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Abstract 
 

The glucose transporter 4 (GLUT4) is the major insulin-responsive glucose 

transporter in adipose and muscle tissues. Although the early steps in the insulin signaling 

pathway governing translocation of GLUT4 to the plasma membrane are well 

understood, the final steps in this pathway are not. TUG is a protein which has been 

shown to affect trafficking of GLUT4 both in the basal state and in response to insulin. 

One protein-protein interaction between TUG and the large cytosolic loop of GLUT4 has 

previously been identified. Based on reports of the requirement of the GLUT4 N-terminal 

domain for its proper targeting to the plasma membrane, we postulated that an interaction 

might also exist between TUG and the N-terminal domain of GLUT4, and we tested this 

hypothesis using two sets of pull-down experiments. In the first set, using the N-terminal 

domain of GLUT4 fused with glutathione S-transferase (GST), we were able to pull TUG  

down from the lysates of TUG-transfected HEK 293 cells. TUG was also pulled down by 

the GLUT4 cytosolic loop and, to a much lesser extent, its C-terminal domain. However, 

there was no specific interaction between these fusion proteins and the lysates of cells 

transfected with a truncated form of TUG lacking its own N-terminal domain. In the 

second set of experiments, using a biotinylated synthetic GLUT4 N-terminal peptide, we 

pulled down a protein detected by an anti-TUG antibody and running at ~64 kDa, a 

slightly higher molecular weight than wild-type TUG. We believe that this band 

represents modified full-length TUG. This interaction was not seen using synthetic 

GLUT4 N-terminal peptide mutated at 4 amino acids previously identified as necessary 

for proper GLUT4 retention and insulin-responsive trafficking. We conclude that TUG 

interacts not only with the large cytosolic loop of GLUT4, but also with the N-terminal 

domain of GLUT4, and that this latter interaction can be disrupted by mutations in 

GLUT4 that cause defective trafficking, suggesting that this interaction is critical for 

GLUT4 intracellular retention and insulin-responsive GLUT4 trafficking. 
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Introduction 

 

Type 2 diabetes is a large and growing public health concern worldwide with both 

microvascular and macrovascular complications, including kidney failure, stroke, and 

myocardial infarction. The hallmark of type 2 diabetes is elevated plasma glucose 

secondary to insulin resistance in peripheral tissues. Among its many effects on the body, 

insulin causes increased glucose uptake in muscle, adipose, and hepatic tissues. This 

effect is mediated primarily by the facilitative glucose transporter GLUT4. Insulin acts on 

adipose and skeletal muscle tissue to rapidly redistribute GLUT4 from within the cell to 

the plasma membrane, where it can then transport glucose from the bloodstream and 

interstitial space into the cell, thus regulating glucose levels in the blood. Other members 

of the glucose transporter family, such as GLUT1, exist primarily at the plasma 

membrane in the basal state, and their intracellular pools do not accumulate as strongly in 

response to insulin. As discussed below, defects in GLUT4 trafficking and/or expression 

are now considered to be the common steps in, and main causes of, insulin resistance and 

type 2 diabetes. 

 

Early discoveries in glucose transport 

Starting in the late 1940’s and continuing through the 1950’s, Rachmiel Levine 

and colleagues demonstrated that cells in the body were not permeable to blood sugars 

such as glucose, and that insulin dramatically increased their volume of distribution (1). 

The “transport theory” proposed that insulin was responsible for stimulating the transport 

of glucose into tissues, and that this resulted in lower blood glucose levels. It was initially 
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thought that insulin might activate transporters that were already in the plasma 

membrane. Because the kinetics of the insulin response were too rapid to be mediated by 

mRNA transcription or protein translation, insulin’s action would require pre-formed 

transporters. However, in the late 1970’s, two groups independently proposed the 

‘translocation hypothesis’, which was an unexpected mechanism at the time (2, 3). This 

theory was that the glucose transporter was located intracellularly and required the 

presence of insulin to translocate it to the plasma membrane. It took several more years to 

identify the first glucose transporter GLUT1 (4). In 1989, different groups identified and 

cloned the major insulin-responsive glucose transporter GLUT4 (5, 6), which was located 

primarily in insulin-responsive tissues and did indeed translocate rapidly in reponse to 

insulin, supporting the translocation hypothesis proposed by Cushman and Kono (2, 3).  

 

The role of GLUT4 in diabetes 

Since the initial cloning of GLUT4, there has been significant progress in 

determining its role in insulin resistance and type 2 diabetes, both through animal models 

and through studies of endogenous GLUT4 in humans. GLUT4 heterozygous knockout 

mice developed significant insulin resistance (7). Moreover, mice deficient in GLUT4 

selectively in adipose tissue (8) or muscle alone (9) also exhibited considerable insulin 

resistance, not only in the targeted tissues and the body as a whole, but also in tissues not 

directly targeted (for review, see (10)). In the adipose-selective GLUT4 knockouts, the 

reason for insulin resistance in non-adipose tissues is multifactorial, and is in part due to 

increased secretion of retinol binding protein-4 (RBP4) into serum by adipocytes 

(11).Thus in addition to causing direct glucose uptake, GLUT4 translocation in 



 - 3 - 

adipocytes might trigger signaling events that regulate the secretion of RBP4 and other 

adipocytokines which directly modulate insulin sensitivity in other tissues. 

Muscle and fat tissue from type 2 diabetics has been found to be deficient in 

levels of GLUT4 at the plasma membrane, and it is thought that this defect underlies 

insulin resistance in this population. Overall GLUT4 levels are decreased in adipose 

tissue but unchanged in muscle. The role that decreased levels of GLUT4 in adipose 

tissue plays in diabetes is still in question. Nevertheless, in both the adipose and muscle 

tissue of type 2 diabetics, GLUT4 translocation is defective (12-14). The  

 

GLUT4 trafficking 

In order to fully understand GLUT4 trafficking, we must understand it in both the 

basal state and in response to insulin. Much of our knowledge about GLUT4 trafficking 

comes from 3T3-L1 cells, a widely used mouse-derived adipocyte model. In the basal 

state, a relatively low amount of GLUT4 is found at the plasma membrane, with 

approximately 90% located intracellularly (15). 

 These low levels of GLUT4 at the plasma membrane are determined in part by 

the relatively fast rate of endocytosis and slow rate of exocytosis. The GLUT4 found at 

the plasma membrane in the basal state was thought to largely undergo endocytosis via 

clathrin-coated pits. A recent study suggests that GLUT4 is actually internalized by two 

separate mechanisms: ~80% by a nystatin-sensitive, AP-2 clathrin adaptor protein-

independent mechanism, and the remainder by a nystatin-insensitive, AP-2-dependent 

mechanism (16). The authors demonstrate that insulin acts to inhibit primarily the 

nystatin-sensitive pathway. In 3T3-L1 adipocytes, half of all GLUT4 in the cell 
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colocalizes with the transferrin receptor (TfR), which cycles between the trans-Golgi 

network (TGN) and plasma membrane via recycling endosomes (RE). The other half is 

located predominantly in a different pool, termed glucose storage vesicles (GSV’s). In 

real adipocytes, there is significantly more GLUT4 found in GSV’s, with relatively little 

GLUT4 found in endosomes, and this balance might be different in muscle.  One model 

which ties together the various observations about GLUT4 trafficking in the basal state 

posits that there are two separate cycling pathways (Figure 1). The first cycle is between 

the plasma membrane and recycling endosomes via early endosomes. The second cycle is 

between recycling endosomes and the TGN via transport vesicles in the retrograde 

direction and GSV’s in the anterograde direction (for review, see (17)). The GSV pool is 

not associated with the TfR and does not cycle to the plasma membrane directly in the 

basal state. A different model suggests that GLUT4 does not go to the TGN before 

entering GSV’s, but instead travels directly from TfR-containing endosomal membranes 

directly into GSV’s (18). In this model, the GSV pool is relatively static in the basal state. 

How GLUT4 gets into GSV’s is still a matter of debate, with some recent studies have 

suggested that GLUT4 is transported immediately to GSV’s without first going to the 

plasma membrane, and that this transport requires GGA (Golgi-localized, gamma-ear-

containing, Arf-binding proteins)(19), which do not directly bind GLUT4. Another 

feature of GSV’s is that they are cell-type specfic and developmentally regulated (20, 

21).   

In both models, the GLUT4 in GSV’s colocalizes with the insulin-responsive 

aminopeptidase (IRAP) and somewhat with vesicle-associated membrane protein 2 

(VAMP 2) in a perinuclear pool. It is thought that this pool is responsible for insulin-
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induced 10-fold increase in cell surface GLUT4 and glucose uptake. Both models predict 

that in response to insulin, GSV’s can translocate directly to the plasma membrane. In 

response to insulin, the GSV’s rapidly redistribute from their perinuclear location to the 

plasma membrane. There is increased exocytosis and, to a lesser extent, decreased 

endocytosis of GLUT4-containing vesicles (15), although recent studies have asserted 

that the decrease in endocytosis is more important than previously believed (16). 

Insulin signaling 

The early steps in insulin signaling and the ways in which insulin affects GLUT4 

trafficking are well known (for review, see (22)). Insulin binds the tyrosine kinase insulin 

receptor, causing autophosphorylation of the receptor and recruitment of the insulin 

receptor substrate 1 (IRS-1) and phosphorylation of IRS proteins. These in turn activate 

phosphatidylinositol 3-kinase (PI-3K), which catalyzes the formation of 

phosphatidylinositol (3,4,5)-triphosphate, activating phosphoinositide-dependent kinase 1 

(PDK1).  PDK1 phosphorylates various Akt’s, but Akt2 is likely the most relevant for 

GLUT4 trafficking (23). Akt2 in turn inactivates the Akt substrate AS160, which leads to 

the activation of various Rab proteins, including Rab10 (24) and Rab14. A second 

pathway originating at the insulin receptor involves phospholipase C gamma (PLC-

gamma) and the atypical protein kinase C beta (PKCß). The role that this pathway plays 

in GLUT4 trafficking, if any, is unclear (25). However, a PI-3K-dependent pathway 

which activates the atypical protein kinases zeta and lambda does appear to play a role in 

GLUT4 trafficking (25, 26). Finally, a third PI-3K independent pathway was more 

recently identified which involves CAP/APS and the eventual activation of TC10 (27). 

Of the above, the most relevant pathway for GLUT4 trafficking is believed to be the PI-
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3K pathway, which is thought to activate fusion of GSV’s with the plasma membrane. 

For example, the administration of wortmannin (a PI-3K inhibitor) to insulin-treated cells 

results in accumulation of GSV’s at the cell periphery, but not fusion with the plasma 

membrane (28). It is also believed that PI-3K/AS160 pathway may be involved in the 

initial movement of GSV’s from their perinuclear location to the cell surface, as AS160 is 

associated with GSV’s in the absence, but not presence, of insulin (29). The TC10 

pathway, however, may also be involved in stimulating the translocation of GSV’s (27). 

For example, Kif5B, a kinesin motor protein, is involved in mobilizing GLUT4, but 

mobilization from the perinuclear region was independent of PI-3K, suggesting that it is 

regulated by a separate pathway (30). 

A different theory about the development of insulin resistance is that it arises 

from defects early in insulin signaling. There is significant evidence that defective 

mitochondrial function causes elevated intracellular triglycerides, which activate 

enzymes such as PKC theta (for review, see (31)). These PKC’s lead to serine/threonine 

phosphorylation of IRS proteins, which causes their defective tyrosine phosphorylation 

and early degradation (32). 

The final steps in GLUT4 vesicle trafficking are less well known. Specifically, the 

immediate proteins that govern the sequestering of GSV’s within the cell in the absence 

of insulin, as well as those that mediate GSV transport to the plasma membrane in the 

presence of insulin, remain to be defined. The final step in insulin-responsive GLUT4 

trafficking to the cell surface (as opposed to the constitutive trafficking to the cell 

surface) involved fusion of GSV’s with the plasma membrane. This step is believed to 

involved the t-SNAREs syntaxin4 and SNAP23 as well as the v-SNARE VAMP2 (for 
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review, see (33)). In addition, directing GSV’s to their proper docking sites seems to 

require the exocyst complex (34). Some of these steps might be regulated by insulin. For 

example, Koumanov et al. used an in vitro assay in which they reconstituted fusion of 

GLUT4 vesicles with the plasma membrane and showed that insulin could stimulate 

fusion 8-fold, suggesting that this is the rate-limiting step in GLUT4 (35). Futhermore, 

there is still some question about whether the GLUT4 protein itself needs to be further 

activated to achieve optimal glucose transport, as there are examples of a dissociation 

between glucose uptake and GLUT4 at the cell surface. However, it is not clear whether 

these final mechanisms are in fact rate limiting, since disruption of the mechanisms that 

retain GLUT4 intracellularly can lead to dramatic increases in cell surface GLUT4, 

suggesting that in the intact cell, fusion might be more limited by the availability of 

GSV’s to fuse (see below). 

 

GLUT4 regulating proteins 

Given the importance of GLUT4 trafficking in type 2 diabetes, there have been 

recent efforts to determine which proteins associate with GLUT4 in an insulin-responsive 

manner. Several proteins have been shown to bind to GLUT4 directly. These include 

Daxx, Ubc9, and aldolase, which bind to the C-terminal domain GLUT4. Daxx may be 

responsible for the SUMOylation of GLUT4. However, these interactions are not affected 

by insulin. A recent approach to identifying proteins which affect GLUT4 trafficking 

involved a stable CHO cell line expressing GLUT4 tagged with both green fluorescent 

protein (GFP) at its C-terminus and myc in an extracellular loop (36). By surface labeling 

these cells with fluorescent anti-myc antibody, it was then possible to compare the 
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relative fluorescence and determine the proportion of GLUT4 at the plasma membrane 

relative to total GLUT4. The cells were then infected with a 3T3-L1 cDNA library 

expressed in a retroviral vector. This approach identified an 852-nucleotide sequence that 

encoded the C-terminus of a 60 kDa protein which was named TUG (for ‘tether, 

containing a UBX domain, for GLUT4). This C-terminal fragment was found to 

significantly reduce the insulin-induced elevation of cell surface GLUT4. This effect was 

also observed in 3T3-L1 adipocytes expressing the C-terminal fragment of TUG. On the 

other hand, when full length TUG was expressed in 3T3-L1 adipocytes, the opposite 

effect was observed: in response to insulin, GLUT4 translocated to the plasma membrane 

more rapidly and with greater initial magnitude. It was therefore likely that the truncated 

form of TUG acts as a dominant negative mutant. 

In the same study, it was demonstrated that in cotransfected HEK 293 cells, TUG 

immunoprecipitation pulled down GLUT4, but very little GLUT1, despite the significant 

homology between GLUT4 and GLUT1. Moreover, in coimmunoprecipitation 

experiments in 3T3-L1 cells, endogenous TUG binding to GLUT4 was reduced in an 

insulin-responsive manner (36). This latter finding is important because it is the only 

protein which has been shown to do this, suggesting that the interaction between TUG 

and GLUT4 regulates a key step in the translocation of GLUT4. 

Typically, discovering regulators of proteins involves either genetic or 

biochemical approaches. GLUT4 has proven to be a challenge in both regards. Genetics 

has proven difficult because GLUT4 does not naturally occur in yeast, making it 

impossible to do mutagenesis studies and screen for abnormal regulation. Biochemical 

approaches have also been difficult because of the complicated topology of GLUT4. 
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Because of its twelve transmembrane domains, GLUT4 two-hybrid screens using whole 

protein have not been possible. Moreover, purification of the whole protein via pull-down 

is complicated by solubilization conditions and the length of time involved, which can 

lead to dissociation or degradation of interacting proteins. The discovery of TUG was 

essentially the result of a genetic screen which circumvented these obstacles. 

A more recent study demonstrated that small interfering RNA (siRNA)-mediated 

knockdown of TUG levels resulted in a dramatic increase in GLUT4 at the plasma 

membrane in the basal state, a phenotype which was rescued by siRNA-resistant TUG 

(37). The C-terminal fragment of TUG had a similar phenotype, a finding which 

supported the idea that it was indeed acting as a dominant negative and the idea that one 

of the natural functions of TUG is to retain GLUT4 intracellularly. TUG itself is 

primarily cytosolic, with a small membrane-bound fraction. It was shown directly by 

microscopy that the absence of TUG specifically mobilizes the perinuclear, insulin-

responsive pool of GLUT4. The same study also demonstrated an interaction between 

TUG and the cytosolic loop of GLUT4 (36). 

The fact that the absence of TUG can cause GLUT4 to be targeted to the plasma 

membrane in the absence of insulin and that overexpression of TUG can cause the an 

enlargement of the insulin responsive pool of GLUT4 (36) and increase GLUT4 in 

intracellular, TfR-negative membranes (37) suggests that TUG plays a role in the 

signaling pathway between insulin and GLUT4 which is not only required but also can 

not be compensated for by a redundant pathway. It also suggests that TUG is involved in 

a rate-limiting step, which are often regulated.  
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Domains in GLUT4 that affect its trafficking 

One important point about GLUT4 trafficking is that GLUT4 itself is likely 

required for tethering of GSV’s, and that this effect is not mediated by an entirely 

independent mechanism. In fact, in GLUT4-null adipocytes, IRAP is not properly 

sequestered inside the cell but redistributes to the plasma membrane, suggesting that 

would-be glucose storage vesicles are improperly tethered and constitutively delivering 

their cargo in the absence of GLUT4 (38). There is some contradictory data to suggest 

that IRAP itself might be involved in tethering of GSV’s via a binding protein p115 (39, 

40). Nevertheless, direct mutations in or deletion of various domains within GLUT4 itself 

can cause its improper trafficking to the plasma membrane. Whether this improper 

trafficking is of the GLUT4 protein alone or of the entire GSV is still a matter of dispute.  

GLUT4 contains twelve transmembrane domains. The N-terminus, the C-

terminus, and the large loop between transmembrane domains 6 and 7 are all located on 

the cytosolic face of the protein. All three of these domains have been found to be 

involved in its trafficking. Many of the important domains have been discovered based on 

searching for nonhomologous areas between GLUT4 and GLUT1. For example, the C-

terminal domain of GLUT4, and in particular a Leu489-Leu490 which is not found in 

GLUT1, has been found to be important for proper endocytosis of the transporter (41). It 

has been demonstrated that the C-terminus of GLUT4 shows an increase in antigenicity 

in response to insulin (28), which has given rise to speculation that this effect is mediated 

by the dissociation of binding protein(s). As noted above, several proteins have been 

observed to bind to the C-terminus, but none in an insulin-responsive fashion. It has also 

been known for over a decade that the Phe-Gln-Gln-Ile (FQQI) motif near the N-terminus 
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of GLUT4 is important for the proper trafficking and intracellular retention of the protein. 

Early experiments showed that expressing this motif near the N-terminus of GLUT1 led 

to intracellular retention of GLUT1 (42). One problem with these earlier studies, 

however, is that expressing this motif may have had effects on GLUT4 at multiple steps 

in the recycling pathway. Since both the dileucine and FQQI motifs are also proposed to 

be involved in GLUT4 endocytosis (16, 41), it was difficult to separate insulin’s effects 

on tethering from its effects on the endocytic arm.  

This confounding variable was reasonably well avoided by electroporating 

adipocytes and looking only at the trafficking of newly synthesized GLUT4. Using 

transient transfections in the 3T3-L1 adipocyte cell model, Khan et al. showed that by 

swapping various domains of GFP-labelled GLUT4 and GLUT1, they could determine 

by microscopy the relative importance of these domains to newly synthesized GLUT4 

localization in the basal state and in response to insulin (43). Replacement of either the 

GLUT4 N-terminal domain or the GLUT4 cytosolic loop with the corresponding GLUT1 

domains led to targeting of GLUT4 to the plasma membrane, not to GSV’s, in the basal 

state. Furthermore, insulin had very little effect on this localization. On the other hand, 

substitution of the GLUT4 C-terminal domain with the GLUT1 C-terminal domain had 

very little effect on GLUT4 trafficking or insulin responsiveness. Conversely, 

replacement of the GLUT1 N-terminal domain, cytosolic loop, or C-terminal domain 

with the corresponding domains of GLUT4 did not recapitulate insulin responsiveness in 

GLUT1. However, double replacement of both the N-terminal domain and cytosolic loop 

allowed GLUT1 to become insulin-responsive. From this, the authors concluded that the 

GLUT4 N-terminal domain and cytosolic loop are separately required, and together are 
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sufficient, for correct basal and insulin-responsive GLUT4 trafficking. The study then 

scanned specific residues within the N-terminal domain and found that mutating any of 

four of these residues (Phe8, Ile11[both within the FQQI motif], Asp12, or Gly13) 

significantly reduced the intracellular retention of GLUT4. 

Although the study of these chimeras is based on the assumption that GLUT1 is 

not insulin responsive, this is somewhat of an oversimplification.  Using lentiviral short-

hairpin RNA (shRNA) to dramatically reduce GLUT4 levels in 3T3-L1 adipocytes, it has 

been shown that there is remaining insulin-responsive glucose uptake, which is 

attributable to GLUT1 (44). Nevertheless, in their assay, which used exogenous GFP-

tagged GLUT1, Khan et al. did not observe that GLUT1 was sensitive to insulin, which 

may indicate some level of insensitivity of their assay, different properties of the tagged 

GLUT1,  or possibly even compensatory mechanisms in the lentiviral experiments, such 

as GLUT1 improperly targeting to insulin-responsive GSV’s in the absence of GLUT4. 

Since disrupting the GLUT4 N-terminal domain or cytosolic loop gave a 

phenotype very similar to that of cells expressing a TUG dominant negative mutant and 

of cells in which TUG expression levels were reduced by siRNA, and since TUG has 

already been shown to interact with the cytosolic loop of GLUT4, we postulated that 

TUG might also interact with the GLUT4 N-terminus. If TUG and GLUT4 share a 

common, nonredundant pathway, then the presence of a defect in either could lead to 

defective GLUT4 trafficking, and the most direct way for them to share the same 

pathway would be to interact with each other. 
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Statement of purpose, specific hypothesis and specific aims 

 

My primary hypothesis is that TUG interacts with the N-terminal domain of GLUT4, a 

domain critical for proper GLUT4 trafficking. A secondary hypothesis is that this 

interaction is what is disrupted by point mutations in the GLUT4 N-terminal domain 

which have previously been shown to cause defective GLUT4 trafficking. 

 

Aim 1. To test whether TUG interacts with the GLUT4 N-terminal domain. It 

has already been demonstrated that TUG interacts with the GLUT4 cytosolic loop (37). 

We hypothesize that since the absence of an N-terminal domain in GLUT4 causes a 

phenotype of GLUT4 localization identical to that seen in cells expressing reduced TUG 

or expressing a TUG dominant-negative mutant (36, 37, 43), TUG might also interact 

with the GLUT4 N-terminal domain. This hypothesis is tested using fusion proteins of 

GST with three domains of GLUT4 to pull down TUG from the lysates of TUG-

overexpressing cells. 

 

Aim 2. To determine whether TUG interacts with the wild-type GLUT4 N-

terminal domain but not with a mutant form known to cause defective trafficking. 

We further hypothesize that the mutations in the N-terminal domain of GLUT4 which 

cause defective intracellular retention of GLUT4 (43) also disrupt TUG’s interaction with 

the GLUT4 N-terminus. This hypothesis is tested using synthetic wild-type and mutant 

GLUT4 N-terminal peptide to pull down TUG from the lysates of TUG-transfected cells. 
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Materials and Methods 

 
Note: All of the experiments were carried out by the primary author alone. 
 

 
Reagents 

 
 Full-length FLAG-tagged TUG and TUG L1-C (N-terminally truncated TUG 

containing amino acids 165-550 only) in pcDNA 3.1 vector were provided by Chenfei Yu 

in the Bogan lab. Plasmids encoding the GLUT4-GST fusion proteins were a generous 

gift from Jian Li and Victor Hsu (Harvard University). DNA sequences were verified as 

described below. Synthetic biotin-labeled wild-type and mutant GLUT4 N-terminal 

peptides (MPSGFQQIGSEDGEPPQQRVTGTLVGG-biotin and 

MPSGAQQAGSEAAEPPQQRVTGTLVGG-biotin, respectively) were synthesized by 

the W.M. Keck Facility at Yale. Note that the mutant peptide contains residue changes to 

alanine at F5, I8, D12, and E13.  

 

Expression and purifiation of GLUT4-GST fusion proteins 

 
The BL21 E. coli bacterial strain was transformed with pGEX-4T3 vector 

containing GLUT4 N-terminus (amino acids 1-24), middle loop (amino acids 223-287), 

or C-terminus (amino acids 467-509), each fused to GST, or with vector containing GST 

alone, and bacteria were incubated overnight on ampicillin-containing agar plates. 

Colonies were selected and incubated in ampicillin-containing Luria Broth until the 
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cultures reached an OD600 of 0.4, at which point protein expression with induced with 

100µM isopropyl ß-D-1-thiogalactopyranoside (IPTG) for 6 hours. An aliquot of each 

culture was removed prior to stimulation for DNA extraction (QIAprep miniprep kit, 

Qiagen) and confirmatory sequencing by the W.M. Keck Facility. Bacterial cultures were 

centrifuged and pellets were lysed in ice-cold NETN buffer (100mM NaCl, 1mM EDTA, 

20mM Tris-Hcl, pH 8.0, and 0.5% Nonidet P-40) containing lysozyme, followed by 

sonication in 10 sec bursts for 2 min (at 4°C). Lysate was centrifuged at 12,000 x g for 1 

h, and the supernatant was removed and incubated overnight with glutathione-Sepharose 

beads (Amersham). The beads were washed 3x with ice-cold NETN, then resuspended in 

a small volume of NETN. To assess the quality of expression and purification, aliquots of 

the beads were eluted in SDS-containing sample buffer, run on SDS-PAGE gels, and 

Coomassie stained. 

 

Expression and purification of TUG and its truncation mutant in HEK 293 cells 

 
HEK 293 cells were cultured and transfected with FLAG-tagged full-length TUG, 

TUG L1-C (a.a. 165-500), or empty pcDNA 3.1 vector using a cationic lipid transfection 

reagent (Lipofectamine 2000; Invitrogen). Cells were lysed in ice-cold NETN buffer 

supplemented with 1% Nonidet P-40 (NP-40) and a protease inhibitor (PI) cocktail 

(Complete Protease Inhibitor Cocktail; Roche) for 30 min and centrifuged at 14,000 x g 

to remove unsolubilized material. Aliquots of lysate were analyzed by SDS-PAGE and 

western blotted with an anti-TUG antibody (as described below) to verify expression 

levels and adjust the volume of lysate used for pull-down experiments. 

 



 - 16 - 

Pull-down with GLUT4-GST fusion proteins 

 
Lysates from 293 cells transfected with full-length TUG, TUG L1-C, or vector 

alone were diluted 35-fold in PBS (20mM sodium phosphate, 150mM NaCl) + 1% NP-

40 + PI cocktail and precleared with GST bound to glutathione-agarose beads for at least 

3h.  The diluted lysates were centrifuged and supernatants were incubated overnight at 

4°C with the GLUT4-GST fusion proteins bound to glutathione-agarose beads, 

controlling for the volume of beads. After incubation, the samples were centrifuged and 

the beads were washed 3x in PBS + 1% NP-40 + PI cocktail. Samples were eluted by 

boiling in SDS sample buffer, separated by SDS-PAGE, and western blotted with anti-

TUG antibody as described below. 

 

Pull-down with synthetic GLUT4 N-terminal peptides 

 
Synthetic biotin-labeled wild-type and mutant GLUT4 N-terminal peptides were 

incubated with streptavidin-agarose beads (Invitrogen) for at least 3h. Concurrently, 

lysates from 293 cells transfected with full-length TUG or vector alone were diluted 35-

fold in PBS + 1% NP-40 + PI cocktail and precleared for at least 3h with streptavidin-

agarose beads alone. Samples were centrifuged, and the supernatant of the latter samples 

(i.e., precleared lysates) were incubated overnight at 4°C with the peptide-bound beads. 

The beads were then washed 3x in PBS + 1% NP-40 + PI cocktail. Samples were eluted 

in SDS sample buffer, separated by SDS-PAGE, and western blotted as described below. 
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SDS-PAGE and Western blotting 

 
Samples were eluted from beads by boiling in sample buffer containing 1% SDS 

and 2.5% ß-mercaptoethanol, then run on 4-12% NuPAGE gels in MOPS buffer 

(Invitrogen) and transferred to nitrocellulose membranes. The membranes were blocked 

for at least one hour in 5% milk, then incubated in a polyclonal anti-TUG primary 

antibody (affinity purified rabbit antiserum raised to C-terminus of TUG) at a dilution of 

1:1000 in 5% milk. Following 3 washes with PBST, membranes were incubated in HRP-

conjugated goat anti-rabbit secondary antibody (Jackson Laboratory) at a dilution of 

1:100,000 in 5% milk, then washed again in PBST (PBS + 0.2% Tween). Bands were 

visualized using a chemiluminescent HRP subtrate (SuperSignal West Pico; Pierce). 

 

Results 

 
GST fusion proteins containing the N-terminal domain, large cytosolic loop, or C-

terminal domain of GLUT4 were expressed in bacteria and purified onto glutathione-

agarose beads as described in Methods. To determine whether the fusion proteins were 

properly expressed and purified, aliquots were run on SDS-PAGE and gels were 

Coomassie-stained (Figure 2). All the proteins, including GST alone, migrated at their 

expected molecular weights (~26 kDa for GST alone, ~28 kDa for GST-GLUT4 N-

terminus, ~32 kDa for GST-GLUT4 loop, and ~30 kDa for GST-GLUT4 C-terminus). 

The GST-GLUT4 cytosolic loop did contain some lower molecular weight bands, likely 

representing degradation products or possibly incomplete transcription products. In the 
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other samples, no other significant bands were visualized, indicating that the purification 

process was relatively efficient. 

To determine whether TUG could interact with these domains of GLUT4, the 

fusion proteins were incubated with lysates from HEK 293 cells transfected with either 

full length TUG, with a truncated form of TUG lacking amino acids 1-164 from the N-

terminus, or with vector only. The eluates from the beads were western blotted with an 

antiserum raised to the C-terminus of TUG (Figure 3). The fusion proteins were balanced 

based on their respective concentrations, and equal loading was verified by Ponceau-S 

staining of the membrane (data not shown). In the lysate-only lane, full-length TUG runs 

at its expected molecular weight of ~60kDa, with a secondary lower molecular weight 

band seen, possibly representing a incompletely translated product or a degradation 

product.  Although very little full-length TUG is pulled down by GST alone (lane 5), the 

GLUT4 N-terminal domain and cytosolic loop pulled down significant amounts of full-

length TUG. The GLUT4 C-terminal domain also pulled down more than GST alone, but 

significantly less than the other two domains tested. These results were observed twice, 

with two separate preparations of GLUT4-GST fusion proteins. 

Interestingly, the results from pull-downs of N-terminally truncated TUG with the 

three GST fusion proteins were very different (Figure 3, lanes 6-10). Although 

background binding to GST is very similar to the binding seen with full-length TUG, 

neither the GLUT4 N-terminal domain, cytosolic loop, or C-terminal domain pull down 

any more truncated TUG than GST alone. This suggests that the site in TUG required for 

binding is within its N-terminal 164 amino acids. 
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Although HEK 293 cells do contain endogenous TUG, no TUG is seen in the 

straight lysate from vector-transfected cells (Figure 3, lane 11), let alone in the pull-down 

lanes (lanes 12-15). This supports the conclusion that the bands seen in lanes 2-5 

represent full-length transfected TUG and not a cross-reactive endogenous protein. Some 

endogenous TUG can be seen in the vector lysate lane at longer exposures (data not 

shown); however, the band is very faint, likely due to the small amounts of lysate needed, 

and endogenous TUG would be expected to degrade relatively quickly in the pull-down 

lanes. Thus, no conclusions can be currently be drawn about the binding of endogenous 

TUG to the GLUT4-GST fusion proteins. 

Since these results indicated that TUG could indeed be pulled down by the N-

terminal domain of GLUT4, we conducted a second set of pull-down experiments with 

synthetic biotinylated GLUT4 N-terminal peptide and a mutant peptide containing 

alanine substitutions at 4 of its 27 amino acids. Lysates from 293 cells transfected with 

full-length TUG or vector alone were precleared with streptavidin-agarose beads. The 

biotinylated peptides were also incubated with streptavidin-agarose beads, and then the 

peptide-bound beads were incubated with the precleared lysates. The samples were eluted 

in SDS-containing sample buffer and the eluates were separated by SDS-PAGE and 

western blotted with the anti-TUG antiserum (Figure 4). 

As can be seen, wild-type GLUT4 N-terminal peptide pulled down a protein that 

runs at a slightly higher molecular weight than full-length TUG (Figure 4, lane 2). This 

protein can be faintly seen in the straight lysate (lane 1). Moreover, this interaction is 

very strong, since the band pulled down is much stronger than that seen in the lysate. 

Since the lysate lane contains approximately 5% of the lysate used in the pull-down 
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lanes, and since the pull-down lane (lane 2) has at least 10 times the amount seen in the 

lysate lane, we estimate that at least half of that ~64kDa protein is pulled down the by 

wild-type GLUT4 N-terminal peptide. Furthermore, the band is very specific to the wild-

type GLUT4 N-terminal peptide pull-down, as it is not pulled down by the mutant 

peptide (lane 3) or streptavidin beads alone (lane 4). The ~64 kDa protein also does not 

represent a contaminant in the synthetic wild-type preparation either, since it is not 

observed in the wild-type pull-down from vector-transfected lysates (lane 6). This result 

was observed on three separate occasions with two separate sets of transfections. 

Interestingly, the results for the ~60kDa band, where full-length TUG normally 

migrates, were quite different. In the streptavidin only pull-down (lane 4), we see that 

there is quite a bit of background binding. Despite the use of various detergents including 

NP-40 and Triton X-100, this background binding was still present. This band is almost 

certainly the transfected full-length TUG as it is not seen in the pull-down from vector-

transfected 293 cells. We actually saw lower levels of binding of the full-length TUG in 

both the wild-type and mutant peptide pull-downs (lanes 2 and 3). Furthermore, the wild-

type pull-down had even less ~60kDa full-length TUG than the mutant peptide pull-

down. These results will be examined in more detail below. 

 

Discussion 

 
Our first set of experiments show that TUG can interact with the GLUT4 N-

terminal domain and its large cytosolic loop. In fact, the GLUT4 N-terminal domain 

pulled down even more full-length TUG than the cytosolic loop did. This binding is 

specific. It is also not seen between TUG L1-C and any of the GLUT4 domains. This 
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suggests that the binding sites for both the GLUT4 N-terminus and cytoplasmic loop are 

within the first 164 amino acids at the N-terminus of TUG. All three GLUT4 domains 

tested lie on the cytoplasmic face of the vesicle. Since TUG is primarily a cytoplasmic 

protein, this binding is topologically consistent. 

It has previously been shown that, in vitro, TUG binds to the large cytosolic loop 

of GLUT4 but not GLUT1(37).  Our results are consistent with this finding. It has also 

been previously shown that truncating TUG at its N-terminus leads to poor insulin 

response and loss of in vitro binding to GLUT4 (36). Our results are also consistent with 

these finding as well. Our novel finding from this first set of experiments is that TUG 

binds specifically to the N-terminal domain of GLUT4, which is known to be critical for 

proper GLUT4 trafficking. 

Our second set of experiments were more difficult to interpret due to the presence 

of the higher molecular weight (~64kDa) band pulled down by GLUT4 N-terminal wild-

type, but not mutant, peptide. This higher molecular weight band could represent full 

length TUG still bound to the biotinylated peptide through a noncovalent, SDS-resistant 

interaction. Alternatively, it could represent a modified form of full length TUG, such as 

a phosphorylated TUG, which would be intriguing because it would suggest that TUG 

binding is somehow controlled by phosphorylation. The band could also represent a 

modified form of a lower molecular-weight product of TUG, such as a C-terminal 

fragment covalently modified by ubiquitin or the ubiquitin-like modifier SUMO. Finally, 

the ~64kDa band could be a protein that cross-reacts with the TUG antibody. However, 

since the band is not seen in the vector-transfected negative controls, in order for this to 

be a different protein from TUG, either its expression would have to be induced by the 
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transfected TUG or it would somehow require the presence of TUG to allow it to interact 

with the GLUT4 N-terminus and be pulled down. The likelihood that a protein exists that 

not only satisfies one of these two possibilities, but also has such a close molecular 

weight to TUG and is detected by an anti-TUG antibody, is pretty low. Nevertheless, it is 

a possibility that cannot be ruled out until the protein is identified.  

We currently suspect that the ~64 kDa band is in fact full-length TUG bound by 

the biotinylated peptide. There are several reasons for this. First, the shift is within the 

margin of error for what one might expect by adding the 27 amino acids (~3 kDa) to full-

length TUG (~60 kDa). It is entirely possible for a coiled-coil interaction, for example, to 

be strong enough to withstand boiling in SDS. Second, if some post-translational 

modification were required for TUG to bind the GLUT4 N-terminal domain, then we 

would have seen the ~64 kDa band in the GST-GLUT4 pull-downs experiments as well 

(Figure 3). Finally, this could explain why the 60 kDa band is not enhanced in the wild-

type peptide pull-down (Figure 4, lane 2) relative to beads alone (lane 4). If one were to 

“add” the ~64 and 60 kDa bands, it would be consistent with the results of the GST-

GLUT4 fusion protein experiments, in which TUG binds the GLUT4 N-terminal domain 

much more strongly than it binds the negative control. The only inconsistency with this 

interpretation is that the ~64 kDa band is also seen, albeit faintly, in the lysate-only lane. 

Looking forward, there are a number of directions I would like to pursue. One of 

the main drawbacks of using pull-downs from total lysates is that even though it suggests 

that there is a direct interaction between GLUT4 and TUG, it does not prove that this 

interaction is direct, since another protein (or proteins) might be linking the two together. 

One direction would thus be to test the interaction between GLUT4 and TUG directly 
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using recombinant proteins only and not lysates. I did attempt to do this using in vitro 

transcription/translation of radiolabeled full length TUG, followed by pull-downs with 

the GLUT4-GST fusion proteins. However, I was unable to see any binding above 

background binding to GST alone (data not shown). I also expressed a full-length TUG-

GST fusion protein, cleaved the TUG from the GST with thrombin, and attempted to pull 

the TUG protein down with the GST fusion proteins, but I was again unable to see any 

specific binding (data not shown). These experiments could indicate that TUG requires 

the full translational machinery of the cell for proper folding, that TUG requires some 

post-translational modification before it can bind, or that some additional protein(s) 

present in lysates are required for the interaction to occur (directly or indirectly). 

However, since it has previously been reported that a GST-GLUT4 cytosolic loop fusion 

protein can pull down full length TUG in such an in vitro environment (37), the negative 

result might simply indicate that the binding reaction conditions that I used were not 

ideal. This direction is thus worth pursuing again, since being able to test the protein-

protein interactions outside of the cell would eliminate some confounding variables and 

make it easier to test various mutantions in TUG and their effects on binding. 

 A second line of inquiry would be to purify and identify the ~64 kDa band pulled 

down by the wild-type GLUT4 N-terminal peptide. In general, there are two approaches 

to the identification of this band: a candidate-based approach or a more direct approach. 

As far as the candidate-based approach, the first and most obvious candidate is TUG 

itself, whether it be full-length TUG or a modified product. I would like to repeat the 

experiment and western blot with antibodies to the N-terminus or to an internal domain of 

TUG to determine whether this band represents full length TUG, or possibly a modified 
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(or dimerized) C-terminal fragment. The latter might be detected by the antibody to an 

internal epitope but not by the antibody to the N-terminus. I would also repeat the 

experiment and blot with streptavidin-HRP. A positive result would suggest that the ~64 

kDa band is TUG strongly bound to the biotinylated wild-type GLUT4 peptide. The ~64 

kDa band could also be tested for the presence of modifications such as phosphorylation 

(using anti-phosphoserine, phosphothreonine, or phosphotyrosine antibodies), 

ubiquitination, or SUMOylation (using anti-ubiquitin or anti-SUMO antibodies, 

respectively). In a similar fashion, we could repeat the experiment and probe for known 

GLUT4-binding proteins of a similar molecular weight, such as GTB70 (glucose 

transporter-binding protein of 70 kDa)(45). However, very few proteins fit this 

description, since most identified GLUT4-binding proteins are either significantly smaller 

(e.g., Ubc9 [18kDa], L-3-hydroxyacyl-coA-dehydrogenase [34kDa]) or larger (e.g., Daxx 

[110kDa] or aldolase [158kDa]). 

The more direct and less biased approach would involve mass spectometry. Given 

that a large percentage of the ~64 kDa protein was pulled out of lysates by wild-type 

GLUT4 N-terminal peptide, and the fact that relatively little starting material was needed 

to visualize the band on Western blot, by scaling up the reagents used, we could likely 

achieve quantities of protein sufficient for visualization by silver stain or even Coomassie 

staining. Furthermore, Coomassie or silver-staining the gels after scaling up would allow 

us to determine whether any other proteins are being pulled down specifically by the N-

terminal wild-type peptide. If no other proteins are seen, it is likely that the interaction 

between GLUT4 and the ~64kDa band is direct and does not require linking proteins. 
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Even if the ~64kDa band does not represent a modified form of TUG, it is still of 

interest because it interacts so strongly with the wild-type GLUT4 N terminus but not at 

all with the mutant form, which contains mutations that are known to disrupt GLUT4 

trafficking. The same applies to any other proteins that are pulled down and visualized by 

Coomassie or silver staining, since these could potentially represent other members of an 

insulin-responsive GLUT4-bound complex.  

 In order to determine whether the interaction between TUG and GLUT4 occurs 

under more physiological conditions, full-length GLUT4 with and without N-terminal 

mutations could be expressed in cells along with full-length TUG, followed by 

coimmunoprecipitation experiments. This could be done in HEK293 cells, or 

alternatively, directly in 3T3-L1 adipocytes. Although the latter approach would be more 

physiologically appropriate, it is complicated by the fact that 3T3-L1 adipocytes contain 

endogenous GLUT4. This limitation could be overcome by reducing endogenous GLUT4 

using lentiviral shRNA knockdown, then transfecting with either a knockdown-resistant 

wild-type or mutant GLUT4, followed by TUG or GLUT4 coimmunoprecipitation. We 

would thus be able to see if the cytosolic loop and C-terminal domains of full-length 

GLUT4 are able to compensate for the GLUT4 N-terminal mutations, or whether GLUT4 

and TUG no longer interact in the presence of these mutations. This would also indicate 

the relative importance of the three binding domains of GLUT4. 

A separate line of inquiry would be to try to determine the precise site of 

interaction on TUG. This could be achieved by mutating various subdomains near the N-

terminus of TUG, then repeating in vitro experiments following the same protocol used to 

generate Figure 3. Alternatively, it could be achieved in 3T3-L1 adipocytes directly by 
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following a protocol similar to the one just outlined above. This approach would have the 

distinct advantage that mutations in TUG could be assessed not only for their effects on 

GLUT4 binding, but also for their functional consequence on GLUT4 trafficking and 

glucose uptake. 

Once the precise binding sites on TUG are determined, another potential set of 

experiments would be to use fluorescence resonance energy transfer (FRET) to study the 

specific insulin signals or other molecules which cause dissociation of TUG and GLUT4. 

Both proteins could be fluorescently labelled near their respective binding sites, and 

using inhibitors of the various insulin signaling pathways, TUG-GLUT4 dissociation 

could be monitored in real-time. This approach would help elucidate which pathways that 

specifically regulate TUG-GLUT4 dissociation versus other steps in GLUT4 trafficking 

to the plasma membrane (such as membrane fusion). It would also allow the study of 

exogenous compounds that directly disrupt this interaction, which would be helpful for 

drug development. 

 The goals of the above experiments would be to determine whether TUG and 

GLUT4 directly interact, whether their interaction(s) occurs naturally in adipocytes, and 

whether their interaction(s) are physiologically relevant to insulin signaling. A larger goal 

that could then be pursued is to determine other members (if any) of the GLUT4 

complex, how they respond to insulin, and whether they interact abnomally in insulin 

resistant tissues. This would not only answer the basic scientific questions of the 

processes governing insulin signaling and GLUT4 trafficking, but it would also provide a 

target that could ultimately be manipulated pharmacologically. Disruption of the GLUT4 

complex through carefully designed inhibitors could lead to targeting of GLUT4 to the 
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plasma membrane, subsequently reducing circulating plasma glucose levels and helping 

avoid some of the complications of diabetes. 

 Elevating GLUT4 levels at the plasma membrane in order to reduce plasma 

glucose levels and increase insulin sensitivity is a strategy that is supported not only by 

current models of glucose homeostasis, but also directly by mouse models of GLUT4 

overexpression. Overexpression of GLUT4 in skeletal muscle (46) or adipose tissue (47) 

in mice leads to increased insulin sensitivity and glucose tolerance. Moreover, muscle-

specific overexpression of GLUT4 in heterozygous GLUT4+/- mice prevents the insulin 

resistance and diabetic phenotype that these mice would otherwise develop (48). 

In summary, using fusion proteins of GST with either the GLUT4 N-terminal 

domain, large cytoplasmic loop, or C-terminal domain, we were able to pull full-length 

TUG down from lysates of cells overexpressing TUG. All three fusion proteins pulled 

down TUG to some extent, but the N-terminal domain and loop did so most efficiently. 

Moreover, a truncation mutant lacking the N-terminal 164 amino acids of TUG was not 

preferentially pulled down by any of these GLUT4-GST fusion proteins over GST alone, 

suggesting that the binding site on TUG is most likely in these N-terminal 164 amino 

acids. Using a similar paradigm, we then attempted to pull TUG down from the same 

lysates using a biotinylated synthetic GLUT4 N-terminal peptide. We found that a ~64 

kDa band, which we believe to be a form of TUG, was pulled down by the wild-type N-

terminal peptide, but not by a peptide mutated at the four residues shown by Khan et al. 

to be necessary for proper GLUT4 intracellular retention and insulin-responsive 

trafficking. We conclude that TUG interacts with both the large cytosolic loop and N-

terminal domain of GLUT4 and that this latter interaction is disrupted by known 
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mutations that influence GLUT4 trafficking, providing evidence that this interaction 

specifically may be critical for both intracellular retention of GLUT4 and insulin-

responsive GLUT4 trafficking. 

The fact that TUG binding is disrupted by the mutations at the F5, I8, D12, and 

G13 residues at the N-terminus of GLUT4 provides strong additional evidence for the 

hypothesis that TUG regulates an insulin responsive step in GLUT4 trafficking. These 

data also implicate the GLUT4 N-terminus as a second interacting region, in addition to 

the cytosolic loop, required to bind TUG. Since TUG interacts with at least two 

noncontiguous domains of GLUT4, this (combined with the fact that TUG is relatively 

unstable in lysates and endogenous TUG is often degraded in lysates) may possibly 

explain why TUG was not discovered earlier using biochemical methods. 

The exact step in GLUT4 trafficking regulated by TUG is still not known. TUG 

might be required for the initial sorting of GLUT4 to GSV’s, for retaining the GSV’s 

intracellularly in the absence of insulin, or a combination of both of these processes. 

Alternatively, or perhaps in addition, TUG could be involved in loading GLUT4 onto 

kinesin motors that transport GLUT4 to the cell surface. In Khan et al., the authors 

speculate that their results implicate the N-terminus of GLUT4 in the intial sorting event 

(e.g., from TGN to GSV’s). However, it is possible that this effect is on retention of the 

GSV’s. It is not yet known whether the mutated GLUT4 travels to the plasma membrane 

in GSV’s or in a different vesicle. Further studies will be necessary to answer these 

questions. 

The ways in which insulin might modulate TUG are also unknown. The insulin 

signaling pathways might induce a conformational change in TUG. Alternatively, indulin 
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might cause phosphorylation, cleavage, or another post-translational modification of 

TUG. This insulin-induced modification could lead to dissociation of TUG from GLUT4, 

thus targeting GLUT4 to the plasma membrane, or it could lead to dissociation of all or 

part of TUG from some unidentified anchor, thus targeting GLUT4 and TUG together to 

the plasma membrane. 
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Figure 1: Current model of GLUT4 trafficking 
 
 
 

 
 
 
 
(“PM”: Plasma membrane. “EE”: Early endosomes. “REC”: Recycling endosome 
compartment. “TV”: Transport vesicles. “GSVs”: GLUT4 storage vesicles. “TGN”: 
Trans-Golgi network. “TfR”: Transferrin receptor. “GLUT4”: Glucose transporter 4. 
“TUG”: Tether, containing a UBX domain, for GLUT4. Note that in the absence of 
insulin, the majority of GLUT4 is intracellular and only partly colocalizes with TfR. Also 
note that the location of TUG is putative. Adapted in part from Bryant et al. (17))
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Figure 2: Purification of GST-GLUT4 fusion proteins (Coomassie Stain) 
 
 
 

 
 
 
(Legend: “GST”: Glutathione S-transferase. “GST-GLUT4 N”: Fusion protein of GST 
and GLUT4 N-terminal domain (amino acids 1-24). “GST-GLUT4 Loop”: Fusion 
protein of GST and GLUT4 large cytosolic loop (amino acids 223-287). “GST-GLUT4 
C”: Fusion protein of GST and GLUT4 C-terminal domain (amino acids 467-509))
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Figure 3: Full length TUG, but not truncated TUG, is pulled down by the N-
terminal, cytosolic loop, and C-terminal domains of GLUT4 
 
 

 
 
 
(Legend: “TUG”: HEK 293 cells transfected with full-length TUG. “TUG L1-C”: HEK 
293 cells transfected with TUG lacking its 164 N-terminal amino acids. “vector”: HEK 
293 cells mock-transfected with empty vector alone. “–“: no pull-down (lysate only, 
approximately 5% of pull-down input). “N”: GLUT4 N-terminal domain. “L”: GLUT4 
large cytosolic loop. “C”: GLUT4 C-terminal domain. “G”: GST alone) 
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Figure 4: Wild-type, but not mutant, GLUT4 N-terminal peptide pulls down a 
TUG-positive band 
 
 

 
 
 
(Legend: “TUG”: HEK 293 cells transfected with full-length TUG. “vector”: HEK 293 
cells mock-transfected with empty vector alone. “–“: no pull-down (lysate only, 
approximately 5% of pull-down input). “W”: wild-type GLUT4 N-terminal peptide. “M”: 
mutant GLUT4 N-terminal peptide. “S”: Streptavidin-agarose beads alone.) 
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