the corresponding entry in (Xi, Yi)

as 0. Although both Alice and Bob would like to know the regression coe�cients

β, they are not willing to disclose their con�dential data to each other. I use the

additive secret-sharing scheme based on homomorphic encryption to design a two-
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party privacy preserving multiple linear regression protocol, which allows Alice and

Bob to conduct multiple linear regression on the joint dataset (X, Y ) while protecting

the privacy of their individual data.

We consider a more general scenario whereX and Y are secrets split between Alice

and Bob, X = XA + XB (mod N), Y = YA + YB (mod N). This setting is useful

when some private preprocessing procedures such as variable selection are �rst applied

on the original dataset and then we perform privacy preserving linear regression on

the resulting secret dataset. It also provides a way to reduce multi-party protocols

to two-party protocols, which I present in next subsection.

The computation of the regression coe�cients consists of two steps: the House-

holder transformation (Algorithm 4.1) and the back-substitution procedure (Algo-

rithm 4.2). We can design privacy preserving protocols for these two procedures

separately and then combine them to implement a privacy preserving multiple linear

regression protocol.

First consider the Householder transformation (Algorithm 4.1). In line 3, we need

to compute X[i, i]/|X[i, i]|, the sign of X[i, i]. If we de�ne r = 1 i� X[i, i] ≤ 0

and 0 otherwise, the sign of X[i, i] equals 1 − 2r. So we use can secure compari-

son to compute X[i, i]/|X[i, i]|. Other operations involved in Algorithm 4.1 include

addition/subtraction, multiplication (line 3), scalar-vector multiplication (line 4, 8),

vector-matrix multiplication (line 7), scalar product (line 8), square root (line 3) and

inverse square root (line 5). Note that scalar-vector multiplication, vector-matrix

multiplication and scalar product can be computed using a series of multiplications.

So we can use secure multiplication, secure inverse square root, square root and secure

comparison to implement a privacy preserving two-party protocol for the Householder

transformation.

In the implementation of the secure protocol, all the variables are secrets split

between Alice and Bob, r = rA + rB (mod N), θ = θA + θB (mod N), w = wA +wB

(mod N), η = ηA+ηB (mod N), v = vA+vB (mod N), R = RA+RB (mod N). Note

that for all the subprotocols used here, both the inputs and the outputs are assumed

to be split between Alice and Bob and we are able to compose them sequentially

to implement a secure protocol for the Householder transformation. Remember that

when we need to securely multiply two real numbers, we �rst use Protocol 2.1 to

multiply their representations in the plaintext domain and then use Protocol 4.3 to

privately divide the product by 2P .

Similarly, we use secure multiplication and secure division to implement a privacy

preserving protocol for the back-substitution algorithm (Algorithm 4.2), in which
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both the inputs R and b and the output β are secrets split between Alice and Bob.

We combine the secure protocols for the Householder transformation and the back-

substitution algorithm to implement a privacy preserving two-party multiple linear

regression protocol (Protocol 4.7).

Protocol 4.7 Privacy preserving two-party multiple linear regression protocol

Input: a regression dataset (X, Y ), where X ∈ Rn×p and Y ∈ Rn, is split between
Alice and Bob, X = X1 + X2 (mod N), Y = Y1 + Y2 (mod N). Alice has input
(1K , X1, Y1) and Bob has input (1K , X2, Y2), where K is the security parameter.

Output: Both Alice and Bob obtain the regression coe�cients β.

1: Alice generates a pair of keys (e, d) = G(1K) and sends the public key e to Bob.
2: Alice and Bob privately compute R ∈ Rp×p and rp ∈ Rp based on the Householder

transformation (Algorithm 4.1) and obtain their respective shares of R and rp.
3: Alice and Bob privately solve the linear system Rβ = rp based on the back-

substitution method (Algorithm 4.2) and obtain their respective shares of β.
4: Alice and Bob exchange their shares of β so both parties know the regression

coe�cients β.

Theorem 4.2. Protocol 4.7 is secure in the semi-honest model.

Proof. To prove that the two-party privacy preserving multiple linear regression pro-

tocol is secure in the semi-honest model, we need to show that:

(1) Given Alice's input and output, we are able to simulate her view during the

execution of the protocol;

(2) Given Bob's input and output, we are able to simulate his view during the

execution of the protocol.

Note that we use secure multiplication, secure division, secure inverse square root

and secure square root to implement Protocol 4.7. All these subprotocols are im-

plemented using secure multiplication, so we actually implement Protocol 4.7 using

secure multiplication only.

We �rst examine the message exchanges during the execution of Protocol 4.7.

(1) At the beginning (step 1), Alice generates a pair of keys (e, d) = G(1K) and

sends the public key e to Bob. As usual, the modulus associated with this key pair

is denoted by N .

(2) During each invocation of secure multiplication, Alice sends two encrypted

messages to Bob and Bob sends the encryption of a random number to Alice. We

denote the total number of invocations of secure multiplication by v.

(3) At the last step (step 4), Alice and Bob exchange their shares of βi (i =

1, . . . , p). Alice sends βi,A to Bob and Bob sends βi,B to Alice.
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To simulate Alice's view during the execution of Protocol 4.7, we �rst check the

elements of Alice's view.

(1) Alice has input (1K , X1, Y1).

(2) Alice uses a sequence of random coins r1,A to generate the key pair (e, d) =

G(1k, r1,A). During the invocations of secure multiplication, Alice uses random num-

bers in Z∗N to encrypt messages. Denote by r2,A = (r2,1,A, . . . , r2,2v,A) the sequences

of random coins used to generate those random numbers. Denote all these sequences

of random coins by rA = (r1,A, r2,A).

(3) During each invocation of secure multiplication, Alice receives the encryption

of a random number from Bob. Denote all these messages by M1,A = (m1, . . . ,mv).

(4) Alice receives βi,B (i = 1, . . . , p) from Bob at step 4. Denote these messages

by M2,A = (β1,B, . . . , βp,B).

So Alice's view is V IEWA = (1K , X1, Y1, rA,M1,A,M2,A). I now show how to

simulate Alice's view based on her input (1K , X1, Y1) and her output β. The simu-

lator generates a number of sequences of independent random coins r′1,A and r′2,A =

(r′2,1,A, . . . , r
′
2,2v,A), which correspond to the sequences r1,A, r2,A that Alice uses in the

real execution. Let r′A = (r′1,A, r
′
2,A). It is identically distributed with rA = (r1,A, r2,A).

The simulator generates (e′, d′) = G(1K , r′1,A), which is identically distributed with

(e, d). Denote the modulus associated with the key pair (e′, d′) by N ′.

I now show how to simulate the messages M1 = (m1, . . . ,mv). As I discuss in sec-

tion 2.3, each message mi Alice receives during the invocation of secure multiplication

is the encryption of a random number and is identically distributed with Ee(b1, b2),

where b1 is uniformly random in ZN and b2 is uniformly random in Z∗N . The simula-

tor generates a uniformly random number b′1 in ZN ′ and another uniformly random

number b′2 in Z∗N ′ and computes m′i = Ee′(b
′
1, b
′
2). m′i is identically distributed with

mi. Let M
′
1,A = (m′1, . . . ,m

′
v). M

′
1,A is identically distributed with M1,A.

I next show how to simulate the messages in M2 = (β1,B, . . . , βp,B). Before Alice

and Bob exchange their shares of βi, Alice has the share βi,A such that (βi,A+βi,B) mod

N = βi. βi,A is computed as βi,A = hi,A(1K , X1, Y1, rA,M1,A) for some function

hi,A. The simulator computes β′i,A = hi,A(1K , X1, Y1, r
′
A,M

′
1,A), which is identically

distributed with βi,A. Since the simulator is given the �nal result βi, it can compute

β′i,B = (βi−β′i,A) mod N ′, which is identically distributed with βi,B = (βi−βi,A) mod

N . Let M ′
2,A = (β′1,B, . . . , β

′
p,B). It is identically distributed with M2,A.

Let M ′
A = (1K , X1, Y1, r

′
A,M

′
1,A,M

′
2,A). From the above discussion we know that

M ′
A is identically distributed with Alice's view V IEWA and thus it is computationally

indistinguishable from V EIWA. So we can simulate Alice's view from her input
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(1K , X1, Y1) and her output β.

I now show how to simulate Bob's view during the execution of Protocol 4.7 from

Bob's input (1K , X2, Y2) and his output β. Bob's view is divided into �ve parts.

(1) Bob has input (1K , X2, Y2).

(2) During each invocation of secure multiplication, Bob uses a sequence of random

coins ri to generate a uniformly random number b1 in ZN and another uniformly

random number b2 in Z
∗
N and then computes Ee(b1, b2). Here b1 and b2 correspond to

r and s3 in Protocol 2.1, respectively. Denote these sequences of random coins by rB =

(r2,1,B, . . . , r2,v,B). Here v is the total number of invocations of secure multiplication.

We use the same subscript 2 here as we use in the simulation of Alice's view because

they are both used to simulate the invocations of secure multiplication.

(3) At the beginning (step 1), Bob receives the public key e from Alice.

(4) During each invocation of secure multiplication, Bob receives the encryptions

of two numbers from Alice. Bob receives altogether 2v messages during the v in-

vocations of secure multiplication. Denote the i-th message by mi = Ee(ai, r2,i,A),

where ai is some number only known by Alice and r2,i,A is the random coins Alice

uses to encrypt the message. Denote all these messages by M1,B = (m1, . . . ,m2v) =

(Ee(a1, r2,1,A), . . . , Ee(a2v, r2,2v,A)).

(5) At step 4, Bob receives βi,A (i = 1, . . . , p) from Alice. Denote these messages

by M2,B = (β1,A, . . . , βp,A).

So Bob' view is V IEWB = (1K , X2, Y2, rB, e,M1,B,M2,B). I now show how to

simulate Bob's view based on his input (1k, X2, Y2) and his output β. The simulator

generates a number of sequences of independent random coins r′B = (r′2,1,B, . . . , r
′
2,v,B),

which correspond to the sequences of random coins rB = (r2,1,B, . . . , r2,v,B) that Bob

uses in the real execution. r′B and rB are identically distributed.

The simulator generates a pair of keys (e′, d′) = G(1K , r′1,A), where r′1,A is a se-

quence of independent random coins which the simulator generates to simulate r1,A

that Alice uses in the real execution. Because r′1,A is identically distributed with r1,A,

(e′, d′) is also identically distributed with the key pair (e, d) that Alice generates in

the real execution, and e′ is also identically distributed with e. Denote the modulus

associated with the key pair (e′, d′) by N ′.

I now show how to simulate the messagesM1,B = (Ee(a1, r2,1,A), . . . , Ee(a2v, r2,2v,A)).

The simulator computes M ′
1,B = (Ee′(0, r

′
2,1,A), . . . , Ee′(0, r

′
2,2v,A)), where r′2,i,A is a

sequence of independent random coins which the simulate generates to simulate

r2,i,A. To show that M ′
1,B is computationally indistinguishable from M1,B, we de-

�ne M ′′
1,B = (Ee(0, r2,1,A), . . . , Ee(0, r2,2v,A)). Since e′ and e are identically distributed
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and r′2,i,A is uniformly distributed in Z∗N ′ and r2,i,A is uniformly distributed in Z∗N ,

we know that (e,M ′′
1,B) is identically distributed with (e′,M ′

1,B) and hence (e,M ′′
1,B)

is computationally indistinguishable from (e′,M ′
1,B). Besides, because the Paillier

cryptosystem is semantically secure, (e,M ′′
1,B) and (e,M1,B) are computationally in-

distinguishable. So (e′,M ′
1,B) is also computationally indistinguishable from (e,M1,B).

To simulate the messages M2,B = (β1,A, . . . , βp,A), note that before Alice and Bob

exchange their shares of βi, Bob has the share βi,B such that (βi,A+βi,B) mod N = βi.

βi,B is computed as βi,B = hi,B(1K , X2, Y2, rB, e,M1,B) for some function hi,B. The

simulator computes β′i,B = hi,B(1K , X2, Y2, r
′
B, e

′,M ′
1,B), which is indistinguishable

from βi,B. Since the simulator is given the �nal result βi, it can compute β′i,A =

(βi − β′i,B) mod N ′, which is indistinguishable from βi,A. Let M
′
2,B = (β′1,A, . . . , β

′
p,A).

It is indistinguishable from M2,B.

Let M ′
B = (1K , X2, Y2, r

′
B, e

′,M ′
1,B,M

′
2,B). From the above discussion we know

that M ′
B is computationally indistinguishable from Bob's view V EIWB. So we can

simulate Bob's view using his inputs (1K , X2, Y2) and his output β.

4.7.2 Multi-Party Cases

We now consider the multi-party cases. Suppose that the regression dataset (X, Y ) is

distributed among m parties, X = X1 + · · ·+Xm and Y = Y1 + · · ·+Ym, where party

l holds (Xl, Yl). We assume that the attribute values held by di�erent parties don't

overlap. If party l doesn't know a attribute value, he/she simply sets the correspond-

ing entry in (Xl, Yl) as 0. These m parties wish to conduct multiple linear regression

on the joint dataset (X, Y ) so that all of them obtain the regression coe�cients β, but

they don't want to disclose their con�dential data to each other. A secure multi-party

protocol is necessary to achieve this goal.

I present a multi-party privacy preserving multiple linear regression protocol in

Protocol 4.8. We assume that two parties, for example, party 1 and party 2, will

never collude and we reduce the multi-party protocol to the two-party case.

Note that after the execution of line 13, X = X1 +X2 (mod N) and Y = Y1 + Y2

(mod N). Protocol 4.8 invokes Protocol 4.7 and computes β correctly. Here we

assume that Party 1 and Party 2 never collude. The original de�nition of secure

multi-party computation (De�nition 2.2) requires the collusion of any subset of parties

should not disclose any information except what can be inferred from their own inputs

and outputs. Protocol 4.8 is not secure according to de�nition 2.2 because if Party
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Protocol 4.8 Privacy preserving multi-party multiple linear regression protocol

Input: the regression dataset (X, Y ), where X ∈ Rn×p and Y ∈ Rn, is distributed
among m parties, X = X1 + · · · + Xm and Y = Y1 + · · · + Ym, Parties l holds
(1K , Xl, Yl), where K is the security parameter.

Output: All the parties obtain the regression coe�cients β.

1: Party 1 generates a pair of keys (e, d) = G(1K) and sends the public key e to all
other parties.

2: for each party l 6= 1, 2 do
3: for each entry Xl[i, j] in Xl do
4: Party l selects a random number r in ZN .
5: Party l sends r to Party 1 and Party 1 sets X1[i, j] = (X1[i, j] + r) mod N .
6: Party l sends (Xl[i, j] − r) mod N to Party 2 and Party 2 sets X2[i, j] =

(X2[i, j] +Xl[i, j]− r) mod N .
7: end for
8: for each entry Yl[i] in Yl do
9: Party l selects a random number r in ZN .

10: Party l sends r to Party 1 and Party 1 sets Y1[i] = (Y1[i] + r) mod N .
11: Party l sends (Yl[i] − r) mod N to Party 2 and Party 2 sets Y2[i] = (Y2[i] +

Yl[i]− r) mod N .
12: end for
13: end for
14: Party 1 and Party 2 run Protocol 4.7 on (1K , X1, Y1) and (1K , X2, Y2) and both

parties obtain the regression coe�cients β.
15: Party 1 sends the regression coe�cients β to all other parties.
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1 and Party 2 collude, they will know all the data. The de�nition of secure multi-

party computation can be modi�ed to make the explicit assumption that two speci�c

parties never collude.

De�nition 4.1. (Modi�ed from (Goldreich, 2004)) Let f : ({0, 1}∗)m → ({0, 1}∗)m)

be anm-ary functionality where fi(x1, . . . , xm) denotes the i-th element of f(x1, . . . , xm).

For I = {i1, . . . , it} ⊆ {1, . . . ,m}, we let fI(x1, . . . , xm) denote the subsequence of

fii(x1, . . . , xm), . . . , fit(x1, . . . , xm). Let Π be an m-party protocol for computing f .

We assume that each party is supplied with a security parameter 1K besides his/her in-

put xi. De�ne the view of the i-th party during an execution of Π on x = (x1, . . . , xm)

as V IEWΠ
i (1K , x) = (1K , xi, ri,m1, . . . ,msi), where ri represents the outcome of the

i-th party internal coin toss and mj represents the j-th message he/she has received.

For I = {i1, . . . , it}, let V IEWI(1
K , x) = (I, V IEWi1(1

K , x), . . . , V IEWit(1
K , x)).

We say that Π privately computes f if there exists a probabilistic polynomial time

algorithm, denote by S, such that for every I ⊆ {1, . . . ,m} that doesn't include both

1 and 2, it holds that

(S(I, 1K , (x1, . . . , xi), fI(x)), f(x)) ' (V IEWI(1
K , x),Π(x))

where Π(x) denotes the output sequence of all parties during the execution and '
means computational indistinguishability.

Theorem 4.3. Multi-party protocol 4.8 privately computes β according to de�nition

4.1.

Proof. Suppose that S is any subset of parties that doesn't include both party 1

and 2. For Party l ∈ S, if l 6= 1, 2, what he/she receives is the public key e and

the regression coe�cients. We simply compute e′ = G1(1K) to simulate the message

e. If Party 1 is in the subset S, he/she receives a message for each entry in the

matrix X and the vector Y from each of the other parties at the beginning. These

message are just random numbers, so we can choose random numbers to simulate

them. After the execution of line 13, Party 1 has (X1, Y1) and Party 2 has (X2, Y2)

such that X = X1 + X2 (mod N) and Y = Y1 + Y2 (mod N). Then Party 1 and

Party 2 invoke Protocol 4.7 on (X1, Y1) and (X2, Y2). Because Protocol 4.7 is secure

in the semi-honest model, we can simulate those messages Party 1 receives during the

invocation of Protocol 4.7, based on his/her inputs X1 and Y1 and his/her output β.

So we can simulate all the messages Party 1 receives during the execution of Protocol

4.8. Similarly, if Party 2 is in S, we can simulate all the messages Party 2 receives
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during the execution of Protocol 4.8. So Protocol 4.8 privately computes β according

to De�nition 4.1.

4.8 Experimental Results

The goal of this experimental analysis is to access the practicality and the accuracy

of the privacy preserving two-party multiple linear regression protocol. I have im-

plemented the protocol in C++ based on the Paillier cryptosystem and tested its

performance on benchmark datasets. I used the GMP libary (Torbjorn Granlund et

al.) for big integers. I ran the experimental study on two separating computers both

with Intel Pentium 4 CPU (3.2GHz) and the Linux operating system. These com-

puters are in a network connected by 100Mps Ethernet with average message latency

less 1ms. I

In Protocol 4.7, Alice generates a pair of keys for each running of the protocol. In

the experiments, the pair of keys were �xed so that I could use the precomputation

techniques presented in section 3.2. The key security parameter I used was K = 512.

I used benchmark datasets from the UCI machine learning repository (Frank and

Asuncion). Speci�cally, I used 5 datasets to test the privacy preserving linear regres-

sion protocol: Housing, Auto-mpg, Servo, Computer hardware and Slump datasets.

I assume that the datasets are vertically partitioned between Alice and Bob, each

running a computer. The execution time for other partitions are similar to vertical

partitions. I describe these datasets and their partitions in Table 4.1, in which n is

the number of observations and p is the number of explanatory attributes. Alice holds

the �rst p1 attributes and Bob holds the last p2 attributes. In addition, I used an

additional explanatory attribute with �xed values 1s to accommodate the constant

factor in the model 4.2 and assume that Alice holds this attribute. I assume that

the response attribute is held by Bob. The Slump dataset consists of 7 explanatory

attributes and 3 response attributes. I only report the regression results on the �rst

response attribute. The results on the other two response attributes are similar.

I tested the privacy preserving linear regression protocols on these 5 datasets. I

report the execution time in Table 4.2. I also implemented a Matlab program to

compute the regression coe�cients based on the Householder transformation. The

running times of the Matlab program on all these 5 datasets are less than 0.1 second.

The regression coe�cients computed by the secure protocol are the same as those

computed by the Matlab program.
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Table 4.1: Benchmark datasets for linear regression

Dataset n p p1 p2

Housing 506 13 6 7
Auto-mpg 392 7 3 4
Servo 167 4 2 2
Slump 103 7 3 4

Computer hardware 209 6 3 3

Table 4.2: Experimental results of privacy preserving linear regression on benchmark
datasets

Dataset Housing Auto-mpg Servo Slump Computer hardware

Running Time 625s 229s 75s 106s 126s

I then tested how the execution time scales with the number of observations in

the datasets. I report the results on the housing and auto-mpg datasets in Figure

4.1 and Figure 4.2. The dataset of size n consists of the �rst n observations in the

whole datasets. We observe that the running time scales linearly with the size of the

dataset.

Figure 4.1: Scalability of pri-

vacy preserving multiple linear

regression with respect to the

number of observations (Hous-

ing)

Figure 4.2: Scalability of pri-

vacy preserving multiple linear

regression with respect to the

number of observations (Auto-

mpg)

I then tested how the execution time scales with the number of attributes. I used

the Housing dataset. To observe the asymptotic behavior, I assembled two copies

of the Housing datasets into one which has 506 observations and 28 explanatory
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attributes. Note that the explanatory attributes in the new dataset are dependent.

The regression coe�cients in this model may not be useful and the computation may

not be accurate. Now I used a subset of the generated dataset to test the asymptotic

behavior. The subset with p attributes consist of the �rst p explanatory attributes

and the additional response attribute. I assume that the explanatory attributes are

evenly distributed between Alice and Bob. I report the results in Figure 4.3.The line in

Figure 4.3 shows that the execution time is super-linear in the number of explanatory

attributes. The execution time is expected to exhibit quadratic asymptotic behavior

with larger numbers of attributes.

Figure 4.3: Scalability of privacy preserving multiple linear regression with respect

to the number of attributes (Housing)

As one of the conclusions, our experiments demonstrated that the proposed pri-

vacy preserving multiple linear regression protocol have practical potential. The cur-

rent proof-of-concept implementation allowed us to handle instances with hundreds

of observations and tens of attributes. However, new techniques are needed to design

practical protocols for larger datasets.

Copyright cOZhenmin Lin 2012
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Chapter 5

Privacy Preserving EM Clustering

5.1 Introduction

Expectation maximization (EM) is an iterative method for �nding unknown pa-

rameters in statistical models which depend on unobserved latent variables. Since

Dempster, Laird, and Rubin published their classic paper on the EM algorithm in

1977, it has become a popular method in the AI and statistics communities. Partic-

ularly, the EM algorithm is frequently used for data clustering in data mining and

machine learning. EM clustering can often achieve better clustering performances

than other clustering methods such as k-means.

In many situations, the data to be clustered are distributed among several parties.

To achieve more accurate clustering results, these parties wish to use the EM algo-

rithm to cluster their joint dataset. However, due to privacy concerns, they may not

be willing to disclose their con�dential data. In this chapter, we propose a privacy

preserving two-party EM clustering protocol which allows two parties to jointly per-

form EM clustering without disclosing their individual data. The protocol is based

on the additive secret-sharing scheme using homomorphic encryption. This protocol

works for arbitrarily partitioned datasets. and discloses only the number of iterations

besides the clustering results. The existing secure protocol on EM clustering consid-

ers only the scenario where the datasets are horizontally partitioned among multiple

parties (Lin et al., 2005) and it discloses the means and the covariance matrix, which

may contain sensitive information.

The organization of this chapter is as follows. Section 5.2 introduces the EM

clustering method. Section 5.3 discusses previous work on privacy preserving EM

clustering. Section 5.4 presents two basic cryptographic building blocks, secure log-

arithm and secure exponential function. Section 5.5 presents the privacy preserving
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two-party EM clustering protocol and gives a formal proof about its security. Section

5.6 presents experimental results on benchmark datasets.

5.2 EM Clustering

Suppose that a statistical model consists of a set X = (x1, . . . , xn)T of observed data,

a set of unobserved latent data Z = (z1, . . . , zn)′, and a vector of unknown parameters

θ. We assume that zi are discrete random variables taking values from {1, . . . , k} and
the parameters θ are continuous. The observed data xi can be discrete or continuous.

Assume that the joint likelihood function of X and Z is

L(θ;X,Z) = p(X,Z|θ),

where p is the probability density function. Then the marginal likelihood function of

X is

L(θ;X) =
∑
Z

p(X,Z|θ) (5.1)

and the marginal log-likelihood function of X is

logL(θ;X) = log
∑
Z

p(X,Z|θ). (5.2)

We denote the conditional distribution of zi given xi and θ by

sij = p(zi = j|xi, θ).

The maximum likelihood estimate (MLE) method aims to �nd the parameters θ

which maximize the marginal likelihood function 5.1 or equivalently the marginal log-

likelihood function 5.2. This can be achieved by taking the derivative of the marginal

log-likelihood function. However, it is usually di�cult and very often impossible to

obtain an analytical solution.

The EM algorithm is an iterative method to �nd the maximum likelihood esti-

mates of the unknown parameters θ. It alternates with two steps. In the E step,

we compute the conditional distribution of Z given X and the current estimates of

parameters θ(t),

s
(t)
ij = p(zi = j|xi; θ(t)),
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and construct a function

Q(θ, θ(t)) = EZ|X,θ(t)(logL(θ;X,Z)). (5.3)

This function is a lower bound of the marginal log-likelihood function logL(θ;X). In

the M step, we �nd the parameters θ which maximize Q(θ, θ(t)). It is often likely to

obtain an analytic solution to maximize equation 5.3. It can be proved that the EM

algorithm converges and �nds a maxima of the marginal log-likelihood function. The

readers are referred to the textbook by Mclachlan and Krishnan (2008) for a detailed

account for the EM algorithm.

One of the important applications of the EM algorithm is data clustering. Sup-

pose that we have a sample of n independent observations from a mixture of k

multivariate normal distributions of dimension q, X = (x1, . . . , xn)T. Let Z =

(z1, z2, . . . , zn)T be the latent variables which determine the populations from which

these observations are generated. We assume that p(zi = j) = τj for j = 1, . . . , k.

That is, the percentage of these observations coming from the j-th population is τj.

We also assume that

xi|(zi = j) ∼ Nq(µj,Σj).

So the conditional distribution of xi given zi = j has density function

f(xi;µj,Σj) =
1√

(2π)q|Σj|
exp(−1

2
(xi − µj)TΣ−1

j (xi − µj)) (5.4)

where µj ∈ Rq is the mean vector of the j-th normal distribution and Σj ∈ Rq×q is

the covariance matrix.

In this model, the unknown parameters are

θ = (τ1, . . . , τk, µ1, . . . , µk,Σ1, . . . ,Σk),

which represent the means and covariances of the normal distributions and the "mix-

ing" values between them. Given these parameters θ, the conditional distribution

of zi given xi, sij = p(zi = j|xi, θ), is the probability that the point xi is generated

from the j-th population. To cluster these n observations into k groups, we can use

the EM algorithm to estimate the parameters θ and compute sij from the observed

data X. The values of sij provide a soft clustering of these observations. To obtain a

hard clustering, we assign each observation xi to cluster j such that sij is the largest

among all sil for l = 1, . . . , k.

65



Note that in this model the likelihood function of X and Z is:

L(θ;X,Z) = p(X,Z|θ)

=
n∏
i=1

p(xi, zi|θ)

=
n∏
i=1

p(zi|θ)p(xi|zi; θ)

=
n∏
i=1

k∑
j=1

I(zi = j)p(zi = j|θ)p(xi|zi = j; θ)

=
n∏
i=1

k∑
j=1

I(zi = j)τjf(xi;µj,Σj)

(5.5)

where I is the indicator function and f is the density function of normal distribution

as de�ned in equation 5.4. The log-likelihood function is

logL(θ;X,Z) =
n∑
i=1

k∑
j=1

I(zi = j)[log τj −
q

2
log(2π)− 1

2
log |Σj| −

1

2
(xi − µj)TΣ−1

j (xi − µj)].

(5.6)

The marginal likelihood function of X is

L(θ;X) =
∑
Z

L(θ;X,Z)

=
∑
Z

p(X,Z|θ)

=
∑
Z

n∏
i=1

p(xi, zi|θ)

=
n∏
i=1

k∑
j=1

p(xi, zi = j|θ)

=
n∏
i=1

k∑
j=1

p(zi = j|θ)p(xi|zi = j; θ)

=
n∏
i=1

k∑
j=1

τjf(xi;µj,Σj).

(5.7)

The marginal log-likelihood function of X is
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logL(θ;X) =
n∑
i=1

log
k∑
j=1

τjf(xi;µj,Σj)

=
n∑
i=1

log
k∑
j=1

τj
1√

(2π)q|Σj|
exp(−1

2
(xi − µj)TΣ−1

j (xi − µj))

(5.8)

We now use the EM algorithm to estimate the parameters θ, which we can use

to cluster the n observations X = (x1, . . . , xn)T into k groups. In the E step, given

the current estimate of parameters

θ(t) = (τ
(t)
1 , . . . , τ

(t)
k , µ

(t)
1 , . . . , µ

(t)
k ,Σ

(t)
1 , . . . ,Σ

(t)
k ),

the conditional distribution zi given xi is computed using the Bayes' formula

s
(t)
ij = p(zi = j|xi; θ(t)) =

τ
(t)
j f(xi;µ

(t)
j ,Σ

(t)
j )∑k

l=1 τ
(t)
l f(xi;µ

(t)
l ,Σ

(t)
l )

. (5.9)

The corresponding Q function (de�ned in equation 5.3) is:

Q(θ, θ(t)) =
n∑
i=1

k∑
j=1

s
(t)
ij [log τj−

q

2
log(2π)−1

2
log |Σj|−

1

2
(xi−µj)TΣ−1

j (xi−µj)] (5.10)

In the M step, we �nd the parameters θ which maximize Q(θ, θ(t)). The solutions

are:

τ
(t+1)
j =

1

n

n∑
i=1

s
(t)
ij (5.11)

µ
(t+1)
j =

∑n
i=1 s

(t)
ij xi∑n

i=1 s
(t)
ij

(5.12)

Σ
(t+1)
j =

∑n
i=1 s

(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )T∑n

i=1 s
(t)
ij

(5.13)

The EM algorithm alternates with the E and M steps. In the implementation of

this algorithm, we �rst initialize sij, the conditional distribution of zi given xi. This

can be achieved by an initial clustering of these n observations into k groups. For

each observation i, we can set s
(1)
ij = 1 if we assign observation i to cluster j and
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set s
(1)
il = 0 for all l 6= j. We can perform the initial clustering in several ways. We

may assign each data point to a cluster randomly, or we may randomly choose k data

points as the initial cluster centers and assign each point to the closest center. We

may even run other clustering algorithms such as k-means on the dataset and use the

clustering results as the initial clustering of the EM algorithm.

The EM algorithm is used to maximize the marginal log-likelihood function. The

natural stopping criterion is to check whether the di�erence of the marginal log-

likelihoods between two successive iterations is su�ciently small, that is, to check

whether the following condition holds,

| logL(θ(t+1);X)− logL(θ(t);X)| < ε (5.14)

where ε is some predetermined threshold and logL(θ;X) is as de�ned in equation 5.8.

Alternatively, we can check the condition on the relative di�erence

| logL(θ(t+1);X)− logL(θ(t);X)

L(θ(t+1);X)
| < ε. (5.15)

After the loop with the E and M steps terminates, we have the estimates of the

parameters θ. W can compute sij = p(zi|xi, θ), the conditional distribution of zi given
xi, according to equation 5.9. They provide a soft clustering of these n observations.

As a �nal step, we compute hard clustering results and assign each observation xi to

cluster j such that sij is the largest among all sil (l = 1, . . . , k).

The EM clustering algorithm is summarized in Algorithm 5.1.

Algorithm 5.1 EM clustering

Input: a dataset of n observations X = (x1, . . . , xn)T ∈ Rn×q.
Output: cluster these n observations into k groups.

1: initialize the conditional distribution s
(1)
ij of zi given xi.

2: for t = 1 to MAX do
3: M step: compute τ

(t+1)
j , µ

(t+1)
j ,Σ

(t+1)
j as in equations (5.11),(5.12) and (5.13).

4: E step: compute s
(t+1)
ij as in equation (5.9).

5: compute the marginal log-likelihood logL(θ(t+1);X) as in equation (5.8).
6: if | logL(θ(t+1);X)/n− logL(θ(t);X)/n| < ε then
7: break
8: end if
9: end for

10: compute the �nal clustering results.
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5.3 Previous Work

Lin et al. (2004) considered the scenario where the datasets are horizontally par-

titioned among multiple parties. Suppose that there are m (m > 2) parties which

jointly hold a dataset of n observations X = (x1, . . . , xn)T. Each party h (1 ≤ h ≤ m)

owns nh observations (
∑m

h=1 nh = n). Lin et al. proposed a privacy preserving EM

clustering protocol which allows these m parties to securely perform EM clustering.

I brie�y discuss their protocol below.

Note that in the M -step, the parameters are updated as in equations (5.11),

(5.12) and (5.13). To obtain global estimates τ
(t+1)
j , µ

(t+1)
j and Σ

(t+1)
j , we only need

the global values
∑n

i=1 s
(t)
ij ,
∑n

i=1 s
(t)
ij xi and

∑n
i=1 s

(t)
ij (xi − µ

(t+1)
j )(xi − µ

(t+1)
j )T. Let

xih (i = 1, . . . , nh) be the i-th observation held by party h and de�ne

Ajh =

nh∑
i=1

s
(t)
ihj

Bjh =

nh∑
i=1

s
(t)
ihjxih

Cjh =

nh∑
i=1

s
(t)
ihj(xih − µ

(t+1)
j )(xih − µ(t+1)

j )T.

Then we have

m∑
h=1

Ajh =
n∑
i=1

s
(t)
ij

m∑
h=1

Bjh =
n∑
i=1

s
(t)
ij xi

m∑
h=1

Cjh =
n∑
i=1

s
(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )T.

Ajh, Bjh, Cjh can be computed locally by each party. To compute the global

estimates, we can invoke the following secure sum protocol. Suppose that each party

h owns a number vh and they wish to obtain the sum of these numbers without

disclosing their individual numbers to each other. We assume that their sum belong

to [0, N). The secure summation proceeds as follows. Party 1 selects a random

number r ∈ [0, N) and then sends w1 = r + v1 to party 2. Each party h adds its

number vh to the message it received and then sends it to the next party. Party m

sends wm = wm−1 + vm to party 1. Now party 1 computes wm − r, which equals
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∑m
h=1 vh, and sends this result to all other parties. Using this secure sum procedure,

each party h doesn't need to disclose Ajh, Bjh, Cjh and all the parties obtain the global

estimates.

After each party h obtains the global parameters (τ
(t+1)
j , µ

(t+1)
j ,Σ

(t+1)
j ), he/she

computes the conditional distribution of zih given xih

s
(t+1)
ihj =

τ
(t+1)
j f(xih;µ

(t+1)
j ,Σ

(t+1)
j )∑k

l=1 τ
(t+1)
l f(xih;µ

(t+1)
l ,Σ

(t+1)
l )

.

Lin et al. used the following formula to check the convergence criterion:

| logH(θ(t+1);X)− logH(θ(t);X)| < ε

where

logH(θ(t);X) =
n∑
i=1

k∑
j=1

log τ
(t)
j f(xi;µ

(t)
j ,Σ

(t)
j )

and ε is some predetermined threshold. This criterion is not exactly the same as

equation 5.14. Note that

logH(θ(t);X) =
m∑
h=l

Dh

where

Dh =

nh∑
i=1

k∑
j=1

[log τjf(xih;µ
(t)
j ,Σ

(t)
j )].

So each party h can compute Dh locally. All these parties use secure sum to compute

logH(θ;X). Each party can check the stopping criterion locally.

In this protocol, the values of individual data items are not disclosed and that no

information can be traced to a speci�c party. However, this protocol discloses the

means and the covariance matrix of each population, which may contain sensitive

information. If what we want to compute is just the clustering results, then this

protocol discloses more information than necessary. Besides, if there are only two

parties, then each party will learn the means and the covariance matrix of the other

party. Also note that this protocol doesn't work over vertically partitioned datasets.

I will develop a privacy preserving EM clustering protocol which works for arbitrarily

partitioned datasets.

70



5.4 Subprotocols

In this section, I present two secure protocols, secure logarithm and secure exponential

function, which I use in the design of privacy preserving EM clustering protocol.

5.4.1 Secure Logarithm

Suppose that a positive real numbers x, represented as [x] = bx2P c in the plaintext

domain, is split between Alice and Bob, [x] = xA + xB (mod N). Alice holds the

share xA and Bob holds the share xB. They wish to privately compute log x with the

result also split between Alice and Bob.

Lindell and Pinkas (2000) proposed a protocol to securely compute log x. Let 2m

be the power of 2 which is closest to x and we write x = 2m(1 + ε) where −1/2 ≤ ε ≤
1/2. Then

log x = log(2m(1 + ε)) = m log 2 + log (1 + ε).

The Taylor series for log (1 + ε) is:

log(1 + ε) =
∞∑
i=1

(−1)i−1εi

i
= ε− ε2

2
+
ε3

3
− ε4

4
+ · · · .

The truncated error of this series is bounded by

| log(1 + ε)−
l∑

i=1

(−1)i−1εi

i
| < |ε|

l+1

l + 1
· 1

1− |ε|
.

Lindell and Pinkas used Yao's private circuit evaluation to compute m and ε

and then used private polynomial evaluation to compute log(1 + ε). Here I give an

implementation all based on homomorphic encryption.

I �rst show how to privately compute m and ε. We assume that [x] (= bx2P c)
< 2L, where L is known to both parties. Let xL . . . x1 be the binary representation

of [x]. We de�ne a series of real numbers yi (1 ≤ i ≤ L) such that [yi] has binary

representation xi . . . x1. Note that [yi] < 2i. For each real number yi, we de�ne mi

and εi such that 2mi is the power of 2 closest to yi and yi = 2mi(1 + εi). Note that

x = yL, m = mL and ε = εL.

We can compute mi and εi iteratively from i = 1 to L. Note that when xi = 0,

yi = yi−1, so mi = mi−1 and εi = εi−1. We now consider the case when xi = 1. In this

case we know that [yi] = 2i−1 + [yi−1]. If xi−1 = 0, [yi−1] < 2i−2 and 0 ≤ [yi−1]/2i−1 <
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1/2. Since

yi = [yi]/2
P

= (2i−−1 + [yi−1])/2P

= 2i−P−1(1 + [yi−1]/2i−1),

we have

mi = i− P − 1

εi = [yi−1]/2i−1 = ([yi]− 2i−1)/2i−1

[εi] = 2P ([yi]− 2i−1)/2i−1.

If xi−1 = 1, then 2i−2 ≤ [yi−1] < 2i−1 and −1/2 < ([yi−1] − 2i−1)/2i < 0. Note

that

yi = [yi]/2
P

= (2i−1 + [yi−1])/2P

= (2i + [yi−1]− 2i−1)/2P

= 2i−P (1 + ([yi−1]− 2i−1)/2i).

We have

mi = i− P

εi = ([yi−1]− 2i−1)/2i

= ([yi]− 2i−1 − 2i−1)/2i

= ([yi]− 2i)/2i

[εi] = 2P ([yi]− 2i)/2i.

I present secure protocol to compute m and ε in Protocol 5.2. For convenience,

we set m = −(P + 1) and ε = 0 when x = 0.

In Protocol 5.2, m is an integer and ε is a real number. Lines 5 and 6 consider

the case when xi = 1 and xi−1 = 0. Lines 7 and 8 consider the case when xi = 1 and

xi−1 = 1. Lines 9 and 10 combine these two cases to compute mi and εi. Lines 11-12

combine the case when xi = 1 with the case when xi = 0. In lines 6 and 8 we use

[x] instead of [yi]. Note that [x] is equal to [yi] when i is the largest index such that

xi = 1. For this index i, line 10 computes εi correctly and line 12 multiplies εi−1 with

0. So only the computation in the i-th iteration matters and the protocol computes

72



Protocol 5.2 Secure computation of m and ε such that x = 2m(1 + ε) and −1/2 <
ε < 1/2

Input: a positive real number x such that [x] < 2L is split between Alice and Bob,
[x] = xA + xB (mod N).

Output: an integer m and a real number ε such that 2m is the power of 2 closest to
x and x = 2m(1 + ε). m and ε are also secrets split between Alice and Bob.

1: Alice and Bob use Protocol 3.2 to securely transform [x] into its binary represen-
tation xL . . . x1 whose bits xi are split between Alice and Bob.

2: m0 = −(P + 1)
3: ε0 = 0
4: for i = 1 to L do
5: u1 = i− P − 1
6: η1 = 2P ([x]− 2i−1)/2i−1

7: u2 = i− P
8: η2 = 2P ([x]− 2i)/2i

9: mi = (1− xi−1) · u1 + xi−1 · u2

10: [εi] = (1− xi−1) · η1 + xi−1 · η2

11: mi = (1− xi) ·mi−1 + xi ·mi

12: [εi] = (1− xi) · [εi−1] + xi · [εi]
13: end for{m = mL, ε = εL}

m and ε correctly.

The operations in Protocol 5.2 include addition, multiplication and division with

public divisor. So we can use secure multiplication (Protocol 2.1) and secure division

with public divisor (Protocol 4.2) to implement Protocol 5.2.

Once we know ε, we can use Protocol 5.3 to privately compute log(1 + ε). In

Protocol 5.3, l is the �xed number of iterations. Note that line 4 is the multiplication

of two real numbers. We need to use secure multiplication of real numbers. We can

implement line 5 using secure division with public divisor (Protocol 4.3).

Protocol 5.4 combines Protocol 5.2 and 5.3 to privately compute log x.

5.4.2 Secure Exponential Function

In the development of the privacy preserving EM clustering protocol, we need a

protocol to securely compute y = expx when the real number x ≤ 0 is a secret split

between Alice and Bob. Note that the Taylor series for the exponential function is

expx = 1 + x+
x2

2!
+
x3

3!
+ · · · .
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Protocol 5.3 Secure protocol for computing log (1 + ε) (−1 < ε < 1)

Input: a secret real number ε such that −1 < ε < 1 is split between Alice and Bob,
[ε] = εA + εB (mod N).

Output: Alice and Bob obtain their respective shares of s = log(1 + ε).

1: s = 0
2: t = 1
3: for i = 1 to l do
4: t = tε
5: r = t/i
6: if i mod 2 == 1 then
7: s = s+ r
8: else
9: s = s− r

10: end if
11: end for

Protocol 5.4 Secure logarithm
Input: a secret real number x ≥ 0 is split between Alice and Bob.
Output: Alice and Bob obtain their respective shares of y = log x.

1: Alice and Bob use Protocol 5.2 to privately compute m and ε such that x =
2m(1 + ε) and −1/2 < ε < 1/2.

2: Alice and Bob use Protocol 5.3 to privately compute s = log (1 + ε).
3: t = m log 2
4: y = s+ t
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We can truncate the series up to the l-th place to approximate the exponential

function and then use secure multiplication to privately compute the polynomial.

However, when the secret number x has large absolute value, the series converges

slowly. As we will see shortly, we will use the secure exponential protocol to compute

r =
∑

i=q expxi, where xi ≤ 0 (i = 1, . . . , q) and one of xi is 0. Since r ≥ 1, we can

ignore su�ciently small terms. So if x is negative and su�ciently small, for example

x ≤ −32, we simply approximate it with 0.

We then compute z = x/64. Now that |z| < 1/2, the Taylor series on exp z will

converge faster. Once we have s = exp z,

y = expx = exp(64z) = (exp z)64 = s64.

I present the secure exponential protocol in Protocol 5.5. The multiplications in

lines 6 and 12 refer to real numbers and we need to use secure multiplication of real

numbers. We can implement line 7 using secure division with public divisor.

Protocol 5.5 Secure exponential function for non-positive real numbers

Input: a secret real number x ≤ 0 is split between Alice and Bob, [x] = xA + xB
(mod N).

Output: Alice and Bob obtain their respective shares of y = expx.

1: Alice and Bob use Protocol 3.1 to privately compare x and −32. Let α = 1 if
x ≤ −32 and 0 otherwise.

2: Alice and Bob use Protocol 4.2 to securely compute z = x/64.

3: s = 1
4: t = 1
5: for i = 1 to l do
6: t = tz
7: t = t/i
8: s = s+ t
9: end for

10: y = s
11: for i = 1 to 6 do
12: y = y2

13: end for
14: y = (1− α)y

I present another secure exponential protocol which computes z = xy when x > 0

and y ≥ 0 are both secret integers split between Alice and Bob. I will not use this

protocol in the development of privacy preserving EM clustering protocol.
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Let yLyL−1 . . . . . . y1 be the binary representation of y. Then

y = yL2L−1 + · · ·+ yi2
i−1 + · · ·+ y1,

and we have the equality:

z = xy

= x(yL2L−1+···+yi2i−1+···+y1)

= x(yL2L−1) . . . x(yi2
i−1) . . . xy1 .

Note that when yi = 1, x(yi∗2i−1) = x2i−1
; otherwise x(yi2

i−1) = 1. So

x(yi2
i−1) = yix

2i−1

+ (1− yi).

Let ti = x2i−1
. Then ti+1 = t2i . I present the secure exponential protocol in

Protocol 5.6.

Protocol 5.6 Secure exponential function for nonnegative integers
Input: two secret integers x > 0 and y ≥ 0 are split between Alice and Bob.
Output: Alice and Bob obtain their respective shares of z = xy.

1: Alice and Bob use Protocol 3.2 to securely transform y into its binary represen-
tations yL . . . y1.

2: z = 1
3: t = x
4: for i = 1 to L do
5: r = yit+ (1− yi)
6: z = zr
7: t = t2

8: end for

5.5 Privacy Preserving EM clustering

Suppose that a dataset of n observations with q attributes, X = (x1, . . . , xn)T ∈ Rn×q,

is arbitrarily distributed between Alice and Bob, X = X1+X2. Alice owns X1 ∈ Rn×q

and Bob owns X2 ∈ Rn×q. They wish to perform the EM algorithm to cluster the

joint dataset X into k groups but without disclosing their con�dential dataset to each

other. The purpose of this section is to present a privacy preserving two-party EM

clustering protocol to enable such applications.
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The design of secure protocols is based on the speci�c homomorphic encryption,

the Paillier cryptosystem. We use the additive secret-sharing scheme as we present

in section 2.3. We assume that both parties are supplied with a key parameter K.

Alice has input (1K , k,X1) and Bob has input (1K , kX2). We assume that Alice has

the private (decryption) key and both parties know the public (encryption) key.

As I discuss in section 5.2, the EM clustering algorithm consists of �ve steps:

initialization, M -step, E-step, checking convergence criterion and �nal clustering. I

develop secure protocols for these individual procedures and assemble them together

to implement a privacy preserving EM clustering algorithm. Note that the proposed

EM protocol works for arbitrarily partitioned datasets, which include vertical parti-

tion and horizontal partition as special cases. At the end of this section, I prove that

this protocol discloses only the number of iterations.

1. Initialization.

The �rst step in EM -clustering is to �nd the initial clustering and initialize sij,

the conditional distribution of zi given xi. As I discuss in section 5.2, there are

several ways for initialization. Based on di�erent methods, we can implement di�erent

privacy preserving initialization procedures accordingly. As an example, we assume

that we select k points randomly as the initial cluster centers and then assign each

point to the closest cluster. If the point xi is closest to the j-th cluster center, we set

sij = 1 and sil = 0 for l 6= j. Based on this method, I implement a privacy preserving

initialization procedure, which I present in Protocol 5.7.

Protocol 5.7 is implemented as follows. In line 1, Alice sends k indices (d1, . . . , dk)

to Bob. Since these indices are randomly selected, they don't disclose any information

about Alice. The k points (xd1 , . . . , xdk) are used as the initial cluster centers. In lines

4 and 6, we use Protocol 3.4 to privately compute the squared distance between the

point xi and the cluster centers xdl . In line 7 secure comparison (Protocol 3.1) is

invoked to privately compare m and d. In line 8, m is assigned the minimum of m

and d. We can implement line 8 using secure multiplication.

The vector (si1, . . . , sik) records the comparison results of m and ‖xi, xdl‖2
2. Lines

10-14 scan the vector from the k-th entry to the �rst entry. Once it encounter a

1, it will set the remaining entries to be 0. So if xi is closest to cluster j, we have

sij = 1 and sil = 0 for l 6= j. For example, suppose that the squared distances from

xi to the k cluster centers xdl are (3, 4, 2, 5). After the execution of line 9 the vector

(sil, . . . , sik) is (1, 0, 1, 0). Lines 10-14 sets the vector to be (0, 0, 1, 0).
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Protocol 5.7 Privacy preserving initialization in EM clustering

Input: a dataset X = (x1, . . . , xn)T ∈ Rn×q is split between Alice and Bob.
Output: initial clustering sij ∈ R for i = 1, . . . , n, j = 1, . . . , k, which are secrets

split between Alice and Bob.

1: Alice randomly selects k indices dl (l = 1, . . . , k) from {1, . . . , n} and sends these
indices to Bob.

2: for i = 1 to n do

3: si1 = 1
4: m = ‖xi, xd1‖2

2

5: for l = 2 to k do
6: d = ‖xi, xdl‖2

2

7: Alice and Bob privately compare m and d using Protocol 3.1.
Let sil = 1 if m ≤ d and 0 otherwise.

8: m = silm+ (1− sil)d
9: end for

10: r = sik
11: for l = k − 1 to 1 do
12: sil = (1− r)sil
13: r = r + sil
14: end for

15: end for
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2. M step.

In the M step we need to compute

τj =
1

n

n∑
i=1

sij

µj =

∑n
i=1 sijxi∑n
i=1 sij

Σj =

∑n
i=1 sij(xi − µj)(xi − µj)T∑n

i=1 sij

The above formulas involve addition, multiplication and division. We can compute

them privately using secure multiplication and secure division subprotocols. We can

improve the performance signi�cantly using the following optimization techniques:

1. To compute µj and Σj, we need to divide them by s =
∑n

i=1 sij. Note that

µj ∈ Rq and Σj ∈ Rq×q, we need to invoke secure division (q2 + q) times. As secure

division is a costly operation we try to reduce its invocation as much as possible. We

can invoke secure division to compute t = 2M/s for some su�ciently large M . Then

we multiply t with the entries in µj and Σj and then divide them by 2M using secure

division with public divisor.

2. In order to compute Σj, we need to compute sij(xi − µj)(xi − µj)T. We �rst

compute w = sij(xi−µj) and then compute w(xi−µj)T. This method needs (q+ q2)

secure multiplications. If instead we �rst compute Λ = (xi − µj)(xi − µj)T and then

compute sijΛ, it requires 2q2 secure multiplications.

3. The above formulas refer to the operations of real numbers. For each se-

cure multiplication of real numbers, we need to invoke secure multiplication on the

representations of real numbers (Protocol 2.1) and then invoke secure division with

public divisor (Protocol 4.3) to scale them down accordingly. A more e�cient im-

plementation is to �rst invoke secure multiplication only. We scale the representa-

tions of real numbers properly only at the end of the M steps. For example, in the

computation of Σj, we simply use secure multiplications (Protocol 2.1) to compute

Ψ =
∑n

i=1[sij]([xi]− [µj])([xi]− [µj])
T and we don't invoke secure division with public

divisor at this moment. Then we multiply it with 2M/
∑n

i=1[sij]. Only this time we

divide them by 2M+P using secure division with public divisor (P is the number of

bits to represent the fractional part of real numbers). Similarly, to compute µj, we

can �rst compute νj =
∑n

i=1[sij][xi], multiply it with 2M/
∑n

i=1[sij], and then divide

it by 2M .

4. The computation of µj and Σj involves scalar-vector multiplication and vector-
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vector multiplication. They can be implemented using a series of secure multiplica-

tions. However, we don't invoke Protocol 2.1 individually for each multiplication. We

encrypt the vectors and the scalar only once and reuse them in the computation of

several entries.

Combining all these strategies together, I present a privacy preserving protocol

for the M step in Protocol 5.8. We can implement the secure protocol using secure

multiplication (Protocol 2.1), secure division with public divisor (Protocol 4.3), secure

division (Protocol 4.6). Note that in this protocol, we explicitly deal with the scaling

of the representations of real numbers. For multiplication in the protocol, we simply

use secure multiplication of integers (Protocol 2.1) and we don't need to invoke secure

division with public divisor right after it. The scaling is done explicitly in line 6 and

15.

Protocol 5.8 Privacy preserving M step in EM clustering

Input: a dataset of n observations X = (x1, . . . , xn)T ∈ Rn×q, a soft clustering
sij ∈ R, all of which are secrets split between Alice and Bob.

Output: τj ∈ R, µj ∈ Rq, Σj ∈ Rq×q for j = 1, . . . , k; These results are secrets split
between Alice and Bob.

1: for j = 1 to k do
2: s =

∑n
i=1[sij]

3: [τj] = s/n
4: r = 2M/s
5: ν =

∑n
i=1[sij][xi]

6: [µj] = (νr)/2M

7: Ψ = 0
8: for i = 1 to n do
9: ν = [xi]− [µj]

10: ξ = [sij]ν
11: Φ = ξνT

12: Ψ = Ψ + Φ
13: end for
14: Ψ = Ψr
15: [Σj] = Ψj/2

M+P

16: end for

3. E step.

In the E step, we need to compute

sij =
τjf(xi;µj,Σj)∑k
l=1 τjf(xi;µl,Σl)

(5.16)
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where

f(xi, µj,Σj) =
1√

(2π)q|Σj|
exp (−(xi − µj)TΣ−1

j (xi − µj)). (5.17)

The E step can be further divided into four procedures: the Cholesky decompo-

sition of Σj, the computation of −(xi−µj)Σ−1
j (xi−µj)T, the computation of log |Σj|

and the �nal computation of sij. I describe these procedures below and also show

how to implement a secure protocol for each procedure.

(a) Cholesky decomposition of Σj. We assume that Σj is a symmetric de�nite

matrix. In the implementation, we add a regularization term λI for a small λ > 0 to

Σj to ensure this condition. The standard Cholekey decomposition factors Σj = LLT

where L is a lower triangular matrix and it involves square root operation. We use an

alternative procedure to perform Cholesky decomposition without using square root

operation. This procedure �nds a lower triangular matrix L ∈ Rq×q whose diagonal

entries are all 1s and a diagonal matrix D such that Σj = LDLT. Based on this

procedure we are able to implement a secure protocol for the Cholesky decomposition

using secure multiplication and secure division only. I present this protocol in Protocol

5.9. Note that we use real numbers in the description of the protocol, so we need to

use secure multiplication of real numbers.

Protocol 5.9 Cholesky decomposition without square root

Input: a symmetric de�nite matrix Σ ∈ Rq×q is split between Alice and Bob.
Output: a lower triangular matrix L ∈ Rq×q with all diagonal entries 1s and a

diagonal matrix D ∈ Rq×q such that LDLT = Σ.

1: for j = 1 to q do
2: Dj = Σjj −

∑j−1
l=1 L

2
jk

3: for i = j + 1 to q do
4: Lij = (Σij −

∑j−1
k=1 LikLjk)/Dj

5: end for
6: end for

(b) Computation of −(xi − µj)
TΣ−1

j (xi − µj). Suppose that the Cholesky

decomposition of Σj is Σj = LDLT. Denote the diagonal entries of D by D1, . . . , Dq.

we know that Σ−1
j = (L−1)TD−1L−1. We can invert L and D, compute Σ−1

j , and then

compute −(xi − µj)TΣ−1
j (xi − µj). However, we can use a more e�cient procedure.

Note that (xi − µj)TΣ−1
j (xi − µj) = (xi − µj)T(L−1)TD−1L−1(xi − µj). We can �rst

compute ν = L−1(xi−µj) and then compute νTD−1ν. Notice that L−1 is a triangular

matrix with diagonal entries 1s and the matrix-vector multiplication L−1(xi − µj) is
more e�cient than the multiplication with a full matrix.
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I present the secure protocol to compute −(xi−µj)TΣ−1
j (xi−µj) in Protocol 5.10.

Note that we use real numbers in the description of Protocol 5.10. So we need to use

secure multiplication of real numbers. We can implement line 14 using secure division

(Protocol 4.6) and implement the scalar product in line 16 using a series of secure

multiplications.

Protocol 5.10 Secure computation of −(x− µ)TΣ−1(x− µ)

Input: x ∈ Rq, µ ∈ Rq and the Cholesky decomposition of Σ = LDLT, L ∈ Rq×q is
a lower triangular matrix and D ∈ Rq×q is a diagonal matrix. All the inputs are
secrets split between Alice and Bob.

Output: Alice and Bob obtain their respective shares of r = −(x− µ)Σ−1(x− µ).

{Line 1-10 compute U = L−1}
1: U = I { I ∈ Rq×q is the identity matrix}
2: for i = 1 to q do
3: for j = i+ 1 to q do
4: for k = 1 to i do
5: t = UikLji
6: Ujk = Ujk − t
7: end for
8: Ujk = Ujk − Lji
9: end for

10: end for

11: ν = x− µ
12: ν = Uν
13: for i = 1 to q do
14: wi = νi/Di.
15: end for
16: r = −〈w, ν〉

(c) Computation of log |Σj|. As will be clear in next procedure, we need to

compute log |Σj|. Suppose that we have the Cholesky decomposition of Σj, |Σj| =

LDLT and the diagonal entries of D are (D1, . . . , Dq). We know that |Σj| =
∏q

l=1 Dl.

In some cases, the diagonal entries Dl are small numbers. If we compute
∏q

l=1Dl

directly, it may cause under�ow problems. So instead we compute

log |Σj| = log

q∏
l=1

Dl

=

q∑
l=1

logDl
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Here we need to privately compute the logarithm q times. Since secure computation

of the logarithm function is costly, we try to avoid its invocation as much as possible.

Note that for each Dl, we can �nd an integer ml such that 2ml ≤ Dl < 2ml+1. We

can write Dl = 2mlδl where 1 ≤ δl < 2. Now we have

log |Σj| = log

q∏
l=1

Dl

= log

q∏
l=1

2mlδl

= log(

q∏
l=1

2ml

q∏
l=1

δl)

= log

q∏
l=1

2ml + log

q∏
l=1

δl

=

q∑
l=1

ml log 2 + log

q∏
l=1

δl

Now that 1 ≤
∏q

l=1 δl < 2q and we only need to invoke a secure logarithm on it.

I �rst give a protocol to privately compute ml and δl (Protocol 5.11). In Protocol

5.11, P is the number of bits to represent the fractional part of real numbers. We

scan the binary representation of [x] from the lowest bits to the highest bits. If the

bit we encounter xi is 1, the current values of m and η are computed in line 4 and in

lines 6-10, respectively, and we update them in lines 11 and 12. Otherwise we don't

change m and δ. Clearly we can implement Protocol 5.11 using secure multiplication

and secure division with public divisor.

I next give a protocol to privately compute log|Σj| (Protocol 5.12). We use secure

multiplication of real numbers to implement line 6. The values ml and u are integers.

In line 8, Alice computes µA = νA[log 2] and Bob computes µB = νB[log 2], where

[log 2] = b(log 2)2P c, νA and νB are the shares of ν and µA and µB are the shares of

µ.

(d) Computation of sij. sij can be computed using equations (5.16), (5.17)

directly. However,

rij = −(xi − µj)Σ−1
j (xi − µj) (5.18)

may be a small negative number and the value exp rij is close to 0. We may not

be able to compute sij accurately if all of exp rij are close to 0. We can employ a
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Protocol 5.11 Secure protocol for computing m and δ such that 2m ≤ x < 2m+1 and
x = 2mδ.
Input: a positive real number x such that [x] < 2L is split between Alice and Bob,

[x] = xA + xB (mod N).
Output: an integer m and a real number δ such that 2m ≤ x < 2mδ and 1 ≤ δ < 2.

m and δ are secrets split between Alice and Bob.

1: Alice and Bob use secure protocol 3.4 to privately transform [x] into its binary
representation xL . . . x1, whose bits xi are secrets split between Alice and Bob.

2: m = −P − 1
3: δ = 0
4: for i = 1 to L do
5: u = i− 1− P
6: if i ≤ P then
7: η = ([x]− 2i−1)2P−i+1

8: else
9: η = ([x]− 2i−1)/2i−1−P

10: end if
11: m = xiu+ (1− xi)m
12: δ = xiη + (1− xi)δ
13: end for

Protocol 5.12 Secure protocol for computing log |Σ| when Σ is a positive de�nite
matrix
Input: Cholesky decomposition of Σ, Σ = LDLT. L and D are secrets split between

Alice and Bob.
Output: Alice and Bob obtain their respective shares of r = log |Σ|.

1: u = 0
2: v = 1
3: for l = 1 to q do
4: Alice and Bob use Protocol 5.11 to privately compute ml and δl such that

2ml ≤ Dl < 2ml+1 and Dl = 2mlδl.
5: u = u+ml

6: v = vδl
7: end for
8: µ = u log 2
9: Alice and Bob invoke secure logarithm to privately compute ν = log v.

10: r = µ+ ν
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standard method to prevent such under�ow problems. Let

tij = log τjf(xi;µj,Σj)

= log τj + log f(xi;µj,Σj)

= log τj + log
1√

(2π)q|Σj|
exp(−(xi − µj)Σ−1

j (xi − µj))

= log τj −
q

2
log(2π)− 1

2
log |Σj|+ rij.

(5.19)

Let

ti = max
j
tij (5.20)

and

t′ij = tij − ti. (5.21)

Then

sij =
τjf(xi;µj,Σj)∑k
l=1 τlf(xi;µl,Σl)

=
exp tij∑k
l=1 exp til

=
exp tij/ exp ti

(
∑k

l=1 exp til)/ exp ti

=
exp t′ij∑k
l=1 exp t′il

.

Let

vij = exp t′ij (5.22)

and

si =
k∑
l=1

vil. (5.23)

Then

sij =
vij
si
.

Note that all of t′ij (j = 1, . . . , k) are non-positive numbers and at least one of them

is 0. So we have 1 ≤ si < k.

I summarize the procedure in Protocol 5.13. Lines 1-4 compute µj = log τj and

wj = log|Σj| for each cluster j. These quantities can be used for the computation

of each point xi. Lines 5-26 compute sij for each point xi. Lines 10-14 compute
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ti = maxj tij. In line 13, if ti ≤ tij, then α = 1 and we have ti = tij. Otherwise

we don't change ti. Note that t′ij ≤ 0. So we can invoke Protocol 5.5 to privately

compute vij = exp t′ij and then compute si =
∑k

l=1 vil. Also note that in the design

of Protocol 5.5, when the exponent is smaller than −32, we simply approximate the

value of the exponential function with 0. Because at least one of t′ij is 0 and si ≥ 1,

we ignore the su�ciently small terms.

Note that we use real numbers in the description in the protocol, so we need to

use secure multiplication of real numbers. The exception is in line 12 and 13 where

α is either 0 or 1 and it is represented as it is in the plaintext domain and we only

need to use secure multiplication of integers in line 13. We can use secure division to

implement line 24. So we can implement the privacy preserving E step using secure

multiplication, secure division, secure logarithm and secure exponential function.

4. Checking convergence criterion.

The stopping criterion is that the marginal log-likelihood in successive iterations is

su�ciently close, as we presented in equation (5.15). For convenience, we repeat the

equation here: we can check the condition on the relative di�erence

| logL(θ(t+1);X)− logL(θ(t);X)

L(θ(t+1);X)
| < ε, (5.24)

where ε is some prede�ned threshold and

logL(θ;X) =
n∑
i

log
k∑
j=1

τj exp (−(xi − µj)TΣ−1
j (xi − µj)). (5.25)
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Protocol 5.13 Privacy preserving E step in EM clustering

Input: X = (x1, . . . , xn)T ∈ Rn×q, τj ∈ R, µj ∈ Rq and Σj ∈ Rq×q for j = 1, . . . , k,
all of which are secrets split between Alice and Bob.

Output: sij ∈ R (i = 1, . . . , n, j = 1, . . . , k); the results are secrets split between
Alice and Bob.

1: for j = 1 to k do
2: Alice and Bob use Protocol 5.4 to securely compute uj = log τj.
3: Alice and Bob use Protocol 5.12 to securely compute wj = log |Σj|.
4: end for

5: for i = 1 to n do

6: for j = 1 to k do
7: Alice and Bob use Protocol 5.10 to securely compute rij = −(xi −

µj)
TΣ−1

j (xi − µj).
8: tij = rij + uj − 1

2
wj − q

2
log(2π)

9: end for

10: ti = ti1
11: for j = 2 to k do
12: Alice and Bob use Protocol 3.1 to securely compare ti and tij. Let α = 1 if

ti ≤ tij and 0 otherwise.
13: ti = (1− α)ti + αtij
14: end for
15: for j = 1 to k do
16: t′ij = tij − ti.
17: end for

18: si = 0.
19: for j = 1 to k do
20: Alice and Bob use Protocol 5.5 to securely compute vij = exp t′ij.
21: si = si + vij
22: end for
23: for j = 1 to k do
24: sij = vij/si
25: end for

26: end for
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Note that

logL(θ;X) =
n∑
i=1

log
k∑
j=1

τjf(xi;µj,Σj)

=
n∑
i=1

log
k∑
j=1

exp tij

=
n∑
i=1

log
k∑
j=1

exp(t′ij + ti)

=
n∑
i=1

log
k∑
j=1

(exp ti exp t′ij)

=
n∑
i=1

log(exp ti(
k∑
j=1

exp t′ij))

=
n∑
i=1

(ti + log
k∑
j=1

exp t′ij)

=
n∑
i=1

ti +
n∑
i=1

log
k∑
j=1

exp t′ij

=
n∑
i=1

ti +
n∑
i=1

log
k∑
j=1

vij

=
n∑
i=1

ti +
n∑
i=1

log si.

The last equation requires an invocation of secure logarithm for each observation. We

can reduce the number of secure logarithms using an equivalent formula

logL(θ;X) =
n∑
i=1

ti + log
n∏
i=1

si.

Note that 1 ≤ si < k. We can incorporate the computation of the marginal log-

likelihood function in the computation of the E step. I present the augmented privacy

preserving E step in Protocol 5.14. We assume that the original privacy preserving

protocol for the E step (protocol 5.13) also outputs (the shares of) si and ti in addition

to sij. In the protocol I use G to denote the marginal log-likelihood logL(θ;X).
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Protocol 5.14 Privacy preserving E step (augmented) in EM clustering

Input: xi ∈ Rq (i = 1, . . . , n), τj ∈ R, µj ∈ Rq and Σj ∈ Rq×q for j = 1, . . . , k, all of
which are secrets split between Alice and Bob.

Output: sij ∈ R (i = 1, . . . , n, j = 1, . . . , k) and the marginal log-likelihood G; the
results are secrets split between Alice and Bob.

1: Alice and Bob use Protocol 5.13 to privately compute sij, si and ti for i = 1, . . . , n
and j = 1, . . . , k.

2: s = 1
3: G = 0
4: for i = 1 to n do
5: G = G+ ti
6: s = ssi
7: end for
8: Alice and Bob use secure logarithm (Protocol 5.4) to privately compute u = log s.
9: G = G+ u

5. Final clustering.

The vector (si1, . . . , sik) ∈ Rk gives a soft clustering of the data point xi. To get a

hard clustering, we assign point xi to cluster j such that sij is the largest among all

sil (l = 1, . . . , k). I present a secure protocol for this procedure in Protocol 5.15.

Protocol 5.15 Privacy preserving protocol for �nal clustering

Input: sij (i = 1, . . . , n; j = 1, . . . , k), a soft clustering of the datasets, which are
split between Alice and Bob.

Output: a vector of integers c ∈ Zn such that ci = j if sij is the largest among all
sil (l = 1, . . . , k). These results are secrets split between Alice and Bob.

1: for i = 1 to n do
2: ci = 1
3: m = si1
4: for l = 2 to k do
5: Alice and Bob use Protocol 3.1 to privately compare m and sil. Let α = 1 if

m ≤ sil and 0 otherwise.
6: ci = (1− α)ci + αl
7: m = (1− α)m+ αsil
8: end for
9: end for

Note that when m ≤ sil, α = 1. Then in line 6 ci is set to the cluster l and

in line 7 m is assigned the value sil; otherwise, we don't change ci and m. In the

implementation of this protocol, sij and m are real numbers and α and ci are integers.

We use secure multiplications of integers in lines 6 and 7. I summarize the privacy
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preserving EM clustering protocol in Protocol 5.16.

Protocol 5.16 Privacy preserving two-party EM clustering

Input: a dataset X = (x1, . . . , xn)T ∈ Rn×q is distributed between Alice and Bob,
X = X1 + X2. Alice has input (1K , k,X1) and Bob has input (1K , k,X2), where
k is the number of clusters and K is the security parameter.

Output: c ∈ Zn such that point xi is assigned to cluster ci.

1: Alice generates a pair of keys (e, d) = G(1K) and sends the public key e to Bob.
2: Alice and Bob use Protocol 5.7 to compute the initial clustering sij.
3: for t = 1 to MAX do
4: Alice and Bob use Protocol 5.8 to perform privacy preserving M step. The

results θ(t+1) = (τ1, µ1, Σ1, . . . , τk, µk,Σk) are secrets split between Alice and
Bob.

5: Alice and Bob use Protocol 5.14 to perform privacy preserving E step. The
results are sij and the marginal log-likelihood function G(t+1) = L(θ(t+1);X).
These results are secrets split between Alice and Bob.

6: if |G(t)−G(t+1)

G(t+1) | < ε then
7: break
8: end if
9: end for

10: Alice and Bob use Protocol 5.15 to �nd the �nal clustering results c ∈ Zn. The
results are secrets split between Alice and Bob.

11: Alice and Bob exchange their shares of ci (i = 1, . . . , n) so that both parties
obtain the �nal clustering results.

We use secure comparison (Protocol 3.1) to implement line 6. Denote the com-

parison results by ut and its two shares by ut,A and ut,B. Alice and Bob exchange

their shares of comparison results and determine whether they will stop the loop or

not. This is the only place where Alice and Bob disclose extra information besides the

�nal clustering results. It is equivalent to the disclosure of the number of iterations.

In line 11, Alice and Bob exchange their shares of c and obtain the �nal clustering

results.

The privacy of the EM clustering protocol is guaranteed by the following theorem.

Theorem 5.1. The EM clustering protocol (Protocol 5.16) discloses only the number

of iterations beside the �nal clustering results. In other words, if we add the number

of iterations as part of the �nal results, the EM clustering protocol is secure in the

semi-honest model.

Proof. To prove that the privacy preserving two-party EM clustering protocol is

secure in the semi-honest model, we need to show that:
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(1) Given Alice's input, her output and the number of iterations T , we are able

to simulate her view during the execution of the protocol.

(2) Given Bob's input, his output and the number of iterations T , we are able to

simulate his view during the execution of the protocol.

Note that we implement Protocol 5.16 using secure multiplication, secure division,

secure logarithm and secure exponential function. All these subprotocols are imple-

mented using secure multiplication. So we actually implement Protocol 5.16 using

secure multiplication only.

We �rst examine the message exchanges during the execution of Protocol 5.16.

(1) At the beginning (step 1), Alice generates a pair of keys (e, d) = G(1K) and

sends the public key e to Bob. As usual, we denote the modulus associated with this

key pair by N .

(2) At step 2, Alice randomly selects k indices (d1, . . . , dk) from {1, . . . , n} and
sends these indices to Bob.

(3) During each invocation of secure multiplication, Alice sends two encrypted

messages to Bob and Bob sends the encryption of a random number to Alice. Denote

the total number of invocations of secure multiplication by v.

(4) At step 6, Alice and Bob exchange their shares of the comparison results ut

(t = 1, . . . , T ). Alice sends ut,A to Bob and Bob sends ut,B to Alice.

(5) At the last step (step 11), Alice and Bob exchange their shares of ci (i =

1, . . . , n). Alice sends ci,A to Bob and Bob sends ci,B to Alice.

To simulate Alice's view during the execution of Protocol 5.16, we �rst check the

elements of Alice's view.

(1) Alice has input (1K , k,X1).

(2) Alice uses a sequence of random coins r1,A to generate the key pair (e, d) =

G(1K , r1,A) and uses another sequence of random coins r2,A to select k random indices

according to some function f , (d1, . . . , dk) = f(r2,A). During the invocations of secure

multiplication, Alice uses random numbers in Z∗N to encrypt messages. Denote by

r3,A = (r3,1,A, . . . , r3,2v,A) the sequences of random coins used to generate those random

numbers. Denote all these sequences of random coins by rA = (r1,A, r2,A, r3,A).

(3) During each invocation of secure multiplication, Alice receives the encryption

of a random number from Bob. Denote all these messages by M1,A = (m1, . . . ,mv).

(4) At step 6, Alice receives the shares of the comparison results ut,B from Bob.

Denote these messages by M2,A = (u1,B, . . . , uT,B).

(5) Alice receives ci,B (i = 1, . . . , n) from Bob at step 11. Denote these messages

by M3,A = (c1,B, . . . , cn,B).
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So Alice's view is V IEWA = (1K , k,X1, rA,M1,A,M2,A,M3,A). I now show how

to simulate Alice's view based on her input (1K , k,X1), her output (the clustering

results ci) and the number of iterations T . The simulator generates a number of

sequences of independent random coins r′1,A, r
′
2,A and r′3,A = (r′3,1,A, . . . , r

′
3,2v,A), which

correspond to the sequences rA = (r1,A, r2,A, r3,A) that Alice uses in the real execution.

Let r′A = (r′1,A, r
′
2,A, r

′
3,A). It is identically distributed with rA = (r1,A, r2,A, r3,A). The

simulator generates (e′, d′) = G(1K , r′1,A), which is identically distributed with (e, d).

Denote the modulus associated with the key pair (e′, d′) by N ′.

I next show how to simulate the messages M1 = (m1, . . . ,mv). As I discuss

in section 2.3, each message mi that Alice receives during the invocation of secure

multiplication is the encryption of a random number and is identically distributed with

Ee(b1, b2), where b1 is uniformly random in ZN and b2 is uniformly random in Z∗N . Here

b1 and b2 correspond to r and s3 in Protocol 2.1, respectively. The simulator generates

a uniformly random number b′1 in ZN ′ and another uniformly random number b′2
in Z∗N ′ and computes m′i = Ee′(b

′
1, b
′
2). m′i is identically distributed with mi. Let

M ′
1,A = (m′1, . . . ,m

′
v). M

′
1,A is identically distributed with M1,A = (m1, . . . ,mv).

I next show how to simulate the messages M2 = (u1,B, . . . , uT,B). Note that be-

fore Alice and Bob exchange their shares of the comparison results ui, Alice has

the share ui,A such that (ui,A + ui,B) mod N = ui. Alice's share ui,A is computed

from her input (1K , k,X1), her random coins rA, the messages in M1,A and the mes-

sages in M2,A that Alice received before the exchange of the shares of ui according

to some function gi,A, ui,A = gi,A(1K , k,X1, rA,M1,A,M2,A). The simulator computes

u′i,A = gi,A(1K , k,X1, r
′
A,M

′
1,A,M

′
2,A), which is identically distributed with ui,A. Also

note that we can infer the comparison result ui of each iteration from the number

of iterations T . The simulator computes u′i,B = (ui − u′i,A) mod N ′, which is identi-

cally distributed with ui,B = (ui − ui,A) mod N . Let M ′
2,A = (u′1,B, . . . , u

′
T,B). It is

identically distributed with M2,A = (u1,B, . . . , uT,B).

Similarly, we can simulate the messages M3 = (c1,B, . . . , cn,B). Before Alice and

Bob exchange their shares of ci, Alice has the share ci,A such that (ci,A+ci,B) mod N =

ci. ci,A is computed as ci,A = hi,A(1K , k,X1, rA,M1,A,M2,A) for some function hi,A.

The simulator computes c′i,A = hi,A(1K , k,X1, r
′
A,M

′
1,A,M

′
2,A), which is identically

distributed with ci,A. Since the simulator is given the �nal result ci, it can compute

c′i,B = (ci−c′i,A) mod N ′, which is identically distributed with ci,B = (ci−ci,A) mod N .

Let M ′
3,A = (c′1,B, . . . , c

′
n,B). It is identically distributed with M3,A = (c1,B, . . . , cn,B).

Let M ′
A = (1K , k,X1, r

′
A,M

′
1,A,M

′
2,A,M

′
3,A). From the above discussion we know

that M ′
A is identically distributed with Alice's view V IEWA and thus it is computa-
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tionally indistinguishable from V EIWA. So we can simulate Alice's view using her

input (1K , k,X1), the clustering results ci and the number of iterations T .

Now I show how to simulate Bob's view during the execution of Protocol 5.16

given Bob's input (1K , k,X2), his output ci and the number of iterations T . Bob's

view is divided into seven parts.

(1) Bob has input (1K , k,X2).

(2) During each invocation of secure multiplication, Bob uses a sequence of random

coins r3,i,B to generate a uniformly random number b1 in ZN and another uniformly

random number b2 in Z∗N and then computes Ee(b1, b2). Denote these sequences of

random coins by rB = (r3,1,B, . . . , r3,v,B). Here v is the total number of invocations of

secure multiplication. We use the same subscript 3 here as we use in the simulation

of Alice's view because they are both used in the invocations of secure multiplication.

(3) At the beginning (step 1), Bob receives the public key e from Alice.

(4) At step 2, Bob receives k indices that Alice randomly chooses from {1, . . . , n}.
Denote these messages by M0,B = (d1, . . . , dk)

(5) During each invocation of secure multiplication, Bob receives the encryptions

of two numbers from Alice. Bob receives altogether 2v messages in the v invocations

of secure multiplications. Denote the i-th message by mi = Ee(ai, r3,i,A), where ai

is some number only known by Alice and r3,i,A is the sequence of random coins that

Alice uses to encrypt ai. We denote all these messages by M1,B = (m1, . . . ,m2v) =

(Ee(a1, r3,1,A), . . . , Ee(a2v, r3,2v,A)).

(6) At step 6, Bob receives the shares of the comparison result ut,A from Alice.

Denote these messages by M2,B = (u1,A, . . . , uT,A).

(7) At step 11, Bob receives ci,A (i = 1, . . . , n) from Alice. Denote these messages

by M3,B = (c1,A, . . . , cn,A).

So Bob' view is V IEWB = (1K , k,X2, rB, e,M0,B,M1,B,M2,B,M3,B). I now show

how to simulate Bob's view based on his input (1K , k,X2), his output (the clustering

results ci) and the number of iterations T . The simulator generates a number of

sequences of independent random coins r′B = (r′3,1,B, . . . , r
′
3,v,B), which correspond

to the sequences of random coins rB = (r′3,1,B, . . . , r
′
3,v,B) that Bob uses in the real

execution. r′3,B and r3,B are identically distributed.

The simulator generates a pair of keys (e′, d′) = G(1k, r′1,A), where r′1,A is a se-

quence of independent random coins which the simulator generates to simulate r1,A

that Alice uses in the real execution. Because r′1,A is identically distributed with

r1,A, (e′, d′) is identically distributed with the key pair (e, d) that Alice generates in

the real execution, and e′ is also identically distributed with e. Denote the modulus
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associated with the key pair (e′, d′) by N ′.

I next show how to simulate the messages in M0,B. The simulator computes

(d′1, . . . , d
′
k) = f(r′2,A), where f is the function that Alice uses to select these random

indices in the real execution and r′2,A is a sequence of independent random coins

which the simulator generates to simulate r2,A that Alice uses to generate (d1, . . . , dk).

(d′1, . . . , d
′
k) is identically distributed with (d1, . . . , dk).

I show how to simulate the messages M1,B = (Ee(a1, r3,1,A), . . . , Ee(a2v, r3,2v,A)).

The simulator computes M ′
1,B = (Ee′(0, r

′
3,1,A), . . . , Ee′(0, r

′
3,2v,A)), where r′3,i,A is a

sequence of independent random coins which the simulator generates to simulate

r3,i,A that Alice uses in the real execution. To show that M ′
1,B is computationally

indistinguishable from M1,B, we de�ne M
′′
1,B = (Ee(0, r3,1,A), . . . , Ee(0, re,2v,A)). Be-

cause e′ and e are identically distributed and r′3,i,A is uniformly distributed in Z∗N ′

and r3,i,A is uniformly distributed in Z∗N , we know that (e,M ′′
1,B) is identically dis-

tributed with (e′,M ′
1,B) and hence (e,M ′′

1,B) is computationally indistinguishable from

(e′,M ′
1,B). Besides, because the Paillier cryptosystem is semantically secure, (e,M ′′

1,B)

and (e,M1,B) are computationally indistinguishable. So (e′,M ′
1,B) is also computa-

tionally indistinguishable from (e,M1,B).

The simulations of the messages M2 and the messages M3 are similar to the

simulations for Alice's view. Remember that M2,B = (u1,A, . . . , uT,A). Before Al-

ice and Bob exchange their shares of the comparison result ui, Bob has the share

ui,B such that (ui,A + ui,B) mod N = ui. Bob's share ui,B is computed as ui,B =

gi,B(1K , k,X2, rB, e,M0,B,M1,B,M2,B) for some function gi,B. The simulator computes

u′i,B = gi,B(1K , k,X2, r
′
B, e

′,M ′
0,B,M

′
1,B,M

′
2,B), which is indistinguishable from ui,B.

Also note that we can infer the comparison result ui of each iteration from the number

of iterations. The simulator computes u′i,A = (ui − u′i,B) mod N ′, which is computa-

tionally indistinguishable from ui,A = (ui−ui,B) mod N . LetM ′
2,B = (u′1,A, . . . , u

′
T,A).

It is computationally indistinguishable from M2,B.

To simulate the messages M3,B = (c1,A, . . . , cn,A), note that before Alice and Bob

exchange their shares of ci, Bob has the share ci,B such that (ci,A + ci,B) mod N = ci.

ci,B is computed as ci,B = hi,B(1K , k,X2, rB, e,M0,B,M1,B,M2,B) for some function

hi,B. The simulator computes c′i,B = hi,B(1K , k,X2, r
′
B, e

′,M ′
0,B,M

′
1,B,M

′
2,B), which

is indistinguishable from ci,B. Since the simulator is given the �nal result ci, it

can compute c′i,A = (ci − c′i,B) mod N ′, which is indistinguishable from ci,A = (ci −
ci,B mod N . Let M ′

3,A = (c′1,A, . . . , c
′
n,A). It is computationally indistinguishable from

M3,B.

Let M ′
B = (1K , k,X2, r

′
B, e

′,M ′
0,B,M

′
1,B,M

′
2,B,M

′
3,B). From the above discussion
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we know that M ′
B is computationally indistinguishable from Bob's view V EIWB. So

we can simulate Bob's view using his inputs (1K , k,X2), the clustering results ci and

the number of iterations T .

5.6 Experimental Results

I have implemented the two-party privacy preserving EM clustering protocol in C++

based on the Paillier cryptosystem. I used the GMP library (Torbjorn Granlund et

al.) for big integers. I tested the protocol on two separating computers. The settings

of the computers and network system are the same as we used in section 4.8.

In Protocol 5.16, Alice generates a pair of keys for each running of the protocol.

In the experiments, the pair of keys were �xed so that I could use the precomputa-

tion techniques presented in section 3.2. The key security parameter used in all the

experiments was K = 512.

I tested the privacy preserving EM clustering protocol on three datasets: Iris, Zoo

and Glass Identi�cation, which are available in the UCI machine learning repository

(Frank and Asuncion). The Glass Identi�cation dataset contains 6 classes. I consid-

ered only two broad classes: window and non-window. I assume that the datasets

are vertically partitioned between Alice and Bob. The results on other partitions are

similar. I describe the datasets and their partitions in Table 5.1, in which n is the

number of observations, q is the number of attributes and k is the number of clusters.

Alice holds the �rst q1 attributes and Bob holds the last q2 attributes.

Table 5.1: Benchmark datasets for EM clustering

Dataset n q q1 q2 k

Iris 150 4 2 2 3
Glass 214 9 4 5 2
Zoo 101 16 8 8 7

I report the execution time of the privacy preserving EM clustering protocol in

Table 5.2. I used equation 5.15 as the stopping criterion and used ε = 10−6 as the

threshold for all the experiments. The overall execution time equals the number of

iterations times the running time per each iteration (The running time for initializa-

tion and the �nal clustering is relatively small compared to the iterations). I also

report both the execution time per each iteration and the number of iterations. Note
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that the number of iterations depends on the initial centers the algorithm randomly

selects. A possible method to �nd a good initial clustering privately is to �rst run

the privacy preserving k-means clustering algorithm on the datasets and use the re-

sults as the initial centers. Here I just gave a concept-of-proof implementation. I

also implemented an ordinary EM clustering algorithm without privacy concerns in

the Matlab software. In the experiments, I �rst ran the EM clustering algorithm

in Matlab to select good initial centers. All these datasets have prede�ned cluster-

ing. The clustering accuracy is computed as the percentage of the correctly clustered

observations. Using the same initial cluster centers as the secure protoocol, the Mat-

lab program �nishes in less than 0.1 second on all these three datasets. The secure

protocol achieves the same clustering accuracies as the Matlab program.

Table 5.2: Experimental results of privacy preserving EM clustering on benchmark
datasets

Dataset
Measure Iris Glass zoo

Overall execution time 6643s 4287s 7234s
Number of iterations 13 6 4
Time per Iteration 500s 698s 1979s
Clustering Accuracy 96.67% 90.19% 76.24%

Because the number of iterations depends on the randomly selected initial centers

and varies for each execution of the EM clustering protocol, in what follows I only

report the execution time for each iteration. I �rst tested how the running time scales

with the size of the dataset. The dataset of size n consists of the �rst n observations

in the original dataset. I report the results on the Iris and Zoo datasets in Figure 5.1

and 5.2. In all the �gures in this section, the execution time is measured in seconds.

The �gures show that the execution time per each iteration scales linearly with the

number of observations in the datasets.

I then tested how the execution time scales with the number of attributes. I tested

on the Zoo datasets. I assume that the attributes are evenly distributed between Alice

and Bob. Note that when we don't use all the attributes, the clustering model may

not be accurate. I report the results in Figure 5.3. In the �gure, the line is superlinear

in the number of attributes. It is expected to exhibit quadratic asymptotic behavior

when the number of attributes is large.

I also tested how the execution time scales with the number of clusters. I tested

on the Zoo dataset. The zoo dataset is supposed to have 7 clusters. I clustered it
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Figure 5.1: Scalability of privacy pre-
serving EM clustering with respect to
the number of observations (Iris).

Figure 5.2: Scalability of privacy pre-
serving EM clustering with respect to
the number of observations (Zoo).

Figure 5.3: Scalability of privacy pre-
serving EM clustering with respect to
the number of attributes (Zoo)

Figure 5.4: Scalability of privacy pre-
serving EM clustering with respect to
the number of clusters (Zoo)

into 2 to 7 clusters. This is only to test the execution time and the clustering model

may not be useful. I report the execution time in Figure 5.4. We observe that the

execution time per each iteration scales linearly with the number of clusters.

Copyright cOZhenmin Lin 2012
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Chapter 6

Application of the Schur Complement

6.1 Introduction

A dataset is typically represented as a matrix. When data are partitioned among

multiple parties, the data can be represented as a block matrix and each party holds

a block of the matrix. For example, in the horizontal partitioned cases, we can write

the data matrix as

X =

( X1

...
Xm

)
,

where party i holds the submatrix Xi ∈ Rni×p and
∑k

i=1 ni = n. In the vertically

partitioned cases, the data matrix can be written as

X = (X1, · · · , Xm),

where party i holds the submatrix Xi ∈ Rn×pi and
∑k

i=1 pi = p.

A natural question is: can we take advantage of the structure of the block matrix

when we design privacy preserving data mining protocols? Motivated by this question,

we study the potential applications of the Schur Complement in the design of e�cient

privacy preserving kernel ridge regression.

This chapter is organized as follows. I introduce the concept of the Schur Com-

plement in section 6.2 and describe kernel regression in section 6.3. In section 6.4 I

explore the potential application of the Schur Complement in the design of e�cient

privacy preserving kernel ridge regression.
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6.2 Schur Complement

Consider a (n1 + n2)× (n1 + n2) matrix

W =

(
A B

C D

)

where A is an n1 × n1 squared matrix and D is an n1 × n1 squared matrix.

We want to solve the following system of linear equations:(
A B

C D

)(
β1

β2

)
=

(
e1

e2

)
, (6.1)

namely

Aβ1 +Bβ2 = e1 (6.2)

Cβ1 +Dβ2 = e2 (6.3)

Assuming that D is invertible, we multiply equation 6.3 by D−1

D−1(Cβ1 +Dβ2) = D−1e2.

and get

β2 = D−1e2 −D−1Cβ1. (6.4)

We then substitute β2 in equation 6.2 and we have

(A−BD−1C)β1 = e1 −BD−1e2. (6.5)

We can solve this equation to get β1 and then substitute β1 in equation 6.4 to get β2.

The matrix (A − BD−1C) is called the Schur Complement of D. Similarly, the

Schur Complement of A isD−CA−1B. Using the technique of the Schur Complement,

we can reduce the order of linear systems, however at the cost of inverting a smaller

matrix and two matrix multiplications. When W is symmetric, it can be showed that

W is symmetric positive if and only if D and its Schur Complement (A − BD−1C)

are both symmetric and positive.

The concept of the Schur Complement has wide applications in numerical compu-

tation, for example in the domain decomposition method (Zhang, 2005). The Schur

Complement is also employed in quadratic programming (Gill et al., 1987; Bartlett

et al., 2006). In my research, I am studying how to apply the concept of the Schur
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Complement to design e�cient privacy preserving data mining protocols.

6.3 Kernel Regression

Suppose that we have a training set X = (x1, .., xn)T and Y = (y1, .., yn)T, where

xi ∈ Rp and yi ∈ R are the values of i-th observation for the predictor attributes

and the response attribute respectively. We shall assume that p � n. The linear

regression model assumes the linear relationship between the response attribute and

the predictor attributes and tries to �nd parameters β ∈ Rq which minimize the

residual sum of squares (RSS)

L(β) = (Y −Xβ)T(Y −Xβ).

The minimizer is the solution of the following system:

(XTX)β = XTY.

To explore the non-linear relationship between the response attribute and the

predictor attributes, we can map each point xi to some feature space φ(xi) and �nd

linear relationship in the feature space. The mapping φ corresponds to some nonlinear

relationship in the original space. The kernel function k(xi, xj) determines the inner

product of any two points in the feature space. For example, the polynomial kernel

k is a polynomial of the inner product of xi and xj and the Gaussian kernel is

k(xi, xj) =
1

(δ
√

2π)p
exp (−|xi − xj|

2

2δ2
)

where δ is a parameter to control the width of the neighborhood.

The Gram (kernel) matrix G is an n× n matrix such that Gi,j = k(xi, xj). Then

we can solve the following system of equations:

Gα = Y. (6.6)

The prediction of the response attribute for a new observation x is then computed

as
∑n

i αik(xi, x). To overcome the over-�tting problem, we may add a regularization

term to the above equation:

(G+ λI)α = Y.
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where I is the identity matrix and λ is a regularization parameter. For ease of

presentation, I omit the regularization term in the following and assume that the

Gram matrix is positive symmetric.

One direct method to solve equation 6.6 is to use Cholesky decomposition, which

takes O(n3/3) multiplications. In the privacy preserving setting, secure multiplication

is a costly operation. When the number of observations is large, it is not e�cient to

use Cholesky decomposition. One alternative approach is to use an iterative method,

for example the conjugate gradient method, to �nd an approximate solution.

Conjugate gradient algorithm (CG) is an iterative method to solve linear systems

of equations when the coe�cient matrix is symmetric and positive. It is known that

the solution to the linear system of equations 6.6 is the minimizer of the function

f(α) =
1

2
αTAα + Y Tα.

We de�ne the residual of some approximate solution αi as ri = Y − Gαi and two

vectors v and u are called G-orthogonal if vtGu = 0. To �nd the minimizer of the

function f(α), the conjugate gradient method starts with any initial point α0 and

searches along a set of G-orthogonal directions. These directions are constructed

from the residuals step by step. It can be proved that the conjugate gradient method

will �nd the exact solution in n steps. We may terminate the iteration when we �nd

a satisfactory approximate solution. I present the conjugate gradient method to solve

equation 6.6 in Algorithm 6.1. See (Jonathan, 1994) for more details.

Algorithm 6.1 Conjugate gradient method for kernel regression
Input: an n× n Gram matrix G, a vector Y ∈ Rn.
Output: an approximate solution of Gα = Y

1: r0 = Y −Gα0; b0 = r0

2: for i = 0 to T do
3: ci = Gbi
4: µi = 〈ri, ri〉/〈ci, bi〉
5: αi+1 = αi + µibi
6: ri+1 = ri − µici
7: if r2

i+1 < ε then
8: break;
9: end if

10: νi = 〈ri+1, ri+1〉/〈ri, ri〉
11: bi+1 = ri+1 + νibi
12: end for

Given the Gram matrix G, the conjugate gradient methods takes about kn2 mul-
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tiplications and 2k divisions if it terminates in k steps. We also need n2/2 evaluations

of the kernel function to form the Gram matrix.

6.4 Application of the Schur Complement in Privacy

Preserving Kernel Regression

Consider the scenario where the dataset is horizontally partitioned between two par-

ties X =
(
X1
X2

)
, Y =

(
Y1
Y2

)
, Alice holds the �rst n1 observation X1 ∈ Rn1×p, Y1 ∈ Rn1

and Bob holds the last n2 observations X2 ∈ Rn2×p, Y2 ∈ Rn2 . Alice and Bob would

like to apply kernel ridge regression on their joint dataset, but without disclosing their

con�dential data. They need to �rst form the Gram matrix G privately. We assume

that we are using polynomial kernel function. When xi and xj are held by the same

party, they can compute k(xi, xj) locally. When they are held by di�erent parties,

Alice and Bob can use secure scalar product to compute 〈xi, xj〉 privately and then

use secure multiplication to compute the polynomials. It requires p + d invocations

of secure multiplication to privately evaluate a polynomial of degree d.

Now let

G =

(
G1 G2

GT
2 G3

)
G1 is an n1 × n1 matrix whose entries are the inner products of the data points

held by Alice. It can be computed by Alice locally. G3 is an n2 × n2 matrix whose

entries are the inner products of the data points held by Bob and it can be computed

by Bob locally. Alice and Bob jointly compute the n1×n2 matrix G2 using the kernel

polynomial function. So it takes n1n2(p + d) secure multiplications to compute the

Gram matrix G privately.

Kernel ridge regression needs to �nd the solution of Gα = Y . If we implement

Cholesky decomposition method privately, it takes O(n3/3) secure multiplications. If

we use the conjugate gradient method directly, it takes about n2k secure multiplica-

tions if the iteration terminates in k steps. I now show how to use the technique of

the Schur Complement to improve the e�ciency. We write the equation Gα = Y in

block forms: (
G1 G2

GT
2 G3

)(
α1

α2

)
=

(
Y1

Y2

)
G is symmetric positive, so both G3 and its Schur Complement G1 − G2G

−1
3 GT

2
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are symmetric and positive. Now equation 6.5 becomes:

(G1 −G2G
−1
3 ×GT

2 )α1 = Y1 −G2G
−1
3 Y2.

We can apply the conjugate gradient method algorithm 6.1 to the above system,

which is of order n1. Clearly we can use secure multiplication, secure division and

secure comparison to implement a privacy preserving conjugate gradient algorithm.

The matrix-vector multiplication in algorithm 6.1 now becomes

(G1 −G2G
−1
3 GT

2 )b = G1b−G2G
−1
3 GT

2 b

The key observation is that Bob knows G3. Although it takes O(n3
2) multipli-

cations to invert G3, Bob can invert it without any communication with the other

party. So no secure multiplication is needed to invert G3. The above matrix-vector

multiplication requires n2
1 + n1n2 + n2

2 + n1n2 = n2 secure multiplications. This is

the same as if we apply the conjugate gradient method to solve Gα = Y directly.

However, now the order of the linear system is n1. We may assume that n1 ≤ n2

and we have n1 ≤ n/2. As we have far fewer unknowns, the conjugate gradient

method converges faster and we can guarantee that it can get an exact solution in

n1 steps. If the iteration terminates in k steps, the number of secure multiplications

is kn2. Once we solve α1, we can use equation 6.4 to compute α2, which requires

n1n2 + n2
2 = n2n secure multiplications. Note that we need n1n2(p+ d) secure multi-

plications to form the Gram matrix. So the total number of secure multiplications is

n1n2(p+ d) + kn2 + n2n.

The conjugate gradient method is sensitive to the accumulation of roundo� er-

rors and is typically used with some form of preconditioners. If we apply the Schur

Complement in the iterative method, we don't form the Schur Complement explicitly

and it is not straightforward to construct a suitable preconditioner e�ciently. This

problem may be mitigated as we typically use long bits (for example, 1024 bits) to rep-

resent numbers in secure computation and we may allocate many bits (a few hundred

bits) to represent the fractional parts. It remains to be solved to construct e�ective

preconditioners e�ciently in the privacy setting. It is also interesting to explore the

possibility to apply the Schur Complement to other data mining algorithms.

Copyright cOZhenmin Lin 2012
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Chapter 7

Conclusion

Privacy is a critically important concern in any application of computer technology

and data mining in particular. The problem of prerserving privacy has attracted great

interest in the communities of data mining, statistics and cryptography. My research

focuses on how to protect privacy when several parties wish to conduct collaborative

data mining. I am particularly interested in the design and implementation of privacy

preserving distributed data mining protocols based on homomorphic encryption.

I have proposed a number of secure protocols for basic operations, including secure

comparison, secure division with public divisor, secure inverse square root, secure

square root, and the secure exponential function. All these protocols are implemented

using secure multiplications. Using these protocols we are able to design a number

of privacy preserving data mining protocols, for example, k-means and k-nearest

neighbor.

In particular, we have designed and implemented privacy preserving protocols for

two important data mining tasks: multiple linear regression and EM clustering. The

privacy preserving multiple linear regression is based on the stable QR-decomposition

method. The two-party linear regression protocol is provably secure in the semi-

honest model. The two-party EM clustering protocol discloses only the number of

iterations. I have implemented these protocols in C++, based on the Paillier cryp-

tosystem. Experimental results on benchmark datasets show that privacy preserving

data mining protocols are feasible for small datasets, although the computational costs

are typically high, so we need to develop new techniques for them to be practical for

larger datasets.

There are a number of interesting questions to be further researched. I have de-

signed and implemented privacy preserving multiple linear regression protocol based

on the Householder transformation. It would be informative to implement privacy
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preserving multiple linear regression based on singular value decomposition (SVD)

and the Givens rotation, respectively, and compare their performances. Another im-

portant task is to design and implement privacy preserving support vector machine

(SVM). Existing protocols on privacy preserving SVM either consider only the poly-

nomial kernel (Laur et al., 2006) or are not provably secure in the semi-honest model

(Vaidya et al., 2008b; Mangasarian, 2009). It is an interesting question to design

e�cient provably secure SVM with various kernels.

I have explored the possibility of using the Schur Complement to design e�cient

privacy preserving kernel ridge regression protocol. However, it remains to be solved

to construct e�cient predicontioners in the privacy setting. The Schur Complement

has potential applications in the design of privacy preserving protocols for other data

mining tasks such as the cononical correlation analysis.

Copyright cOZhenmin Lin 2012
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