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ABSTRACT OF THESIS 
 

 
 
 

NUMERICAL INVESTIGATION AND PARALLEL COMPUTING FOR  
THERMAL TRANSPORT MECHANISM DURING NANOMACHINING 

 

Nano-scale machining, or “Nanomachining” is a hybrid process in which the total 

thermal energy necessary to remove atoms from a work-piece surface is applied from 

external sources. In the current study, the total thermal energy necessary to remove atoms 

from a work-piece surface is applied from two sources: (1) localized energy from a laser 

beam focused to a micron-scale spot to preheat the work-piece, and (2) a high-precision 

electron-beam emitted from the tips of carbon nano-tubes to remove material via 

evaporation/sublimation. Macro-to-nano scale heat transfer models are discussed for 

understanding their capability to capture and its application to predict the transient heat 

transfer mechanism required for nano-machining.  In this case, thermal transport 

mechanism during nano-scale machining involves both phonons (lattice vibrations) and 

electrons; it is modeled using a parabolic two-step (PTS) model, which accounts for the 

time lag between these energy carriers. A numerical algorithm is developed for the 

solution of the PTS model based on explicit and implicit finite-difference methods. Since 

numerical solution for simulation of nanomachining involves high computational cost in 

terms of wall clock time consumed, performance comparison over a wide range of 

numerical techniques has been done to devise an efficient numerical solution procedure. 

Gauss-Seidel (GS), successive over relaxation (SOR), conjugate gradient (CG), δ -form 

Douglas-Gunn time splitting, and other methods have been used to compare the 

computational cost involved in these methods. Use of the Douglas-Gunn time splitting in 

the solution of 3D time-dependent heat transport equations appears to be optimal 



 

especially as problem size (number of spatial grid points and/or required number of time 

steps) becomes large. Parallel computing is implemented to further reduce the wall clock 

time required for the complete simulation of nanomachining process. Domain 

decomposition with inter-processor communication using Message Passing Interface 

(MPI) libraries is adapted for parallel computing. Performance tuning has been 

implemented for efficient parallelization by overlapping communication with 

computation. Numerical solution for laser source and electron-beam source with different 

Gaussian distribution are presented. Performance of the parallel code is tested on four 

distinct computer cluster architecture. Results obtained for laser source agree well with 

available experimental data in the literature. The results for electron-beam source are 

self-consistent; nevertheless, they need to be validated experimentally.  

KEYWORDS: Nano-scale machining, parabolic two-step (PTS) model, dual phase lag 

(DPL) equation, Douglas-Gunn time splitting, Parallel SOR 
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 1

1 INTRODUCTION 

1.1 Nano-Scale Machining 

 
“Nano-Scale Machining” or “Nanomachining” is about developing a new high-precision 

manufacturing process for producing nano-scale patterns that will impact many disciplines such 

as nano-electronics, nano-science, biology, and energy. Technological advances in development 

of short-pulse lasers with pulse duration ranging from nano-seconds to femto-seconds have made 

tremendous impacts on microelectronics and material processing, as well as fundamentals of the 

micro/nano-scale heat transport mechanism. Resolution of these micro fabrication processes 

depends greatly on the radius of incident laser beam. A laser beam cannot be focused on an area 

with diameter much smaller than its wavelength due to diffraction of photons. This poses a great 

limitation in the use of lasers for creating nano-indentations of order beyond one-fourth to one-

fifth of laser wavelengths. The smallest wavelength of laser, which can be used in conventional 

laser-material processing, is in the range of a couple of hundreds of nano-meters. Hence it is 

extremely difficult to create nano-indentations using a conventional laser smaller than about 50 

nm, unless some other creative process is introduced. Even though x- or gamma rays may be 

used for nano-scale machining, the significant cost makes their extensive use practically 

impossible. 

 

An alternative to overcome this problem is to utilize energized electron-beams. The work-piece 

can be bombarded using a high precision electron beam to create nano-indentations. Since 

electrons have wavelength much smaller than that of photons, the diffraction effect will not be 

evident until a size range of below nanometer is reached. Precise focusing of electron-beam can 

be achieved using electromagnetic lenses.  

 

Currently, carbon nano-tubes (CNTs) are considered for many applications in the rapidly 

emerging nano-technology field due to their excellent electrical conductivity, nano-sizes and 

exceptional electron field emission properties. Possible use of electron emission from CNTs for 

high-precision machining has been proposed only recently.  Wong et al. [1, 73] investigated the 

hypothesis theoretically that by coupling CNT electron emission with localized heating using a 
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laser, nano-scale machining can be achieved. A laser can be used to raise the temperature of the 

work piece near its melting point, and a CNT can then be used to transfer additional energy, via 

electron-beam, to complete the removal of minute amount of materials for nanomachining 

process. The overall schematic of this modeling task, as taken from Wong et al. [1, 73], is 

illustrated in Figure. 1-1. 
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Figure 1-1: The schematic of the electron field emission based machining using a carbon 
nanotube (CNT) is reproduced from Wong et al. [1, 73]. 
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1.2 Problem Description  

 
The overall goal of this work is to develop advanced numerical models for simulating, 

understanding, and predicting machining capability at nano-scale using field emission of 

electrons from a CNT coupled with laser heating. In order to achieve this, transient temperature 

distribution within the work piece needs to be determined while electron beams and lasers are 

heating it. This can be further extended to observe the heating requirements to evaporate or 

sublimate a very small amount of material for desired nano-indentations. The work piece 

considered here is a 3D physical domain with length, breadth and thickness in micro/nano-scale 

range (1-500 nm). The dimensions of the work piece as well as the ultra fast heating source 

introduce micro/nano-scale effects in the heat transfer mechanism.  

 

The conventional Fourier law does not necessarily predict transient temperature distribution at 

such a small length/time scale (Vernetto [2]). Given all the conditions, non-Fourier heat 

conduction models need to be investigated for better prediction of temperature distribution 

within the workpiece during nanomachining. For the simulation of heat transfer within the 

workpiece, temperature for each nodal point needs to be determined at each discrete time step. 

The computational time required to complete an entire simulation to a fixed final process end 

will be high especially when problem size (number of spatial grid points and/or required number 

of time steps) becomes large. Thus choice of an efficient numerical method becomes a primary 

concern for solving the time dependent, 3D governing equation.  

 

The required wall clock time for these simulations can be significantly reduced by introducing 

parallelization of the computational algorithms. The main objective of this thesis is to develop 

parallel codes for the solution of the governing equations for electron and phonon temperatures. 

The tasks of the thesis can be considered as: (1) choosing a suitable heat transfer model that is 

capable of describing heat transport mechanism at micro/nano scale level; (2) choosing an 

efficient numerical method for solving the time dependent 3D heat transport equation by 

conducting numerical experiment; (3) implementing parallel computing for generating faster 

results.  
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The emphasis of this thesis is not on the development of new theoretical models to explain nano- 

and micro-scale thermal transport as related to nanomachining process. The main goal is to 

explore different numerical solution strategies, including parallel computation alternatives, to 

solve these equations as effectively as possible. 

1.3 Framework of Thesis 

The organization of the thesis is as following. In Chapter 2, a general discussion of heat transfer 

models is given. After these classical heat transfer equations are introduced, the governing 

equations suitable for predicting heat transport phenomena at micro/nano scales are discussed. 

The discussion includes accountability of parabolic two-step model for predicting the 

temperature profile within a nano-scale size target work-piece subjected to ultra fast heating. 

Chapter 2 outlines the assumptions, boundary conditions and heat sources used for the problem 

under consideration. Chapter 3 mainly discusses about finite difference discretization of the 

nano/micro-scale heat transport equations. Before discretizing the governing equations, a 

strategy for obtaining efficient numerical solution of the heat transport equation is discussed. The 

strategy includes conducting numerical experiment first using the DPL equation as an example 

test problem and then implementing the same for solving PTS equations. The reasons for 

choosing the DPL equation as a test problem are also discussed. Chapter 4 focuses on the 

performance of numerical methods employed for conducting the numerical experiments in order 

to find an efficient numerical method for solving the targeted type of transient 3D heat transport 

equations. The final section of Chapter 4 shows performance comparison of different numerical 

methods and need for parallel computing to achieve the nanomachining simulations within an 

acceptable computational effort. Chapter 5 is about different aspects of parallelization. It covers 

different software environments, hardware environments and common terminologies of the 

parallel computing paradigm. Chapter 6 begins with discussion of four distinct computer cluster 

architectures available for parallelization. Then methodology adopted for implementing 

parallelization is discussed. After these discussions, performances of all the four clusters are 

outlined in order to find an efficient parallel platform for performing nanomachining simulations 

as quickly as possible. Results are generated for both laser heating as well as electron beam 

heating using parallel DPL and PTS computer codes. Further fine-tuning is done in order to find 

out computational parameters suitable for performing nanomachining simulations faster. Parallel 
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computing results for laser source are compared with experimental results available in literature. 

Results for electron beam are compared against numerical results obtained by Wong [73].  The 

last section discusses about obtained results and relevant observations made for nanomachining 

simulations. Finally Chapter 7 summarizes overall conclusions and lists recommendations for 

future studies. 

 

 

 

 



 7

2 HEAT TRANSFER MODELS 
 
In this Chapter, a detailed summary of the various heat transfer models is presented. It includes 

macroscopic models (classical heat conduction model, hyperbolic heat conduction model or 

thermal wave model (Vernetto [2], Cattaneo [3]), and micro-scale heat transfer models 

(microscopic two-step model or phonon-electron interaction model (Anisimov et al. [6]), 

phonon-scattering model (Guyer et al. [22]) and phonon radiative transfer model (Majumdar 

[23])), and the dual phase lag model (Tzou et al. [7-10]).  

2.1 Introduction 

 

The classical Fourier diffusion model describes thermal transport in macroscopic systems. This 

so-called diffusion law is also known as the parabolic one-step (POS) model, which establishes a 

relationship between the heat flux and the temperature gradient. On the other hand, the thermal 

wave model or hyperbolic heat conduction model (Vernetto [2], Cattaneo [3]) refers to 

temperature disturbance propagating as a wave, with thermal diffusivity acting as a damping 

effect in heat propagation. Other macroscopic models available in literature include: (1) Jeffrey's 

heat flux equation (Joseph et al. [24, 25]) that describes thermal relaxation behavior, (2) the 

Gurtin-Pipkin model (Joseph et al. [24], Gurtin et al. [26]) which explains thermal relaxation in 

both the heat flux and internal energy during fast transient response, and (3) the fractal model 

[27-30] which is employed for describing the conducting path in amorphous material and the 

scattering of fractons over the correlation length on a small scale. 

 

The microscopic models include the phonon-electron interaction model (two-step models) 

(Anisimov et al. [6]), the phonon scattering model (Guyer et al. [22]), and the phonon radiative 

transfer model (PRT) (Majumdar [23]). They are all derived from the solutions of semi-classical 

Boltzmann transport equation. The phonon-electron interaction model (two-step model) 

describes the heat transfer mechanism between phonons and electrons in metal. The phonon 

scattering model refers to the heat transfer mechanism for phonon collisions in a pure phonon 

field. The phonon radiative transfer model describes the heat transfer mechanism in an 

acoustically thin medium (Majumdar et al. [23, 69, 70]). The acoustically “thin" or “thick" 
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medium refers to the thickness of film structure compared to the phonon mean free path. For an 

acoustically thick medium, the thickness of the film is much more than the mean free path of 

phonons. Other models include the Dual-Phase Lag (DPL) equation (Tzou et al. [7-10]) that 

describe the effects of delay times due to microscale effects on the transient response.  

 

The following subsections provide details of various heat transfer models, demonstrating the 

physical and mathematical interpretations of each model. The problem of switching from one 

model to another, and complexity of studying microscale effects will be shown. The suitability of 

a particular model depends on numerous factors which will be discussed in subsequent sections. 

 

2.2 Parabolic Heat Conduction Model 

 

According to classical heat conduction theory (Fourier's law), heat flux is directly proportional to 

the temperature gradient in the form 

 ( , ) ( , ),q r t k T r t= − ∇  2.1 

with r  denoting the position vector of the material volume, t  the physical time, q  the heat flux 

vector and k  the thermal conductivity. When the above equation is incorporated into the first 

law of thermodynamics, we obtain 

 ( , )( , ) ,p
T r tq r t C

t
ρ ∂

−∇ ⋅ =
∂

 2.2 

Further simplification of Equation 2.2 leads to a parabolic heat conduction equation for the 

temperature field as: 

 2 ,T T
t

α∂
= ∇

∂
 2.3 

with 

 ,
p

k
C

α
ρ

=  2.4 

where α  is the thermal diffusivity, ρ  is the density and pC  is the volumetric heat capacity 

(Incropera & Dewitt [71]). 
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Although Fourier's law represents one of the best understood phenomenological models in 

mathematical physics, it possesses a number of anomalies. The most predominant of these is its 

prediction that heat conduction is a diffusion phenomenon in which temperature disturbances 

will propagate at infinite velocities, implying that a thermal disturbance applied at a certain 

location in a solid medium can be sensed immediately anywhere else in the medium (violating 

precepts of special relativity). The parabolic character of Fourier's law implies that the heat flow 

starts (vanishes) simultaneous with the appearance (disappearance) of a temperature gradient, 

thus violating the causality principle, which states that two events, which are causally correlated, 

cannot happen at the same time; but the cause must precede the effect, as noted by Cimmelli 

[31]. In situations dealing with transient heat flow for extremely short periods of time, high heat 

fluxes, and at temperatures near absolute zero (heat conduction at cryogenic temperatures), 

Fourier's law fails to predict the correct temperature distribution [31].   

 

2.3 Hyperbolic Heat Conduction Mode 

In order to overcome the discrepancies associated with the classical diffusion equation, a number 

of modifications have been outlined over the years. Among all, a modified heat flux equation 

that accommodates the finite propagation speed of observed thermal waves was proposed by 

Vernotte [2] and Cattaneo [3] in 1958: 

 

 ( , )( , ) ( , ),q r tq r t k T r t
t

τ ∂
+ = ∇

∂
 2.5 

Here τ  is the relaxation time, which is the effective mean free path λ  divided by the phonon 

speed (υ , speed of sound in the medium). In the absence of relaxation time ( 0τ = ), implying 

infinite phonon speed or zero mean free path, Equation 2.5 

 reduces to the classical Fourier's law. When Equation 2.5 

 is coupled with the energy Equation 2.2, we obtain the conventional hyperbolic heat conduction 

equation (CHE); 

 
2

2
2 2

1 1 ,T T T
t tα υ

∂ ∂
+ = ∇

∂ ∂
 2.6 

with 
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 αυ
τ

=  2.7 

Equation 2.6 is the thermal wave equation depicting a temperature disturbance propagating as a 

wave with thermal diffusivity appearing as a damping effect in heat propagation. The quantity υ  

is the thermal wave speed which approaches infinity when 0,τ →  reducing Equation 2.6 to the 

classical diffusion equation.  

 

The frequently cited experimental evidence for validity of hyperbolic heat conduction includes 

that of Kaminski [32] and Mitra et al. [33], who investigated wet sand and processed meat, 

respectively. But later investigations by Grassmann et al. [34] and Herwig et al. [35] clearly 

showed that the hyperbolic effect does not appear in the experiments for the materials studied by 

Kaminski or Mitra et al. To date, there has been no clear experimental evidence supporting 

hyperbolic heat conduction although a wave nature has been observed by Peshkov [36] using 

super fluid liquid helium at temperature near absolute zero. He referred to this phenomenon as 

second sound, because of similarity between observed thermal and ordinary acoustic waves. 

Also, the hyperbolic heat conduction equation (HHCE) neglects the energy exchange between 

the electrons and the lattice, and so its applicability to short-pulse laser applications becomes 

questionable.  

 

Over the years there has been some confusion over whether the conventional hyperbolic heat 

conduction equation (CHE) is compatible with the second law of thermodynamics. Barletta and 

Zanchini [37] pointed out that the CV wave equation is not compatible with the local equilibrium 

scheme. Within the scheme of local equilibrium, Clausius' inequality implies that the entropy 

production rate must be non-negative. This was checked by determining the entropy production 

rate per unit volume in a solid slab subjected to sudden temperature rise on its boundaries. It was 

found that the temperature rise in the interior of the slab was accompanied by negative values of 

entropy. Therefore no violation of second law occurs, because the local equilibrium scheme does 

not hold and the temperature field cannot be interpreted in the usual thermodynamic sense. 

 

This phenomenon was also observed by Taitel [38] who noted that the transient temperature rise 

may exceed the temperature of the boundaries as well as the initial temperature of the layer. He 
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observed that even though one may argue that thermodynamically (from second law 

considerations) this solution is acceptable (Kaliski [39]), it still seems to be unrealistic for 

gaseous materials, and possibly for most solids (Bertman et al. [40]). He concludes that the 

HHCE is at most an approximation, which is not valid for short periods of time, and in this sense 

it is not much better than the conventional diffusion equation. It is therefore quite expected that 

both the equations (CV wave and parabolic) lead to physical distortion like infinite propagation 

speed (parabolic) and temperature overshoot (CV wave). 

 

Korner and Bergmann [41] investigated CHE on a microscopic scale from a physical point of 

view starting from the Boltzmann transport equations. They reported that the hyperbolic 

approach to the heat current density violates the fundamental law of energy conservation. They 

showed that the modified Fourier's law given by Equation 2.5 is based on an electron distribution 

function f  which does not obey the law of conservation of energy. As a consequence, the CHE 

predicts physically impossible solutions with negative local heat content. In order to compensate 

for the defects in the conventional HHCE, Bai and Lavine [42] modified the HHCE by simply 

adding terms to the energy balance while making no attempt to eliminate the unrealistic results.  

 

Consideration of nonequilibrium thermodynamics brings up two schools of thought: one based 

on extended irreversible thermodynamics and the other based on rational thermodynamics 

(Coleman et al. [43]). Both schools allow that under nonequilibrium conditions, entropy 

production may depend on heat flux. Then, using CV equation for heat flux in the expression for 

entropy production rate, it has been shown that there are a variety of expressions for entropy that 

makes non-negative entropy production possible (Jou et al. [44]). The extended irreversible 

thermodynamics argument ends there, concluding that the CHE is compatible with the second 

law of thermodynamics. However Coleman et al. [43] showed (in the context of nonequilibrium 

rational thermodynamics) that CHE is not consistent with the second law of thermodynamics, 

and presents a modified system also called the modified hyperbolic type heat conduction 

equation (MHE). The CV equation is given as: 
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 ( ) ( ) 0q qT q k T
t x

τ ∂ ∂
+ + =

∂ ∂
 2.8 

which follows from the first law of thermodynamics: 

 2[ ( ) ( )] 2 ( )q d T qc T q a T a T q g
x dT t t

ρ∂ ∂ ∂
+ + + =

∂ ∂ ∂
 2.9 

where q  is the heat flux, and g  is the heat source per unit volume. Coleman et al. [43, 45] 

showed that if the entropy depends upon heat flux, so must internal energy, and derived unique 

expressions for entropy and internal energy, which allow the second law to be satisfied. Bai and 

Lavine [46] solved the MHE for a one-dimensional solid slab subject to a sudden temperature 

change on both sides. Initially the slab is at temperature 0T , and for 0,t >  the temperature of both 

boundary surfaces (at 0,x l= ) is dropped to 0( )w wT T T< . Even though modification has been 

done to the energy equation to fix the problem of violation of the second law of thermodynamics, 

the MHE still violates the second law of thermodynamics and is not much different from the 

conventional hyperbolic heat conduction equation. 

 

2.4 Phonon-Electron Interaction Model 

 

In both classical diffusion equation as well as hyperbolic heat transfer equation, electrons are not 

accounted explicitly in the energy balance. Anisimov et al. [6] proposed a two-step model to 

separate the electron temperature eT  and the lattice temperature lT  during the short-pulse laser 

heating of metals. Later, Qiu and Tien [4, 5] rigorously derived the hyperbolic two-step model 

from the Boltzmann transport equation making the following assumptions: 

 

1. electron-phonon interaction is the dominant scattering process for electrons, 

2. conduction of heat by phonons is negligible, and 

3. phonons and electrons have temperatures lT  and eT  , respectively. 

 

The equation describing the heating of electrons is then given by 
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 ( ),e
e e l

TC q G T T
t

∂
= ∇⋅ − −

∂
 2.10 

and the equation describing heating of metal lattice is given by 

 ( ).l
l e l

TC G T T
t

∂
= −

∂
 2.11 

eC and lC  are the volumetric heat capacities of electron-gas and metal lattice in Equations 2.10 

and 2.11, respectively.  

 

The electron-phonon coupling factor, G , is the key parameter governing the rate of the electron-

phonon thermal relaxation process and can be calculated from free electron theory (Allen [47], 

Kagnov et al. [48]). If the lattice temperature is not much smaller than the Debye temperature 

DT , a measure of temperature above which all modes of crystal’s vibration begin to be excited 

and below which all modes begin to be frozen out (Ashcroft et al. [72]), approximate expression 

for G  can be written as  

 
2

,
6 ( )

e e

e e

m nG
T T

π υ
τ

=  2.12 

 where ( )eTτ  is the electron mean free time between collisions at temperature eT , en  is the 

number density of free electrons per unit volume, em  is the mass of free electrons, υ  is the speed 

of sound, and eT  is the electron temperature. For pure metals at room temperature, τ  is 

dominated by collisions between electrons and phonons, and is inversely proportional to eT . 

Therefore, G  depends weakly on eT . G  can be further expressed in terms of thermal 

conductivity as 

 
4 2( ) ,e Bn kG

k
π υ

=  2.13 

where Bk  is the Boltzmann constant, and k  is thermal conductivity. The speed of sound υ  is 

evaluated from DT  and the atomic number density an  (Kittell [49]) as 

 
1

2 3(6 ) ,
2 a D

k n T
h

υ π
π

=  2.14 

where h  is the Planck constant. 
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Qiu and Tien [4, 5] calculated the values for the electron-phonon coupling factor G  for several 

common metals using Equation 2.13 with reported physical constants (Kittell [49]) and 

compared them with the measured values from the literature (Brorson et al. [50], Elsayed-Ali et 

al. [51], Groeneveld et al. [52]). They found that the calculated values of G  generally agree with 

the measured values. Metals with higher free electron number density and higher DT  have larger 

G  values and shorter thermal relaxation times. Substitution of Equation 2.1 into Equation 2.10 

results in parabolic two-step model 

 ( ( , )) ( )e
e e l

TC T r t G T T
t

∂
= ∇ ⋅ ∇ − −

∂
 2.15 

 ( )l
l e l

TC G T T
t

∂
= −

∂
 2.16 

and substitution of Equation 2.5 

into Equation 2.10 results in the hyperbolic two-step model: 

 ( )e
e e l

TC q G T T
t

∂
= ∇⋅ − −

∂
 2.17 

 ( )l
l e l

TC G T T
t

∂
= −

∂
 2.18 

 ( , )( , ) ( , )q r tq r t k T r t
t

τ ∂
+ = − ∇

∂
 2.19 

Combining Equations 2.15 and 2.16 and eliminating the electron gas temperature eT  yields 

 
2 2

2
2 2 2

( )1 1 .l l e l
l

E E E

T T T T
C t t C t

α
α

∂ ∂ ∂ ∇
+ − = ∇

∂ ∂ ∂
 2.20 

Similarly, eliminating the metal-lattice temperature lT  gives 

 
2 2

2
2 2 2

( )1 1 ,e e e l
e

E E E

T T T T
C t t C t

α
α

∂ ∂ ∂ ∇
+ − = ∇

∂ ∂ ∂
 2.21 

where 

 ,e
e l

k
C C

α =
+

 2.22 

 .E
e l

kGC
C C

=  2.23 
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Qiu and Tien [4] numerically solved Equations 2.17, 2.18 and 2.19 by considering a 96 fs  

duration laser pulse irradiating a thin film of thickness0.1 mµ . The predicted temperature change 

of the electron gas during the picosecond transient agreed well with the experimental data, 

supporting the validity of the hyperbolic two-step model for describing the heat transfer 

mechanisms during short-pulse laser heating of metals. In the case that 0τ →  and G → ∞ , 

implying that either the number density of free electrons → ∞  (see Equation 2.13) or the speed 

of sound → ∞  (see Equation 2.14, Equation 2.21) collapses to the classical diffusion equation 

and lT   becomes equal to eT . 

 

2.5 Phonon Scattering Model 

 
The heat transport process caused by phonon-phonon collision and scattering is described by the 

phonon scattering model. Guyer and Krumhansl [22] solved the linearized Boltzmann equation 

for the pure phonon field in dielectric crystals. They proposed a constitutive relation between the 

heat flux vector and the temperature gradient, neglecting heat conduction by the electrons and 

other interactions in which momentum is lost from phonon systems: 

 
2 2

21 [ 2 ( )],
3 5

p N

R

c Cq T q q q
t

τ υ
τ

∂
+ ∇ + = ∇ + ∇ ∇ ⋅

∂
 2.24 

where υ  is the average speed of phonons; Rτ  stands for the relaxation time for the Umklapp 

processes (momentum relaxation occurs only by electron-electron scattering, i.e., a momentum 

non-conserving process); and Nτ   is the relaxation time (mean free time) for normal processes in 

which momentum is conserved in the phonon system. Combining Equation 2.24 with the energy 

Equation 2.2 and eliminating the heat flux vector leads to the equation for the phonon scattering 

model: 

 
2

2 2
2 2 2

9 3 3( ) .
5

N

R

T TT T
t c t c t

τ
τ

∂ ∂ ∂
∇ − − = ∇

∂ ∂ ∂
 2.25 

2.6 Phonon Radiative Transfer Model 
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The phonon radiative transfer model (PRT) proposed by Majumdar [23] employs the solution of 

the linearized Boltzmann transport equation. The premise of this approach is that the phonon 

transport is very similar to the radiative transport for photons, where wave nature can be 

neglected. The PRT model describes the Stefan-Boltzmann radiative heat equation for an 

acoustically thin medium and the CV wave equation for an acoustically thick medium. 

Majumdar [23] derived the PRT equation from Boltzmann transport equation by employing a 

relaxation time approximation. After summing all three phonon polarizations over the 

distribution function of the phonons with vibrational frequency ω , the phonon intensity function 

( Iω ) is obtained as 

 ( , , , ) ( , ) ( , ) ( ),
p

I x t f x t h Dω ωθ φ υ θ φ ω ω= ∑  2.26 

with ( , )υ θ φ  denoting the velocity vector of phonons in the direction defined by ( , )θ φ  in a 

spherical coordinate system within a solid angle sind d dθ θ φΩ = . Here h  is the Planck 

constant, and ( )D ω  is the density of states per unit volume in the frequency domain of lattice 

vibrations. The PRT equation defined by Majumdar in 1-D is then 

 1 ,
oI I I I

x x
ω ω ω ωµ

υ τυ
∂ ∂ −

+ =
∂ ∂

 2.27 

where, τυ  defines the mean free path in phonon collision, oIω  is the phonon intensity function at 

equilibrium state, and µ  represents the cosine of the angle between the phonon velocity vector 

υ  and the −x axis. The right side of Equation 2.27 represents disturbance of an equilibrium state 

by mutual interactions of phonons. 

 

The heat flux vector q  and the internal energy e  at any point in space can be calculated as 

 
0

4

,Dq I d d
ω

ω
ω π

µ ω
=

= Ω∫ ∫  2.28 

 
0

4

, sin ,D Ie d d with d d d
ω ω

ω π

ω θ θ φ
υ=

= Ω Ω =∫ ∫  2.29 

and Dω  being the Debye cut-off phonon frequency. Azimuthal symmetry inφ , q and e  results in 
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1

0
1

2 ,Dq I d d
ω

ωπ µ ω µ
−

= ∫ ∫  2.30 

 
1

0
1

2 .D Ie d d
ω ωπ ω µ

υ−

= ∫ ∫  2.31 

Using Equations  2.30 and 2.31, multiplying Equation 2.27 by 2π  and integrating the resulting 

equation over µ  and ω  in the range 1 1µ− < <  and 0 Dω ω< <  gives 

 
1 0

0
1

2 .D I Ie q d d
t x

ω ω ωπ ω µ
τυ−

−∂ ∂
+ =

∂ ∂ ∫ ∫  2.32 

Equation 2.32 yields a particular solution for 0 ( ( ))I T xω : 

 
1

0

1

1 .
2

I d dω ω µ
−

= ∫  2.33 

Finally the PRT equation takes the form of an integro-differential equation to be solved for the 

phonon intensity function ( , , )I x tω µ : 

 

1

1

1
21 .

I d I
I I
t x

ω ω
ω ω

µ
µ

υ τυ
−

−
∂ ∂

+ =
∂ ∂

∫
 2.34 

Once the phonon intensity is obtained from Equation 2.34 

, the temperature distribution is obtained from the Bose-Einstein distribution function at an 

equilibrium state: 

 
1

0

1

1 ( )( )
2 exp[ ] 1

( )

p
p

h DI T I d h
kt x

ω ω
ω ωµ υ ω

−

= =
−

∑∫  2.35 

2.7  Dual Phase Lag (DPL) Model 

 
The dual-phase-lag model (DPL), proposed by Tzou [8], introduced the concept of phase-lag to 

account for the finite times required for the thermal equilibrium ( )Tτ  and effective collision ( )qτ  

between electron and phonons during ultra fast heating.  In other words, /T lC Gτ =  refers to the 

finite time duration required to raise the temperature of the metal lattice by one degree and the 

other phase-lag ( ) 1/1/ 1/ G
q e lC Cτ −= +  refers to the time required to raise the temperature of 
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compound (electron and phonon together) system by one degree. G  stands for the energy 

exchange between phonons and electrons per unit volume per unit time. DPL model treats Tτ and 

qτ as two additional intrinsic thermal properties, like thermal conductivity, characterizing the 

energy bearing capacity of the material. For conducting media with T qτ τ> , heat flux is the 

considered to be the cause while the temperature gradient is the effect. On the other hand, for 

conducting media with q Tτ τ> , temperature gradient becomes the cause while heat flux becomes 

the effect (Tzou [10]). 

 
Mathematically, the dual phase lag concept can be represented by (Tzou [10]). 

 ( , ) ( ( , ))( , ) ( ( , ) ).q T
q r t T r tq r t k T r t

t t
τ τ∂ ∂ ∇

+ = − ∇ +
∂ ∂

 2.36 

where Tτ  is the phase lag of the temperature gradient and qτ  is the phase lag of the heat flux 

vector and t  is the instant at which physical observation on heat transport is made. Substitution 

of Equation 2.36 into Equation 2.2 and adding the source term reduces to 

 
2 2

2
2 2

1 1q
T q

T T T ST S
t t t k t

τ
τ τ

α α
∂ ∂ ∇ ∂⎛ ⎞+ = ∇ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 2.37 

Tzou [10] showed that Equation 2.36 is a combination of a series of diffusion and the wave 

behavior and under special values of timescale parameters Tτ and qτ  the dual phase-lag (DPL) 

model (Tzou [7–10]) reduces to macroscopic diffusion model, macroscopic CV thermal wave 

model, Jeffrey’s-type heat flux equation (Joseph et al. [24-25]), microscopic two step model 

(parabolic type), microscopic phonon-scattering model and, microscopic two step model 

(hyperbolic type). However, the dual-phase-lag model lacks experimental evidences. So far there 

is no experimental way to determine the values of phase-lags Tτ and qτ .  

 
In a recent work, Tzou et al. [74] conducted series of numerical experiments in order to 

determine effective values of Tτ  and qτ , averaged over a nominal range of temperature, for 

0.1 mµ  thin gold film exposed to 96 fs pulsed laser. These values of phase-lags aim to describe 

the overall physics of thermal lagging during ultra fast heating but reveal no detailed variations 

of Tτ and qτ with temperature. Consequently, significant deviations were observed in predicting 

the rear-surface temperature of surface temperatures for thinner films [74]. 
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2.8 Heat Transfer Model Suitable for Nano-Scale Machining 

 
The heat conduction phenomenon is described as energy transport by energy carriers in the 

medium. The dominance of energy carriers in a medium depends on the intrinsic properties of 

the medium. In case of metals, electrons are the dominant energy carriers, dielectric and 

insulators conducts heat via phonon or lattice vibration where as in case of semiconductors, 

electrons and phonons contribute equally in heat conduction. Phonons exist in all materials, and 

they serve as main source of electrons scattering in metals although their heat capacities are 

much smaller than those of electrons. There are few parameters related to the heat conduction 

mechanism viz. mean free path and mean free time or relaxation time of the energy carriers. The 

mean free path of an energy carrier is the average distance traveled by energy carrier without any 

collision with other carriers; the mean free time or relaxation time of an energy carrier is the 

average time spent between collisions. The diffusive and ballistic nature of heat transport is 

characterized on the basis of relaxation time. For electrons in metals, the order of magnitude of 

mean free path and mean free times are usually few nanometers and femto-seconds, respectively. 

In case of phonons, the order of magnitude of mean free paths and mean free times are nano- to 

micro-meters depending on the temperature and pico- to nano-seconds, respectively. In our 

problem, the target work-piece is a thin gold film of thickness ranging from 200 to 500 nm, 

which is heated by combination of highly energized electron-beam and/or laser source. The laser 

assumed in this work is both pulsed and non-pulsed. Comparing the thickness of the work-piece 

to be used and the mean free path of electrons in gold, the thickness of work-piece considered 

here far exceeds the electron mean free paths; therefore the transport behavior is spatially 

diffusive. Moreover, the nano-machining is to be achieved within an interval of nano-seconds, a 

time-scale much larger than mean free times of the electrons; hence, the ballistic behavior of 

electrons are not important implying that electronic thermal conduction can be considered as 

macroscopic within the gold film. However, the mean free path of phonons can be comparable to 

the thickness of the work-piece making the choice of classical Fourier conduction for heat 

propagation at micro/nano scales questionable. So, in order to include the effects of electron-

lattice interactions and non-Fourier transport, more general and rigorous nano/micro-scopic 

models are needed in which the energy transport by each group of carriers and interactions 
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among them is considered. The microscopic models such as phonon-electron interaction model, 

phonon-radiative transfer model and phonon-scattering model account for this kind of energy 

exchange at micro/nano scales and can be derived from the Boltzman transport equation, which 

is used for modeling electron transport and electron-lattice interactions. Depending upon the 

nature of the heating and material structure, these models can be simplified to either the two-step 

model or the hyperbolic heat conduction model. Qui & Tien [55] investigated ultra fast heating 

of multi-layered thin metal films. They studied different parabolic and hyperbolic heat transfer 

models during short-pulse laser heating and summarized an interrelationship between heating 

models based on three characteristic times during ultra fast heating: (a) the characteristic heating 

time, ht , which is either time needed to elevate material temperature to a certain level or the laser 

pulse duration (b) electron relaxation time, τ and (c) thermalization time, ct (time required for 

electron-phonon thermal equilibrium).  

 

Based on this interrelationship they categorized application regimes of ultra fast heating models 

for gold. The following regime map, which has been reproduced from Qui & Tien [55], shows 

the applicability of heat propagation models under different heating circumstances.  
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Figure 2-1: Application regimes of ultra fast heating models for gold (reproduced from Qui & 
Tien [55]). 
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It can be observed from Figure 2-1 that the parabolic two-step (PTS) model applies for fast 

heating processes at relatively high temperature, which is the case treated here. On the other 

hand, the hyperbolic two-step model must be applied for lower temperature and fast heating 

regimes.   

 

In the present work, the temperature range (i.e., 300K-3130K) involved is high, and heating of 

the work piece is done quickly, so the PTS model is assumed to be acceptable for transient heat 

conduction prediction. To include the other factors like effect of electric field on the heating 

process (see Figure 1-1), the electron phonon hydrodynamic equations should be employed 

which is beyond the scope of this work. Wong et al. [73] is currently investigating the effect of 

electric field on the heating mechanism using electron phonon hydrodynamic equations. The 

results from hydrodynamic equations will serve a basis for comparison with results obtained 

from PTS model and results from both the models will be validated against experimental results. 

 

As far as other nano/micro scale dual-phase-lag model is concerned, DPL results do not agree 

well with the experimental results available in the literature (Tzou et al. [74]). DPL model lacks a 

firm physical basis for experimentally verified values of phase-lag parameters Tτ and qτ . On the 

other hand, theoretically derived and experimentally verified value of phonon-electron coupling 

factor G has placed the microscopic two-step model on a firm physical basis. Therefore, the 

parabolic two-temperature model, which separates the electron from the lattice temperature, is 

more suitable for nanomachining simulation rather than using conventional heat conduction 

model.  

 

2.9 The Micro/Nano-Scale Heat Transport Equation - Parabolic Two-Step (PTS) 

Model 

 
In a traditional heat conduction approach, heating by electrons is assumed to be directly on the 

lattice. Consequently, electrons and lattice have the same temperature T hence heating can be 

modeled by conventional parabolic one-step (POS) model, i.e., Fourier’s law:  
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 ( ) ( )TC T k T S
t

∂
= ∇ ⋅ ∇ +

∂
 2.38 

However, if heating is very fast, comparable with the electron-phonon thermal relaxation time, 

electron-phonon interaction becomes an important controlling mechanism in the transfer of 

external energy to internal energy of the material. Electrons and phonons then no longer exist in 

local thermal equilibrium and have to be considered as two separate systems. This non-

equilibrium heating process can be modeled phenomenologically as a parabolic two-step (PTS) 

process:   

 ( ) ( ) ( ) ( ) ( , , , )e
e e e e e l

TElectron Energy C T k T G T T S x y z t
t

∂
= ∇ ⋅ ∇ − − +

∂
 2.39 

 ( ) ( )l
l e l

TLattice Energy C G T T
t

∂
⋅ = −

∂
 2.40 

where eT  is the electron temperature and lT  is the lattice temperature. The energy transport by 

phonons is neglected, since heat flux is carried mainly by free electrons for metals. The electron 

heat capacity eC is proportional to eT , ( )e e e eC T A T= , as long as eT is much smaller than the Fermi 

temperature, which is of order of 410 K.  

 

( , , , )S x y z t in the Equation 2.2 is the heating source term that represents the electron-beam or the 

laser. Depending upon the nature of the heating source, it could be function of either space or 

both space and time.  

 

2.10 Assumptions, Conditions, and Source Terms 

 

As shown in Figure 1-1, the workpiece exposed to external heating source is assumed to be 

encased inside a vacuum chamber hence the side walls of the workpiece can exchange energy 

with the surroundings only via radiation. This assumption excludes any possibility of convection 

effect in the heat transfer modeling under consideration. Also, the workpiece medium is 

considered to be purely homogeneous and free of defects, cracks and impurities. This assumption 

would simplify the heat transfer analysis, as the electron scattering becomes extremely 

complicated when there are impurities in the medium (Wong et al. [1]). The thermal energy 
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deposited in the work piece via electron bombardment or laser heating is considered as heat 

generation source terms in the governing heat conduction equation. For numerical heat transfer 

computations, the entire workpiece is divided into very small computational node centered 

cells/elements. All the nodes together form uniform grid spacing in all the three directions of the 

workpiece geometry. Since material properties are temperature dependent, each computational 

element should possess different thermal properties such as thermal conductivity and specific 

heats based on its temperature.    

 

The temperature range involved in the entire nanomachining process is very high (300 K – 3130 

K for gold) and the time required for machining process is much less (about nano seconds range, 

see Vernotte [2]), hence the heat loss at the boundary walls of the work piece is almost 

negligible. With this assumption, Neumann boundary conditions can be applied at all the six 

faces of the work piece i.e. 

 0,T
n

∂
=

∂
 2.44 

on all of ∂Ω , where , ,n x y z= and initial conditions as 

 0( , , ,0)T x y z T=  2.45 

and  

 ( , , ,0) 0.T x y z
t

∂
=

∂
 2.46 

In the nanomachining process, heating is a hybrid process in which (1) the electron beam is used 

to deposit thermal energy to remove material from work-piece surface, and (2)  a collimated laser 

beam is considered for additional heating of the workpiece within a specified radius. The laser 

used for nanomachining process is assumed to be non-pulsed. However, here we will investigate 

heating by electron beam and heating by laser source separately and not heating by both sources 

simultaneously.  For conducting numerical experiments, a pulsed laser will be considered instead 

of non-pulsed laser because results obtained for a pulsed laser can be easily validated against 

results already available in the literature. Recently, an ultrafast pulsed laser has been widely used 

by researchers and numerous results have been reported in the literature.  
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The profile of the laser beam may be important in calculations related to micro-scale transport 

phenomena, rather than nano-scale applications. Since the evaluation of codes developed here 

will be performed using experimental data based on pulsed-laser experiments, we would like to 

consider inhomogeneous profiles of laser beams. The commonly used pulsed laser has Gaussian 

profile of the pulsed laser heating source is given by: 

 
1.992 21( , ) 0.94 exp p

p p

t tR zS z t J
t tδ δ

⎛ ⎞−⎡ ⎤− ⎜ ⎟= − −⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 2.47 

where the units of ( , )S z t  is [ 3/Watt m ],  Here, J 2[ / ]Joule m  is the laser fluence, pt describes 

laser heating of the electron-phonon system from a thermalization state; δ is laser penetration 

depth, and R is reflectivity (Dai and Nassar [13]). In case of a non-pulsed laser, S  is no longer a 

function of time. Instead, it becomes: 

 ( )
0( ) (1 )e WL zS z S R κ− −= −  2.48 

where 0S 3[ / ]Watt m  is the initial heat flux and κ [m-1] is the absorption coefficient of the 

workpiece.  

 

On the other hand, heating by a highly energized electron beam is quite different from ultrafast 

laser heating. It is assumed that the kinetic energies lost by electrons in the process of penetrating 

through the medium are converted instantaneously into thermal energy and are deposited in the 

workpiece. The thermal energy deposited by penetrating energetic electrons inside the workpiece 

is simulated using a statistical Monte Carlo Method (MCM) and the propagation of the electron-

beam inside a solid is modeled using the electron transport equation (ETE), which is quite 

similar to radiative transfer equation (RTE). MCM are used extensivley in solving RTE and 

because of this reason MCM is applied to determine the distribution of energy deposited in a 

workpiece due to electron bombardment (Wong et al. [53], Joy [54]). In order to include the 

heating effect due to energy deposition by electrons, the amount of heat generated in the element 

needs to be determined. Applying the MCM, Wong et al. [48] tallied energy deposited from the 

electron beam at any element ( , , )x y z within the computational grid using: 

 , ,
, ,

0

x y z
x y z

x y z enX Y Z N E
ψ

Ψ =
∆ ∆ ∆

 2.49 
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where , ,x y zψ is the energy within a computational grid around node at location ( , , )x y z  in 3-D 

Cartesian co-ordinate system, , ,x y zΨ  is the normalized energy density, enN is the total number of 

electron ensembles used for MCM, 0E  is the initial energy of the electrons, and the quantity 

x y zX Y Z∆ ∆ ∆  is the volume of the computational grid containing node at location ( , , )x y z . The 

internal heat generation at a given element ( , , )x y z , ( , , )S x y z is then computed using the 

following expression: 

 , ,( , , ) x y zS x y z E= Ψ
i

 2.50 

where E
i

 is the input power of the electron-beam. Further details on this topic are beyond the 

scope of the present work and can be found in Wong et al. [53, 54]. 
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3 FINITE DIFFERENCE DISCRETIZATION 
 

3.1 Numerical Experiment Strategy 

 

This section describes the strategy adopted for investigation of various numerical techniques to 

solve time dependent micro/nano-scale heat transport equations. The ultimate focus is on 

reducing high computational cost (in terms of wall clock time) associated with the numerical 

solution of the governing equation at each discrete time step. The choice of an efficient 

numerical method becomes a prime concern if solving the 3-D heat transport equation has major 

impact on computational cost because of larger problem size (number of spatial grid points 

and/or number of time steps necessary to complete final simulation). Zhang and Zhao [16] 

conducted a similar kind of numerical experiment for solving the 3-D dual phase lag (DPL) 

equation. They employed various numerical techniques – Gauss-Seidel (G-S), successive over 

relaxation (SOR), conjugate gradient (CG), and preconditioned conjugate gradient (PCG) – to 

solve a Dirichlet problem for the 3-D DPL equation. Since the final form after implicit 

discretization of both PTS and DPL reduces the problem to a similar system of linear 

equations, BAx =  results of this sort of numerical experiment can be very helpful in making a 

wise choice of an efficient numerical method for solution of large scale time-dependent 

problems. Following the idea of Zhang and Zhao [16], similar kinds of performance comparisons 

over a wide range of commonly-used numerical methods have been done. Although the 

governing equation for nano-machinig considered here is PTS, DPL has been chosen as a test 

problem for conducting numerical experiment. The reason for choosing DPL as test problem is 

that mathematically the DPL model can be reduced to PTS model (Dzou [8,9]) if the values of 

Tτ  and qτ  are related to the microscopic properties of the metal. So mathematically both models 

are similar and hence DPL can be used as a test problem for validating the results obtained from 

the computer code.   Moreover, numerous results for DPL are already available in the literature. 

Results obtained from the present numerical experiment using DPL can be easily validated 

against results already available in the literature. Once the computer code is established and 

results are validated, the same code can be employed to solve BAx =  arising from PTS. This is 

being done to verify the credibility of computer code generating correct results. 
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3.2 Explicit Vs. Implicit Discretization of the Heat Transport Equation 

 
The solution of very large-scale systems arising from numerical study of 3D heat transfer 

problems is computationally very demanding and time consuming. Finite-difference 

discretization of the governing partial differential equation results in algebraic equations which 

can be computed explicitly as well as implicitly. Although numerical solution using explicit 

schemes requires less computation per time step compared with that of implicit schemes, the use 

of explicit schemes is prohibited by their conditional stability criteria, in most problems. This 

will be shown in subsequent numerical analysis and experimental results that implicit methods 

are much more cost effective than explicit methods in the case treated here, and this serves as a 

reason for precluding explicit schemes for obtaining numerical solutions with the desired degree 

of accuracy. 

3.3 Implicit Discretization of DPL: Split and Unsplit Methods 

 
Dai & Nassar [13] split the equation by introducing an intermediate function u(x,y,z,t) and 

employed a Crank-Nicholson type of finite difference and trapezoidal method to develop a two 

level in time finite difference scheme. They showed by the discrete energy method that the 

scheme was unconditionally stable. Zhang et al. [16] developed a second order finite difference 

scheme both in time and space and proved the unconditional stability of the scheme. Unlike Dai 

& Nassar [13], Kunadian et al. [21] developed an alternative discetization procedure for 

implicitly solving DPL equation without splitting it into two equations. They employed von 

Neumann stability criteria to show the unconditional stability of the scheme. 

 

In the split method, following the idea of Dai and Nassar [13], intermediate function ( , , , )u x y z t  

defined as: 

 q
Tu T
t

τ ∂
= +

∂
 3.1 

is introduced in Equation 2.14. Then Equation 2.14 changes to 

 
( )2

21
T

Tu QT
t t K

τ
α

∂ ∇∂
= ∇ + +

∂ ∂
 3.2 

Using Crank-Nicolson technique Equation 3.1 can be discretized to  
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 ( ) ( )
1

, , , ,1 1
, , , , , , , ,

1 1
2 2

n n
i j k i j kn n n n

i j k i j k i j k i j k q
T T

u u T T
t

τ
+

+ + −
+ = + +

∆
 3.3 

which upon rearrangement becomes 

 1 1
, , , , , , , ,

2 2
1 1q qn n n n

i j k i j k i j k i j ku T T u
t t

τ τ+ +⎛ ⎞ ⎛ ⎞
= + + − −⎜ ⎟ ⎜ ⎟

∆ ∆⎝ ⎠ ⎝ ⎠
 3.4 

Equation 3.1 can be written as 

 q
TT u
t

τ ∂
= −

∂
 3.5 

Substituting Equation 3.5 into Equation. 3.2, following can be obtained 

 
( )2

21
q T

Tu T Qu
t t t K

τ τ
α

∂ ∇∂ ∂⎛ ⎞= ∇ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 3.6 

or 

 2 21
q T

u T T Qu
t t t K

τ τ
α

∂ ∂ ∂⎛ ⎞ ⎛ ⎞= ∇ − + ∇ +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 3.7 

or 

 21
q T

u T T Qu
t t t K

τ τ
α

∂ ∂ ∂⎛ ⎞= ∇ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 3.8 

Now using Crank-Nicolson technique, Equation 3.8, is discretized to 

 ( ) ( ) ( )
1

, , , ,1 2 1
, , , , , , , ,

1 1
2

n n
i j k i j kn n n n

i j k i j k i j k i j k T q

T T Qu u u u
t t K

τ τ
α

+
+ +

⎛ ⎞−
− = ∇ + + − +⎜ ⎟⎜ ⎟∆ ∆⎝ ⎠

 3.9 

Again substituting Equation 3.4 into Equation 3.9, the following is obtained 

 

( )

1
, , , , , ,

1
, , , ,2 1

, , , ,

2 21 1 1 2

2 21 1 1
2

q qn n n
i j k i j k i j k

n n
q q i j k i j kn n

i j k i j k T q

T T u
t t t

T T QT T
t t t K

τ τ
α

τ τ
τ τ

+

+
+

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ −⎛ ⎞ ⎛ ⎞
= ∇ + + − + − +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 3.10 

which upon rearrangement takes the form 

 

1 2 1
, , , ,

2
, , , , , ,

21 11
2

21 1 21
2

q n nT
i j k i j k

qn n nT
i j k i j k i j k

T T
t t t

GT T u
t t t t K

τ τ
α

ττ
α α

+ +⎛ ⎞ ⎛ ⎞+ − + ∇⎜ ⎟ ⎜ ⎟∆ ∆ ∆⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞= − ∇ − − + +⎜ ⎟⎜ ⎟∆ ∆ ∆ ∆⎝ ⎠ ⎝ ⎠

 3.11 
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where 

 

1 1 1 1 1 1
1, , , , 1, , , 1, , , , 1,2 1

, , 2 2

1 1 1
, , 1 , , , , 1

2

2 2

2

n n n n n n
i j k i j k i j k i j k i j k i j kn

i j k

n n n
i j k i j k i j k

T T T T T T
T

x y

T T T

z

+ + + + + +
+ − + −+

+ + +
+ −

− + − +
∇ = +

∆ ∆

− +
+

∆

 3.12 

 and  

 

1, , , , 1, , , 1, , , , 1,2
, , 2 2

, , 1 , , , , 1
2

2 2

2

n n n n n n
i j k i j k i j k i j k i j k i j kn

i j k

n n n
i j k i j k i j k

T T T T T T
T

x y

T T T

z

+ − + −

+ −

− + − +
∇ = +

∆ ∆

− +
+

∆

 3.13 

which upon substitution in Equation 3.11 and grouping like terms together, the final discretized 

form is obtained as follows 

 
( ) ( ) ( )1 1 1 1 1 1 1

, , 1, , 1, , , 1, , 1, , , 1 , , 1

, ,

n n n n n n n
i j k i j k i j k i j k i j k i j k i j k

n
i j k

aT b T T c T T d T T

F

+ + + + + + +
+ − + − + −+ + + + + +

=
 3.14 

where  

 2 2 2
21 1 1 1 11 2

2
q Ta

t t t x y z

τ τ
α

⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ∆ ∆ ∆⎝ ⎠ ⎝ ⎠
 3.15 

 2
1 1
2

Tb
t x

τ⎛ ⎞= − +⎜ ⎟∆⎝ ⎠ ∆
 3.16 

 2
1 1
2

Tc
t y

τ⎛ ⎞= − +⎜ ⎟∆⎝ ⎠ ∆
 3.17 

 

 2
1 1
2

Td
t z

τ⎛ ⎞= − +⎜ ⎟∆⎝ ⎠ ∆
 3.18 

After rearrangement, Equation 3.15 becomes 
 

 ( )
21 1 2qa b c d

t t
τ

α
⎛ ⎞

= + − + +⎜ ⎟
∆ ∆⎝ ⎠

 3.19 

and 
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( ) ( ) ( ), , , , 1, , 1, , , 1, , 1, , , 1 , , 1

1/ 2
, ,

, ,
2

n n n n n n n n
i j k i j k i j k i j k i j k i j k i j k i j k

n
i j kn

i j k

F eT f T T g T T h T T

Q
u

t Kα

+ − + − + −

+

= + + + + + +

+ +
∆

 3.20 

where 

 2
1 1
2

Tf
t x

τ⎛ ⎞= −⎜ ⎟∆⎝ ⎠ ∆
 3.21 

 2
1 1
2

Tg
t y

τ⎛ ⎞= −⎜ ⎟∆⎝ ⎠ ∆
 3.22 

 2
1 1
2

Th
t z

τ⎛ ⎞= −⎜ ⎟∆⎝ ⎠ ∆
 3.23 

Again e  can be rewritten as  

 ( )
212 1 qe f g h

t t
τ

α
⎛ ⎞

= − + + − −⎜ ⎟
∆ ∆⎝ ⎠

 3.24 

So in order to get the solution, first step would be to solve the Equation 3.14 and then update the 

value of intermediate function 

 1 1
, , , , , , , ,

2 2
1 1q qn n n n

i j k i j k i j k i j ku T T u
t t

τ τ+ +⎛ ⎞ ⎛ ⎞
= + + − −⎜ ⎟ ⎜ ⎟∆ ∆⎝ ⎠ ⎝ ⎠

 3.25 

for the next time step calculation. 

 

In case of the unsplit method, the form of the discretized equation remains the same as that of 

split one but coefficients change to  

  

 2 2 2
21 1 1 1 11 2

2
q Ta

t t t x y z

τ τ
α

⎛ ⎞⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ∆ ∆ ∆⎝ ⎠ ⎝ ⎠
 3.26 

 

 2
1 1
2

Tb
t x

τ⎛ ⎞= − +⎜ ⎟∆⎝ ⎠ ∆
 3.27 

 2
1 1
2

Tc
t y

τ⎛ ⎞= − +⎜ ⎟∆⎝ ⎠ ∆
 3.28 

 2
1 1
2

Td
t z

τ⎛ ⎞= − +⎜ ⎟∆⎝ ⎠ ∆
 3.29 
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After rearrangement Equation 3.26 becomes 
 

 ( )
21 1 2qa b c d

t t
τ

α
⎛ ⎞

= + − + +⎜ ⎟
∆ ∆⎝ ⎠

 3.30 

and 

 
( ) ( ) ( ), , , , 1, , 1, , , 1, , 1, , , 1 , , 1

1/ 2
, ,1

, ,2

n n n n n n n n
i j k i j k i j k i j k i j k i j k i j k i j k

n
q i j kn

i j k

F eT f T T g T T h T T

Q
T

t K
τ

α

+ − + − + −

+
−

= + + + + + +

− +
∆

 3.31 

where  

 2
1 1
2

Tf
t x

τ⎛ ⎞= −⎜ ⎟∆⎝ ⎠ ∆
 3.32 

 2
1 1
2

Tg
t y

τ⎛ ⎞= −⎜ ⎟∆⎝ ⎠ ∆
 3.33 

 2
1 1
2

Th
t z

τ⎛ ⎞= −⎜ ⎟∆⎝ ⎠ ∆
 3.34 

 ( )
212 1 qe f g h

t t
τ

α
⎛ ⎞

= − + + − −⎜ ⎟
∆ ∆⎝ ⎠

 3.35 

In both split as well as unsplit methods, the common source term is given as 

 ( )
1

, , , ,1/ 2 1
, , , , , ,

1
2

n n
i j k i j kn n n

i j k i j k i j k T

S S
Q S S

t
τ

+
+ + −

= + +
∆

 3.36 

Thus, it can be observed that Equation 3.14 is in the form of a system of linear equations AT F= . 

3.4 Implicit Discretization of PTS 

 

Analytic and numerical methods for solving PTS have been widely studied. Qui and Tien [55, 

56] employed a semi-implicit Crank-Nicholson scheme to solve the PTS model in 1-D thin gold 

film and a double layered gold and chromium film. However, they did not investigate the 

stability of the scheme. Dai et al. [57] developed a three-level finite difference scheme for 

solving the PTS in a 3-D double layered thin film. They showed by the discrete energy method 

that the scheme was unconditionally stable. The current work assumes thermal properties to be 

temperature dependent, which makes Equation 2.39 a non-linear PDE. The nonlinear PDE is 

solved using the Newton-Kantorovich procedure. The parabolic two-step model is given as: 
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 ( ) ( ) ( )e
e e e e p

TElectron Energy C k T G T T
t

∂
= ∇ ⋅ ∇ − −

∂
 3.37 

where 

 ;e
e o e e e

p

Tk k c A T
T

= =  3.38 

and 

 ( ) ( )p
p e p

T
Lattice Energy C G T T

t
∂

= −
∂

 3.39 

Applying partial derivative to Equation 3.37 
 

 

2 2 2

2 2 2

1 [ ( )

( ) ]

e e e e e e e e e e
e

e

e p

T k T k T k T T T Tk
t C x x y y z z x y z

G T T S

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − +

 3.40 

 
After rearrangement, Equation 3.40 becomes 
 

 

2 2 2
2 2 20

0 2 2 2

1 [ {( ) ( ) ( ) } ( )

( ) ]

e e e e e e e e

e e p p

e p

T k T T T T T T Tk
t A T T x y z T x y z

G T T S N

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

− − + =

 3.41 

The Newton-Kantorovich procedure assumes each dependent variable and its derivatives as an 
independent variable hence N can be linearized as 
 

2 20

2 2 2
2 0

2 2 2

1( , ( ) , ( ) , ( ) , ( ) , ( ) , ( ) ) [ {( ) ( )

( ) } ( ) ( ) ]

e e
e e x e y e z e xx e yy e zz

e e p

e e e e e
e p

p

k T TN N T T T T T T T
A T T x y

T k T T T T G T T S
z T x y z

∂ ∂
= = +

∂ ∂

∂ ∂ ∂ ∂
+ + + + − − +

∂ ∂ ∂ ∂  3.42 

 
where a single subscript denotes the 1st partial derivative and double subscript denotes the 2nd 
partial derivative of eT . To avoid complexity of brackets and subscripts, ( )xeT  can be simply 
written as exT , ( )xxeT  can be written as exxT  and so on. Thus Equation 3.41 can be expressed as 

 eT N
t

∂
=

∂
 3.43 

Applying trapezoidal rule to Equation 3.43, it becomes 

 
1

11 [ ]
2

n n
n ne eT T N N

t

+
+−

= +
∆

 3.44 

or 
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 1 1[ ]
2

n n n n
e e

tT T N N+ +∆
= + +  3.45 

Using Frechet-Taylor expansion, 1nN +  can be expanded in its δ -form as 
 

 

1( , , , , , , ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

n m m m
e ex ey ez exx eyy ezz e ex
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m m
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exx eyy

m
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N NT T
T T

N NT T
T T

N T
T

δ δ

δ δ

δ δ

δ

+ ∂ ∂
= + +

∂ ∂

∂ ∂
+ +

∂ ∂

∂ ∂
+ +

∂ ∂

∂
+

∂

 3.46 

where (0)
e e eT T Tδ = − , 1n m n< < +  and (0)

eT  is initial guess. Now, partial derivatives of N can be 

obtained and substituted back into Equation 3.45 

 

 

2 2 2
2 2 20 0
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e e e e e e e
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e e p p
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 01 2 e

ex e e p

k TN
T A T T x

∂∂
=
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 3.48 

 01 2 e

ey e e p

k TN
T A T T y
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=

∂ ∂
 3.49 

 01 2 e

ez e e p

k TN
T A T T z
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=

∂ ∂
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T A T T
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eyy e e p

kN
T A T T
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=
∂

 3.52 

 01

ezz e e p
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T A T T
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=
∂

 3.53 

substituting the above into Equation 3.45, it becomes 
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1 [ ( ) ( ) ( ) ( ) ( ) ( )
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n n m m m m
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 3.54 

 
And its δ -form changes to 
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∂ ∂ ∂
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 3.55 

On rearrangement it, takes form of 

 

[ ( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ]
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∆ ∂ ∂ ∂
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∂ ∂ ∂ ∂
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grouping similar terms together, Equation 3.56 takes form of 

[1 ( ) ] ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

[ ] [ ]
2 2
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∆ ∂ ∆ ∂ ∆ ∂
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∆ ∆
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 3.57 

Now applying centered difference for space derivatives, Equation 3.57 becomes 
 

, , 1 1, , 2 1, , 1 , 1, 2 , 1,

1 , , 1 2 , , 1

.( ) ( ) ( ) ( ) ( )

( ) ( )
e i j k e i j k e i j k e i j k e i j k

e i j k e i j k

a T b T b T c T c T

d T d T F

δ δ δ δ δ

δ δ
− + − +

− +

+ + + +

+ =
 3.58 

where, 

 2 2 2

2 2 21 ( ) [( ) ( ) ( ) ]
2 2

m m m m

e exx eyy eyy

t N t N N Na
T T x T y T z

∆ ∂ ∆ ∂ ∂ ∂
= − + + +

∂ ∂ ∆ ∂ ∆ ∂ ∆
 3.59 

 

 1 2

1 2( ) ( )
2. 2 2

m m

ex exx

t N t Nb
x T T x

∆ ∂ ∆ ∂
= −
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 3.60 
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∆ ∂ ∆ ∂
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ey eyy
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y T T y

∆ ∂ ∆ ∂
= − −
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m m

ez ezz

t N t Nd
z T T z

∆ ∂ ∆ ∂
= −
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 2 2

1 2( ) ( )
2. 2 2

m m

ez ezz

t N t Nd
z T T z

∆ ∂ ∆ ∂
= − −

∆ ∂ ∂ ∆
 3.65 

 
and 

 [ ] [ ]
2 2

n n m m
e e

t tF T N N T∆ ∆
= + + −  3.66 

Thus, implicit discretization of electron energy Equation 3.37 of PTS reduces to system of linear 

equations (Equation 3.58) of form ,( )m m n m
eA T Fδ =  where 1n m n< < + . Using the same 

Newton-Kantorovich procedure, the phonon energy Equation 3.39 of the PTS model can be 

discretized in similar fashion.  

 

 

 

 

3.5 Resulting system of linear equations 

 

Observing sections 3.3 and 3.4, it can be concluded that both DPL as well as PTS reduces to 

system of linear equations FAT = . To test the performance of the numerical methods employed 

for solving FAT = , consider use of Neumann boundary conditions, 

 0T
n

∂
=

∂
 3.67 
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On all of ∂Ω , where , ,n x y z=  and initial conditions  

 0( , , ,0)T x y z T=  3.68 

and  

 ( , , ,0) 0T x y z
t

∂
=

∂
 3.69 

It is convenient to re-arrange Equation 3.15 or Equation 3.58 in the form 

 
1 1 1 1 1 1 1

1 , , 1 1 , 1, 1 1, , , , 2 1, , 2 , 1, 2 , , 1

, ,

n n n n n n n
i j k i j k i j k i j k i j k i j k i j k

n
i j k

d T c T b T aT b T c T d T

F

+ + + + + + +
− − − + + ++ + + + + +

=
 3.70 

which can be written in matrix form as FAT = . The matrix A  is a sparse 7-banded matrix, 

which can be stored in a 7N ×  array with ( )x y zN N N N= being number of grid points in the 

physical domain. Thus Equation 3.70 can be grouped in matrix form as follows 

 

1
2 2 2 , , 1

1
1 1 1 2 2 2 , 1,

1
1, ,

1
, ,

1
1, ,
1

, 1,
1

1 1 1 , , 1

0 0 0 2 2 2

. . . . . .

. . . . . .
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 3.71 

 

where T  is the solution vector, and F  is known RHS vector. 

 

The system of linear Equation 3.71 is strictly diagonally dominant. The coefficient matrix A  is a 

nonsymmetric (depending upon Neumann boundary condition) positive semi-definite seven 

banded matrix. Matrix A  needs to be calculated at each discrete time step if the coefficients are 

considered to be temperature dependent. In case of temperature independent properties, only a 

subroutine for matrix vector product is required rather than storing the entire matrix.   
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4 NUMERICAL SOLUTION STRATEGY 
 
This chapter mainly addresses to the performance comparison of numerical methods commonly 

used to solve sparse banded positive definite nonsingular, not necessarily symmetric, linear 

system arising from finite differencing of the partial differential equation governing heat 

transport at micro/nano scale level. The main focus here is on reducing the large computational 

cost associated with the numerical simulation of time dependent 3-D heat transport problem. The 

numerical solution of FAT =  at each time step dominates the entire computational cost. The 

choice of an efficient numerical method becomes a prime concern if solving linear system has 

major impact on computational cost because of very large number of equations N , say 
6~ (10 )N O . The performance comparison can be used as a benchmark for choosing or designing 

an efficient and economical numerical procedure for solving large-scale sparse linear systems of 

similar kind in other applications too. In practice, sparse linear systems, which is the case treated 

here, can be solved either by direct or by iterative methods. However, the choice between direct 

and iterative solver requires certain factors to be analyzed in optimum fashion if the cost of 

computation is extremely high (Gilli et al. [61]). 

 
Direct solution methods are often preferred over iterative methods because of their robustness, 

precise number of arithmetic count and solution accuracy. However, due to increased complexity 

of grids, irregular sparsity pattern of the coefficient matrix A  and larger size of three 

dimensional problems, direct solvers often become ineffective. Most of the direct methods are 

fundamentally decomposition schemes, LU or QR factorization, or else elimination schemes 

which converts many of the zero entries in the original matrix into nonzero ones during 

factorization process, and for which storage must be reserved. If the sparse matrix is tridiagonal, 

the best course of action is LU decomposition (Gilli et al. [61]). Decomposition methods are 

robust, efficient, economical and fast for multidiagonal sparse matrices but it is not 

recommended for banded matrices with few zero diagonals in between or large bandwidth, 

which is the case treated here, because large storage would be required for creation of new fill-

ins or nonzero entries in the factored matrices. The major bottleneck in direct solvers is larger 

memory demands, due to creation of new nonzero elements in the sparse factors, which results in 

degraded computational speed. However, one can always exploit the sparsity pattern of the 
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matrix to design special direct methods that can be quite economical and efficient (Duff et al. 

[59]); these and other similar strategies have been discussed by Boucekkine [60] and Gilli et al. 

[61]. 

 
On the other hand, an alternative to direct methods for solving sparse linear systems is iterative 

solvers. Nonstationary iterative solvers with suitable preconditioners can easily compete with the 

quality of direct solvers. Iterative methods are easier to implement, require significantly less 

storage, unless matrix A  need not be stored for special problems, only operates on nonzero 

elements, no fill-in occurs, and shows very fast convergence for well-conditioned matrices. 

Although iterative methods have attained significant maturity, it still can not be stated that an 

arbitrary sparse linear system can be solved iteratively in an efficient way. For instance, Bruaset 

[62] reports an experiment with a sparse matrix where sparse Gaussian elimination outperforms 

BiCGSTAB as far as the operation count is concerned. On contrary, Gilli [61] reports that 

Krylov methods outperform direct methods for the solution of large sparse linear system. In 

contrast to direct methods, the number of arithmetic count for iterative solution can not be 

estimated exactly beforehand and also the solution can be, in any case, accurate only to the 

prescribed iteration tolerance limit, at best. 

 

An alternative for solving banded linear systems arising in time dependent problems is splitting 

procedures, which overcome the major memory bottleneck we have with sparse direct methods. 

Some such splitting, in time and space, procedures are alternate direction implicit (ADI), locally 

one-dimensional method (LOD) and Douglas Gunn [63] time splitting procedure. ADI splits the 

problem in space, requires solution of non-tridiagonal matrices and is first order accurate. 

Douglas-Gunn time splitting procedure, as name suggests, splits the problem in time and requires 

solution of tridiagonal matrices at each time step. Thus at each time step, seven banded matrix 

can be split into three tridiagonal matrices, which can be solved by LU decomposition very 

efficiently. The following section describes about commonly used numerical methods in the filed 

of scientific computation. 
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4.1 Numerical Methods 

 
An iterative method begin with an approximate solution, ( )ix  to the system of linear equations of 

the form Ax b=  where A  is the coefficient matrix, mostly a square n n×  matrix for real 

application problems, b  is the right hand side vector and x  is the vector of unknowns. All the 

iterative methods are designed to modify the approximate solution ( )ix  in each subsequent 

iterates and finally making approximate solution vector converge to exact solution x . Iterative 

methods, which have been widely accepted in scientific computing so far, can be categorized 

into two namely; stationary iterative methods and nonstationary iterative methods, also known as 

Krylov subspace solvers (Schewchuk [89]). Stationary methods are older, simpler to understand 

and implement, but usually not as effective in terms of speed. Nonstationary methods are a 

relatively recent development and highly effective (Schewchuk [89]). 

 
All stationary iterative methods can be expressed in the form of ( 1) ( )i ix Bx c+ = +  where B  is an 

iteration matrix and c  is a vector. In stationary iterative methods like Jacobi, Gauss-Seidel (GS), 

successive over relaxation (SOR), only ( )ix  changes, matrix B  and vector c  remains constant till 

( )ix  converges to the exact solution vector. For nonstationary iterative methods, a sequence of 

iterates can be expressed in the form of ( 1) ( ) ( ) ( )i i i ix x rα+ = + , which by comparing coefficients 

with that of stationary one it can be concluded that vector c  is equivalent to ( ) ( )i irα , where ( )iα  

indicates step size in the search direction ( )ir , also known as residual. The nonstationary methods 

or Krylov subspace solvers like steepest descent, conjugate gradient (CG), conjugate gradient 

squared (CGS), biconjugate gradient (BiCG), biconjugate gradient stabilized (BiCGSTAB), 

minimal residual (MINRES) are based on the idea of sequences of orthogonal vectors. The 

Krylov subspace solvers differ from stationary methods in that the computations involve 

information that changes at each iteration. Typically, constants are computed by taking inner 

products of residuals or other vectors arising from the iterative method. The basic Krylov 

subspace solvers, steepest descent and CG, are very efficient and effective when the coefficient 

matrix is symmetric positive definite (SPD). Other methods like MINRES, CGS, BiCG, 

BiCGSTAB etc. are the computational alternative for CG for coefficient matrices that are 
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possibly nonsymmetric, indefinite. The convergence of iterative methods depends greatly on the 

spectrum of the coefficient matrix A . The Condition number of matrix, a measure of stability or 

sensitivity of a matrix to numerical operations, A  should be nearly around 1 to guarantee the 

convergence of an iterative method. Preconditioning can be done to improve the spectrum of the 

coefficient matrix A . A good preconditioner improves the convergence of the iterative method, 

sufficiently to overcome the extra cost of constructing and applying the preconditioner. 

 

4.2 Stationary Iterative Methods  

 
First of all, some basic stationary iterative methods such as Gauss-Seidel (GS) and the successive 

overrelaxation (SOR) methods are considered. In case of GS method the general thi equation of 

the system of linear equations in question, FAT = , is given by 

  

 
1 1

( 1) ( 1) ( )

1 1

1 i i
m m m

i i ij j ij j
j jii

T F A T A T
A

− +
+ +

= =

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑ ∑  4.1 

where m is the iteration counter and 1,2,3......i N N= × .  
 
An improvement on GS method was made by introducing SOR. The iterate computed from GS is 

improved using weighted average. Thus the thi equation becomes like 

 

 
1 1

( 1) ( ) ( 1) ( ) ( )

1 1

1 i i
m m m m m

i i i ij j ij j i
j jii

T T F A T A T T
A

ω
− +

+ +

= =

⎛ ⎞⎡ ⎤
= + − − −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

∑ ∑  4.2 

 
where ω  is called relaxation parameter. 1 2ω< <  corresponds to SOR; 0 1ω< <  corresponds to 

a damped form of GS method. For model problems, there exists a class of theory governing 

choice ofω . However, it is not possible to compute in advance the value of ω  that will 

maximize the rate of convergence of SOR. For most practical problems, relaxation parameter is 

usually found by trial and error method (Saad [90]). 
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4.3 Non-stationary Methods or Krylov Solvers 

 
CG method is the archetypical Krylov method for symmetric positive definite (SPD) matrices. Its 

performance behavior is representative of other computational alternatives of CG like MINRES. 

The results for CG are also more or less representative for transpose-free methods for 

nonsymmetric systems, such as BiCGSTAB. The CG method is an improvement of the steepest 

descent approach, where the search directions are chosen to be orthogonal or "conjugate" with 

respect to the matrix. The idea of CG method is to update the iterate ( )ix  in a way to ensure the 

largest decrease of the objective function  1
2

T Tx Ax b x−  while keeping the direction vectors ( )id  

−A orthogonal.  

 

BiCGM is useful when the matrix is nonsymmetric and nonsingular. The updates for the 

residuals and for the direction vectors are similar to those of CG method, but are performed using 

A  and TA . Implicitly, BiCGM solves not only the original system Ax b=  but also the dual 

linear system Ax b∗ ∗=  with TA . However, the disadvantage of this method is that convergence 

may be irregular, and there is a possibility that the method may breakdown – an unwanted 

division by zero - at some step.  

 

CGS is a variant of BiCGM and was developed mainly to avoid using the transpose of A  in the 

BiCGM in order to gain faster convergence for roughly the same computational cost. Ideally, the 

convergence rate should be double of BiCGM but in practice convergence may be much more 

irregular than for BiCGM, which may sometimes lead to unreliable results. This difficulty may 

arise, since the CGS method is based on squaring the residual polynomials that may lead to 

substantial build-up of rounding error or possibly even overflow.  

 

BiCGSTAB was developed in order to overcome the problem of potential instability of the 

BiCGM and CGS algorithm without giving up the attractive speed of convergence of CGS. It is a 

variant of BiCGM but uses different updates for the TA - sequence to obtain smoother 

convergence than CGS.  
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GMRES is a distinctive and reliable tool, introduced by Saad and Schultz [64], in the class of 

Krylov solvers for solving general large nonsymmetric semi-positive definite linear systems. It is 

an extension of MINRES, which in turn is a variant of CG but GMRES has different 

performance behavior compared to that of CG. It minimizes the residual norm after a given 

number of steps. The approximate solution, not constructed at each step but at the end of a given 

number of steps, is given as 0 1 1 2 2 .........m m mx x v y v y v y= + + + + . This unique vector solution mx  

is approximated by minimizing residual using function 12 2
( ) mf y b Ax e H yβ= − = − , where 

β  is 2-norm of the residual, 1e  is the first column of identity matrix and mH  is a ( 1)m m+ ×  

Hessenberg matrix. At the centre of the GMRES is Arnoldi process which constructs an 

orthogonal basis for the Krylov subspace. For starting the GMRES step, the process is applied 

with the normalized residual vector 1 0 /v r β=  is the normalized residual vector used to build the 

Krylov subspace using Arnoldi process. The Arnoldi process simply constructs an orthogonal 

basis of the Krylov subspace 1 1{ , ,........, }m mK span v Av Av=  using Modified Gram-Schimdt 

(MGS) process, in which the new vector to be orthogonalized is defined from the previous 

vector. Since GMRES is bit difficult to understand and different from other conventional Krylov 

solvers, the basic GMRES algorithm is outlined in the pseudo code below: 

 

Pseudo code for Generalized Minimal Residual (GMRES) 

 

(1)Start: Choose 0x  and a dimension m  of the Krylov subspace. Define an 

( 1)m m+ ×  matrix mH  and initialize all entries ijh  to zero. 

(2)Arnoldi Process: 

• Compute 0 0r b Ax= − , 0 2
rβ =  and  1 0 /v r β= . 

• For 1,.....,j m=  do  

o Compute j jw Av=  

o For 1,.....,i j=  do  

( , )ij j i

j j ij i

h w v

w w h v

=

= −
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o Compute ( 1) 2j jh w+ =  and 1 ( 1)/j j jv w h+ += . If ( 1) 0j jh + = , set m j=  and go to 

step (3). 

 

(3)Form the approximate solution: Compute 0m m mx x V y= +   

where my  =  arg miny 1 2me H yβ − and 1 [1,0,0,.......,0]e = . 

(4) Restart: If the residual norm is below tolerance limit STOP, else set 0 mx x←  and go to 

(2). 

 

The minimizer my  is the solution of least square problem my  =  arg miny 1 2me H yβ −  which can 

be solved by setting my  equal to zero i.e. by solving 
1mH y eβ= . A common technique to solve 

1mH y eβ=  is to transform the Hessenberg matrix mH  matrix into upper triangular form by using 

Givens or Jacobi rotations. Note that for GMRES the thi  plane rotation matrix has 

dimension ( 1) ( 1)m m+ × + . 

 

4.4 A Direct method - Basic Douglas-Gunn time splitting method 

 
As seen in the previous sections, the system of linear equations arising from finite difference 

discretization of DPL or PTS equation can be expressed as 

 
1 1 1 1 1 1 1

, , 1 , 1, 1, , , , 1, , , 1, , , 1

, ,

n n n n n n n
i j k i j k i j k i j k i j k i j k i j k

n
i j k

dT cT bT aT bT cT dT

F

+ + + + + + +
− − − + + ++ + + + + +

=
 4.3 

This equation is three-level in time and can be solved using Douglas-Gunn time splitting method 

in the following way: 

Divide both sides of Equation 4.3 by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

+
∆ tt

qτ
α

2
11  to reduce the original set of equations in the 

form of 
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( ) ( ) ( )1 1 1 1 1 1 1
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τ
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⎛ ⎞
= + =⎜ ⎟∆ ∆⎝ ⎠

 4.4 

After rearrangement, Equation 4.4 reduces to  

 
( ) ( ) ( )' ' ' 1 ' 1 1 ' 1 1 ' 1 1

, , 1, , 1, , , 1, , 1, , , 1 , , 1

, ,

(1 2 2 2 ) n n n n n n n
i j k i j k i j k i j k i j k i j k i j k

n
i j k

b c d T b T T c T T d T T

B

+ + + + + + +
+ − + − + −− − − + + + + + +

=
 4.5 

where  

 '
2

21 1 1 1
2

qTb
t t tx

ττ
α

⎛ ⎞⎛ ⎞= − + +⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ∆ ⎝ ⎠
 4.6 
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2

21 1 1 1
2

qTc
t t ty

ττ
α

⎛ ⎞⎛ ⎞= − + +⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ∆ ⎝ ⎠
 4.7 

 '
2

21 1 1 1
2

qTd
t t tz

ττ
α

⎛ ⎞⎛ ⎞= − + +⎜ ⎟⎜ ⎟∆ ∆ ∆⎝ ⎠ ∆ ⎝ ⎠
 4.8 

and  

 ( )' ' ' '1 2a b c d= − + +  4.9 

The Equation 4.5 can be split for three directions as follows: 

 ( )' 1 ' 1 1
, , 1, , 1, , , ,(1 2 ) n n n n

i j k i j k i j k i j kb T b T T B+ + +
+ −− + + =  4.10 

 ( )' ' 1 1
, , , 1, , 1,( 2 ) 0n n n

i j k i j k i j kc T c T T+ +
+ −− + + =  4.11 

 ( )' ' 1 1
, , , , 1 , , 1( 2 ) 0n n n

i j k i j k i j kd T d T T+ +
+ −− + + =  4.12 

Equation 4.10, 4.11 and 4.12 can be written as 

 1
, ,( ) n n

x i j kI A T B++ =  4.13 

 1 0n
yA T + =  4.14 

 1 0n
zA T + =  4.15 

These can be solved using basic D-G formula 
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 (1) ( )
1

2
( )

q
n n

j
j

I A T A T B
=

+ + =∑  4.16 

 ( ) ( 1) ( )( ) 0 2,3,.......i i n
i iI A T T A T i q−+ − − = =  4.17 

where q  is the number of dimensions. Here the physical domain is three dimension so 3q = , 

1 xA A= , 2 yA A=  and 3 zA A=  

Thus the final set of equations to be solved is as follows: 
 
 (1) ( ) ( )( ) n n n

x y zI A T B A T A T+ = − −  4.18 

 (2) (1) ( )( ) n
y yI A T T A T+ = +  4.19 

and 
 (3) (2) ( )( ) n

z zI A T T A T+ = +  4.20 

where  
 ( 1) (3)nT T+ =  4.21 

and 
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 4.22 

 

 

' '

, '

' '

' '

0 1 2 2
1 2 .

. . .

. 1 2
2 1 2 0

y

c c
c c

I A
c c

c c

⎡ ⎤−
⎢ ⎥−⎢ ⎥
⎢ ⎥+ =
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

 4.23 

and  
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4.5 δ - form Douglas-Gunn time splitting 

 
Applying δ - form to the basic Douglas-Gunn time splitting equations, it can be written that: 
 
 (1) (1) (1)T T Tδ∗= +  4.25 

 
 (2) (2) (2)T T Tδ∗= +  4.26 

and 
 (3) (3) (3)T T Tδ∗= +  4.27 

where (1) (2),T T∗ ∗  and (3)T ∗ are any initial guess values (let it be ( ) (1) (2) (3)nT T T T∗ ∗ ∗= = = ). 

Plugging these equations into above set of equations and rearranging them, these reduce in the 

δ - form as follows: 

 

 (1) ( )( ) ( )n n
x x y zI A T B I A A A Tδ+ = − + + +  4.28 

 (2) (1)( )yI A T Tδ δ+ =  4.29 

and 
 (3) (2)( )zI A T Tδ δ+ =  4.30 

where  

 ( 1) ( ) (3)n nT T Tδ+ = +    4.31 

4.6 DPL – Test Problem for Conducting Numerical Experiment 

 
The governing DPL equation used to describe the thermal transport phenomena in micro/nano-

scale structures subjected to high-rate heating is expressed in dimensional form in (Tzou [9]) as  

 
2

2

1 ( ) 1q
t q

T T T ST S
t t t t

τ
τ τ

α α λ
∂ ∂ ∂ ∆ ∂⎛ ⎞+ − = ∆ + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 4.32 
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The DPL equation is different from the traditional heat diffusion equation since, it has a third-

order mixed derivative term, second order in space in first order in time. An analytic solution of 

this equation with its initial and boundary conditions may be difficult to obtain. 1-D, 2-D and 3-

D DPL equations have been solved numerically by many authors using different techniques. Dai 

and Nassar [19] developed a finite difference scheme with two-levels in time for the 3-D DPL 

equation. They showed by discrete energy method that the scheme was unconditionally stable. 

They employed preconditioned Richardson iteration to solve 3-D implicit scheme. Zhang and 

Zhao [16] introduced a second order finite difference scheme to approximate DPL equation 

directly and modeled the discretized equations as one sparse linear system. Kunadian et al. [21] 

developed an alternative discretization for implicitly solving the DPL equation during 

femtosecond laser heating of nanoscale metal films. They proposed a numerical technique that 

directly solves a single partial differential equation, unlike other techniques available in the 

literature which split the DPL equation into a system of two equations and then apply 

discretization. So, there are different discretization techniques and different numerical methods 

which can be employed to solve heat transport equation efficiently. 

4.7 Numerical Experiments 

 
Numerical experiments have been conducted to evaluate the performance of explicit method and 

various implicit methods for solving the system of linear equations arising from discretization of 

the micro-scale heat transport equation. First, experiments are conducted to solve the DPL 

equation using explicit as well as implicit schemes. The experiments are conducted on a 3.4GHz 

Xeon em64t processors @2GB machine using time step 0.001t ps∆ =  and simulation time, 

2.5t ps=  to test the performance of the numerical methods applied to solve DPL equation. 

Convergence tests were performed using 2 ( )L Ω  norm of the difference between successive 

iterates with a convergence tolerance of 710− .  
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Figure 4-1: Front surface transient response for a 0.1 µm gold film.  Figure is taken from 
Kunadian et al. [21] and modified to show the comparison among numerical (explicit and 
implicit schemes), analytical (Chiu [12]) and experimental results (Brorson et al. [65] and Qui & 
Tien [4, 5]).  
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Figure 4-1, which is taken from Kunadian et al. [21] is modified to show the comparison 

between the numerical (explicit and implicit scheme), analytical (Chiu [12]) and the 

experimental results of Brorson et al. [65] and Qiu and Tien [4, 5] corresponding to the front 

surface transient response for a 0.1 µm thick gold film. The laser heat source term given by: 

 
1.992 21( , ) 0.94 exp p

p p

t tR zS z t J
t tδ δ

⎛ ⎞−⎡ ⎤− ⎜ ⎟= − −⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 4.33 

where luminous intensity, 213.4 /J joule m= , reflectivity 0.93R = , penetration depth 
915.3 10 mδ −= ×  and 100pt fs=  are used for these calculations. The thermal properties of gold 

(diffusivity 4 21.25 10 m sα −= × , conductivity 315k W mK= , phase lag of temperature 

gradient 90T psτ = , phase lag of heat flux 8.5q psτ = ) are assumed to be constant. The 

temperature change is normalized by the maximum value that occurs during the short-time 

transient. The results from the present numerical scheme compare presumably well with 

experimental and analytical results. Tables 1 and 2 show the wall clock time required for entire 

3-D simulation using split and unsplit methods for the explicit as well as implicit procedures. 

Implicit procedure employs various iterative schemes and the direct δ-form Douglas-Gunn time-

splitting method for different values of the spatial discretization parameter N. Here N = Nx = Ny = 

Nz. Several observations can be made from Tables 1 and 2.  
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Table 1: Performance comparison of different numerical methods for solving discretized 3-D 
DPL equation using split method (the grid resolution is N3). 
 

Total wall clock time in seconds 
Numerical Schemes N = 21 N = 41 N = 51 N = 101 

Explicit Method 4.9 147.6 450.3 7920.0 
Gauss-Siedel 13.5 175.1 415.9 7800.0 

SOR 12.8 164.0 402.1 4714.4 
Steepest Descent 13.2 128.3 275.7 5834.6 

CG 12.1 110.5 234.0 2733.4 
D-G Time splitting 9.8 82.3 166.9 1792.4 

Delta D-G 9.2 75.2 153.3 1638.0 
GMRES 13.6 134.0 267.8 2873.2 
Min Res 11.9 111.8 232.2 2696.6 
BiCGM 11.5 166.6 387.4 3388.2 
CGS 13.6 134.4 356.6 4395.1 

Implicit 
Method 

BiCGSTAB 13.2 127.1 257.4 2961.6 
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Table 2: Performance comparison of different numerical methods for solving discretized 3-D 
DPL equation using unsplit method (the grid resolution is N3). 
 

Total wall clock time in seconds 
Numerical Schemes N = 21 N = 41 N = 51 N = 101 

Explicit Method 4.9 147.6 450.3 7920.0 
Gauss-Siedel 14.1 253.4 627.0 11343.0 

Steepest Descent 13.2 128.3 275.7 5834.6 
CG 12.3 124.8 270.3 3614.7 

D-G Time splitting 9.8 82.3 166.9 1792.4 
Delta D-G 8.5 70.5 140.9 1344.4 

Implicit 
Method 

GMRES 13.9 145.0 270.8 2996.0 
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When N = 21 the explicit method consumes significantly less wall clock time than the rest of the 

numerical techniques, but for the spatial discretization parameter 21N > , all implicit methods 

except the G-S method performs better than the explicit procedure employed in this numerical 

experiment. The poor performance of the iterative methods namely GS, CG and GMRES in the 

unsplit approach owes to the fact that the coefficient matrix A (Equation 3.71) is less diagonally 

dominant than that of the split method. Clearly, for high-resolution calculations on grids having 

greater than a million grid points, DG time splitting is significantly more efficient for time-

dependent problems than any other iterative technique displayed in Table 1 and 2. 

 

For a coarse grid, explicit procedure consumes less wall clock time compared to other implicit 

procedures. For grid size with higher resolution, the unsplit method employing delta form of 

Douglas-Gunn time splitting method is the most efficient way of solving the 3-D time dependent 

microscale heat transport equation. 

 
The above results can be used as a benchmark for solving 3-D time dependent micro- and nano-

scale heat transport equation. Though the test is conducted using DPL equation, the same is 

applicable to solving parabolic two-step (PTS) model problems. As shown in previous chapters, 

final discretization of both microscale heat transport equations result in a similar system of linear 

equations with only a difference in coefficients of the resulting matrix A . Hence the above 

numerical methods applied to solve PTS will perform in a similar fashion.   

 
Wall clock times shown in the above tables are for a simulation time of 2.5 picoseconds that 

corresponds to maximum phonon temperature in the order of ~ 300 K. In order to elevate phonon 

temperature of gold film up to its evaporation/sublimation temperature during nanomachining 

process, the simulation time will be much larger. The wall clock time consumption in such cases 

will be extremely high. In order to reduce the computation time for solving faster and solving 

bigger problems, parallel computing becomes a dire necessity. The further chapters discuss the 

implementation of parallel computing for solving nano/micro-scale heat transport equations. 
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5 PARALLELIZATION 
 
Parallel computing has become a very attractive approach for enhancing computational power in 

many scientific and engineering applications. The primary objective of parallel computing is to 

gain computational speed. With advances in hardware of computer architecture, parallel 

computing became a means of solving larger problems in constant time. As the cost of parallel 

hardware decreased relative to fast workstations there comes a trend toward clusters of complete 

computers using a standard communication interface; this provides efficient and very cheap 

alternative parallel machines. And finally, with better algorithms and parallel programming tools, 

parallel environment has become researchers’ most important companion for computationally 

intensive tasks. 

5.1 Parallel Computers Hardware Environment 

 
Parallel computing can be done either by using: 

• Shared memory architecture - a single computer with multiple processors, or  

• Distributed memory architecture - an arbitrary number of computers connected by a 

network, or 

• Hybrid distributed-shared memory architecture - a combination of both.  

 

In shared memory architecture, all processors have direct (usually bus based) access to common 

physical memory that means all processors can operate independently but share the same 

memory resources. Shared memory provides a user-friendly programming perspective to 

memory. Data sharing between tasks is both fast and uniform due to proximity of memory to 

CPUs. However, there is lack of scalability between memory and CPUs. Adding more number of 

CPUs with increasing memory does not guarantee enhanced performance because of increased 

traffic on the shared memory-CPU path that affects cache/memory management badly. 

Synchronization of “correct” access of global memory is achieved by writing computer codes 

accordingly. The picture below shows the shared memory architecture: 
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Figure 5-1: Schematic of shared memory architecture. 
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On the other hand, distributed memory architecture refers to network based memory access for 

physical memory that is not shared. Like shared memory systems, distributed memory systems 

vary widely but share a common characteristic. Distributed memory systems require a 

communication network to connect inter-processor memory. All processors have their own local 

memory and they operate independently. When a processor needs access to data in another 

processor, it is usually done by writing computer codes to explicitly define how and when data is 

communicated. Synchronization between tasks is done through the logic implemented in the 

computer code. The main advantage of distributed memory over shared memory architecture is 

that memory is scalable with number of processors. Increase in number of processors is 

proportionate to the size of memory. Each processor can access its memory without interference 

and without the overhead incurred with trying to maintain cache coherency. The disadvantage 

associated with distributed memory is that the programmer is responsible for many of the details 

associated with interprocessor communication.  

 

Different networking connections (hardwares) like Ethernet, Myrinet and Infiniband are used for 

data transfer among processors. Each of them has certain advantages and disadvantages over 

others in terms of performance and cost. Details of this topic can be explored in available 

literature.  
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Figure 5-2: Schematic of distributed memory architecture. 

 
 

 

 

 

 

 

 
Figure 5-3: Schematic of hybrid memory architecture. 
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Hybrid type, which is the third type, of parallel computer architecture is most popular among all 

of these. The largest and fastest computers in the world today employ both shared and distributed 

memory architectures. Since hybrid distributed-shared memory architecture combines advantage 

from both shared as well as distributed memory architecture, current trends seem to indicate that 

this type of memory architecture will continue to prevail and increase at the high end of 

computing for the foreseeable future. 

5.2 Parallel Computers Software Environment 

There are many methods of parallel programming. This section gives an overview of commonly 

used parallel programming models. Following are few of the models which can be used for 

implementing parallelization: 

• Shared Memory 

• Threads 

• Data Parallel  

• Message Passing 

• Remote Memory Operation 

• Combined Models 

 

In Shared Memory, different processes share the same memory recourses but operate 

independently. It is efficient and data sharing is fast. But the memory bandwidth is limited and 

user is responsible for synchronization.   

 

Threading is to use multiple CPUs on a node to execute parts of a process. Each CPU processes a 

thread. A single process may take multiple execution paths in order to do the task faster. 

 

In data parallelism, the data itself is distributed among all of the processes in the virtual machine. 

In other words, each process works on a different part of the same data structure.   

 

Message passing is a library of subroutines that is used for interprocessors communication. Most 

popular message passing paradigms are Message Passing Interface (MPI) and Parallel Virtual 

Machine (PVM). 
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Remote Memory Operation is set of processes in which a process can access the memory of 

another process without its participation.  

 

Combined Models - composed of two or more of the above. 

 

Any of these models can be implemented on any of the underlying parallel computers 

architecture. The above programming models are portable meaning they are not specific to a 

particular type of machine or architecture. However, choosing any particular programming 

model is not easy for several reasons. First, the communication model greatly influences the 

programming model. Programs are typically hand tailored for different architectures, resulting in 

vastly different algorithms for the same application. Second, while program execution time can 

be measured on different multiprocessors, such measurements are difficult to evaluate, due to the 

large number of technological differences between machines, such as processor architecture, 

cycle time, memory system, and bus technology. There is no "best" model, although there 

certainly are better implementations of some models over others. Recently, MPI has been used 

extensively for parallel scientific computing. 

5.3 Parallel Computing Terminologies 

 
Below we will explain some of the terminology commonly used in parallel computing 

environments: 

 

Serial Execution Time: The time taken to execute the algorithm on a single processor machine. 

 

Parallel Execution Time: The time taken to execute the algorithm on a parallel system. 

 

Speed Up: The ratio of serial execution time to parallel execution time. 

 

Efficiency: The ratio of speed up to number of processors. It ranges from 0 to 1 and provides a 

measure of the proportion of time devoted to performing useful computational work. 
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Scalability: A parallel system is said to be scalable if the efficiency can be kept constant when 

increasing the problem size together with the number of processors.  

 

The primary intent of parallel programming is to reduce the execution wall clock time. The 

extent to which a problem can be parallelized depends on numbers of factors that can make 

parallel applications much more complex than corresponding serial applications. However, 

adhering to good algorithm design, with suitable selection of hardware and software architecture 

one can always come up with an efficient parallel implementation. Steps involved in creation of 

a parallel program can be summarized as: 

• Task decomposition 

• Interprocessor Communication 

• Fine Tuning 

Task Decomposition: This can be further divided into two viz. data decomposition and functional 

decomposition. Undoubtedly, the first step in parallelization is to understand the problem that 

has to be solved in parallel. Some types of problems can be decomposed and executed in parallel 

with virtually no need for tasks to share data. For example, imagine a Monte Carlo simulation of 

energized electrons penetrating through the work piece and getting absorbed. The total number 

of electrons to be considered for simulation can easily be divided among multiple processors that 

can act independently of each other to do their portion of the work. These types of problems are 

very straight forward and are highly scalable. Very little or no inter-task communication is 

required that is why these can be put under computation driven problem category. However, 

most parallel applications are not quite so simple, and do require tasks to share data with each 

other. For example, a 3-D heat diffusion problem requires a task to know the temperatures 

calculated by the tasks that have neighboring data. Changes to neighboring data have a direct 

effect on that task's data. These types of the problems are communication driven and require 

massive interprocessor communication. Next step for creating a parallel program involves 

identification of functional parallelism, which comes from the algorithm. The entire task can be 

divided to different processors on the basis of similar functionality.  

 

Almost all the parallel tasks require interprocessor communication, which can be very tedious 

and tricky even for solving a simple problem. The interprocessor communication is achieved by 
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making MPI calls. Basically MPI is a library of subprograms in C, C++ and FORTRAN 

language (Pacheco [75]) that makes transfer of data from one processor to other possible. There 

are two types of MPI communication: point-to-point and collective communication. Point-to-

point communication is between one processor to another. On the other hand, collective 

communication, can send or receive data from/to one processor to/from many processors. 
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6 PARALLEL COMPUTING EXPERIMENTS & RESULTS  
 
This chapter presents parallel solution to the sparse linear system arising from the finite 

difference discretization of the partial differential equation governing transient heat transport at 

micro- and nano-scale level. The problem requires solving for temperature of each node that 

depends on the temperature of neighboring nodes at the same time level as well as from previous 

time level. Therefore, a preferred way of implementing parallelization is through task 

decomposition (also known as domain decomposition) and solving for each task on different 

processors using MPI libraries simultaneously. The numerical method chosen for parallelization 

is a relaxation iterative scheme, such as Gauss-Seidel (GS) and Successive-Over-Relaxation 

(SOR), for solving banded linear systems on distributed memory or multiprocessor platforms. 

The SOR method is chosen because it is an important solver for a class of large linear systems 

(Young [77], Hageman & Young [78], Kahan [79] and Ostrowski [80]). It can also be valuable 

in obtaining quick approximation of the solution in intermediate steps for more powerful 

methods (e.g. Conjugate Gradient method and other multi-grid methods) or even replace direct 

methods in parallel applications because of its ease of parallelization (Jaswinder et al. [81]). With 

a rapid development of parallel computers, various parallel versions of the SOR method have 

been developed for solving large scale linear systems on a large number of processors. Defined 

by multicolor ordering technique, the multicolor SOR method is a widely used parallel version of 

SOR and has been widely studied by many authors (Adams & Ortega [82], Adams & Jordan 

[83], Adams, LeVeque & Young [84]). In multicolor SOR, the unknowns are colored in such a 

way that no two unknowns of the same color are coupled by an equation. In the simplest case of 

5-point stencil arising from the centered difference discretization of the Laplacian in two or three 

dimensional spaces, only two colors are needed and they are commonly referred as “red” and 

“black”; but for some complicated problems more than two colors are required to define a 

multicolor ordering. Xie et al. [82] proposed and analyzed a new parallel SOR (PSOR) method, 

formulated by using domain partitioning and interprocessor data communication. They compared 

the performance of PSOR with Red-Black SOR (R/B SOR) and R/G/B/O SOR. Their numerical 

results indicated that PSOR was more efficient in both computation and interprocessor data 

communication.  
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It has been already shown in the previous Chapter that Douglas-Gunn time splitting method is 

most efficient numerical procedure for solving 3-D micro- and nano-scale heat transport 

equation. Hence, parallelization of Douglas-Gunn time splitting method would the best way to 

reduce the wall clock time required for solving the governing transient equation. Douglas-Gunn 

time splitting can be employed to split the entire 3-D grid into series of planes in each of the x, y 

and z grid directions. This requires decomposing the 3-D coefficient matrix in three separate sets 

of tri-diagonal systems which must be solved on different processors in parallel in each time-split 

step (McDonough et al. [76]). However, the current work is limited to implementing 

parallelization using Red/Black SOR method. As discussed above, there are numerous ways of 

introducing parallelism for solving systems of linear equations Ax = B. The research area is 

extensive and requires further work to be done in order to simulate the micro- and nano-scale 

heat transport phenomena using parallel computing paradigm efficiently. Here we will mainly be 

investigating parallelism through domain decomposition and interprocessor communication for 

solving nano-scale heat transport equation using MPI on four different computer networking 

architecture.  

6.1 Parallel Computing Resources 

 

This section discusses the computing recourses used for parallelization of nano-scale thermal 

transport phenomena during nanomachining. The parallel computing experiment is conducted on 

four different computer clusters Kentucky Fluid Cluster I (KFC1), Kentucky Fluid Cluster II 

(KFC2), UK HP Superdome Cluster (SDX) and UK HP Linux cluster (XC). These 

supercomputing resources are housed at the University of Kentucky. KFC1 is a cluster of 20 

dual-processor nodes each of them powered by 1400 65 MHz AMD Athlon processors with 

cache sizes of 64 KB and 256 KB for the L1 and L2 cache, respectively. Each node contains 1 

GB of main memory and 40 GB hard disks, and four 100 Mb/s Fast Ethernet network interface 

cards (NIC). If a node has several NICs, the node can share data with several neighborhood 

nodes. For two nodes to communicate directly, they simply use NIC of a third node that is 

common to both other two nodes thus resulting in increased bandwidth making interprocessor 

communication faster. Three 22-port switches are used to form a channel bonded network and 

one 22- port switch forms a second network for NFS traffic. KFC2 is a cluster of 48 



 64

ingleprocessor nodes powered by AMD Athlon XP 2000+ processors with cache sizes, like 

KFC1, of 64 KB and 256 KB for L1 and L2, respectively. Each node contains 256 MB of main 

memory and four Fast Ethernet NICs. KFC2 has three channel bonded network and a single 

network for NFS traffic. The network configuration of KFC2 is similar to KFC1 except that 

KFC2 uses 48-port switch. 
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Figure 6-1: Schematic of KFC1/KFC2 networking configuration.  
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KFC2 falls under distributed memory architecture category in which all the nodes have their own 

memory and can perform computations independent of other nodes. On the other hand, KFC1 

falls under hybrid memory architecture in which at least one node has multiple processors and a 

single memory to share.  

 

The other two clusters SDX and XC also can be categorized as of hybrid memory architecture. 

SDX comprises of four HP Superdomes with 256 processors (64 processors per node) and 

powered by Itanium-2 (Madison) processors. Each processor has 2 GB of memory with 7 TB of 

total disk space. All processors are networked through high speed, low latency infiniband 

internal interconnect. The XC cluster has 248 3.4GHz Intel Xexon em64t processors @ 2GB per 

processor with a total of 8TB of high-speed disk storage and offer Myrinet high speed message 

passing interconnect for internode communication. These machines are more powerful and 

efficient as compared to KFCs and uses latest hardware architecture. However, the cost of SDX 

and XC are significantly higher compared to KFCs. 

6.2 Parallel Implementation 

 

Parallel implementation for solving nano-scale heat transport equation is based on overlapping 

domain decomposition i.e. splitting the computational grid into sub-blocks, which are then 

distributed to each processor or node. The work piece under consideration is assumed to be thin 

gold film, and the heating source bombards the target either with photons (for micro-scale 

calculations) or electrons (for nano-scale calculations) from above, as shown in Figure 1-1. The 

origin is considered to be at a corner of the film with x-y plane as the front surface exposed to 

heat source and increasing thickness along the z-axis. Hence the entire computational grid can be 

viewed as series of x-y planes made of 3-D cubical cell each of size dzdydx ×× , where 

dx , dy and dz  are spatial step sizes, and the computational grid point is at the center of the each 

cubical cell as shown in the following figure, Figure 6.2: 
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Figure 6-2: Schematic of the work-piece orientation and grid scheme. The grid spacing is 
uniform in each direction (usually dx = dy; dz where dx, dy and dz represent spatial step sizes in 
x-, y- and z-directions).  
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Since the workpiece used for experiments has simple 3-D Cartesian geometry, it is a not a tough 

exercise to distribute task, usually called balance the load, to each processor evenly. Load 

balancing is an important factor of parallel computing and might affect computational efficiency 

of the overall code significantly if it is not done properly in case of complex geometries. In this 

work, Single Program Multiple Data (SPMD) model is used which means all the nodes will use 

the same program but may produce different data depending on the given input. In parallel 

programming, since all the processors perform computation and communicate with each other, it 

is also important to clarify the scope of global and local variables used by each processor. Since 

it is SPMD model, all the nodes have same set of local and global variables.  

 

The main advantage of defining variables in parallel code as compared to serial code is that each 

node requires variable size corresponding to the size of sub-block assigned to it for computation. 

In this way, the memory bottleneck that was a major hurdle in solving for large computational 

grid using serial code is overcome. One of the nodes is treated as master node, also called node 

0, and others as slave node. The master node reads the input data and distributes them to all the 

nodes as specified in the code. Once the data are distributed to all the nodes, parallel computation 

occurs until specified criteria for number of iterations meet. Communication between nodes 

occurs when the sub-blocks exchange data about the temperature variables at the boundaries. 

Temperature on the edge of one grid blocks is communicated to the dummy points of the 

neighboring grid blocks, and vice-versa. Nano-scale heat conduction code typically requires 

frequent communication steps, normally after each sub-iteration. The whole idea of 

parallelization for nano-scale heat transport equation can be summarized in the pseudo code 

below: 

1. MPI function calls start with specified number of processors to be used. 

2. If the node is master processor (node = 0) 

• Master processor reads the input data (such as material properties, geometry 

configuration, time steps size, heat source etc.). 

• Master processor broadcasts/scatters input data to rest of the processors. 

3. Each processor, including master, performs the calculation based on initial temperature, 

material properties and heat source assigned to it. 
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4. All the processors exchange boundary values with neighboring processors after each 

update or sub-iteration. 

5. Each processor sends local maximum error norm to master processor. Master processor 

compares all the gathered local maximum error norms in order to find and broadcasts 

global maximum error norm to rest of the processors. This makes a complete iteration at 

a particular time step. 

6. Each processor repeats the above steps until global maximum error norm reaches 

tolerance limit at a time step. 

7. The master processor gathers/collects output data from all the processors once they finish 

calculation for desired number of time steps. 

8. Master processor prints the data collected from all other processors to an output file. 

9. MPI calls shutdown to terminate execution. 

 

Communication block size and the frequency of exchanging blocks with neighboring processors 

affect the parallel performance a lot.  Knowing the optimum block size and the frequency with 

which the blocks can be exchanged can help increasing the performance gain significantly.  

 

Another important issue in parallel performance is minimizing the time spent in interprocessor 

communication. The communication cost is significant and the problem is dependent on 

hardware (particularly the hardware architecture), software, geometry complexities and solution 

methodology. The solution methodology under consideration involves interprocessor 

communication at each sub-iteration and makes computation costly. If parallel performance 

tuning is not done to reduce the communication time, each node might spend less time on 

computation between the communication steps and thus resulting in poor scalability. Though 

true linear scalability is often not achievable, near-linear scalability is the ultimate objective of 

most of the parallel computing  problems.  In order to achieve this type of parallel performance, 

communication is overlapped with the computation in the following manner. 
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1. If node is even numbered: 

• Update last Red boundary values. 

• Start sending (using MPI_Isend) updated last Red boundary values to ghost plane 

of the next neighboring node. 

• If node is zero update rest of the Red planes else update last half Red planes while 

MPI_Isend is in progress. 

• Wait until MPI_Isend is complete. 

Else-If node is odd numbered: 

• Start receiving (using MPI_Irecv) values being sent from neighboring previous 

node into ghost plane. 

• If node is last node update first half Black planes else update all the Black planes 

while MPI_Irecv is in progress. 

• Wait until MPI_Irecv is complete. 

2. If node is odd numbered: 

• Update first Red boundary values. 

• Start sending (using MPI_Isend) updated first Red boundary values to ghost plane 

of the previous neighboring node. 

• If node is last node update rest of the Red planes else update first half Red planes 

while MPI_Isend is in progress. 

• Wait until MPI_Isend is complete. 

Else-If node is even numbered: 

• Start receiving (using MPI_Irecv) values being sent from neighboring next node. 

• If node is zero update all the Black planes else update last half Black planes while 

MPI_Irecv is in progress. 

• Wait until MPI_Irecv is complete. 

3. If node is even numbered: 

• Update first Red boundary values. 

• Start sending (using MPI_Isend) updated first Red boundary values to ghost plane 

of the previous neighboring node. 
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• If node is last node update rest of the Red planes else update first half Red planes 

while MPI_Isend is in progress. 

• Wait until MPI_Isend is complete. 

Else-If node is odd numbered: 

• Start receiving (using MPI_Irecv) values being sent from neighboring next node 

into ghost plane. 

• If node is zero update rest of the half Black planes else update the last half Black 

planes while MPI_Irecv is in progress. 

• Wait until MPI_Irecv is complete. 

4. If node is odd numbered: 

• Update last Red boundary values. 

• Start sending (using MPI_Isend) updated last Red boundary values to ghost plane 

of the next neighboring node. 

• If node is last node update rest of the Red planes else update first half Red planes 

while MPI_Isend is in progress. 

• Wait until MPI_Isend is complete. 

Else-If node is even numbered: 

• Start receiving (using MPI_Irecv) updated Red boundary values being sent from 

neighboring previous node. 

• If node is zero update all the Black planes else update last half Black planes while 

MPI_Irecv is in progress. 

• Wait until MPI_Irecv is complete. 



 72

 

 

 

 

 

 

 

 
Figure 6-3: Ordering of data updates and their exchange at each node of a 4-processor system. 
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Each node except the last node is assigned odd number of planes (x-y plane containing grid 

points). Since each node has odd number of planes, the first and last plane is always Red with 

alternate Black planes in between. The last node is assigned remaining number of planes that 

may not be an odd number. Figure 6-3 shows the ordering of Red/Black planes being updated at 

each node in a 4-processor system. Each node is assigned equal number of rows to work on. 

6.3 Parallel Computing Experiment 

 
This section demonstrates the performance of parallel code for solving 3-D micro- and nano-

scale heat transport equation using relaxation iterative methods, such as Gauss-Siedel and 

Red/Black SOR on four distinct cluster architecture. In order to verify the parallel code results, 

like serial code performance experiment in previous Chapters, the example problem chosen for 

parallel computing experiment is Dual Phase Lag (DPL) equation. Since the results for DPL 

equation using pulsed laser source is already available in literature, results of the parallel code 

can be easily verified. Thickness of the gold film used for experiments is mµ1.0  whereas the 

length and width are mµ5.0  each. Properties of the gold used are conductivity, mKWk /315= , 

phase lag temperature gradient, ps90=τ , phase lag of heat flux, ps5.8=τ  and diffusivity, 

1025.1 ×=α . The heat source is pulsed laser with luminous intensity, mJJ /4.13= , 

reflectivity, 93.0=R , penetration depth, nm3.15=δ , and fst 96=  as the only heating source. 

The grid resolution considered is: 351  and 3101  corresponding to nmdznmdydx 2;10 ===  

and nmdznmdydx 1;5 ===  spatial step sizes, respectively. The following results 

demonstrated are for ps5.2  of simulation time with temporal step size psdt 01.0= . Table 3 

lists the wall clock time (all in seconds) lapsed in parallel computing on three different computer 

clusters KFC1, KFC2 and SDX.  For each cluster, there are four columns that represent 

communication time (Comm), computation time (Comp), total runtime time (Total) and speed up 

(Sp: ratio of serial code to parallel code execution time). The parallel code is first run on a single 

processor of all the cluster platforms. The total runtime of the code reported in Table 3 is time 

elapsed in completing 250th time step. 

In Table 3, the computation time and total runtime is dropping steadily with increasing number 

of processors. From a pure performance standpoint, the goal is to achieve as close to ideal 

speedup (desired linear speedup) as possible with increasing number of nodes. On the other 
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hand, from practical standpoint, the desired performance is the least “wall clock” time required 

to perform the simulation so that one can choose the cluster to perform the job quickly, 

regardless of the efficiency of computation. Both aspects will be investigated in this work. 

Another observation can be made from Table 3 is about the total computational time. 

Communication time and computation do not add together as total time. This happens because 

computation goes on along with the data transfer among processors. In other words, the 

communication and computation time overlaps.  



 75

 

 

 

 

 

 

 

 

 

Table 3: Execution time in seconds on three distinct computer cluster platforms for solving DPL 
heat transport equation for 513 grid size (First column represents number of processors used. 
Comm, Comp and Sp represent inter-processor communication time, computation time and 
speed up, respectively).  
 

A comparison of wall clock time in seconds of Parallel G-S for solving 51 X 51 X 51 grid 
size 

KFC1 Cluster   KFC2 Cluster   SDX Cluster # of 
PEs Comm Comp Total Sp Comm Comp Total Sp Comm Comp Total Sp 
1 0.0 235.0 235.0 1.0 0.0 182.0 182.0 1.0 0.0 222.5 222.5 1.0 
2 9.5 110.1 121.4 1.9 7.7 88.7 97.7 1.9 38.7 170.8 178.7 1.3 
3 17.4 72.9 90.0 2.6 19.2 61.4 77.4 2.4 5.7 40.2 45.7 4.9 
4 32.0 56.1 84.3 2.8 36.0 47.3 79.2 2.3 5.8 30.7 35.0 6.4 
5 60.0 47.9 89.9 2.6 56.5 40.0 81.7 2.2 13.3 26.0 30.5 7.3 
6 - - - - 55.9 34.2 78.6 2.3 10.7 21.3 24.9 8.9 
7 - - - - 52.6 32.2 78.1 2.3 8.2 22.8 25.9 8.6 

10 - - - - 59.0 21.7 77.4 2.4 7.0 15.2 19.7 11.3
17 - - - - 66.6 11.5 77.3 2.4 6.3 7.2 13.5 16.5
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Figure 6-4: Speedup on KFC1, KFC2 and SDX cluster is compared against ideal speedup 
(desired linear speedup) for solving parallel microscale heat transport. 
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The parallel algorithm, as shown in previous section, requires interprocessor communication at 

each sub-iteration hence makes the problem highly communication intensive. If the cluster 

network is capable of handling high communication traffic, the overall performance will be 

affected adversely. Figure 6-4 based on comparison Table 3 for 513 grid resolution case shows 

poor scalability of KFC1 and KFC2 cluster compared to SDX cluster. The speedup for KFC1 

and KFC2 deviates far from near-linear scalability (desired linear speedup). This is because of 

the poor network performance of KFC1 and KFC2 as compared to SDX for parallel computing 

of nanoscale machining simulations. On the other hand, the performance of SDX is far superior 

to KFC1 and KFC2. In parallel computing, super linear speedup is a common phenomenon that 

might be possible because of several reasons like networking hardware or decrease in number of 

iterations with increasing number of processors or due to cache effect. Venkatesh et al. [83] 

achieved super linear speedup of 11 on an eight-processor system using the FloSwitch for 

communication on a multigrid laminar Navier-Stokes code. Stiller et al. [84] reported a speed-up 

of nearly 140 within a 120-processor system on a finite element Navier-Stokes code. Super linear 

speed can also occur due to cache effect. Each processor has a small amount of fast memory 

(cache) and a larger amount of slower memory. When a problem is executed on a greater number 

of processors, more of its data can be placed in fast memory. As a result, total computation time 

will tend to decrease.   If the reduction in computation time from this cache effect offsets 

increases in communication time resulting from the use of additional processors, then efficiency 

will be greater than 1 and speedup will be super linear. The exact reason for super linear speedup 

of SDX cluster here is a combination of cache effect and decrease in number of iterations with 

increasing number of processors. Cache effect can be observed from performance comparison 

shown in Table 3. For SDX, there is a significant decrease in computation time when number of 

processors is increased from 2 to 3. The second expected reason, decrease in number of iterations 

with increasing number of processors, for super linear speedup will be investigated and 

explained in the later experiments. So far SDX proves to be better platform for performing 

further parallel computing experiments. As far as computational efficiency is concerned, all the 

three clusters shows decrease in computational time with number of processors, as expected. 

 

Another similar experiment performed for solving parallel microscale heat transport equation 

(DPL) includes XC cluster also. The grid resolution for this experiment is 1013. Table 4 
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compares the performance of all the four clusters for solving parallel microscale heat transport 

(DPL) equation. 
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Speedup is a good indicator of the performance of a particular cluster. Comparison of speedup 

among different clusters is not a right way of comparing their performances. The choice of the 

efficient cluster for this kind of specific problem should be made on the actual time consumed to 

perform the simulation.  

 

The result shown in Table 4 has more impact than the previous comparisons since the XC cluster 

outperforms the other three cluster architecture for performing microscale heat transfer 

simulations. Although the speedup achieved in case of XC cluster is poor compared to SDX 

cluster, XC cluster shows very high overall performance gain over SDX. Because of superior 

interprocessor communication and faster computation, the total wall clock time on XC reduces 

significantly compared to time consumed by SDX and hence makes XC the best available 

platform for performing nanomachining simulations.  

 

The time shown in Table 4 is the actual wall clock time consumed. The actual wall clock time is 

affected by the load on the cluster. Since the cluster is used by multiple users at a time, actual 

wall clock time may vary depending on the load. So in order to get the closest wall clock time, 

the parallel code needs to be run several times and the smallest one is chosen for analysis. KFC1 

and KFC2 were rarely used by multiple users at a time, hence single run on theses clusters were 

enough for obtaining the wall clock time. On the other hand, SDX and XC clusters are heavily 

loaded machines; hence the parallel code was run for several times in order to get the lowest wall 

clock time. All the experiments on SDX and XC cluster are conducted using the same procedure 

and the comparison table is made for analysis. 

 

An important observation regarding the trend of the speedup can be made from Table 4. The 

trend shows inconsistency in the communication and computation times as the number of 

processors increase. Inconsistency is also likely the result of cache effects.  

 

Figure 6-5 displays the parallel performance of Red/Black iterations as a function of number of 

processors on XC cluster. The total wall clock time consumed by parallel Red/Black SOR code 

reduces with number of processors employed to perform the simulations using pulsed laser 

source. The XC cluster demonstrates very good scalability with increasing number of processors. 
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Figure 6-5: Wall clock time for completing 2.5 ps simulation on XC cluster 
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6.4 Parallel Computing Experiment Using Parabolic Two Step (PTS) Model 

 

The previous section demonstrated the XC cluster as the best available platform for performing 

simulations for transient microscale heat transport equation problems. This section concentrates 

on parallel computing experiments, on a single cluster, for developing a strategy to further 

reduce the wall clock time so that one can adopt these strategies to perform this kind of 

simulation faster. The governing equation chosen for performing the experiment is the parabolic 

two-step model since the model will be used in nanomachining simulations. The PTS governing 

equations are solved using the Newton-Kantorovich method and the numerical methods chosen 

are the Douglas-Gunn time splitting (serial code) and iterative methods Red/Black SOR & G-S 

(parallel code). The serial code is used just for verifying the parallel code results. First, the 

electron energy equation, which is a non-linear PDE, is solved iteratively until specified 

tolerance limit is reached and assuming phonon temperatures to be known. Then electron 

temperatures are plugged into phonon-energy equations to solve for phonon temperatures until 

specified tolerance limit is reached. These non-linear iterations are repeated until both tolerance 

limits, (tolerance limit for eT and tolerance limit for lT ) are reached. 

 
Before conducting the fine-tuning experiment for parallel PTS model on XC cluster, it is 

important to verify the results of parallel PTS code. In order to verify the results of parallel PTS 

model, an example test is conducted that uses pulsed laser as heat source. The experimental and 

numerical results for PTS with pulsed laser as heat source are already reported in several noted 

publications. Qui et al. [5] and Dai et al. [85] studied heat transfer mechanism during ultrafast 

laser heating of metals. They predicted temperature profiles in a mµ1.0  gold film during ps1.0  

laser pulse heating from parabolic two-step and hyperbolic two-step (HTS) model. Figures 6-6 

and 6-7 show comparison of results obtained by parallel PTS code with results obtained by Dai 

et al. [85] and Qui & Tien [5] from the parabolic two-step model. 
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Figure 6-6:Predicted electron-temperature profiles from the two-step models (a) parallel PTS 
code, (b) Reference – Dai & Nassar [85] (c) Reference – Qui & Tien [5] in 0.1 µm gold during a 
0.1 ps laser of fluence J = 10 Joule/m. 

 



 84

 
Figure 6-7: Predicted lattice-temperature profiles from the two-step models (a) parallel PTS 
code, (b) Reference – Dai & Nassar [85] (c) Reference – Qui & Tien [5] in 0.1 µm gold during a 
0.1 ps laser of fluence J = 10 Joule/m. 
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Table 5: Electron temperature (in Kelvin) in 0.1 µm gold film during a 0.1 ps laser heating at 
three distinct time intervals of 0.2 ps, 0.3 ps and 1.2 ps. 
 

Douglas-Gunn Serial Code Parallel Red/Black SOR code Thickness 
of gold 

film (nm) 0.2 ps 0.3 ps 1.2 ps 0.2 ps 0.3 ps 1.2 ps 
0 585.4 596.8 407.6 585.4 596.8 407.6 

10 566.8 592.1 407.6 566.8 592.1 407.6 
20 528.0 579.4 407.5 528.0 579.4 407.6 
30 483.8 561.0 407.5 483.8 561.0 407.5 
40 441.7 539.0 407.5 441.7 539.0 407.5 
50 405.4 515.5 407.5 405.4 515.5 407.5 
60 376.3 492.7 407.5 376.3 492.7 407.5 
70 354.5 472.4 407.5 354.5 472.4 407.5 
80 339.6 456.5 407.5 339.6 456.5 407.5 
90 331.0 446.3 407.5 331.0 446.4 407.5 
100 328.2 442.9 407.5 328.2 442.9 407.5 
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The results obtained are  close to results obtained by Dai & Nassar [85] and Qui & Tien [5]. 

Table 5 displays the electron temperature profile obtained for PTS model using Douglas-Gunn 

time splitting method (serial code) and Red/Black SOR method (parallel code). Figure 6-7 shows 

the comparison of lattice-temperature for similar conditions. 

 

Results in Table 5 indicate that the parallel code computation agrees well with serial code 

computation and temperature profiles are correct and hence establish the credibility of the 

parallel code results. Now, the parallel code can be used for conducting further parallel 

computing experiments using electron beam source instead of pulsed laser source. 

 

6.5 Fine-Tuning Experiment Using Electron Beam Source 

 

Wong et al. ([1], [53], [73]) explored the heating of thin gold film via field emission of electrons 

from carbon-nano tube (CNT). They predicted variation of temperature within the work-piece for 

various cases numerically. The following parallel computing experiments are conducted using 

the same electron beam sources and the results will be compared with results obtained by Wong 

et al. First of all, the main objective here is to adopt a strategy to perform parallel computing that 

consumes the least wall clock time. In the previous section, it was shown that the XC cluster had 

superior performance compared to other three cluster architecture. Now, further fine-tuning is 

required in order to reduce the wall clock time without losing accuracy of the results so that one 

can choose this strategy to perform nanomachining simulations on XC cluster quickly. 

 

Wong et al. [1] determined energy deposition on the work-piece due to electron bombardment 

using a statistical Monte Carlo Method (MCM). Figure 6-8 shows the electron energy deposition 

distribution within gold as simulated by MCM for a spatial Gaussian distribution with a e/1  

radius of 100 nm, initial kinetic energy of 4 KeV and a power of 0.5 W from the carbon-nano 

tube (CNT). 
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Figure 6-8: Electron energy deposition distribution (obtained by Wong [73]) within gold for 
electron source of Rbeam = 100 nm and kinetic energy of 4 KeV. The numbers given in the figure 
are in terms of normalized quantities, per nm3. 
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As discussed previously, the fine-tuning is required to perform the simulations faster. A series of 

fine-tuning experiments are carried out with variation of different parameters that affect the 

results within desired range of accuracy. All the fine-tuning parallel computing experiments are 

performed on XC cluster. The source file used for the experiment is the electron beam of the 

Gaussian profile as shown in Figure 6-8. Table 6 displays parallel computation with variation of 

temporal step size. The implicit scheme used for discretizing the governing equations make 

scheme unconditionally stable. However, when larger time step is chosen the tolerance limit also 

needs to be adjusted. Results in Table 6 are for variation in temperature of the mid-point of the 

front surface with increasing time step and fixed tolerance limit. Thickness of the gold film used 

for the experiment is nm100  whereas the length and width are nm5.512  each. Properties of the 

gold used are conductivity, mKWk /315= , and diffusivity, sm /1025.1 24−×=α . The grid 

resolution considered is: 204141),,( ××=xxx NNN  corresponding to nmdznmdydx 5;5.12 ===  

spatial step sizes, a tolerance limit of 510−  and total simulation time of ps5.2 on 6 processors of 

XC cluster. The experiment is conducted without considering the melting and evaporation 

phenomena. The source is used just as an example input to run the parallel code. The physical 

significance of heating gold film using electron beam will be discussed in later sections and the 

results obtained will be validated against results obtained by Wong [73]. From results shown in 

Table 6, it can be observed that reducing the time step by two times does not reduce the total 

wall clock time (CPU Time) proportionally because number of iterations is increasing. 

Moreover, there is significant difference in electron and lattice temperature, which is 

unacceptable. 

 

Another parallel computing experiment uses the work-piece dimensions of size 

nmnmnm 100500500 ××  and grid resolution of 1003 corresponding to 

nmdznmdydx 1;5 === . Table 7 displays the result for ps5.2 of simulation on 32 processors. 

of XC cluster The heat source remains same as shown in Figure 6-8. Temporal step size is varied 

and tolerance limit ( 310− for both eT  and lT ) is kept fixed. The results show consistency in 

phonon temperature but total wall clock time consumed increases significantly with increasing 

time step size and that is not desirable. Although decreasing the temporal step size helps in 
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reducing the total number of iterations at a particular time step, the total wall clock time 

increases because of increased number of time steps.  

 

Thus, it can be concluded from results shown in Table 6 and Table 7 that increasing or 

decreasing time step size would not help in reducing the total wall clock time for nanomachining 

simulations because of the increase in number of iterations for a desired accuracy level. 

Something else needs to be devised in order to reduce the wall clock time without losing 

accuracy. Alternative idea of reducing wall clock time is to conduct experiment with varying 

tolerance limit.  

 

The next experiment uses the idea of variable accuracy. All the conditions, work piece 

dimensions, source and grid resolution is chosen similar to the previous experiment whose 

results are shown in Table 7. In this experiment temporal step size is kept fixed as ps0025.0  and 

the tolerance limit (same for both eT  and lT ) is changed as the simulation progresses. Tolerance 

limits changes 3 times during the entire simulation and every time it changes after completion of 

each third of the lattice temperature required to reach for evaporation. Table 8 shows the results 

for experiment with variable accuracy and fixed time step size. The results show significant 

reduction in wall clock time without losing much of the accuracy of electron and phonon 

temperatures. This strategy is useful and can be adopted in performing the simulations for 

nanomachining problems. 
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6.6 Results for Nanomachining Experiment 

 

Vallance et al. [86] proposed a possible nanomachining tool using an electron beam produced by 

a nano-probe, a carbon nano-tube (CNT). Figure 6-9 (a) shows schematic of idea proposed by 

Vallance et al. [86]. The system is mainly comprised of an anode, the target work-piece, and a 

cathode, the machining tool CNT. Voltage applied between the anode and the cathode causes 

energized electrons to flow from the cathode to the anode. These energized electrons impinge the 

work-piece surface and transfers kinetic energy while penetrating through the work-piece. In this 

process, the kinetic energy of energized electrons is converted to thermal energy, which 

subsequently causes material removal from the work-piece. Wong [73] explored heat transfer 

mechanism at nano-scale level and its application to nanomachining process in which a single 

electron beam impinges perpendicularly on a 3-D rectangular geometry, the target work-piece. In 

his work, he modeled the electron deposition profile within the work-piece by solving the 

Electron Transfer Equation (ETE) via Monte Carlo approach (Wong [73]). The profile then 

serves as external heat source term in the PTS equations. The simulation of nanomachining 

process assumes the entire system to be placed inside a vacuum chamber with pressure of 10-8 

torr. The melting temperature of gold is around 1336 K (Incropera & Dewitt [71]) whereas the 

sublimation temperature of gold is around 1080 K at 10-8 torr of pressure (Honig [87]). 

Therefore, at such a low vacuum pressure, the work-piece tend to sublimate rather than melt and 

reach evaporation. The temperature range involved in simulations ranges from room temperature 

to sublimation temperature of the work-piece material. 
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Figure 6-9: Schematic of nanomachining processes being done by heating the target work-piece 
using highly energized electron beam from tip of CNT- Schematic reproduced from: Wong [73].  
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In this thesis, the parallel computer code simulates the nanomachining process as discussed 

above. The parallel PTS code is allowed to simulate the temperature field, starting from the room 

temperature to the temperature just below sublimation temperature of the workpiece. As soon as 

any computational element reaches the sublimation temperature, its phonon temperature is fixed 

while the additional electron energy is transferred to overcome the latent heat of sublimation. 

The computer code stops once any of the computational elements reaches sublimation. 

 

Figure 6-10 shows electron energy deposition profile. The incident beam has a Gaussian profile 

in yx −  plane with a 2/1 e  radius of nmRbeam 500=  and the initial kinetic energy of eV500 . The 

unit given in Figure 6-10 is normalized with respect to the electron-energy supplied from the 

electron-beam and the corresponding volume of the infinitesimal element.  
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Figure 6-10: Electron energy deposition distribution for Rbeam = 500 nm and E0 = 500 eV 
(obtained by Wong [73]). The numbers given in the figure are in terms of normalized quantities, 
per unit nm3. 
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Wong [73] conducted series of numerical experiment in order to obtain converged accurate 

temperature field and came up with temporal and spatial step size values. A time step size of 

ps1  or less and spatial step sizes, dzanddydx ,, , of nm40 , nm40  and nm25.0 , respectively 

were determined to be required for obtaining converged temperature field.  Using the same 

electron energy-deposition distribution as shown in Figure 6-10 and same computational 

parameters except temporal size which is chosen to be ps01.0 , heating phenomena for work-

piece of nmnmnmzyx 1228402840),,( ××=  size subjected to electron beam is simulated on 16 

processors of XC cluster. The results obtained from parallel code are compared against results 

obtained by Wong. Table 9 displays the comparison of both results. The parallel PTS code shows 

total time taken to reach sublimation to be ps39.13 . The temperature fields obtained by parallel 

code follows the trend closely and are quite close with the results obtained by Wong. The 

electron and phonon temperature matches closely at the initial stages but shows little growing 

difference as the simulation time grows. The difference in the temperature occurs because of the 

difference in the way the iterations were made to solve the governing PTS equation. In the 

current work, PTS equations were solved by plugging Equation 3.38 into 3.37 and thus reducing 

the electron energy equation into a single non-linear PDE. Then the non-linear electron equation 

and linear phonon equations were solved iteratively until convergence was reached. On the other 

hand, Wong [73] first of all solved Equation 3.38 and 3.37 iteratively and then solved Equation 

3.39 until convergence criteria was met. In both the case, convergence criteria were met after 

certain number of iterations. However, the convergence does not always guarantee the accuracy 

of the solution. In order to verify the accuracy of the solution obtained in the current work, the 

parallel code results were compared with the results available in the literature (Figure 6-6 and 6-

7) and the results matched very closely. 
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Table 9: Comparison of electron temperature field obtained from parallel PTS code with results 
obtained by Wong [73] for 2840 nm x 2840 nm x 12 nm  work-piece size and heat source as 
electron beam of radius 500 nm and kinetic  energy of 500 eV (Te and Tl represent electron 
temperature and phonon temperature, respectively). 
 
 

Wong’s [73] Parallel PTS Code 
Result Result 

Simulation 
Time (ps) 

Te (K) Tl (K) Te (K) Tl (K) 
1 3859.6 325.2 3840 325 
2 4978.3 368.1 4970 368 
3 5713.2 419.8 5700 419 
4 6282.5 477.6 6260 477 
5 6761.3 540.2 6720 539 
6 7183.3 606.8 7130 605 
7 7566.3 676.8 7490 675 
8 7920.4 750 7820 747 
9 8252 825.9 8130 822 
10 8565.5 904.3 8420 899 
11 8863.8 985.2 8690 978 
12 9149.2 1068.2 8960 1060 

13 9412.7 1080.8 - - 
13.39 9505.8 1080.8 - - 
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Once the parallel PTS code results are validated, series of another parallel computing 

experiment, using the same source as shown in Figure 6-10 and the same spatial step size, is 

carried out in order to find suitable temporal step size, tolerance limits and SOR relaxation 

parameter. This is done in order to find out the least wall clock time required for performing 

simulations within desired level of accuracy. Table 10 displays results for a 

nmnmnmzyx 49640404040),,( ××=  size work-piece corresponding to grid resolution of 

496101101 ×× . The tolerance limit set for solving electron-energy equation, usually called SOR 

iteration, and tolerance limit for solving both electron and phonon energy equation together, 

usually called non-linear iteration, are varied along with times step size and relaxation parameter. 

After numerous runs of the code, the optimum value of relaxation parameter comes out to be 

9.1=ω  and time step as ps01.0 . The tolerance limits for least wall clock time are determined to 

be 10-4 and 10-3 for SOR iterations and non-linear iterations, respectively. The electron 

temperature distribution is shown in Figure 6-11. 
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Comparing the results shown in Table 9 with Table 10, it can be observed that the total time 

required reaching sublimation increases with increasing work-piece size. Time required to reach 

sublimation in case of nmnmnmzyx 1228402840),,( ××=  and 

nmnmnmzyx 49640404040),,( ××=  size work-pieces are predicted to be ps39.13  

and ps48.47 , respectively. This is expected because the same amount of energy is deposited into 

smaller and larger work-pieces. In that case, smaller work-piece tends to sublimate faster as 

compared to bigger work-piece. Another observation that can be made by comparing results in 

Table 9 and Table 10 is the difference between electron and phonon temperatures. As the time 

required reaching sublimation increases, electron and phonon temperature tends to come closer. 

Wong [73] conducted the similar numerical experiment with work-piece size of 

nmnmnmzyx 100080008000),,( ××= . They reported the time required for reaching sublimation 

to be ns3 and electron-phonon equilibrium temperature was attained after ps10 .   
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Figure 6-11: The electron-temperature (in Kelvin) distribution of the target workpiece for Rbeam = 
500 nm and E0 = 500 eV on reaching sublimation at 48.47 ps. 
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Table 11 outlines PTS parallel computing experiment conducted for electron beam source with 

an initial kinetic energy of 640 eV, a power of 6.4 Watt, and a Gaussian beam radius  of 500 nm. 

The experiment is first conducted for a gold workpiece nmnmnmzyx 12440404040),,( ××=  with 

nmdznmdydx 25.0,40 ===  for determining the optimum time step size in order to conduct 

further experiments. These results indicate that ps005.0 is the optimum time step size for 

conducting the parallel computing experiment since the total wall clock time consumed is least 

as compared to other time step sizes.  

 

Once the time step size is determined, a series of experiments are conducted to analyze how the 

workpiece thickness and initial kinetic energy of electron beam affects the transient temperature 

behavior. First of all, the workpiece thickness is varied holding other parameters constant. For 

conducting this experiment, workpiece mµ10  wide in both lateral directions with 

nmdznmdydx 25.0,40 ===  is exposed to electron beam source with initial kinetic energy of 

640 eV, a power of 6.4 Watt. Figure 6-12 shows the transient temperature behavior with varying 

workpiece thickness, indicated by z . As expected, the thinner workpiece sublimates faster, both 

the temperature profiles show that the sublimation time increases with increasing workpiece 

thickness. Also, it can be observed that the difference between electron and phonon temperature 

is less initially and it grows afterwards because the boundary effects becomes evident with 

increasing time. 
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Figure 6-12: The transient electron and phonon temperature with varying workpiece thickness. 
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In the second experiment, the effect of initial kinetic energy of the electron beam on transient 

behavior of temperature is examined. The temperature profile for 

nmnmnmzyx 12440404040),,( ××=  with nmdznmdydx 25.0,40 ===  exposed to 640 eV 

electron source is compared with that of 720 eV electron source. Figure 6-13 shows that the 

transient temperature behavior does not change significantly with the power of electron beam. 

The only thing that is affected by the initial kinetic energy is the sublimation time. Practically, 

we expect the electron beam source with higher power will sublimate the workpiece faster. The 

similar trend is shown in Figure 6-13. 
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Figure 6-13: The effect of delaying sublimation time by lowering the power of the electron beam 
source. 
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7 CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

 
Numerical heat transfer requires expertise in both numerical methods and heat transfer 

separately. This work is a step towards numerical investigation and parallel computing for heat 

transfer mechanism during nanomachining process. The main objective of this work has been to 

investigate different heat transfer models for describing heat transport at nano-scale level, 

finding an efficient numerical method for solving the governing transient heat transport equation 

and implementing parallelization to perform even faster for nanomachining simulations.  

 

The study of different heat transfer models shows that the parabolic two-step model is capable of 

describing the heat transport mechanism better at micro/nano scale level because it treats 

electrons and phonons separately and accounts for energy exchange between them due to fast 

heating by pulsed laser or highly energized electron beam.  

 

The numerical methods employed to solve the governing equations revealed that δ - form 

Douglas-Gunn time splitting method is most efficient numerical approach for solving transient 

heat transport equations on serial platform. The other non-stationary methods like MINRES, 

CGS, BiCG, BiCGSTAB, showed performance better than stationary iterative methods like G-S 

and SOR for transient heat transfer problems and can be explored further for pre-conditioned 

form of the same.  

 

The parallel implementation is an emerging field that promises efficient parallel computing for 

this kind of scientific problems using variety of parallel software as well as hardware 

environment. The other standard parallel programming paradigm called Parallel Virtual Machine 

(PVM) is equally promising like MPI and needs to be explored for transient heat transfer 

problems that require massive data transfer in performing computations. Red/Black SOR chosen 

for parallelization showed good performance on the computer clusters. However, parallelization 

of non-stationary methods, which remains unexplored in this work, is expected to perform better 

than parallel version of stationary methods. Still the best way to solve the problem faster seems 

to be to parallelize Douglas-Gunn time splitting method.  
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The numerical results obtained by parallel code showed better performance compared to results 

obtained by serial code. The SDX cluster showed very high scalability compared to XC cluster 

however the computational efficiency of XC cluster is much better than the SDX cluster. Other 

factors that need to be addressed for performing simulations faster is non-uniform grid 

implementation rather than uniform grid stretching.  

 

The problem treated in this work consisted of heating a very small localized area of the target 

work-piece. Scaling up the grid scheme starting from this nano-scale area to larger micro- or 

milli-meter sized areas proved to be very complicated. We realize that in order to get accurate 

and faster results, the grid spacing needs to be fine near the heating zone only and the rest of the 

domain can have coarse grid. In this way, the parallel code can be run for larger work-piece in 

lesser amount of time. The numerical experiment results for pulsed laser source matched closely 

with and could be validated against experimental results available in the literature. However, the 

results for electron beam could be validated against only the numerical results obtained by Wong 

[73] and found accurate. Yet, these predictions, as those of any numerical or theoretical study, 

are still need to be validated against experimental results.  
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