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ABSTRACT OF DISSERTATION

EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON

LFSR SEQUENCES

The gap between abstract, mathematics-oriented research in cryptography and the engi-

neering approach of designing practical, network security protocols is widening. Network

researchers experiment with well-known cryptographic protocols suitable for different

network models. On the other hand, researchers inclined toward theory often design

cryptographic schemes without considering the practical network constraints. The goal

of this dissertation is to address problems in these two challenging areas: building bridges

between practical network security protocols and theoretical cryptography. This dissertation

presents techniques for building performance sensitive security protocols, using primitives

from linear feedback register sequences (LFSR) sequences, for a variety of challenging

networking applications. The significant contributions of this thesis are:

1. A common problem faced by large-scale multicast applications, like real-time news

feeds, is collecting authenticated feedback from the intended recipients. We design

an efficient, scalable, and fault-tolerant technique for combining multiple signed

acknowledgments into a single compact one and observe that most signatures (based

on the discrete logarithm problem) used in previous protocols do not result in a

scalable solution to the problem.

2. We propose a technique to authenticate on-demand source routing protocols in

resource-constrained wireless mobile ad-hoc networks. We develop a single-round

multisignature that requires no prior cooperation among nodes to construct the

multisignature and supports authentication of cached routes.

3. We propose an efficient and scalable aggregate signature, tailored for applications like

building efficient certificate chains, authenticating distributed and adaptive content

management systems and securing path-vector routing protocols.

4. We observe that blind signatures could form critical building blocks of privacy-

preserving accountability systems, where an authority needs to vouch for the

legitimacy of a message but the ownership of the message should be kept secret from

the authority. We propose an efficient blind signature that can serve as a protocol

building block for performance sensitive, accountability systems.



All special forms digital signatures—aggregate, multi-, and blind signatures—proposed

in this dissertation are the first to be constructed using LFSR sequences. Our detailed cost

analysis shows that for a desired level of security, the proposed signatures outperformed

existing protocols in computation cost, number of communication rounds and storage

overhead.
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Saikat Chakrabarti

July 11, 2008



EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON

LFSR SEQUENCES

By

Saikat Chakrabarti

Dr. Mukesh Singhal

Co-Director of Dissertation

Dr. Kenneth L. Calvert

Co-Director of Dissertation

Dr. Andrew M. Klapper

Director of Graduate Studies

July 11, 2008



RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the University

of Kentucky Library are as a rule open for inspection, but are to be used only with due

regard to the rights of the authors. Bibliographical references may be noted, but quotations

or summaries of parts may be published only with the permission of the author, and with

the usual scholarly acknowledgements.

Extensive copying or publication of the dissertation in whole or in part also requires the

consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure the

signature of each user.

Name Date



DISSERTATION

Saikat Chakrabarti

The Graduate School

University of Kentucky

2008



EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON

LFSR SEQUENCES

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the

College of Engineering

at the University of Kentucky

By

Saikat Chakrabarti

Lexington, Kentucky
Co-Directors: Dr. Mukesh Singhal
and Dr. Kenneth L. Calvert

Lexington, Kentucky

2008

Copyright c© Saikat Chakrabarti 2008



DEDICATION

Dedicated to my mother, the late Suravi Chakravarti.



ACKNOWLEDGMENTS

I would like to thank my advisors, Dr. Kenneth Calvert and Dr. Mukesh Singhal, for

providing guidance, support, counseling, and technical knowledge throughout my graduate

tenure. I would like to thank Dr. Raphael Finkel for serving on my dissertation committee

and providing critical and constructive comments on my dissertation. Thanks to Dr.

Andrew Klapper: His course in Cryptography immensely helped me build the foundation

of the subject. I would also like to thank Dr. Uwe Nagel, Dr. William Dieter, and Dr.

Manivannan for serving on my dissertation committee.

I would like to specially acknowledge Santosh Chandrasekhar’s help and support

throughout my graduate tenure. The brainstorming sessions with Santosh immensely helped

me with complex protocol analysis. Santosh, thank you very much for your kindness and

patience, and for lending unconditional help whenever I needed it. Thanks to Jody Larsen

for providing guidance in the job-hunting phase during the last semester of my Ph.D. tenure.

I enjoyed conversing with Venkata Giruka over lunch and coffee breaks. Venkata providing

me with an initial understanding of what it takes to withstand the arduous journey of

pursuing a Ph.D. Lei Zhu, your excellent culinary skills provided me with the much-needed

invigoration during the last two semesters. Thanks to Jennifer Riggs for her constant help

in handling official paper-work, and more importantly, for providing support and advice as

a friend during the last two years of my Ph.D. tenure.

The Elliott family (Monica, Larry, and Donna) taught me to how achieve a well-rounded,

balanced lifestyle during the—often delusional—final stages of writing my dissertation.

I would like to offer special thanks to my dad, Somnath Chakrabarti, for instilling the

foundations of science during my early school years and teaching me strict discipline in life.

Mom, without your constant spiritual presence, my very existence loses its meaning and

thus, I dedicate all my academic achievements so far, including my Ph.D., solely to you.

iii



Table of Contents

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Choosing an efficient cryptographic primitive . . . . . . . . . . . . . . . . . 2

1.2 Thesis contributions and structure . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Context 1: Authenticating feedback in multicast applications . . . . 4

1.2.2 Context 2: Securing routing in ad-hoc networks . . . . . . . . . . . . 5

1.2.3 Context 3: Securing path-vector routing protocols . . . . . . . . . . 6

1.2.4 Context 4: Providing accountability in privacy-preserving systems . 6

1.2.5 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Background and related work . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Some standard cryptographic terminology . . . . . . . . . . . . . . . . . . . 8

2.2 Digital signatures: basics and special forms . . . . . . . . . . . . . . . . . . 10

2.2.1 Signatures based on the discrete logarithm problem . . . . . . . . . 12

2.2.2 Generalized aggregate signatures . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Sequential aggregate signatures . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Multisignatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Blind signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Use of LFSR sequences in cryptography . . . . . . . . . . . . . . . . . . . . 18

2.3.1 LFSR sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Characteristic and minimal polynomials of LFSRs . . . . . . . . . . 22

2.3.3 Trace representation of LFSRs . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Construction of two cryptosystems . . . . . . . . . . . . . . . . . . . 25

2.3.5 Cubic LFSR-based Diffie-Hellman . . . . . . . . . . . . . . . . . . . 27

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3 Authenticating feedback in multicast applications . . . . . . . . . . . . . 31

3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Protocol overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Aggregating public keys . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Choosing a suitable ElGamal variant for scalability . . . . . . . . . . . . . . 37

3.3.1 Eliminating variants of the ElGamal family . . . . . . . . . . . . . . 37

3.3.2 Problem with using the Schnorr variant . . . . . . . . . . . . . . . . 38

3.4 Construction of the LFSR-based signature schemes . . . . . . . . . . . . . . 39

3.4.1 The single-signer signature scheme . . . . . . . . . . . . . . . . . . . 39

3.4.2 The proposed multisignature . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.3 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



3.6 Related research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4 Authenticating source routing protocols in ad-hoc networks . . . . . . . . 52

4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Protocol overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Incorporating path caching . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 The proposed multisignature scheme . . . . . . . . . . . . . . . . . . . . . . 57

4.4 A discussion on distributing public keys . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Using a trusted third party . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 Toward a fully distributed, self-organized bootstrapping . . . . . . . 59

4.4.3 Policy variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.3 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Related research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Chapter 5 Authenticating path-vector routing protocols . . . . . . . . . . . . . . . . 67

5.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 Building efficient certificate chains . . . . . . . . . . . . . . . . . . . 68

5.2.2 Authenticating distributed content management systems . . . . . . . 69

5.3 Protocol overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 The proposed LFSR-based aggregate signature scheme . . . . . . . . . . . . 72

5.4.1 The single-signer signature scheme . . . . . . . . . . . . . . . . . . . 72

5.4.2 Construction of the aggregation signature . . . . . . . . . . . . . . . 74

5.4.3 Aggregate signature generation . . . . . . . . . . . . . . . . . . . . . 74

5.4.4 Aggregate signature verification . . . . . . . . . . . . . . . . . . . . . 76

5.4.5 A sample instantiation of the protocol . . . . . . . . . . . . . . . . . 77

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 6 Providing accountability in privacy-preserving systems . . . . . . . . . . . 86

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Protocol overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Constructing the LFSR-based Blind Signature Scheme . . . . . . . . . . . . 88

6.3.1 The LFSR-based single-signer signature scheme . . . . . . . . . . . . 88

6.3.2 The proposed blind signature . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.1 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.3 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

v



6.5 Related research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Significant contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Continuing and future research . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Transformation of existing DL-based signatures . . . . . . . . . . . . 97

7.2.2 Path stability of inter domain routing protocols . . . . . . . . . . . . 97

7.2.3 Techniques for aggregating signatures . . . . . . . . . . . . . . . . . 98

APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.1 Rudiments of bilinear pairings on elliptic curves . . . . . . . . . . . . . . . . 99

A.1.1 A short note on elliptic curves . . . . . . . . . . . . . . . . . . . . . 99

A.1.2 Bilinear pairings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.1.3 The MOV/Frey-Rück attack . . . . . . . . . . . . . . . . . . . . . . 100

A.2 The Diffie-Hellman family of problems and assumptions . . . . . . . . . . . 101

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

vi



List of Tables

2.1 Popular DL-based signature schemes . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Permutations of (A,B,C) in the ElGamal signature family . . . . . . . . . 14

2.3 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Truth table of f(x0, x1, x2) = x0 + x1 . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Authenticating feedback in multicast applications: Cost comparison of

CLFSR-MS with existing schemes. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Authenticating sources routes in mobile ad-hoc networks: Cost comparison

of CLFSR-M with existing schemes . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 Authenticating path-vector routing protocols: Cost comparison of CLFSR-A

with existing schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Providing accountability in privacy preserving systems: Cost comparison of

BCLFSR with existing schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



List of Figures

2.1 A third order LFSR over F2, with feedback f(x0, x1, x2) = x0 + x1 . . . . . 21

2.2 State diagram of LFSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Multicast feedback delivery tree . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 A functional model of the trusted third party . . . . . . . . . . . . . . . . . 36

3.3 Authenticating feedback in multicast applications: The CLFSR-S signature

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Propagation and authentication of route replies . . . . . . . . . . . . . . . . 54

4.2 Propagation and authentication of cached route replies . . . . . . . . . . . . 56

5.1 An abstraction of the node functionality . . . . . . . . . . . . . . . . . . . . 71

5.2 Authenticating path-vector routing protocols: The CLFSR-S′ single-signer

signature scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Providing accountability in privacy preserving systems: The EGCLFSR single-

signer signature scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Providing accountability in privacy preserving systems: The blind signature

scheme BCLFSR blind signature scheme . . . . . . . . . . . . . . . . . . . . . 90

viii



List of Files

1. Dissertation Chakrabarti S 08.pdf 13,437 KB

ix



Chapter 1

Introduction

This dissertation presents techniques to use primitives from a recently discovered

cryptosystem [63, 44] based on LFSR sequences to build security protocols suitable for

deployment in performance-sensitive networking contexts.

The gap between abstract, mathematics-oriented research in cryptography and the

engineering approach of designing practical network security protocols is widening. Network

researchers experiment with well-known, time-tested, cryptographic protocols suitable for

different network models; researchers inclined toward theory often design new cryptographic

schemes without considering the practical constraints of specific network scenarios and

applications. For example, the cryptographic community has proposed special forms of

digital signatures, like aggregate signatures, but these signatures are not aimed to solve a

specific networking problem, like scalable collection of multicast feedback in a secure and

reliable fashion or securing source routes in a mobile ad-hoc network. The goal of this

dissertation is to address problems in the intersection of these two challenging areas; in

other words, building bridges, or reaching agreements, between practical network security

protocols and theoretical cryptography.

“Security is layered like an onion.” [83] Cryptography is the core, the mathematical

foundation, the very primitive building block of security. The second layer encapsulating this

inner-most mathematical core consists of applied cryptographic protocols. The construction

of these protocols is based on certain well accepted mathematical assumptions. The third

layer, the first “tangible” one, consists of software implementations of the theoretical

protocols residing in the second layer. The outer layers consist of computer systems,

networks, human users, organizations, and relationships between networked computer

systems and users.

Today’s digital world is dependent on connectivity. People depend on computers

and communication, ranging from networks for electronic mail to systems that monitor

the nation’s critical infrastructure; such remarkable connectivity has been made possible

only through the Internet. However, the very egalitarian design of the Internet makes it

vulnerable to a variety of attacks—the news is full of stories of vulnerabilities in network

systems that were exploited by malicious software. Network security is crucial for proper

1



functioning of such a connected digital world.

Cryptography forms the core of most network security protocols. However, tangible secu-

rity that can be implemented in the real world transcends the mathematical formulations of

cryptography. The process of security involves human users and networked machines and the

interactions between them. Moreover, security protocols need to achieve a balance between

security and cost to be suitable for commercial use. Increasing the size of cryptographic

keys (for encrypting or signing a message) enhances the security of the protocol, but large

keys need large storage space and have high computation and communication cost.

Practical networking protocols often involve a large number of users and a security

protocol designed to aid such a network service should scale well in that dimension. For

example, Yahoo’s servers, supporting 40,000 small Web businesses to manage e-commerce

transactions, crashed due to an overload of online holiday season shoppers on “Cyber

Monday”, November 26, 2007. Though such overloading of systems is often induced by

malicious users, as in this case, there were no reports of a security breach; the full-scale

meltdown was simply due to poor scalability of the underlying protocols responsible for the

customer checkout process. Thus, issues of efficiency and scalability are intrinsically related

to security and are crucial to the seamless functioning of real-world network protocols.

1.1 Choosing an efficient cryptographic primitive

Many algorithms used in public-key cryptography are based on finite-field arithmetic;

examples include the Diffie-Hellman key agreement algorithm [32] and the Digital Signature

Algorithm (DSA) [34]. These cryptographic protocols, like the DSS, are based on the

discrete logarithm (DL) problem, which can be informally stated as follows: Given a prime

q, a generator α of the cyclic group G of order q and an element β ∈ G, find an index

k such that β = αk or determine that there is no such index. It is believed that there

is no solution that is substantially more efficient than searching through the space of all

q possible values of k. (A formal definition of the discrete logarithm problem/assumption

is given in Chapter 2.2.). However, the chosen field sizes q must be sufficiently large to

withstand various attacks (algorithms to solve the discrete logarithm problem).

Traditionally, sequences generated by linear feedback shift registers (LFSR) have been

used to generate key streams in stream ciphers for encrypting data. Around the year

2000, LFSR sequences made an appearance, in a rather small section of the cryptographic

community, as a useful tool in building a new form of public-key cryptosystem (PKC).

The LFSR-based public-key cryptosystems [44, 63] use reduced representations of finite

2



field elements, which enables us to represent finite field elements in the extension field Fqn

(containing qn elements), by the corresponding minimal polynomials whose coefficients are

chosen from the base field Fq (containing q elements). The security of LFSR-based public-

key cryptosystems is based on the difficulty of solving the DL problem in the extension

field Fqn . However, all computations, involving sequence elements, needed for the protocol

are performed in the base field Fq. This reduced representation of finite field elements

leads to substantial savings, both in communication and computational overhead, for a

desired security level. For example, 340-bit keys in the XTR (a phonetic acronym for

Efficient and Compact Subgroup Trace Representation) PKC [63], based on cubic (third

order) LFSR sequences, give security equivalent to 1024-bit keys in cryptosystems using

a traditional representation of finite fields. The Digital Signature Algorithm (DSA), an

NIST standard [34], is an example of a cryptosystem that uses conventional representation

of finite fields. We regard the security obtained using 1024-bit keys in traditional finite-

field cryptography as the current standard and thus investigate the feasibility and design

of applied cryptographic protocols based on cubic LFSR sequences (in particular the XTR

cryptosystem), to solve problems in network security. We provide a discussion on the

reduced representation of finite-field elements in XTR in Chapter 2.

1.2 Thesis contributions and structure

An effective solution to a network security problem should achieve an adequate balance

between comprehensive security and scalability. In this dissertation, we present techniques

for building performance-sensitive authentication protocols using primitives from LFSR

sequences, for networking applications involving a large set of users. Our security protocols

are designed to work in a variety of challenging networking contexts, described in detail

later in this section. In this dissertation, we make the following key contributions:

1. We examine techniques for using LFSR sequences to construct various forms of new

digital signature schemes. Informally, digital signatures are electronic counterparts to

hand-written signatures: An entity signs an electronic document, and the signature

specifies the person responsible for the document. All our proposed forms of

signatures—aggregate signatures, multisignatures, and blind signatures—are the first

to be constructed using cryptographic primitives from LFSR sequences. The reader

is referred to Chapter 2.2 for a description of these special forms of digital signatures.
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2. We investigate the feasibility of transforming existing protocols into more efficient ones

using LFSR sequences, suitable for use in resource-constrained environments such as

mobile ad-hoc networks.

3. We evaluate the scalability and fault-tolerance of the existing protocols in emerging

networking applications, such as collecting authenticated feedback in multicast

applications, finding secure routes in resource constrained environments, and securing

inter-domain routing protocols.

4. We conduct an extensive analysis of the security and performance of the proposed

signature schemes. In the security analysis, we examine the most general mathemati-

cal assumptions that are conjectured to be hard, like the DL assumption, and aim to

deduce relations between such assumptions and the proposed security protocols.

Next, we elaborate the networking contexts and outline the significant research

contributions pertaining to these contexts.

1.2.1 Context 1: Authenticating feedback in multicast applications

A common problem faced by large-scale multicast applications, like software distribution,

multimedia transmission, and real-time news feeds, is collecting authenticated feedback from

the intended recipients. The feedback needs to be authenticated because the source wants

to verify that the data was reliably delivered to the intended receivers, even in the presence

of an adversary who might send bogus information to the source. The standard unicast-like

solution would have receivers send signed acknowledgments (Acks) to the source, which

unfortunately leads to what we call a signed-Ack implosion problem: The source needs to

verify all individual signatures on the Acks that it receives. The challenge is to find an

efficient, scalable and fault-tolerant technique for convincing the source that the intended

multicast receivers have indeed received the multicast data. Informally, fault-tolerance in

this case means that the protocol does not have to restart if some nodes fail to deliver data.

To solve this problem, we design an efficient, scalable and fault-tolerant technique

for combining multiple signed Acks into a single compact one. We propose a third-

order LFSR-based, single-signer signature scheme using a suitable variant of the ElGamal

family of signatures [37, 51]. We then construct an efficient, single-round, tree-structured

multisignature scheme, using the single-signer signature scheme. Multisignatures aim to

prevent resources (signatures, storage elements, and computation) from growing linearly in

the number of signers participating in a network protocol. Our performance analysis shows
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that for a desired level of security, the proposed tree-structured multisignature outperforms

existing protocols in computation cost, communication rounds and storage overhead [27].

1.2.2 Context 2: Securing routing in ad-hoc networks

Resource constraints of nodes, limited capacity of the wireless medium, node mobility and

the cooperative, self-organized form of mobile ad-hoc networks make it difficult to transfer

techniques for securing traditional wired networks to the ad-hoc networking environment.

For example, delegating special functions to nodes or assuming the existence of a trust

infrastructure to distribute certified public keys is not practical in mobile ad-hoc networks.

The dynamic source routing protocol (DSR) [57] is perhaps the most popular on-demand

source routing protocol designed for multi-hop wireless ad-hoc networks. However, the DSR

protocol, in its original design, is vulnerable to several forms of attack by malicious nodes

and thus, cannot guarantee authentic source routes.

We focus on the following problem: In DSR, how can a source node wanting to find a

route to a destination be assured of the authenticity of the route advertised in a received

routing packet? We would like to guarantee this authenticity without imposing substantial

overhead on the nodes that help in discovering routes.

Recently, techniques of aggregating signatures (involving multiple communication

rounds) have been applied to authenticate source routes in mobile ad-hoc networks. We use

LFSR sequences to construct the single-round multisignature scheme [25]. The proposed

multisignature is derived from a single-signer signature scheme, and is also a variant of the

ElGamal signature family [38, 51]. The multisignature algorithm is engineered to produce

an efficient technique for authenticated route discovery in DSR. Our scheme requires no

prior cooperation to construct the multisignature and supports authentication of cached

routes.

We introduce our idea behind authenticating routes in DSR assuming, for simplicity,

that all nodes have access to certified public keys of other nodes in the route. We present

solutions using a trusted third party (TTP) to help in distributing certified public keys.

We acknowledge that assuming the existence of a TTP is paradigmatically unsuitable for

ad-hoc networks. Using the concepts of PGP [101] and previous results of the small-

world property [73] exhibited in trust graphs in self-organized systems [89, 90], we relax

the assumption of the TTP and formulate policies for a fully distributed framework for

individual and aggregate public-key management.
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1.2.3 Context 3: Securing path-vector routing protocols

Recently, there is a noticeable movement in the network research community to rebuild

networks following a clean-slate design approach—considering design parameters from

scratch—that has the potential to enable substantial security improvements over existing

network systems. Distributed applications involving a large number of participants, such as

multi-player games and replicated databases, represent a large fraction of the traffic carried

in the Internet today; all such modern applications are in dire need of well-defined and

practical authentication mechanisms.

Aggregate signatures solve a small but crucial subset of the bigger problem of securing

the whole Internet: They support scalable authentication of a large number of users. We

focus on techniques for building efficient and scalable forms of aggregate signatures, suitable

for applications like securing path-vector routing protocols (for example, the inter-domain

routing protocol, BGP). The proposed aggregate signature scheme has other potential

applications, such as building efficient certificate chains and authenticating distributed and

adaptive content management systems.

We present a aggregate signature scheme constructed using LFSR sequences [24]. We

believe that the proposed aggregate signature scheme can improve the processing latency

as well as reduce space requirements in building secure, large-scale distributed network

protocols. Our aggregate signature scheme offers constant-length signatures, fast signing,

aggregation and verification operations at each node, and it requires fewer storage elements

(public keys needed to verify the signature) than other traditional aggregate signature

schemes.

1.2.4 Context 4: Providing accountability in privacy-preserving systems

Accountability, in the context of the modern Internet, refers to reliably identifying an entity

that is responsible for sending a network packet. The modern Internet lacks a network-

level mechanism offering accountability. Moreover, concerns about privacy complicate

the design of any accountability service: The ability to trace communications at user

level is undesirable and thus hinders (or even prevents) deployment of such accountability

mechanisms.

The tension between accountability and privacy can be ameliorated to some extent

through the use of blind signatures because they allow an authority to vouch for the

legitimacy of a message while the ownership of the message can remain hidden from the

authority.
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Different forms of blind signature constructions exist in the literature and have

found valuable use in areas such as E-Cash technology and E-voting schemes. However,

conventional blind signatures require intensive computation; a direct application of these

traditional signatures faces scalability and performance challenges. We present a cubic

LFSR-based, single-signer signature scheme, following a variant of the ElGamal signature

family. Using the single-signer scheme, and following fundamentals of a blind signature

used in E-Cash systems [21], we present an efficient blind signature built with LFSR

sequences [23]. We show that the proposed blind signature scheme can serve as a protocol

building block for privacy-preserving accountability systems.

1.2.5 Thesis organization

In Chapter 2, we first discuss some standard cryptographic terminology to give the reader

a high-level overview of some cryptographic concepts before going into formal discussions

in the later chapters of this dissertation. Then, we discuss the basics of digital signatures

and discuss related research on special signature schemes, such as aggregate signatures

(generalized and sequential), multisignatures, and blind signatures. The chapter concludes

with a discussion of the basic building blocks of cryptography based on LFSR sequences:

The mathematics of LFSR sequences and cryptosystems based on LFSR sequences.

Chapter 3 presents our solution to the problem of authenticating feedback in multicast

applications. Chapter 4 presents our research that addresses the problem of authenticating

source routes in the DSR protocol, used in mobile ad-hoc routing environments. In

Chapter 5, we present a novel technique of aggregating signatures, suitable for applications

like securing path-vector routing protocols. In Chapter 6, we introduce a novel LFSR-based

blind signature scheme. Chapter 7 concludes the dissertation and includes a summary of

the significant research contributions and possible research directions in the area of efficient

authentication protocols.

In Appendix A, we present a mathematical background on topics that researchers have

used to solve network security problems similar to those we address in this dissertation.

The appendix provides the reader with pointers to the terminology and underlying

cryptographic definitions and mechanisms needed to rigorously compare our results with

previous solutions. Topics discussed in the appendix include rudiments of bilinear pairings

on elliptic curves and well-known variants of Diffie-Hellman problems and assumptions used

in contemporary applied cryptographic protocols.

Copyright c© Saikat Chakrabarti 2008
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Chapter 2

Background and related work

This chapter is divided into three parts. The first part discusses some standard

cryptographic terminology to give the reader a high-level overview of some cryptographic

concepts before going into formal discussions in the later chapters of this dissertation. The

second part contains a detailed description of digital signatures and also presents special

forms of signatures relevant to the dissertation. The third part contains the mathematical

background of LFSR sequences and construction of a cryptosystem using LFSR sequences.

The second and third parts include corresponding related research. We assume that the

reader has a basic knowledge of abstract algebra.

2.1 Some standard cryptographic terminology

Authentication Authentication (more precisely, entity authentication) is the process

of identifying an entity in a reliable manner. It provides a means to verify that an

entity is indeed who it claims to be. There are three primary bases for authenticating a

human entity: (1) Something you are, as evidenced by biometric devices such as retinal

scanners, fingerprint analyzers and voice recognition systems, (2) something you know,

as evidenced by passwords, and (3) something you have: smartcards, physical keys.

There exists another concept of authentication, known as message authentication:

It is defined as the process of reliably identifying the entity that originated a

particular message. Message authentication provides implicit message integrity: If

the message has been modified, message authentication should fail. In the case of

entity authentication, both entities are active in communication, giving a timeliness

guarantee [70]; message authentication provides no guarantees of timeliness.

Computationally infeasible In cryptography, we quantify an adversary by the amount

of computing power it has. Cryptographic schemes that are breakable in principle

are often not breakable in practice because the computing power of the adversary

attempting to break the scheme is limited. In standard cryptographic terms, a problem

is said to be computationally infeasible if an adversary, having access to a polynomial
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time algorithm, cannot succeed in solving that problem in general, although the

adversary may succeed in solving some instances.

Negligible function The notion of success with small probability is quantified in protocol

analysis. A real-valued function f(λ) is negligible if for every fixed d ≥ 0, there exists

a sufficiently large integer λd such that f(λ) ≤ λ−d for every λ ≥ λd.

Probabilistic polynomial-time algorithm Broadly defined, an algorithm is said to

be probabilistic polynomial time (PPT), if it uses randomness, and its running time

is bounded by some polynomial in the size of its input. The output of a PPT

algorithm depends on the randomness—that is, the algorithm achieves completion

(in polynomial time) with a certain probability derived from its input of randomness.

In the analysis of modern cryptographic protocols, we allow the adversary to have

access to a PPT algorithm. In this case, a problem is hard for an adversary to solve

if the adversary, armed with a PPT algorithm, succeeds in solving the problem with

small or negligible probability. Throughout this dissertation, we model our adversary

as having access to a PPT algorithm. The reader is referred to lecture notes by

Goldwasser et al. [42] for an elaborate and rigorous discussion on the topic.

Standard Model Since we still don’t have proofs that any of the standard cryptographic

building blocks have computational lower bounds, we make some complexity-theoretic

hardness assumptions to achieve common cryptographic goals [11]. Examples of such

assumptions are: (1) Factoring the product of large primes is hard, and (2) computing

the discrete logarithm is hard in certain sufficiently large groups. A cryptographic

protocol is said to be secure under the standard model the following holds true: If

an adversary can break the cryptographic protocol, one can solve the underlying

mathematical problem conjectured to be hard.

Random-oracle model Very few practical cryptographic protocols can be proved to be

secure in the standard model. The random-oracle model is a model, alternative to the

standard model, that researchers often refer to construct proofs, when the proofs in

the standard model are “unappealing or provably impossible” [11]. The random-oracle

model is constructed for cryptographic protocols (such as digital signatures) that use

hash functions. The hash function is formalized by an oracle (denoted by H), which

produces a random value for every new query. Formally, the oracle H is modeled

as follows: (1) Entities including the adversary submit queries x to the oracle and

receive H(x). Queries are private: An adversary does not get to see the query x that
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an honest party makes. (2) The oracle maintains a list L = (xi, yi), where xi ∈ {0, 1}
l

is a query and yi ∈ {0, 1}
n is the response. The list L is initially empty. When the

oracle receives a query xk, it searches the list L for the tuple (xk, yk). If the oracle

finds the tuple, it returns yk. Otherwise it chooses a random string yk ∈ {0, 1}
n,

stores the tuple (xk, yk) and returns yk. The random-oracle model is a useful tool for

validating cryptographic constructions. However, the random oracle does not exist in

the real world and a majority of the cryptographic community looks upon protocols

using the random-oracle model for security proofs with a hint of doubt [99]. We have

no guarantees of security once the random oracle model is instantiated with real world

hash function such as SHA-1 or MD5.

Provably secure Researchers have proposed various models such as the standard model

(containing the most general and well-accepted assumptions such as those mentioned

above) and the random-oracle model [7] to construct proofs of cryptographic protocols.

Provable security implies construction of proofs of security under these models. The

reader should not misunderstand provable security to imply an absolute proof of

security. The reader may refer to an exemplary discussion on provable security by

Koblitz et al. [61].

Reduction A security algorithm A (a digital signature in our case) reduces to another

security algorithm B (another digital signature) means an adversary who can forge

B can also forge algorithm A. The power endowed to the adversary depends on

the model of security, based on which the proof of reduction is constructed. In this

dissertation, we give the adversary access to a PPT forger, and deduce a reduction

from a well-known signature algorithm (conjectured to be computationally infeasible

for an adversary to forge) to our proposed signature algorithm. None of our proposed

protocols are, however, provably secure in any known security model such as the

random oracle model.

2.2 Digital signatures: basics and special forms

Digital signatures have the same purpose as conventional handwritten signatures, namely

message authentication. However, there are three fundamental differences in the construc-

tion and use of digital versus handwritten signatures:
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• A person attaches a handwritten signature physically to the document being signed.

A digital signature is not intrinsically bound to the electronic message; a signing

algorithm must “somehow bind the signature to the message” [87].

• A handwritten signature is verified by comparing it with another authentic signature.

The person verifying the signature should thus have access to another authentic

signature. On the other hand, electronic signatures can be verified by anyone using a

publicly known verification algorithm.

• A copy of a handwritten signature is easily distinguished from the original; copies of

digital signatures are indistinguishable. To prevent re-use of signatures (often desired

with signatures on one-time financial transactions), we usually mix a time-varying

quantity with the message before we generate the digital signature on the message.

Formally, the digital signature scheme, S, can be structurally represented by the tuple

〈Init, KeyGen, G, V〉, whose components are described as follows:

Initialization (Init): A probabilistic polynomial-time (PPT) algorithm that outputs the

public parameters, params. The nature of the public parameters depends on the

underlying cryptosystem.

Key Generation (KeyGen): A PPT algorithm that takes public parameters params as

input and outputs a private/public key-pair (SK,PK).

Signature Generation (G): A PPT signature generation algorithm that takes public

parameters params, the private key SK, and a message m as inputs and outputs

a signature σ. (The probabilistic nature of the signature generation is discussed in

Chapter 3.)

Signature Verification (V): A deterministic algorithm that takes the public parameters

params, public key PK, a signature σ, and the message m as inputs, and outputs a

result Valid or Invalid.

Our analysis of all proposed signatures has two parts: Correctness and security. In the

correctness analysis, we assume the following behavior from all entities participating in the

signature scheme: (1) Both the signer and the verifier follows the initialization procedure

and agrees in advance on the public parameters. scheme. (2) The signer honestly follows the

key generation procedure to generates his private and public keys. (3) The signer honestly
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generates his signature on the message. Under the above assumptions, the signature is

correct if it passes the verification procedure.

What remains to be shown is: Given a message m, it should be computationally

infeasible for any entity, other than the signer, to generate a signature which passes the

public verification procedure. This is precisely the issue of forgery, which we address in our

security analysis. In our security analysis, we reduce a variant of the ElGamal signature

family (discussed next) to the proposed signature scheme.

The proposed protocols in the dissertation are all based on the ElGamal signature

family [51]. The ElGamal signature [37] and its variants are based on a mathematical

problem, called the discrete logarithm problem (DLP), which is conjectured to be infeasible

over particular sets. An example of one such set is Z
∗
p, where p and Q are two large primes

with Q | (p − 1). The NIST standard for digital signatures [34] is a variant of an ElGamal

signature. In the following section, we describe the ElGamal family of signatures.

2.2.1 Signatures based on the discrete logarithm problem

Formally, the DL problem and assumption are defined as follows:

Definition 2.2.1 (DL problem/assumption). Let α be a generator of the multiplicative

group (Fq)
∗, where q is a large prime and Fq a finite field. The DL problem in Fq is:

Given (q, α ∈ (Fq)
∗, β ∈ Fq), find an integer k ≥ 0 such that β = αk or determine that there

is no such index.

Let A be a probabilistic polynomial time (PPT) algorithm that solves the DL problem.

Define the advantage of the DL solver A as: AdvDL
A = Pr[A(q, α, β) = k | α ∈R (Fq)

∗, 0 ≤

k ≤ ord(α), β = αk], where the notation a ∈R A means element a is randomly chosen from

the set A, ord(α) denotes the order of α in the field Fq. The probability is over the random

choices of α, k, and the random bits of A.

DL Assumption: The finite field Fq is said to satisfy the DL Assumption if AdvDL
A is

negligible.

The ElGamal signature scheme can be constructed as follows. Let entity A be the signer

of message m, and entity B be the verifier.

1. Entities A and B agree (in advance) on the public parameters 〈p,Q, α〉, where elements

p and Q are two large primes with Q | (p − 1), and α ∈ Z
∗
p a generator of a cyclic

subgroup of order Q.
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2. Entity A randomly chooses x ∈R Z
∗
Q, the long-term private key, and computes y = αx,

the corresponding long-term public key.

3. Entity A randomly chooses k ∈R Z
∗
Q , the ephemeral private key, and computes

r = αk, the corresponding ephemeral public key.

4. Entity A generates the signature on hashed message h = H(m) by solving for the

variable t in the following signing equation:

h ≡ xr + kt mod Q (2.1)

5. Entity A sends the pair, (t, h), and the ephemeral key, r, to entity B.

6. Entity B verifies the signature by checking the following equivalence:

αh ≡ yrrt mod Q (2.2)

The ElGamal signature is correct since:

αh ≡ α(xr+kt) mod Q

≡ (αx)r(αk)t mod Q

≡ yrrt mod Q

Horster et al. [51] propose several variations of the signing equation and the correspond-

ing verification equation in the ElGamal signature scheme. The variants of the ElGamal

signature are commonly known as the ElGamal family of signatures. The ElGamal signature

family includes the popular DSA [34] and the Schnorr variant, commonly used by the

cryptographic community to build provably secure protocols [84].

Table 2.1 shows the signing and verification equations of some well-known discrete log-

based signature schemes, labeled by the corresponding ElGamal variant. Only EG II.3, the

Schnorr variant has been proved secure in the random-oracle model. The signing equation

of any variant in the ElGamal family of signatures can be generalized as:

±A ≡ ±xB ± kC mod Q

where A, B and C are permutations of either m, r and t individually, or of functions f(·, ·),

g(·, ·) of (m, r), (m, t) and (r, t). Table 2.2 lists the permutations of the parameters A, B

and C, and the corresponding variant in the ElGamal family.
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Table 2.1: Popular DL-based signature schemes

EG Variant Signing Eqn. Verification Eqn. Usage

EG I.1 m ≡ xr + kt αm ≡ yrrt NIST Std. DSA [34]

EG II.3 t ≡ xf(m, r) + k αt ≡ yf(m,r)r Schnorr type [84]

EG II.5 f(m, r) ≡ xt + k αf(m,r) ≡ ytr Nyberg-Rueppel type 1

EG II.6 f(m, r) ≡ xt + k αf(m,r) ≡ yrt Nyberg-Rueppel type 2 [76]

EG I.4 t ≡ xm + kr αt ≡ ymrr Proposed multisignature

EG I.3 t ≡ km− xr αt ≡ yrrm Proposed blind signature

Table 2.2: Permutations of (A,B,C) in the ElGamal signature family [51]

Permutation of (±A,±B,±C) Variant

(m, r, t) EG I.1 - EG I.6

(f(m, r), t, 1) EG II.1 - EG II.6

(f(m, r), g(m, t), 1) EG III.1 - EG III.6

(f(m, t), g(r, t), 1) EG IV.1 - EG IV.6

(f(m, r), g(r, t), 1) EG V.1 - EG V.6
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The resulting signature can be verified under public key y by checking the equivalence

αA ≡ yBrC mod Q. The functions f : {0, 1}∗ × Z
∗
Q 7→ Z

∗
Q and g : Z

∗
q × Z

∗
Q 7→ Z

∗
Q are

carefully chosen so the signing equation can be solved for the parameter, t, the essence of

the signature. For example, functions f and g can be chosen (agreed in advance by the signer

and verifier) as the modular multiplication operation (modulo q) or as a cryptographic hash

function.

Next, we present brief overviews and related research in special-purpose digital signature

schemes, namely, aggregate (generalized and sequential) signatures, multisignatures, and

blind signatures.

2.2.2 Generalized aggregate signatures

An aggregate signature scheme allows us to combine n signatures from n different signers

on n distinct messages into a single signature [17]. This compact signature, called the

generalized aggregate signature, provides authentication simultaneously on all the n

distinct messages for the n corresponding signers. Any entity (not necessarily one of the

signers) can verify the aggregate signature, given the corresponding n public keys of the

signers. Aggregate signatures come in different flavors, depending on the nature of the

application. For example, multisignatures have all signers sign the same message. Sequential

aggregate signatures have signers verify, sign and aggregate signatures sequentially.

Boneh et al. [17] first propose the idea of a generalized aggregate signature scheme.

They develop their aggregate signature using groups with efficiently computable bilinear

maps [18]. The aggregate signature scheme is provably secure in the random-oracle model [8]

under the Bilinear Diffie-Hellman assumption (described in Appendix A.2). This algorithm

requires the use of expensive pairing operations for signature verification, which limit its use

in resource-constrained computing environments. Another limitation of their aggregation

technique is scalability: the number of operations required to verify an aggregate signature

increases linearly with the number of signers. Xu et al. [94] propose an identity-based

generalized aggregate signature using bilinear pairings that require a constant number

of pairing operations for verifying an aggregate signature (independent of the number of

signers). However, their scheme suffers from a different problem: the size of the aggregate

signature grows linearly with the number of signers.
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2.2.3 Sequential aggregate signatures

In a generalized aggregate signature scheme, the process of verifying a signature is

independent of the order in which the messages are signed by users. Lysyanskaya et al. [68]

introduce the concept of generating aggregate signatures sequentially, by an ordered set

of signers. Lysyanskaya et al. instantiate their scheme using RSA [82]. However, their

aggregate signature scheme has the following weaknesses: (1) The verifier of the aggregate

signature must know the order in which the signatures were created. This knowledge adds

significant overhead to the security protocol. (2) The verification cost of the aggregate

signature grows linearly with the number of signers.

Lu et al. [67] propose a sequential aggregate signature scheme using bilinear pairings.

They construct their scheme based on the signature scheme by Waters et al. [92] and derive

a proof of security without using random oracles. However, their scheme has the following

weaknesses: (1) The storage elements needed to verify the aggregate signature grows linearly

with the number of signers. (2) The public and private keys, derived from the construction

of Waters et al., inherit the drawback that the key sizes are extremely large and are not

suitable for practical use.

Gentry et al. [40] propose the first id-based sequential aggregate signature scheme.

However, their scheme suffers from the restriction that each time a new aggregate signature

is generated, all participating signers must agree upon a common nonce not used by any

signer before. More recently, Boldyreva et al. [15] propose an identity-based sequential

aggregate signature scheme without that restriction.

2.2.4 Multisignatures

Multisignatures are specialized forms of aggregate signatures in which all signers sign the

same message. In this dissertation, we build efficient multisignatures using primitives from

LFSR sequences (described in the next section) to address the issues of efficiency and

scalability in two contexts, namely, authenticating feedback in multicast applications, and

authenticating source routes in mobile ad-hoc and sensor networks.

The concept of a multisignature was first proposed by Itakura et al. [55]. Itakura

et al. build their multisignature scheme using RSA [82]; the signature shares the same

drawback of Lysyanskaya et al. [68]: The verifier needs to know the signing order to verify

the multisignature. Harn [48] propose a DL-based multisignature scheme in which the

signers generate their individual signatures in parallel, and the signatures are combined

by a designated node to form a multisignature. Harn’s scheme requires the signers to
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combine their individual ephemeral public keys into a common aggregate ephemeral public

key with the help of the designated node; the scheme needs three communication rounds to

achieve completion. Horster et al. [51] present a generalized ElGamal signature scheme [38],

integrating several ElGamal variants, including Schnorr’s signature [84] and the DSA, and

present a generalized construction of a multisignature [50].

Micali et al. [72] formalize the concept of multisignatures and present the first formal

model of security for multisignatures. Micali et al. also present a provably secure (in the

random oracle model), three-round multisignature scheme based on the Schnorr variant [84].

The schemes of Horster et al. [50] and Micali et al. [72] used the idea of ephemeral public key

aggregation, originally developed by Harn [48]. Boldyreva et al. [14] present a multisignature

scheme based on short signatures by Boneh et al. [18].

2.2.5 Blind signatures

Blind signatures are a specialized form of digital signature in which signature generation

involves an interactive protocol executed by an entity (the owner) possessing the message

and another entity (the signer) possessing a long-term secret key, also known as the signing

key. The owner transforms the message into a ”blinded” message, and sends it to the signer.

The signer uses its signing key to generate a signature on the blinded message and returns the

signature to the owner. The owner transforms this signature such that (1) the transformed

signature is a valid signature on the original message under the long-term public key of the

signer and (2) the signer cannot associate the (message, transformed signature) pair with

the owner. This transformed signature is known as a blind signature.

Blind signatures have potential as key building blocks of network security protocols,

where an authority needs to vouch for the legitimacy of a message but the ownership of the

message must be kept secret from the authority. Chaum [30] give the first proposal of blind

signatures with the goal of developing untraceable payment systems that offer improved

auditability but preserve personal privacy. Camenisch et al. [21] propose two blind signature

schemes, one based on the variant of DSA and the other providing message recovery. Horster

et al. [49] develop a blind multisignature scheme and use it as a building block to construct

electronic voting applications. Petersen et al. [79] show how to use blind signatures to

generate self-certified public keys. Pointcheval et al. [80] formalize the notion of security for

blind signatures in the random-oracle model [8] and provide examples of provably secure

blind signature schemes. Boldyreva [14] present a blind signature construction using bilinear

pairings on elliptic curves. (We provide a short discussion on pairings on elliptic curves in
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the Appendix.) Abe [3] develops a Schnorr-based blind signature scheme, provably secure

in the random oracle model, and presents an application in E-Cash systems.

2.3 Use of LFSR sequences in cryptography

In this section, we describe the mathematics behind linear feedback shift register (LFSR)

sequences and present various definitions, useful properties and representations of LFSR

sequences. The section also contains the construction of two public-key cryptosystems

based on LFSR sequences.

Chapters 3, 4, 5, and 6 are self-contained as regards construction of the security

protocols. The reader interested in a particular problem in network security or construction

of a security protocol proposed in this dissertation may safely skip this section, unless he

or she wants to have a rigorous understanding of the underlying cryptographic primitives

leading to the construction of the proposed protocols.

Table 2.3 lists the set of notations that we use throughout this dissertation.

2.3.1 LFSR sequences

Sequences in finite fields whose terms depend linearly on a fixed number of predecessors are

called linear recurring sequences. Let a, a0, a1, . . . , an−1 be elements of a finite field Fq,

where n is a positive integer. A sequence of elements s0, s1, . . . , sn−1 over Fq is called an

nth order linear recurring sequence in Fq if the following property holds:

sn+k = a +
n−1
∑

i=0

aisk+i, k = 0, 1, . . . (2.3)

Given the elements a, a0, a1, . . . , an−1, the terms s0, . . . , sn−1 uniquely determine the rest

of the sequence and are referred to as initial values. The linear recurring sequence is

said to be homogeneous if a = 0. In this thesis, we focus on homogeneous linear recurring

sequences. Such sequences can be implemented by an electronic switching circuit called an

LFSR. An LFSR consists of the following three components.

• Shift register: An nth order LFSR consists of n storage units (implemented by flip-

flops) regulated by a single clock. At each clock pulse, the content of each storage

unit is shifted to the next unit in line. Each storage unit can have q (a prime number)

states. For example, a binary shift register has 2-state storage units.

• Initial state: The contents of the n storage units at any particular time represent the

state of the nth order LFSR. The row vector (sk, sk+1, sk+2, . . . , sk+n−1) containing n
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Table 2.3: Notations

Notation Meaning

Fq Finite field where q is prime or a power of a prime.

(Fq)
∗ Corresponding multiplicative group.

s Sequence generated by an LFSR, represented by s0, s1, . . . , where si ∈ Fq.

F[x] Set of all polynomials {
∑n

i=0 aix
i, ai ∈ F, n ≥ 0}, where F is a field.

Tr(α) Trace function with α in Fqn as input, produces α + αq + · · ·+ αqn−1

in Fq.

sk The kth sequence term.

s̄k The kth state of the sequence, represented by the row vector

(sk, sk+1, sk+2, . . . , sk+n−1) containing n consecutive sequence terms generated

by an nth order LFSR.

f(x) Characteristic polynomial of s. For a cubic LFSR, f(x) = x3 − ax2 + bx − 1,

where a, b ∈ Fq. The polynomial f(x) has roots of the form α, αq, αq2

.

fk(x) Polynomial with roots αk, αkq, αkq2

. Represented by the term sk in the XTR-

PKC and by (sk, s−k) in GH-PKC. We drop the indeterminate x from the

polynomials f(x) and fk(x) for simplicity.

sr(fe) The rth term of the characteristic sequence generated by the polynomial fe.

SK Long-term private key. Node na randomly chooses xa in Z
∗
Q as its long-term

private key.

PK Long-term public key. Given SK = xa, node na computes its long-term public

key PK = ¯sxa
.
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consecutive sequence terms generated by an nth order LFSR is called the kth state of

the sequence, and is represented by the notation s̄k. The initial state (or seed) of an

nth order LFSR is represented by the row vector s̄0 = (s0, s1, . . . sn−1). In a binary

LFSR, each storage unit can have values 0 or 1, and si ∈ F2; more generally in a q-ary

LFSR, si ∈ Fq.

• Linear feedback function: The linear feedback function is of the form f : F
n
q 7→ Fq,

where F
n
q = {(s0, s1, . . . sn−1) | si ∈ Fq} is a vector space over the finite field Fq of

dimension n.

The linear feedback function of an LFSR can be expressed as follows:

f(x0, x1, . . . , xn−1) = a0x0 + a1x1 + · · · + an−1xn−1, ai ∈ Fq (2.4)

Given the above linear feedback function, the LFSR produces an nth order homogeneous

linear recurring sequence represented as follows:

sn+k =
n−1
∑

i=0

aisk+i, k = 0, 1, . . . (2.5)

The polynomial

f(x) = xn − an−1x
n−1 − · · · − a0 ∈ Fq[x] (2.6)

is called the characteristic polynomial of the above homogeneous linear recurring

sequence. Later in this section, we provide the derivation of the characteristic polynomial.

Sequences of large period are used in cryptography to thwart attempts of any brute-force

attack that may be launched by an adversary. Periodicity of a sequence can be defined as

follows.

Definition 2.3.1 (Periodicity of Sequences). Let s = s0, s1, · · · = {sk} be a sequence over

Fq generated by a q-ary LFSR. If there exist integers Q > 0 and u ≥ 0 such that si+Q = si

for all i ≥ u, then the sequence is said to be ultimately periodic and the smallest integer

Q is called the period of the sequence. The sequence is said to be periodic if u = 0.

Let s be a sequence generated by an nth order LFSR over the finite field Fq. The period

of the sequence s, per(s), is at most qn−1. Fig. 2.1 shows an example of a cubic LFSR, that

is, x = 3, over the finite field F2, with a linear feedback function f(x0, x1, x2) = x0 + x1.

The linear recurring sequence generated by the third-order LFSR can be represented as:

s3+k = s1+k + sk, k = 0, 1, . . . (2.7)
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Figure 2.1: A third order LFSR over F2, with feedback f(x0, x1, x2) = x0 + x1

0 1 0

The corresponding truth table of the feedback function f(x0, x1, x2) = x0 + x1 is shown

in Table. 2.4.

Table 2.4: Truth table of f(x0, x1, x2) = x0 + x1

x2x1x0 f(x0, x1, x2) = x0 + x1

000 0

001 1

010 1

011 0

100 0

101 1

110 1

111 0

The corresponding state diagram of the above LFSR is shown in Fig. 2.2.

Figure 2.2: State diagram of LFSR

010

101

110

111011

001

100

000
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Following the state diagram in the above figure, we observe that the output sequence

with the initial state 010 is:

0101110 . . .

The above sequence has the period seven. Next, we describe the concept of characteristic

and minimal polynomials of LFSRs.

2.3.2 Characteristic and minimal polynomials of LFSRs

Let V (Fq) be the set of all infinite sequences whose elements are taken from Fq. The set

V (Fq) can be expressed as:

V (Fq) = {(s0, s1, s2, . . . ) | si ∈ Fq}

Consider the following two sequences in V (Fq).

a = (a0, a1, a2, . . .)

b = (b0, b1, b2, . . .), c ∈ Fq

Addition and scalar multiplication of two sequences in V (Fq) can be defined as follows:

a + b = (a0 + b0, a1 + b1, a2 + b2, . . .)

ca = (ca0, ca1, ca2, . . .)

The zero sequence (0, 0, 0, . . .) is denoted by 0.

Definition 2.3.2 (Left Shift Operator [43]). The left shift operator L is defined on members

of V (Fq) as follows:

Li(s) = (si, si+1, si+2, . . . )

By convention, we denote L0(s) = I(s) = s, where I is the identity operator. Using the

above definition of the left-shift operator, Equation 2.5 can be written as:

Ln(s) =

n−1
∑

i=0

aiL
i(s)

⇒ (Ln −

n−1
∑

i=0

aiL
i)(s) = 0 (2.8)
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Now, consider any polynomial f(x) ∈ F[x] of degree n:

f(x) = xn −

n−1
∑

i=0

aix
i (2.9)

Consider the function Ff : s 7→ s. The range of this function not only depends on the

sequence it takes as input, namely, s, but also depends on the nature of the polynomial f .

Now, consider the function Ff using the above polynomial given in Equation 2.9:

Ff (s) = f(L)(s) = (Ln −

n−1
∑

i=0

aiL
i)(s) (2.10)

From Equations 2.5 and 2.10, we observe that there is a set of infinite sequences in V (Fq),

for which there exists a monic (leading coefficient equals unity), non-zero polynomial f(x) ∈

F[x] of degree n such that the function Ff = f(L)(s) evaluates to the zero sequence 0. The

polynomial f(x) is called the characteristic polynomial of s.

The following example [43] illustrates the idea of using the left-shift operator and the

characteristic polynomial of an LFSR sequence. We leave it upto the reader to verify every

step.

Example 1. Consider an LFSR with the feedback function f(x0, x1, x2, x3) = x0 + x1.

Also, let s = (000100110101111) be a sequence over F2, having period 23 + 22 + 2 + 1 = 15

generated by the LFSR. (This sequence is obtained when the LFSR has initial state 0001.)

The sequence s satisfies the following linear recursive relation:

s4+k = sk + s1+k, k = 0, 1, . . . (2.11)

The corresponding characteristic polynomial is given by:

f(x) = x4 + x + 1 (2.12)

The following equation can be easily verified (1. Apply the left shift operator four consecutive

times on the sequence. 2. Add the resulting sequence to the sequence obtained by left shifting

the original sequence once. 3. Finally add the resulting sequence to the original sequence):

f(L)(s) = (L4 + L + I)(s) = (000000000000000) = 0

Let G(f) denote the set of all sequences in V (Fq) with f(L)(s) = 0 and A(s) denote the

set of all polynomials satisfying the condition f(L)(s) = 0. Thus,
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A(s) = {f(x) ∈ F[x] | f(L)(s) = 0}

Definition 2.3.3 (Minimal polynomial of sequence). The minimal polynomial of s over Fq

is the monic polynomial (leading coefficient equals unity) with the lowest degree in A(s).

We conclude this discussion with the following theorem, the proof of which is out of the

scope of this document. The details of the proof can be found in [75].

Theorem 2.3.1. Let s be an LFSR sequence with the minimal polynomial f(x) of degree

n. Assume that f(x) is an irreducible polynomial over Fq of degree n. Let α be a root

of f(x) in Fqn. Then the period of the sequence generated by the LFSR, the period of the

corresponding minimal polynomial, per(f(x)), and the order of the root of f(x) are related

as follows:

per(s) = per(f(x)) = ord(α) (2.13)

where the period of f(x) is defined as the smallest integer Q such that f(x)|(xQ − 1) and

ord(α) denotes the order of the root of f(x).

The degree of the minimal polynomial of a sequence s is called the linear complexity

of s. The linear complexity of the sequence s represents the length of the shortest LFSR

that can generate the sequence.

2.3.3 Trace representation of LFSRs

Every term of a sequence generated by an LFSR can be effectively represented using the

trace function. In this section, we describe the trace function and its properties, and discuss

the trace representation of LFSR sequences. We use the trace representation of sequence

terms extensively in the security analysis of our proposed signature schemes.

Consider an irreducible polynomial over Fq of degree n.

f(x) = xn + an−1x
n−1 + · · ·+ a1x + a0 (2.14)

Let α be a root of f(x). Then we can construct Fqn with f(x) as a defining polynomial as

follows:

Fqn = {a0 + a1α + · · ·+ an−1α
n−1 | ai ∈ Fq} (2.15)

The trace function is defined as follows.
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Definition 2.3.4 (Trace Function). Consider the base field Fq and the extension field Fqn

and let α ∈ Fqn. The trace function Tr : Fqn 7→ Fq is defined by:

Tr(α) = α + αq + · · ·+ αqn−1
(2.16)

To understand that the trace function maps elements from the field Fqn to the set Fq, the

reader should observe that (Tr(α))q = Tr(α). The trace function is a linear transformation

from the field Fqn to Fq:

1. Tr(α + β) = Tr(α) + Tr(β), for all α, β ∈ Fqn .

2. Tr(cα) = cTr(α), for all α ∈ Fqn , c ∈ Fq.

Proofs of the above properties are out of the scope of the dissertation and can be found

in [65]. The following theorem states the relation between a sequence term and the root of

the characteristic polynomial that generates the sequence.

Theorem 2.3.2. Let s = {sk} be a sequence generated by an nth order LFSR whose

characteristic polynomial f(x) is irreducible over Fq. Let α be a root of f(x). Then, there

exists a uniquely determined β ∈ Fqn such that the following holds for every integer k ≥ 0:

sk = Tr(βαk) (2.17)

The reader is referred to the classical work by Niederreiter [75] for details the proof.

LFSRs have been used extensively as key stream generators in stream ciphers and random

number generators.

In the following section, we describe how LFSRs have been used to construct public-key

cryptosystems.

2.3.4 Construction of two cryptosystems

Recently, Gong et al. [44], and Lenstra et al. [63] propose the Gong-Harn public-key

cryptosystem (GH-PKC) and the Lenstra-Verheul public-key cryptosystem (XTR-PKC),

respectively, based on cubic (third-order) LFSR sequences. The security of GH- and XTR-

PKC is based on the difficulty of solving the discrete logarithm problem in the extension

field Fq3. However, all computations involved with sequence terms are performed in the

base field Fq, which leads to substantial savings, both in communication and computational

overhead, at a desired level of security.
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Cubic LFSR-based PKCs are constructed as follows. Let f(x) be a monic irreducible

polynomial over the finite field Fq.

f(x) = x3 − ax2 + bx− 1 a, b ∈ Fq (2.18)

where q is prime (q = p) for the GH-PKC and the square root of q is a prime (q = p2) for

the XTR-PKC. Let us consider the following cubic-LFSR sequence {sk} = s0, s1, . . . over

Fq having the characteristic polynomial f(x). The sequence {sk} is represented as:

sk+3 = ask+2 − bsk+1 + sk; k = 0, 1, . . . (2.19)

Following the trace representation of sequences (Theorem 2.3.2), each sequence term can

be expressed as sk = Tr(αk); k = 0, 1, . . . where α is a root of f(x) and the initial state of

the cubic-LFSR is given by s0 = 3, s1 = a and s2 = a2−2b. The sequence {sk} is called the

third-order characteristic sequence of f(x). The kth term of the characteristic sequence, sk,

generated by f(x) is denoted sk(a, b) or sk(f). The period of f(x) is defined as the smallest

integer Q such that f(x)|(xQ − 1). Since the polynomial f(x) ∈ Fq[x] is irreducible over Fq

and {sk} is generated by f(x), Q = per({sk}) = per(f) = ord(α). In GH-PKC [44], q = p,

and Q is a prime factor of p2 + p + 1. In XTR-PKC [63], q = p2, Q is a prime factor of

p2 − p + 1 and the characteristic polynomial f(x) has the form:

f(x) = x3 − ax2 + apx− 1, a ∈ Fq (2.20)

The monic irreducible polynomial f(x) has roots of the form α,αq , αq2
∈ Fq3 (f(x) is the

minimal polynomial of α). Let fk(x) denote the minimal polynomial of αk. Using the

Newton Identity, fk(x) can be represented as [41, 44]:

f(x) = x3 − sk(a, b)x2 + s−k(a, b)x− 1 (2.21)

where s−k(a, b) = sk(b, a) is the kth term of the reciprocal sequence generated by f−1(x) =

x3 − bx2 + ax − 1. (In XTR, s−k(a, b) = sp
k(a, b).) Hence, in GH (short for GH-PKC), fk

can be represented by (sk, s−k) and in XTR fk by sk.

Let the notation sr(fe(x)) denote the rth term of the characteristic sequence generated

by the polynomial fe(x)1. Algorithms for sequence term computations use the following

Commutative Law [44] for characteristic sequences:

1We henceforth drop the indeterminate x from the notation fe(x) for simplicity.
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Theorem 2.3.3. Commutative Law [44]: For all integers r and e, the rth term of the

characteristic sequence generated by the polynomial fe equals the the eth term of the

characteristic sequence generated by the polynomial fr, which in turn equals the (re)th term

of the characteristic sequence generated by the polynomial f .

sr(fe) = sr(se(a, b), s−e(a, b)) = sre(a, b) = se(fr) (2.22)

Proof: We know that se = Tr(αe) = αe + αqe + αq2e. Also, the minimal polynomial

of αe can be expressed as fαe(x) = (x − αe)(x − αqe)(x − αq2e) = x3 − sex
2 + s−ex − 1.

Now, the rth term of the characteristic sequence generated by the polynomial fe(x) can be

written as:

sr(se(a, b), s−e(a, b)) = (αe)r + (αqe)r + (αq2e)r

= ser(a, b)

This proves the theorem.

Sequence Operations: The sequence terms are computed by the following two sequence

operations [45]:

• OP1: Given an integer k and fe, compute s̄ke.

• OP2: Given s̄k and s̄e (both integers k and e need not be known), compute s̄k+e.

2.3.5 Cubic LFSR-based Diffie-Hellman

Gong et al. [44] and Lenstra et al. [63] independently propose the cubic-LFSR based Diffie-

Hellman scheme. The Diffie Hellman scheme, CLFSR-DH, can be divided into three phases:

initialization, key generation, and key agreement. Let entities A and B participate in the

cubic-LFSR based DH scheme. The CLFSR-DH works as follows:

Initialization (CLFSR-DH.Init): Entities A and B agree upon the public parameters

params = 〈p,Q, f(x)〉, which can be described as follows:

• Find integer j such that Q = j2 − j + 1 is a 160 bit prime.

• Find integer k such that p = j + k ∗Q and p is of the order of 170 bits, and p is

of the form 2 mod 3. Set q = p2.
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• Form characteristic polynomial f(x) = x3−ax2+bx−1, an irreducible polynomial

over Fp, with period Q. (For XTR, b = ap.)

The reader is referred to [63] for a thorough discussion on parameter selection for the

XTR cryptosystem.

Key generation (CLFSR-DH.KeyGen):

Entity A randomly chooses integer e ∈ Z
∗
Q as its private key and computes the public

key fe = OP1(e, f). Similarly entity B randomly chooses private key r ∈ Z
∗
Q and

computes fr. For GH, the public key fe is represented by the dual terms (se, s−e) and

for XTR, fe is represented by se.

Key agreement (CLFSR-DH.KeyAgg): Entities A and B engage in DH key agreement as

follows:

1. A → B : fe = se [= (se, s−e) for GH]

2. B → A : fr = sr [= (sr, s−r) for GH]

3. A : OP1(e, fr) = ser [And OP1(−e, fr) = s−er for GH]

4. B : OP1(r, fe) = ser [AndOP1(−r, fe) = s−er for GH]

In Steps 1 and 2, entities A and B send each other their respective public keys. In

Steps 3 and 4, A and B compute the eth and rth sequence terms of characteristic sequences

generated by fr and fe respectively. Following Theorem 2.3.3, entities A and B compute

the common session key ser in the XTR-mode (and (ser, s−er) in the GH-mode). In the

XTR-DH protocol, entities A and B compute and share a single element in Fq as the session

key; in the GH-DH protocol, A and B compute and share a pair of elements in Fq as the

session key.

The following example illustrates CLFSR-DH in the GH cryptosystem.

Example 2. Consider the finite field Fq, where q = 5 and f(x) = x3 + x − 1. The initial

state of the cubic LFSR is given by s0 = 3, s1 = a = 0, s2 = a2 − 2b = −2 mod 5 = 3.

The characteristic sequence generated by f(x) is:

3, 0, 3, 3, 2, 0, 1, 2, 4, 4, 3, 0, 1, 3, 4, 3, 4, 1, 4, 3, 2, 1, 1, 1, 0, 0, 1, 0, 4, 1, 1, 3, 0, 3, . . .
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The characteristic sequence generated by the reciprocal polynomial f−1(x) = x3 − x2 − 1 is

the reverse of the characteristic sequence of f(x):

3, 1, 1, 4, 0, 1, 0, 0, 1, 1, 1, 2, 3, 4, 1, 4, 3, 4, 3, 1, 0, 3, 4, 4, 2, 1, 0, 2, 3, 3, 0, 3, 1, 1, . . .

The period of the sequence (also the period of f(x)) is 52 + 5 + 1 = 31.

Consider the polynomial f9(x) = x3−s9x
2+s−9x−1 = x3−4x2+x−1. The characteristic

sequence generated by f9(x) is:

3, 4, 4, 0, 0, 4, 1, 0, 3, 3, 4, 1, 3, 0, 3, 0, 2, 1, 2, 4, 0, 3, 1, 1, 1, 4, 1, 1, 2, 3, 1, 3, 4, 4, . . .

Similarly, the characteristic sequence generated by f4(x) = x3−s4x
2+s−4x−1 = x3−2x2−1

is:

3, 2, 4, 1, 4, 2, 0, 4, 0, 0, 4, 3, 1, 1, 0, 1, 3, 1, 3, 4, 4, 1, 1, 1, 3, 2, 0, 3, 3, 1, 0, 3, 2, 4, . . .

Entity A sends f9(x) = (s9, s−9) = (4, 1) to entity B. Entity B sends f4(x) = (s4, s−4) =

(2, 0) to entity A.

Entity A computes the ninth sequence term generated by the polynomial f4(x) equals

s9(f4) = 0. A also computes the term s−9(f4) = 1. Similarly, entity B computes the fourth

sequence term generated by the polynomial f9(x) equals s4(f9) = 0. B also computes the

term s−4(f9) = 1. The DH key is:

(s9(f4), s−9(f4)) = (s4(f9), s−4(f9)) = (0, 1)

We construct all our protocols using the XTR cryptosystem [63], a cubic-LFSR based

PKC. However, all protocols proposed in the dissertation can be seamlessly extended to

PKCs based on higher-order LFSR sequences, with minor modifications, depending on the

desired security level. A brief mathematical explanation behind reduced representations of

finite field elements is as follows. Consider an element α ∈ (Fqn)∗. Using a polynomial basis

over Fq, given an integer i, αi can be represented by n log q bits. The goal is to obtain a

smaller representation of any such αi. It can be shown that depending on the underlying

finite field Fqn , αi can be represented by [41]:

n− 1 log q bits for general values of q and n;

n/2 log q bits if q = p2 and n is even;

(n− 1)/2 log q bits if q = p2 and n is odd;

29



The XTR-PKC [63], is a special form of the third case and the GH-PKC [45] belongs

to the first case.

We consider 1024-bit finite fields, that is Fqn with n log q = 1024 as the security

benchmark. We choose the XTR-PKC, where n = 3 (cubic), p is a 170-bit prime

and q = p2 is 340 bits and αi, and hence every sequence term, can be represented by

(n− 1)/2 log q = (3− 1)/2 ∗ 340 bits = 340 bits.

2.4 Conclusion

In this chapter we have presented the basics and special forms of digital signatures. We

have also provided the mathematical background of LFSR sequences and construction of a

cryptosystem using LFSR sequences.

In the following chapters, we present our research in building efficient and scalable

authentication techniques in four networking contexts: (1) authenticating feedback in

multicast applications [27], (2) authenticating source routes in mobile ad hoc networks [25],

(3) authenticating routes advertisements in inter-domain routing protocols [24], and (4)

providing accountability in privacy-preserving systems [23].

Copyright c© Saikat Chakrabarti 2008
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Chapter 3

Authenticating feedback in multicast applications

Distributed applications involving large numbers of participants proliferate in the

modern Internet. Examples include file sharing, software updates, news feeds, video

conferencing, multi-player games and replicated databases. The Internet Protocol (IP)

multicast service [31] was developed to support such applications. It offers an abstraction

mechanism: The network hides the number and location of recipients from the sender,

enabling it to treat an arbitrary number of participants as a single group. For a variety

of reasons, however, network-level IP multicast service has never achieved widespread

deployment. More recently, researchers have proposed overlay multicast schemes,

implemented at the application layer, as a substitute to traditional multicast schemes.

Significant research has been done in designing deployable, scalable overlay multicast

schemes [2, 5]. Overlays offer several advantages as a vehicle for multicast implementation:

They are incrementally deployable, adaptable and customizable [56]. Many such schemes

offer the same abstraction mechanism as network-level IP multicast: Participants need not

be aware of the identities of other participants but can treat them as a group. Multicast

applications are sometimes classified based on the number of data sources: One-to-many

multicast schemes contain a single source, which transmits data to many receivers; many-

to-many schemes allow every participant to be a potential source. Only the former type is

generally considered to scale to a large number (thousands to millions) of receivers; examples

of applications include software distribution, multimedia transmission, and real-time news

feeds.

3.1 Problem statement

A common problem faced by large-scale one-to-many multicast applications is implosion.

If the source needs to obtain feedback from the receivers—for example, information about

loss rates, which might be used for adaptive congestion control, or acknowledgment

information—it is not feasible for receivers to simply transmit their information to the

source. First, the funneling effect of the multicast topology causes congestion as feedback

traffic nears the multicast source (for both native and overlay networks). Second, the receipt

of individual unicast messages from receivers breaks the multicast abstraction, forcing the
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source to deal with receivers as individuals. Researchers have developed a number of

approaches to address these issues, including sampling [16] and concast [20], an “inverse”

abstraction service analogous to multicast.

The design of efficient and scalable security mechanisms for multicast applications,

whether IP- or overlay-based, also poses significant challenges. The problem is inherently

more complex than point-to-point two-party security, and the mechanisms used for

unicast communication cannot be directly applied. A significant amount of research has,

therefore, focused on sender and data authentication, anonymity, non-repudiability, and key

management for multicast-based applications.

In this chapter, we focus on the problem of collecting authenticated feedback in multicast

applications. Consider a source multicasting information to a large number of nodes, where

the transmitted information is subject to loss. The source would, therefore, like to verify—

securely—that the data has been reliably delivered to the intended receivers, even in the

presence of an adversary who might send bogus information to the source.

The “standard” unicast-like solution would have receivers send signed acknowledgments

(Acks) to the source. The use of digital signatures on the Acks prevents the source from

being fooled by fake Acks that the adversary might inject. Unfortunately, this approach

leads to implosion at the source, and also forces the source to deal with receivers individually.

We call this the signed-Ack implosion problem in which the source needs to verify all

individual signatures on the Acks that it receives. The challenge is to find an efficient,

scalable and fault-tolerant technique of convincing the source that the intended multicast

receivers have indeed received the multicast data.

3.2 Protocol overview

We propose a cryptographic technique for combining multiple signatures on a message into

a single compact signature as a solution to the signed-Ack implosion problem. As a building

block of our solution, we present a novel cubic (third-order) linear feedback shift register

(LFSR)-based single-signer signature scheme, CLFSR-S, following the EG I.4 [51] variant

(shown in Table 2.1) of the ElGamal signature family. (A single-signer signature scheme

means there is a single entity signing the message, as opposed to multiple signers in the case

of a multisignature. The verifier is also a single entity, though the verification algorithm

is public and thus any number of entities can verify the signature provided they have the

public key of the signer.) Although CLFSR-S is not provably secure, it can serve as the basis

of a highly efficient, single round, tree-based multisignature scheme CLFSR-MS owing to its

32



unique construction/signature format. Before we discuss the cryptographic details of the

signature schemes, we present the system model, the basic idea of the protocol, and discuss

the concept of public key aggregation using a trusted third party.

3.2.1 System model

Multicasting via an overlay network offers several advantages compared to using traditional

IP multicast service [56]. Overlay multicast networks are built on top of a substrate network.

The substrate network consists of nodes (routers) that are connected by links (IP paths).

A set of specialized nodes, called Multicast Service Nodes (MSNs), are distributed in the

substrate network following MSN placement strategies [5].

Each MSN acts as a replication engine able to create multiple copies of incoming data and

forward each copy to other MSNs or deliver it to an end host. A multicast receiver registers

with a single MSN to receive multicast data. Prior to multicast data distribution, the MSNs

organize themselves into a multicast delivery tree using a suitable routing algorithm. The

root of the multicast delivery tree is the MSN to which the multicast source subscribes.

Multicast feedback originates at the receivers of the multicast data and rises through the

multicast delivery tree to reach the root MSN. An arbitrary internal node of the tree only

needs to know its parent, and not the entire network topology, to deliver the multicast

feedback. In addition to the primary functions, such as data replication, tree formation,

group management, and feedback processing, the MSNs can serve as key-management and

key-distribution centers.

Fig. 3.1 depicts a simple model of the multicast/feedback delivery network as a tree

rooted at the source. We model our solution in the form of a regular binary tree for

simplicity, although the proposed solution works for any rooted tree. The T leaf nodes

n1, n2, . . . , nT are the multicast receivers that send signed Acks toward the source n(1,T ).

An arbitrary intermediate node n(a,b) is the root of the subtree with leaves na, na+1, . . . , nb

(ni is a simplified notation for n(i,i)). The set of all nodes in the multicast delivery tree is

denoted as N. Any node n(a,b) ∈ N maintains local information about the network topology

(children and parent) for receiving and forwarding signed Acks.

Each leaf node na generates its own private and public keys (SKa, PKa) following the

key-generation technique of the underlying cubic LFSR-based cryptosystem and registers

its public key PKa with the TTP. The TTP checks the validity of the registered public keys

and provides each node trusted copies of public keys of its children. Each leaf node na signs

each Ack with its public key PKa, following the LFSR-based signature scheme presented in
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Figure 3.1: Multicast feedback delivery tree
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Section 3.4.1 and sends the (Ack, signature) pair to its parent. Each parent, n(a,b), of leaf

nodes na and nb does the following:

1. Requests and receives trusted copies of public keys PKa and PKb of its children, na

and nb, from a trusted third-party (TTP). (This step is only needed for the first Ack;

the TTP can go offline for subsequent Acks.)

2. Verifies the received signatures.

3. Combines PKa and PKb to form the aggregate public key PK(a,b) by the procedure

described in Section 3.2.2.

4. Combines the signatures to form a multisignature.

5. Sends the (Ack, multisignature) pair to its parent node.

6. Registers the aggregate public key PK(a,b) with the TTP.

Each intermediate node n(a,c) does the same with the multisignatures that it receives

from its children n(a,b) and n(b+1,c) (b = a+c−1
2 ), using the respective aggregate public keys
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PK(a,b) and PK(b+1,c) received from the TTP, sends the (Ack, multisignature) pair to its

parent and registers the aggregate public key PK(a,c) with the TTP.

This wave of signed-Ack verification, multisignature generation and public key ag-

gregation propagates up the tree to the source. The source needs to verify only two

multisignatures (those of its children n(1, T
2

) and n(T
2
+1,T )) to authenticate whether the

multicast message was reliably delivered to the intended multicast receivers.

In this chapter, we focus on the construction of a highly efficient multisignature suitable

for authenticating feedback in multicast applications. We omit a complete discussion on the

details of distributed public key management and distribution via multiple special function

MSNs. In this thesis, a centralized trusted third-party (TTP) is modeled as a form of

abstraction, which serves to validate and distribute public keys to nodes in the multicast

delivery tree.

Next, we describe the cryptographic details of aggregating public keys of the multicast

receivers.

3.2.2 Aggregating public keys

An authentication protocol is composed of two distinct phases: bootstrapping phase and

authentication phase. In the bootstrapping phase, the verifier securely provides the claimant

with something the claimant should know, namely, the bootstrapping material. The

verifier later requires the claimant to demonstrate knowledge of the bootstrapping material

to prove its identity. If the bootstrapping material consists of symmetric key data, the

channel over which the data is sent needs to be both authenticated and confidential. In the

realm of public-key cryptography, the concept of the bootstrapping is an exchange of public

keys; the channel need not be confidential (passive eavesdropping is allowed), but it must

an authentic channel.

In our protocol, we use a TTP to validate, generate (optionally), and distribute the

bootstrapping material constituting of individual and aggregate public keys. Fig. 3.2 depicts

a functional model of the TTP. Each leaf node, na, randomly chooses a long-term private

key SK = x ∈R Z
∗
Q, computes a public key PKa = s̄xa = {sx, sx+1, sx+2}, and registers the

public key PKa the TTP.

Each node, n(a,b), whose children are leaf nodes, requests and receives the individual

public keys, s̄xa and s̄xb
of its children na and nb, from the TTP and uses them to verify

the signatures that node n(a,b) receives. Then the node computes the aggregate public key

PK(a,b) = s̄x(a,b)
= s̄(xa+xb) ← OP2(s̄xa, s̄xb

) (the terms xa, xb, and x(a,b) all belong to Z
∗
Q)
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Figure 3.2: A functional model of the trusted third party
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and registers it with the TTP. (The sequence operation OP2 is defined in Chapter 2.) The

TTP validates the aggregate public keys and stores them. Each intermediate node, n(a,c)

(n(a,c) 6= n(1,T )) requests and receives the aggregate public keys, s̄x(a,b)
and s̄x(b+1,c)

, of its

respective (non-leaf) children n(a,b) and n(b+1,c), from the TTP and uses them to verify the

multisignatures that the intermediate node receives. Node n(a,c) computes the aggregate

public key PK(a,c) = s̄x(a,c)
= s̄(x(a,b)+x(b+1,c)) ← OP2(s̄x(a,b)

, s̄x(b+1,c)
) and registers it with

the TTP. Thus, an aggregate public key PK(a,b) has the form PK(a,b) = s̄x(a,b)
, where

x(a,b) =
∑b

i=a(xi) is in Z
∗
Q.

There is no existence of an aggregate private key corresponding to a particular aggregate

public key. An intermediate node n(a,c) computes the aggregate public key PK(a,c) = s̄x(a,c)

given public keys PK(a,b) and PK(b+1,c) and does not know the corresponding aggregate

private key x(a,c). Only leaves have individual private keys.

The protocols proposed in this chapter do not require the existence of additional special

nodes serving as the TTP. Existing MSNs can have added functionality, constituting a

distributed TTP service. Once the MSNs have organized themselves into the multicast

delivery tree, the TTP service can distribute keys and go offline. The TTP service needs

to be available only in the following cases: (1) A single or group of nodes join the multicast
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tree. (2) Node(s) leave the multicast tree. (3) Nodes are unavailable temporarily (the

length of time is a network design parameter) due to link failure(s). In these cases, nodes

need to generate new aggregate public keys and also register them with the TTP so that

other nodes can receive certified copies of new aggregate We omit a detailed description of

public-key management services by a third party service in this thesis. We refer the reader

to mechanisms for authentic public-key distribution via zero-knowledge proof of knowledge

techniques by Micali et al. [72] for a thorough discussion on the subject.

In following sections, we present the construction of the LFSR-based signature

schemes (single-signer and multisignature) used to authenticate the feedback in multicast

applications. However, before we do so, we need to address the problem of choosing

the underlying signature variant to construct a scalable and fault-tolerant multisignature.

Scalability in a tree-based multisignature requires that each Ack round involve a single

round of communication between the leaf nodes (multicast receivers) and the root node

(the source). Fault-tolerance requires that leaf nodes need not re-send their signed Acks

when intermediate nodes receive invalid signatures or do not receive a signature from one

of their children. We now describe our rationale for choosing a suitable variant within the

ElGamal family of digital signatures.

3.3 Choosing a suitable ElGamal variant for scalability

The challenge is to choose a signature variant within the ElGamal family that can result in

a single-round, efficient, and fault-tolerant tree-based multisignature.

3.3.1 Eliminating variants of the ElGamal family

Horster et al. [51] propose 5088 signature variants of the ElGamal family. They analyze the

variants and observe that some variants involve faster signature generation and verification

than others. Four variants (EG I.3, I.4, II.3 and II.4) do not require computation of an

inverse (modulo Q) during signature generation. If we exclude the multiplication operation

from the possibilities of the function g (described in Chapter 2), we are left with the EG

III.3, III.4, V.3 and V.4 variants. Horster et al. also observed that variants in which one of

the parameters, A, B or C equals unity, need only two modular exponentiations, instead of

three, during signature verification. So, the EG II/III/IV/V variants involve fast signature

verification. Horster et al. proposed the EG I/II/III/V.3 and I/II/III/V.4 variants of the

ElGamal family for fast signature generation and the EG II/III/IV/V variants for fast

signature verification.
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However, we observe that most efficient signature variants proposed by Horster et

al. cannot be used to construct a scalable (single round) tree-based multisignature

scheme. More specifically, we claim that any signature variant involving a permutation

of (±A,±B,±C) of the form (f(m, ∗), ·, ·) as described in Table 2.2, where the second

argument ∗ = r or ∗ = t, will inherently result in a multisignature requiring at least three

communication rounds to achieve protocol completion. One communication round consists

of elements (like ephemeral public keys) traversing the entire tree from the leaf nodes to

the source or vice versa.

We pick the Schnorr variant, an EG II.3 variant, and demonstrate the problem with using

signature variants, involving a permutation of (±A,±B,±C) of the form (f(m, ∗), ·, ·), to

construct a tree-based multisignature.

3.3.2 Problem with using the Schnorr variant

The first intuition to construct the tree-based multisignature is to start with a popular,

provably secure signature variant, namely, the Schnorr variant. Both Micali et al. [72] and

Castelluccia et al. [22] build their multisignatures with the Schnorr-type signing equation.

In the signing equation of the EG II.3 variant, the function f(·, ·) is modeled as a

cryptographic hash function; f takes message m, along with the ephemeral public key r

(unique to a signer) as inputs. In a tree-based multisignature, all signers ni (a ≤ i ≤ b) sign

the same message and thus, also need to agree on a common aggregate ephemeral public

key if the individual ephemeral public keys are combined with the messages. Specifically,

in a tree-based multisignature, the least number of rounds can be described as follows:

Round 1: All signers ni (a ≤ i ≤ b) generate their own ephemeral public key ri and send

it to the multicast source.

Round 2: The source combines the individual ri’s to form the common aggregate

ephemeral public key, R =
∏b

i=a ri, and sends R down the multicast tree to all nodes

ni.

Round 3: All signers generate their individual signatures on the hash H(m,R). The hash

value H(m,R) is common to all signers and thus, the internal nodes in the tree can

aggregate the individual signatures to form multisignatures, which can be propagated

up the tree to the source.

In a multi-round tree-based multisignature, the signers (leaf nodes) need to cooperate

in the process of signature aggregation. A single-round multisignature only requires the
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leaf nodes to sign their respective Acks and send them toward the source; the leaves do not

need to participate further in constructing the aggregate signature.

Moreover, a direct application of the Schnorr variant in building such multisignatures

(as proposed by Micali et al. [72]) does not result in a fault-tolerant construction; whenever

there is an invalid signature or a missing signature, the entire protocol has to be started

from scratch. This property is undesired in distributed applications involving multicast

feedback, since missing signatures can be common due to faults in the network and invalid

signatures can result when an adversarial node suppresses a multicast receiver and injects

bogus signed Acks in the delivery tree. An internal node that detects a missing or invalid

signature should be still able to aggregate the remaining valid signatures and forward the

multisignature toward the source. Castelluccia et al. [22] use the Schnorr variant and

design a three-round, fault-tolerant version of a tree-based multisignature scheme using a

Merkle-tree [71] aggregation technique to combine individual ephemeral public keys into a

common aggregate ephemeral public key. However, the Merkle-tree aggregation technique

results in degradation of efficiency and scalability of the protocol: Both communication and

computation costs increase linearly with the depth of the tree (edges from aggregating node

to source). We present a performance comparison of the schemes in Section 3.5.3.

We choose the EG I variant to construct our tree-based multisignature scheme and

use primitives from LFSR sequences to enhance the efficiency of the proposed signature

schemes.

3.4 Construction of the LFSR-based signature schemes

In this section, we present the cryptographic constructions of a novel single-signer digital

signature scheme, CLFSR-S, using cubic LFSR sequences, and an efficient, single round

multisignature scheme, CLFSR-MS, based on the CLFSR-S.

3.4.1 The single-signer signature scheme

CLFSR-S follows the EG I.4 variant of the ElGamal signature scheme family. CLFSR-S is a

building block for the multisignature scheme, CLFSR-MS.

CLFSR-S consists of four phases: Initialization, key generation, signature generation and

signature verification. During the initialization phase, the signer and the verifier choose

and agree on the system public parameters: params = 〈p,Q, f(x),H〉, where p,Q and f(x)

are chosen following the procedure described in Chapter 2, and H : {0, 1}∗ 7→ ZQ is a
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cryptographic hash function. The signer generates its long-term private and public keys,

(SK,PK) = (x, s̄x) following the procedure described in Chapter 2.

Figure 3.3: Authenticating feedback in multicast applications: The CLFSR-S signature

scheme

Signature Generation Signature Verification

1. Randomly choose ephemeral private key

k ∈R Z
∗
Q and compute ephemeral public

key s̄k ← OP1(k, f). Let r denote the

integer sk mod Q.

2. Compute hash of message h = H(m);

Solve for t in the following equation: t ≡

kr − xh mod Q.

3. Compute s̄kr ← OP1(s̄k, r).

4. Send the signature σ = 〈s̄kr, t〉 and the

message m to verifier.

1. Compute h = H(m).

2. Compute A = f(th−1+x) ←

OP2(th
−1, s̄x).

3. Compute B = f(rh−1k) ←

OP1(h
−1, fkr). fkr can be di-

rectly derived from s̄kr.

4. Accept signature if A = B, else

reject signature.

Fig. 3.3 describes the signature generation and signature verification phases of CLFSR-S.

A naive cubic LFSR variant of EG I.4 generates a signature of the form σ = 〈fk, t〉. We

perform an additional computation in Step 3 of the signature generation process to compute

the term s̄kr. The specific format of the individual signature that CLFSR-S generates enables

us to efficiently construct the multisignature in a single round.
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3.4.2 The proposed multisignature

All internal nodes of the multicast feedback delivery tree, shown in Fig. 3.1, follow the

multisignature scheme, CLFSR-MS, to verify, aggregate, and create multisignatures on the

signed Acks. We provide a definition of a multisignature, and present constructions of the

cubic LFSR-based CLFSR-MS scheme following the definition.

Definition 3.4.1. A multisignature scheme MS is the tuple 〈Init, KeyGen, G, V, A〉 whose

components are defined as follows:

Initialization (Init): A probabilistic polynomial-time (PPT) algorithm that takes a

security parameter λ as input and outputs system public parameters params.

Key Generation (KeyGen): A PPT algorithm that takes system parameters params as

input and outputs a private and public key pair (SK,PK).

Signature Generation (G): A PPT signature generation algorithm that takes the system

public parameters params, the ephemeral private key k, the long-term private key SK,

and a message m as inputs, and outputs a signature σ. Not all signature generation

algorithms are probabilistic. RSA signature generation is deterministic, which means

there is no concept of ephemeral private/public key and repeated signing of a message

with the long-term private key produces the same signature. However, in ElGamal

signatures repeated signing of the same message with different randomly generated

ephemeral private keys will result in different signatures. Also, the same ephemeral

private key should not be used for signing more than once; there exists a type of

forgery, called Selective forgery [87] if the ephemeral private key is re-used for

signing messages.

Signature Verification (V): A deterministic algorithm that takes the system public

parameters params, public-key PK, a signature σ and the message m as inputs, and

outputs a result, Valid or Invalid.

Signature Aggregation (A): A deterministic algorithm that takes the system public

parameters params, an array of multisignatures (or individual signatures in case of

leaf nodes) σ1, σ2, . . . , σn as input, and outputs multisignature σ(1,n).
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Multisignature Verification (V): A deterministic algorithm that takes the system public

parameters params, aggregate public-key PK(1,n)
1, the multisignature σ(1,n) and the

messages m as inputs, and outputs a result, Valid or Invalid.

The form of aggregation depends on the underlying network topology and the underlying

signing equation. In the proposed tree-based multisignature, the internal nodes verify

and aggregate the signatures and do not contribute their own signatures in the resulting

multisignature. However, in the case of authenticating source routes in the DSR protocol,

described in Chapter 4, the aggregating node includes its own signature on the source

route in the multisignature. Following the above definition, we construct our proposed

multisignature scheme CLFSR-MS as follows:

Initialization (CLFSR-MS.Init): All nodes choose and agree upon the system public

parameters params = 〈p,Q, f(x),H〉, where p,Q and f(x) are as described in

Chapter 2 and H : {0, 1}∗ 7→ ZQ is a cryptographic hash function.

Key Generation (CLFSR-MS.KeyGen): Each multicast receiver (leaf node), na, generates

its long term private, public-key pair (SKa, PKa) = (xa, s̄xa). Each internal node

generates aggregate public keys as described in Section 3.2.2.

Multisignature Generation (CLFSR-MS.G): Each multicast receiver, na, generates a

signature σa = 〈s̄kara
, ta〉 on the hashed multicast acknowledgment, h = H(m),

following the CLFSR-S signature generation. Node na sends (h, σa) to its parent.

Multisignature Verification (CLFSR-MS.V): Each intermediate node n(a,c), receives sig-

natures σ(a,b) = 〈t(a,b), s̄K(a,b)
〉 and σ(b+1,c) = 〈t(b+1,c), s̄K(b+1,c)

〉 from its children n(a,b)

and n(b+1,c), where b = a+c−1
2 , K(a,b) =

∑b
i=a(kiri) and t(a,b) =

∑b
i=a(ti). Node

n(a,c) verifies the signatures σ(a,b) and σ(b+1,c) using the aggregate keys PK(a,b) and

PK(b+1,c) and following the CLFSR-S signature verification process. For nodes that are

parents of leaf nodes, the signature σ(a,a) denotes σa.

Multisignature Aggregation (CLFSR-MS.A): If the signatures σ(a,b) and σ(b+1,c) pass

CLFSR-MS.V, the parent node n(a,c), if it is not the source node, generates the

multisignature σ(a,c) by computing:

• t(a,c) ≡ t(a,b) + t(b+1,c) mod Q and

1The aggregation of public keys is part of the initial set-up procedure and has been discussed in
Section 3.2.2.
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• s̄K(a,c)
= s̄K(a,b)+K(b+1,c)

← OP2(s̄K(a,b)
, s̄K(b+1,c)

).

A multisignature σ(a,c) = 〈t(a,c), s̄K(a,c)
〉, under the aggregate public-key PK(a,c)

propagates up the tree to the source. If the multisignatures σ(1, T
2

) and σ(T
2
+1,T ) pass the

verification procedure MS.V at the source, the individual signatures σ1, . . . , σT of all leaves

n1, . . . , nT are verified collectively, and the source is convinced that the multicast data has

been reliably delivered to the intended recipients.

In the following section, we perform an extensive analysis (correctness, security, and

cost) of the multisignature scheme.

3.5 Analysis

3.5.1 Correctness

Correctness of a security protocol assumes honest behavior from the entities participating

in the protocol. Dishonest behavior, for example forging of signatures, and dishonestly

verifying a signature, is captured through through the security analysis of the protocol.

A tree-based multisignature scheme constructed in the above fashion is correct if the

multisignatures, σ(1, T
2
) and σ(T

2
+1,T ), of the respective left and right children of the source,

n(1,T ), pass the verification procedure CLFSR-MS.V under the respective aggregate public keys

PK(1, T
2

) and PK(T
2

+1,T ), provided:

1. Each node n(a,b) ∈ N chooses and agrees upon the system public parameters params =

〈p,Q, f(x),H〉.

2. Every leaf node na honestly executes CLFSR-MS.K to generate its public and private

key pair (PKa, SKa) and executes CLFSR-MS.G to generate its signature σa on hashed

Ack.

3. Every intermediate node n(a,b), honestly executes CLFSR-MS.A to generate multisigna-

ture σ(a,b).

Theorem 3.5.1. The multisignature scheme CLFSR-MS is correct.

Proof: Consider any arbitrary node n(a,c) ∈ N whose left and right children are

n(a,b) and n(b+1,c) (b = a+c−1
2 ). In this proof we show that the multisignatures, σ(a,b) and

σ(b+1,c), of the respective left and right children of n(a,c) pass the corresponding verification

procedure CLFSR-MS.V executed at n(a,c) under the aggregate public keys PK(a,b) = s̄x(a,b)

and PK(b+1,c) = s̄x(b+1,c)
provided the conditions mentioned above hold.
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Observing the procedure CLFSR-MS.V for verification of the multisignature σ(a,b) using

the aggregate public key PK(a,b), we know:

A = OP2(v, s̄x(a,b)
) = fv+x(a,b)

where v = h−1
∑b

i=a(ti) and x(a,b) =
∑b

i=a(xi). Since, ti ≡ kiri − xih mod Q for a ≤ i ≤ b

and K(a,b) =
∑b

i=a(kiri), we observe:

A = fPb
i=a(h−1ti+xi)

= fPb
i=a(h−1kiri)

= fh−1K(a,b)
= OP1(h

−1, fK(a,b)
)

= B

Thus, σ(a,b) is valid under PK(a,b). Similarly, by replacing the terms PK(a,b), t(a,b) and

K(a,b) with PK(b+1,c), t(b+1,c) and K(b+1,c), respectively, we can show that σ(b+1,c) passes

the verification procedure CLFSR-MS.V under the public key PK(b+1,c).

What remains to be shown is that it is hard for an adversary to deviate from the key

pair and signature generation protocols and still generate a correct signature. However, this

is precisely the issue of forgery that we discuss next.

3.5.2 Security

The security of CLFSR-MS is based on the difficulty of forging any individual signature or

multisignature generated by any node in the multicast/feedback delivery tree. An adversary

can eavesdrop on a channel, inject false messages, and run a PPT algorithm to forge a

(multi)signature constructed by an arbitrary node. A successfully forged (multi)signature

passes the CLFSR-MS.V verification procedure. We show that the EG I.4 variant reduces

(in the security sense) to the multisignature CLFSR-MS. In other words, an adversary who

successfully forges a CLFSR-MS multisignature, can forge an EG I.4 signature.

To the best of our knowledge, all existing multisignatures based on the DL problem have

been constructed using variants of the ElGamal family of signatures. The EG I.4 variant

uses the signing equation: t ≡ xh + kr mod Q, where p and Q are large primes of the

order of 1024 bits and 160 bits, respectively, with the condition that Q|(p− 1); α ∈ Z
∗
p is a

generator of the cyclic subgroup of order Q, h is the hashed message, t is the signature on

h, x ∈R Z
∗
Q is the private key, αx is the public key, k ∈R Z

∗
Q is the ephemeral private key

and r = αk is the ephemeral public key.
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The security of the proposed single-signer scheme, CLFSR-S, is based on the difficulty

of solving the trace discrete logarithm (Tr-DL) problem [41, 44, 45, 63] in Fq
2. The trace

discrete logarithm (Tr-DL) problem and assumption (with Fqn = Fq3) can be defined as

follows. We henceforth drop the suffix Fqn/Fq from the trace function, for simplicity of

notation.

Definition 3.5.1 (Trace (Tr)-DL Problem/Assumption). Let α be a generator of the

multiplicative group (Fq3)∗, where q is a large prime or a power of a large prime. The Tr-DL

Problem in Fq is: Given (q, α ∈ (Fq3)∗, β ∈ Fq), find an index k such that β = Tr(αk) or

determine that there is no such index.

Let A be a probabilistic polynomial time (PPT) algorithm that solves the Tr-DL problem.

Define the advantage of the (t, ǫ) Tr-DL solver A as: AdvTrDL
A = Pr[A(q, α, β) = k | α ∈R

(Fq3)∗, k ∈R Z
∗
Q, β = Tr(αk)]. The probability is over the random choices of α in (Fq3)∗, k

in Z
∗
Q and the random bits of A.

Tr-DL Assumption: The finite field Fq satisfies the Tr-DL Assumption if AdvTrDL
A is

negligible.

Lemma 3.5.2 (Giuliani et al. [41]). The Tr-DL Problem is equivalent to the DL problem.

A total break of CLFSR-MS occurs if, given the public key PK(a,b) = s̄x(a,b)
of any node

n(a,b), the adversary is able to compute the corresponding private key SK(a,b) = x(a,b). In

such a case, n(a,b)’s signature can be forged. However, given s̄x, finding x is equivalent to

solving the DL problem in the extension field Fq3 [45]. Using the following lemmas we show

that, assuming a total break has not occurred, an adversary who can successfully forge a

CLFSR-MS multisignature can successfully forge a signature in EG I.4.

Lemma 3.5.3. The single-signer signature scheme CLFSR-S is equivalent to the EG I.4

variant.

Proof: [=⇒] Given a valid CLFSR-S signature σ = 〈s̄kr, t〉 on hashed message h

under the public key s̄x, we know that f(h−1t+x) = f(h−1kr). Let α ∈ Fq3 be a root of

the characteristic polynomial f(x). By the definition of fk(x) (given in Chapter 2), the

roots of f(h−1t+x) are:

α(h−1t+x), α(h−1t+x)q, α(h−1t+x)q2
∈ Fq3

Also, the roots of f(h−1kr) are:

2Refer to Chapter 2 for definition and properties of a trace function.
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α(h−1kr), α(h−1kr)q, α(h−1kr)q2
∈ Fq3

Furthermore, we know from the signing equation of CLFSR-S that h−1t+x ≡ h−1kr mod Q.

Thus, the root α(h−1t+x) of f(h−1t+x) is equal to the root αh−1kr of f(h−1kr). We now have

αh−1t+x = αh−1kr with t ≡ kr−xh mod Q, which is the EG I.4 scheme. Thus, the CLFSR-S

reduces to EG I.4.

[⇐=] Given a valid EG I.4 signature t = 〈r, t〉 on hashed message h under the public

key αx, we know that α(h−1t+x) = α(h−1kr). Also, α(h−1t+x)q = α(h−1kr)q and α(h−1t+x)q2
=

α(h−1kr)q2
where, q = p2 and p is a large prime. We know:

s(h−1t+x) = Tr(αh−1t+x)

= α(h−1t+x) + α(h−1t+x)q + α(h−1t+x)q2

s(h−1kr) = Tr(αh−1kr)

= α(h−1kr) + α(h−1kr)q + α(h−1kr)q2

Thus, s(h−1kr) = s(h−1kr) with t ≡ kr−xh mod Q, which is the CLFSR-S scheme. Thus,

EG I.4 variant reduces to CLFSR-S.

Lemma 3.5.4. The single-signer signature scheme CLFSR-S reduces to the proposed

multisignature scheme CLFSR-MS.

Proof: Let there be n = (b − a + 1) > 1 signers. Suppose there exists a PPT forger

F , which given system parameters params = 〈p,Q, f(x),H〉, public keys s̄xa, s̄xa+1, . . . , s̄xb

(a < b) and message m as inputs, outputs a forged multisignature σF
(a,b) = 〈tF(a,b), s̄

F
K(a,b)

〉

on h = H(m) with non-negligible probability. This means the forged signature σF
(a,b) passes

the verification procedure, CLFSR-MS.V, under the aggregate public key s̄x(a,b)
.

We show that given access to the PPT forger F , system parameters params, an arbitrary

public key PK = s̄x (corresponding private key, x ∈ Z
∗
Q, unknown to the adversary), and

message mF , an adversary can output a forged signature σF = 〈tF , s̄F
kr〉 on h = H(m)

that passes the verification procedure of the single-signer signature scheme, CLFSR-S, under

public key PK. Algorithm 1 shows a polynomial-time reduction from the single-signer

signature scheme CLFSR-S to the multisignature scheme CLFSR-MS.

Since the forged multisignature 〈tF(a,b), s̄
F
K(a,b)

〉 on hF = H(mF ) passes the verification

procedure CLFSR-MS.V under the aggregate public key s̄x(a,b)
, we have:
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input : (s̄x,mF )
output: σF

Pick (b− a) arbitrary long-term private keys xa, xa+1, . . . , xb−1 ∈R Z
∗
Q, where,1

b > (a + 1), and compute the corresponding public keys s̄xa , s̄xa+1, . . . , s̄xb−1
.

Compute s̄xb
← OP2(−

∑b−1
i=a xi, s̄x). xb = x−

∑b−1
i=a xi.2

〈tF(a,b), s̄
F
K(a,b)

〉 ← F(params, s̄xa, s̄xa+1, . . . , s̄xb
,mF )3

Set s̄F
kr = s̄F

K(a,b)
and tF = tF(a,b).4

Return σF = 〈tF , s̄F
kr〉 as the forged CLFSR-S signature on message mF under5

public key s̄x.

Algorithm 1: Reduction of CLFSR-S to CLFSR-MS

A = OP2(t
F
(a,b)(h

F )
−1

, s̄x(a,b)
) = OP1((h

F )
−1

, fF
K(a,b)

) = B

Given that s̄F
kr = s̄F

K(a,b)
, tF = tF(a,b) and xb = x−

∑b−1
i=a xi, we have:

A = OP2(t
F (hF )

−1
, s̄x) = OP1((h

F )
−1

, fF
kr) = B

Thus, σF = 〈tF , s̄F
kr〉 is a valid signature on mF under public key s̄x following the verification

procedure of CLFSR-S.

Theorem 3.5.5. The EG I.4 variant of the Generalized ElGamal signature scheme reduces

to the proposed multisignature scheme CLFSR-MS.

Proof: The proof of the theorem is immediate from Lemmas 3.5.3 and 3.5.4.

There can be an alternative solution to avoid the signed Ack implosion problem that

works as follows. All nodes (leaf and intermediate) in the multicast feedback delivery tree

are assumed to possess (private, public) key pairs. To deliver feedback to the source, each

leaf node generates a signature on the Ack and sends the signed Ack to its parent. After

receiving the signed Ack from its children, each intermediate node verifies the signatures.

If signature verifications succeed, the intermediate node generates its own signature (using

its private key) on the Ack and sends the signed Ack to its parent. This process continues

until the source verifies the signed Acks received from its children to complete the feedback

process. At each stage, a node receives (and needs to verify) the signatures from its children.

This solution has a serious security drawback. Any intermediate node can generate

a signed Ack (dishonestly) even if the node did not receive signatures from its children.

Each node must trust its children to honestly generate a signed Ack only after successful
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verification of the signatures from its children. This trust relationship must be transitive

throughout the multicast feedback delivery tree.

On the other hand, in our solution nodes need not trust their children to honestly report

the receipt of signatures and generate signed Acks. The intermediate do not generate their

own signatures on Acks and thus would need to forge signatures of its children to create

falsely signed Acks. Replay attacks can be avoided by including a sequence number in each

Ack.

The multisignature scheme, CLFSR-MS, though not provably secure, is engineered to

be an efficient and scalable building block to solve the signed-Ack implosion problem in

performance-sensitive multicast applications. In contrast, the multisignature scheme in

Castelluccia et al.’s proposal [22], though provably secure (in the random oracle model),

takes three communication rounds to achieve completion. We omit a thorough discussion on

provable security; the reader may refer to an exemplary discussion on the subject by Koblitz

et al. [61]. We present a performance comparison of the multisignature scheme CLFSR-MS

with those of Castelluccia et al. [22] and Nicolosi et al. [74] in the following section.

3.5.3 Cost

Cubic LFSR-based PKCs [44, 63, 75] use reduced representations of finite field elements.

Elements in an extension field Fqn are represented by their corresponding minimal

polynomials with coefficients in the base field Fq. The security of LFSR-based PKCs is

based on the difficulty of solving the DL problem in the extension field Fqn . However, all

computations are performed in the base field Fq.

Table 3.1 shows direct comparisons of CLFSR-MS with other schemes, namely, ASM by

Micali et al. [72], CASM by Castelluccia et al. [22], and NBLS by Nicolosi et al. [74]. In

Table 3.1, the term e is the cost of modular exponentiation, the term m is the cost of

modular multiplication, h is the cost of hash operation, f is the cost of hashing onto a

GDH group, p is the cost of a pairing computation, L represents the number of tree-edges

along the path from node till source. ASM demonstrates a construction of a multisignature

and is not intended to address the signed-Ack implosion problem; the data presented in

Table 3.1 represents a direct application of ASM to a tree-based multisignature scheme. The

computation/communication cost is based on a security benchmark of 1024 bits: The public

parameters of ASM and CASM are given by the tuple params = 〈p,Q, α〉, where p and Q are

1024 and 160 bit primes, respectively, and α is an element of order Q in Z
∗
p.
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Table 3.1: Authenticating feedback in multicast applications: Cost comparison of CLFSR-MS

with existing schemes.

ASM [72] CASM [22] NBLS [74] CLFSR-MS

Rounds 3 3 1 1

Computation cost 4e + 3m + h 4e + (L + 2)m 4p + f 2OP1 + h+

per node +(L + 1)h +1m 3OP2 + 2m

Communication cost 480 640 + 320L 160 500

per link (bits)

Underlying Problem DLP DLP GDH DLP/Tr-DLP

Fault Tolerance NONE Limited FULL FULL

Public-key size (bits) 2048 2048 766 680

CASM and ASM complete in three rounds due to the specific cryptographic construction

of the Schnorr signature [84]. Loosely speaking, commitments from the signers, needed

to construct the multisignature, need to traverse up the multicast tree and the common

challenge for all signers needs to propagate down the tree, resulting in two additional rounds.

CLFSR-MS uses extremely fast LFSR sequence operations [63, 78] and can achieve the

highest computational efficiency. Given α ∈ Fp6, where p is a 170-bit prime, computing

αk for any integer k requires approximately 23.4 log2 Q multiplications in Fp, where Q, the

order of α, is a 160-bit prime [63]. However, computing the kth sequence term sk = Tr(αk)

given f (represented by Tr(α)) using sequence operation OP1 takes only 8 log2(k mod Q)

multiplications in Fp which is approximately three times faster than computing αk given

α [63]. Thus, the computational cost for one OP1 ≈ 0.33e.

NBLS uses considerably more expensive bilinear pairing operations in its signature/multisignature

verification phase. The lowest known cost for computing a single Tate pairing equals

approximately 11110 multiplications in Fq, where q is a 171-bit prime (for a security

benchmark of 1024 bits) [6].

In CASM, both communication and computation costs increase with the depth of the tree

and CASM incurs the highest communication overhead (excluding overhead due to faults)

per link of all the protocols we compare. CASM offers limited fault-tolerance: the protocol
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can only tolerate a threshold number of communication faults (missing signatures) along

the multicast feedback tree. The threshold depends on the modulus of the underlying DL

problem and the total number of leaves in the tree. A direct application of ASM to the

problem of authenticating multicast feedback does not result in a fault-tolerance protocol;

the protocol needs to restart from scratch if any (multi)signature is missing or fails to verify.

The public key size (equivalent to 1024-bit RSA, excluding shared components of the

public key) for CLFSR-MS is the least per node, followed by NBLS and, CASM or ASM. Moreover,

3.6 Related research

In this section, we provide a brief discussion on prior research related to the problem of

authenticating multicast feedback. The large body of literature on reliable multicast and

implosion avoidance is out of the scope of this dissertation. Readers can find a taxonomy

of reliable multicast protocols in a survey by Levine et al. [64], and protocols on implosion

avoidance can be found in works by Bolot et al. [16] and Calvert et al. [20]. We provide a

background and related research on various forms of aggregate signatures in Chapter 2.

Any solution to the signed Ack implosion problem in large scale, performance-sensitive

multicast applications must address the issue of efficiency and scalability. Scalability

is achieved by minimizing or eliminating increase in communication and computational

overhead with the number of multicast receivers, or, more generally, the size of the

multicast group which includes the intermediate nodes in the multicast/feedback delivery

network. Nicolosi et al. [74] present an Ack aggregation technique (NBLS) for peer-to-peer

multicast using the multisignature scheme of Boldyreva et al. [14]. The NBLS scheme is

scalable and requires a single communication round between the source and the receivers

for multisignature construction. But, due to the expensive pairing operations performed

at each node in the multicast/feedback delivery network, the NBLS scheme is inefficient.

Castelluccia et al. [22], design an Ack compression technique (CASM) using the DL-based

multisignature scheme of Micali et al. [72]. Though the operations in the CASM scheme are

less expensive than pairing operations, the scheme requires three rounds of communication

between the source and the receivers. Moreover, scalability of the CASM scheme is impaired

by the linear increase in communication and computational overhead with the size of the

multicast group.
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3.7 Summary

The problem of collecting authenticated feedback in distributed applications is inherently

more complex than point-to-point two-party security, and the mechanisms used for unicast

communication typically cannot be directly applied. Although a large number (and

varieties) of multisignatures have been proposed, only two protocols, namely CASM by

Castelluccia et al. [22] and NBLS by Nicolosi et al. [74], are specifically tailored to the

problem of collecting authenticated feedback in multicast applications.

The choice of the underlying signing equation and the network topology dictate the

construction, and thus the efficiency and scalability, of the resulting multisignature scheme.

We have considered the use of different variants of the ElGamal signature scheme and

argued that choosing any of the EG II/III/IV/V variants (including the popular Schnorr

variant [84]) cannot result in a single round, scalable and fault-tolerant construction of

tree-based multisignatures.

Our multisignature scheme uses comparatively fast LFSR operations to achieve better

computational efficiency and lower storage overhead than its competitors: CASM, NBLS, and

a direct application of ASM. The security of the tree-based multisignature scheme CLFSR-MS

is based on the Tr-DL Problem in Fq. Our multisignature scheme was constructed using

the XTR public-key cryptosystem for simplicity, although it can be seamlessly constructed

using the GH public-key cryptosystem and can also be extended to PKCs based on higher

order LFSR sequences, with minor modifications, depending on the desired security level.

Copyright c© Saikat Chakrabarti 2008
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Chapter 4

Authenticating source routing protocols in ad-hoc networks

An ad-hoc network can be best described as a network that can be quickly deployed

in unfavorable conditions, where no wired infrastructure exists, and in situations where

it is impractical to build and expect support from a fixed infrastructure. The idea of

generating these “on-the-fly” networks was first proposed by the US Department of Defense

in the 1970’s as packet radio networks [58], which evolved into the Survivable Adaptive

Radio Network program in the 1980’s [35]; the goal was to rapidly deploy packet-switched

networks and provide timely and assured communication for soldiers working in hostile

environments. Since then, ad-hoc networks have gained immense popularity for commercial

use, and have evolved—depending on application—to static ad-hoc networks (or sensor

networks, for example to collect and monitor environmental data), mobile ad-hoc networks

(or MANETs, used primarily for personal communication), and hybrid networks (fixed

sensor nodes connected and managed by a higher tier of mobile nodes). Regardless of the

use, ad-hoc networks are characterized by resource-constrained nodes that need to work in

a cooperative and self-organized manner to perform network functions such as routing, and

mobility management.

Designing secure routing protocols for mobile ad-hoc networks is a challenging task.

Resource constraints of nodes, limited capacity of the wireless medium, node mobility, and

the self-organized form of the network make it difficult to transfer techniques for securing

traditional wired networks to the ad-hoc networking environment. The dynamic source

routing protocol (DSR) is the most popular on-demand source routing protocol designed

for multi-hop wireless ad-hoc networks [57]. DSR is simple and efficient in construction,

offers loop-free routing guarantees and load balancing, uses only soft state, and is robust [57].

However, DSR does not consider an adversarial model of the underlying network. Thus,

it is vulnerable to several forms of attack by malicious nodes, such as injection of bogus

routing information and formation of feedback loops by colluding adversarial nodes [53, 59].

4.1 Problem statement

In the DSR protocol, the source initiates route discovery by generating an RREQ (route

request) packet and broadcasting it to all its neighbors. The RREQ packet contains the
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identity of the destination and the accumulated route from the source. Each node that is not

the destination and has not previously encountered the RREQ packet appends its address

to the source route and re-broadcasts the packet to its own neighbors. RREQ propagation

continues until the destination is encountered. When the destination receives the RREQ

packet, it generates a route reply (RREP) packet containing the accumulated source route

and unicasts the RREP to the source along the reverse path of the source route.

We focus on the following problem: How can a source wanting to find a route to a

destination be assured of the authenticity of the source route advertised in a received RREP

packet? We would like to guarantee authenticity without imposing substantial overhead on

the nodes that help in discovering routes.

4.2 Protocol overview

DSR is vulnerable to several forms of attacks by malicious nodes, including injection of bogus

routing information and formation of feedback loops by colluding adversarial nodes [59]. The

classical approach to mitigating attacks on DSR is to use cryptographic tools to authenticate

information exchanged during the route discovery process. In this section, we present

existing techniques for authenticating route discovery in DSR based on multisignatures.

4.2.1 Basic idea

A first technique for authenticating route discovery in DSR is to have each node sign RREQ

packets they forwarded toward the destination, so that the destination can authenticate the

accumulated source route before generating an RREP packet. However, DSR floods the

network with RREQ packets during route discovery, so most nodes waste computation

and communication resources by signing, verifying and forwarding RREQ packets that

are not included in the eventual route. Also, combining signed RREQ packets implies

combining signatures on different messages (source route accumulates more nodes as the

RREQ propagates toward the destination) and a sequential aggregate signature must be

used; such signatures are usually computationally more expensive than multisignatures.

We therefore suggest an alternative technique to authenticate the source route contained in

the RREP packet using an efficient, single round multisignature scheme, requiring no prior

cooperation among nodes to construct the signature.

We first present our authentication method without considering caching of routes. Let

nodes {d0, . . . , dk, . . . , dn} constitute a source route, where d0 is the source and the dn

is the destination. We identify a node and its address by the same notation, dk, for
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Figure 4.1: Propagation and authentication of route replies

dn

dn−1

〈R(0,n), σ(n)〉
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〈R(0,n), σ(1,n)〉

R(0,n): Source route
{d0, d1, . . . , dn}

h = H(d0||d1|| . . . ||dn)

(PKi, SKi): (public, private)
key pair of node di

PK(i,j): Aggregate public
key of nodes di, di+1, . . . , dj

σ(i): Individual signature on
h using SKi

σ(i,j): Multisignature on h by
aggregating σ(i), σ(i+1), . . . , σ(j)

〈R(.), σ(.)〉 : RREP packet
containing source route
R(.) and (multi)signature σ(.)

Compute h

Generate σ(k)

. . . , PKn → PK(k+1,n)

Combine PKk+1, PKk+2,

dk

Combine σ(k), σ(k+1,n)→ σ(k,n)

Verify σ(k+1,n) using PK(k+1,n)

〈R(0,n), σ(k,n)〉

〈R(0,n), σk+1,n)〉

Source

Destination

simplicity. First, let us assume that an arbitrary node dk has authentic copies of public

keys PKk+1, . . . , PKn of all nodes leading from it to the destination. Fig. 4.1 depicts the

propagation of authenticated RREP packets from the destination dn to the source d0. Node

dk does the following:

1. Combines the public keys PKk+1, ..., PKn to form aggregate public key PK(k+1,n).

2. Verifies multisignature σ(k+1,n) that it receives from node dk+1. Aborts if verification

fails.

3. Signs the hashed concatenation of the addresses d0, ..., dn contained in the source route

to create σ(k).

4. Combines σ(k) and σ(k+1,n) to form multisignature σ(k,n).

5. Replaces σ(k+1,n) with σ(k,n) in the RREP packet.

6. Sends the RREP packet to node dk−1.

At the source d0, successful verification of multisignature σ(1,n) under the aggregate

public key PK(1,n) establishes the authenticity of all signatures on the source route.

Signature verification by intermediate nodes facilitates early detection of bogus routes

injected by an adversary. The procedures for combining public keys, generation, verification

and aggregation of signatures are presented in further detail in Section 4.3.

54



The basic scheme described above can be exploited by an adversarial node dn′ in the

following way: Node dn′ can store signed RREP packets and send an old signed RREP

packet at a later time toward the source (an instance of a replay attack). This attack can

be prevented by inserting a sequence number in the RREQ packet. The corresponding

RREP packet also contains the same sequence number, which is signed along with the

message.

Acs et al. [4] present an extensive discussion on various kinds on attacks on route

finding in mobile ad-hoc networks. They propose a protocol endairA containing a set

of mechanisms, including one similar to the above, for preventing such attacks.

We are primarily concerned with building efficient techniques of aggregating signatures

on messages; our proposed multisignature using LFSR sequences can be applied to other

protocols like endairA, which contains only single-signer signatures for authentication, for

efficiently authenticating source routes.

4.2.2 Incorporating path caching

DSR is an on-demand routing protocol; it attempts to discover a route to a destination only

when a source needs to send a data packet to that node. To avoid initiating route discovery

before each data packet is sent, the source may decide to cache routes [52]. The RREP packet

contains a complete sequence of links leading to the destination at all times. Similarly,

intermediate nodes, forwarding the RREP packets, can (optionally) store complete paths

in path caches so that they can efficiently reply to route requests at a later time. Path

caches are simple to implement and also guarantee that all routes are loop-free, since all

source routes contained in the RREP are loop-free themselves. The mechanism of caching

is one of the most important enhancements made to DSR.

We extend the above technique to incorporate path caching1. Consider the case where

source d0 has already established a route to destination dn as shown in Fig. 4.2. All nodes

{d0, d1, . . . , dn−1, dn} cache the route, R(0,n), along with their respective multisignatures

{σ(0,n), σ(1,n), . . . , σ(n−1,n), σ(n)} (the destination caches its own signature σ(n)). Suppose

node d′0 (a new source) now attempts to discover a route to the same destination dn and its

RREQ packet containing the accumulated route {d′0, d
′
1, . . . , d

′
m} reaches node dl as shown

in Fig. 4.2.

Node dl prepares the RREP packet containing the following:

1. Cached information 〈R(0,n), σ(l,n)〉

1We use multisignatures in authenticating cached routes and do not consider using link caches [52].
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Figure 4.2: Propagation and authentication of cached route replies
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2. Accumulated route, signature pair 〈R′(0,l) = {d′0, . . . , d
′
k, . . . d

′
m, dl}, σ′(l)〉, where σ′(l) is

node dl’s own signature on the hashed concatenation of the address in the accumulated

route h′ = H(d′0|| . . . ||d
′
m||dl).

Node dl sends the RREP packet to node d′m. Now, consider an arbitrary node d′k on

the route back to d′0. Node d′k does the following:

1. Verifies multisignatures σ(l,n) on R(0,n) and σ′(k+1,l) on h′ that it receives from

node d′k+1 using aggregate public keys PK(l,n) and PK ′(k+1,l) respectively. Abort

if verification fails.

2. Generates its own signature σ′(k) on h′.

3. Combines signatures σ′(k) and σ′(k+1,l) to form multisignature σ′(k,l) on h′.

4. Caches {R(0,n), σ(l,n), R
′
(0,l), σ

′
(k,l)} as a route to dn.

5. Sends an RREP packet containing 〈R(0,n), σ(l,n)〉 and 〈R′(0,l), σ
′
(k,l)〉 to node d′k−1.

The RREP packet propagates to the source d′0 in this fashion, and the source performs

the same operations as node d′k. Successful verification of multisignatures σ(l,n), σ′(1,l) under

the aggregate public keys PK(l,n), PK ′(1,l) establishes the authenticity of the route R′(0,l) and

the partial route {dl+1, . . . , dn} contained in R(0,n). The irrelevant addresses {d0, . . . , dl−1}

are not authenticated. Finally, source d′0 extracts {dl+1, . . . , dn} from R(0,n) and appends

the extracted route to R′(0,l) to obtain the desired route {d′0, . . . , d
′
m, dl, . . . , dn}. Similarly,
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nodes in the route R′(0,l) may use cached information to reply to future RREQs encountered

for destination dn.

In the following section, we present an efficient, single round, multisignature scheme

based on cubic LFSR sequences, suitable for authenticating route discovery in DSR.

4.3 The proposed multisignature scheme

First, we construct a single-signer signature scheme based on the EG I.4 variant of the

ElGamal signature family (discussed in Chapter 2). The rationale behind choosing the

particular variant from the entire ElGamal family is exactly the same as we discussed in

Chapter 3. Choosing the Schnorr variant would require prior cooperation among the nodes

participating in the RREQ phase of DSR and result in multiple communication rounds

for a single instantiation of the multisignature. The signature scheme CLFSR-S consists of

four phases: initialization, key generation, signature generation and signature verification;

all four phases follow the exact procedures described in Chapter 3. The multisignature

scheme, CLFSR-M, is built using CLFSR-S as a building block.

The multisignature scheme, CLFSR-M, consists of five phases: initialization, key genera-

tion (CLFSR-M.K), signature generation (CLFSR-M.G), multisignature verification (CLFSR-M.V)

and multisignature generation (CLFSR-M.A). During the initialization phase, all nodes choose

and agree upon the system public parameters params = 〈p,Q, f(x),H〉. The process of key

generation consists of the following steps:

1. Generation of individual long-term private/public key pair (SKl, PKl) = (xl, s̄xl
) of

node dl.

2. Generation of aggregate public key PK(l,n) = s̄x(l,n)
← OP2(s̄xl

, s̄x(l+1,n)
) of nodes

dl, dl+1, . . . , dn, where x(l,n) =
∑n

i=l(xi).

The signature generation, multisignature verification and multisignature generation

phases of CLFSR-M work as follows:

Signature generation (CLFSR-M.G(params, SKl,m = d0|| . . . ||dn) → σ(l)): Each node,

dl, participating in the RREP propagation generates an individual signature σ(l) =

(s̄klrl
, tl) on the hashed concatenation of the address in the source route h = H(m)

following the CLFSR-S signature generation (described in Chapter 3).

Multisignature Verification (CLFSR-M.V(params, PK(l+1,n), σ(l+1,n),m)→ (V alid, Invalid)):

Each intermediate node (other than the destination), dl, receives a signed RREP
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packet containing the multisignature σ(l+1,n) = (t(l+1,n), s̄k(l+1,n)
), where t(l+1,n) =

∑n
i=l+1(ti) and k(l+1,n) =

∑n
i=l+1(kiri). Node dl verifies σ(l+1,n) following the CLFSR-

S signature verification procedure, using the aggregate public key PK(l+1,n) = s̄x(l+1,n)
,

where x(l+1,n) =
∑n

i=l+1(xi). For the node dn−1 (the last hop before the destination

dn) the signature σ(l+1,n) denotes σn.

Multisignature Generation (CLFSR-M.A(params, σ(l+1,n), σ(l)) → σ(l,n)): If the signature

σ(l+1,n) passes the verification procedure, CLFSR-M.V, node dl, generates the mul-

tisignature σ(l,n) by computing t(l,n) = t(l+1,n) + tl and s̄k(l,n)
= s̄k(l+1,n)+klrl

←

OP2(s̄klrl
, s̄k(l+1,n)

). Node dl finally replaces the multisignature σ(l+1,n) with the

multisignature σ(l,n) = (t(l,n), s̄k(l,n)
) to the RREP packet before forwarding the RREP

to the next hop node dl−1.

The wave of signature generation, multisignature verification and multisignature

aggregation continues until the RREP packet containing the multisignature, σ(1,n) =

(t(1,n), s̄k(1,n)
), is delivered to the source. If the multisignature σ(1,n) passes the verification

procedure, CLFSR-M.V, under the aggregate public key PK(1,n), the individual signatures

σ(1), . . . , σ(n) of corresponding nodes d1, . . . , dn in the discovered source route to the

destination dn are verified collectively.

In the following section, we present a discussion on the policy aspects of bootstrapping

authentication protocols in ad-hoc networks.

4.4 A discussion on distributing public keys

An authentication protocol is typically composed of two distinct phases, namely, the

bootstrapping phase and the authentication phase. In the realm of public key cryptography,

entities need to use authentic channels (need not be confidential) to exchange public keys

constituting the “bootstrapping material” [28]. Once this exchange has taken place, entities

can authenticate each other by proving the possession of their corresponding private keys.

4.4.1 Using a trusted third party

A trusted third party (TTP) can distribute certified public keys (the bootstrapping

material) and also provide a way to check the validity of certificates via publishing

certificate revocation lists. An online TTP works as follows: An arbitrary node dk wanting

to authenticate the source route can request and receive certified copies of public keys

PKk+1, . . . , PKn of nodes leading to the destination from the TTP. However, an online
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TTP in an ad-hoc network introduces circular dependency between the need for a TTP to

perform secure routing and the need to find a secure route to the TTP. Moreover, public

keys have to be redistributed when network membership changes, that is when nodes join

or leave the network. To avoid the necessity of an online TTP, an offline TTP can distribute

all certified public keys to all nodes when the network is set up. Such an offline TTP may

not be viable, since nodes would need to store all certified public keys. Various solutions of

bootstrapping authentication have been built for securing ad hoc networks, each having its

own disadvantages [91]. In essence, the assumption of a TTP-based public key management

policy in an ad-hoc networking paradigm is not practical. Delegating specialized functions

to a single node or a small subset of nodes [100, 62] does not suit the ad-hoc networking

paradigm. These restrictions motivate us towards a fully distributed public key management

policy.

4.4.2 Toward a fully distributed, self-organized bootstrapping

Pretty Good Privacy (PGP) [101] is a policy-based mechanism for public key management

that can distribute certified copies of public keys in the absence of a centralized TTP. In

PGP, each node generates its own (public, private) key pair and certifies its own public

key as well as public keys of other nodes based on trust policies. Similarly, in an ad-hoc

network, when two nodes come within radio range of each other, they can certify each

other’s public keys, based on policies. This process of certification creates a certificate

graph G = (V,E), where the set of vertices is represented as:

V = {d0, d1, . . . , dN} (4.1)

and the set of edges in the graph is represented as:

E = {(di, dj) : ∀i, j : 0 ≤ i, j ≤ N,∃σSKi
(dj , PKj)} (4.2)

where N is the total number of nodes in the network and σSKi
(dj , PKj) denotes node di’s

signature on node dj ’s public key. When a node di wants to verify the authenticity of public

key PKj of node dj , node di tries to find a simple path in the certificate graph that can be

expressed as:

di  dj = di → di0 → . . . din → dj

where dik → dil =⇒ (dik , dil) ∈ E. Capkun et al. [89, 90] study PGP certificate

graphs and observe that trust graphs in self-organized systems, for example mobile ad-hoc
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networks, naturally exhibit the small-world phenomenon. Informally, a graph is said to

exhibit the small-world property if any two nodes in the network are likely to be connected

through a short sequence of intermediate acquaintances. Since the first experimental study

by Milgram [73], several network models [60, 93] have been built to study the problem

analytically.

In our public key management model, individual nodes store, manage and distribute

certificates themselves in a such a way that the size of the certificate repository at each node

is small compared to the total number of certificates in the network, while still maintaining

a high probability of finding a trust path from one node to another. We assume the process

of routing initiates after the certificate graph converges to a steady state, meaning nodes

discover paths enough for the entire certificate graph to attain the properties of a small-

world graph.

4.4.3 Policy variants

We describe two trust policies, based on which the nodes can sign, manage, and distribute

PGP certificates. The two policies can be described as follows:

Policy 1: Node di completely2 trusts node dj means:

1. Node di believes that node dj ’s public key PKj is valid and authentic.

2. Node di trusts node dj ’s decision to sign the public key PKk of any node dk.

Node dj is careful not to sign any bogus public key.

Thus, the following condition should hold for authenticating the route discovery

process:

∀i, ∃ (di  dj), i < j ≤ n

Informally, this condition means that any node di wanting to authenticate the route

from itself to the destination {di, di+1, . . . , dn} needs to find a way to verify the

authenticity of all corresponding public keys {PKi, PKi+1, . . . , PKn}.

Policy II: This trust policy has an added condition. Node di completely trusts node dj

implies the same conditions as listed above, along with the following: node di trusts

node dj to honestly aggregate and sign other public keys PKj+1, . . . , PKn of nodes

2For simplicity, we assign trust either a true or false value. We do not model marginal or partial trust.
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dj+1, . . . , dn. In Policy II, the following condition should hold for authenticating the

route discovery process:

∀i, ∃ (di  di+1), 0 ≤ i ≤ (n− 1)

Any node di wanting to authenticate the route {di, di+1, . . . , dn} from itself to the

destination needs to look up a single node in the certificate graph, that is to verify the

authenticity of one public key PKi+1. Node di+1 can sign the aggregate public public

key PK(i+1,n) and deliver (PK(i+1,n), Cert(i+1,n) = σSKi+1(di+1, . . . , dn, PK(i+1,n)))

to node di, where Cert(i+1,n) denotes the certificate on the aggregate public key

PK(i+1,n).

4.5 Analysis

We present a concise theoretical analysis of correctness, security and performance of the

multisignature algorithm CLFSR-M.

4.5.1 Correctness

A multisignature scheme constructed following the procedures described in Section 4.3 is

correct if an arbitrary multisignature, σ(l+1,n), received by node dl ∈ {d0, . . . , dn−1} from

node, dl+1, passes the verification procedure MS.V at node dl under the aggregate public key

PK(l+1,n) provided the following conditions hold:

1. Each node di ∈ dl+1, . . . , dn chooses and agrees upon the system public parameters

params = 〈p,Q, f(x),H〉 and honestly executes the key generation algorithm,

MS.K(params)→ (PKi, SKi) and the signature generation algorithm, MS.G(params, SKi,m)→

σ(i), where m = d0|| . . . ||dn.

2. Each node di ∈ {dl+1, . . . , dn−1}, honestly executes the multisignature generation

algorithm, MS.A(params, σ(i+1,n), σ(i))→ σ(i,n).

Proposition 4.5.1. The multisignature scheme CLFSR-M has the correctness property.

Proof: Consider any arbitrary node in the source route: dl ∈ {d0, . . . , dn−1}. We show

that the multisignature σ(l+1,n) generated by node dl+1 passes the verification procedure

MS.V(params,PK(l+1,n), σ(l+1,n),m) → (V alid, Invalid) executed at node dl under the

aggregate public key PK(l+1,n) = s̄x(l+1,n)
provided the above mentioned conditions hold.

In the verification of the multisignature σ(l+1,n) using the algorithm MS.V, we observe:
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A(l+1,n) = fv+x(l+1,n)
← OP2(v, s̄x(l+1,n)

)

where v = h−1
∑n

i=l+1(ti) and x(l+1,n) =
∑n

i=l+1(xi). All nodes use the signing equation:

ti ≡ kiri − xih mod Q, where (l + 1) ≤ i ≤ n and k(l+1,n) =
∑n

i=l+1(kiri). Thus,

A(l+1,n) = fPn
i=l+1(h

−1ti+xi) = fPn
i=l+1(h

−1kiri)

= fh−1k(l+1,n)
= OP1(h

−1, fk(l+1,n)
) = B(l+1,n)

Thus, the multisignature, σ(l+1,n), is valid under PK(l+1,n).

Now, we need to show that it is hard for an adversary to deviate from the key pair

and signature generation algorithms and still generate a correct signature. However, this is

precisely the issue of forgery which we discuss in the following section.

4.5.2 Security

The security of the proposed multisignature protocol CLFSR-M is based on the difficulty of

solving the trace discrete logarithm (Tr-DL) problem in Fq [41, 44, 45, 63]. Informally, the

trace function Tr : Fq3 7→ Fq is given as Tr(α) = α + αq + αq2
. The Tr-DL problem and

assumption has been formally defined in Chapter 3.

A total break of CLFSR-M occurs if, given a public key PKi = s̄xi
of an arbitrary node

di, the adversary is able to compute the corresponding private key SKi = xi. In such a

case, any node’s signature can be forged. However, given s̄x, finding x is equivalent to

solving the DL problem in the extension field Fq3 [45]. Using the following lemmas we show

that, assuming a total break has not occurred, an adversary that can successfully forge a

CLFSR-M multisignature can also successfully forge a signature in the EG I.4 variant of the

ElGamal signature family.

Lemma 4.5.2 (Chakrabarti et al. [26]). The 2-party signature scheme CLFSR-S is equivalent

to EG I.4.

Proof: The proof of the above lemma is presented in Chapter 3.

Lemma 4.5.3. The single-singer signature scheme CLFSR-S reduces to the proposed

multisignature scheme CLFSR-M.

Proof: Suppose there exists a PPT forger F , which given public keys s̄x0, s̄x1 , . . . , s̄xn ,

system parameters params = 〈p,Q, f(x),H〉 and a message m, successfully forges a
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multisignature σF
(0,n) = (tF(0,n), s̄

F
k(0,n)

) on h = H(m) with non-negligible probability, i.e.,

σF
(0,n) passes the verification procedure, MS.V, under the aggregate public key s̄x(0,n)

.

We show that if an adversary has access to PPT forger F , then given a public key

PK = s̄x, params and a message mF , the adversary can successfully forge a signature

σF = (s̄F
kr, t

F ) on hF = H(mF ) that passes the verification procedure of CLFSR-S under

public key PK. Algorithm 2 shows a polynomial-time reduction from the single-signer

signature scheme CLFSR-S to the multisignature scheme CLFSR-M.

input : (s̄x,mF )
output: σF

Pick n arbitrary long-term private keys x0, x1, . . . , xn−1 ∈R Z
∗
Q, and compute the1

corresponding public keys s̄x0, s̄x1 , . . . , s̄xn−1 .

Compute s̄xn ← OP2(−
∑n−1

i=0 xi, s̄x). Thus, xn = x−
∑n−1

i=0 xi.2

〈tF(0,n), s̄
F
K(0,n)

〉 ← F(params, s̄x0, s̄x1 , . . . , s̄xn ,mF ).3

Set s̄F
kr = s̄F

k(0,n)
and tF = tF(0,n).4

Return σF = 〈tF , s̄F
kr〉 as forged CLFSR-S signature on message mF under public5

key s̄x.

Algorithm 2: Reduction of the single-signer CLFSR-S scheme to the proposed
multisignature scheme CLFSR-M.

Since the forged multisignature 〈tF(0,n), s̄
F
K(0,n)

〉 on hF = H(mF ) passes the verification

procedure, MS.V, under the aggregate public key s̄x(0,n)
, we have:

A = OP2(t
F
(0,n)(h

F )
−1

, s̄x(0,n)
) = OP1((h

F )
−1

, fF
K(0,n)

) = B

Given that s̄F
kr = s̄F

K(0,n)
, tF = tF(0,n) and xn = x−

∑n−1
i=0 xi, we have:

A = OP2(t
F (hF )

−1
, s̄x) = OP1((h

F )
−1

, fF
kr) = B

Thus, σF = 〈tF , s̄F
kr〉 is a valid signature on mF under public key s̄x following the verification

procedure of CLFSR-S single-signer signature scheme.

Using a similar argument presented in Chapter 3, it is immediate that the EG I.4 variant

of the ElGamal signature family reduces to the multisignature scheme CLFSR-M.

Next, we present a performance comparison of the multisignature scheme CLFSR-M with

existing schemes in the literature.
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4.5.3 Cost

In Table 4.1, we show a direct performance comparison of CLFSR-M with three signature

aggregation techniques used to instantiate SRDP [59], namely the multisignature by Micali

et al. (ASM) [72], the generalized aggregate signature by Boneh et al. (MBLS) [17] and the

sequential aggregate signature by Lysyanskaya et al. (SAS) [68]. The term e is the cost of

modular exponentiation, the term m is the cost of modular multiplication, h represents the

cost of a hash operation, p is the cost of a pairing computation, s is the cost of one scalar

multiplication. The term n represents the number of signers, ∗ : represents the ephemeral

public key propagated during RREQ phase.

Table 4.1: Authenticating sources routes in mobile ad-hoc networks: Cost comparison of

CLFSR-M with existing schemes

SAS ASM MBLS CLFSR-M

Rounds 2 1 1 1

Generation cost e + h e + 2m + h s + h 2OP1 + h + 2m

Verification cost n(h + e) 2e + m + h 2p + h OP1 + OP2 + h + m

Aggregation cost – – m OP2

Signature size (bits) 1024 320 + (160∗) 160 500

PK size (bits) 2048 2048 766 680

The original construction of Micali et al’s multisignature scheme [72] takes three

communication rounds; ASM in SRDP requires two rounds for completion, with prior

cooperation (though small: one exponentiation and one modular multiplication) among

nodes during the RREQ phase, which might be wasteful if the node is not included in the

final route. CLFSR-M, uses extremely fast LFSR sequence operations [63, 78] and achieves the

best computational efficiency. The public key sizes equivalent to 1024-bit RSA (excluding

shared components of the public key) are highest in SAS and ASM, followed by MBLS. CLFSR-

M offers the smallest public key size. In ASM, nodes need to additionally propagate the

accumulated ephemeral public keys (160 bits) during the RREQ phase, wasting bandwidth.

Signature sizes are lowest for MBLS, followed by ASM and CLFSR-M, while SAS incurs the

highest sizes.
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4.6 Related research

The original design of DSR [57] does not incorporate any security mechanism, making it

vulnerable to several attacks [53]. Papadimitratos et al. [77] and Hu et al. [54] independently

propose secure on-demand routing protocols, SRP and Ariadne, respectively, to authenticate

routes using message authentication codes (MACs). In SRP, intermediate nodes in the

route are not authenticated, thus exposing SRP to attacks, including addition and deletion

of honest nodes from the route. In Ariadne, route request packets grow in size due to

accumulation of MACs. Ariadne also requires loose time synchronization. Kim et al. [59]

present a generic DSR authentication protocol, SRDP, using MACs and aggregate signature

schemes of Micali et al. [72], Boneh et al. [17], and Lysyanskaya et al. [68]. However,

Kim et al. do not consider authentication of routes using cached information in the

proposed authentication protocol, SRDP. Moreover, the signature-based variants of SRDP

have performance drawbacks that we discuss in Section 4.5.3.

Acs et al. [4] develop a mathematical framework to facilitate the analysis of secure on-

demand source routing protocols in mobile ad-hoc networks. Acs et al. present attacks on

the Ariadne protocol and also describe the construction of a protocol, endairA, which is

provably secure in the proposed model of security. Bhaskar et al. [10] develop a MAC-based

aggregate signature scheme for authenticating DSR. The aggregate signature developed by

Bhaskar et al. has the following weaknesses: (1) Only a single designated entity can verify

the aggregate signatures; all intermediate nodes from the source node to the destination

are incapable of signature verification. (2) The protocol does not support authentication of

cached routes. (3) The protocol is MAC-based, and thus does not offer non-repudiation. (4)

Also as in any other MAC-based schemes, early detection of invalid MACs by intermediate

nodes requires additional key setup overhead.

Capkun et al. [89] analyze PGP trust graphs and show that such graphs exhibit

the small-world phenomenon [73, 60]. Informally, a graph is said to exhibit the small-

world property if any two nodes in the graph are likely to be connected through a short

sequence of intermediate acquaintances. The reader is referred to the noteworthy paper by

Kleinberg [60] for an algorithmic perspective to the small-world phenomenon. Capkun et

al. [90] also present a PGP-like, self-organized public key management system for ad-hoc

networks.
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4.7 Summary

Ad hoc networks are characterized by resource-constrained nodes that need to work in a

cooperative and self-organized manner to perform all network functions. The problem of

finding secure routes in mobile ad-hoc networks is long-standing and has been extensively

studied by researchers. Recently, techniques of aggregating signatures have been applied to

efficiently authenticate on-demand routing protocols in ad-hoc networks.

In this chapter, we present the first LFSR sequence based multisignature scheme CLFSR-M

using a EG I.4, variant of the ElGamal signature family. We engineer the multisignature to

produce an efficient technique to authenticate route discovery in the dynamic source routing

(DSR) protocol. The proposed protocol also works with cached routing information. The

multisignature scheme, CLFSR-M, is derived from a cubic LFSR sequence-based, single-signer

signature scheme, CLFSR-S [26], and uses extremely fast LFSR operations, small public keys

(smallest among schemes proposed by Kim et al. [59]) and generates a reasonably small

multisignature (500 bits). The security of the scheme, CLFSR-M, is based on the Tr-DL(DL)

Problem in Fq(Fq3).

Distributing authentic public keys among nodes in a mobile ad-hoc network to bootstrap

authentication protocols is a challenging task. Delegating special functions to nodes or

assuming the existence of a TTP to distribute certified public keys is paradigmatically

unsuitable for ad-hoc networks. We consider a fully distributed mechanism of public key

distribution and presented two trust policies, based on PGP, for effective management of

individual and aggregate public keys.

Copyright c© Saikat Chakrabarti 2008

66



Chapter 5

Authenticating path-vector routing protocols

Recently, there has been a significant movement in the networking research community

to make the modern Internet a safe and secure medium of communication. Distributed

applications such as distributed content management, multi-player games and replicated

databases involving a large number of participants represent a large fraction of today’s

Internet; all such applications are in serious need of authentication mechanisms.

In this chapter, we focus on building an efficient and scalable technique of authentication,

tailored for securing path-vector routing protocols used in the Internet. The proposed

technique can also be used for other applications like building efficient certificate chains

and authenticating distributed and adaptive content-management systems.

5.1 Problem statement

Consider the problem of securing path-vector routing protocols like the Border Gateway

Protocol (BGP) [81]. Each node sends each of its neighbors a message containing the

node’s own identity and information about the destinations reachable through it (in the

Internet, destinations correspond to sets of IP addresses, represented as prefixes). When

a node receives such a message from a neighbor, it appends its own identity to the path

and relays the message to its other neighbors. Thus, at any time the message indicates

the sequence of nodes through which it has passed; the protocol is designed so that this

sequence corresponds to a path to the indicated destination(s). Because the sequence of node

identities in the message defines the path, recipients need to verify that the message indeed

traversed that path, in order to detect injection of bogus path information by an adversary.

Using traditional (individual) digital signature schemes, each node would sign the message

before forwarding it to its neighbors. Upon receiving a message, the recipient first verifies

all the signatures, using the individual public keys of the nodes named in the sequence.

However, this approach requires resources that grow linearly in the number of nodes in the

path: The amount of space used for storing signatures, the storage elements (public keys)

needed to verify the signatures, and the computation used for signature verification.

Aggregate signatures have the potential to address a small, but crucial, subset of the

bigger problem of securing the whole Internet: Building scalable authentication protocols

67



in networked systems involving a large number of users. An aggregate signature scheme

allows us to combine n signatures from n different signers on n distinct messages into

a single signature. This compact signature provides authentication simultaneously on

all the n distinct messages for the n corresponding signers. Any entity (not necessarily

one of the signers) can verify the aggregate signature, given the corresponding n public

keys of the signers. Aggregate signatures come in different flavors, depending on the

nature of the application. For example, multisignatures have all signers sign the same

message. Sequential aggregate signatures have signers verify, sign and aggregate signatures

sequentially. Aggregate signatures have been recently suggested by Zhao et al. [98] as an

effective mechanism to authenticate path-vector routing protocols.

Next, we give a broad overview of two potential applications of aggregate signatures:

construction of efficient certificate chains, and authentication in distributed content

management systems

5.2 Potential applications

5.2.1 Building efficient certificate chains

Informally, a certificate is a signed statement issued by a certification authority (CA) binding

a public key to an entity. The certificate contains an issuer (identity and public key), a

subject (identity and public key), a validity period (often referred to as the certificate

window) and a digital signature by the issuer on the certificate. A root certification

authority, CA0, generates a certificate, Cert1, for its subordinate, CA1, which in turn

generates certificate, Cert2, for its own subordinate, CA2, and this process continues to

form a chain of certificates. The subject CAi of an arbitrary certificate Certi in the chain is

the issuer of the next certificate in the chain Certi+1.

A certificate authority, say CAk, at an arbitrary depth k in the certificate chain needs

to store all k certificates—including its own—back to CA0. To check the validity of CAk’s

certificate, all individual signatures σ0, . . . , σk contained in the certificates Cert0, . . . ,Certk

of the chain need to be verified. More specifically, CAk uses the public key of CA0 to verify

the signature σ0 on certificate Cert0, the public key of CAi−1 to verify the signature σi on

certificate Certi, and so on.

Computation and communication costs increase linearly with the length of these chains.

It would be better if the k individual signatures σ0, . . . , σk in the chain could be compressed

into one compact signature σ(0,k) that validates all the individual signatures simultaneously.

This is precisely the purpose of an aggregate signature. Moreover, this aggregation can
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be done sequentially: any intermediate authority CAi can generate a signature σi+1 on a

certificate Certi+1, aggregate the signature σi+1 with σ(0,i) contained in its own certificate,

and include the new aggregate signature σ(0,i+1) in the certificate Certi+1. However, an

existing attempt by Lysyanskaya et al. [68] to create such a sequential aggregate signature

has a drawback: Verification overhead increases linearly with the number of signers.

5.2.2 Authenticating distributed content management systems

Distributed and adaptive multimedia content distribution in the Internet has accelerated

the demand for rich multimedia data allowing dynamic content adaptation for a highly

personalized user experience. In a multimedia delivery system, the content is composed

of meta-data, which specifies the media data and how the content is handled by end-user

media players. Secondary content providers (tier-2) can insert or delete a media file from

a composition created by the primary provider (tier-1) by manipulating the meta-data

without touching the internal content of the files. This type of content adaptation is useful

in dynamic insertion of targeted advertisements. However, existing systems cannot handle

content adaptation while preserving end-to-end security [88].

Binding usage rules to the meta-data can be somewhat useful but does not prevent

malicious corruption (insertion and deletion) of the content by untrusted tier-2 providers.

Recently, Suzuki et al. [88] presented a technique that preserves end-to-end authenticity

of the original content while allowing adaptation of the content by intermediate providers.

Suzuki et al. introduced a multi-hop signature scheme that provides authenticity of usage

rules and meta data. A Merkle tree-based signature scheme is used to ensure secure

adaptation of content while allowing detection of any rule violation. Placeholders—to

specify the positions in the meta-data where a designated entity can insert an additional

element—can control insertions, but they do not prevent malicious deletion of tier-2’s

inserted content itself. One way to prevent this is by having each tier-2 provider sign each

of its placeholders. Any placeholder with a missing signature denotes an illegal deletion.

This technique however, leads to a linear increase in the computational and bandwidth

requirement as the number of placeholders (or tier-2 providers) increases. To avoid this

scenario, aggregate signatures can be used to compress the individual signatures of all

tier-2 providers on placeholders and the primary provider’s signature on the Merkle tree

into a single aggregate signature. Suzuki et al. suggest the use of the generalized

aggregate signature by Boneh et al. [17], which requires expensive pairing operations during

verification.
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5.3 Protocol overview

We propose an enhanced (efficient and scalable) form of aggregate signature, CLFSR-A,

using cubic LFSR-based public key cryptosystems. The aggregate signature scheme has the

following desirable properties:

1. An arbitrary node El ∈ E = {E1, E2, . . . , En} does not need to know the order in

which the aggregate signature σl−1 was created in order to verify σl−1 that El receives

from El−1.

2. The aggregate signature is of constant length (number of elements/bits), independent

of the number of nodes in the path.

3. The aggregate signature scheme uses a constant number of sequence operations for

signing, aggregation and verification of the signatures at each node.

4. The aggregate signature is scalable with respect to a particular sequence of nodes.

Each node in the path needs to store a constant number of storage elements (public

keys needed to verify the incoming signature).

With these features, we believe that the proposed aggregate signature scheme has

potential to form a crucial building block for applications such as authenticating path-

vector routing protocols, building efficient certificate chains, and authenticating distributed

and adaptive multimedia content management.

Let the sequence of nodes E = {E1, . . . , El, . . . , En} represent the participants of CLFSR-

A. The elements of the signature scheme described here—for example, a node El and

message Ml, etc.—portray an abstraction of the underlying security protocol. For example,

in a secure path-vector routing protocol, the message represents a sequence of nodes—

prefixes if applied to BGP—whereas in a certificate chain, the message represents a sequence

of public keys and other user data to be certified.

All nodes generate their individual signatures according to the ElGamal-like signature

scheme CLFSR-S′. The individual signature generated by an arbitrary node El ∈ E− {En}

on the hashed message hl = H(ml) is of the form (fkl
, tl). Fig. 5.1 shows the basic idea of

the proposed signature scheme.

Node El receives the following from node El−1:

1. Message Ml−1 parsed as 〈m1,m2, . . . ,ml−1〉.
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Figure 5.1: An abstraction of the node functionality

TTP

lE

PKl

PK(1, l)

PKl−1

PK(1, l−1)

Verifies (σl−1, γ)

Aggregates (σl−1, σ
′
l)→ σl

Creates (ml, σ
′
l), (sµl

, γ)

Parse Ml−l → m1,m2, . . . ,ml−1

Ml, s̄µl
, (σl, γ)Ml−1, s̄µl−1

, (σl−1, γ)

2. An aggregate signature σl−1 =
(

f(
Ql−1

i=1 ki)
,
∏l−1

i=1 ti,
∏l−1

i=1 ri

)

, sequentially constructed

on hashed messages h1 = H(m1), . . . , hl−1 = H(ml−1).

3. A quantity s̄µl−1
, where µl−1 =

(
∏l−1

i=1(vi + xi)−
∏l−1

i=1 vi −
∏l−1

i=1 xi

)

. The term s̄µl−1

helps node El in signature verification. The necessity of the helper term s̄µl−1
in the

verification procedure is presented in detail in Algorithm 4.

4. Individual signature γ on sµl−1
.

The term
∏l−1

i=1 ri is included in the aggregate signature, σl−1, since the term
∏l−1

i=1 ri =
∏l−1

i=1 ski
cannot be obtained from f(

Ql−1
i=1 ki)

, whereas in the CLFSR-S′ scheme, the term r = sk

can be obtained from fk.

On receiving the above quantities from node El−1, node El performs the following tasks:

1. Obtain the public key PKl−1 = s̄xl−1
of the previous node and the aggregate public

key, PK1,...,l−1 = s̄(
Ql−1

i=1 xi)
, corresponding to the nodes E1, . . . , El−1 from the trusted

third-party (TTP ). The aggregate public key facilitates efficient verification of the

aggregate signature pair (σl−1, γ). We present the details of the construction of the

aggregate public key in Section 5.4.
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2. Verify the individual signature γ on sµl−1
using public key PKl−1 (of node El−1)

following CLFSR-S′.

3. If signature γ is a valid signature, verify the signature σl−1 using aggregate public key

PK1,l−1. The signature aggregation algorithm (described in Algorithm 3) is designed

so that verification of the aggregate signature, (σl−1, γ), provides simultaneous verifi-

cation of individual signatures of the form (fk1, t1), . . . , (fkl−1
, tl−1) on corresponding

hashed messages h1, . . . , hl−1. Both signatures, σl−1 and γ, are verified using the

verification algorithm, described in Algorithm 4.

4. Generate signature σ′l = (fkl
, tl) on hashed message hl = H(ml).

5. Use s̄µl−1
to construct the helper term s̄µl

, which node El+1 will use to verify the

signature that node El sends. Sign sµl
to create γ.

6. Use σl−1 and σ′l to construct signature σl =
(

f(
Ql

i=1 ki)
,
∏l

i=1 ti,
∏l

i=1 ri

)

.

7. Construct the aggregate public key PK1,l = s̄(
Ql

i=1 xi)
using the trusted copy of

the aggregate public key PK1,l−1 = s̄(
Ql−1

i=1 xi)
OP1(SKl, PK1,l−1) and the private key

SKl = xl. Upload PK1,...,l to the TTP.

Node El sends messages m1, . . . ,ml, s̄µl
and the aggregate signature (σl, γ) to node El+1.

Nodes following El perform the tasks mentioned above to receive and verify the signatures,

sign their own messages and construct aggregate signatures. In the following section, we

describe the construction of the proposed LFSR-based aggregate signature scheme.

5.4 The proposed LFSR-based aggregate signature scheme

In this section, we first describe a construction of a single signer signature scheme using

LFSR sequences. Then, we present the proposed aggregate signature scheme built using

the single signer construction.

5.4.1 The single-signer signature scheme

The single-signer signature scheme, CLFSR-S′, is built following the EG I.1 variant of the

ElGamal signature family, using primitives from cubic LFSR sequences.

The first two phases of CLFSR-S′, namely, initialization and key generation follow the

exact procedures described earlier in Chapter 3. The signing and verification procedures of

CLFSR-S′ are based on EG I.1 as opposed to those of CLFSR-S, which follow EG I.4. Fig. 5.2

describes the signing and verification procedures of CLFSR-S′.
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Figure 5.2: Authenticating path-vector routing protocols: The CLFSR-S′ single-signer

signature scheme

Signature generation Signature verification

1. Randomly choose ephemeral private key

k ∈R Z
∗
Q and compute ephemeral public

key fk ← OP1(k, f(x)). Denote r = sk

mod Q as an integer.

2. Compute hash of message h = H(m);

Solve for t in the following equation:

h ≡ kt− xr mod Q.

3. Send the signature σ =
(

fk, t
)

and the

message m to entity B.

1. Compute v = hr−1 mod Q

and u = tr−1 mod Q. The

quantity r can be directly de-

rived from fk.

2. Compute A = f(v+x) ←

OP2(v, s̄x).

3. Compute B = f(uk) ←

OP1(u, fk).

4. Accept the signature if A = B,

else reject the signature.
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Next, we present the proposed aggregate signature scheme that uses the above algorithm

as a building block.

5.4.2 Construction of the aggregation signature

The reader who wants to get a high-level understanding of the aggregate signature

scheme may skip this section (containing details of key generation, signature generation,

and signature verification) and directly proceed to Section 5.4.5 containing a sample

instantiation of the protocol with four nodes.

The process of key generation can be divided into two phases: generation of individual

private and public keys and generation of aggregate public keys. Each node El ∈ E follows

the procedure described in the single-signer scheme to generate its individual private, public

key pair: long-term private key for node El is SKl = xl, and the long-term public key of

node El is PKl = s̄xl
= {sxl

, sxl+1
, sxl+2

}.

An arbitrary node El in the route receives a trusted copy of the aggregate public

key PK(1,l−1) = s̄(
Ql−1

i=1 xi)
(corresponding to users E1, . . . , El−1) from the TTP, uses its

own private key SKl = xl to create the aggregate public key PK(1,l) = s̄(
Ql

i=1 xi)
←

OP1(xl, f(
Ql−1

i=1 xi)
) and uploads it to the TTP. Node El only needs the aggregate public

key PK(1,l−1) and the public key of the immediate upstream neighbor El−1 and does not

need to store the individual public keys of all nodes E1, E2, . . . , El−1.

5.4.3 Aggregate signature generation

Algorithm 3 describes the process of generating aggregate signatures. All nodes in E
′ =

E−{E1, En} execute the aggregate signature generation algorithm CLFSR-A.SG to create an

aggregate signature on hashed messages h1, . . . , hl and sµl
, given the aggregate signature

(σl−1, γ) on h1, . . . , hl−1, sµl−1
, the public key PKl−1 = s̄xl−1

of node El−1 and the aggregate

public key PK(1,l−1) = s̄X , where X =
∏l−1

i=1 xi). The aggregate signature generation

algorithm CLFSR-A.SG works as follows:

Step 1: Node El generates its ephemeral private, public key pair.

Steps 2 and 3: Node El calls the signature verification algorithm CLFSR-A.SV twice to

verify the aggregate signature (σl−1, γ) (described in Algorithm 4).

Step 4: Node El uses its secret key SKl = xl to generate a signature of the form (fkl
, tl)

on the hashed message hl = H(ml).
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input : σl−1, s̄X(= s̄(
Ql−1

i=1 xi)
), xl, γ

output: σl.

Randomly choose ephemeral private keys kl, k
′
l ∈R Z

∗
Q and compute ephemeral1

public keys fkl
, fk′

l
.

Compute v = sµl−1
(r′l−1)

−1 and u = t′l−1(r
′
l−1)

−1, where r′l−1 = sk′

l−1
mod Q. If2

CLFSR-A.SV(γ, v, u, s̄xl−1
) = Invalid then Abort.

Compute V ←
∏l−1

i=1 hi(ri)
−1, where hi = H(mi); U ←

∏l−1
i=1 ti(ri)

−1;3

s̄(X+µl−1) ← OP2(s̄X , s̄µl−1
). If CLFSR-A.SV(σl−1, V, U, s̄(X+µl−1)) = Invalid, then

Abort.
Let integer rl = skl

mod Q; hl = H(ml). Solve for tl in the equation:4

hl ≡ kltl − xlrl mod Q.
Compute f(V +µl−1) ← OP2(V, s̄µl−1

). Compute5

s̄µl
← OP2

(

(OP1(vl, f(X+µl−1)),OP1(xl, f(V +µl−1))
)

, where vl = hlr
−1
l .

Let integer r′l = sk′

l
. Solve for t′l in the equation: sµl

≡ k′lt
′
l − xlr

′
l mod Q.6

γ =
(

fk′

l
, t′l

)

.

Compute σl =
(

f(
Ql

i=1 ki)
,
∏l

i=1 ti,
∏l

i=1 ri

)

and send (σl, γ) to node El+1.7

Algorithm 3: Aggregate Signature Generation CLFSR-A.SG for node El ∈ E
′.

Step 5,6, and 7: The aggregate signature on messages h1, . . . , hl and sµl
is given by the

pair (σl, γ). The process of signature aggregation includes generation of s̄µl
, and

(σl, γ):

Step 5 : Node E2 generates the first helper term s̄µ2 from the public key of node E1,

its own secret key, and the terms v1 and v2 using the sequence operations OP1

and OP2. Each intermediate node El ∈ E−{E1, E2, En} similarly computes the

terms s̄µl
using s̄µl−1

, the aggregate public key PK(1,l−1), and the terms vl, and
∏l−1

i=1 vi.

Step 6: Node El uses its secret key to generate a signature γ, which authenticates

sµl
to the next hop node El+1.

Step 7: The node El generates the aggregate signature σl.

Node E1 signs hashed message h1 = H(m1) using its secret key x1 to create signature

σ1 and sends it to node E2. The last node, En, verifies the aggregate signature (σn−1, γ)

sent by the node En−1.
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5.4.4 Aggregate signature verification

Nodes E
′ = E − {E1} execute the aggregate signature verification algorithm described

in Algorithm 4. Node El ∈ E − {E1, E2} invokes CLFSR-A.SV twice within the CLFSR-

A.SG algorithm to verify the signature γ = (fk′

l−1
, t′l−1) on sµl−1

and the signature σl−1 =
(

f(
Ql−1

i=1 ki)
,
∏l−1

i=1 ti,
∏l−1

i=1 ri

)

on h1, . . . , hl−1, where, ri = ski
mod Q. Node E2 invokes

CLFSR-A.SV once to verify σ1. The verification of the aggregate signature (σl−1, γ) proceeds

as follows:

Verification of γ: To verify the signature γ on sµl−1
, node El computes (in Step 2

of Algorithm 3) the terms V = (sµl−1
)(r′l−1)

−1, where r′l−1 = sk′

l−1
and U =

(t′l−1)(r
′
l−1)

−1. Node El calls the algorithm CLFSR-A.SV with parameters V , U , γ

and El−1’s public key PKl−1 = s̄xl−1
that El obtains from the TTP. The signature γ

under the public key PKl−1 is verified by computing the terms A and B as follows:

1. Compute A = f(sµl−1
r′
l−1

−1+xl−1) from V and the public key s̄xl−1
using sequence

operation OP2.

2. Compute B = f(t′
l−1r′

l−1
−1k′

l−1)
from U and the ephemeral public key fk′

l−1

(obtained from the signature γ) using sequence operation OP1.

The signature γ on sµl−1
is a valid signature under the public key PKl−1 = s̄xl−1

if

A = B.

Verification of σl−1: The algorithm CLFSR-A.SV is used to simultaneously verify the

individual signatures (fk1, t1), . . . , (fkl−1
, tl−1) by checking the equality:

fQl−1
i=1(vi+xi)

= fQl−1
i=1(uiki)

. (5.1)

where, vi = hir
−1
i mod Q, ui = tir

−1
i mod Q and ri = ski

mod Q. In addition to

the aggregate public key PK(1,l−1) and the aggregate signature σl−1, node El needs

to know the helper term s̄µl−1
to compute the terms in Equation 5.1.

To verify signature σl−1, node El computes (in Step 3 of Algorithm 3) the terms

V =
∏l−1

i=1(hir
−1
i ), where ri = ski

; U =
∏l−1

i=1(tir
−1
i ); and the term s̄(X+µl−1) computed

from s̄µl−1
and the aggregate public key PK(1,l−1), using sequence operation OP2.

Node El calls the algorithm CLFSR-A.SV with parameters V , U , σl−1 and s̄(X+µl−1)

and checks the equality in (5.1) by computing the quantities A and B as follows:
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1. Compute A = fQl−1
i=1(hir

−1
i +xi)

from V , s̄(X+µl−1) using sequence operation OP2.

2. Compute B = fQl−1
i=1(tir

−1
i ki)

from U and f(
Ql−1

i=1 ki)
(given by the signature σl−1)

using sequence operation OP1.

The aggregate signature σl−1 on hashed messages h1, . . . , hl−1 is a valid signature

under the aggregate public key PK(1,l−1) if A = B.

Note that node E1 does not perform any verification. Node E2 receives a signature σ1

of the form (fk1, t1) on hashed message h1 = H(m1) from node E1 node; thus, E2 only runs

CLFSR-A.SV once to verify σ1 using PK1 = s̄x1.

input : (σ, V, U, s̄Y )
output: Valid, Invalid.

Compute A← OP2(V, s̄Y ).1

Compute B ← OP1(U,F ).2

/* F denotes the ephemeral public key given by σ. */

if (A = B) then3

Return Valid.4

else5

Return Invalid.6

end7

Algorithm 4: Aggregate Signature Verification CLFSR-A.SV for node El ∈ E
′.

5.4.5 A sample instantiation of the protocol

Here, we present a sample run of the aggregate signature scheme with four nodes, E1 (the

source), E2, E3 (intermediate nodes), and E4 (the destination).

The source node E1 does the following:

1. Choose ephemeral private key k1 ∈R Z
∗
Q; compute ephemeral public key fk1.

2. Set r1 = sk1; h1 = H(m1). Solve for t1 in the equation: h1 ≡ k1t1 − x1r1 mod Q.

3. Send σ1 =
(

fk1, t1
)

to node E2.

Intermediate node E2 does the following:

1. Choose ephemeral private keys k2, k
′
2 ∈R Z

∗
Q; compute ephemeral public keys fk2, fk′

2
.

2. Compute V = h1r
−1
1 and U = t1r

−1
1 .
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3. Compute A = f(v1+x1) ← OP2(V, s̄x1), where v1 = V . Compute B = f(u1k1) ←

OP1(U, fk1), where u1 = U .

4. If A 6= B, Abort. Compute integer r2 = sk2; h2 = H(m2). Solve for t2: h2 ≡

k2t2 − x2r2 mod Q.

5. Compute the helper term s̄µ2 ← OP2

(

(OP1(v2, fx1),OP1(x2, fv1)
)

, where v2 =

h2r
−1
2 ; µ2 = (v2x1 + x2v1).

6. Compute r′2 = sk′

2
; Solve for t′2: sµ2 ≡ k′2t

′
2 − x2r

′
2 mod Q. γ = (fk′

2
, t′2).

7. Send σ2 =
(

fk1k2, t1t2, r1r2

)

, γ to node E3.

Intermediate node E3 does the following:

1. Choose ephemeral private key k3, k
′
3 ∈R Z

∗
Q; compute ephemeral public key fk3, fk′

3
.

2. Compute v = sµ2(r
′
2)
−1 and u = t′2(r

′
2)
−1. Compute A ← OP2(v, s̄x2). Compute

B ← OP1(u, fk′

2
). If A 6= B, Abort.

3. Compute V = h1h2(r1r2)
−1; U = t1t2(r1r2)

−1; s̄(x1x2+µ2) ← OP2(s̄(x1x2), s̄µ2).

4. Compute A = f(v1+x1)(v2+x2) ← OP2(V, s̄(x1x2+µ2)), where v2 = h2r
−1
2 . Compute

B = f(u1k1)(u2k2) ← OP1(U, fk1k2), where u2 = t2r
−1
2 .

5. If A 6= B, Abort. Compute r3 = sk3; h3 = H(m3). Solve for t3: h3 ≡ k3t3 − x3r3

mod Q.

6. Compute f(V +µ2) ← OP2(V, s̄µ2) and s̄µ3 ← OP2

(

(OP1(v3, f(x1x2+µ2)),OP1(x3, f(V +µ2))
)

,

where v3 = h3r
−1
3 ;µ3 = v3(x1x2 +v2x1 +x2v1)+x3(v1v2 +v2x1 +x2v1). The quantity

f(x1x2+µ2) can be obtained from step 3.

7. Compute r′3 = sk′

3
; Solve for t′3: sµ3 ≡ k′3t

′
3 − x3r

′
3 mod Q. γ = (fk′

3
, t′3).

8. Send σ3 =
(

fk1k2k3, t1t2t3, r1r2r3

)

, γ to node E4.

Destination node E4 does the following:

1. Compute v = sµ3(r
′
3)
−1 and u = t′3(r

′
3)
−1. Compute A ← OP2(v, s̄x3). Compute

B ← OP1(u, fk′

3
). If A 6= B, Abort.

2. Compute V = h1h2h3(r1r2r3)
−1; U = t1t2t3(r1r2r3)

−1;

s̄(x1x2x3+µ3) ← OP2(s̄(x1x2x3), s̄µ3).
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3. Compute A = f(v1+x1)(v2+x2)(v3+x3) ← OP2(V, s̄(x1x2x3+µ3)), where v3 = h3r
−1
3 .

Compute B = f(u1k1)(u2k2)(u3k3) ← OP1(U, fk1k2k3), where u3 = t3r
−1
3 .

4. If A = B, the aggregate signature is verified for nodes E1, E2 and E3.

In the following section, we present a thorough analysis (including correctness, security,

efficiency, and scalability) of the aggregate signature scheme.

5.5 Analysis

5.5.1 Correctness

The aggregate signature scheme, CLFSR-A, satisfies the following correctness property: if

every node El ∈ E uses the system parameters params = 〈p,Q, f(x),H〉 and honestly

executes the algorithms (SKl,PKl)← A.KG(params) and (σl, γ)← A.SG(σl−1, s̄Ql−1
i=1 xi

,SKl, γ),

then A.SV always outputs Valid.

During verification of the aggregate signature σl−1, node El computes the following:

V =
∏l−1

i=1 hi(ri)
−1 =

∏l−1
i=1 vi, where vi = hi(ri)

−1 and U =
∏l−1

i=1 ti(ri)
−1 =

∏l−1
i=1 ui, where

ui = ti(ri)
−1. Node El computes the terms A and B in the following way:

A = OP2

(

V, s̄
(
Ql−1

i=1 xi)+µl−1

)

= s
(V +

Ql−1
i=1 xi+µl−1)

Since µl−1 =
(
∏l−1

i=1(vi + xi)−
∏l−1

i=1 vi −
∏l−1

i=1 xi

)

,

A = sQl−1
i=1(vi+xi)

= sQl−1
i=1(uiki)

= s(U
Ql−1

i=1 ki)
= OP1(U, fQl−1

i=1 ki
) = B

Thus, the verification algorithm CLFSR-A.SV returns Valid and the CLFSR-A is correct.

5.5.2 Security

The security of the scheme, CLFSR-A, is based on the difficulty of forging a single-signer

signature in the well-known EG I.1 scheme. In this section, we first prove the equivalence of

the single-signer scheme CLFSR-S′ to EG I.1. Next, we present a reduction from the single-

signer signature scheme, CLFSR-S′ to the multi-party aggregate signature scheme, CLFSR-A.

Informally, we show that if an adversary can successfully forge the aggregate signature

by running a probabilistic polynomial time (PPT) forger, then the adversary can forge a

signature in the EG I.1 scheme.

Before we present the reductions, we make a few observations about the adversary. An

adversary in our scheme CLFSR-A is allowed to do the following:
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1. Eavesdrop on the channels and record all communication between any two nodes.

2. Run a PPT forger F and try to forge any signature created by any node El.

3. Inject false messages and forged signatures in the channels.

We say that the adversary has successfully forged an aggregate signature σl, generated by

an arbitrary intermediate node El ∈ E
′ = E−{E1, En} on h1, . . . , hl if the forged signature

σF
l on h1, . . . , hl−1, h

F passes the verification of node El+1, i.e., A.SV outputs Valid.

The security of CLFSR-S′ is based on the difficulty of solving the discrete logarithm (DL)

problem in Fq3 or equivalently, the difficulty of solving the trace discrete logarithm (Tr-DL)

problem in Fq [41, 44, 45, 63].

We show that—assuming a total break has not occurred—if an adversary can

successfully forge an aggregate signature in the CLFSR-A scheme, he can successfully forge

a signature in EG I.1 variant (reduction in the security sense).

Lemma 5.5.1. The single-signer signature scheme CLFSR-S′ is equivalent to EG I.1.

Proof: [=⇒] Given a valid CLFSR-S′ signature σ = 〈fk, t〉 on hashed message h

under the public key s̄x, we know that f(hr−1+x) = f(tr−1k). Let α ∈ Fq3 be a root

of the characteristic polynomial f(x). By the definition of fk(x) (given in Chapter 2),

the roots of f(hr−1+x) are α(hr−1+x), α(hr−1+x)q, α(hr−1+x)q2
∈ Fq3, the roots of f(tr−1k) are

α(tr−1k), α(tr−1k)q, α(tr−1k)q2
∈ Fq3. Also, we know from the signing equation of CLFSR-S′

that hr−1 + x ≡ tr−1k mod Q. Thus, the root α(hr−1+x) of f(hr−1+x) is congruent to the

root αtr−1k of f(tr−1k) in Fq. We now have αhr−1+x = αtr−1k with h ≡ kt − xr mod Q,

which is precisely the signing equation of the EG I.1 scheme. Thus, the CLFSR-S′ reduces

to EG I.1.

[⇐=] Given a valid EG I.1 signature t = 〈r, t〉 on hashed message h under the public

key αx, we know that α(hr−1+x) = α(tr−1k). Also, α(hr−1+x)q = α(tr−1k)q and α(hr−1+x)q2
=

α(tr−1k)q2
where, q = p2. We know:

f(hr−1+x) = Tr(αhr−1+x)

= α(hr−1+x) + α(hr−1+x)q + α(hr−1+x)q2

f(tr−1k) = Tr(αtr−1k)

= α(tr−1k) + α(tr−1k)q + α(tr−1k)q2
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Thus, f(hr−1+x) = f(tr−1k) with h ≡ kt − xr mod Q, which is the CLFSR-S′ scheme.

Thus, the EG I.1 scheme reduces to CLFSR-S′ scheme.

Hence, the equivalence.

Lemma 5.5.2. The single-signer signature scheme CLFSR-S′ reduces to the proposed

aggregate signature scheme CLFSR-A.

Proof: We say that an aggregate signature σl generated by an arbitrary intermediate

node El ∈ E
′ = E − {E1, En} on messages m1, . . . ,ml using the aggregate public key

s̄X is successfully forged if the forged signature σF
l on messages m1, . . . ,ml−1,m

F , with

mF 6= ml, passes the verification of the node El+1 under the same aggregate public key s̄X ,

i.e., CLFSR-A.SV returns Valid.

We show that if an adversary has access to a PPT forger F , with which he forges an

aggregate signature in CLFSR-A, then the adversary can successfully forge the signature in

CLFSR-S′. Algorithm 5 shows a reduction from the single-signer signature scheme CLFSR-S′

to the multi-party aggregate signature scheme CLFSR-A.

input : (s̄x,mF )
output: σF

Choose long-term private key x1 from Z
∗
Q and ephemeral private key k1,∈R Z

∗
Q,1

where s̄x1 6= s̄x. Choose message m1; sign hashed message h1 = H(m1) following
CLFSR-S′ to create signature σ1 =

(

fk1, t1
)

.
Choose arbitrary integer 2 < l2

for i = 2 to l − 1 do3

Choose long-term private key xi from Z
∗
Q and ephemeral private key4

ki,∈R Z
∗
Q, where s̄xi

6= s̄x.

Compute aggregate public key s̄X = s̄Qi
j=1 xj

.
5

Choose message mi and sign hashed message hi = H(mi) following CLFSR-S′6

and create aggregate signature σi =
(

fQi
j=1 kj

,
∏i

j=1 tj,
∏i

j=1 rj

)

, γ.

end7

(σF , γF )← F(σl−1, γ,m1, . . . ,ml−1,m
F , s̄x, s̄X).8

σF =
(

fF

(
Ql

i=1 ki)
,
∏l

i=1 tFi ,
∏l

i=1 rF
i

)

.
9

Compute tF = (
∏l

i=1 tFi )(
∏l−1

i=1 ti)
−1; fF

k = OP1((
∏l−1

i=1 ki)
−1, fF

Ql
i=1 ki

).
10

Return (fF
k , tF ) as the forged CLFSR-S′ signature on message mF under public11

key s̄x.

Algorithm 5: Reduction of the single-signer CLFSR-S′ scheme to the aggregate
signature scheme CLFSR-A.
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The adversary chooses a bogus message mF and has access to a public key s̄x of an

arbitrary intermediate node. To forge a CLFSR- S′ signature on m, the adversary simulates

the generation of an aggregate signature σl−1 =
(

f(
Ql−1

i=1 ki)
,
∏l−1

i=1 ti,
∏l−1

i=1 ri

)

on random

messages m1, . . . ,ml−1, where mi 6= m for 1 ≤ i ≤ l − 1, using randomly chosen ephemeral

private keys k1, . . . , kl−1 and long-term private keys x1, . . . , xl−1, such that s̄xi
6= s̄x for

1 ≤ i ≤ l − 1. The aggregate signature σl−1 is valid under the aggregate public key

s̄X = s̄(
Ql−1

i=1 xi)
. The adversary then calls the PPT forger F with the following inputs:

• Messages m1, . . . ,ml−1

• Aggregate public key s̄X

• Aggregate signature (σl−1, γ)

• Public key s̄x

• Bogus message mF .

The PPT forger F returns a forged aggregate signature (σF
l , γF ) on messages m1, . . . ,ml−1

and mF under the aggregate public key s̄X = s̄(
Ql

i=1 xi)
, where s̄xl

= s̄x. The adversary

extracts the forged CLFSR-S′ signature (fF
k , tF ) on mF as shown in Step 10 of Algorithm 5.

Claim 5.5.1. The forged signature (fF
k , tF ) generated by the Algorithm 5 with inputs

(s̄x,m), passes the verification of CLFSR-S′, on message m under the public key s̄x.

Proof: The signature σF
l =

(

fF

(
Ql

i=1 ki)
,
∏l

i=1 tFi ,
∏l

i=1 rF
i

)

, γF on messages m1, . . . ,ml−1

and mF is a forged aggregate signature under the aggregate public key s̄X = s̄(
Ql

i=1 xi)
, where

s̄xl
= s̄x. Since CLFSR-A.SV returns Valid for the forged signature σF , we have:

fF
Ql

i=1(vi+xi)
= fF

Ql
i=1(uiki)

With i = l we have,

fF
(vl+xl)

= fF
(ulkl)

where, vl = (H(mF ))(rF
l )−1 and ul = (tFl )(rF

l )−1, where rF
l = sF

kl
mod Q.

From Step 10 in Algorithm 5, we get tFl = tF and fF
kl

= fF
k .

Thus, if an adversary can forge the aggregate signature, CLFSR-A, then he can forge the

single-signer signature CLFSR-S′.
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Theorem 5.5.3. EG I.1 reduces to the proposed aggregate signature scheme CLFSR-A.

Proof: The proof of the theorem is immediate from Lemmas 5.5.1, and 5.5.2.

An effective solution to a network security problem should achieve an adequate balance

between comprehensive security and efficiency/scalability. Next, we present a thorough

performance analysis (including efficiency and scalability) of the signature scheme CLFSR-A.

5.5.3 Efficiency

Table 5.1 shows a performance comparison of CLFSR-A with those of Boneh et al. [17] (BLS)

and Xu et al. [94] (X), and the sequential aggregate signature schemes of Lu et al. [67]

(L), Lysyanskaya et al. [68] (LMRS) and Boldyreva et al. [15] (IBAS). The term e is the

cost of one RSA encryption, the term d is the cost of one RSA decryption, s is the cost

of one scalar multiplication, f is the cost of hashing onto a GDH group, p is the cost of a

pairing computation. The term n represents the number of signers who contributed to the

aggregate signature, and the table heading Seq. denotes whether the aggregate signature is

sequentially generated or not.

In CLFSR-A, each node El ∈ {E3, . . . , En−1} needs to perform five OP1 operations and

three OP2 operations in Algorithm 3, and two OP1 operations and two OP2 operations in

Algorithm 4. Node E2 needs to perform five OP1 operations and one OP2 operation in

Algorithm 3 and one OP1 operation and one OP2 operation in Algorithm 4. The last node

in the sequence, En, performs two OP1 operations and three OP2 operations in Algorithm 4.

The GH variant takes twice the number of operations as XTR.

CLFSR-A uses extremely fast LFSR sequence operations [63, 78] and can achieve high

computational efficiency. A detailed comparison of modular exponentiations, sequence

operations, and pairing computations has been presented in Chapter 3.

5.5.4 Scalability

An arbitrary node generates an aggregate signature σl, γ, where the signature σl =

(fQl
i=1 ki

∈ Fq,
∏l

i=1 ti ∈ Z
∗
Q,

∏l
i=1 ri ∈ Fq) contains 3 elements and the signature γ =

(fk′

l
∈ Fq, t

′
l ∈ Z

∗
Q) contains 2 elements. Thus, the length of the aggregate signature is

constant and is independent of the number of signers. TO verify of σl, node El+1 needs

the aggregate public key s̄Ql
i=1 xi

. To verify γ, node El+1 needs s̄xl
, the public key of El.

Thus, a total of four elements in the base field Fq (not six elements due to redundancy of

sequence terms [45]) are needed to verify the aggregate signature in CLFSR-A.
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Table 5.1: Authenticating path-vector routing protocols: Cost comparison of CLFSR-A with

existing schemes

Seq. Underlying

Problem

Signature

(Bits)

Storage

(Bits)

Computation

CLFSR-A Yes Tr-DLP 1160 1020 7OP1 + 5OP2

X No GDH 237(n+1) 237(n+1) 2s+(2n+1)(p+f)

L Yes GDH 474 237∗162n (n + 4)s + 2p

BLS No GDH 160 1024n 1s+(n+1)(p+f)

LMRS Yes IFP 1024 1536n 1d + ne

IBAS Yes GDH 711 160n 4n+6+n(n−1)
2 f +

(n + 7)s + 6p

The sequential, RSA-based, LMRS scheme requires that the verifier know the order in

which the aggregate signature was created. The third column in Table 5.1 gives the signature

lengths in terms of the number of bits. In the id-based (using bilinear pairings) aggregate

signature scheme X, the size of the aggregate signature (on n messages) grows linearly with

the number of signers: The aggregate signature contains all n ephemeral public keys required

for verification. The fourth column shows the number of storage elements (public keys)

needed to verify an aggregate signature on n messages. CLFSR-A is the only protocol that

achieves constant (independent of the number of signers) storage for verifying the aggregate

signature. The bilinear pairing-based sequential aggregate signature scheme L requires

maximum storage for verification due to the large public key size (requiring approximately

5KB each). Each node’s private key consists of k + 2 elements in Zp, and the public key

consists of one element in G and k+1 elements in G
′ (both G and G

′ are multiplicative cyclic

groups of prime order p), where k is the length of the output of a collision-resistant hash

function Hk : {0, 1}∗ 7→ {0, 1}k . In order to verify an aggregate signature on n messages, the

node El+1 needs to know the public keys of all n signers preceding it. Thus, El+1 needs to

store n(160+2) elements or 162n∗237-bits for verification—elements of G (and G
′) require
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237-bits for representation [18]. The public key size is variable in the LMRS scheme (as the

RSA scheme) depending upon the choice of private-key size. On an average, each public

key in the LMRS scheme requires 1536 bits. The last column shows the total computational

cost at each node which includes the number of operations required for aggregate signature

verification, individual signature generation and signature aggregation.

CLFSR-A is the only scheme that requires a constant number of operations at each entity

participating in the aggregate signature scheme. Thus, CLFSR-A is more efficient and scalable

than any of the other schemes presented in Table 5.1. Related research on generalized

aggregate signatures, sequential aggregate signatures, and multisignatures can found in

Chapter 2.

5.6 Summary

Aggregate signatures aim to provide scalable authentication of a large number of users in

distributed applications and ideally bound the growth of resources to a constant. We

have observed that all previous aggregate signature schemes fall short of fulfilling the

goal of limiting the growth of resources to a constant. We have presented an efficient

and scalable aggregate signature scheme, CLFSR-A, based on cubic LFSRs tailored for

applications like building efficient certificate chains, authenticating distributed and adaptive

content management systems and securing path-vector routing protocols. CLFSR-A requires

less storage (public keys needed to verify the signature) than previous aggregate signature

schemes [15, 17, 67, 68, 94] and offers constant-length signatures and efficient signing,

aggregation and verification operations at each node. Each node needs to store a total of

1020 bits (public keys) for verification purposes. Also, CLFSR-A is the only scheme requiring

a constant number of operations at each node participating in the aggregate signature

scheme.

We believe that our results solve a small but crucial subset of the bigger problem

of securing the whole Internet by forming building blocks for authenticating large-scale

distributed applications. In the following chapter, we present our research in building an

efficient technique using blind signatures to provide accountability in privacy-preserving

systems.

Copyright c© Saikat Chakrabarti 2008
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Chapter 6

Providing accountability in privacy-preserving systems

6.1 Introduction

The current Internet architecture lacks a network-level accountability mechanism—a

means to reliably identify an entity that can be held accountable for sending a packet.

Undesirable consequences of this omission include inability to attribute attacks of various

kinds to higher-level users. The ability to attribute packets to a particular source is clearly

desirable from the standpoint of punishing those responsible for launching attacks like the

denial-of-service attack. This problem of thwarting denial-of-service attacks has led to recent

interest in adding some form of accountability to the network service [9, 97]. The idea of

one proposal [9] is that an “accountability provider” certifies each packet by signing it. The

signature can be verified by ISPs along the path from sender to receiver, and ultimately by

the receiver.

However, concerns about privacy complicate the design of any accountability service:

The ability to trace communications at user level could hinder or even prevent deployment

of such mechanisms. Users may not be comfortable with the notion that a record of their

communications exists, even at the level of IP addresses, and even if it will not be revealed

except in the case of wrongdoing. (Certainly this information is regarded as highly sensitive

by Internet Service Providers [95].)

The tension between accountability and privacy can be ameliorated to some extent

through the use of blind signatures. Blind signatures are a specialized form of digital

signatures where the signature generation involves an interactive protocol executed by an

entity (the owner) possessing the message m and another entity (the signer) possessing a

long-term private key, also known as the signing key. The owner transforms the message

into a “blinded” message m′ and sends it to the signer. The signer uses its private signing

key to generate a signature on the blinded message σ(m′) and returns the signature to the

owner. The owner makes a transformation on this signature to create σ′(m) such that the

following two conditions are satisfied:

1. The transformed signature is a valid signature on the original message under the

long-term public key of the signer, that is σ(m′) = σ′(m).
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2. The signer cannot associate the message, transformed signature pair (m,σ′(m)) with

the owner.

The transformed signature is known as a blind signature. Different constructions of

blind signatures have found valuable use in various areas such as E-Cash technology [30],

self-certified public keys [79] and E-voting systems [49]. Blind signatures have potential as

key building blocks of network security protocols, where an authority needs to vouch for

the legitimacy of a message but there is also a need to keep the ownership of the message

secret from the authority.

Although blind signature techniques have been known for some time, they are

traditionally built with heavyweight cryptographic techniques. The heavy construction

of blind signatures limits their utility for the design of protocols where performance is

important—for example, where signatures have to be created on the fly, or verified per-

packet. We introduce a new blind signature scheme built with primitives from LFSR-based

cryptosystems. The performance properties of the scheme make it more suitable than

traditional blind signature schemes for use in performance-sensitive network protocols. We

do not claim to have solved the difficult problem of accountability completely; however, we

believe our new primitive can be a useful building block for such solutions.

6.2 Protocol overview

We first develop a cubic LFSR-based single-signer signature scheme EGCLFSR using the EG

I.3 variant of the ElGamal family of signatures [51]. We construct our blind signature

scheme, BCLFSR, based on EGCLFSR and using fundamentals of the blind signature originally

used in E-Cash systems [21, 30]. The use of LFSR sequences makes the blind signature

scheme a good candidate for performance-sensitive network protocols. BCLFSR can be useful

in providing ISP-level accountability while preserving customer anonymity.

In our scheme, a customer within the domain of an ISP blinds a message m → m′,

and presents m′, along with the customer’s personal credentials, to the accountability

server of the ISP. The server uses its long-term secret key to generate a signature on the

blinded message, σ(m′), and returns it to the customer. The customer transforms the

signature into a blind signature on the original message σ′(m). Given a valid signature on

the original message, σ′(m) under the ISP’s public key, the ISP cannot repudiate signing the

message m. This signature provides ISP-level accountability. The use of blind signatures

preserves message anonymity, since the ISP cannot associate the (message, blind signature)

pair (m,σ′(m)) to a particular customer. The price paid for this feature is that the ISP
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(or third-party accountability service) must have some other means of determining the

originating user when presented with a malicious packet. (One possibility is for the ISP to

track which of its IP addresses used by which customers.)

The core of our blind signature scheme, BCLFSR, consists of an ElGamal-like signature.

An ElGamal-like signature σ on a message m is a tuple consisting of an ephemeral public

key, and a parameter t that is the result of solving an ElGamal-like signing equation [51].

Loosely speaking, the ephemeral public key provides some randomness for the signature,

and the parameter t serves as the signature relative to that randomness. Informally, in an

ElGamal signature-based blind signature scheme, the customer needs to transform both the

ephemeral public key and the parameter t to ensure that the (blinded message, signature)

pair, (m′, σ) and the (original message, blind signature) pair (m,σ′) are statistically

independent1. This feature of unlinkability in blind signatures ensures privacy to the

customer.

6.3 Constructing the LFSR-based Blind Signature Scheme

To construct our blind signature scheme, we proceed as in previous chapters: First we

develop a single-signer scheme, and then we extend it to a special form of signature, in this

case, a blind signature scheme.

6.3.1 The LFSR-based single-signer signature scheme

We present our cubic LFSR-based individual signature scheme, EGCLFSR [26] constructed

using the EG I.3 variant of the ElGamal family.

EGCLFSR consists of four phases: initialization, key generation, signature generation and

signature verification. During the initialization phase, both entities, i.e., the signer and

the verifier, choose and agree on the system public parameters: params = 〈p,Q, f(x),H〉,

where p,Q and f(x) are as described in Chapter 2 and H : {0, 1}∗ 7→ ZQ is a cryptographic

hash function. The signer generates its long-term private and public key pair, (SK,PK) =

(x, s̄x). Fig. 6.1 describes the signature generation and signature verification phases of

EGCLFSR.

Next, we present an efficient blind signature scheme using EGCLFSR.

1For a formal definition and analysis of unlinkability of blind signatures, the reader is referred to [21, 30,
80]
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Figure 6.1: Providing accountability in privacy preserving systems: The EGCLFSR single-

signer signature scheme

Signature Generation Signature Verification

1. Randomly choose ephemeral private key

k ∈R Z
∗
Q and compute ephemeral public

key fk ← OP1(k, f). Denote r = sk

mod Q as an integer.

2. Compute hash of message h = H(m);

Solve for t in the following equation: t ≡

kh− xr mod Q.

3. Send the signature σ = 〈fk, t〉 and the

message m to verifier.

1. Compute h = H(m), v = tr−1

and u = hr−1.

2. Compute A = f(v+x) ←

OP2(v, s̄x).

3. Compute B = f(uk) ←

OP1(u, fk).

4. Accept signature if A = B, else

reject signature.

6.3.2 The proposed blind signature

Our new blind signature scheme, BCLFSR, is a cubic LFSR-based instantiation of the EG

I.3 variant-based blind signature scheme proposed by Camenisch et al. [21]. Similar to

EGCLFSR, during the initialization phase, all entities choose and agree on the system public

parameters, params = 〈p,Q, f(x),H〉. During the key generation phase, the ISP generates

its long-term (private, public) key pair, (SK,PK) = (x, s̄x).

Fig. 6.2 depicts the signature generation and verification phases of the proposed cubic

LFSR-based blind signature scheme BCLS. The customer and the ISP interactively generate

a blind signature σ′ on a hashed message h = H(m) as follows.

1. The ISP generates an ephemeral key pair (k, fk) and sends the public part, fk, to the

customer.
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Figure 6.2: Providing accountability in privacy preserving systems: The blind signature
scheme BCLFSR blind signature scheme

public key fk ← OP1(k, f). Denote

r = sk mod Q as an integer.

key k ∈R Z
∗

Q and compute ephemeral

Send fk to customer.

Randomly choose ephemeral private1.

2.

3. Randomly choose a, b ∈R Z
∗

Q
.

4. Compute fka+b ← OP2(b, OP1(a, fk)).

Denote r′ = ska+b mod Q as an

Send h′ to ISP.6.

mod Q.

Compute h = H(m) and h′ = ahrr′
−15.

integer.

7. Solve for t in the equation: t ≡ kh′−

xr mod Q

Send t to customer.8.

9. Compute t′ = tr′r−1 + bh mod Q.

Blind signature on hashed message

where k′ = ka + b.

10.

h = H(m) is given as σ′ = 〈fk′ , t′〉,

Customer (Owner)ISP (Signer)

Verifier

fk

Compute v = t′r′−1 and u = hr′−1, where h = H(m).1.

Compute A = fv+x ← OP2(v, s̄x) and B = fuk′ ← OP1(u, fk′ ).2.

If A = B the signature σ′ is valid under public key s̄x.3.

t

h′

2. The customer transforms fk into the blind signature parameter fk′, uses fk′ to

transform h into the blinded message h′ and sends h′ to the ISP.

3. The ISP generates a signature σ = 〈fk, t〉 on the blind hashed message h′ using its

private key, x, and sends the parameter t to the customer.

4. The customer transforms the parameter t into t′ such that the tuple σ′ = 〈fk′, t′〉 is a

valid signature on hashed message h = H(m) under the ISP’s public key, s̄x.

The validity of a blind signature under the ISP’s public key implies that the ISP cannot

repudiate signing the message, thus, providing ISP-level accountability. Blinding of the

message and signature transformations guarantees that when the customer reveals the
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(message, blind signature) pair (m,σ′) to the verifier, the ISP cannot associate the pair

to a particular customer.

6.4 Analysis

In this section, we present a theoretical analysis of correctness, security and performance

of the proposed cubic LFSR-based blind signature scheme.

6.4.1 Correctness

The cubic LFSR-based blind signature scheme, BCLFSR, is correct if the signature σ′ =

〈fk′ , t′〉 generated by the customer with the cooperation of the ISP on hashed message h

passes the verification under the public key, s̄x, of the ISP, provided:

1. All entities choose and agree upon the system public parameters params = 〈p,Q, f(x),H〉.

2. The ISP honestly executes the key generation algorithm of the underlying PKC.

3. The ISP and the customer honestly execute signature generation algorithm of the

BCLFSR scheme.

Proposition 6.4.1. BCLFSR is correct.

Proof: In the verification phase of the blind signature scheme, BCLFSR, the equality

of the terms A and B can be shown as follows:

A = fv+x = ft′r′−1+x = f(tr′r−1+bh)r′−1+x

= f(kh′−xr)r−1+bhr′−1+x = f(kahrr′−1)r−1−x+bhr′−1+x

= fkahr′−1+bhr′−1 = f(ka+b)hr′−1 = fuk′ = B

Thus, the signature σ′ on h = H(m) is valid under public key, s̄x of the ISP.

6.4.2 Security

The security of BCLFSR is based on the difficulty of solving the trace discrete logarithm

(Tr-DL) problem in Fq [41, 44, 45, 63]. Informally, the trace function Tr : Fq3 7→ Fq is given

as Tr(α) = α + αq + αq2
. The Tr-DL problem and assumption has been formally defined in

Chapter 3.
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Lemma 6.4.2. EGCLFSR is equivalent to EG I.3.

Proof: [Proof Sketch] ⇒: Given a EGCLFSR signature σ = 〈fk, t〉, we know f(tr−1+x) =

f(hr−1k). Let α be a root of the irreducible polynomial f(x). Then, we have αtr−1+x = αhr−1k

with t ≡ kh− xr which is EG I.3. Thus, the EGCLFSR reduces to (in the security sense) EG

I.3.

⇐: In EG I.3, αtr−1+x = αhr−1k with t ≡ kh− xr. This equality implies Tr(αtr−1+x) =

Tr(αhr−1k). Thus, EG I.3 reduces to (in the security sense) EGCLFSR. Hence, the equivalence.

Theorem 6.4.3. BCLFSR is a blind signature scheme.

Proof: [Proof Sketch] In the BCLFSR scheme, during generation of a blind signature

σ′ = 〈fk′ , t′〉 on a hashed message h = H(m), the parameters known to the ISP (also

referred to as the view of the ISP) are 〈h′, k, fk, t〉. BCLFSR is blind if the (message, blind

signature) pair (m,σ′) is statistically independent from the view of the ISP and σ′ is a valid

signature on h = H(m) under the ISP’s public key s̄x [21].

By Proposition 6.4.1, the signature σ′ on the hashed message h = H(m), generated

following BCLFSR’s signature generation algorithm, is valid under the public key, s̄x. What

remains to be shown is that given an arbitrary view of the ISP, 〈h′, k, fk, t〉, and a valid

(message, blind signature) pair (m,σ′), the elements a and b can be uniquely determined.

Following the proof of Theorem 2 in [21] we can show that elements a and b can be uniquely

determined as: a = h′h−1r′r−1 mod Q and b = (t′ − tr′r−1)h−1 mod Q. Also, since the

customer randomly chooses the elements a, b ∈ Z
∗
Q, the statistical independence of the

(message, blind signature) pair and ISP’s view is immediate [21].

6.4.3 Cost

Cubic LFSR-based PKCs [44, 63, 75] use reduced representations of finite field elements.

Elements in an extension field Fqn are represented by their corresponding minimal

polynomials with coefficients in the base field Fq. The security of LFSR-based PKCs is

based on the difficulty of solving the DL problem in the extension field Fqn . However, all

computations are performed in the base field Fq.

Table 6.1 shows direct comparisons of BCLFSR with the scheme by Camenisch et al. [21]

(C), Boldyreva [14] (B), Abe [3] (A) and Pointcheval et al. [80] (P). The term e is the cost

of modular exponentiation, s is the cost of one scalar multiplication, p is the cost of one
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pairing computation. The computational cost for one OP1 ≈ 0.33e. The lowest known cost

for computing a single Tate pairing equals approximately 11110 multiplications in Fq, where

q is a 171-bit prime (for a security benchmark of 1024 bits) [6].

The system public parameters of C, P and A are given by the tuple params = 〈p, q, α〉,

where p and q are 1024 and 160-bit primes, respectively, and α is an element of order q in

Z
∗
p. Public key sizes include the generators of the underlying groups.

Table 6.1: Providing accountability in privacy preserving systems: Cost comparison of

BCLFSR with existing schemes

C [21] P [80] B [14] A [3] BCLFSR

Generation cost 3e 7e 3s 16e 3OP1

Verification cost 2e 3e 2p 8e 2OP1

PK size (bits) 2048 2048 766 4096 680

Signature size (bits) 320 1344 160 3008 500

Underlying problem DLP DLP GDH DLP Tr-DLP

Given α ∈ Fp6, where p is a 170-bit prime, computing αk for any integer k requires

approximately 23.4 log2 Q multiplications, where Q, the order of α, is a 160-bit prime [63].

However, computing the kth sequence term sk = Tr(αk) given f (represented by Tr(α)) using

sequence operation OP1 takes only 8 log(k mod Q) multiplications which is approximately

three times faster than computing αk, given α [63]. The cost of computing one sequence

operation OP1 (without special hardware) is approximately equal to computing 0.33

exponentiations.

Blind signature generation and verification in BCLFSR are more efficient than in C, P, B

and A. BCLFSR also has the smallest public key size. The pairing-based scheme B has the

smallest signature, followed by C, BCLFSR, and P; A has the largest signature.

6.5 Related research

Researchers have proposed a number of network-layer mechanisms for identifying sources

of malicious packets [66, 86, 96, 97]. Virtually all involve additional operations as part of
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forwarding. In some schemes, these operations are performed on every packet, while in

others they are performed probabilistically on a small fraction of packets. In some, routers

record information about packets forwarded, but in most, routers add to or modify packets

in some way to “mark” them. Many of these mechanisms have the property that ability to

determine the path followed by a packet is probabilistic; many packets must follow the same

path in order for them to be effective. Most also focus on determining the (network-level)

source after the fact, and at best offer deterrence rather than prevention.

The recent proposal by Bender et al. [9] takes a different approach. They posit a

third-party accountability service that vouches for the legitimacy of its customers. Transit

providers require packets to be signed (using public-key cryptography) by such a service in

order to forward them. Packets that are not vouched for may not be forwarded. In case

of mischief, the victim can take an offending packet to the accountability server, which can

identify the perpetrator.

We discuss the background and related research in the area of blind signatures, and

cryptosystems based on LFSR sequences in Chapter 2.

6.6 Summary

Blind signatures are useful in protocols that require the origin of a message to be certified

in some way, but the actual originator of the message must remain anonymous. Although

blind signature techniques have been known for some time, traditionally they are built from

heavyweight cryptographic techniques. This limits their utility for the design of protocols

where performance is important.

We have presented a new third-order linear feedback shift register (LFSR) sequence-

based, single-signer signature scheme, EGCLFSR, based on EG I.3. Using EGCLFSR, and

following fundamentals of a well known blind signature originally used for E-Cash systems,

we have presented an efficient blind signature scheme, BCLFSR, the first one based on LFSR

sequences, which can serve as a protocol building block for privacy-preserving accountability

systems. We have analyzed the correctness and security of BCLFSR and have also presented

a performance (computation and communication costs, storage overhead) comparison of

the proposed scheme with previous schemes. The proposed blind signature scheme achieves

superior performance and lower storage overhead compared to previous constructions in the

literature [3, 14, 21, 80].

Copyright c© Saikat Chakrabarti 2008
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Chapter 7

Conclusion and future work

7.1 Significant contributions

This thesis demonstrates how to construct various special forms of digital signatures, such

as aggregate signatures, multisignatures, and blind signatures, using primitives from LFSR

sequences. We use third-order (cubic) LFSR sequences to construct all security protocols.

Our performance analysis shows that for a desired level of security, the proposed signature

schemes outperform previous protocols in computation cost, number of communication

rounds and storage overhead. To summarize, we have explored the following areas in the

domain of network security.

• A common problem faced by large-scale multicast applications, like software distribu-

tion, multimedia transmission, and real-time news feeds, is collecting authenticated

feedback from the intended recipients. We have designed a technique for combining

multiple signed-Acks into a single compact one and have observed that most DL-

based signature variants, including the Schnorr variant, cannot be used to produce a

single round, fault-tolerant solution to the problem. We proposed using the ElGamal

variant, EG I.4, on which we built CLFSR-MS, an LFSR-based, efficient and scalable

multisignature to solve the signed Ack implosion problem. Its public keys (of size

680 bits) are considerably shorter than keys used in previous protocols addressing the

same problem with a security benchmark of 1024 bits. The signature size is around

500 bits, which is the second shortest multisignature among all such protocols.

• The Dynamic Source Routing (DSR) protocol is perhaps the most popular routing

protocol used in mobile ad hoc networking environments. DSR, in its original design,

is vulnerable to several forms of attack by malicious nodes and thus cannot guarantee

authentic source routes. We have focussed on the following problem: In DSR, how can

a source node wanting to find a route to a destination be assured of the authenticity

of the source route advertised in a received routing packet? We have proposed CLFSR-

M, a single-round, LFSR-based multisignature scheme to authenticate route discovery

information in DSR. The proposed scheme is efficient (500-bit multisignatures and
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680-bit public keys), requires no prior cooperation to construct the multisignature,

and supports authentication of cached routes. We considered a fully distributed

mechanism of public key distribution and presented two PGP-based trust policies for

effective management of aggregate public keys in the ad-hoc networking environment.

• We have proposed an efficient and scalable aggregate signature scheme, CLFSR-

A, tailored for applications like building efficient certificate chains, authenticating

distributed and adaptive content-management systems and securing path-vector

routing protocols. CLFSR-A requires all nodes (that need to verify signatures) to store

public keys of size 1020 bits (least among all previous schemes), and generates an

aggregate signature of size 1160 bits.

• We have observed that blind signatures can form critical building blocks of privacy-

preserving accountability systems, where an authority needs to vouch for the

legitimacy of a message but the ownership of the message must be kept secret

from the authority. Conventional blind signatures, typically used in E-Cash and

E-voting schemes, are built using heavyweight cryptographic primitives. The use

of expensive cryptographic operations limits their utility for the design of protocols

where performance is important—for example, where signatures have to be created

on the fly, or verified per-packet. We have proposed BCLFSR, an efficient LFSR-based

blind signature that can serve as a protocol building block for performance sensitive,

accountability systems.

We construct all our protocols using the XTR-PKC, a cubic-LFSR based PKC. However,

all schemes proposed in the dissertation can be seamlessly extended to PKCs based on

higher-order LFSR sequences, with minor modifications, depending on the desired security

level.

7.2 Continuing and future research

Our continuing and future research can be divided into three parts: (1) Investigating

the feasibility of transforming existing DL-based signatures to LFSR-based ones. (2)

Conducting experiments to study the rate of discovery of new paths in BGP. (3)

Investigating formal mechanisms that produce guarantees of scalability and fault-tolerance

in aggregate signature schemes.
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7.2.1 Transformation of existing DL-based signatures

We are investigating the feasibility of transforming existing DL-based proxy signatures

into efficient ones, by using our techniques based on LFSR sequences. Specifically, we are

looking into the following problem: How can we secure systems where nomadic clients need

to search for special services or products, negotiate with potential business entities and

perform remote operations on behalf of some other client? Proxy signatures have found

extensive use in such scenarios of mobile agent-based network systems.

Proxy delegation is a process by which an entity, the delegator, transfers its signing

rights and capabilities to another entity, the proxy. Following delegation, the proxy can

generate signatures on behalf of the delegator. The messages signed by the proxy conform

to a set of business policies, typically embodied in a warrant, agreed in advance by the

delegator and the proxy. Any entity wanting to verify a proxy signature must check the

validity of the proxy signature as well as delegator’s agreement on the signed message.

Conventional proxy signatures use traditional public key cryptosystems, and a direct

application of such mechanisms would invariably face performance challenges in resource-

constrained environments involving mobile agents. To address this problem, we have

recently proposed the use of LFSR sequences to construct proxy signatures [29].

We understand that our results have not completely solved the difficult problem of

authentication in mobile agent systems, but we strongly believe that our on-going work

involving LFSR-based proxy signatures has significant potential to form crucial building

blocks for securing performance-sensitive ubiquitous systems. It would be interesting to

investigate techniques of transforming conventional DL-based digital signatures into efficient

LFSR-based signature schemes that can be used for a variety of performance-sensitive

networking contexts.

7.2.2 Path stability of inter domain routing protocols

The Border Gateway Protocol (BGP) remains the de facto interdomain routing protocol

on the Internet. The network security and applied cryptographic community—that

includes us as well—are trying to develop efficient mechanisms of authenticating BGP path

advertisements. However, no cryptographic protocol has yet been deployed in the Internet

to guarantee an end-to-end secure solution to inter-domain routing. The search for an

efficient cryptographic primitive mitigates the problem of building a practical solution to

securing BGP but does not completely solve the the problem of wide-scale deployability

across the Internet.
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Regardless of the underlying cryptographic primitive being used, all security protocols

aiming to optimize cost through signature aggregation are based on two core assumptions:

(1) The total number of distinct paths for a prefix advertised by an administrative domain

is small, and (2) the advertised paths are stable over time.

The network research community has extensively studied the Internet topology and

BGP path stability [19, 33, 39, 46]. However, none of these studies were focussed on the

problem of using aggregate signatures to secure routes in BGP. We are conducting extensive

experiments with the Internet topology, obtained from various data sources such the Oregon

Route Views Project [1], and study the rate of discovery of new paths in BGP.

7.2.3 Techniques for aggregating signatures

Aggregate signatures are crucial in building authentication mechanisms involving a large

number of users, such as distributed content-management systems, multi-player games, and

secure path-vector routing protocols like BGP. An efficient cryptographic primitive does not

automatically result in scalable and fault tolerant network security protocols. Scalability

of practical aggregate signature protocols depends on a variety of factors, including the

underlying signing equations, the nature of network topology, and the nature of aggregation.

The area of aggregate signatures and applications is relatively new, and the techniques

used in aggregation is still quite unexplored. Researchers have resorted to alternative

security models, such as the random oracle model [8], to construct proofs of security.

We believe that aggregation techniques need more than heuristic arguments to provide

guarantees of scalability. It would be interesting to investigate formal mechanisms that can

produce guarantees of scalability and fault-tolerance. Such guarantees will include metrics

of scalability, such as the number of communication rounds needed for protocol completion,

and measures of fault tolerance—whether the protocol needs to be restarted if some (or all)

nodes fail to deliver data.

Copyright c© Saikat Chakrabarti 2008
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Appendix A

Rudiments of bilinear pairings and Diffie-Hellman problems

The appendix is divided into two distinct parts. The first part discusses the preliminaries

of bilinear pairings on certain families of elliptic curves. The second part lists commonly used

Diffie-Hellman problems and assumptions that are commonly used in research related to

building authentication mechanisms in various networking contexts. The appendix provides

the reader with pointers to some terminology and underlying cryptographic mechanisms

needed to rigorously compare our results with previous solutions.

A.1 Rudiments of bilinear pairings on elliptic curves

A.1.1 A short note on elliptic curves

Let E/Fp be an elliptic curve over the finite field Fp satisfying an equation of the following

form:

y2 = x3 + ax + b mod p a, b ∈ Fp (A.1)

where, characteristic p ≥ 3 and the discriminant of the curve△ = 4a3+27b2 6= 0 mod p [12,

47]. The curve E/Fp is represented by the set of all points (x, y) ∈ Fp × Fp satisfying

Equation A.1 together with an extra point O, called the point at infinity. There are explicit

formulas for adding two points on the curve [47]. Under the addition rule, the set of points

on E/Fp form an Abelian group, i.e., Q + R = R + Q for all points Q,R ∈ E/Fp. Scalar

multiplication over points on the curve forms the basis of elliptic curve based cryptographic

schemes. Given Q ∈ E/Fp and integer d, the result of scalar multiplication is obtained by

adding Q to itself d times, denoted as [d]Q. The number of points on the curve over a finite

field, denoted as #E/Fp, is called the order of the curve; it can be calculated by Schoof’s

algorithm [85] in polynomial time. The order of the curve is given by #E/Fp = p + 1− t,

where t is the trace of Frobenius at p [12, 47]. The curve E/Fp is called supersingular if

the characteristic divides the trace of Frobenius, i.e., p | t.

A.1.2 Bilinear pairings

Recently, bilinear pairings have emerged as a popular tool for construction of secure

and efficient identity-based schemes dealing with encryption, key agreements and digital

99



signatures [13]. We treat bilinear pairings largely as abstract mappings and do not digress

into the mathematics needed to construct such pairings. In this section, we enumerate the

attributes of such mappings, focussing on the usage in our key agreement protocol, although

the practicality of any real-life security mechanism demands a closer look at the details of

the selected pairing mechanism.

Let G0 = (〈P0〉, r,+) denote an additive group of large prime order r. Let G1 =

(〈P1〉, r, ∗) denote a multiplicative group of the same large prime order r. Define a modified

pairing as: ê : G0×G0 → G1. The pairing is considered admissible [17] if it has the following

attributes:

1. Bilinearity: For all P,Q ∈ G0 and for all a, b ∈ Z, ê(aP, bQ) = ê(P,Q)ab.

2. Non-degeneracy: The pairing does not map all pairs in G0 to the identity element of

G1, i.e., ∃P ∈ G0 : ê(P,P ) 6= 1.

3. Computability: For all P,Q ∈ G0, there exists an algorithm that computes ê(P,Q) in

polynomial time.

Admissible bilinear pairings used in modern cryptographic mechanisms are implemented

by the modified Weil pairing or the modified Tate pairing [12].

A.1.3 The MOV/Frey-Rück attack

The discussion of bilinear maps and its application would be incomplete without a word on

the MOV/Frey-Rück Attack. Even though there exist algorithms, like the Index Calculus

Algorithm, to solve the discrete logarithm problem (DLP) over finite fields in probabilistic

sub-exponential time under certain conditions, the elliptic curve discrete logarithm problem

(ECDLP) over certain elliptic curves cannot be solved in sub-exponential time; the Index

Calculus Algorithm does not work with specific elliptic curves [12, 47]. Menezes et al. [69]

demonstrated a reduction of an instance of the discrete logarithm problem in an elliptic curve

to the logarithm problem in a finite field, thus, providing a probabilistic sub-exponential

time algorithm for the ECDLP. Menezes et al. [69] achieve this reduction using Weil pairings,

while Frey-Rück [36] used the Tate pairing. Algorithms that solve the discrete logarithm

problem over finite fields Fpk have running time sub-exponential in the order of the field

pk. Menezes et al. [69] observe that supersingular elliptic curves have small values of k and

hence are vulnerable to this attack. Hence, pairing-based cryptosystems constructed using

supersingular elliptic curves must choose the security parameters in such a way that the

discrete logarithms on both G0 and G1 are hard.
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A.2 The Diffie-Hellman family of problems and assumptions

Applied cryptographic protocols are based on several well-known mathematical assump-

tions, such as the Computational Diffie-Hellman assumption. We describe some of these

common assumptions that we use (and research we refer to) throughout this dissertation.

Computational Diffie-Hellman (CDH) parameter generator A CDH parameter

generator, GenCDH, is a probabilistic polynomial time (PPT) algorithm with the

following description: (1) GenCDH takes a security parameter λ as input, (2) runs

in polynomial time in λ, and (3) outputs the description of G0 = (〈P0〉, r,+).

CDH problem in G0 Given (P0, [a]P0, [b]P0) ∈ G
3
0 and a, b

R
←− Z

∗
r, compute [ab]P0. Let

A be a PPT algorithm that solves the CDH problem. Define the advantage of the

CDH-solver A as:

AdvCDH
A,G0

(t) = Pr
[

A(G0, P0, [a]P0, [b]P0, [c]P0) = [ab]P0 | G0 ← GenCDH, a, b
R
←− Z

∗
r

]

where the probability is over the random choice of a, b in Z
∗
r, the random choice of

the generator P0 of G0 and the random bits of A.

CDH assumption The CDH parameter generator, GenCDH, satisfies the CDH assump-

tion, if for every A, AdvCDH
A,G0

is negligible.

Bilinear Diffie-Hellman (BDH) parameter generator A BDH parameter generator

GenBDH is a PPT algorithm with the following description: (1) GenBDH takes a security

parameter λ as input, (2) runs in polynomial time in λ, and (3) outputs the description

of two groups, G0 = (〈P0〉, r,+) and G1 = (〈P1〉, r, ∗), and an admissible bilinear

pairing ê : G0 ×G0 → G1.

BDH Problem in (G0, G1, ê) Given (P0, [a]P0, [b]P0, [c]P0) ∈ G
4
0 and a, b, c

R
←− Z

∗
r,

compute ê(P0, P0)
abc ∈ G1. Let A be a PPT algorithm that solves the BDH Problem.

The advantage of the BDH-solver A can be defined as:

Adv
BDH
A,G0,G1,ê(t) = Pr

[

A(G0, G1, P0, [a]P0, [b]P0, [c]P0) = ê(P0, P0)
abc |

(G0, G1, ê)← GenBDH, a, b, c
R
←− Z∗

r

]

BDH assumption The BDH parameter generator, GenBDH, satisfies the BDH assump-

tion, if for every A, AdvBDH
A,G0

is negligible.
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Decisional Bilinear Diffie-Hellman (DBDH) Problem in (G0, G1, ê) Given a, b, c
R
←−

Z
∗
r and x

R
←− G1, the problem for a PPT distinguisher D running in time

t, is to distinguish between the distributions: (P0, aP0, bP0, cP0, ê(P0, P0)
abc) and

(P0, aP0, bP0, cP0, x). Let A be a PPT distinguisher that runs solves the DBDH

Problem. Define the advantage of the DBDH-solver A as:

Adv
DBDH
D,G0,G1,ê(t) =

∣

∣Pr
[

A(G0, G1, P0, [a]P0, [b]P0, [c]P0, ê(P0, P0)
abc) = 1 |

(G0, G1, ê)← GenBDH, a, b, c
R
←− Z

∗
r

]

−Pr
[

A(G0, G1, P0, [a]P0, [b]P0, [c]P0, x) = 1 |

(G0, G1, ê)← GenBDH, a, b, c
R
←− Z

∗
r , x

R
←− G1

]
∣

∣

DBDH assumption For every D, AdvDBDH
D,G0,G1,ê is negligible.
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