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ABSTRACT OF DISSERTATION

HIGH ACCURACY MULTISCALE MULTIGRID

COMPUTATION FOR PARTIAL DIFFERENTIAL EQUATIONS

Scientific computing and computer simulation play an increasingly important role

in scientific investigation and engineering designs, supplementing traditional experi-

ments, such as in automotive crash studies, global climate change, ocean modeling,

medical imaging, and nuclear weapons. The numerical simulation is much cheaper

than experimentation for these application areas and it can be used as the third way

of science discovery beyond the experimental and theoretical analysis. However, the

increasing demand of high resolution solutions of the Partial Differential Equations

(PDEs) with less computational time has increased the importance for researchers

and engineers to come up with efficient and scalable computational techniques that

can solve very large-scale problems. In this dissertation, we build an efficient and

highly accurate computational framework to solve PDEs using high order discretiza-

tion schemes and multiscale multigrid method.

Since there is no existing explicit sixth order compact finite difference schemes

on a single scale grids, we used Gupta and Zhang’s fourth order compact (FOC)

schemes on different scale grids combined with Richardson extrapolation schemes to

compute the sixth order solutions on coarse grid. Then we developed an operator

based interpolation scheme to approximate the sixth order solutions for every find



grid point. We tested our method for 1D/2D/3D Poisson and convection-diffusion

equations.

We developed a multiscale multigrid method to efficiently solve the linear systems

arising from FOC discretizations. It is similar to the full multigrid method, but

it does not start from the coarsest level. The major advantage of the multiscale

multigrid method is that it has an optimal computational cost similar to that of

a full multigrid method and can bring us the converged fourth order solutions on

two grids with different scales. In order to keep grid independent convergence for

the multiscale multigrid method, line relaxation and plane relaxation are used for

2D and 3D convection diffusion equations with high Reynolds number, respectively.

In addition, the residual scaling technique is also applied for high Reynolds number

problems.

To further optimize the multiscale computation procedure, we developed two new

methods. The first method is developed to solve the FOC solutions on two grids using

standard W-cycle structure. The novelty of this strategy is that we use the coarse level

grid that will be generated in the standard geometric multigrid to solve the discretized

equations and achieve higher order accuracy solution. It is more efficient and costs

less CPU and memory compared with the V-cycle based multiscale multigrid method.

The second method is called the multiple coarse grid computation. It is first

proposed in superconvergent multigrid method to speed up the convergence. The

basic idea of multigrid superconvergent method is to use multiple coarse grids to

generate better correction for the fine grid solution than that from the single coarse

grid. However, as far as we know, it has never been used to increase the order of

solution accuracy for the fine grid. In this dissertation, we use the idea of multiple

coarse grid computation to approximate the fourth order solutions on every coarse

grid and fine grid. Then we apply the Richardson extrapolation for every fine grid

point to get the sixth order solutions.



For parallel implementation, we studied the parallelization and vectorization po-

tential of the Gauss-Seidel relaxation by partitioning the grid space with four colors

for solving 3D convection-diffusion equations. We used OpenMP to parallelize the

loops in relaxation and residual computation. The numerical results show that the

parallelized and the sequential implementation have the same convergence rate and

the accuracy of the computed solutions.

KEYWORDS: Partial differential equations, multigrid method, finite difference

method, Richardson extrapolation
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Chapter 1

Introduction

The area of scientific computing and computer simulation is to construct mathemat-

ical models and quantitative analysis techniques and use computers to analyze and

solve scientific problems. It plays an increasingly important role in scientific investi-

gations and engineering designs, supplementing traditional experiments. Since many

simulations and modeling applications in computational science and engineering and

industry (CSEI), such as automotive crash studies, human brain medical imaging,

global climate change, and ocean modeling, can be formulated in the form of partial

differential equations (PDEs), the numerical solution of systems of PDEs on dis-

tributed memory supercomputers is one of the most challenging and long-standing

problems. Over the last several decades, computational mathematicians and engi-

neers have developed many efficient fast algorithms to reduce the computation time.

However, the increasing demand for higher resolution simulations in less computer

time have continuously challenged the computational scientists to come up with more

efficient, scalable numerical algorithms to solve PDEs.

A typical way to solve PDEs is to discretize them, changing a continuous problem

into a discrete problem, then solve the arising linear systems. Traditionally, numerical

solutions to PDEs have been studied by two camps of researchers. One works on

discretization, the other belongs to numerical linear algebra. This dissertation mainly

focuses on combining these two approaches together using high order discretization

schemes with scalable linear system solvers to build a computational framework for

1



solving PDEs.

1.1 Classification of PDEs

Partial differential equations can be used to formulate, and thus aid the solution

of, problems involving functions of several variables. They have broad applications

in mechanical engineering, theoretical physics, fluid dynamics and other fields. Be-

fore computer simulations, the PDEs governing the continuous problems need to be

represented and evaluated as algebraic equations.

A general two dimensional (2D) second order partial differential equation is in the

form of

A
∂2u

∂x2
+ 2B

∂2u

∂xy
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu = g(x, y), (1.1)

where the coefficients A, B, C, D, E and F may depend on x and y. Such equations

can be classified as parabolic (B2 = AC), hyperbolic (B2 > AC) and elliptic (B2 <

AC).

Equations that are parabolic at every grid point can be transformed into a form

analogous to the heat equation by changing the independent variables. Hyperbolic

equations retain any discontinuities of functions or derivatives in the initial data; an

example is wave equation. Solutions of elliptic PDEs are as smooth as the coefficients

allow within the interior of the region where the equation and solution are defined.

In this dissertation, I consider efficient numerical solutions for elliptic equations

like Poisson equation and convection-diffusion equation. Detailed information regard-

ing the classification of PDEs can be found in [4].

1.2 Discretization of PDEs

To discretize PDEs, the following methods are frequently used: the finite difference

methods, the finite volume methods, and the finite element methods. Compared to
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the other two methods, the finite difference methods are easier to implement and

higher order accuracy can be obtained by using higher order finite difference schemes

[57]. But the finite difference methods may not be able to handle irregular domain

problems very well. In many finite volume and finite element methods, the partial

differential equations need to be written as an integral equation before discretization.

Both the finite element and the finite volume methods are more convenient to be used

for unstructured meshes, but the associated computation time increases.

Selection of a discretization method for solving a particular PDE depends on the

problem itself. The finite difference method is very useful for simple geometry domain.

The finite volume method is used in many computational fluid dynamics packages.

The finite element method is a good choice for solving partial differential equations

over complex domains (like cars and oil pipelines), when the domain changes (as

during a solid state reaction with a moving boundary), or when the desired precision

varies over the entire domain. In this dissertation, I consider the simple geometry

cases, as I am mainly interested in developing a computational methodology associ-

ated with the finite difference discretization techniques. For example, the rectangular

domain for the 2D PDEs will be assumed in this study. So I will focus my attention

on the finite difference method.

High order finite difference schemes. In many CSEI applications, such as in

the global ocean modeling and wide area weather forecasting, the computational do-

mains are huge and the grid spaces are not small. In the context of the finite difference

methods, the standard second order discretization schemes or the first order upwind

difference schemes yield unsatisfactory results because they may need fine mesh grid-

dings to compute approximate solutions of acceptable accuracy. The resulting large

size linear systems have to be solved, which may consume a lot of memory space

and CPU time. In addition, the second order scheme may also produce numerical
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solutions with nonphysical oscillations for the convection dominated problems.

Higher order (more than two) discretization methods are considered to be useful

to reduce computational cost in very large scale modelings and simulations, which use

relatively coarser mesh griddings to yield approximate solutions of comparable accu-

racy, compared with lower order discretization. Generally, higher order discretization

schemes need more complicated procedures and more preprocessing costs to con-

struct the coefficient matrix, but they usually yield linear systems of much smaller

size, compared with those from the lower order methods.

Due to the advantage of higher order discretization methods, they have been

used to develop computational tools for solving various application problems [17, 20,

40]. In the past two decades, there has been growing interest in developing higher

order accurate discretization methods, especially the higher order compact difference

schemes, to solve PDEs [32, 51, 55, 75, 77, 78]. I call them “compact” because these

schemes only use the minimum three grid points in one dimension in the discretization

formulas. Errors that occur due to truncations in these compact difference schemes

are usually four to six times smaller than that of the non-compact schemes of the

same order [1].

For the development of high order compact difference schemes, there have been

two main tracks. The first one is best outlined in the Lele’s paper [32] and in the paper

by Chu and Fan [14, 15]. Chu and Fan proposed a three point combined compact

difference (CCD) scheme for solving two dimensional Stommel Ocean model, which

is a special two dimensional convection-diffusion equation. They used Hermitian

polynomial approximation to achieve sixth order accuracy for the inner grid points and

fifth order accuracy for the boundary grid points. The advantage of the CCD scheme

is that it can be used to solve many types of PDEs without major modifications. This

is because they do not approximate the PDEs directly, instead, they approximate the

solution variables and the derivative variables. The Alternating Direction Implicit
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(ADI) [43] method can be used to reduce the higher dimensional problems to a series

of lower dimensional problems. So, their schemes are referred to as implicit high

order compact schemes because they do not compute the solution variables of the

PDEs directly. Instead, the first derivative and the second derivative of the solution

variables are also computed at the same time.

The major disadvantage of these implicit schemes is that the approximations of

the first and second derivatives are unnecessarily computed for some applications

without the need of derivative approximations. In addition, the CCD scheme has a

stability problem that for certain problems, if a large mesh size is used, the computed

solution may be oscillatory [82]. Numerical oscillations may be avoided by using finer

meshsize. However, the use of fine mesh discretization is in contrary to the motivation

of using higher order compact schemes.

In contrary, the explicit fourth order compact schemes [24, 27, 33, 37, 55] compute

the solution of the variables directly; no redundant computation is needed. For sta-

bility, it has been proved that the computed solutions for a 1D convection-diffusion

model problem is nonoscillatory [55]. In addition, Some accelerating iterative meth-

ods like multigrid method and preconditioned iterative methods have been used to

efficiently solve the resulting sparse linear systems arising from the high order com-

pact finite difference discretizations [71, 76, 77]. From [56] I know that some explicit

fourth order schemes are stable and will suppress the nonphysical oscillations. How-

ever, the higher order explicit compact schemes are more complicated to develop in

higher dimensions [26, 81], compared with the implicit compact schemes. As far as

I know, there is no existing explicit compact scheme on a single scale grid that has

higher than the fourth order accuracy [59].

Multiscale grid computation. Computation of high accuracy solution on a unis-

cale is inefficient and sometimes impractical for modeling very large scale problems.
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Multiscale computation (MSC) is appeared to be the only route to take for develop-

ing efficient and scalable computational framework to handle very large scale CSEI

simulations. MSC is concerned with methods for computing, manipulating, and ana-

lyzing information at different resolution levels. It is widely used in many areas and

it appears under several different names like multi-resolution analysis in wavelet the-

ory, compression in signal analysis, progressive meshing in computer graphics, and

clustering in database. In this dissertation, a sixth order compact finite difference

scheme using multiscale grid techniques combined with Richardson extrapolation is

developed to solve PDEs on two grids with different scales.

1.3 Linear System Solver

In computing the numerical solution of PDEs, it is also important that the resulting

linear systems arising from the high order compact discretizations

Ax = b (1.2)

be solved efficiently. Here, A is a real (or complex) valued sparse matrix of order n,

x is an unknown n-vector, and b is a known n-vector.

1.3.1 Direct methods

Eq. (1.2) can be solved by direct methods and iterative methods. Direct methods,

based on the factorization of the coefficient matrix A into invertible matrices, al-

low exact computation up to the machine accuracy. However, direct methods, like

Gaussian elimination, often become inefficient for solving large scale problems. The

reason is that the Gaussian elimination has a computational complexity of O(n3) on

an n × n matrix and the problems arising from the discretization of PDEs like the

3D convection-diffusion equation sometimes lead to a linear system with hundreds
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of millions of unknowns. In addition, the matrices from discretized PDEs are often

sparse, and special storage strategy can be used to store only the nonzeros of the

sparse matrices. But the LU factorization in direct methods can create fill-ins dur-

ing factorization and hence does not take advantage of the sparsity of the original

matrices.

1.3.2 Iterative methods

In contrary to direct methods, iterative methods attempt to solve a problem by find-

ing successive approximations to the solution starting from an initial guess. Iterative

methods are often useful for even solving linear problems involving a large number of

variables, where direct methods would be prohibitively expensive even with the best

available computing power. The purpose of this subsection is to give a literature re-

view of some basic iterative methods, including Jacobi method, Gauss-Seidel method,

SOR method as well as two other efficient iterative methods: Krylov subspace based

iterative methods and multigrid method. We list these methods in Fig. 1.1

Ax = b

Direct Methods Iterative Methods

Gaussian elimination

SOR

Jacobi

Gauss−Seidel

Multigrid Krylov subspace method

Figure 1.1: Different linear system solvers.

Basic iterative methods. The basic iterative methods like Jacobi and Gauss-

Seidel methods are based on relaxation of the unknowns [6]. Beginning with a given

approximate solution, these methods modify the components of the approximation,

7



one or a few at a time and in a certain order, until convergence is reached. Each

of these modifications, called relaxation steps, is aimed at annihilating one or more

components of the residual vector.

−F

−E

D

Figure 1.2: Partition of the coefficient matrix A.

For solving Eq. (1.2), the coefficient matrix A can be decomposed into three parts

[50] as shown in Fig. 1.2

A = D − E − F,

where D is the diagonal of A, −E and −F are its lower triangular part and upper

triangular part, respectively.

For the Jacobi iteration, the i-th component of vector x at (k+1)st iteration can

be written in the form of

x
(k+1)
i =

1

Aii

(bi −
n

∑

j=1,j 6=i

Aijx
(k)
j ), Aii 6= 0,

which can also be written in matrix form as

x(k+1) = D−1(E + F )x(k) +D−1b.

For the Gauss-Seidel iteration, the approximate solution is updated immediately

after the new component is determined. The newly computed components can be
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changed within a working vector which is redefined at each relaxation step. So, the

Gauss-Seidel iteration is in the form of

x
(k+1)
i =

1

Aii

(bi −
i−1
∑

j=1

Aijx
(k+1)
j −

n
∑

j=i+1

Aijx
(k)
j ),

or

x(k+1) = (D − E)−1Fx(k) + (D −E)−1b.

Even faster convergence can be obtained using successive over relaxation (SOR)

method following the Gauss-Seidel iteration as

x
(k+1)
i = ωx

(k+1)
i + (1− ω)x

(k)
i ,

where ω is the SOR parameter and 0 < ω < 2.

From above formulas, we can find out that both the Jacobi and the Gauss-Seidel

iterations can be written in matrix form

x(k+1) = Gx(k) + f (1.3)

with

GJacobi = D−1(E + F )

GGauss−Seidel = (D − E)−1F.

If the iteration process converges to x, then

x = Gx+ f. (1.4)
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Let x(∗) be a solution to Eq. (1.4), subtracting Eq. (1.4) from Eq. (1.3) we get

x(k+1) − x(∗) = G(x(k) − x(∗))

= G2(x(k−1) − x(∗))

= ...

= Gk+1(x(0) − x(∗))

Hence, in order for the iteration to converge, the spectral radius of matrix G must

satisfy

ρ(G) ≤ ||G|| < 1.

Krylov subspace methods. The Krylov subspace methods, such as General Min-

imum Residual (GMRES) [48] and Bi-Conjugate Gradient Stabilized (BiCGSTAB)

[64] were designed to solve general sparse linear systems. The GMRES method is a

projection method to approximate the solution by the vector in a Krylov subspace

with minimum residual. Arnoldi iteration [50] is used to find this vector. BiCGSTAB

method was proposed by van der Vorst with the purpose of extending the Conjugate

Gradient (CG) algorithm to non-symmetric matrices.

Krylov subspace methods do not require discretized partial differential equations

and therefore can be applied in much more general situations where other iterative

methods like multigrid methods do not work or perform poorly. However, the draw-

back of the Krylov subspace methods are that their convergence rates are usually

dependent on the size of the linear systems and in some cases they are not robust. A

common strategy to improve robustness is to use a suitable preconditioner before a

Krylov subspace method is applied [50].

A good preconditioner can transfer the original linear system to a new “easier to
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solve” linear system like

M−1Ax = M−1b,

where M−1 is the preconditioner and should be inexpensive to apply to a matrix-

vector product. In many CSEI applications, it has been recognized that the choice of

the preconditioner is more important than the choice of a Krylov subspace method in

designing an iterative solution method [49]. Most existing preconditioners are based

on the sparse approximate inverse (SAI) and incomplete LU (ILU) factorization of

the coefficient matrix and these ILU preconditioners do not have grid-independent

convergence rate [50]. Stabilized singular value decomposition (SVD) is also a good

technique to construct an efficient preconditioner, especially for some applications in

computational electromagnetics [70].

Multigrid methods. Convergence of the basic iterative methods like Jacobi and

Gauss-Seidel methods slow down after a few iterations. That is because the basic

iterative methods remove high frequency errors efficiently, but are inefficient for low

frequency errors. High frequency errors are rough errors and low frequency errors

are smooth errors, as shown in Fig. 1.3. Hence, basic iterative methods (relaxation

methods) are said to have smoothing effect (smoother). In order to speed up the

convergence when the error becomes smooth after a few iterations, the error can be

projected to a coarse grid as it becomes rough on a coarse scale grid as in Fig. 1.4.

Based on the above idea, multigrid algorithm iterates on a hierarchy of successively

coarser grids until the convergence is reached. For problems such as the Poisson

equation on a rectangular domain, the convergence rate of the multigrid method is

independent of the grid size [9, 12, 65]. Various multigrid implementation strategies

with the fourth order compact schemes to solve the 2D and 3D Poisson equations or

other PDEs like the convection-diffusion equations are discussed in [25, 27, 52].

One iteration of a general multigrid cycling procedure includes smoothing the error
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rough error

smooth error

Figure 1.3: Error distribution.

h=1/12
smooth error on a fine grid 

same smooth error looks more rough 
on a coarser grid with h=1/6

Figure 1.4: Same error distribution on two scale grids.
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using a basic iterative method, which is also called the smoother. This procedure is

done by restricting the residuals to the coarse grid, relaxing the error equation on

the coarse grid, prolongating the coarse grid error correction to the fine grid, and

adding the error correction to the fine grid solution. Relaxation scheme and coarse

grid correction scheme are complimentary to each other. Relaxation on the fine

grid eliminates rough (oscillatory) error components, leaving relatively smooth error

components to be solved on the coarse grid. Intergrid transfer operators and coarse

grid relaxation work well on smooth error components. They together remove both

oscillatory and smooth error components.

Multigrid method is a recursive method in that the coarse grid computation is

also carried out by the multigrid idea. A multigrid V-cycle is the computational

process that goes from the fine grid down to the coarsest grid and then comes back

from the coarsest grid up to the fine grid. The linear system solver developed in this

dissertation is based on V-cycle on different scale grids. A V-cycle algorithm may

include the following steps [50]:

Algorithm 1 Multigrid V-cycle Algorithm

1: Relax ν1 times on Ahuh = bh with initial guess u
(k)
h

2: Compute b
(k)
2h = r

(k)
2h = I2hh (bh −Ahu

(k)
h )

3: Relax ν1 times on A2hu
(k)
2h = b

(k)
2h with initial guess 0

4: Compute b
(k)
4h = r

(k)
4h = I4h2h (b2h −A2hu

(k)
2h )

5: Relax ν1 times on A4hu
(k)
4h = b

(k)
4h with initial guess 0

6: Compute b
(k)
8h = r

(k)
8h = I8h4h (b4h −A4hu

(k)
4h )

7: ......
8: Solve ALhu

(k)
Lh = b

(k)
Lh

9: ......
10: Correct u

(k∗)
4h = u

(k)
4h + I4h8hu

(k+1)
8h

11: Relax ν2 times on A4hu4h = b4h with initial guess u
(k∗)
4h

12: Correct u
(k∗)
2h = u

(k)
2h + I2h4hu

(k+1)
4h

13: Relax ν2 times on A2hu2h = b2h with initial guess u
(k∗)
2h

14: Correct u
(k∗)
h = u

(k)
h + Ih2hu

(k+1)
2h

15: Relax ν2 times on Ahuh = bh with initial guess u
(k∗)
h
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In Algorithm 1, Ih2h and I2hh are two intergrid transfer operators used to transfer

information between grids. From coarse grid to fine grid: linear interpolation (pro-

longation) operator is used as Ih2h, where, for one dimensional problem and n = 8, we

have

Ih2hu2h =
1

2
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From fine grid to coarse grid: the simplest restriction operator is injection, which takes

the fine grid point values directly. A more accurate restriction operator is called full

weighting. It transfers a weighted average of value at neighboring fine grid points.

For 1D problem, n = 8, the full weighting has the form

I2hh rh =
1

4
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Note that relaxations are performed before and after the coarse grid correction. They

are called (ν1) presmoothing sweeps and (ν2) postsmoothing sweeps. Relaxation

scheme and coarse grid correction scheme are complimentary to each other. Re-

laxation on the fine grid eliminates rough (oscillatory) error components, leaving
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relatively smooth error components to be solved on the coarse grid.

W-cycle is the multigrid method with two corrections. We may also start with

the coarsest grid in order to provide a good initial guess for the finer grids. Such

an algorithm is called the full multigrid V-cycle algorithm[50]. The structure of the

computation flow of these three multigrid schemes is shown in Fig. 1.5

V−cycle

h

2h

4h

8h

h

2h

4h

8h

W−cycle

Full multigrid V−cycle

h

2h

4h

8h

Figure 1.5: Illustration of different multigrid method.

The multigrid methods, when they work, can yield a solution with computational

cost proportional to the size of the problems. In other words, both CPU time and

storage space are of order O(n), where n is the size of the problem [22]. However,

implementation of classical multigrid methods necessitates a multi-level grids and

special multigrid methods are needed for particular applications. Although algebraic

multigrid methods can relax some of these requirements to certain extent, they still

need underlying the partial differential equations which are sometimes unavailable in
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practical applications.

1.4 Organization

This dissertation is composed of six chapters. The remainder of this dissertation is

organized as follows:

• In Chapter 2, I use multiscale multigrid computing techniques to compute sixth

order fine grid solutions for both the 1D and 2D Poisson equations. This method

is based on the fourth order discretization scheme combined with operator based

interpolation scheme and Richardson extrapolation technique. Multiscale multi-

grid method is proposed to solve the arising linear systems. Numerical results

are provided to show the efficiency and robustness of our algorithms.

• In Chapter 3, the sixth order discretization method is extended to solve the 2D

convection-diffusion equations with variable coefficients. The extended scheme

can handle the problem with very high Reynolds number. Residual scaling

strategy is also applied to keep the grid independency of our multiscale multigrid

method.

• In Chapter 4, I extend the sixth order scheme from the 2D convection-diffusion

equation to 3D convection-diffusion equation. A new operator based interpola-

tion scheme is proposed to approximate the sixth order solutions on fine grid.

Plane relaxation method is developed to solve the linear systems with high

Reynolds number.

• Chapter 5 presents two new techniques: multiple coarse grids computation and

W-cycle multiscale multigrid method. The multiple coarse grids computation

can approximate the fourth order solutions on every coarse grid. The extrapo-

lation is applied for every fine grid point to compute the sixth order solution.

The W-cycle multiscale multigrid method is an improved multiscale multigrid
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method which requires less CPU cycles and achieves more accurate sixth order

solutions.

• In Chapter 6, I use OpenMP to develop a parallel multiscale multigrid solver.

In order to achieve parallelism, I use multicolor relaxation scheme in multigrid

method. I tested the parallel solver for the 3D convection-diffusion equations.

• Chapter 7 summarizes conclusions of this dissertation and proposed future re-

search work.
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Chapter 2

Sixth Order Solution for 2D Poisson Equation

In this chapter, I discuss the sixth order solutions for Poisson equation. Poisson equa-

tion is a partial differential equation with broad utility in electrostatics, mechanical

engineering and theoretical physics. It is named after the French mathematician,

geometer and physicist Siméon-Denis Poisson.

The efforts to compute more accurate solution using limited grid sizes have di-

rected researcher’s attention to developing high order compact schemes for Poisson

equations. In context of the fourth order compact finite difference discretizations,

much research and applications have been focused on equal or unequal meshsize dis-

cretization [25, 56, 77].

I believe that using highly accurate discretization schemes with scalable linear sys-

tem solver is a better strategy to achieve fast and high resolution numerical solution of

PDEs, than relying on either one of these approaches alone. Unfortunately, numerical

discretization and fast linear system solvers are traditionally studied by two separate

groups of people. In this dissertation, I integrate the advantages of both approaches

and build an efficient framework to solve Poisson equations by incorporating high

accuracy discretization into multigrid solution process.

For the sixth order solutions, I combine the fourth order compact discretization,

multigrid method, Richardson extrapolation technique, and an operator based inter-

polation scheme. I use multigrid V-Cycle procedure to build our multiscale multigrid

algorithm, which is similar to the full multigrid method (FMG). The multigrid com-
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putation yields fourth order accurate solution on both the fine grid and the coarse

grid. A sixth order accurate coarse grid solution is computed by using Richardson

extrapolation technique. Then I apply our operator based interpolation scheme to

compute sixth order accurate solution on the fine grid. Numerical experiments are

conducted to demonstrate the accuracy of the solution obtained and the computa-

tional efficiency of our new method compared to Sun-Zhang’s sixth order Richardson

extrapolation compact (REC) discretization strategy [59] using Alternating Direc-

tion Implicit (ADI) method and the standard fourth order compact difference (FOC)

scheme using a multigrid method.

This chapter is organized as follows: In Section 2.1, I present a sixth order compact

difference discretization strategy for the 2D Poisson equation. In Section 2.2, I develop

our modified multigrid method to compute the fourth order accurate solution on

the fine and the coarse grids. Section 2.3 contains the numerical experiments to

demonstrate the high accuracy of the sixth order compact difference scheme, as well as

the computational efficiency of our modified multigrid method. Concluding remarks

are given in Section 2.4.

2.1 Compact Finite Difference Approximations

I want to develop an explicit sixth order compact finite difference scheme to discretize

the 2D Poisson equation. Since a sixth order explicit compact scheme may be impos-

sible to develop on a single scale grid, the multiscale grid method has been considered

to achieve the sixth order accuracy for the explicit compact formulations. Sun and

Zhang [59] first proposed a sixth order explicit finite difference discretization strategy

for solving the 2D convection-diffusion equation. They used ADI method to compute

the fourth order accurate solution on the fine and the coarse grids first, then apply

Richardson extrapolation technique and an operator based interpolation scheme in

each ADI iteration to achieve the sixth order accurate solution on the fine grid. The
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major disadvantage of Sun-Zhangs method is that the ADI iteration is not scalable

with respect to the meshsize. When the mesh becomes finer, the number of ADI

iterations needed for convergence increases quickly.

By using the idea of two scale grid computation from Sun-Zhang’s method, I

intend to develop a new explicit sixth order compact computing strategy for the 2D

Poisson equation, which can efficiently solve the resulting linear system and is scalable

with respect to the problem size. Our explicit sixth order compact finite difference

scheme is based on a fourth order compact discretization on the two scale grids. In

this section, I first introduce the fourth order compact scheme for the 2D Poisson

equation. The basic idea is from Zhang’s previous work [59, 77]. More detailed

discussions about the fourth order finite difference schemes can be found in [24, 55].

2.1.1 1D Poisson equation

I first give a brief introduction to the fourth order compact (FOC) difference scheme

for solving a 1D Poisson equation of the form

∂2u

∂x2
= f(x), 0 ≤ x ≤ l. (2.1)

Eq. (2.1) is considered to have suitable boundary conditions. I denote the domain by

Ω and use uniform mesh spacing h = l/n, where n is the number of grid points. Here,

f(x) is the forcing function that is assumed to have the necessary derivatives up to

certain orders. I denote xj = jh, uj = u(xj), and fj = f(xj), where j = 0, 1, ..., n.

I now write the well-known second order central difference operators as [57]

δhxxuj =
uj+1 + uj−1 − 2uj

h2
, j = 1, 2, ..., n− 1.
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By using the Taylor series expansions, we can rewrite this operator as

δhxxuj = uxx +
h2

12
ux4 +

h4

360
ux6 +O(h6), (2.2)

and second order solution can be achieved by dropping the last three terms. In Eq.

(2.2), ux4 is the 4th partial derivative evaluated at the grid point xi. The idea behind

the high order compact approximation scheme is to approximate the term ux4. The

fourth derivatives for the function u(x) can be obtained by taking derivatives on both

sides of Eq. (2.1) like

ux4 = fxx. (2.3)

By applying central difference operator on fxx at grid point xj , Eq. (2.3) can be

rewritten as

(ux4)j = δhxxfj +O(h2). (2.4)

Taking Eq. (2.4) into Eq. (2.2), we have

uxx = δhxxuj −
h2

12
(δhxxfj +O(h2)) + τh4 +O(h6)

= δhxxuj −
h2

12
δhxxfj + τh4 +O(h6), (2.5)

where τ is some complicated representation not related to h and will be dropped in the

Richardson extrapolation procedure. Hence, the fourth order compact approximation

of the 1D Poisson equation at grid point xj is

δhxxuj = (1 +
h2

12
δhxx)fj + τh4 +O(h6). (2.6)

The linear system consisting of equations at all interior grid points in Eq. (2.6) is
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tridiagonal and can be solved easily [13]. We can write the solution symbolically as

uh
j = (δhxx)

−1((1 +
h2

12
δhxx)fj + τh4) +O(h6). (2.7)

A FOC difference scheme is obtained by dropping the h6 and h4 terms in Eq. (2.7).

The uh
j indicates the FOC solution on the Ωh grid. By changing the grid size to 2h,

we can compute the FOC solution u2h
j on the coarse grid Ω2h.

Fourth order to sixth order. Using standard Richardson extrapolation strategy

[13], a sixth order accuracy solution on the coarse Ω2h grid can be computed as

ũ2h
j =

16uh
2j − u2h

j

15
. (2.8)

For the fine grid solution, I first interpolate the sixth order coarse grid solution ũ2h
j

to the even indexed grid points on the Ωh grid. And the Eq. (2.6) can be written in

a 3-point stencil as

uj+1 + uj−1 − 2uj = Fj,

where Fj = h2fj(1 +
h2

12
δhxx).

So, the odd indexed grid points x2j−1 with j = 1, 2, ..., n/2 on the grid Ωh can be

computed as

ũ2j−1 =
1

2
[ũ2j−2 + ũ2j − F2j−1] +O(h6), (2.9)

where ũ2j is a sixth order solution on Ω2h computed by Eq. (2.8). It follows that a

sixth order solution ũj on Ωh. The procedure is shown in Fig. 2.1.

We can make a summary of the Richardson extrapolation (REC) algorithm for

computing a sixth order approximate solution of Eq. (2.1) as in Algorithm 2.
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Figure 2.1: The procedure of how to get sixth order solution on the fine grid for 1D
problem. The gray colored grid is the even grid point with sixth order accuracy after
extrapolation.

2.1.2 2D Poisson equation

For solving PDEs in higher dimensions, there are two general approaches. Consider

the 2D Poisson equation for example. The 2D PDEs can be viewed as 1D problems

by lagging the partial derivatives with respect to the y variables [14]. The 1D sixth

order compact scheme can be used with Alternating Direction Implicit (ADI) method

to solve 2D PDEs. But as I commented in Chapter 1, the ADI method is not scalable

Algorithm 2 Sixth order approximation for 1D equation

1: Solve an n-by-n tridiagonal linear system on Ωh with FOC scheme to get fine grid
solution uh;

2: Solve an n/2-by-n/2 tridiagonal linear system on Ω2h with FOC scheme to get
coarse grid solution u2h;

3: Using Richardson extrapolation technique to compute the sixth order solution
ũ2h
j on the Ω2h;

4: Interpolate the ũ2h
j to the even grid points of Ωh and use formula (2.9) to compute

the odd grid points to get the sixth order solution ũh
j .
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with respect to the meshsize, when the number of grid points increases, the ADI

method is likely to take lots of iterations to converge and is therefore computationally

inefficient for solving large scale problems. Our approach is to directly solve the linear

system arising from explicit discretization schemes. Like the 1D case, the sixth order

explicit compact scheme for the 2D Poisson equation is also based on the FOC scheme.

The 2D Poisson equation can be written in the form of

∂2u

∂x2
+

∂2u

∂y2
= f(x, y), (x, y) ∈ Ω, (2.10)

where Ω is a rectangular region, or a union of rectangular regions, with suitable

boundary conditions defined on ∂Ω. The solution u(x, y) and the forcing function

f(x, y) are assumed to be sufficiently smooth and have the necessary continuous

partial derivatives up to certain orders.

For simplicity, I assume Ω = [0, Lx]×[0, Ly ]. I discretize Ω with uniform meshsizes

∆x = Lx/Nx and ∆y = Ly/Ny in the x and y coordinate directions, respectively. Here

Nx and Ny are the number of uniform intervals as x and y axes. The mesh points are

(xi, yj) with xi = i∆x and yj = j∆y, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny.

Discretization of the 2D PDE is similar to the 1D PDE, I first write the standard

second order central difference operators as

δ2xui,j =
ui+1,j − 2ui,j + ui−1,j

∆x2
, δ2yui,j =

ui,j+1 − 2ui,j + ui,j−1

∆y2
.

By using Taylor series expansion, at the grid point (xi, yj), we have

δ2xui,j = uxx +
∆x2

12
u4
x +

∆x4

360
u6
x +O(∆x6), (2.11)

and

δ2yui,j = uyy +
∆y2

12
u4
y +

∆y4

360
u6
y +O(∆y6). (2.12)
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From previous studies [59, 77, 80], we can apply the symbolic fourth order compact

approximation operator to the second derivatives uxx and uyy in Eq. (2.10), respec-

tively. Then discretization of the 2D Poisson equation can be formulated symbolically

as [57]

(1 +
∆x2

12
δ2x)

−1δ2xu+ (1 +
∆y2

12
δ2y)

−1δ2yu = f +O(∆4), (2.13)

where ∆4 denotes the truncated terms in the order of O(∆x4+∆y4). And Eq. (2.13)

can be rewritten as

(1 +
∆y2

12
δ2y)δ

2
xu+ (1 +

∆x2

12
δ2x)δ

2
yu

= (1 +
∆x2

12
δ2x)(1 +

∆y2

12
δ2y)f + τ1∆x4 + τ2∆y4 +O(∆6)

= [1 +
1

12
(∆x2δ2x +∆y2δ2y)]f + τ1∆x4 + τ2∆y4 + τ0(∆x2.∆y2) +O(∆6). (2.14)

Here τ1, τ2 and τ0 are some complicated representations that will be dropped in the

Richardson extrapolation procedure, (we absorbed the ∆x2.∆y2 term into the O(∆4)

term). If I drop the ∆6 term and set the τ1, τ2 and τ0 equal to zero, I will get the

general fourth order compact scheme for the 2D Poisson equation as

(δ2x + δ2y)u+
1

12
(∆x2 +∆y2)δ2xδ

2
yu = f +

1

12
(∆x2δ2x +∆y2δ2y)f. (2.15)

If I set the mesh aspect ratio γ = ∆x/∆y, we can rewrite the Eq. (2.15) in the

following form [77]

aui,j + b(ui+1,j + ui−1,j) + c(ui,j+1 + ui,j−1) + d(ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1)

=
∆x2

2
(8fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1), (2.16)

which has a nine point computational stencil as shown in Fig. 2.2. Here the coeffi-
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Figure 2.2: Fourth order 9-point computational stencil for 2D Poisson equation.

cients are

a = −10(1 + γ2), b = 5− γ2, c = 5γ2 − 1, d = (1 + γ2)/2.

When ∆x = ∆y = ∆, the 9-point stencil formula (2.16) can be

ui+1,j+1 + ui+1,j−1 + ui−1,j+1 + ui−1,j−1 + 4(ui+1,j + ui−1,j + ui,j+1 + ui,j−1)− 20ui,j

=
∆2

2
(8fi,j + fi+1,j + fi−1,j + fi,j+1 + fi,j−1). (2.17)

I want to mention here that all the interior grid points have the same 9 point com-

putational stencil, no special boundary conditions are needed.

Anisotropic 2D Poisson equation. The anisotropic 2D Poisson equation is

uxx + βuyy = f(x, y), (x, y) ∈ Ω, (2.18)

where β 6= 1. But one can use same discretization scheme as for the isotropic Poisson
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equation to discretize it. In fact, the anisotropic Poisson equation can be transformed

into an isotropic equation. Suppose that, y ∈ [0, Ly], I just map the ȳ = y/
√
β and

change the domain [0, Ly] to [0, y/
√
β], then the Eq. (2.18) can be rewritten as

uxx + uȳȳ = f(x, ȳ).

Thus, the anisotropic Poisson equation can be considered as an isotropic Poisson

equation with a scaled domain.

2D operator based interpolation. By solving the linear system arising from the

FOC scheme for the 2D Poisson equation, I have the fourth order solution uh
i,j on the

grid Ωh and u2h
i,j on the grid Ω2h. Like the 1D problem, we first use the Richardson

extrapolation to achieve the sixth order solution on the coarse grid like [11, 45]

ũ2h
i,j =

(16uh
2i,2j − u2h

i,j)

15
. (2.19)

The 2D problem is different from the 1D problem, we first divide the 2D grid points

into four groups (even, even), (odd, odd), (even, odd), and (odd, even). We can get

the sixth order coarse grid solution u2h on th coarse grid Ω2h, which can be directly

copied to the (even, even) grid points on the fine grid. But we cannot just use the

one step interpolation as we did for the 1D case to achieve the sixth order solution

for other three groups of grid points. Instead, we developed a mesh-refinement [29]

iterative method as shown in Fig. 2.3.

I assume that Nx and Ny are both even numbers, our operator based interpola-

tion scheme is an iterative procedure. In each iteration, it will run the Richardson

extrapolation first to get the sixth order solution on the coarse grid, then it will use

a different interpolation strategy to interpolate the sixth order solution for different

grid points on the fine grid. One interpolation iteration (from step k to step k+1) is
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Figure 2.3: Illustration of the operator based interpolation scheme for a 5×5 fine grid.

outlined in Algorithm 3.

In Algorithm 3, Ω4
h and Ω4

2h denote the fourth order accurate solution space,

Ω6
h and Ω6

2h mean the sixth order accurate solution space. ũh,k is the approximate

solution for the fine grid after k iterations. The operator based interpolation iteration

will continue until the 2-norm R of the correction vector is reduced to below a certain

tolerance.

I want to mention here that in Sun-Zhang’s sixth order method [59] for the

2D convection-diffusion equation, they also applied an operator based interpolation

scheme together with the Richardson extrapolation in each ADI iterations. Since the

number of ADI iterations will increase quickly when the mesh size becomes finer, their
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Algorithm 3 Operator based interpolation iteration combined with sixth order
Richardson extrapolation technique.

1: Let uh
old = ũh,k.

2: Update every (even, even) grid point on Ωh.
From ũ2h,k

i,j ∈ Ω4
2h and ũh,k

2i,2j ∈ Ω4
h, I first compute ũ2h,k+1

i,j ∈ Ω6
2h by Eq. (2.19),

then use direct interpolation to get ũh,k+1
2i,2j ∈ Ω6

h.
3: Update every (odd, odd) grid point on Ωh.

From Eq. (2.16), for each (odd, odd) point (i, j), the updated solution is

ũh,k+1
i,j =

1

a
[Fi,j − b(ũh,k

i+1,j + ũh,k
i−1,j)− c(ũh,k

i,j+1 + ũh,k
i,j−1)

− d(ũh,k+1
i+1,j+1 + ũh,k+1

i+1,j−1 + ũh,k+1
i−1,j+1 + ũh,k+1

i−1,j−1)]

Here, Fi,j represents the right-hand side part of Eq. (2.16).
4: Update every (odd, even) grid point on Ωh.

From Eq. (2.16), the idea is similar to the (odd, odd) grid point.
5: Update every (even, odd) grid point on Ωh.

From Eq. (2.16), the idea is similar to the (odd, even) grid point.
6: Compute the 2-norm R = ||ũh,k+1 − uh

old||2. If not converged, go back to Step 1.

extrapolation and interpolation parts will take a large amount of CPU time. In order

to avoid this unscalable computation, my new operator based interpolation procedure

and the Richardson extrapolation are carried out only after I get the converged fine

and coarse grid fourth order accurate solutions.

Convergence analysis. From Steps 3-5 in Algorithm 3, we can see that the in-

terpolation scheme employs a Gauss-Seidel type of iterative method to approximate

the sixth order solutions for every fine grid point. The coefficient matrix A that I

use is generated from the fourth order compact difference scheme, and A is usually

large and sparse. The convergence rate of this Gauss-Seidel type of iterative methods

depends on properties of matrix A.

Lemma 2.1.1. The point Jacobi and the point Gauss-Seidel type of iterative methods

associated with A for
√
5/5 < γ <

√
5 are convergent for any initial guess, where γ

is the mesh aspect ratio defined in Eq. (2.15).
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Proof. From Zhang [72] and Varga [63], we know that we need to prove that matrix

A is irreducible and weakly diagonally dominant.

Since A is discretized from FOC scheme, it is easy to find that the directed graph

of A is strongly connected. So, A is irreducible.

To prove A is weakly diagonally dominant, we need to prove that

|Ai,i| ≥
n

∑

j=1,j 6=i

|Ai,j|, for i = 1, ..., n. (2.20)

By applying Eq. (2.15) to (2.20), it is sufficient to prove

|α0| ≥
8

∑

j=1

|αj|, (2.21)

where αj are the coefficients from 9-point computational stencil. We have

|α0| −
8

∑

j=1

|αj |

=10(1 + γ2)− 2|5− γ2| − 2|5γ2 − 1| − 2(1 + γ2)

=8(1 + γ2)− 2(|5− γ2|+ |5γ2 − 1|). (2.22)

By solving (2.22), we have

|α0| −
8

∑

j=1

|αj| =























20γ2 − 4 < 0, if 0 < γ <
√
5/5,

0, if
√
5/5 ≤ γ ≤

√
5,

20− 4γ2 < 0, if γ >
√
5,

So, A keeps the diagonal dominance only when
√
5/5 ≤ γ ≤

√
5 holds.
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2.2 Special Multigrid Method

As indicated in Chapter 1, the convergence rate of the multigrid method is inde-

pendent of the grid size. Considerable computational time is saved by doing major

computational work on the coarse grids. In the past two decades, multigrid method

and many of its variants have been used in almost every scientific computing appli-

cations, solving both linear and nonlinear systems of PDEs [5, 8, 41, 44]. Various

multigrid implementation strategies with the fourth order compact schemes to solve

the 2D or 3D Poisson equations or other PDEs like convection-diffusion equations are

discussed in [25, 27, 52].

I point out that multigrid method has traditionally been used as convergence

acceleration method to solve the sparse linear systems arising from the discretized

PDEs. In this section, I introduce a geometric multiscale multigrid method [66] to

elevate the order of accuracy of the computed solution using this already existing

multilevel grid hierarchy. The major advantage of multiscale multigrid method is

that it has an optimal computational cost similar to that of a full multigrid method

and can bring us the converged fourth order solutions on two grids with different

scales.

2.2.1 Multiscale multigrid method

I use the notations ulh, flh and Llh to represent the approximate solution, the right-

hand side vector and the finite difference operator for the grid Ωlh, respectively. I
lh
(l−1)h

is the restriction operator from the grid Ω(l−1)h to the grid Ωlh, and I
(l−1)h
lh is the

interpolation operator from the grid Ωlh to the grid Ω(l−1)h. The procedure of our

multiscale multigrid method is shown in Fig. 2.4. The gray colored circle indicates the

unconverged solution u4h and the black colored circles are the fourth order converged

solutions u2h and uh.

Below I describe a multigrid V-cycle based algorithm to solve the 2D Poisson
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 V−cycle for 4h grid  V−cycle for 2h grid  V−cycle for h grid

bilinear interpolation

high order interpolation

full−weighting restriction

Figure 2.4: Representation of our multiscale multigrid method.

equation.

The Algorithm 4 is similar to the full multigrid method, but I do not start from

the coarsest grid. Since I use the interpolated coarse grid solution as the initial guess

for the fine grid V-Cycle, this algorithm will need fewer number of multigrid cycles

than I run the V-Cycle on Ωh and Ω2h separately to get the converged fourth order

accurate solutions uh and u2h [12, 52].

In the multiscale multigrid method, I use standard bilinear interpolation to trans-

fer corrections from the coarse grid to the fine grid, full weighting scheme to project

residual from the fine grid to the coarse grid, and bicubic interpolation to interpolate

the initial guess in Step 2 and Step 5.

2.2.2 Relaxation method

For relaxation methods (smoothers), the standard multigrid method with point Gauss-

Seidel type relaxation is widely used and is simple to implement. However, for
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Algorithm 4 Multiscale Multigrid Method

1: Run the multigrid V-Cycle algorithm MG(u4h, f4h) on the coarser grid Ω4h as in
Fig. 2 for one or two cycles to get an approximate solution u4h.

2: Use some high order interpolation schemes, like the bicubic interpolation or oper-
ator based interpolation, to interpolate u4h to the coarse grid Ω2h, u2h = I2h4hu4h.

3: Relax ν1 times on L2hu2h = f2h.
4: Use u2h from the previous step as the initial guess to run the multigrid V-Cycle

algorithm MG(u2h, f2h) on the coarse grid Ω2h until it converges. I can get the
converged fourth order accurate solution u2h.

5: Use a high order interpolation to interpolate u2h to the fine grid Ωh like uh =
Ih2hu2h.

6: Relax ν1 times on Lhuh = fh.
7: Use uh from the previous step as the initial guess to run the multigrid V-Cycle

algorithm MG(uh, fh) on the fine grid Ωh until it converges. We can get the
converged fourth order accurate solution uh.

solving the anisotropic Poisson equation, or equivalently, Poisson equation with un-

equal meshsizes, standard point Gauss-Seidel relaxation and standard mesh coarsen-

ing strategy (the coarse grid meshsizes double that of the fine grid) does not work

very well [65, 44]. Two strategies can be used to treat these anisotropic equations:

semicoarsening [38, 39] and line relaxation. For semicoarsening strategy, the mesh

coarsening is only performed along the dominant direction. For the line relaxation, it

is very efficient to dump the high frequency errors in the dominant direction with large

coefficients. The line relaxation scheme has three implementations, X-Line scheme,

Y- Line scheme and alternating (X-Y) Line scheme. If the x is the dominant direction,

I only perform line relaxation along the x direction on each successive grids (X-Line

scheme); If y is the dominant direction, I choose the Y-Line scheme; if it is difficult to

determine the dominant direction, I prefer the X-Y Line scheme. For the particular

problems considered in this dissertation, I prefer using line relaxation strategy.

Line relaxation. Assuming x is the dominant direction, line relaxation will be

performed along x direction on each successive grids as in Fig. 2.5. On the coarsest

level, Nx = Ny = 2 and there is a 1D linear system with one unknown along x
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direction. The relaxation will become a direct solver on the coarsest grid.

Line relaxation on fine grid Line relaxation on coarse grid

Figure 2.5: Line relaxation on a fine and coarse grids.

The coefficient matrix of the FOC scheme can be written as block tridiagonal

matrix of block order Ny [72],

A = diag[A1, A0, A1],

where

A0 = diag[5− γ2,−10(1 + γ2), 5− γ2], A1 = diag[(1 + γ2)/2, 5γ2 − 1, (1 + γ2)/2]

are symmetric tridiagonal submatrices representing each line along x direction. The

line relaxation is carried out for each line j (1 ≤ j ≤ Ny − 1) as

A0uj = fj − A1(uj−1 + uj+1), (2.23)

where uj, fj are part of the solution vector and right hand side representing the grid

points on the jth line, respectively.
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2.3 Numerical Experiments

In this section, I compare our new sixth order multigrid method with Richardson ex-

trapolation (MG-Six) strategy with Sun-Zhang’s sixth order RECmethod (REC-ADI)

[59] and with the standard fourth order compact difference scheme using multigrid

(MG-FOC). I used Fortran 77 programming language to implement and run on one

processor of an IBM HS21 blade cluster at the University of Kentucky. The processor

has 2GB of local memory and runs at 2.0GHZ.

The initial guess for the V-Cycle on Ω4h is the zero vector. For Problem 1, the

multigrid V-Cycle for the Ω2h and Ωh grids will stop when the 2-norm of the residual

vector is reduced by 10−13, the iterative interpolation procedure will stop when the

2-norm of the correction vector of the approximate solution is less than 10−13. For

the Problem 2, both of the stopping criteria will be changed to 10−10. The errors

reported are the maximum absolute errors over the discrete grid of the finest level.

Generally, 10−10 is our standard stopping criteria to check the 2-norm of the

residual or the correction vector. For Problem 1, if we look at the experimental

results from Table 2.1, we will find that when n = 256 the maximum error of our

FOC scheme has dropped to 10−10. If we still use 10−10 as our stopping tolerance,

we may not get enough accuracy when the iteration stops. In order to get sufficient

accuracy, I choose 10−13 as the stopping criteria for Problem 1.

For the line Gauss-Seidel relaxation schemes for these two test cases, I choose X-Y

Line relaxation scheme for the Problem 1. For the Problem 2, since x is its dominant

direction, I only perform line relaxation along the x direction, which is the X-Line

relaxation scheme.

I also compute the estimated order of accuracy for every computing strategy

in different grid size. Let us consider two meshsizes ∆H and ∆h on ΩH and Ωh,

respectively. The maximum absolute errors of these two grids are denoted as ErrorH
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and Errorh. If we set the order of accuracy to be m, then we have the following form

(∆H)m

(∆h)m
=

ErrorH

Errorh
.

So, the order of accuracy m can be computed as

m =
log ErrorH

Errorh

log ∆H

∆h

.

The order of accuracy is formally defined when the meshsize approaches zero. There-

fore, when the meshsize is relatively large, discretization scheme may not achieve its

formal order of accuracy.

2.3.1 Test problem 1

In order to compare with Sun-Zhang’s sixth order method, we consider one of the

test cases in Sun-Zhang’s paper [59]. Sun and Zhang used a 2D convection-diffusion

equation, I set the convection coefficients to be zero, then the equation becomes a 2D

Poisson equation. The test Problem 1 can be written as

∂2u

∂x2
+

∂2u

∂y2
= −α sin(

π

b
y), (x, y) ∈ Ω = [0, λ]× [0, b], (2.24)

where the boundary conditions are

u(0, y) = u(λ, y) = u(x, 0) = u(x, b) = 0.

In this equation, the parameter α is chosen as

α =
Fπ

Rb
.
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The analytic solution of Eq. (2.24) is:

u = −α(
b

π
)2 sin(

πy

b
)(e

πx

b − 1).

The other parameters are chosen as

λ = 107m, b = 2π × 106m,F = 0.3× 10−7m2s−2, R = 0.6× 10−3ms−1.

In the following, I define Nx = Ny = n. The meshsizes ∆x and ∆y are equal to

λ/n and b/n, respectively. Table 2.1, Fig. 2.6 and Fig. 2.7 compare the results for

the Problem 1.
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Figure 2.6: Comparison of the number of iterations with REC-ADI, MG-FOC(point)
and MG-FOC(line) methods for the Problem 1. Each symbol with increasing number
of iterations corresponds to an increasing fine grid: 16, 32, 64, 128, and 256 intervals.

Table 2.1 shows the number of iterations and other information for different solu-

tion strategies that I compared. We can find that when the mesh becomes finer, the

number of ADI iterations increases very quickly. When n > 64, the ADI iteration

37



Table 2.1: Numerical comparison results for the Problem 1.

n strategy # iteration CPU error order
REC-ADI 237 0.020 1.32e-6 5.7

MG-Six(point) (11,11), 40 0.001 1.32e-6 5.7
16 MG-FOC(point) 14 0.002 1.63e-5 3.9

MG-Six(line) (5,6), 40 0.001 1.32e-6 5.7
MG-FOC(line) 7 0.001 1.63e-5 3.9

REC-ADI 901 0.302 2.27e-8 5.9
MG-Six(point) (11,12), 39 0.007 2.27e-8 5.9

32 MG-FOC(point) 14 0.004 1.02e-6 4.0
MG-Six(line) (6,7), 39 0.008 2.27e-8 5.9
MG-FOC(line) 8 0.006 1.02e-6 4.0

REC-ADI 3447 4.662 3.68e-10 5.9
MG-Six(point) (12,13), 37 0.029 3.67e-10 6.0

64 MG-FOC(point) 15 0.022 6.39e-8 4.0
MG-Six(line) (7,7), 36 0.033 3.67e-10 6.0
MG-FOC(line) 9 0.024 6.40e-8 4.0

REC-ADI not converged – – –
MG-Six(point) (13,13), 33 0.129 5.26e-12 6.1

128 MG-FOC(point) 15 0.093 3.99e-9 4.0
MG-Six(line) (7,8), 34 0.161 5.87e-12 6.0
MG-FOC(line) 9 0.140 4.00e-9 4.0

REC-ADI not converged – – –
MG-Six(point) (14,14), 30 0.880 1.27e-13 5.4

256 MG-FOC(point) 16 0.465 2.47e-10 4.0
MG-Six(line) (8,8), 30 1.202 1.11e-13 5.7
MG-FOC(line) 8 0.737 2.50e-10 4.0

cannot converge within the maximum number of iterations we set, which is 5000.

For the MG-Six method, the number of iterations contains three parts. They are

the number of V-Cycles for Ω2h, the number of V-Cycles for Ωh, and the number of

iterations for the iterative interpolation combined with the Richardson extrapolation.

These three numbers are listed in the iteration columns for the MG-Six(point) and

MG-Six(line) strategies in Table 2.1. We can see that, by using our new sixth or-

der compact scheme, the number of V-Cycles for Ωh and Ω2h are reduced, compared

to the traditional multigrid V-Cycle with the FOC scheme. We can also see that
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the REC-ADI method takes much more iterations and CPU time than the MG-FOC

strategies and the MG-Six strategies from Fig. 2.6 and Fig. 2.7,.

The data in Table 2.1 and Fig. 2.7 also indicate that the accuracy of the ap-

proximate solutions computed by our new sixth order method and the Sun-Zhang’s

REC-ADI method is comparable. When n > 64, the REC-ADI method cannot con-

verge but our multigrid method can still compute the highly accurate solution.

Since the grid is almost isotropic for the Problem 1, we can see that the point

Gauss-Seidel relaxation scheme remains competitive compared with the line Gauss-

Seidel relaxation. The point Gauss-Seidel relaxation scheme actually needs less CPU

time than the line Gauss-Seidel relaxation scheme to compute numerical solution of

comparable accuracy.
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Figure 2.7: Comparison of the maximum error and the CPU cost for the Problem 1.
Each symbol with increasing CPU cost corresponds to an increasing fine grid: 16, 32,
64, 128, and 256 intervals.
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2.3.2 Test problem 2

In order to better compare the line Gauss-Seidel relaxation scheme and the point

Gauss-Seidel relaxation scheme, I consider an anisotropic Poisson equation to show

the efficiency and scalability of the line relaxation scheme in solving 2D Poisson

equation.

I choose the following equation

∂2u

∂x2
+

∂2u

∂y2
= −2π2 sin(πx) cos(πy), (x, y) ∈ Ω = [0, 4]× [0, 1], (2.25)

which has the Dirichlet boundary condition.

The analytic solution of Eq. (2.25) is:

u(x, y) = sin(πx) cos(πy).

We choose X-Line Gauss-Seidel relaxation scheme.

As for the Problem 1, I also compare different solution strategies indexed by the

number of multigrid cycles or iterations, CPU time, the maximum absolute errors

and the estimated order of accuracy. The results are shown in Table 2.2, Fig. 2.8,

and Fig. 2.9. We can clearly see that, even with the anisotropy, the convergence

rates of our MG-Six(line) and MG-FOC(line) are barely affected. These two schemes

can maintain both scalability and efficiency when the number of intervals increases.

For MG-Six(point) and MG-FOC(point), they need much more iterations and CPU

time than the line relaxation schemes. When n < 64, even the REC-ADI method can

converge with less CPU time than the MG-Six(point) method. So, multigrid method

with the line relaxation scheme is the most efficient way to solve the anisotropic 2D

Poisson equation compared with the other methods I tested.

Again in this test case, our new sixth order accurate method can solve the problem

40



Table 2.2: Numerical comparison results for the Problem 2.

n strategy # iteration CPU error order
REC-ADI 14 0.002 1.12e-4 5.4

MG-Six(point) (14,43), 55 0.005 1.12e-4 5.4
16 MG-FOC(point) 39 0.003 2.45e-4 4.2

MG-Six(line) (1,7), 55 0.001 1.12e-4 5.4
MG-FOC(line) 6 0.001 2.45e-4 4.2

REC-ADI 42 0.014 2.50e-6 5.5
MG-Six(point) (43,60), 85 0.025 2.50e-6 5.5

32 MG-FOC(point) 58 0.016 1.43e-5 4.1
MG-Six(line) (7,9), 85 0.011 2.50e-6 5.5
MG-FOC(line) 10 0.005 1.43e-5 4.1

REC-ADI 155 0.271 4.58e-8 5.8
MG-Six(point) (60,73), 93 0.122 4.58e-8 5.8

64 MG-FOC(point) 72 0.095 8.70e-7 4.0
MG-Six(line) (9,9), 93 0.044 4.58e-8 5.8
MG-FOC(line) 11 0.021 8.70e-7 4.0

REC-ADI 607 6.849 7.66e-10 5.9
MG-Six(point) (73,79), 89 0.571 7.66e-10 5.9

128 MG-FOC(point) 78 0.423 5.37e-8 4.0
MG-Six(line) (9,9), 89 0.188 7.66e-10 5.9
MG-FOC(line) 12 0.091 5.37e-8 4.0

REC-ADI 2411 130.393 1.22e-11 6.0
MG-Six(point) (79,83), 80 3.774 1.24e-11 6.0

256 MG-FOC(point) 82 3.201 3.33e-9 4.0
MG-Six(line) (9,9), 80 1.982 1.24e-11 6.0
MG-FOC(line) 13 1.649 3.33e-9 4.0

with high order accuracy which is comparable with Sun and Zhang’s method and use

less CPU time. It is clear that the MG-Six method outperforms other methods.

2.4 Concluding Remarks

I designed a new sixth order compact computation scheme with a multigrid method

and Richardson extrapolation to solve the 2D Poisson equation. This new idea is

based on designing a geometric multiscale multigrid method, similar to the full multi-

grid method, to compute the approximate solution using the fourth order compact
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Figure 2.8: Comparison of the number of iterations with REC-ADI, MG-FOC(point)
and MG-FOC(line) methods for the Problem 2. Each symbol with increasing number
of iterations corresponds to an increasing fine grid: 16, 32, 64, 128, and 256 intervals.
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Figure 2.9: Comparison of the maximum error and the CPU cost for the Problem 2.
Each symbol with increasing CPU cost corresponds to an increasing fine grid: 16, 32,
64, 128, and 256 intervals.
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scheme in both the fine and the coarse grids. I also presented a new iterative in-

terpolation scheme, which combined with the Richardson extrapolation scheme to

approximate sixth order accuracy on the fine grid.

Numerical results show that the new numerical solution method can solve the

2D Poisson equation with high accuracy compared with other sixth order compact

schemes, and also require low CPU time. This two scale grid idea can also be extended

to solve other PDEs such as the 3D Poisson equation, 2D and 3D convection-diffusion

equations. For the convection-dominated problems, multigrid methods with the line

relaxation schemes will be expected to work well. For various multigrid algorithms

with the high order compact schemes to solve convection-diffusion equations, we refer

readers to [71].
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Chapter 3

Sixth Order Solution for 2D Convection Diffusion Equation

In this chapter, I extend our explicit sixth order compact finite difference scheme

to get fast high accuracy numerical solutions of the two dimensional convection-

diffusion equation with variable coefficients. The convection-diffusion equation is a

partial differential equation, which describes physical phenomena where particles or

energy (or other physical quantities) are transferred inside a physical system due to

two processes: diffusion and convection.

3.1 Introduction

I consider the two dimensional (2D) steady convection-diffusion equation with the

Dirichlet boundary condition, which can be written as

uxx + uyy + p(x, y)ux + q(x, y)uy = f(x, y), (x, y) ∈ Ω,

u(x, y) = g(x, y), (x, y) ∈ ∂Ω,
(3.1)

where Ω is a 2D rectangular domain and ∂Ω is the boundary of Ω. I assume that

the convection coefficients p(x, y) and q(x, y) are sufficiently smooth on Ω. The

convection-diffusion equations appear in a variety of applications involving the mod-

eling of transport phenomena [47]. Efficient numerical solution of Eq. (3.1) plays an

increasingly important role in computational fluid dynamics [23]. The magnitudes of

p(x, y) and q(x, y) determine the ratio of the convection to diffusion. If they become

44



zero simultaneously at some point in Ω, this point will be called a stagnation point.

In fluid dynamics, a stagnation point is a point in a flow field where the local velocity

of the fluid is zero. Stagnation points exist at the surface of objects in the flow field,

where the fluid is brought to rest by the object. The convection-diffusion equation

with stagnation points are usually used to model recirculating flow problems.

Similar to the Poisson equation, Eq. (3.1) can be discretized using some finite

difference schemes to result in a system of linear equations

Ahuh = fh, (3.2)

where h is the uniform grid spacing of the discretized domain Ωh. In many real CSEI

applications, the coefficient matrix A is usually large, sparse, nonsymmetric, and

indefinite for large cell Reynolds number (Re) [30]. The Reynolds number is used to

determine the ratio of convection to diffusion as

Re = max( sup
(x,y)∈Ω

|p(x, y)|, sup
(x,y)∈Ω

|q(x, y)|)h/2. (3.3)

We say that the discrete problem (3.2) is convection-dominated if Re > 1 and

diffusion-dominated if Re ≤ 1. Normally, the numerical solutions of Eq. (3.2) based

on iterative methods become increasingly difficult as Re increases [21, 73].

In general, for the convection-dominated problems, traditional finite difference

discretization schemes such as the five-point second order central difference scheme

(CDS) and the upwind difference scheme (UDS) cannot yield satisfactory results [76].

CDS has a truncation error of order O(h2) but may produce nonphysical oscillations

for large Re. UDS usually prevents oscillations but reduces the order of accuracy to

O(h) [54].

I want to develop higher order accurate discretization schemes for the 2D convection-

diffusion equation. In the past two decades, there has been growing interest in us-
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ing higher order compact schemes to solve the partial differential equations. Gupta

et al. proposed a nine-point fourth order compact (FOC) scheme to discretize the

2D convection-diffusion equation with variable coefficients [24]. There are also some

other similar fourth order compact schemes that have been developed for the 2D

convection-diffusion equations. Readers are referred to [33, 54, 55] and the references

therein for more details.

For the sixth order schemes, I successfully extend the SOC scheme from the 2D

Poisson equation to 2D convection-diffusion equation [67]. Discretization strategy

is similar to the Poisson equation and I prove that the FOC discretization will be

degraded to second order when Re reaches infinity. I used line relaxation and residual

scaling techniques in our multiscale multigrid method to handle the problems with

large Reynolds number which are very difficult to solve by using standard multigrid

method.

3.2 Compact Finite Difference Approximation

Similar to the 2D Poisson equation, my explicit sixth order compact scheme for the

2D convection-diffusion equation is based on the fourth order compact (FOC) dis-

cretization on two scale grids. The FOC schemes for the 2D convection-diffusion

equation have been proposed by several authors [24, 33, 54] in different ways. I be-

lieve that these schemes are mathematically equivalent, although they were derived

using different approaches. In this paper, I use the FOC scheme by Gupta et al. [24].

3.2.1 Order of accuracy for 1D problem with large Re

For convection-dominated problems, the large convection coefficient will affect the

order of accuracy of computed solutions. For better understanding, I consider the

one dimensional (1D) convection-diffusion type equation.
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I consider the following 1D model convection-diffusion equation

uxx + bux = 0, 0 ≤ x ≤ l, (3.4)

where b is the constant convection coefficient.

I denote h to be the meshsize, xj = jh and uj = u(xj). The standard first and

second order central difference operators are

δhxuj =
uj+1 − uj−1

2h
, δhxxuj =

uj+1 + uj−1 − 2uj

h2
, j = 1, 2, ..., n.

By using Taylor series, we have

δhxxuj = uxx +
h2

12
ux4 +

h4

360
ux6 +

h6

20160
ux8 +O(h8), (3.5)

and

δhxuj = ux +
h2

6
ux3 +

h4

120
ux5 +

h6

5040
ux7 +O(h8), (3.6)

in which I denoted the mth derivative of the function u(x) as

uxm =
∂mu

∂xm
.

From Eqs. (3.5) and (3.6) I can discretize Eq. (3.4) at the grid point xj as

δhxxuj + bδhxuj =
bh2

6
ux3 +

h2

12
ux4 + h4(

b

120
ux5 +

1

360
ux6)

+ h6(
b

5040
ux7 +

1

20160
ux8) +O(h8). (3.7)

By taking derivatives on both sides of Eq. (3.4), we have

ux3 = −bux2 , ux4 = b2ux3. (3.8)
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So, at the grid point xj , I have

(ux3)j = −b

[

δhxxuj −
h2

12
(ux4)j −

h4

360
(ux6)j − O(h6)

]

, (3.9)

and

(ux4)j = b2
[

δhxxuj −
h2

12
(ux4)j −

h4

360
(ux6)j − O(h6)

]

. (3.10)

Then I use Eqs. (3.9) and (3.10) to replace the ux3 and ux4 terms in Eq. (3.7) as

δhxxuj + bδhxuj =− h2b2

12

[

δhxxuj −
h2

12
(ux4)j −

h4

360
(ux6)j

]

+ h4(
1

360
ux6 +

b

120
ux5) + h6(

1

20160
ux8 +

b

5040
ux7) +O(h8). (3.11)

Eq. (3.11) can be rewritten in the form of

[

(1 +
h2b2

12
)δhxx + bδhx

]

uj = (τ1)j + (τ2)j +O(h8), (3.12)

where (τ1)j is in the form of

(τ1)j =

[

b2

144
(ux4)j +

b

120
(ux5)j +

1

360
(ux6)j

]

h4,

and (τ2)j is in the form of

(τ2)j =

[

b2

4320
(ux6)j +

b

5040
(ux7)j +

1

20160
(ux8)j

]

h6.

If I drop (τ2)j and O(h8) terms in Eq. (3.12), I get the fourth order truncation error

for the FOC scheme as (τ1)j . After using our operator based interpolation scheme

combined with Richardson extrapolation technique, the fourth order error term (τ1)j

will be dropped. So, I will get a sixth order truncation error in proportion to (τ2)j .
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Order of accuracy with large convection coefficient. The order of accuracy of

the computed solution is formally defined when the meshsize h approaches zero, but

the actual order of solution accuracy of the FOC scheme and the sixth order (SOC)

scheme is affected by the convection coefficient.

I first consider the fourth order truncation error from the FOC scheme. From Eq.

(3.3), I can get the cell Reynolds number for the 1D convection equation as

Re =
bh

2
.

So, the convection coefficient can be represented as

b =
2Re

h
. (3.13)

By using Eq. (3.13) to replace every b term in (τ1)j we can rewrite (τ1)j as

(τ1)j =
Re2

36
(ux4)jh

2 +
Re

60
(ux5)jh

3 +
1

360
(ux8)jh

4. (3.14)

If I set b = Re = 0, the convection diffusion equation reduces to the Poisson

equation. The truncation error (τ1)j will be reduced to

(τ1)j =
1

360
(ux8)jh

4,

which yields an exactly fourth order truncation error.

When b increases, Re also increases. The second and third order terms in Eq.

(3.14) will degrade the order of accuracy. When b is bigger than certain tolerance, I

can consider Re = bh/2 as some constant. So, the order of accuracy for truncation

error (τ1)j decreases to the second order. In practice, the computed order of accuracy

of the FOC scheme varies from 4 to 2 as the Reynolds number increases.
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Since the large convection coefficient (Reynolds number) will affect the accuracy

of the computed solution, I need to compute the exact order of accuracy from the

FOC scheme before I run the extrapolation procedure. In practice, we first get the

maximum absolute errors E(2h) and E(h) over the entire discretized grid points for

the coarse and the fine grids, respectively. These errors are easy to get because we

can get the converged solutions from multiscale multigrid method for both the 2h and

h grids. The accuracy order of the FOC scheme can be estimated by the following

formula

E(2h)

E(h)
=

(2h)m

hm

=⇒ m = log2(E(2h)/E(h)). (3.15)

For the truncation error (τ2)j of the sixth order scheme, it is also affected by large

convection coefficient. For better understanding, I denote λ to be the ratio of (τ1)j to

(τ2)j, so λ can be used to represent the improvement of the extrapolation procedure.

Generally, a larger λ means the extrapolation procedure improves the solution more

accurately and a smaller λ means the extrapolation procedure cannot improve the

accuracy much.

The ratio λ is related to the value of b. When b → +∞, λ can be computed as

λ = lim
b→+∞

( b2

144
(ux4)j +

b
120

(ux5)j +
1

360
(ux6)j)h

4

( b2

4320
(ux6)j +

b
5040

(ux7)j +
1

20160
(ux8)j)h6

= lim
b→+∞

( b2

144
(ux4)j

b2

4320
(ux6)jh2

=
30(ux4)j
(ux6)jh2

.

If I consider 1
λ
, then I have

1

λ
=

(ux6)j
30(ux4)j

h2.
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So, the accuracy improvement from the FOC scheme using the extrapolation scheme

will level off at the second order when Re (b) is beyond some threshold.

3.2.2 Approximation for 2D problems

The FOC discretization for the 2D convection-diffusion is more complicated than

the 2D Poisson equation, but the basic idea behind these high order schemes is:

to find approximations of the second order terms in the truncation order τi,j using

immediate neighboring grid points of (xi, yj). For the FOC scheme I used [24], the

local truncation error by standard centered difference scheme is

τi,j =
h2

12
[−(

∂4u

∂x4
+

∂4u

∂y4
) + 2(p(x, y)

∂3u

∂x3
+ q(x, y)

∂3u

∂y3
)]i,j +O(h4).

The truncation error is approximated by using eight neighboring grid points.

I use u0 to denote the approximate value of u(x, y) at a mesh point (x, y). The

approximate values at its eight immediate neighboring points are denoted by ui,

i = 1, 2, ..., 8. The nine-point compact grid points are labeled as













u6 u2 u5

u3 u0 u1

u7 u4 u8













.

I use pi, qi and fi (i = 0, 1, ..., 8) to denote the function values at the corresponding

grid points. The nine-point fourth order compact finite difference formula for the

mesh point (x, y) can be written as

8
∑

j=0

αjuj =
h2

2
[8f0 + f1 + f2 + f3 + f4] +

h3

4
[p0(f1 − f3) + q0(f2 − f4)], (3.16)
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where h is the mesh spacing, αi(i = 0, 1, ..., 8) are the coefficients given by

α0 = − [20 + h2(p20 + q20) + h(p1 − p3) + h(q2 − q4)],

α1 = 4 +
h

4
[4p0 + 3p1 − p3 + p2 + p4] +

h2

8
[4p20 + p0(p1 − p3) + q0(p2 − p4)],

α2 = 4 +
h

4
[4q0 + 3q2 − q4 + q1 + q3] +

h2

8
[4q20 + p0(q1 − q3) + q0(q2 − q4)],

α3 = 4− h

4
[4p0 − p1 + 3p3 + p2 + p4] +

h2

8
[4p20 − p0(p1 − p3)− q0(p2 − p4)],

α4 = 4− h

4
[4q0 − q2 + 3q4 + q1 + q3] +

h2

8
[4q20 − p0(q1 − q3)− q0(q2 − q4)],

α5 = 1 +
h

2
(p0 + q0) +

h

8
(q1 − q3 + p2 − p4) +

h2

4
p0q0,

α6 = 1− h

2
(p0 − q0)−

h

8
(q1 − q3 + p2 − p4)−

h2

4
p0q0,

α7 = 1− h

2
(p0 + q0) +

h

8
(q1 − q3 + p2 − p4) +

h2

4
p0q0,

α8 = 1 +
h

2
(p0 − q0)−

h

8
(q1 − q3 + p2 − p4)−

h2

4
p0q0.

When p(x, y) and q(x, y) are set to be some constants, Eq. (3.1) is called the constant

coefficient convection-diffusion equation and the generated 9-point coefficients are the

same for every grid point. Moreover, when p(x, y) = q(x, y) ≡ 0, Eq. (3.1) is reduced

to the 2D Poisson equation, and Eq. (3.16) is reduced to the well-known Mehrstellen

formula [24].

Extrapolation and operator based interpolation for large Re. In previous

chapter, I proposed an operator based interpolation scheme combined with Richard-

son extrapolation technique to achieve sixth order accurate solution on the fine grid.

The numerical results show that our method is very efficient and accurate for the 2D

Poisson equation. I point out that the Poisson equation is a special case of the con-

vection diffusion equation with Re = 0, which means that the order of accuracy of the

computed solution for the Poisson equation will not be affected by the Reynolds num-

ber. In practice, when Re is very small, I just assume that I obtain the exact fourth
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order accurate solutions from the FOC scheme and apply the fourth order Richardson

extrapolation. For the convection diffusion equation with high Reynolds numbers, I

need to consider the effect of the Reynolds number on the order of accuracy of the

computed solutions.

Since the exact order of solution accuracy is related to the Reynolds number (less

than 4 with large Re), I assume the order of solution accuracy is m, which is easy to

be computed by Eq. (3.15). The Richardson extrapolation formula that I use can be

written in the form of

ũ2h
i,j =

(2muh
2i,2j − u2h

i,j)

2m − 1
. (3.17)

Then I apply Algorithm 4.2.2 to approximate the m̃th (m < m̃ ≤ 6) order solutions

on fine grid.

3.3 Special Solution Strategies

Similar to the 2D Poisson equation, I use the multiscale multigrid method to solve the

linear systems arising from discretization of the 2D convection-diffusion equation. I

point out that using the point Gauss-Seidel relaxation in a standard multigrid method

is efficient for solving elliptic problems like the Poisson equation and the convection

diffusion equation with small Re [9], but the convergence will be slow with high Re.

Several acceleration schemes have been developed to speed up the multigrid method,

like the minimal residual smoothing method (MRS). Unfortunately, MRS combined

with point relaxation in multigrid method still cannot achieve the grid independence

for some high Reynolds number problems and it still needs more than 1000 iterations

to converge when the magnitude of the Reynolds number is higher than 105 [71].

In order to achieve better efficiency and robustness, I will use alternating (X-Y)

line Gauss-Seidel relaxation in our multigrid method. The X-Y line Gauss-Seidel

relaxation in lexicographic order performs one sweep of line Gauss-Seidel relaxation
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along the x-coordinate direction first, then another sweep of the line Gauss-Seidel

relaxation along the y-coordinate direction. However, it was shown in [75, 79] that

merely using the X-Y line Gauss-Seidel relaxation in a standard multigrid method

does not provide fast convergence for convection dominated problems with high

Reynolds number. The reason is that the coarse grid solution may not provide a

meaningful correction to the fine grid computed solution with a small amount of ar-

tificial viscosity. One simple and efficient approach to fix this problem is to properly

scale the residual before it is projected to the coarse grid [74].

3.3.1 Residual scaling technique

There were several research works using residual scaling techniques in [10, 74]. The

theoretical basis for residual scaling is not clear. One possible reason is based on

the fact that the FOC scheme add artificial viscosity to the discretized equations [74].

The amount of artificial viscosity is proportional to the meshsize h. Multigrid method

used different h at different level of grids with same discretization scheme. For solving

the convection-diffusion equations with very high Reynolds number, the solutions

obtained from different levels do not have the same scale. So, the regular coarse

grid solution in multigrid may not be correct to improve the fine grid solutions. One

simple approach is to scale the residual explicitly before it is projected to the coarse

grid, or after the coarse grid correction is interpolated to the fine grid. These two

strategies are called prescaling and postscaling techniques, which are mathematically

equivalent. In this dissertation, I use prescaling technique.

The residual scaling procedure at a grid point (xi, yj) can be written in the form

of

r̃(xi, yj) = βr(xi, yj), (3.18)

where β is the scaling factor, r(xi, yj) is the residual from the fine grid and r̃(xi, yj)

is the residual after scaling. Let’s assume the scaling factor β has been determined,
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the multigrid method V-cycle with prescaling accelerating technique in our multiscale

multigrid method can be modified to the following algorithm:

Algorithm 5 kth iteration of MGV − cycle(Ah, uh, bh) with residual prescaling tech-
nique

1: If Ωh is the coarsest level grid, directly solve u
(k)
h = (Ah)

−1bh, else goto step 2.

2: Relax ν1 times on Ahuh = bh with initial guess u
(k)
h .

3: Compute r
(k)
h = bh − Ahu

(k)
h .

4: Scale r
(k)
h = βr

(k)
h .

5: Restrict residual from Ωh to Ω2h as b
(k)
2h = r

(k)
2h = I2hh r

(k)
h .

6: Solve u
(k)
2h = MGV − cycle(A2h, u

(k)
2h , b

(k)
2h ) with initial guess u

(k)
2h = 0.

7: Correct u
(k∗)
h = u

(k)
h + Ih2hu

(k)
2h .

8: Relax ν2 times on Ahuh = bh with initial guess u
(k∗)
h .

In many practical applications, the optimal residual scaling factor is determined by

the absolute values of the convection coefficients |p(x, y)| and |q(x, y)| at the reference

grid point and the scaling factor is a function of the grid point (xi, yj). In [72], Zhang

suggested that the optimal residual scaling factor lie in an interval if |p(x, y)| > 103

or |q(x, y)| > 103. For the convection-diffusion equations with stagnation points, the

residual should be set to zero at these stagnation points. That’s because the feature

of the stagnation points need to be represented on the coarse grids, otherwise the

multigrid method may diverge [10].

The detail of how to choose an optimal residual scaling factor with high Reynolds

number can be found in [75, 79]. In our experiment, I tested several scaling factors

and only list the numerical results from the best one in Section 3.4.

3.4 Numerical Results

I tested our sixth order compact scheme (SOC) and compared the results with the

standard fourth order compact difference scheme (FOC) and Sun-Zhang’s sixth order

method (REC) [59].

For all test problems, I first compared the computed solution accuracy and the
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CPU cost for different strategies with some fixed convection coefficients on different

meshsizes. Then, I tested the effect of Re on the computed solution accuracy and the

CPU cost for different strategies with a fixed meshsize. The graphic comparison of

the numerical data will also be provided for each test case.

3.4.1 Test problem 1

We first considered a case in which the convection coefficients p(x, y) and q(x, y) are

polynomials in x and y. The test case is























u(x, y) = x2y2(1− x)(1− y),

p(x, y) = Px(1− y),

q(x, y) = Py(1− x),

and the domain Ω = (0, 1)× (0, 1). The boundary values of the solution are assumed

to be known and the initial guess is u(x, y) = 0. Here, I only use one constant P

to scale both variable coefficients p(x, y) and q(x, y) because the magnitudes of these

two functions vary differently in the domain Ω.

Table 3.1 shows the number of iterations, maximum errors and the order of solu-

tion accuracy for different solution strategies with different meshsizes. For P = 10,

the cell Reynolds number is small, we can see that the order of solution accuracy

for the FOC scheme is nearly 4 as I expected. The numerical results illustrate that

the SOC scheme solved the problem with better accuracy than the FOC scheme did,

and the order of solution accuracy was close to 6. The results also indicate that the

computed solutions from the SOC scheme and the Sun-Zhang’s REC method were

comparable, but the SOC scheme took much less CPU time. The number of iterations

for the REC method increased very quickly when the mesh became finer. In addition,

when n > 64, it did not converge within the maximum number of iterations (5000)

I set. On the other hand, by using the X-Y line relaxation in the multigrid method
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combined with residual scaling technique, the convergence rate of the FOC scheme

and the SOC scheme was independent of the grid size.

Table 3.1: Test Problem 1: Comparison of CPU cost and solution accuracy with
different meshsizes and fixed P values.

P = 10 P = 1000
n strategy # iter CPU error order # iter CPU error order

REC 132 0.011 2.41e-6 5.66 58 0.005 4.20e-3 3.17
16 FOC 6 0.003 3.45e-5 4.06 16 0.004 6.17e-3 2.85

SOC (6,6),18 0.004 2.41e-6 5.66 (13,14),96 0.004 4.19e-3 3.17

REC 518 0.173 4.36e-8 5.79 47 0.016 1.36e-4 4.95
32 FOC 7 0.008 2.13e-6 4.02 19 0.013 4.15e-4 3.89

SOC (6,6),17 0.007 4.36e-8 5.79 (14,17),64 0.017 1.36e-4 4.95

REC 2064 2.845 7.47e-10 5.86 44 0.081 2.97e-6 5.51
64 FOC 7 0.025 1.33e-7 4.00 19 0.055 2.57e-5 4.01

SOC (6,7),15 0.032 7.36e-10 5.89 (17,17),35 0.076 2.97e-6 5.51

REC not converge – – – 132 1.150 5.71e-8 5.70
128 FOC 7 0.105 8.29e-9 4.00 17 0.358 1.60e-6 4.01

SOC (7,7),13 0.124 1.25e-11 5.87 (17,14),21 0.457 5.71e-8 5.70

REC not converge – – – 490 20.591 9.98e-10 5.83
256 FOC 7 0.612 5.18e-10 4.00 15 1.146 1.00e-7 4.00

SOC (7,7),15 1.190 1.97e-13 5.98 (14,13),18 1.409 9.95e-10 5.84

When the magnitude of the convection coefficients increased, i.e., when P = 1000,

we found that the order of solution accuracy from the FOC scheme was reduced as

I expected, especially for n = 16. It is clear that the SOC scheme still increased

the solution accuracy when Re increased. Since Re is a function of the meshsize h,

convergence improved when h was refined. We can see that the number of V-Cycles

for both the FOC scheme and the SOC scheme decreased when n increased and the

REC method converged for all the meshsizes I tested. Fig. 3.1 gives a comparison of

the CPU cost and the maximum errors with different meshsizes.

Table 3.2 contains the results with various Re with a fixed meshsize h = 1/64. I

compared the CPU cost and the maximum errors for the FOC scheme and the SOC

scheme. I note that the magnitude of the Reynolds number affected the solution

accuracy and the convergence rate for the FOC scheme and the SOC scheme in-
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Table 3.2: Test Problem 1: Comparison of CPU cost and solution accuracy with
different P values for a fixed meshsize.

n=64 FOC SOC
P Re # iter CPU error # iter CPU error
0 0.0 7 0.027 4.58e-12 (6,7),2 0.028 1.02e-13
1 7.8125e-3 7 0.027 1.01e-8 (6,7),12 0.031 6.42e-11
10 7.8125e-2 7 0.025 1.33e-7 (6,7),15 0.032 7.36e-10
102 7.8125e-1 9 0.038 2.11e-6 (8,8),19 0.041 3.99e-8
103 7.8125e0 19 0.055 2.57e-5 (57,56),35 0.055 2.97e-6
104 7.8125e1 73 0.186 2.63e-4 (32,40),526 0.293 8.87e-5
105 7.8125e2 44 0.115 1.03e-3 (32,41),1709 0.572 1.62e-4
106 7.8125e3 45 0.119 1.13e-3 (32,41),1803 0.595 1.52e-4
107 7.8125e4 44 0.123 1.13e-3 (32,41),1810 0.592 1.52e-4
108 7.8125e5 44 0.121 1.13e-3 (32,41),1811 0.603 1.52e-4
109 7.8125e6 44 0.119 1.13e-3 (32,41),1811 0.587 1.52e-4
1010 7.8125e7 44 0.124 1.13e-3 (32,41),1811 0.598 1.52e-4

versely. When Re was small (Re ≤ 1), these methods converged rapidly and yielded

reasonably accurate solutions. When Re increased, the solution accuracy and the

convergence rate severely deteriorated.

We note that there was only a little change for the accuracy and the number of

iterations for the FOC and SOC schemes when P > 105. However, the SOC scheme

still yielded better accuracy than the FOC scheme, but the improvement degraded

when Re increased, as I expected. The ratio of the fourth order error to the sixth

order error with different P is shown in Fig. 3.2. We can see that the ratio is close

to a certain constant when P → +∞.

3.4.2 Test problem 2

I chose the coefficients as multiples of the trigonometric functions























u(x, y) = cos(4x+ 6y),

p(x, y) = P sin(πx),

q(x, y) = P cos(πy),

58



0 5 10 15 20 25
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

CPU time

E
rr

or

REC
FOC
SOC

Figure 3.1: Comparison of the maximum errors and the CPU costs for the Problem
1 (P = 1000). Each symbol with increasing CPU time corresponds to an increasing
fine grid: 16, 32, 64, 128, and 256 intervals.
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Figure 3.2: Ratio of the fourth order error to the sixth order error for the Problem 1.
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where Ω = (0, 1)× (0, 1). The test conditions were set to be the same as for the test

Problem 1.

Table 3.3: Test Problem 2: Comparison of CPU cost and solution accuracy with
different meshsizes and fixed P values.

P = 10 P = 1000
n strategy # iter CPU error order # iter CPU error order

REC 94 0.007 2.30e-5 5.44 331 0.025 5.69e-3 2.02
16 FOC 9 0.005 1.36e-4 4.19 24 0.008 6.25e-3 2.01

SOC (8,8),24 0.003 2.30e-5 5.44 (32,23),29 0.006 5.69e-3 2.02

REC 364 0.121 4.21e-7 5.77 294 0.098 5.38e-4 3.40
32 FOC 9 0.012 7.97e-6 4.09 60 0.041 7.65e-4 3.03

SOC (8,8),24 0.008 4.21e-7 5.77 (23,51),31 0.036 5.38e-4 3.40

REC 1445 2.079 6.95e-9 5.92 224 0.305 1.90e-5 4.82
64 FOC 9 0.041 4.82e-7 4.05 70 0.256 5.63e-5 3.76

SOC (8,8),23 0.043 6.95e-9 5.92 (51,63),30 0.197 1.90e-5 4.82

REC not converge – – – 130 1.532 3.36e-7 5.82
128 FOC 9 0.261 2.96e-8 4.03 67 1.491 3.57e-6 3.97

SOC (8,8),21 0.241 1.11e-10 5.96 (63,63),28 1.587 3.36e-7 5.82

REC not converge – – – 419 17.708 6.54e-9 5.68
256 FOC 9 1.209 1.84e-9 4.01 64 6.821 2.22e-7 4.01

SOC (8,9),19 1.594 1.74e-12 6.00 (64,52),26 4.774 6.54e-9 5.68

The numerical data with comparison are shown in Table 3.3, Table 3.4, Fig. 3.3

and Fig. 3.4. For P = 10, the SOC scheme achieved the sixth order solution accuracy

and the convergence rate of our multiscale multigrid method was independent of the

grid size. Once again, our sixth order method solved the problem with the same

accuracy as Sun-Zhang’s REC method did, but took much less CPU time. In addition,

the REC method still could not converge when n > 64.

For P = 1000, it seems that the magnitude of Re affected the order of accuracy

more than Problem 1 when n was smaller than 64. When n increased, the number

of iterations for the FOC scheme and the REC method decreased, which once again

showed that the magnitude of the Reynolds number affected the convergence rate

inversely.

Similar to Problem 1, Table 3.4 compares results for different Re with a fixed

meshsize. We note that the SOC scheme yielded more accurate solutions compared
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Figure 3.3: Comparison of the maximum errors and the CPU costs for the Problem
2 (P = 1000). Each symbol with increasing CPU time corresponds to an increasing
fine grid: 16, 32, 64, 128, and 256 intervals.

to the FOC scheme and it also costed less CPU time than the FOC scheme did when

P ≥ 105. And it once again showed the convergence rate and the computed accuracy

approached some limits and did not deteriorate any more when Re was beyond some

threshold.

3.5 Concluding Remarks

I extended the idea of integrating high accuracy discretization into the multigrid

method from [66] to solve the 2D convection diffusion equation. In order to compute

highly accurate solutions for the problems with high Reynolds numbers, I modified

the operator based interpolation scheme to use the correct order of accuracy from

the FOC schemes to perform the Richardson extrapolation. I also used the X-Y

line relaxation combined with residual scaling technique in our multiscale multigrid

method to achieve the grid independent convergence.
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Table 3.4: Test Problem 2: Comparison of CPU cost and solution accuracy with
different P values for a fixed meshsize.

n=64 FOC SOC
P Re # iter CPU error # iter CPU error
0 0.0 9 0.040 2.93e-9 (8,8),16 0.039 1.59e-10
1 7.8125e-3 9 0.041 3.81e-8 (8,8),19 0.040 4.72e-10
10 7.8125e-2 9 0.041 4.82e-7 (8,8),23 0.043 6.95e-9
102 7.8125e-1 14 0.055 5.17e-6 (15,14),25 0.065 4.34e-7
103 7.8125e0 70 0.256 5.63e-5 (51,63),30 0.197 1.90e-5
104 7.8125e1 108 0.337 3.45e-4 (76,93),33 0.358 2.03e-4
105 7.8125e2 109 0.367 5.01e-4 (75,94),34 0.363 1.58e-4
106 7.8125e3 113 0.381 4.81e-4 (75,92),34 0.352 1.48e-4
107 7.8125e4 113 0.372 4.79e-4 (75,92),34 0.347 1.49e-4
108 7.8125e5 113 0.369 4.79e-4 (75,92),34 0.356 1.49e-4
109 7.8125e6 113 0.376 4.79e-4 (75,92),34 0.349 1.49e-4
1010 7.8125e7 113 0.378 4.79e-4 (75,92),34 0.361 1.49e-4

The test results showed that the sixth order compact scheme is efficient, robust

and accurate. It computed more accurate solutions than the FOC scheme, and the

CPU cost was comparable. For some high Reynolds number cases, the SOC scheme

even took less computation time than the FOC scheme did.
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Figure 3.4: Ratio of the fourth order error to the sixth order error for the Problem 2.
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Chapter 4

Sixth Order Solution for 3D Convection Diffusion Equation

In many practical CSEI applications, the numerical simulation of three dimensional

(3D) elliptic partial differential equations tends to be computationally intensive due

to its huge requirements on the memory and CPU time to compute solutions with de-

sired accuracy. The reason is that the size of resulting linear system for 3D problems

is usually so large that even super-computer may not be able to handle these com-

puting. One simple example is that solving a 3D equation with Nx = Ny = Nz = 100

will generate one million unknowns for the discrete linear systems. Since the tradi-

tional numerical methods have low accuracy and need extremely fine discretization,

I want to develop a high-order discretization method combined with powerful linear

system solver to compute approximate solutions with high accuracy using coarser

discretization.

In previous two chapters, I have designed an efficient sixth order compact finite

difference schemes combined with Richardson extrapolation and operator based inter-

polation scheme. The sixth order scheme has good numerical stability and provides

high accuracy approximations. In this chapter, I will extend the sixth order dis-

cretization scheme from two dimensions to three dimensions. For solving the discrete

linear system with grid independent convergence, I introduce the plane relaxation

technique in our multiscale multigrid method.
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4.1 Introduction

I consider the three dimensional (3D) convection diffusion equation

uxx + uyy + uzz + p(x, y, z)ux + q(x, y, z)uy + r(x, y, z)uz = f(x, y, z), (4.1)

for a specified forcing function f in a continuous domain Ω of a 3D space with suitable

boundary conditions prescribed on ∂Ω. Here Ω is assumed to be comprised of a union

of rectangular solids. Functions p, q, r, f , and u are assumed to be continuously

differentiable and have the required partial derivatives on Ω. The cell Reynolds

number for 3D problems can be computed as

Re = max( sup
(x,y,z)∈Ω

|p(x, y, z)|, sup
(x,y,z)∈Ω

|q(x, y, z)|, sup
(x,y,z)∈Ω

|p(x, y, z)|)h/2. (4.2)

Like 2D problems, traditional numerical discretization schemes for the 3D convection-

diffusion equations usually employ centered difference for the second order diffusion

terms and upwind difference for the first order convection terms. Once again, it has

been proved that high order difference schemes can achieve good numerical stability

and high accuracy approximations. For the fourth order finite difference schemes for

3D problems, there are several strategies to derive [3, 26, 55, 75]. These approx-

imations fall into two categories. The first one is introduced by Gupta, etc. [26]

using truncated Taylor series expansions. The finite difference formulas are obtained

by linear combination over a set of neighboring points surrounding the given mesh

point. Discretization using this strategy is straightforward but it becomes very dif-

ficult in higher dimensions. The other one was developed by Spotz and Carey [55].

They obtained high order discretization for particular equations by employing central

difference scheme repeatedly until the desired solution accuracy was reached.

The sixth order compact difference schemes for 3D convection-diffusion equations
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with variable coefficients are extremely difficult to develop due to the need for ex-

tensive algebraic manipulations. As far as I know, there is no sixth order compact

scheme in a single scale. I provided a two scale grid method to approximate the sixth

order solutions [68].

4.2 Finite Approximation for 3D Problems

The basic idea is the same as the 2D problem, but the 3D operator based interpolation

scheme combined with the Richardson extrapolation technique is different from the

one for 2D problem.

4.2.1 Fourth order discretization

I assume that discretization is done on a cubic cell with meshsize h. I use u0 to denote

the approximate value of u(x, y, z) at an internal mesh point (i, j, k). For each grid

point, there are 26 neighboring grid points in the cubic as in Fig. 4.1.

Based on the truncated Taylor series expansions there are two computational sten-

cils available: 19-points computational stencil and 15-points computational stencil.

These two stencils use different groups of grid points from the 27 grid points in a

cubic. Both Gupta and Zhang have proposed these two computational stencils to

discretize the 3D convection-diffusion equations [26, 75, 78].

19-point scheme vs. 15-point scheme. For convenience I divide the grid points

by their indexes in Fig. 4.1 into three groups: group A = {0−6}, group B = {7−18},

group C = {19−26}. The 19-point compact scheme utilizes the grid points in groups

A and B. The 15-point compact scheme utilizes the grid points in groups A and C.

The 15-point compact scheme can be derived by considering cross derivatives of

the same order together and by utilizing their symmetry relation. This is different

from the strategies used for deriving 19-point scheme, in which the cross derivatives
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Figure 4.1: Labeling of the 27 grid points in a unit cube.
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are approximated individually. Considering the memory cost, the 15-point scheme is

more attractive than the 19-point one because it requires less grid points. However,

the truncation error of 19-point scheme is smaller than that of 15-point scheme.

From [78] I know that the truncation error of the 19-point compact scheme is of

the form

τ19 =h4(− 1

120
(p
∂5u

∂x5
+ q

∂5u

∂y5
+ r

∂5u

∂z5
)− 1

144
(p2
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∂4u
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and the truncation error of the 15-point compact scheme is in the form of

τ15 =τ19 −
1

12
(pq

∂4u

∂z2∂y∂x
+ pr

∂4u

∂z∂y2∂x
+ qr

∂4u

∂z∂y∂x2

+ p
∂5u

∂z2∂y2∂x
+ q

∂5u

∂z2∂y∂x2
+ r

∂5u

∂z∂y2∂x2
+

∂6u

∂z2∂y2∂x2
).

From above two formulas, I note that τ15 contains all terms of τ19 and some

cross derivatives with respect to all three variables. The largest coefficient factor for

τ15 is almost three times that of τ19. By using Eq. (4.2), I can rewrite these two

truncations errors as τ19 = O( 1
36
Re2) and τ15 = O( 1

12
Re2). When Re becomes large,

the magnitude of the convection coefficient affect the order of accuracy inversely and

the 15-point scheme becomes worse than the 19-point scheme.

I want to point out here that if I set one of these three variables to be constant, all

the cross derivatives become zero. In that case, the truncation errors of both 19-point
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scheme and 15-point scheme are equal.

19-point compact finite difference scheme. I choose 19-point scheme because it

will give us more accurate solutions for 3D convection-diffusion equations with large

cell Reynolds numbers. The involving immediate 18 neighboring points are denoted

by ul, l = 1, 2, ..., 18, as in Fig. 4.2. The 8 corner points, which are the white colored

points in Fig. 4.2, are not used in the finite difference scheme. The discrete values of

pl, ql, rl and fl for l = 0, 1, ..., 6, are defined similarly.

x
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Figure 4.2: 19 point computational stencil.

I used Zhang’s explicit fourth order compact scheme for Eq. (4.1), which was

derived from the general implicit formula by Ananthakrishnaiah et al. [3]. It yields

the following 19-point formula
18
∑

l=0

αlul = F0, (4.3)
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where the coefficients αl and the right hand side F0 are given by

α0 = − [24 + h2(p20 + q20 + r20) + h(p1 − p3 + q2 − q4 + r5 − r6)],

α1 = 2− h

4
(2p0 − 3p1 − p2 + p3 − p4 − p5 − p6)

+
h2

8
[4p20 + p0(p1 − p3) + q0(p2 − p4) + r0(p5 − p6)],

α2 = 2− h

4
(2q0 − q1 − 3q2 − q3 + q4 − q5 − q6)

+
h2

8
[4q20 + p0(q1 − q3) + q0(q2 − q4) + r0(q5 − q6)],

α3 = 2 +
h

4
(2p0 + p1 − p2 − 3p3 − p4 − p5 − p6)

+
h2

8
[4p20 − p0(p1 − p3)− q0(p2 − p4)− r0(p5 − p6)],

α4 = 2 +
h

4
(2q0 − q1 + q2 − q3 − 3q4 − q5 − q6)

+
h2

8
[4q20 − p0(q1 − q3)− q0(q2 − q4)− r0(q5 − q6)],

α5 = 2− h

4
(2r0 − r1 − r2 − r3 − r4 − 3r5 + r6)

+
h2

8
[4r20 + p0(r1 − r3) + q0(r2 − r4) + r0(r5 − r6)],

α6 = 2 +
h

4
(2r0 − r1 − r2 − r3 − r4 + r5 − 3r6)

+
h2

8
[4r20 − p0(r1 − r3)− q0(r2 − r4)− r0(r5 − r6)],

α7 = 1 +
h

2
(p0 + q0) +

h

8
(p2 − p4 + q1 − q3) +

h2

4
p0q0,

α8 = 1− h

2
(p0 − q0)−

h

8
(p2 − p4 + q1 − q3)−

h2

4
p0q0,

α9 = 1− h

2
(p0 + q0) +

h

8
(p2 − p4 + q1 − q3) +

h2

4
p0q0,

α10 = 1 +
h

2
(p0 − q0)−

h

8
(p2 − p4 + q1 − q3)−

h2

4
p0q0,
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α11 = 1 +
h

2
(p0 + r0) +

h

8
(p5 − p6 + r1 − r3) +

h2

4
p0r0,

α12 = 1 +
h

2
(q0 + r0) +

h

8
(q5 − q6 + r2 − r4) +

h2

4
q0r0,

α13 = 1− h

2
(p0 − r0)−

h

8
(p5 − p6 + r1 − r3)−

h2

4
p0r0,

α14 = 1− h

2
(q0 − r0)−

h

8
(q5 − q6 + r2 − r4)−

h2

4
q0r0,

α15 = 1 +
h

2
(p0 − r0)−

h

8
(p5 − p6 + r1 − r3)−

h2

4
p0r0,

α16 = 1 +
h

2
(q0 − r0)−

h

8
(q5 − q6 + r2 − r4)−

h2

4
q0r0,

α17 = 1− h

2
(p0 + r0) +

h

8
(p5 − p6 + r1 − r3) +

h2

4
p0r0,

α18 = 1− h

2
(q0 + r0) +

h

8
(q5 − q6 + r2 − r4) +

h2

4
q0r0,

F0 =
h2

2
(6f0 + f1 + f2 + f3 + f4 + f5 + f6)

+
h3

4
[p0(f1 − f3) + q0(f2 − f4) + r0(f5 − f6)].

If I set the convection coefficients p = q = r ≡ 0, Eq. (4.1) will be reduced to 3D

Poisson equation, which has also been studied by several authors like Kwon et al.

[31], Spotz and Carey [56]. Eq. (4.3) can be used for every grid point, no special

formulas are needed for approximations at grid points near the boundaries.

By using Eq. (4.3), for every discrete grid point, I obtain a system of linear

equations

Au = b. (4.4)

Like 2D problems, the coefficient matrix A is very large and sparse. It is nonsym-

metric and nonpositive definite if the convection coefficients are nonzero. When the

convection diffusion equation is convection dominated, the matrix A loses its diag-

onal dominance. Even without the diagonal dominance, our previous work showed

that there is no stability difficulty with the FOC scheme for both the 2D and 3D
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convection diffusion equations, and the multigrid method converges by using efficient

smoothers and residual scaling techniques [27, 67, 72].

4.2.2 3D operator based interpolation

For 2D problems, I proposed an operator based interpolation scheme combined with

extrapolation technique to approximate the sixth order accurate fine grid solution

[66, 67]. The numerical results show that our interpolation scheme is very efficient

and accurate for 2D problems.

The interpolation scheme for 2D problems is an iterative procedure combined with

the Richardson extrapolation technique, which updates the solutions of grid points

by groups in each iteration. For the 3D convection diffusion equation, the basic idea

behind the interpolation scheme is almost the same as that for the 2D problems,

but it needs more complicated grouping strategy. Like in Fig. 4.3, I divide the fine

grid points into eight different groups by their odd or even indexing in the x, y and

z-coordinate directions. Group a contains the (even, even, even) grid points on the

Ωh grid, which are the corresponding grid points on the Ω2h coarse grid.

Similar to 2D convection-diffusion equation, by solving the system of linear equa-

tions arising from the FOC scheme, we can get the fourth order solutions uh
i,j,k and

u2h
i,j,k on Ωh and Ω2h, respectively. For the sixth order accurate solutions, it is easy to

approximate the solution for the coarse grid Ω2h by using the Richardson extrapola-

tion like

ũ2h
i,j,k =

2muh
2i,2j,2k − u2h

i,j,k

2m − 1
. (4.5)

Here, m is the order of the computed solution accuracy from the FOC scheme. From

[67], we know that the magnitude of the convection coefficients will affect the value

of m and m is computed as I introduced in Chapter 3.

For the sixth order fine grid solution, I directly interpolate the sixth order coarse

grid solution ũ2h
i,j,k to the corresponding grid points in group a. Then I use an iterative
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Figure 4.3: Group information of 3D grid points in a unit cube.
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mesh refinement interpolation technique to approximate sixth order solutions for the

fine grid points in other groups. The details of one iteration (from step n to step

n+ 1) is outlined in Algorithm 4.2.2.

Algorithm 4.2.2: Sixth order operator based interpolation scheme for 3D

convection diffusion equation.

1: Let uh
old = ũh,n.

2: If n = 0, goto Step 3, else goto Step 4.

3: Update every grid point in group a on Ωh.

From u2h
i,j,k ∈ Ω4

2h and uh
2i,2j,2k ∈ Ω4

h, I first compute ũ2h,n+1
i,j,k ∈ Ω6

2h by Eq. (4.5).

Then I use direct interpolation to obtain ũh,n+1
2i,2j,2k ∈ Ω6

h.

4: Update every grid point in groups c, d, and e on Ωh.

For each (odd, odd, even) grid point (xi, yj, zk) in group c, the updated solution is

approximated from Eq. (4.3) as

ũh,n+1
i,j,k = [Fi,j,k − Ai,j,k(1)ũ

h,n
i+1,j,k − Ai,j,k(2)ũ

h,n
i,j,k+1 − Ai,j,k(3)ũ

h,n
i−1,j,k

−Ai,j,k(4)ũ
h,n
i,j,k−1 −Ai,j,k(5)ũ

h,n
i,j−1,k − Ai,j,k(6)ũ

h,n
i,j+1,k − Ai,j,k(7)ũ

h,n
i+1,j,k+1

−Ai,j,k(8)ũ
h,n
i−1,j,k+1 −Ai,j,k(9)ũ

h,n
i−1,j,k−1 −Ai,j,k(10)ũ

h,n
i+1,j,k−1

−Ai,j,k(11)ũ
h,n+1
i+1,j−1,k − Ai,j,k(12)ũ

h,n
i,j−1,k+1 − Ai,j,k(13)ũ

h,n+1
i−1,j−1,k

−Ai,j,k(14)ũ
h,n
i,j−1,k−1 − Ai,j,k(15)ũ

h,n+1
i+1,j+1,k − Ai,j,k(16)ũ

h,n
i,j+1,k+1

−Ai,j,k(17)ũ
h,n+1
i−1,j+1,k − Ai,j,k(18)ũ

h,n
i,j+1,k−1]/Ai,j,k(0).

Here, Fi,j,k represents the right-hand side part of Eq. (4.3). The sixth order

solutions for grid points in groups d and e are approximated similar to like those

in group c. Each grid point in these three groups has 4 neighboring fine grid

points in group a.

5: Update every grid point in groups f , g, and h on Ωh.
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For each (odd, even, even) grid point (xi, yj, zk) in group f the updated solution

is computed as

ũh,n+1
i,j,k = [Fi,j,k − Ai,j,k(1)ũ

h,n+1
i+1,j,k − Ai,j,k(2)ũ

h,n+1
i,j,k+1 − Ai,j,k(3)ũ

h,n+1
i−1,j,k

−Ai,j,k(4)ũ
h,n+1
i,j,k−1 −Ai,j,k(5)ũ

h,n+1
i,j−1,k − Ai,j,k(6)ũ

h,n+1
i,j+1,k − Ai,j,k(7)ũ

h,n
i+1,j,k+1

−Ai,j,k(8)ũ
h,n
i−1,j,k+1 −Ai,j,k(9)ũ

h,n
i−1,j,k−1 −Ai,j,k(10)ũ

h,n
i+1,j,k−1

−Ai,j,k(11)ũ
h,n
i+1,j−1,k − Ai,j,k(12)ũ

h,n
i,j−1,k+1 − Ai,j,k(13)ũ

h,n
i−1,j−1,k

−Ai,j,k(14)ũ
h,n
i,j−1,k−1 − Ai,j,k(15)ũ

h,n
i+1,j+1,k − Ai,j,k(16)ũ

h,n
i,j+1,k+1

−Ai,j,k(17)ũ
h,n
i−1,j+1,k − Ai,j,k(18)ũ

h,n
i,j+1,k−1]/Ai,j,k(0).

The sixth order solutions for grid points in groups g and h are approximated

similarly like those in group f . Each grid point in these three groups has 2

neighboring fine grid points in group a.

6: Update every grid point in group b on Ωh.

For each (odd, odd, odd) grid point (xi, yj, zk) in group b the updated solution is

computed as

ũh,n+1
i,j,k = [Fi,j,k − Ai,j,k(1)ũ

h,n+1
i+1,j,k − Ai,j,k(2)ũ

h,n+1
i,j,k+1 − Ai,j,k(3)ũ

h,n+1
i−1,j,k

−Ai,j,k(4)ũ
h,n+1
i,j,k−1 −Ai,j,k(5)ũ

h,n+1
i,j−1,k − Ai,j,k(6)ũ

h,n+1
i,j+1,k − Ai,j,k(7)ũ

h,n+1
i+1,j,k+1

−Ai,j,k(8)ũ
h,n+1
i−1,j,k+1 −Ai,j,k(9)ũ

h,n+1
i−1,j,k−1 −Ai,j,k(10)ũ

h,n+1
i+1,j,k−1

−Ai,j,k(11)ũ
h,n+1
i+1,j−1,k − Ai,j,k(12)ũ

h,n+1
i,j−1,k+1 − Ai,j,k(13)ũ

h,n+1
i−1,j−1,k

−Ai,j,k(14)ũ
h,n+1
i,j−1,k−1 − Ai,j,k(15)ũ

h,n+1
i+1,j+1,k − Ai,j,k(16)ũ

h,n+1
i,j+1,k+1

−Ai,j,k(17)ũ
h,n+1
i−1,j+1,k − Ai,j,k(18)ũ

h,n+1
i,j+1,k−1]/Ai,j,k(0).

Each grid point in group b has no neighboring fine grid points in group a.

7: Compute the 2-norm R = ||ũh,n+1−uh
old||2. If R is bigger than a certain tolerance

(10−10 in this dissertation), go back to Step 1.
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In Algorithm 4.2.2, Ai,j,k(l), l = 0, 1, ..., 18, are the pre-computed coefficients for

grid point (xi, yj, zk). Ω4
h and Ω4

2h denote the fourth order accurate solution space

from the FOC schemes, Ω6
h and Ω6

2h are the improved sixth order accurate solution

space. ũh,n is the approximate solution for the fine grid after the n iterations.

I update the fine grid points group by group based on the number of their neigh-

boring grid points with sixth order solution (group a) from Step 2. Grid points in

groups c, d and e have more qualified neighbors than those in other groups, so I

update these three groups first. The iteration will continue until the 2-norm R of the

correction vector is reduced below a certain tolerance.

4.3 Special Solution Strategies

For solving the discretized 3D convection-diffusion equation, multigrid techniques

have been used extensively [27, 68, 78]. However, standard multigrid algorithms fail to

achieve optimal grid independent convergence rates in solving non-elliptic problems.

I used multiscale multigrid combined with plane relaxation, as illustrated in Fig. 4.4,

to handle the non-elliptic problems.

4.3.1 Plane relaxation in multigrid method

Standard multigrid method with point Gauss-Seidel relaxation is known to be highly

efficient in solving systems of elliptic partial differential equations, but it fails to

achieve optimal grid independent convergence rate for some convection diffusion equa-

tions like the convection dominated problems with high Reynolds number and the

Poisson equation that has anisotropic discrete operators [27, 35, 36, 72]. Like the

line relaxation can handle the anisotropic and convection-dominated problems, plane

relaxation is an efficient approach which can eliminate all high frequency errors in the

presence of strong anisotropies for 3D problems. Other authors have also used plane

implicit methods as multigrid smoothers with approximated solutions for the planes
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V−Cycle for 4h grid V−Cycle for 2h grid V−Cycle for fine grid

4h grid 2h grid fine grid

Figure 4.4: Representation of multiscale multigrid method for 3D convection diffusion
equation.

[42, 62].

The alternating (x − y − z) plane Gauss-Seidel relaxation in lexicographic order

performs one sweep of (y, z)-plane Gauss-Seidel relaxation along the x-coordinate

direction first, followed by one sweep of (x, z)-plane Gauss-Seidel relaxation and

(x, y)-plane Gauss-Seidel relaxation along the y-coordinate direction and z-coordinate

direction, respectively. For each direction, I divide the 3D problem into N 2D sub-

problems as in Fig. 4.5, where N is the number of intervals along that direction. Let

us first consider the (x, z)-plane 2D sub-problem, its nine point computational stencil

can be generated from the Eq. (4.3) as

A0ũ0 + A1ũ1 + A2ũ2 + A3ũ3 + A4ũ4 + A5ũ5 + A6ũ6 + A7ũ7 + A8ũ8

=F0 − α5u5 − α6u6 − α11u11 − α12u12 − α13u13 − α14u14 − α15u15

− α16u16 − α17u17 − α18u18, (4.6)
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Figure 4.5: 2D sub-problem in plane relaxation.

where the coefficients Al and the 2D solution ũl (l = 0, 1, ..., 8) are set as

Al =











αl 0 ≤ l ≤ 4,

αl+2 5 ≤ l ≤ 8,
ũl =











ul 0 ≤ l ≤ 4,

ul+2 5 ≤ l ≤ 8.

The nine point computational stencil for the (x, y) and (y, z)-planes can be generated

like Eq. (4.6) similarly, but the index of the 3D grid points for those corresponding

2D grid points are different.

I note that the grids visited in the 2D planes are different from the grids used for

the 3D multigrid. Therefore, the coefficient matrices for solving the planes does not

correspond to the coefficient matrices for 3D grid hierarchy. If I choose to pre-compute

all the coefficient matrices for every 2D sub-problems, the memory requirements would

be significantly increased. According to [35], to pre-compute all the 2D coefficient

matrices for plane smoothers, the memory cost is 52% higher than that of the point

relaxation scheme.

Due to the improvement of supercomputer, in many large simulation and modeling

applications, the solution of PDEs is moving from time-critical to accuracy-critical
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[35]. In these applications, memory usage is becoming the most important limiting

factor to solve large problems. Therefore, the inner 2D coefficient matrix is computed

each time the plane is visited.

Inner 2D solver. The plane relaxation is considered in the multigrid literature to

have poor numerical and parallel properties because it needs to solve a large number

of 2D sub-problems. However, it is shown in [35] that an exact solution of the 2D

sub-problems for planes is not needed and that one multigrid cycle is sufficient if I

use multigrid method as the inner 2D solver. This behavior has also been reported

by other researchers in [42, 62].

I would like to mention here that if I use the geometric multigrid method as the

inner 2D solver to solve the 3D convection diffusion equation with variable coefficients,

for some 2D planes, we are not able to compute the full coefficient matrix for their

coarse grids. For example in Fig. 4.6, which is a 5×5×5 3D grid. The 19 black color

grid points are the coarse grid points that are needed for plane y = 2 to compute

its nine point computational stencil by Eq. (4.6). In comparison, the 19 gray color

grid points are the coarse grid points needed for plane y = 1. We note that, plane

y = 1 needs some coarse grid points from plane y = −1, which is not in the 3D cube,

to generate its coarse grid coefficient matrix for solving the 2D sub-problem. Due

to these drawbacks, I only use the multigrid method as the inner 2D solver in plane

relaxation for solving the 3D convection diffusion equation with constant coefficients.

If I rewrite the Eq. (4.3) by using constant coefficients p, q, and r, the coefficients for

each plane along the same direction are the same. For plane y = 1 in Fig. 4.6, I do

not need the additional information from plane y = −1, because every plane along

the y direction has the same coarse grid coefficients.

In order to keep the optimal convergence rate, for the inner 2D multigrid solver,

we use alternating line relaxation smoother in the 2D V-Cycle because the 2D sub-
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Figure 4.6: coarse grid of the 2D sub-problem in plane relaxation.

problem may still have the high convection operator or the anisotropy.

4.4 Numerical Results

The domain Ω for the two test problems I solved was chosen as the unit cube (0, 1)3.

We tested two problems with both constant and variable coefficients. We chose Prob-

lem 1 with variable coefficients, so we could not use the plane relaxation with in-

ner multigrid 2D solver. I verified that it was sufficient to use the standard point

Gauss-Seidel relaxation smoother to solve the 3D convection diffusion equation effi-

ciently with relatively small Reynolds number and its efficiency was degraded when

the Reynolds number increased. For Problem 2 with constant coefficients, I tested

the plane Gauss-Seidel relaxation smoother with some large Reynolds number and

compared the results with the point relaxation smoother.

I used standard V(1,1) cycle in the multiscale multigrid method. The initial guess

for the V-Cycle on the 4h grid was the zero vector. The stopping criteria for the

operator based interpolation and the V-Cycle on 2h and h grids were 10−10. The

errors reported were the maximum absolute errors over the discrete grid of the finest
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level. For the SOC method, the number of iterations contains three parts. They are

the number of V-Cycles for Ω2h, the number of V-Cycles for Ωh, and the number of

iterations for the iterative interpolation combined with the Richardson extrapolation.

In all tables, the column titles # iter refers to the number of iterations; CPU

refers to the CPU cost in seconds; error refers to the maximum absolute error; order

refers to the order of accuracy for the computed solution.

4.4.1 Test problem 1

The first test problem is



































u(x, y, z) = cos(4x+ 6y + 8z),

p(x, y, z) = Re sin y sin z cosx,

q(x, y, z) = Re sin x sin z cos y,

r(x, y, z) = Re sin x sin y cos z.

This problem has variable coefficients and the constant Re represents the magnitude

of the convection coefficients and simulates the Reynolds number in a flow simulation.

The Dirichlet boundary conditions and the forcing term f are set to satisfy the exact

solution.

I tested the first problem using point relaxation smoother for small to relatively

large values of the Reynolds number (Re ≤ 105). The numerical results are listed

from Table 4.1 to Table 4.3.

Table 4.1 contains the numerical results for Problem 1 when Re = 0, which

reduces it to the 3D Poisson equation. I noted that, with point relaxation smoother,

both the SOC scheme and the FOC scheme solved the Problem 1 with optimal grid

independent convergence rate. The order of the computed solution from the SOC

scheme was close to 6 as I expected and was higher than that from the FOC scheme.

In terms of computational cost with the same mesh size h, the FOC scheme was faster
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Table 4.1: Maximum errors, CPU seconds and the number of iterations of the FOC
and SOC schemes for Problem 1 with Re = 0.

FOC Point SOC Point
h # iter CPU error order # iter CPU error order
1/8 11 0.004 2.04e-3 4.2 (8,11),33 0.005 1.55e-3 5.0
1/16 12 0.031 1.09e-4 4.1 (11,12),42 0.051 4.90e-5 5.4
1/32 12 0.281 6.29e-6 4.0 (12,12),44 0.617 1.15e-6 5.8
1/64 12 2.412 3.76e-7 4.0 (12,11),43 6.234 2.14e-8 5.8

Table 4.2: Maximum errors, CPU seconds and the number of iterations of the FOC
and SOC schemes for Problem 1 with Re = 10.

FOC Point SOC Point
h # iter CPU error order # iter CPU error order
1/8 12 0.004 2.55e-3 4.0 (9,12),35 0.006 1.95e-3 5.0
1/16 13 0.032 1.41e-4 4.1 (12,13),46 0.056 6.13e-5 5.5
1/32 13 0.291 8.18e-6 4.1 (13,12),47 0.637 1.40e-6 5.8
1/64 12 2.397 4.90e-7 4.1 (12,12),44 6.531 2.56e-8 5.7

because it only ran a standard multigrid V-Cycle and the SOC scheme needed to run

the multiscale multigrid method and the operator based interpolation scheme. For

the computed solution accuracy, the SOC scheme was more accurate than the FOC

scheme for every meshsize I tested, this can be seen from Table 4.1.

When I chose Re = 10, it was clear from Table 4.2 that our SOC scheme still

yielded a sixth order solution accuracy for small Reynolds number though there was

a slight increase in the number of iterations as Re was increased and our multiscale

multigrid method still kept the grid independent convergence rate. Similar behavior

was observed for the FOC scheme.

The numerical results in Table 4.1 and Table 4.2 indicate that using point re-

laxation smoother was sufficient to solve the 3D convection diffusion equation with

relatively small Reynolds numbers. However, the data in Table 4.3 shows that when

the magnitude of the Reynolds number was large enough (Re = 105), the iterative

convergence and the computed accuracy were severely degraded. The solution meth-
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Table 4.3: Maximum errors, CPU seconds and the number of iterations of the FOC
and SOC schemes for Problem 1 with Re = 105.

FOC Point SOC Point
h # iter CPU error order # iter CPU error order
1/8 51 0.009 8.40e-2 2.0 (18,53),67 0.014 7.24e-2 2.7
1/16 158 0.262 1.97e-2 2.1 (53,149),139 0.232 1.18e-2 2.9
1/32 521 7.847 4.77e-3 2.0 (150,505),276 7.463 1.57e-3 3.0
1/64 not converge – – – not converge – – –

ods for both the FOC and the SOC schemes did not obtain the grid independent

convergence. They took hundreds of multigrid cycles to converge when h ≤ 1/32

and did not converge within the maximum number of iterations (1000) I set when

h = 1/64.

Table 4.4: Comparison of the number of iterations for different approximation strat-
egy in operator based interpolation scheme for Problem 1.

Re=10 Re = 100
h Grouping Lexicographic Grouping Lexicographic
1/8 35 36 26 29
1/16 46 49 36 50
1/32 47 50 53 68
1/64 44 47 52 64

Grouping strategy. The operator based interpolation for the 3D convection-diffusion

equation is an iterative method and the grid points are updated group by group as

indicated in Algorithm 4.2.2. The reason that I update the grid points by their num-

ber of neighboring points is that it can reduce the number of iterations compared

with the updating in lexicographical order. Supporting numerical results are shown

in Table 4.4, Fig. 4.7 and 4.8.
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Figure 4.7: Comparison of the number of iterations of the operator based interpolation
scheme with different updating strategies for Problem 1 (Re = 10).
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Figure 4.8: Comparison of the number of iterations of the operator based interpolation
scheme with different updating strategies for Problem 1 (Re = 100).
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4.4.2 Test problem 2

For test problem 2, I chose the constant coefficients with large Reynolds number as











u(x, y, z) = cos(4x+ 6y + 8z),

p(x, y, z) = q(x, y, z) = r(x, y, z) = Re.

I used both the point and the plane relaxation smoothers in the multiscale multigrid

method to solve this problem.

I tested this problem with a very large Reynolds number (Re = 107) and the

reported numerical results were listed in Table 4.5. I noted that the accuracy of

the solutions computed by the multigrid method using plane relaxation smoother

and point relaxation smoother was comparable. For the CPU cost with the same

meshsize, the point relaxation method was faster than the plane relaxation method

when h ≤ 1/16, that was because the plane relaxation needed to run a large number

of 2D V-Cycles. When the mesh became finer, the number of iterations of the point

relaxation method increased very quickly and it did not converge when h = 1/64.

On the other hand, the number of iterations of the plane relaxation method was

almost stable with respect to the meshsize. For better understanding, I listed the

graphic comparison of the number of iterations for different relaxation smoothers in

Fig. 4.9. It was clear that the multigrid method using the plane relaxation smoother

took much less iterations than that from point relaxation smoother and the grid

independent convergence was kept when the mesh became finer.

Table 4.6 contains the test results with various Re and fixed meshsize h = 1/32.

Computations were reported for the FOC and the SOC schemes using the plane

relaxation smoother. I note that the magnitude of the Reynolds number (Re) affected

the convergence and the computed solution accuracy of both schemes inversely. The

SOC scheme yielded better solution accuracy than the FOC scheme with every Re
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Table 4.5: Maximum errors, CPU seconds and the number of iterations of Problem
2 using plane relaxation and point relaxation smoothers with Re = 107.

Point relaxation Plane relaxation
h strategy # iter CPU error order # iter CPU error order
1/8 FOC 52 0.009 6.10e-2 2.1 8 0.017 6.10e-2 2.1

SOC (16,51),55 0.010 5.18e-2 2.7 (4,8),55 0.019 5.18e-2 2.7
1/16 FOC 164 0.262 1.41e-2 2.1 17 0.320 1.41e-2 2.1

SOC (51,164),74 0.294 7.96e-3 3.0 (10,16),74 0.389 7.96e-3 3.0
1/32 FOC 500 7.621 3.36e-3 2.0 26 4.852 3.36e-3 2.0

SOC (164,472),79 7.808 1.01e-3 3.3 (16,26),79 3.247 1.01e-3 3.3
1/64 FOC not converge – – – 46 70.073 8.21e-4 2.0

SOC not converge – – – (26,45),81 80.787 1.06e-4 3.2

value we tested. When Re > 104, there was only a little change for the solution

accuracy and the number of iterations for both the FOC and the SOC schemes. I

believed that the convergence rate and the number of iterations approached some

limits and did not deteriorate any more when Re was beyond certain large values.

Table 4.6: Maximum errors, CPU seconds and the number of iterations of Problem
2 using plane smoother with different Re.

FOC plane relaxation SOC plane relaxation
Re(h = 1/32) # iter CPU error # iter CPU error

0 6 1.062 6.29e-6 (6,6),45 1.482 1.15e-6
1 7 1.234 3.48e-5 (6,6),45 1.693 1.24e-6
102 12 2.109 4.84e-4 (10,12),48 2.925 2.87e-4
104 28 4.854 3.36e-3 (16,26),79 5.337 1.01e-3
105 26 4.518 3.36e-3 (16,26),79 5.349 1.01e-3
106 26 4.489 3.36e-3 (16,26),79 5.335 1.01e-3
107 26 4.455 3.36e-3 (16,26),79 5.367 1.01e-3
1010 26 4.492 3.36e-3 (16,26),79 5.402 1.01e-3

4.5 Concluding Remarks

I extended the sixth order compact finite difference scheme for solving the 2D con-

vection diffusion equations [68] to 3D problems. Our numerical results indicated that

the SOC scheme is more accurate than the FOC scheme to produce solution.

The numerical results also indicated that our operator based interpolation using
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Figure 4.9: Comparison of the number of iterations of the FOC scheme for solving
Problem 2 using plane relaxation and point relaxation(Re = 107). Each symbol
corresponds to an increasing fine grid: 8, 16, 32, and 64 intervals.

the grouping strategy takes fewer number of iterations than that from lexicographical

order. In order to keep the grid independent convergence of our multiscale multi-

grid method for large Reynolds number problems, we used plane relaxation as our

smoother in multigrid. The numerical results showed that the point relaxation method

is efficient when Re is small and I recommend the user to use plane relaxation when

the point relaxation cannot keep the good convergence rate.
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Chapter 5

Multiple Coarse Grid Computation and Special W-cycle Multiscale

Multigrid Method

From the above chapters, we developed an efficient computational framework to solve

the PDEs like the Poisson equation and convection-diffusion equation with high ac-

curacy and high efficiency. The computational framework is based on two methods:

the fourth order multiscale multigrid method and an operator based interpolation

scheme combined with extrapolation technique.

However, these two methods have their own disadvantages. The multiscale multi-

grid method that we used in previous chapters need to run three independent fourth

order multigrid V-cycle procedures with different meshsize to achieve the multiscale

grids approximation. We believe this method does not have optimal computational

efficiency because the standard single V-cycle or W-cycle multigrid on Ωh already has

the multilevel grid hierarchy. We want to develop an algorithm like special relaxation

or interpolation that can approximate the fourth order solutions on different level and

run the extrapolation using standard V-cycle or W-cycle.

For the operator based interpolation technique, if the coefficient matrix A is not di-

agonally dominant like the convection-diffusion equation with very large cell Reynolds

number, it may take a huge number of iterations to converge. In this chapter, I present

another technique called the multiple coarse grid computation technique. This ap-

proach can be used to get the coarse grid solutions for every corresponding fine grid,

which means the I can directly apply Richardson extrapolation for every grid points
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and no operator based interpolation is needed.

5.1 Multiple Coarse Grid Computation

As I already mentioned in Chapter 1, one of our motivations is to build the efficient

and scalable method for solving linear systems arising from higher order discretiza-

tion scheme of PDEs that have the potential to be modified to work on the parallel

computer. The operator based interpolation scheme is an iterative method which is

not very easy to be changed to its parallel version.
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Figure 5.1: Illustration of the multiple coarse grid for a 5×5 fine grid.

The idea of using the multiple coarse grid is from the parallel superconvergent

multigrid method. In addition to splitting the original grid and filtering residual vec-

tor to exploit parallelism, one can use the concurrent relaxation method on multiple

grids [83]. The basic idea of multigrid superconvergent is to use multiple coarse grid
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to generate better correction for the fine grid solution than that from the single coarse

grids. The reason is that for general multigrid method of 2D problem, the residual of

the fine grid is projected to only (even, even) coarse grid. But I can also project the

residual to other coarse grids. Therefore, a combination of error correction from all

the coarse grid may make the fine grid converge faster than that from a single coarse

grid. In general, for a d dimensional problem, the fine grid can be easily coarsened

into 2d coarse grids, like the 2D case in Fig. 5.1. If the computation work for each

coarse grid can be loaded to a separate processor, it does not require more time than

what is need for a single coarse grid.

The multiple coarse grid idea is used for parallel multigrid method to speed up

the convergence [83], but it has never been used to increase the order of accuracy for

the fine grid. The operator based interpolation scheme I developed has a drawback

that it only has the fourth order coarse grid solution for the (even, even) coarse grid.

After the Richardson extrapolation for the (even, even) grid, other grid points need to

be iteratively approximated, but the cost is the loss of parallelism and the additional

computation time. If we can generate four FOC solution u2h
(e,e), u2h

(o,o), u2h
(e,o), and

u2h
(o,e) on coarse grid Ω

(e,e)
2h , Ω

(o,o)
2h , Ω

(e,o)
2h , and Ω

(o,e)
2h , respectively, then these four FOC

solutions can cover every grid points in the fine grid Ωh. The standard Richardson

extrapolation can be used for every grid point on the fine grid. Although we need

some additional work on the coarse grids, we can avoid the interpolation iteration on

the fine grid to reduce the CPU cost.

5.1.1 1D multiple coarse grid

Let’s start with 1D multiple coarse grid computation for easy understanding. For the

fine grid Ωh, we construct two coarse grids in such a way that all the even-numbered

grid points belong to coarse grid Ωeven and all the odd-numbered grid points belong
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to coarse grid Ωodd as shown in Fig. 5.2. Then we have

Ωeven = {xj |xj ∈ Ωh and (j = even)},

Ωodd = {xj |xj ∈ Ωh and (j = odd)}.

even

odd

fine

2h

2h

h

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4−4

Figure 5.2: Illustration of the multiple coarse grid for 1D problem.

From Fig. 5.2, we note that the even indexed coarse grid is easy to be solved by

double the mesh size from h to 2h. However, the coarse grid Ωodd only contains the

black color grid points from fine grid but no red color boundary grid points. We could

not develop the finite difference schemes for coarse grid Ωodd if we only have the inner

grid points. One possible approach is to add these red color boundaries to Ωodd and

develop special computational stencil for grid point u−3 and u3 as shown in Fig. 5.3.

2h

−3 −1 1 3−4 4

−4

h

odd

−2 −1 0 1 2 3 4−3

fine

Figure 5.3: Ωodd with two added red color boundary grid points.

For the 1D problem in Fig. 5.3, the computational stencil for the grid points near
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the boundaries are different with other inner grid points. For the inner grid points

like u−1 and u1, their finite difference schemes are based on 2h meshsize. However,

if we take grid point u−3 in Ωodd as an example, its compact finite difference scheme

needs the boundary grid point u−4 and inner grid point u−1. Its meshsize between

u−4 and u−1 are h and 2h.

Lemma 5.1.1. For coarse grid as shown in Fig. 5.3, the solution accuracy for central

difference operator becomes first order.

Proof. We denote xj to be the near boundary grid points on left side and uj = u(xj).

By using Taylor series expansion we have

u(xj + h) = u(xj) + h(ux)j + h2 (uxx)j
2!

+ h3 (ux3)j
3!

+ ......

u(xj − h) = u(xj)− h(ux)j + h2 (uxx)j
2!

− h3 (ux3)j
3!

+ ......

u(xj + 2h) = u(xj) + 2h(ux)j + 4h2 (uxx)j
2!

+ 8h3 (ux3)j
3!

+ ......

u(xj − 2h) = u(xj)− 2h(ux)j + 4h2 (uxx)j
2!

− 8h3 (ux3)j
3!

+ ......

To approximate the first derivative, then we apply

u(xj + 2h)− 4u(xj − h) + 3u(xj)

=6h(ux)j +O(h3).

So,

δxuj =
u(xj + 2h)− 4u(xj − h) + 3u(xj)

6h
+O(h2).

For the second derivative, if we apply central difference operator, it will become

u(xj + 2h) + 2u(xj − h)− 3u(xj)

=3h2(uxx)j +O(h3).
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Then we have

δxxuj =
u(xj + 2h) + 2u(xj − h)− 3u(xj)

3h2
+O(h).

Since the second order central difference operator is degraded to first order, the

FOC scheme which is based on the approximation for the second order terms will be

degraded to second order for these near boundary grid points. In order to achieve

fourth order solutions for every coarse grid points, we add two more grid points to

the Ωodd like the blue color grid points in Fig. 5.4.

−2 −1 0 1 2 3 4

fine

−3

odd 2h

−3 −1 1 3−4 −2 2 4

−4

h

Figure 5.4: Ωodd with two red color boundary and two blue color inner grid points .

By adding these four grid points, we can discretize every grid points in Ωodd with

fourth order accuracy using FOC scheme I introduced in Chapters 2 and 3. Let’s

assume the Ωodd contains Nx grid points uodd(0), uodd(1), ... , uodd(Nx). Then the

Ωeven will contains Nx−3 grid points and fine grid will contains 2Nx−7 grid points.

The grid points on Ωodd are approximated as follows:

• For j ∈ {1, 2, Nx− 2, Nx− 1}, uodd(j) is approximated by three-point compu-

tational stencil from FOC scheme using grid points uodd(j − 1) and uodd(j + 1)

with meshsize h. The truncation error is O(h4).
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• For j = 3, uodd(j) is approximated by three-point computational stencil from

FOC scheme using grid points uodd(j − 2) and uodd(j + 1) with meshsize 2h.

The truncation error is O((2h)4).

• For j ∈ [4, Nx−4], uodd(j) is approximated by three-point computational stencil

from FOC scheme using grid points uodd(j − 1) and uodd(j + 1) with meshsize

2h. The truncation error is O((2h)4).

• For j = Nx − 3, uodd(j) is approximated by three-point computational stencil

from FOC scheme using grid points uodd(j − 1) and uodd(j + 2) with meshsize

2h. The truncation error is O((2h)4).

By using above discretization and relaxation strategies, we can approximate fourth

order solutions for every grid points on Ωodd. After we get fourth order solutions for

the fine grid and two coarse grids, each grid point on the fine grid has a corresponding

grid point on either Ωeven or Ωodd. Then we apply Richardson extrapolations for every

fine grid points to approximate the sixth order solutions.

h h 2h 2h h

0 1 2 3 4 NxNx−1Nx−2Nx−3Nx−4

2h hh h2h

Figure 5.5: Representation of modified Ωodd for 1D problem.

Numerical Results

Let’s consider an example from Sun’s previous work [59], the 1D convection-diffusion

equation we tested is

∂2u

∂x2
− ∂u

∂x
− u = − cos x− 2 sin x, 0 ≤ x ≤ π. (5.1)

Eq. (5.1) has the Dirichlet boundary conditions as u(0) = u(π) = 0. The analytic

solution for this problem is u(x) = sin x.
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We compared the truncated error and the order of accuracy by using multiple

coarse grid computation technique and the Algorithm 2 I introduced in Chapter 2.

The computational results are listed in Table 5.1 and Fig. 5.6.
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Figure 5.6: Comparison of maximum errors of FOC, Algorithm 2 and MCG methods.

From Table 5.1, we can see that the multiple coarse grid method (MCG) is more

accurate than the fourth order scheme (FOC). Although the MCG method is not

as accurate as the Algorithm 2 but it can achieve the sixth order solution accuracy

when the number of intervals is bigger than 8. The reason why MCG is less accurate

than Algorithm 2 is that there are two near boundary grid point using meshsize h to

approximate instead of 2h in Ωodd.

5.1.2 2D multiple coarse grid

For 2D problem, the approximation of four coarse grids is more difficult than 1D

problem. I introduce two strategies to generate the multiple coarse grid solutions.
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Table 5.1: Comparison of maximum errors and the order of accuracy by using the
multiple coarse grid technique and Algorithm 2 for Eq. (5.1).

FOC Algorithm2 MCG
h Error Order Error Order Error Order

π/8 5.02e-5 4.0 1.30e-5 5.9 2.08e-5 5.7
π/16 3.18e-6 4.0 2.10e-7 6.0 3.94e-7 6.1
π/32 2.00e-7 4.0 3.32e-9 6.0 5.81e-9 5.8
π/64 1.25e-8 4.1 5.20e-11 6.0 1.06e-10 6.0
π/128 7.83e-10 4.1 8.73e-13 6.0 1.71e-12 6.0

The first one is based on the idea of mesh-refinement technique by Hyman [29], which

used grid rotation to approximate the fourth order solutions for four coarse grid using

standard (even, even) coarse grid as initial guess. It is very efficient to work on a single

processor, but do not have much potential for parallelism. The other strategy is to

let these four coarse grid solution generated on their own coarse grid, which is an

extension from our 1D MCG method and can bring us more potential for parallelism.

Strategy 1. Suppose we already have the FOC fine grid solution uh and coarse grid

solution u2h
(e,e). For other three coarse grids, we only consider the inner grid points,

as in Fig. 5.7. The black color grid points indicate the (even, even) coarse grid

solution u2h
(e,e), the numbers 1 and 2 mean the (odd, odd) and other coarse grid points,

respectively. The grid points labeled with 1 will be interpolated before the grid points

labeled with 2. We set i, j = 0, 1, 2, ..., N on the evenly spaced 2N × 2N fine grid.

And we use converged uh to project to every coarse grid point as our initial guess for

the coarse grid solution, except the (even, even) coarse grid.

The fine grid point (x2i+1, y2j+1) is also the (odd, odd) coarse grid. For the in-

dexing on the coarse grid, we use the same indexing as in the fine grid for better

understanding as shown in Fig. 5.1. By using Eq.(2.16) the interpolation for points
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Figure 5.7: Illustration of how to generate multiple coarse grid solutions by using
Strategy 1 for a 8× 8 fine grid.

in group 1 is

u2h
(o,o)(2i+ 1, 2j + 1)

=
1

a
[F2i+1,2j+1 − b(u2h

(e,o)(2i+ 2, 2j + 1) + u2h
(e,o)(2i, 2j + 1)

− c(u2h
(o,e)(2i+ 1, 2j + 2) + u2h

(o,e)(2i+ 1, 2j))− d(u2h
(e,e)(2i+ 2, 2j + 2)

+ u2h
(e,e)(2i+ 2, 2j) + u2h

(e,e)(2i, 2j + 2) + u2h
(e,e)(2i, 2j))].

The interpolation for the (even, odd) and (odd, even) grid points are similar to the

(odd, odd) grid points, it also uses its 8 fine grid neighbors. The procedure will

continue until the correction vector below a certain tolerance.

Strategy 2. We project the fourth order fine grid solution uh to the (odd, odd),

(even, odd), and (odd, even) coarse grid as our initial guess. Let’s first consider how

to approximate the fourth order solution u2h
(o,o) on its own coarse grid.
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Figure 5.8: Illustration of how to generate (odd, odd) coarse grid solution by using
Strategy 2

If the size of the fine grid is (2N +1)× (2N +1), then the size of Ω
(o,o)
2h is N ×N .

A 8×8 example is shown in Fig. 5.8, where the gray colored points are the boundary

grid points on the fine grid, the white colored grid points are the boundary of the

(odd, odd) coarse grid and the black colored grid points are the inner grid points of the

(odd, odd) coarse grid. In each relaxation step, we use all of its neighbor grid points

from the (odd, odd) grid. But different with fine grid relaxation, we do not have the

exact solution of boundary values of the (odd, odd) coarse grid. The most close value

we have are their fourth order solution from uh. So, if we just use the standard

relaxation method for the inner grid points without updating the boundary values,

we can not get enough accuracy. We need find a method to update the boundary

values.

In each relaxation step, our treatment can be summarized as following: For the
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inner coarse grid x2i+1, y2j+1

u2h
(o,o)(2i+ 1, 2j + 1)

=
1

a
[F2i+1,2j+1 − b(u2h

(e,o)(2i+ 3, 2j + 1) + u2h
(e,o)(2i− 1, 2j + 1)

− c(u2h
(o,e)(2i+ 1, 2j + 3) + u2h

(o,e)(2i+ 1, 2j − 1))− d(u2h
(e,e)(2i+ 3, 2j + 3)

+ u2h
(e,e)(2i+ 3, 2j − 1) + u2h

(e,e)(2i− 1, 2j + 3) + u2h
(e,e)(2i− 1, 2j − 1))].

For the boundary grid point, we can use one of its neighbors (who has all the 8

neighbors on the coarse grid) to use the 9 point stencil to do relaxation or we can use

its 8 neighbors in the fine grid.

Numerical results

We consider a Poisson equation in the form of

∂2u

∂x2
+

∂2u

∂y2
= −104π2 sin(10πx) cos(2πy), (x, y) ∈ Ω = [0, 1]× [0, 1], (5.2)

which has a zero boundary condition.

The analytic solution of Eq. (5.2) is:

u(x, y) = sin(10πx) cos(2πy).

Since the x direction changes more rapidly than y direction, we choose X-line relax-

ation method as our relaxation methods.

For the multiple coarse grid method, we only run the test case on a single proces-

sor. The numerical results are shown in Table 5.2 and Fig. 5.9. The “Multi-CG(S1)”

stands for generating multiple coarse grid solution by using Strategy 1, and “Multi-

CG(S2)” choose the Strategy 2. Since we use the same multiscale multigrid compu-

tation for these three methods to compute the fourth order solutions for both the
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fine and (even, even) coarse grids, in order to better compare these three methods,

we only compare the CPU cost for the extrapolation and interpolation part which is

listed in the “Extra-CPU” column of Table 5.2. And the “# Extra-iter” indicates

the number of iteration for the operator interpolation or the generation of multiple

coarse grid solution.

Table 5.2: Numerical comparison results for the multiple coarse gird method and
MG-Six method for Problem 2.

n strategy # Extra-iter Extra-CPU error
MG-Six(line) 21 0.002 1.42e-3

32 Multi-CG(S1) 20 0.000 1.42e-3
Multi-CG(S2) 143 0.008 7.41e-4

MG-Six(line) 29 0.008 2.95e-5
64 Multi-CG(S1) 27 0.005 2.95e-5

Multi-CG(S2) 190 0.042 8.30e-6

MG-Six(line) 32 0.040 5.10e-7
128 Multi-CG(S1) 29 0.031 5.10e-7

Multi-CG(S2) 155 0.152 1.09e-7

MG-Six(line) 31 0.480 8.21e-9
256 Multi-CG(S1) 29 0.368 8.22e-9

Multi-CG(S2) 187 1.783 2.43e-9

From Table 5.2, we can see that Multi-CG(S1) can achieve the same order of ac-

curacy as MG-Six method with less Extra-CPU time. For the Multi-CG(S2) method,

since it needs to update the boundary value in each relaxation method, and the re-

laxation we need to compute the linear system for each coarse grid is the standard

point Gauss-Seidel method, the number of iteration is obviously bigger than other

two methods, but the accuracy is better than the other two methods. One possible

improvement for this is to use multigrid method for every coarse grid like the fine

grid, but it needs the extra work to deal with the boundary points. The reason is

that only the (even, even) grid points has the full boundary points. For other three

coarse grids, standard multigrid method can not solve the problem, we need to add

the artificial boundaries as we did for 1D problem and develop special relaxation
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Figure 5.9: Comparison of maximum errors of MG-Six, Multi-CG(S1) and Multi-
CG(S2).

method.

5.2 Special W-cycle Multiscale Multigrid

We want to develop a new multiscale multigrid method that can use the existing

multilevel (different scale) grid hierarchy to approximate the fourth order solutions

instead of running three independent V-cycle multigrid procedures as I introduced in

previous chapters. Our method is based on the W-cycle multigrid grid structure as

in Fig. 5.10.

5.2.1 Special design

Our aim is to use the multilevel grid property of multigrid method to compute the

solutions on two different scale grids and increase the order of accuracy from fourth
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h

2h
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8h

Interpolation

Figure 5.10: Standard W-cycle multigrid method.

order to sixth order by using extrapolation. Sun and Zhang has proposed an ADI

method with Richardson extrapolation to approximate sixth order solutions [59].

Their method is the first method that combined the extrapolation procedure in each

iteration step on two scale grids.

tasks can be split to two processors

2h

4h

8h

Interpolation

Restriction

Extrapolation

h

U2hR2h

Uh

correction

after correction and extrapolation
update solution on 2h grid

Figure 5.11: Special W-cycle multiscale multigrid method.

I modify the standard W-cycle multigrid method to approximate the sixth order

solutions on Ω2h and Ωh at the same time. The procedure is listed in Fig. 5.11. We

can see that the special W-cycle multiscale multigrid method has the similar grid
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structure as the standard W-cycle in Fig. 5.10. I modify the right-hand side part of

the standard W-cycle multigrid method to approximate the solution on Ω2h, which

are the gray colored points. Different from the standard W-cycle, there are two 2h

grids sending results to the fine grid: one from black colored points to do the regular

correction (interpolation) and the other one is from the gray colored points to do

the Richardson extrapolation. The fine grid point will also send back two results to

the Ω2h: one is the regular residual (restriction) and the other one is the updated

sixth order solutions for the coarse grid points. Except for these two additional

communication between two scale grids, other computational costs are the same as

the standard W-cycle.

The detail of every step of our multiscale W-cycle multigrid method is listed in

Algorithm 6. Steps 3 and 4 are two independent 2h subproblem (V-cycle based)

that can be parallelized using two different processors in each cycle of the algorithm.

Steps 5 and 6 are the standard correction using bilinear interpolation. Step 7 is the

Richardson extrapolation that can approximate sixth order solutions on 2h grid and

the corresponding (even, even) grid points on fine grid. We want to mention here

that if we rewrite Step 4 to be the same as Step 3, Algorithm 6 will become the

standard multigrid W-cycle method. If we remove Steps 4, 7 and 8, it will become

the standard multigrid V-cycle method.

Special relaxation methods. We can choose regular relaxation methods as in-

troduced in previous chapters like the point relaxation in lexicographic order and

the alternating line relaxation. However, after each cycle only the (even, even) grid

points on the fine grid have the sixth order solutions. In order to approximate the

sixth order solutions for other grid points on the fine grid as accurately as possible.

We prefer to relax the grid points in the order by how many neighboring grid points

that have sixth order accuracy, which is similar to our operator based interpolation
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scheme in Chapter 2. We listed our point Gauss-Seidel relaxation in group order as

follow:

• Update every (odd, odd) grid point.

For each (odd, odd) point (i, j), the updated solution is

ũh,k+1
i,j = [Fi,j − Ai,j(1)ũ

h,k
i+1,j −Ai,j(2)ũ

h,k
i,j+1 − Ai,j(3)ũ

h,k
i−1,j −Ai,j(4)ũ

h,k
i,j−1

−Ai,j(5)ũ
h,k+1
i+1,j+1 − Ai,j(8)ũ

h,k+1
i+1,j−1 − Ai,j(6)ũ

h,k+1
i−1,j+1 −Ai,j(7)ũ

h,k+1
i−1,j−1]/Ai,j(0).

Here, each grid point has four neighboring grid points with sixth order accuracy.

• Update every (odd, even) and (even, odd) grid point.

Here, each grid point has two neighboring grid points with sixth order accuracy.

• Update every (even, even) grid point.

Here, each grid point has no neighboring grid points with sixth order accuracy.

We want to mention here that for the two independent subproblems as in the

rectangular domain in Fig. 5.11, we should use the same relaxation method. If we

choose point relaxation for one of them and line relaxation for the other one, the

solution accuracy is degraded because we need to keep the fourth order solutions on

Ωh and Ω2h on the same level.

When the W-cycle converged, we should have a sixth order solutions on every

(even, even) fine grid point. We can also integrate the operator based interpolation

in each fine grid relaxation after the extrapolation. But our experiment showed that

it will increase the number of cycles to converge and it takes more computational

cost than the post-interpolation (run operator based interpolation procedure after

the W-cycle multiscale multigrid method) to approximate the sixth order solutions

for other grids.
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Algorithm 6 Special Multiscale W-cycle Algorithm

1: Relax ν1 times on Ahuh = bh with initial guess u
(k)
h

2: Compute r
(k)
2h = I2hh (bh − Ahu

(k)
h )

3: • Relax ν1 times on A2hu
(k)
2h = r

(k)
2h with initial guess 0

• Compute r
(k)
4h = I4h2h (b2h − A2hu

(k)
2h )

• ......

• Solve ALhu
(k)
Lh = r

(k)
Lh

• ......

• Correct u
(k∗)
2h = u

(k)
2h + I2h4hu

(k+1)
4h

• Relax ν2 times on A2hu2h = b2h with initial guess u
(k∗)
2h

4: • Relax ν1 times on A2hũ2h = b2h with initial guess ũ
(k)
2h

• Compute r̃
(k)
4h = I4h2h (b2h − A2hũ

(k)
2h )

• Relax ν1 times on A4hũ
(k)
4h = r

(4k)
4h with initial guess 0

• ......

• Solve ALhũ
(k)
Lh = r̃

(k)
Lh

• ......

• Correct ũ
(k∗)
2h = ũ

(k)
2h + I2h4h ũ

(k+1)
4h

• Relax ν2 times on A2hũ2h = b2h with initial guess ũ
(k∗)
2h

5: Correct u
(k∗)
h = u

(k)
h + Ih2hu

(k+1)
2h

6: Relax ν2 times on Ahuh = bh with initial guess u
(k∗)
h

7: Do extrapolation for ũ2h and uh as

uh(i, j) =
16uh(2i, 2j)− ũ2h(i, j)

15

8: Update ũ2h as ũ2h(i, j) = uh(2i, 2j)
9: If the correction norm does not reach the convergence, go back to Step 1.
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5.2.2 Numerical results

We consider a 2D Poisson equation in the form of

∂2u

∂x2
+

∂2u

∂y2
= −52 sin(4x) cos(6y), (x, y) ∈ Ω = [0, 1]× [0, 1], (5.3)

which has Dirichlet boundary condition.

The analytic solution of Eq. (5.2) is:

u(x, y) = sin(4x) cos(6y).

Table 5.3: Numerical comparison for standard multiscale multigrid method and W-
cycle multiscale multigrid method

Standard Multiscale Multigrid W-cycle Multiscale Multigrid
n # iter CPU error order # iter CPU error order
16 (15,15),19 0.001 6.29e-7 5.9 8, 19 0.001 6.37e-7 5.9
32 (15,11),18 0.006 1.02e-8 6.0 8, 18 0.005 9.91e-9 6.0
64 (15,11),16 0.029 1.59e-10 6.0 7, 16 0.019 1.36e-10 6.2
128 (14,10),14 0.092 2.41e-12 6.0 11, 14 0.080 1.05e-12 7.0

We tested the multiscale W-cycle multigrid method on a single processor and

compare the numerical results with the standard multiscale multigrid method I intro-

duced in Chapter 2. The numerical results are listed in Table 5.3 and Fig. 5.12. In

Table 5.3, the “# iter” stands for the number of iterations. The standard multiscale

multigrid method contains three parts of the iteration, number of V-cycles for Ω2h,

number of V-cycles for Ωh and the number of operator based interpolation. For the

W-cycle based multiscale multigrid method, we also used the operator based inter-

polation after the W-cycle is converged. Its iteration contains two parts, the number

of W-cycle and the number of iterations for interpolation.

From Table 5.3 we can see that the accuracy of the solutions computed by the
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Figure 5.12: Comparison of CPU cost and maximum error for multiscale multigrid
method and W-cycle multiscale multigrid method.

W-cycle multiscale multigrid method are more accurate than the standard multiscale

multigrid method when n > 16. Both solutions can achieve the sixth order solution

accuracy and for some finer meshes like n = 128, the order of accuracy by the W-

cycle multiscale method can reach seventh order. In terms of computational cost (the

CPU seconds) with the same mesh size h, the W-cycle multiscale multigrid method is

faster than the standard multiscale multigrid method. For the number of iterations,

the W-cycle multigrid method can converge within less than 10 cycles which is less

than the standard multiscale multigrid method does.

In our numerical experiment, we only tested the W-cycle multiscale multigrid

method on a single processor. However, as we mentioned before, these two indepen-

dent V-cycle structure sub-problems which are in the rectangular domain in Fig. 5.11

can be loaded into two different processors. In addition, the mesh refinement post-

interpolation procedure can also be paralleled. Our next research step is to build an
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efficient parallel W-cycle multiscale multigrid method to solve some very large scale

problems.

5.3 Concluding Remarks

I improved our computational framework by using multiple coarse grid computation

technique and W-cycle multiscale multigrid method. The multiple coarse grid com-

putation technique is efficient to increase the order of accuracy from fourth order to

sixth order and provides us a good partition structure to convert the solver into a

parallel version. The W-cycle multiscale multigrid integrates the Richardson extrap-

olation in each cycle of the multigrid computation, which can increase the solution

accuracy and speed up the convergence.

Our test results showed that these two methods are efficient, robust and accurate.

However, for some high Reynolds number cases, the point relaxation scheme may not

be efficient to use in multigrid method. Since the line relaxation is difficult to perform

by the order of how many neighboring grid points that are sixth order, semicoarsening

technique is believed to be the right approach to solving such problems.

108



Chapter 6

Parallel Iterative Methods for Solving PDEs

From the previous chapters, I know that multigrid algorithms are highly efficient

in solving systems of elliptic equations. However, in parallel setting, the sequential

nature of the relaxation may degrade the efficiency of the algorithm. The aim of this

chapter is to present, evaluate and analyze an efficient parallel multigrid solver for

speeding up the computation of 2D/3D PDEs .

6.1 Introduction

Multigrid method are generally accepted as fast and efficient methods for solving

PDEs, especially elliptic operators. For these kinds of problems, standard multigrid

algorithms based on the iterative methods like Gauss-Seidel or damped Jacobi ex-

hibit an optimal complexity, memory cost and good parallel efficiencies [34]. These

characteristics have made multigrid method to be a commonly used solution method

in many computational and engineering areas.

For the parallel strategies, generally, there are three main tracks: domain de-

composition combined with multigrid, global multigrid partitioning, and concurrent

multigrid methods.

The domain decomposition approach is a well known mathematical methodology

for the numerical solution of elliptic boundary value problems. It can be used in the

original mathematical model to reformulate the original PDE and in the discretization
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stage to form parallelizable numerical schemes. It is particularly attractive in parallel

computing, because it decomposes the finest grid into several blocks, and multigrid

method can be carried out simultaneously in parallel inside each block. These kinds

of strategies are widely used with finite element method since they are easier to

implement and can be directly applied to general multi-block grids and irregular

domain. However, domain decomposition based parallel algorithms are numerically

different to the sequential version and may have a negative impact on the convergence

rate [53]. It also requires a careful treatment of the connections between different

blocks in order to achieve satisfactory convergence rates, which often involves domain

overlapping.

For the grid partitioning strategy, the domain decomposition is applied on every

grid level, not only on the finest grid. Therefore, for most of the multigrid methods,

the parallel approaches based on the second strategy are algorithmically equivalent

to the non-parallized one, so the parallel multigrid method using grid partitioning

strategy has the same convergence rate of the sequential algorithm [34]. However, it

may become very difficult to develop for some complicated applications. In addition,

it implies more communication overheads since data exchange is required on every

level.

The concurrent multigrid methods uses multiple coarse grids as I mentioned in

Chapter 5 to correct fine grid solution. There will be no reduction in the number of

grid points as the V-cycle goes down to the coarse levels. The correction on a level is

computed as the averaged corrections from multiple grids. In addition, semicoarsening

can also be conducted concurrently in different directions. This may result in robust

algorithm to deal with strong and weak coupling and to have high level parallelism.
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6.1.1 Parallelization by Grid Partition

In this dissertation, I will discuss more about the parallel multigrid method by using

grid splitting strategy. As discussed in [83], a completed V-cycle in the multigrid

method involves the relaxation procedure on different grids, and transfer of data

between different scale of grids by using interpolation and prolongation. The par-

allelization process needs the finest level grid to be split into subgrids which can

be assigned to different processors like in Fig. 6.1. If I use Jacobi type relaxation

method, the relaxations can be easily carried out in parallel on different processors. If

I choose Gauss-Seidel type or SOR type relaxations methods, the relaxation methods

are generally carried out in parallel by using grid coloring schemes. For the red-black

ordering, the red black Gauss-Seidel method is actually better than the standard (lex-

icographical) Gauss-Seidel method and the order of processing for different colors is

not important in parallel processing. However, for multi-coloring schemes with more

than two colors, the order of processing for different colors may affect the interpro-

cessor communications.

Figure 6.1: Finest level grid is split into four subgrids.

For example, a 9-point computational stencil is used to discretize a 2D PDE, the

computational grid can be decoupled with minimum four colors as in Fig. 6.2. I

assume that I have two processors P1 and P2 with assigned grid points. If I process
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the relaxation in the order of (black, red, green, yellow), then after both processors

have computed the new values of black grid points, P1 needs to send the new results

at the black grid points on its lower boundary to P2 for calculating the new values

of red grid points on boundary of P2. Similarly, after the processing of red color grid

points, P2 needs to send the new results of red grid points on the boundary to P1 for

calculating the green grid points on boundary. For the green and yellow grid points,

I will see that the same updating strategy will be used to calculate the new results

for these two groups of grid points. Therefore, for two processors, after each sweep of

relaxation they require four message passing with each message containing the new

computed solutions on half of the boundary points.

P2

P1

Figure 6.2: Illustration of decoupled four color grid for fourth order computational
scheme of 2D problem.

If I process the relaxation in the order of (black, green, yellow, red), then P1 does

not need to send the new results at the black grid points on its boundary to P2

because the relaxation of green color grid points on P2 does not need the solutions

at the black color grid points on P1. However, after the relaxation for green color
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grid points, P1 needs to send the new calculated solution at green color grid points

on its boundary to P2 because P2 needs these results to calculate the new solutions

for red color grid points. By using the same updating method, there is another

communication between P1 and P2 for yellow and red grid points. So, the total

message passing between two processors for each relaxation is two. For the above

two relaxation schemes, the total amount of data that are transfered between two

processors are the same, but the second scheme is better than the first one because

it needs fewer number of message passing.

6.2 Parallelization for 3D Convection Diffusion Equation using Multi-

color Scheme

For the convection-diffusion equations, It is well known that the relaxation direc-

tion has a strong influence on the convergence of the lexicographic Gauss-Seidel type

methods when the convection-diffusion equation represents strong convection in a

particular direction. The direction of the relaxation should generally follow the con-

vection direction, otherwise the convergence could be seriously deteriorated. When

the convection direction is unknown, it is important to use robust methods whose

convergence does not strongly depend on the convection direction.

The Jacobi iterative method for solving 3D convection-diffusion equation can be

fully parallized but the drawback is that when it is used as a smoother in the multigrid

method, it usually needs to be damped by a damping factor which is difficult to

estimate for most practical problems. Even with a damping factor obtained by trail

and error, the smoothing effect of the Jacobi relaxation is poor.

The lexicographical Gauss-Seidel relaxation has better smoothing effect than the

Jacobi method. For the parallelization and vectorization benefit, I may reorder the

grid points by dividing them into several colored groups so that the parallel relaxation

can be carried out within each group. Considering the fourth order compact finite
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difference schemes, in the 2D case, four colors are needed to decouple the 9-point

compact scheme. In the 3D case, as I mentioned in Chapter 4, there are two com-

putational schemes: 19-point scheme and 15-point scheme. For the 19-point scheme,

four colors are sufficient to completely decouple the 3D grid points [27] as in Fig. 6.3.

Note that updating a red point needs the values of 2 nearest and 4 next nearest grid

point marked with each of the other three colors. For 19-point scheme, all grid points

with the same color can be updated simultaneously on parallel computers.

z

y

x

Figure 6.3: Illustration of decoupled four color grid for 19-point computational scheme
of 3D problem.

For the 15-point scheme, it has been shown that the computational grid can be

decoupled with only two colors [26] as in Fig. 6.4. I can see that each red color grid

point is connected by 14 black color grid points. Therefore, two red-black relaxation

sweeps will update the entire grid for 3D discretized grids, while the four color schemes

needs four relaxation sweeps to update the whole grids.
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Figure 6.4: Illustration of decoupled two color grid for 15-point computational scheme
of 3D problem.

In this dissertation, I prefer the four-color 19-point scheme because I have learned

from chapter 4 that when Reynolds number becomes huge, the magnitude of the con-

vection coefficient affects the order of accuracy inversely and the 15-point scheme is

degraded worse than the 19-point scheme. In addition, the four-color Gauss-Seidel

relaxation also leads to highly vectorizable and parallelizable solvers. Efficient vec-

torization is obtained since relaxation on grid points with the same color no longer

contains vector feedback dependencies [7]. The computations are performed in a num-

ber of parallel operations equal to the number of independent colors. In addition to

the gains in parallelization and vectorization, practical experience showed that bet-

ter convergence and smoothing properties are usually obtained with multiple color

ordering [7].
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6.3 Numerical Results

All the codes were implemented and tested on the Lipscomb HPC Cluster at the

University of Kentucky. Each node is a Intel Xeon X5650 (Westmere) with 2.66GHz

and 36GB shared memory. The code is written in standard Fortran 77 and is run in

double precision. Parallelization is achieved by using OpenMP parallel derivatives to

the loops in relaxation and residual computation procedure.

I tested two 3D convection-diffusion equations using 19 point computational stencil

with multiscale multigrid method. I first compare the numerical results from standard

point Gauss-Seidel relaxation method and four-color Gauss-Seidel relaxation scheme.

Then I compare the performance for single and multiple processors. The computation

is terminated when the norm of correction vector is below the stopping criteria (10−10).

The domain Ω for the two test problems I solved was chosen as the unit cube (0, 1)3.

6.3.1 Test Problem 1

For the first test problem, I consider the following 3D convection-diffusion equation



































u(x, y, z) = cos(4x+ 6y + 8z),

p(x, y, z) = Re sin y sin z cosx,

q(x, y, z) = Re sin x sin z cos y,

r(x, y, z) = Re sin x sin y cos z.

This problem has variable coefficients and the constant Re represents the magnitude

of the convection coefficients and simulates the Reynolds number in a flow simulation.

The Dirichlet boundary conditions and the forcing term f are set to satisfy the exact

solution.

I tested the first problem using multiscale multigrid method to achieve sixth order

accuracy. Both the four color relaxation scheme and the standard point relaxation
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scheme have been tested. The numerical results are listed in Table 6.1.

Table 6.1: Comparison of lexicographical Gauss-Seidel relaxation and four-color
Gauss-Seidel relaxation.

Lexicographical Gauss-Seidel Four Color Gauss-Seidel
n iter error iter error
16 (12,13),46 6.13e-5 (10,11),46 6.13e-5
32 (13,12),47 1.40e-6 (11,11),47 1.40e-6
64 (12,12),44 2.56e-8 (11,10),44 2.55e-8
128 (12,11),40 4.61e-10 (10,10),40 4.60e-10

I noted that both schemes can achieve the comparable accuracy of the computed

solutions, but the four-color Gauss- Seidel relaxation scheme cost less CPU time for

every case. For the number of iterations, I mentioned in previous section that better

convergence and smoothing properties are usually obtained by multicolor relaxation

scheme. The numerical results in Table 6.1 is a good support because for every

n, the number of iterations by using four-color Gauss-Seidel is less than that from

lexicographical Gauss-Seidel scheme. A graphic comparison is shown in Fig. 6.5.
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Figure 6.5: Comparison of number of iterations for lexicographical and four-color
Gauss-Seidel schemes .

The CPU costs and the number of iterations with multiple processors is compared
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in Table 6.2 with different meshsizes and a fixed Re = 10. I noted that from one pro-

cessor (similar to serial computation) to eight processors, I keep the same convergence

rate. The CPU costs decrease when the number of processors increases. However, the

speedup for Problem 1 using different number of processors are not very impressive.

When n = 128, the speedup with two processors is 1.27 and it is 1.91 when I choose

eight processors. The speedup is lower than the results from Zhang’s paper [78] be-

cause I use multiscale multigrid method which needs additional computation like the

higher order interpolation between Ω2h and Ωh grids as well as the operator based

interpolation procedure to approximate the sixth order solutions. These procedures

have not been parallelized.

When the Re is increased to 100, the numerical results are listed in Table 6.3.

I can see that the number of iterations is affected by the higher Reynolds number

because it costs more iterations to converge. I point out that the speedup with 8

processors and n = 128 is 2.44 which is better than that from Table 6.2. For better

understanding, I also provide the graphic showing the speedup of different number of

processors as in Fig. 6.6 and Fig 6.7.

Table 6.2: Multiprocessors CPU costs and number of iterations for Problem 1 with
different meshsizes and Re = 10.

n=32 n=64 n=128
CPU iter CPU iter CPU iter

1 processor 0.267 (13,12),47 2.237 (12,12),44 18.701 (12,11),40
2 processors 0.212 (13,12),47 1.723 (12,12),44 14.645 (12,11),40
3 processors 0.187 (13,12),47 1.369 (12,12),44 12.279 (12,11),40
4 processors 0.154 (13,12),47 1.263 (12,12),44 10.541 (12,11),40
8 processors 0.146 (13,12),47 1.104 (12,12),44 9.789 (12,11),40
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Table 6.3: Multiprocessors CPU costs and number of iterations for Problem 1 with
different meshsizes and Re = 100.

n=32 n=64 n=128
CPU iter CPU iter CPU iter

1 processor 0.513 (21,25),52 4.519 (25,25),52 36.571 (25,24),48
2 processors 0.316 (21,25),52 3.241 (25,25),52 27.139 (25,24),48
3 processors 0.274 (21,25),52 2.611 (25,25),52 19.889 (25,24),48
4 processors 0.229 (21,25),52 2.271 (25,25),52 16.430 (25,24),48
8 processors 0.216 (21,25),52 1.962 (25,25),52 15.101 (25,24),48
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Figure 6.6: Comparison of CPU costs for different number of processors for Problem
1 with Re = 10 .

6.3.2 Test Problem 2

For test problem 2, I chose the constant coefficient problems as











u(x, y, z) = x2 + y2 + z2,

p(x, y, z) = q(x, y, z) = r(x, y, z) = Re.

I first tested Re = 10 then I increase the Re to be 100. The numerical results are

in Table 6.4, Table 6.5, Fig. 6.8 and Fig. 6.9.

Once again, the convergence rate is the same for different number of processors.
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Figure 6.7: Comparison of CPU costs for different number of processors for Problem
1 with Re = 100 .

When Re increases the number of iterations increased because the problems is con-

vection dominated one may keep the grid independent convergence by using line

relaxation and plane relaxation method. However, these relaxation methods need

new techniques to achieve efficient parallelism.

Table 6.4: Multiprocessors CPU costs and number of iterations for Problem 2 with
different meshsizes and Re = 10.

n=32 n=64 n=128
CPU iter CPU iter CPU iter

1 processor 0.307 (16,16),6 2.627 (16,15),11 20.172 (15,14),20
2 processors 0.231 (16,16),6 1.934 (16,15),11 15.033 (15,14),20
3 processors 0.173 (16,16),6 1.487 (16,15),11 11.801 (15,14),20
4 processors 0.136 (16,16),6 1.211 (16,15),11 9.931 (15,14),20
8 processors 0.127 (16,16),6 1.063 (16,15),11 8.693 (15,14),20

6.4 Concluding Remarks

I studied the parallelization and vectorization potential of the Gauss-Seidel relaxation

by partitioning the grid space with four colors. It was argued by Bandy [7] that eight
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Table 6.5: Multiprocessors CPU costs and number of iterations for Problem 2 with
different meshsizes and Re = 100.

n=32 n=64 n=128
CPU iter CPU iter CPU iter

1 processor 0.665 (30,37),8 7.004 (31,45),12 61.426 (45,47),16
2 processors 0.483 (30,37),8 5.003 (31,45),12 46.127 (45,47),16
3 processors 0.347 ((30,37),8 3.843 (31,45),12 34.412 (45,47),16
4 processors 0.292 (30,37),8 3.062 (31,45),12 27.008 (45,47),16
8 processors 0.260 (30,37),8 2.632 (31,45),12 23.131 (45,47),16
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Figure 6.8: Comparison of CPU costs for different number of processors for Problem
2 with Re = 10 .

colors are needed to decouple the grid points if all 27 points of the unit cubic grid

are used in a 3D finite difference scheme. Our compact scheme is truly advantageous

in the sense that I am able to reduce the number of stencil points by a quarter and

reduce the number of necessary colors by a half.

Our test problems include both constant and variable coefficients with different

Reynolds numbers. The numerical results show that the parallelized and the sequen-

tial implementation have the same convergence rate and the accuracy of the computed

solutions.
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Figure 6.9: Comparison of CPU costs for different number of processors for Problem
2 with Re = 100 .
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Chapter 7

Conclusion and Future Work

This dissertation presents my research work on building efficient and scalable com-

putational framework to solve partial differential equations. Our work involves high

order discretization of partial differential equations, efficient solver for discretized

linear systems, and mathematical verifications. In this chapter, I summarize my

dissertation work and present my future research plan.

7.1 Research Accomplishments

Partial differential equations (PDEs) are widely used to model many computational

science and engineering and industry (CSEI) problems. My dissertation concerns the

development of high order compact finite difference discretization schemes and scal-

able linear system solvers for achieving fast and high resolution numerical solution of

PDEs. It has been known that the two main tracks in developing high order com-

pact difference schemes, the implicit schemes [32] and the explicit schemes [24], have

their own advantages and disadvantages. The major advantage of implicit schemes

is that they can be used to solve many types of PDEs without major modifications.

However, the approximations of the first and second derivatives are unnecessary for

some applications and it has been proved in [82] that some implicit schemes may

produce nonphysical oscillations. In contrary, the explicit schemes approximate the

PDEs directly and have additional advantage to suppress the nonphysical numerical
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oscillations. However, this class of high order compact schemes become more compli-

cated to develop in higher dimensions. As far as I know, there is no existing explicit

compact scheme on a single scale grid that is higher than the fourth order accuracy.

In response to this gap, I developed sixth order compact difference schemes for solv-

ing different PDEs using multiscale multigrid method, operator based interpolation,

multiple coarse grid computation, and W-cycle multiscale multigrid method.

New Sixth Order Compact Schemes for 2D/3D PDEs

I developed a new sixth order compact finite difference scheme which is based on

the nine-point fourth order computational stencil on two scale grids. By using the

Richardson extrapolation technique on two grids with different scales, I computed

the sixth order solution on the coarse grid. Then the sixth order coarse grid so-

lution was interpolated to the corresponding fine grid points as the initial value to

approximate the sixth order solution for other fine grid points. Based on this idea,

different operator-based interpolation algorithms are presented in chapters 2, 3 and

4 to approximate the sixth order fine grid solution for different types of PDEs.

Anisotropic and Convection Dominated Problems

Multigrid method is among the fastest and most efficient iterative methods for solving

many types of PDEs. However, standard multigrid method may fail to achieve op-

timal grid-independent convergence rate for convection diffusion equation with high

Reynolds number and Poisson equation that has anisotropic discrete operators. In

Chapter 2, I used alternating line relaxation scheme to treat the 2D anisotropic

Poisson equations, which solved the problems with less iterations and better grid

independent convergence rate compared with point relaxation scheme. For 2D and

3D convection dominated convection-diffusion equations, the high Reynolds numbers

affect the solution accuracy and the convergence rate inversely. I conducted the
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mathematical analysis to prove that the computed solutions from the fourth order

discretization will be degraded to second order if the Reynolds number is bigger than

a certain magnitude. To treat such problems I used residual scaling techniques to-

gether with alternating line relaxation and plane relaxation schemes to solve the 2D

and 3D equations, respectively.

V-cycle Based Multiscale Multigrid Method

For solving the large sparse linear systems arising from discretization, I developed a

multiscale multigrid method. The multiscale multigrid method is similar to the full

multigrid method, but it does not start from the coarsest level. It is a V-cycle based

multiscale multigrid method, which contains three independent V-cycle procedures

on three grids with different scales. The major advantage of such multiscale multigrid

method is that it has an optimal computational cost similar to that of a full multigrid

method and can bring us the converged fourth order solutions on both the Ω2h and

Ωh.

Multiple Coarse Grid Computation

In general, a fine grid in d-dimensional space can be easily coarsened into 2d coarse

grids which can be used in the parallel superconvergent multigrid method to speed up

the convergence. But this idea has never been used to increase the order of solution

accuracy for the fine grid solution. For both 1D and 2D problems, I derived the fourth

order computational stencil for each coarse grid and solve these coarse grid problems

independently. Therefore, these fourth order coarse grid solutions can cover every fine

grid point, and the standard Richardson extrapolation can be used for every fine grid

point to approximate the sixth order solution without operator based interpolation.

This idea has a very good potential to be used in parallel machines.
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W-cycle Based Multiscale Multigrid Method

Since the multilevel grids are already available for geometric multigrid method, the

primary goal of the multiscale multigrid method is to use the existing multilevel grids

to solve the problem with better solution accuracy than that computed from the

standard geometric multigrid method, which only accelerates the convergence. In

order to further using this advantage of the geometric multigrid method, I developed

a W-cycle multiscale multigrid method that can approximate the sixth order solutions

more accurate than the V-cycle based multiscale method and converge faster. Our

improved W-cycle multiscale multigrid method modified part of the standard W-cycle

multigrid method to solve both the fine grid and the coarse grid solutions. In addition,

it integrated the Richardson extrapolation technique in each cycle which can increase

the order of accuracy and speed up the convergence.

Parallel Multiscale Multigrid Method using Multicolor Relaxation

Our goal is to develop a new sixth order parallel solver that can be used to solve many

types of PDEs. The first step is to use OpenMP to develop an parallel multiscale

multigrid method in shared memory computers. In order to achieve good parallelism,

I performed multicolor Gauss-Seidel relaxation in multigrid method. The numerical

results showed that the parallel multicolor Gauss-Seidel method has the same conver-

gence rate as the sequential algorithm. However, since the multicolor scheme is based

on the point relaxation scheme and it is not efficient for solving convection-diffusion

equation with very huge Reynolds numbers, one can provide a new parallel multiscale

multigrid method by using line relaxation or plane relaxation.

7.2 Future Work

Some fundamental work has been done to build the numerical computational frame-

work for solving large scale PDEs in many CSEI applications. However, my research
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work is just the first step in developing a useful model that can be applied to real-

world problems. In the near future, I will continue my research on problems like

non-rectangular domains, solutions requiring mesh adaptation, discontinuous coeffi-

cients or forcing, time-dependent PDEs, etc. However, my first plan for future work

is in the following.

More Efficient and Practical Computational Framework

It is worth pointing that our solution method can be applied to solve general 2D/3D

convection-diffusion equations with Dirichlet boundary conditions, but there is still a

lot of work that needs to be done to develop a useful method that can be applied to

real-world problems. For example, if a problem involves a derivative boundary con-

ditions such as Neumann boundary conditions, a one-sided finite difference approx-

imation for the derivative can be used [46]. For PDEs with nonsmooth coefficients,

the multigrid method converges slowly when the coefficients exhibit large jumps in

discontinuity [2, 9, 16] or large oscillations [19, 60], and the benefits of employing

high-order compact schemes and Richardson extrapolation are mostly or completely

lost. Special techniques like semicoarsening, the algebraic multigrid method, and fre-

quency decomposition [18, 28] can be used to solve these types of PDEs. For PDEs

with irregular domains, finite element methods may be more suitable to handle these

cases. Special finite difference discretization methods can also be used, like Sun’s

fourth order scheme on face-centered cubic grids [58]. I am also concerned with some

problems in the field of computational fluid dynamics exhibiting local solution be-

haviors that require higher-level resolution in one area of the domain than in others.

Higher-level resolution may be computed by using local mesh refinement techniques

[61, 77].

Parallel Multiscale Multigrid using Multiple Coarse Grid Computation
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For very large scale problems in realistic applications, the number of unknowns is at

least in the order of millions. The load of computing is very heavy for some 2D appli-

cations with fine mesh, and even more burdensome for 3D applications. It may take a

single workstation or PC hours, days, or weeks for a computation task. My first plan

is to develop parallel numerical linear algebra library for high performance solution

of large sparse linear systems arising from systems of PDEs frequently encountered

in CSEI modeling and simulation applications. I will parallelize the code through

message passing interface (MPI) libraries by the method of domain decomposition to

cut the solution time. The parallel code may be run on super computers or Linux

clusters.

High Performance Preconditioning

In a joint research work with Dr. Jeonghwa Lee and Jun Zhang, we have developed

an efficient and scalable preconditioned iterative method for solving large dense linear

systems [69, 70], where the coefficient matrix is a complex valued matrix arising from

discretizing the integral equation of electromagnetic scattering. For some scattering

structures, the coefficient matrix can be very ill conditioned and the standard block

diagonal preconditioner based on LU factorization makes the Krylov iterative meth-

ods converge more slowly or even diverge. To handle this problem, I apply stabilized

singular value decomposition (SSVD) to each diagonal block to improve the stability

and efficiency of the block diagonal preconditioner. The SSVD preconditioner can

solve some scattering problem that cannot be solved by the standard block diago-

nal preconditioner and provide us a good structure to parallelize the code. I plan

to continue my research in designing robust preconditioners for both the sparse and

dense linear systems. In particular, I will focus on employing the multilevel precondi-

tioned Krylov subspace method to solve convection-diffusion equations. Furthermore,

I would like to collaborate with experts in electromagnetics to analyze and study some
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other types of scattering structures and build efficient preconditioners for these real

cases.
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