
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2011

CHECKPOINTING AND RECOVERY IN DISTRIBUTED AND CHECKPOINTING AND RECOVERY IN DISTRIBUTED AND

DATABASE SYSTEMS DATABASE SYSTEMS

Jiang Wu
University of Kentucky, smile_926@hotmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Wu, Jiang, "CHECKPOINTING AND RECOVERY IN DISTRIBUTED AND DATABASE SYSTEMS" (2011).
Theses and Dissertations--Computer Science. 2.
https://uknowledge.uky.edu/cs_etds/2

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It has
been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained and attached hereto needed written

permission statements(s) from the owner(s) of each third-party copyrighted matter to be

included in my work, allowing electronic distribution (if such use is not permitted by the fair use

doctrine).

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive

and make accessible my work in whole or in part in all forms of media, now or hereafter known.

I agree that the document mentioned above may be made available immediately for worldwide

access unless a preapproved embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s dissertation

including all changes required by the advisory committee. The undersigned agree to abide by

the statements above.

Jiang Wu, Student

Dr. Dakshnamoorthy Manivannan, Major Professor

Dr. Raphael A. Finkel, Director of Graduate Studies

CHECKPOINTING AND RECOVERY IN DISTRIBUTED AND DATABASE
SYSTEMS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

Department of Computer Science
at the University of Kentucky

By
Jiang Wu

Lexington, Kentucky

Director: Dr. Dakshnamoorthy Manivannan, Professor of Computer Science

Lexington, Kentucky

2011

Copyright c© Jiang Wu 2011

ABSTRACT OF DISSERTATION

CHECKPOINTING AND RECOVERY IN DISTRIBUTED AND DATABASE

SYSTEMS

A transaction-consistent global checkpoint of a database records a state of the
database which reflects the effect of only completed transactions and not the re-
sults of any partially executed transactions. This thesis establishes the necessary and
sufficient conditions for a checkpoint of a data item (or the checkpoints of a set of
data items) to be part of a transaction-consistent global checkpoint of the database.
This result would be useful for constructing transaction-consistent global checkpoints
incrementally from the checkpoints of each individual data item of a database. By
applying this condition, we can start from any useful checkpoint of any data item and
then incrementally add checkpoints of other data items until we get a transaction-
consistent global checkpoint of the database. This result can also help in designing
non-intrusive checkpointing protocols for database systems. Based on the intuition
gained from the development of the necessary and sufficient conditions, we also de-
veloped a non-intrusive low-overhead checkpointing protocol for distributed database
systems.

Checkpointing and rollback recovery are also established techniques for achiev-
ing fault-tolerance in distributed systems. Communication-induced checkpointing
algorithms allow processes involved in a distributed computation take checkpoints
independently while at the same time force processes to take additional checkpoints
to make each checkpoint to be part of a consistent global checkpoint. This thesis
develops a low-overhead communication-induced checkpointing protocol and presents
a performance evaluation of the protocol.

KEYWORDS: Distributed Systems, Distributed Database Systems, Communication-
induced Checkpointing, Consistent Global Checkpoints, Transaction-consistent Global
Checkpoints

Jiang Wu

01/12/2012

CHECKPOINTING AND RECOVERY IN DISTRIBUTED AND DATABASE
SYSTEMS

By

Jiang Wu

Dr. Dakshnamoorthy Manivannan

Director of Dissertation

Dr. Raphael A. Finkel

Director of Graduate Studies

01/12/2012

ACKNOWLEDGEMENTS

It is a pleasure to thank those who made this thesis possible. I would never have been

able to finish my dissertation without the guidance of my committee members, help

from friends, and support from my family.

First of all, I would like to express my deepest gratitude to my advisor, Dr.

Dakshnamoorthy Manivannan, for his excellent guidance, patience, caring, and lead-

ing/funding me to do research in fault tolerance in distributed systems. Dr. Mani-

vannan has been a great mentor on every account, and his broad knowledge and

constructive suggestions to this dissertation are sincerely appreciated.

I would like to thank the committee members Dr. Mukesh Singhal, Dr. Zongming

Fei and Dr. YuMing Zhang for their helpful comments on my dissertation.

Also, I would like to thank Yi Luo who helped me finding papers and reviewed

the simulation codes.

Thanks also go to all members in the Laboratory for Advanced Networking for

their kind help.

Finally I would like to thank my family members. I need to thank my parents for

giving their continuous support and encouragement. Most importantly, I would like

to thank my wife for her great patience during my study at University of Kentucky.

iii

Contents

Acknowledgements iii

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Checkpointing in Distributed Database Systems 2

1.1.1 Background . 2
1.1.2 Motivation . 8

1.2 Checkpointing Distributed Computations 10
1.2.1 Background . 10
1.2.2 Motivation . 19

1.3 Contribution of the Thesis . 20
1.4 Organization of the Dissertation . 21

2 Necessary and Sufficient Conditions for Transaction-Consistent Global
Checkpoints of a Distributed Database System 22
2.1 Serialization Graphs . 23
2.2 Necessary and Sufficient Conditions 29

2.2.1 Applications . 44
2.3 Conclusion . 45

3 A Non-intrusive Checkpointing Protocol for Distributed Database
Systems 47
3.1 Proposed Protocol . 49

3.1.1 Basic Idea Behind the Protocols of Baldoni et al. 49
3.1.2 Proposed Checkpointing Protocol 51

3.2 Performance Analysis . 52
3.2.1 Performance Analysis . 52
3.2.2 Simulation Results . 57

3.3 Conclusion . 60

4 An Enhanced Model-based Communication-Induced Checkpointing
Protocol for Distributed Systems 64
4.1 An Example Showing Our Motivation 65
4.2 The Sufficient Condition . 67

iv

4.3 Relation Between Existing Model-based Checkpointing Protocols . . . 72
4.4 An Enhanced Model-based Checkpointing Protocol 74
4.5 Simulation Results . 84
4.6 Conclusion . 86

5 Conclusion and Future Work 89
5.1 Research Accomplishments . 89
5.2 Future Work . 90

Bibliography 96

Vita 101

v

List of Tables

3.1 Proposed Checkpointing Protocol . 61
3.2 Recovery Protocol Based on the Checkpointing Protocol 62
3.3 Two Sample T-test Result . 63

vi

List of Figures

1.1 Visible doubling . 15
1.2 How strong visible doubling helps in reducing forced checkpoints . . . 15
1.3 Z − cycle . 17

2.1 Local serialization graph induced by transactions {T9, T3, T4} on data
item x1. 26

2.2 Local serialization graph induced by transactions {T2, T3, T7, T8} on
data item x2. 26

2.3 Local serialization graphs induced by the transactions on the data
items x3, x4, and x5. 27

2.4 Global serialization graph constructed from local serialization graphs. 27
2.5 Illustration of proof for case 1 . 39
2.6 Illustration of proof under case 2 . 43

3.1 Recovery cost . 54
3.2 Simulation results (a) basic checkpoints (b) forced checkpoints 58
3.3 Simulation results (a) total checkpoints (b) average recovery cost . . . 59

4.1 Example showing unnecessary forced checkpoints induced by the pro-
tocol in [34]. 65

4.2 Proof for case A . 69
4.3 Illustration of proof for case B.2 . 71
4.4 Illustration of proof for case B.3 . 71
4.5 Essential components of Baldoni’s and Garcia’s protocols 74
4.6 Relation between some existing model-based communication-induced

checkpointing protocols . 74

4.7 Case send(γ′.f irst)
hb
→ receive(m′) 77

4.8 Case receive(m′)
hb
→ send(γ′.f irst) 77

4.9 Case i = j . 78
4.10 Case i 6= j . 78
4.11 Case (3.1) . 80
4.12 Case (3.3) . 81
4.13 Example showing matrix causal . 81
4.14 The results of our simulation for 50 random distributed computations

each of which consisted of 8 processes (P = 8), exchanged 1500 mes-
sages and took basic checkpoints with parameter IN=25-30 86

vii

4.15 The results of our simulation for 50 random distributed computations
each of which consisted of 15 processes, exchanged 1500 messages and
took basic checkpoints with parameter IN=25-30 87

4.16 The results of our simulation for 50 random distributed computations
each of which consisted of 20 processes, exchanged 1600 messages and
took basic checkpoints with parameter IN=40-40 88

4.17 The results of our simulation for 60 random distributed computations
each of which consisted of 25 processes, exchanged 1800 messages and
took basic checkpoints with parameter IN=30-50 88

5.1 Relation of all algorithms including our future work 93

viii

Chapter 1

Introduction

This thesis establishes the necessary and sufficient conditions for a checkpoint of

a data item (or the checkpoints of a set of data items) to be part of a transaction-

consistent global checkpoint of the database, and, based on these conditions, develops

a checkpointing protocol for distributed database systems. This thesis also develops

a communication-induced checkpointing protocol that reduces the forced checkpoints

taken compared to some existing checkpointing protocols.

Databases are the backbone of all information systems. Databases have several

other applications such as webpage development, electronic commerce and cloud com-

puting. Implementing mechanisms for handling failures in database systems is critical

for the success of any establishment. To cope with failures, the state of the database

has to be saved in stable storage from time to time. A stable storage means non-

volatile disk storage that can survive process or data item failures.

A distributed system consists of a collection of autonomous computers, connected

by a communication network. A distributed computation is a set P = {P1, P2, ...Pn}

of processes P1, P2, ...Pn running on a set of computers in a distributed systems trying

to solve a single problem. If the states of the processes involved in the computation

are saved periodically, when a failure occurs, they can be restarted from an interme-

diate consistent state (saved in stable storage) instead of restarting from its initial

state. This reduces the amount of re-computation for long-running, time-critical ap-

plications. In this dissertation, we address issues related to fault-tolerance in database

1

systems as well distributed systems.

Next, we present the necessary background for understanding the dissertation, as

well as motivation for our research.

1.1 Checkpointing in Distributed Database Systems

1.1.1 Background

We use a model of the distributed database system similar to the model presented

by Pilarski et al. [11]. In this model, a distributed database consists of a finite set

of data items residing at various sites. A data item is the smallest unit of data

accessible to transactions. Sites exchange information via messages transmitted on a

communication network, which is assumed to be reliable. Message transmission time

is unpredictable but finite. In addition, the data items at each site are controlled by

a data manager (DM). We assume each data item x has a data manager DMx, for

simplicity. Each DMx is responsible for controlling access to the data item x and

taking checkpoints of that data item periodically.

A transaction is a sequence of read and write operations on the data items in the

database and terminates with a commit or an abort operation. Each transaction is

managed by an instance of the transaction manager (TM) that forwards its operations

to the scheduler which schedules transactions by using a specific concurrency control

protocol. The TM with the help of the scheduler is responsible for the scheduling of

the transactions in such a way that the integrity of the database is maintained.

A concurrency control algorithm ensures the scheduling of read and write op-

erations issued by transactions in such a way that the execution of transactions is

strict and serializable. The strictness property states that no data items may be read

or written until the transaction that currently writes it either commits or aborts.

Therefore a transaction actually writes a data item at its commit point atomically. A

schedule is serial if the operations belonging to each transaction in the schedule appear

2

together in the schedule [1]. A schedule is serializable if the schedule has the effect

equivalent to a schedule produced when transactions are run serially in some order.

Ensuring strictness and serialization guarantees the integrity of the database as well

as efficient execution of transactions in a distributed database system by promising

atomicity, consistency, isolation, and durability, referred to as ACID properties [1].

• Atomicity: Each transaction is executed in its entirety, or not at all executed.

• Consistency Preservation: Execution of a transaction in isolation (that is, with

no other transaction executing concurrently) preserves the consistency of the

database.

• Isolation: Even though multiple transactions may execute concurrently, the

system guarantees that for every pair of transactions Ti and Tj, it appears to Ti

that either Tj finished execution before Ti started, or Tj started execution after

Ti finished. Thus, each transaction is unaware of other transactions executing

concurrently in the system.

• Durability: After a transaction completes successfully, the changes it has made

to the database persist, even if there are system failures.

In order to maintain ACID requirements and achieve good performance, a proper

schedule of transactions in which the operations of various transactions are interleaved

as much as possible needs to be determined. Given a schedule, a directed graph,

referred to as precedence graph [2] or serialization graph [1], can be constructed to

illustrate the dependency of all the transactions running in the database system. The

serialization graph serves as an important tool to analyze transaction processing in

distributed database systems.

In our model, each data item is checkpointed by a local transaction periodically.

Before a transaction takes a checkpoint of a data item it obtains an exclusive lock on

3

the data item and hence no other transaction can be accessing that data item while

it is checkpointed. The state of a data item changes when a transaction accesses

that data item for a write operation. Each checkpoint of a data item is assigned a

unique sequence number. We assume that the database consists of a set of n data

items X = {xi | 1 ≤ i ≤ n}. In addition, we denote by Cki
i the checkpoint of xi

with sequence number ki. The set of all checkpoints of data item xi is denoted by

Ci = {C
ki
i | ki : ki ≥ 0}. The initial state of data item xi is represented by checkpoint

C0
i and a virtual checkpoint Cvirtual

i represents the last state reached by xi after

termination of all transactions accessing data item xi. To minimize checkpointing

overhead, a data item is checkpointed only if its state has changed since it was last

checkpointed. That is, after a data item is checkpointed, it is not checkpointed again

until at least one other transaction has accessed and changed that data item.

Let T = {Ti | 1 ≤ i ≤ m} be the set of all transactions that access the database.

In order to make the analysis of the relationship between checkpoints of various data

items simple, we assume that each checkpoint of a data item xi is taken by a special

checkpointing transaction. We denote by T
C

ki
i

the checkpointing transaction that

takes checkpoint Cki
i of data item xi. In order to maintain atomicity of transactions,

T
C

ki
i

is the local transaction which is required to be scheduled to access data item xi

when there are no other transactions accessing the data item, enforced by issuing an

exclusive lock. The set of checkpointing transactions that produce the checkpoints

Ci is denoted by TCi
and the set of all checkpointing transactions of all data items

in the database is denoted by TC.

A global checkpoint of the database is a set S = {Cki
i | 1 ≤ i ≤ n} of local

checkpoints consisting of one checkpoint for each data item in the database. The

set of checkpointing transactions that produce the global checkpoint S is denoted by

ST = {T
C

ki
i

| 1 ≤ i ≤ n}. We use Cki
i and T

C
ki
i

interchangeably. Sometimes, when

we say a checkpoint of a data item we mean the checkpointing transaction that takes

4

that checkpoint.

Each regular transaction is a partially ordered set of read/write operations (oper-

ations are partially ordered because two adjacent read operations in a transaction are

not comparable and may be interchanged without affecting any result). A checkpoint-

ing transaction consists of only one operation (namely the checkpointing operation),

an operation that requires mutually exclusive access to the data item. Let Ri(xj)

(respectively, Wi(xj)) denote the read (respectively, write) operation of Ti on data

item xj ∈ X and O
C

kj
j

(xj) denote the checkpointing operation of T
C

kj
j

on data item

xj . A schedule ε over T
⋃
TC is a family of disjoint sets of partially ordered opera-

tions of transactions in T
⋃
TC on the data items (one set for each data item) [11].

Let ε(xj) consist of all read, write and checkpointing operations on xj of transac-

tions in T
⋃

TC. We denote by <xj
the partial order induced by all read, write, and

checkpointing operations on xj by the schedule ε over T
⋃

TC. Given a schedule ε

over T
⋃
TC, the relation <T between transactions in T

⋃
TC with respect to the

schedule ε is defined as follows:

1) Ti <T Tj ⇔ (i 6= j) ∧ (∃xk ∈ X : (Ri(xk) <xk
Wj(xk)) ∨ (Wi(xk) <xk

Wj(xk)) ∨ (Wi(xk) <xk
Rj(xk))).

2) Ti <T T
C

kj
j

⇔ (Wi(xj) <xj
O

C
kj
j

(xj)) ∨ (Ri(xj) <xj
O

C
kj
j

(xj)).

3) T
C

ki
i

<T Tj ⇔ (O
C

ki
i

(xi) <xi
Wj(xi)) ∨ (O

C
ki
i

(xi) <xi
Rj(xi)).

The concurrency control protocol ensures that a schedule of transactions running

in the distributed database system is serializable. One important kind of serialization,

called conflict serializability (CSR) [1, 4] is considered in this context. A schedule

ε ∈ CSR iff the relation <T is acyclic [4]. A serialization order of a set of transactions

with respect to a schedule ε over T is defined as a linear ordering of all the transactions

such that if Ti <T Tj (either Ti or Tj could be a checkpointing transaction), then Ti

5

must appear before Tj in the ordering. If ε ∈ CSR, there must exist a serialization

order for ε over T that is compatible with <T .

In a distributed database system, when a failure occurs, the data items should be

restored to a state which does not reflect the partial execution of any transaction,

called a transaction-consistent global checkpoint. Formal definition of a transaction-

consistent global checkpoint follows [11]:

Definition 1. A global checkpoint of a distributed database is said to be transaction-

consistent (tr-consistent or simply consistent, for short) with respect to the execution

of a set of transactions T if there exists a serialization order (which is an ordering

of transactions in T) σ1σ2 for an execution ε ∈ CSR of T such that the data item

states represented by the global checkpoint is the same as those read by a read-only

transaction TCP after all transactions in σ1 have finished execution and before any

transaction in σ2 has started execution.

Checkpointing and rollback recovery are well-known techniques for handling fail-

ures in distributed systems including distributed database systems. The checkpoint-

ing protocols for distributed database systems can be classified as log-oriented and

dump-oriented [13]. In the log-oriented approach, a dump of the database is taken

periodically and also a marker is saved at appropriate places in the log. When a fail-

ure occurs, the latest dump is restored and the operations on the log after the dump

was taken are applied to the dump until the next marker is reached to restore the

database to a consistent state. In this approach, proper positioning of the marker in

the log will result in restoring the database to a transaction-consistent global check-

point. Protocols belonging to this class include [14] and [15]. In the dump-oriented

approach, checkpointing is referred to as the process of saving the state of all data

items in the database (or taking a dump of the database) in such a way that it

represents a transaction-consistent global checkpoint of the database. The protocols

proposed in [26, 27, 28] take this approach. The basic idea behind the protocol in [26]

6

is to divide the transactions into two groups: those transactions that arrived before

and those that arrived after the checkpointing process. This protocol is non-intrusive

but requires a copy of the database stored temporarily. From the concurrency control

point of view, a protocol is intrusive means the protocol may intrude the normal

execution of transactions causing re-scheduling or delay. Due to concurrent arrival of

transactions, it may not be possible to decide whether a transaction has arrived before

or after the checkpointing transaction. Such transactions are allowed to access the

temporary copy while the checkpointing is in progress. Pu [27] uses coloring (white

and black) to distinguish data items that have started checkpointing from data items

that have not started checkpointing. Transactions accessing both white and black

data items have to be aborted or delayed in order to maintain consistency, which

increases transaction response time. Pilarski et al. [28] consider checkpoints as check-

point transactions, one for each data item. In addition, a checkpoint number (CPN)

is associated with each checkpoint. By comparing the CPN, forced checkpoints on

data items are taken in order to make every checkpoint useful. Protocols presented

in [26, 27] are coordinated protocols, in which one process initiates and coordinates

the checkpointing activity.

Pilarski et al. [11] formally define the dependency relation caused by transactions

among states of data items. They also analyze checkpointing in a distributed database

system by establishing a correspondence between consistent snapshots of distributed

computations in distributed systems and transaction-consistent checkpoints in a dis-

tributed database system. Moreover, they establish the sufficient conditions for a set

of checkpoints to be part of a transaction-consistent global checkpoint. However, they

do not establish the necessary and sufficient conditions for a set of checkpoints to be

part of a transaction-consistent global checkpoint. In this dissertation, we establish

the necessary and sufficient conditions for the checkpoints of a set of data items to

be part of a transaction-consistent global checkpoint of the database.

7

Recently, many researchers have focussed on fuzzy checkpointing protocols [10,

23, 24] that write dirty pages to disk and require transaction logs for reconstructing

a transaction-consistent state. Fuzzy checkpointing methods appear to be suitable

for in-memory databases (IMDB), which store the data in RAM and back it up

on the disk [12]. Fuzzy checkpointing does not obstruct the transaction processing

but requires an undo/redo log to bring the state of the database from an inconsistent

checkpoint back to a consistent state. Still, regular checkpointing approach is suitable

for database systems in which the entire database need not be loaded into memory,

and hence we focus on such databases only. The protocol proposed by Baldoni et

al. [5] uses a non-coordinated approach, in which no process initiates checkpointing

and each data item is checkpointed independently. Like the protocol of Pilarski et

al. [28], checkpoint numbers are used to implicitly synchronize checkpointing and

forced checkpoints are taken to prevent useless checkpoints. This protocol is fully

distributed but may incur a large number of forced checkpoints, depending on the ex-

ecution pattern of the transactions. Kumar et al. [9] present a performance evaluation

of some existing recovery protocols for database systems.

1.1.2 Motivation

As we mentioned earlier, a transaction-consistent global checkpoint records a state

of the database which reflects the effect of completed transactions only and not

the results of any partially executed transactions. A straightforward way to take

a transaction-consistent global checkpoint of a distributed database is to block all

newly submitted transactions and wait until all the currently executing transactions

finish and then take a checkpoint of the whole database. Such a checkpoint is guar-

anteed to be transaction-consistent, but this approach is intrusive and incurs large

latency. Saving (checkpointing) the state of each data item independently and peri-

odically without blocking any transaction (non-intrusive method), is more desirable.

8

However if each data item is checkpointed independently and periodically, we need

an algorithm to determine tr-consistent global checkpoints from the checkpoints of

individual data items. Moreover, when data items are checkpointed independently

without any coordination, some (or all) checkpoints of the data items may not be

part of any tr-consistent global checkpoint and hence such checkpoints are useless.

One of our goals is to develop the necessary and sufficient conditions for a check-

point of a data item (or a set of checkpoints of a set of data items) to be part of a

tr-consistent global checkpoint [59, 57]. The necessary and sufficient conditions can

be applied in a straightforward way to determine which checkpoints are useless; fur-

ther, it can be used to construct a tr-consistent global checkpoint starting from any

useful checkpoint of any given data item.

Among the non-intrusive checkpointing protocols for distributed database sys-

tems, communication-induced checkpointing protocols are fairly new protocols and

have potential to perform better than coordinated checkpointing protocols, since they

are non-intrusive and have low-overhead. In communication-induced checkpointing

protocols, basic checkpoints are taken independently and incrementally on each data

item. In addition, forced checkpoints are taken in order to prevent useless check-

points when information piggy-backed with commit operations of transactions satisfy

certain conditions. Each data item can take checkpoints in a fully-distributed man-

ner without any explicit coordination message. In addition, during recovery, each

data item knows exactly to which checkpoint it should roll back since such a protocol

guarantees the existence of a tr-consistent global checkpoint with the same sequence

number. Transaction response time does not degrade in distributed database systems

using such checkpointing protocols. Such checkpointing protocols also scale well since

no coordination is involved during checkpointing. Such protocols were first presented

in [5].

Like the protocol of Pilarski et al. in [28], protocols in [5] use checkpoint sequence

9

numbers to synchronize checkpointing. These protocols use ideas similar to the one

used in the index-based communication-induced checkpointing protocol proposed by

Manivannan and Singhal [33] for distributed systems. Due to the existence of trans-

actions that require operations on many data items, Protocol 1 in [5] may incur large

checkpointing overhead due to the large number of forced checkpoints. In this disser-

tation, we address this issue and develop a non-intrusive low-overhead checkpointing

and recovery protocol for distributed database systems.

1.2 Checkpointing Distributed Computations

1.2.1 Background

A distributed system is a set of computers connected by a communication net-

work. We model a distributed computation as a finite set P of n processes P =

{P1, P2, ..., Pn} running on a set of computers in a distributed system trying to ac-

complish a single task. We assume that each pair of processes is connected by a

reliable, asynchronous channel with unpredictable but finite transmission delays. If a

process fails it halts immediately without producing any erroneous result. This dis-

sertation assumes that the failure of processes involved in a distributed computation

follow the fail-stop model [16]. i.e., When a process fails it stops executing at the end

of the last instruction that it has completed successfully and the contents of volatile

storage are lost, but the contents of stable storage are preserved.

A process can have three types of events: internal, send and receive events. An

internal event does not involve any communication. When Pi executes the event

send(m) to Pj, it sends the message m to Pj . When Pj executes the event receive(m),

it simply receives the message m directed to Pj from some process Pi. All the events

of a distributed computation can be partially ordered with respect to the Lamport

”happened-before” [32] relation
hb
→, defined next.

10

Definition 2. The Lamport ”happened before” relation
hb
→ on the set of events

in a distributed computation is the transitive closure of the
hb
→ relation satisfying the

following three conditions:

1) If a and b are events of the same process and a comes before b, then a
hb
→ b.

2) If a is the event send(m) and b is the corresponding event receive(m), then

a
hb
→ b.

3) If a
hb
→ b and b

hb
→ c, then a

hb
→ c.

Given a distributed computation Ĥ, its associated Checkpoint and Communica-

tion Pattern (CCP), denoted as (Ĥ, CĤ), consists of the set of messages and the

set of local checkpoints in Ĥ . Usually we denote by Ci,x, the checkpoint of pro-

cess Pi with sequence number (or index number) x. The interval between Ci,x and

Ci,x+1, consisting of the sequence of events between these two checkpoints including

the checkpointing event Ci,x but excluding the checkpointing event Ci,x+1, is denoted

as Ii,x.

If a process involved in a distributed computation fails and rolls back to a pre-

vious checkpoint, other processes may have to roll back to a previous checkpoint to

maintain consistency. The set of checkpoints to which the processes involved in a

distributed computation can be rolled back after a failure must record states of all

the processes that could happen concurrently. A set C of checkpoints, one from each

process involved in the distributed computation consisting of n processes {P1, ..., Pn},

is globally consistent if and only if there is no message m from Pi to Pj (for any

i 6= j) whose receiving event has been recorded in the checkpoint Cj,y ∈ C but its

corresponding sending event has not been recorded in the checkpoint Ci,x ∈ C. The

set C itself is called a consistent global checkpoint of the distributed computation.

Using Lamport ”happened before” relation
hb
→, a consistent global checkpoint of a

distributed computation can be defined as follows.

11

Definition 3. A set S of checkpoints, one from each process involved in a distributed

computation, is called a consistent global checkpoint of the distributed computa-

tion if for any two checkpoints A,B ∈ S, A 6
hb
→ B.

Rollback-Dependency Trackability

A Checkpoint and Communication Pattern satisfies Rollback-Dependency Trackabil-

ity (RDT) if all rollback dependencies between local checkpoints are on-line trackable.

Specifically, if a process Pj rolls back to a checkpoint Cj,y, any other process Pi must

be able to determine the checkpoint Ci,x to which it has to roll back so that the

checkpoints to which all the processes roll back form a consistent global checkpoint.

RDT was introduced first by Wang [44]. There are a number of checkpointing proto-

cols that ensure RDT property which are characterized and summarized in [41]. An

important concept introduced in the study of protocols that ensure RDT property is

the concept of visible doubling, introduced by Baldoni et al. [35]. RDT property can

be stated in terms of Z-paths introduced by Netzer and Xu [7] and the idea of visible

doubling of Z-paths introduced by Baldoni et al. [35].

Definition 4. A Z-path from Ci,x to Cj,y is a sequence of messages ([m1, m2, ..., mq] :

q ≥ 1) such that,

1. Ci,x
hb
→ send(m1), m1 is sent by Pi;

2. for each i, 1 ≤ i ≤ q−1, we have: receive(mi) ∈ Ik,s∧send(mi+1) ∈ Ik,t∧s ≤ t;

3. mq is received by Pj and receive(mq)
hb
→ Cj,y;

A Z-path can also be defined between two checkpoint intervals. A Z-path from Ii,x

to Ij,y exists iff a Z-path exists from Ci,x to Cj,y+1. A Z-path is causal if the receiving

event of each message (except for the last one) in the sequence [m1, m2, ..., mq] happens

before the sending event of the next message in the sequence. A Z-path is non-causal

12

if it is not causal. A Z-path with only one message is trivially causal. For simplicity, a

causal Z-path is also called a causal path. In this dissertation, we use ζ to represent a

Z-path ζ = [m1, ..., mq] (also called a message chain). We denote by ζ.first (ζ.last)

to represent the first (last) message in the message chain. |ζ | denotes the number of

messages in the message chain ζ . In addition, if a message chain ζ consists of two

disjoint sub message chains ζ ′ and ζ ′′, ζ can also be represented as ζ ′′ + ζ ′ and ζ − ζ ′

is to represent ζ ′′. The following definitions are from Baldoni et al. [34, 35]:

Definition 5. If a and b are checkpoints or message chains, we say a is causally

concatenated to b, denoted as a ◦ b, if :

1) a = Ci,x, b = ζ and ∃ν ≥ 0 : send(ζ.first) ∈ Ii,x+ν; or

2) a = ζ, b = Ci,x and ∃ν > 0 : receive(ζ.last) ∈ Ii,x−ν; or

3) a = ζ, b = ζ ′ and receive(ζ.last)
hb
→ send(ζ ′.f irst).

Definition 6. A message chain ζ is non-causally concatenated to a message

chain ζ ′ in the checkpoint interval Ik,y, denoted as ζ
k,y
• ζ ′, if : (receive(ζ.last) ∈

Ik,y) ∧ (send(ζ ′.f irst) ∈ Ik,y) ∧ (send(ζ ′.f irst)
hb
→ receive(ζ.last)).

Definition 7. A causal path µ from Ii,x to Pj is prime if for every causal path µ
′

from Ii,x′ to Pj with x ≤ x′, receive(µ.last)
hb
→ receive(µ

′

.last).

Intuitively, a prime causal path from Ii,x to Pj is the first casual path to Pj that

includes the interval Ii,x in Pj’s causal past. Throughout this dissertation, we denote

byM(Ci,x, Pk) [34], the set of causal chains µ starting after Ci,x such that the recipient

of µ.last is Pk. As stated above, a causal chain µ is prime in M(Ci,x, Pk) iff there

does not exist another causal chain µ′ ∈ M(Ci,x, Pk) such that receive(µ′.last)
hb
→

receive(µ.last).

13

Definition 8. A PCM-path µ • m is a Z-path that is the non-causal concatena-

tion of a causal path µ and a single message m, where µ is prime and send(m)
hb
→

receive(µ.last) in the same checkpoint interval [35].

Definition 9. A Z-path from Ii,x to Ij,y is causally doubled if i = j ∧ x ≤ y or if

there exists a causal path µ from Ii,x′ to Ij,y′ where x ≤ x′ and y′ ≤ y [35].

Definition 10. A PCM-path µ •m is visually doubled if and only if it is causally

doubled by a causal path µ′ with receive(µ′.last)
hb
→ send(µ.last) [35].

A causal doubling of the PCM-path µ •m is visible to a process upon receiving

µ.last only if the doubling path µ′ belongs to the causal past of the sending event

of µ.last. A causally doubled PCM-path is not necessarily visibly doubled, but a

non-causally doubled one must be non-visibly doubled. Then a characterization of

RDT for online protocols based on causal history is stated in the following Theorem

proved in [35].

Theorem 1.2.1. A Checkpoint and Communication Pattern produced by a protocol

based only on causal history satisfies the RDT property if and only if all PCM-paths

are visibly doubled.

Based on the concept of visible doubling, we developed our model-based check-

pointing protocol. Even though visible doubling was introduced in the study of RDT ,

it helps in tracking communication patterns that can lead to Z-cycles. We are specif-

ically interested in a subset of it, called Strong Visible Doubling which is defined as

follows.

Definition 11. A PCM-path µ•m is strongly visibly doubled if it is causally dou-

bled by a causal path µ′ with receive(µ′.last)
hb
→ send(µ.last) and receive(µ′.last)

hb
→

receive(m).

14

P

µ

µ .lastµ −

µ .last

’µ .last
m

P1

P2

P3

4

P5

’

m

µ

µ .lastµ −

P3

P5

P4

P1

P2

’µ .last

µ .last’

(a) Strong visible doubling (b) Non-strong visible doubling

Figure 1.1: Visible doubling

µ

C

jP

iP

kP
k,yC

j,zC

m

m ’

j,z+1C

lP
l,bC

k,y+1C

m ’’ l,b+1C

γ

i,x

γ

C

jP

iP

kP
k,yC

j,zC

m

m ’

j,z+1C

lP
l,bC

k,y+1C

m ’’ l,b+1C

µ

i,x

(a) (b)

Figure 1.2: How strong visible doubling helps in reducing forced checkpoints

Figure 1.1(a) shows an example of strong visible doubling of the PCM-path µ•m

and Figure 1.1(b) shows an example of non-strong visible doubling of µ • m. The

reason we distinguish these two situations can be explained using Figure 1.2. In

Figure 1.2(a), the PCM-path µ •m′ is strongly visibly doubled by message γ. Then

if the receiving of γ makes Pl take a forced checkpoint Cl,b+1, the Z-cycle (a Z-

path from a checkpoint to itself) from Ci,x to itself consisting of the message chain

µ•m′•m′′◦m is prevented. On the other hand, in Figure 1.2(b), µ•m′ is non-strongly

visibly doubled. Even though the receiving of γ makes Pl take a forced checkpoint

Cl,b+1, the Z-cycle from Ci,x to itself due to the message chain µ •m′ •m′′ ◦m still

exists. This example shows that these two situations make difference in preventing

Z-cycles since the existence of Cl,b+1 prevents the Z-cycle in Figure 1.2(a) but not in

Figure 1.2(b).

15

Finally, we describe the transitive dependency tracking mechanism for determin-

ing the existence of a causal path between events, in particular, between checkpoints.

This is a well-known technique to track causality, which was proposed independently

by Fidge [49] and Mattern [50]. Each process maintains and propagates a dependency

vector of size n, where n is the number of processes involved in the distributed com-

putation. By comparing the values of these vectors associated with the checkpoints,

a process can determine the causal relation between checkpoints and make rollback

decisions when a failure occurs. This dependency vector maintained by each process

is also called the vector clock. Let V Ci be the current value of the vector clock of

process Pi and m.V C be the current value of the vector clock of the process sending

the message m, piggybacked on message m. We denote by V C(Ci,x) the vector clock

associated with the checkpoint Ci,x. All entries of V Ci are initialized to 0, except the

ith entry which is initialized to one. At any time, V Ci[i] represents the current check-

point interval of Pi, and it is incremented by Pi every time a new checkpoint is taken.

The current value of the vector clock is piggy-backed with every application message

sent by each process. When a process receives a message from some other process,

it sets its vector clock to be the componentwise maximum of its current value and

the value received in the message. Thus, entry V Ci[j] (i 6= j) represents the highest

checkpoint interval of Pj known to Pi. If V C1 and V C2 represent two vector clock

values, they can be compared as follows [48].

1. Equal: (V C1 = V C2) ≡ (∀k, 1 ≤ k ≤ n, V C1[k] = V C2[k]);

2. Less Than or Equal: (V C1 ≤ V C2) ≡ (∀k, 1 ≤ k ≤ n, V C1[k] ≤ V C2[k]);

3. Less Than: (V C1 < V C2) ≡ (V C1 ≤ V C2) ∧ (V C1 6= V C2);

4. Concurrent: (V C1||V C2) ≡ (V C1 ≮ V C2) ∧ (V C2 ≮ V C1);

It is a well known fact that there is a causal path from Ci,x to Cj,y if and only if

V C(Ci,x) ≤ V C(Cj,y). Therefore if the checkpointing and communication pattern

16

C

k,yC

kP

iP

causal path µnon−causal path ζ

k,y+1C
k,yI

i,x

Figure 1.3: Z − cycle

is RDT , when process Pi rolls back to Ci,x, by comparing the vector clock values

associated with the checkpoints, process Pj rolls back to its latest checkpoint Cj,y

such that V C(Ci,x)||V C(Cj,y).

Z-cycles

If a Z-path exists from Ci,x to Ci,x, we then have a Z-cycle involving Ci,x. In other

words, a Z-cycle (ZC) [7], is a Checkpoint and Communication Pattern involving a

checkpoint Ci,x and a message chain ζ̂ such that ζ̂ ◦ Ci,x ◦ ζ̂. However, it is always

possible to separate ζ̂ into two non-empty sub-chains, a causal sub-chain µ and a

sub-chain ζ such that ζ̂ = µ
k,y
• ζ [34] (Figure 1.3). This observation gives rise to the

following definition of Z-cycles [34]:

Definition 12. A Z-cycle (ZC) is a Checkpoint and Communication Pattern, de-

noted by ZC(Ci,x, µ
k,y
• ζ) such that ζ ◦ Ci,x ◦ µ

k,y
• ζ.

The size of a Z-cycle is the length of ζ (i.e., |ζ |). Now let us introduce the ”No-Z-

cycle” property.

Definition 13. A Checkpoint and Communication Pattern of a distributed compu-

tation (Ĥ, CĤ) satisfies the ”No-Z-cycle” property (NZC) iff no ZC exists in

(Ĥ, C
Ĥ
).

Based on Netzer and Xu’s result [7], if the CCP of a distributed computation

(Ĥ, CĤ) satisfies the ”No-Z-cycle” property, every checkpoint is useful and hence can

17

be part of a consistent global checkpoint.

A key issue in checkpointing is how to maintain a consistent global checkpoint

[31], from which a distributed computation can be restarted after a failure without

losing much computation. Three checkpointing approaches have been proposed in the

current literature, namely, Coordinated checkpointing, Uncoordinated checkpointing

and Communication-Induced checkpointing.

Under Coordinated checkpointing, processes synchronize their checkpointing ac-

tivities so that a consistent global checkpoint is always maintained in the system.

The storage requirement of this checkpointing method is minimum since each process

needs to keep at most two checkpoints: one committed and one possibly not com-

mitted. Major disadvantages include 1) process execution may have to be suspended

during the synchronization, resulting in performance degradation and 2) it requires

extra message overhead to synchronize the checkpointing activities.

Under Uncoordinated checkpointing, processes take local checkpoints periodically

without any coordination with each other. This method allows maximum process

autonomy for taking checkpoints and has no coordination message overhead. Under

this approach, some or all checkpoints taken may lie on Z-cycles and hence are useless

for the purpose of recovery.

Under Communication-Induced checkpointing, processes take checkpoints inde-

pendently without any coordination while at the same time maintain necessary in-

formation to track checkpointing and communication patterns that could lead to

the formation of Z-cycles in the future. When such communication patterns are

detected, forced checkpoints are taken to prevent the formation of such Z-cycles in

the future. Communication-Induced checkpointing protocols have been classified into

two subclasses, namely, index-based and model-based protocols. Index-based proto-

cols [38, 29] differ from Model-based protocols [34, 45, 52] in the way in which they

capture the checkpoint and communication patterns that may lead to Z-cycles. Note

18

that Communication-Induced checkpointing methods track the checkpoint and com-

munication patterns that may (and not necessarily will) lead to Z-cycles. Therefore,

these protocols track communication patterns that are likely to result in the forma-

tion of Z-cycles (we call such patterns as potential Z-cycles) in the future and prevent

them from happening in a pessimistic way. The Index-based protocols track the po-

tential Z-cycles by comparing index numbers of checkpoints while the model-based

protocols track a predefined checkpoint and communication patterns that are likely to

result in Z-cycles. The Index-based protocols associate each local checkpoint with an

index number and try to enforce consistency among local checkpoints with the same

sequence number. In the model-based protocols, a communication pattern that could

lead to Z-cycles is defined. The protocols then monitor and capture the formation

of such communication patterns using some heuristics and take forced checkpoints to

prevent the formation of such undesirable checkpoint and communication patterns.

1.2.2 Motivation

Existing model-based checkpointing protocols [34, 45, 52] track checkpoint and com-

munication patterns by gathering information from the messages sent and received.

Upon receiving a message from a process, a process can learn from the information

piggybacked with the messages and information at hand whether the checkpointing

and communication pattern complies with the model. All these three protocols have a

common characteristic, namely, each process P1 monitors the formation of potential

Z-cycles based on local information ignoring what may happen at other processes,

especially those to which P1 has sent messages, say P2, P3. Sometimes, this unaware-

ness may leave process P1 having erroneous information about the formation of a

potential Z-cycle solely based on local information. Later sections illustrate the situ-

ation under which a process P1 may detect the formation of a potential Z-cycle under

the algorithms in [34, 45, 52], even though there is no possibility for Z-cycles to form.

19

The reason for these false detections are due to P1 not maintaining and using infor-

mation about processes to which it has sent messages. We show in later sections that

if all those processes to which a process has sent messages (P2 and P3) have already

detected potential Z-cycles, P1 does not need to take any action even if a potential

Z-cycle is detected by itself. Based on this intuition, our goal is to develop an efficient

model-based communication-induced checkpointing protocol which makes use of not

only the information piggy-backed with messages received from other processes but

also information about processes to which a process has sent messages.

1.3 Contribution of the Thesis

Our contribution lies in two areas, namely, (i) checkpointing and recovery in dis-

tributed database systems and (ii) checkpointing in distributed systems. We de-

fine the notion of zigzag paths1 between checkpoints of data items in a distributed

database system and establish the necessary and sufficient conditions for a set of

checkpoints of a set of data items to be part of a tr-consistent global checkpoint.

This condition helps in constructing tr-consistent global checkpoint of a distributed

database incrementally, starting from a checkpoint of any given data item. Further-

more, this condition can help in designing and evaluating non-intrusive checkpoint-

ing protocols for distributed database systems. We also developed a non-intrusive

checkpointing protocol for distributed database systems that has low checkpointing

overhead and low recovery overhead. The protocol makes use of the concept of logical

checkpoints to reduce the number of checkpoints taken.

Our second contribution is the development of an efficient communication-induced

checkpointing protocol for distributed systems. As we mentioned earlier, communication-

induced checkpointing protocols eliminate useless checkpoints by tracking communi-

cation patterns that could result in the formation of Z-cycles and forcing processes to

1This is a generalization of the concept of zigzag paths introduced by Netzer and Xu [7] in the
context of checkpointing distributed computations.

20

take checkpoints in addition to the independently taken checkpoints to prevent the

formation of Z-cycles. It is well known that Z-cycles are not on-line trackable. So,

different protocols use different heuristics to prevent Z-cycles. We introduce the con-

cept of Extended Suspect Z-cycles, a communication pattern that could lead to the

formation of Z-cycles in the future. Extended Suspect Z-cycles are on-line trackable

and preventable if forced checkpoints are taken at appropriate times. We prove that

the system will have no Z-cycles if there are no Extended Suspect Z-cycles. Then,

we develop a communication-induced checkpointing protocol which tracks the com-

munication patterns and detects and prevents the formation of Extended Suspect

Z-cycles. Our checkpointing protocol has lower checkpointing overhead compared to

an existing checkpointing protocol in this category.

1.4 Organization of the Dissertation

The remaining part of the dissertation is organized as follows. In Chapter 2, we gener-

alize the concept of zigzag paths, proposed by Netzer and Xu [7] between checkpoints

of processes involved in a distributed computation, to checkpoints of data items of

a distributed database system and establish the necessary and sufficient conditions

that a checkpoint of a data item (or a set of checkpoints from a set of data items)

needs to satisfy in order to be part of a transaction-consistent global checkpoint of the

database [59, 57]. In Chapter 3, we present a non-intrusive checkpointing protocol

for distributed database systems [58]. In Chapter 4, we present our model-based

communication-induced checkpointing protocol for distributed systems [51, 53] which

reduces the numbers of forced checkpoints compared to an existing protocol. Chap-

ter 5 summarizes the contribution of the thesis and concludes with a discussion of

future research work.

21

Chapter 2

Necessary and Sufficient Conditions for Transaction-Consistent Global

Checkpoints of a Distributed Database System

In a distributed system, to minimize the lost computation due to failures, the state

of the processes involved in a distributed computation is periodically saved in sta-

ble storage (checkpointed). When one or more processes involved in the distributed

computation fails, the processes are restarted from the latest consistent global check-

point. If processes are independently and periodically checkpointed, one or more

checkpoints taken may not be part of any consistent global checkpoint and hence

such checkpoints are useless [7]. Netzer and Xu [7] introduced the notion of zigzag

paths between checkpoints of processes involved in a distributed computation and es-

tablished the necessary and sufficient conditions for a given checkpoint of a process to

be part of a consistent global checkpoint (i.e., useful). They proved that a checkpoint

of a process is useful if and only if there is no zigzag path from that checkpoint to

itself.

Checkpointing is also an established technique for handling failures in database

systems. Many of the checkpointing schemes proposed in the literature for distributed

database systems are intrusive to different extent. Non-intrusive checkpointing proto-

cols under which transactions do not have to be blocked when checkpoints are taken

are desirable [30]. If each data item in a distributed database is checkpointed by an

independent transaction periodically, it is quite possible that none of the checkpoints

taken is part of any transaction-consistent global checkpoint of the database. In this

22

chapter, motivated by the work of Netzer and Xu for distributed computation [7], we

generalize the concept of zigzag paths to distributed databases and establish the nec-

essary and sufficient conditions for a given checkpoint of a data item (or checkpoints

of a set of data items) to be part of a transaction-consistent global checkpoint. Next,

we introduce some terminology.

2.1 Serialization Graphs

Following the terminology introduced in Chapter 1, let T = {Ti | 1 ≤ i ≤ m} be a

set of transactions that access the database. Let X = {xi | 1 ≤ i ≤ n} be the set of

data items in the distributed database. We assume that each checkpoint of a data

item xi is taken by a special transaction called checkpointing transaction. We denote

by T
C

ki
i

the checkpointing transaction that takes checkpoint Cki
i of data item xi. The

set of all checkpoints of data item xi is denoted by Ci = {C
ki
i | ki : ki ≥ 0}. The

set of checkpointing transactions that produce the global checkpoint S is denoted by

ST = {T
C

ki
i

| 1 ≤ i ≤ n}. We use Cki
i and T

C
ki
i

interchangeably. Let TC be the set of

all checkpointing transactions.

If the concurrency control algorithm guarantees an execution ε ∈ CSR, then the

corresponding relation <T induces a directed acyclic graph (Dag) structure onT
⋃
TC

and conversely [4]. We call this graph the global serialization graph with respect to

the schedule ε of T
⋃
TC. For each data item, the transactions accessing that data

item induce a subgraph of the global serialization graph. The local serialization

graph induced by the transactions in T
⋃
TC that access data item xi is denoted by

Gxi
(Vxi

, Exi
): the vertex set Vxi

= {Tk ∪ TC
ki
i

| Tk ∈ T has accessed data item xi; C
ki
i

is the kth
i checkpoint of xi taken by local checkpoint transaction T

C
ki
i

} and the edge

set Exi
= {ETT

xi
∪ ETC

xi
∪ ECT

xi
}, where

1: ETT
xi

= {(Ti, Tj) | Ti, Tj ∈ Vxi
;Ti <T Tj}.

23

2: ETC
xi

= {(Tj , TC
ki
i

) | Tj , TC
ki
i

∈ Vxi
; Tj <T T

C
ki
i

}.

3: ECT
xi

= {(T
C

ki
i

, Tj) | Tj , TC
ki
i

∈ Vxi
; T

C
ki
i

<T Tj }.

By merging the local serialization graphs Gxi
(Vxi

, Exi
), we can construct the global

serialization graph G(V,E) where

V =
⋃

xi∈X

Vxi

and

E =
⋃

xi∈X

Exi
.

Next we illustrate the construction of the global serialization graph with an ex-

ample. Suppose we have the following nine transactions T = {T1, · · · , T9} accessing

a database containing five data items X = {x1, · · · , x5}.

1. T1 : R1(x5),W1(x5)

2. T2 : W2(x2),W2(x4)

3. T3 : R3(x1),W3(x1),W3(x2),W3(x4)

4. T4 : W4(x3),W4(x1),W4(x4), R4(x5)

5. T5 : R5(x3), R5(x4)

6. T6 : W6(x3),W6(x4)

7. T7 : W7(x2), R7(x2)

8. T8 : R8(x2),W8(x2)

9. T9 : W9(x1),W9(x5)

24

Consider the schedule ε ∈ CSR over (T
⋃
TC) where

ε = {OC0
1
(x1), OC0

2
(x2), OC0

3
(x3), OC0

4
(x4), OC0

5
(x5), W2(x2), W9(x1), R3(x1),

OC1
2
(x2),W4(x3),W2(x4), OC1

4
(x4),W3(x1), OC1

1
(x1),W4(x1),W9(x5), OC1

5
(x5),W4(x4),

OC2
4
(x4), W3(x2), R5(x3), R5(x4), W6(x3), W6(x4), W3(x4), OC2

2
(x2), W7(x2), R1(x5),

W1(x5), R8(x2), R7(x2), W8(x2), R4(x5)}.

This schedule induces the following partial order on the operations performed by

the transactions on each data item:

1. ε(x1) : OC0
1
(x1) <x1 W9(x1) <x1 R3(x1) <x1 W3(x1) <x1 OC1

1
(x1) <x1 W4(x1)

2. ε(x2) : OC0
2
(x2) <x2 W2(x2) <x2 OC1

2
(x2) <x2 W3(x2) <x2 OC2

2
(x2) <x2

W7(x2) <x2 R8(x2) <x2 R7(x2) <x2 W8(x2)

3. ε(x3) : OC0
3
(x3) <x3 W4(x3) <x3 R5(x3) <x3 W6(x3)

4. ε(x4) : OC0
4
(x4) <x4 W2(x4) <x4 OC1

4
(x4) <x4 W3(x4) <x4 W4(x4) <x4

OC2
4
(x4) <x4 R5(x4) <x4 W6(x4)

5. ε(x5) : OC0
5
(x5) <x5 W9(x5) <x5 OC1

5
(x5) <x5 R1(x5) <x5 W1(x5) <x5 R4(x5)

This schedule induces the following relations among the transactions. These rela-

tions correspond to edges in the global serialization graph constructed from the local

serialization graphs.

TC0
1
<T T9, T9 <T T3, T3 <T TC1

1
, TC1

1
<T T4, TC0

2
<T T2, T2 <T TC1

2
,

TC1
2
<T T3, T3 <T TC2

2
, TC2

2
<T T7, T7 <T T8, TC0

3
<T T4, T4 <T T5,

T5 <T T6, TC0
4
<T T2, T2 <T TC1

4
, TC1

4
<T T3, T3 <T TC2

4
, TC2

4
<T T4,

T4 <T T5, T5 <T T6, TC0
5
<T T9, T9 <T TC1

5
, TC1

5
<T T1, T1 <T T4.

The local serialization graphs induced by the partial orders ε(xi) on the data items

are shown in Figures 2.1 to 2.3. The global serialization graph constructed from the

local graphs is shown in Figure 2.4. The global serialization graph G = (V,E) is

obtained by merging the local serialization graphs where

25

x T0T
1C 1T

1C T91 T3 4

Figure 2.1: Local serialization graph induced by transactions {T9, T3, T4} on data
item x1.

TC 2
2C 2

0T C 2
1Tx T T TT2 2 3 7 8

Figure 2.2: Local serialization graph induced by transactions {T2, T3, T7, T8} on data
item x2.

V = {T1, T2, T3, T4, T5, T6, T7, T8, T9, TC0
1
, TC0

2
, TC0

3
, TC0

4
, TC0

5
,

TC1
1
, TC1

2
, TC2

2
, TC1

4
, TC2

4
, TC1

5
}

and

E = {(TC0
1
, T9), (TC0

2
, T2), (TC0

3
, T4), (TC0

4
, T2), (TC0

5
, T9), (T9, T3), (T3, TC1

1
), (TC1

1
, T4),

(T2, TC1
2
), (TC1

2
, T3), (T3, TC2

2
), (TC2

2
, T7), (T7, T8), (T2, TC1

4
), (TC1

4
, T3), (T3, TC2

4
),

(TC2
4
, T4), (T4, T5), (TC0

5
, T9), (T9, TC1

5
), (TC1

5
, T1), (T1, T4), (T5, T6)}.

The graph in Figure 2.4 is acyclic and hence the schedule ∈ CSR. Since ε ∈ CSR,

we have the following serialization order that is compatible with <T . This ordering

may not be unique because some transactions in this can be reordered without vio-

lating <T . For example, T2 and T9 can be interchanged in the order.

TC0
1
, TC0

2
, TC0

3
, TC0

4
, TC0

5
, T2, T9, TC1

2
, TC1

4
, T3, TC1

5
, T1, TC2

2 ,
TC1

1
, TC2

4
, T4, T5, T7, T8, T6

We use the following notations in this chapter: Ti −→
+ Tj iff there is

a path from transaction Ti to Tj in the serialization graph (Ti and/or Tj could be

a checkpointing transaction). Ti −→ Tj iff there is an edge from Ti to Tj (Ti or

Tj could be a checkpointing transaction). Let σ1 ⊆ T and σ2 ⊆ T be such that

σ1

⋂
σ2 = φ. Then, by σ1STσ2 with respect to the serialization order induced by

conflict-serializable execution ε over T, we mean that each checkpointing transaction

in ST starts executing only after every transaction in σ1 has been executed and before

26

T
5C 0

T
3C 0

T
4C 0

T
5C 0

T
5C 1

T
4C 1T

4C 1

T
4C 1

T
4C 2

T
4C 2 T

4 5

T

T
5C 1

2

9

5T T6T, 5

9T T
5C 1 T

5C 1 T1 T4, , ,={

, , }

={E

, } (,,)T
5C 0 T

={ ,

,,) ,, ,(,T

Tx T

x

,=(VG E T , , }T T T
3C 0 ,()={ ,, })T((,,)T

3C 0 T T T T

T T T T

3 4 T5 6

3 3 3) V3 4 5 6 E3 4 5 6

2 3 4 5 64

,=(G V E , , , , ,={V T T T T T
4C 0 T

4C 1 T
4C 2

,(,)TT
4C 0 T T T T

T T Tx

),=(G V E V T T T ={E ,)(,

4 4) 4 2 3 4 5 64

4 2 3 4 43 ,

5 9 1 4

5 55 5 9 1 4 5

() () () (), , (,)}TC 2
4

(}),,) (,T1

Figure 2.3: Local serialization graphs induced by the transactions on the data items
x3, x4, and x5.

TC 2
2

TC 2
1

TC 4
1

TC 5
1

TC 1
1 TC 3

0

TC 4
2

T4

T
2

TC 4
0

TC 5
0

T
1
0

C 0

C

T T

T T

T T

TT

2 3

9 1

5 6

87

Figure 2.4: Global serialization graph constructed from local serialization graphs.

27

any transaction in σ2 has started execution. In particular, if σ1

⋃
σ2 = T, then the

set of checkpoints S taken by ST is tr-consistent iff σ1STσ2.

Next, we make the following observations:

Observation 1. For any checkpointing transaction T
C

ki
i

, since it accesses the data

item xi exclusively, TC
ki
i

must have a path in the local serialization graph either to or

from any transaction Tj that has accessed xi.

Observation 2. For any checkpointing transaction T
C

ki
i

, since it accesses the data

item xi exclusively, if there exist two transactions Ti and Tj that access xi such that

Ti −→
+ T

C
ki
i

, T
C

ki
i

−→+ Tj, then in the local serialization graph induced by T ∪TC

on the data item xi, any path from Ti to Tj must pass through T
C

ki
i

.

Observation 3. In the local serialization graph induced by T∪TC on the data item

xi, for any checkpointing transaction T
C

ki
i

and two other transactions Ti and Tj that

have accessed xi, the following holds:

1. If T
C

ki
i

−→+ Tj and there exists Ti −→
+ Tj without any checkpoint transaction

along the path in the local serialization graph, then T
C

ki
i

−→+ Ti.

2. Similarly, if Ti −→
+ T

C
ki
i

and there exists a path Ti −→
+ Tj from Ti to Tj

without any checkpoint transaction along the path in the local serialization graph,

then Tj −→
+ T

C
ki
i

.

Observations 1 and 2 are trivial. Observation 3 holds because under case 1,

suppose T
C

ki
i

−→+ Ti is not true, then Ti −→
+ T

C
ki
i

from Observation 1. Since

T
C

ki
i

−→+ Tj, from Observation 2, every path in the local serialization graph from Ti

to Tj must pass through T
C

ki
i

, which contradicts our assumption that there exists a

path Ti −→
+ Tj without any checkpointing transactions along the path. A similar

argument can be used to prove the correctness of case 2 in Observation 3.

28

We make use of these Observations in the proofs of the theorems in Section 2.2.

Notice that the transactions Ti, Tj in the previous observations could be checkpointing

transactions as well.

2.2 Necessary and Sufficient Conditions

In distributed database systems, it would be ideal if individual data items could be

checkpointed without any coordination and a tr-consistent global checkpoint could be

constructed from the checkpoints of the individual data items whenever it is needed

for recovery. To construct such a global checkpoint, we need to know what checkpoints

could be combined to construct a tr-consistent global checkpoint. In the following

theorem, we establish the necessary and sufficient condition for a set of checkpoints,

one from each data item (i.e., a global checkpoint of the database) to form a tr-

consistent global checkpoint of the database with respect to a given schedule of a

given set of transactions. We assume that each data item has a virtual checkpoint

which represents the final state of the data item after all the transactions finish

execution.

Theorem 2.2.1. Let T = {T1, · · · , Tm} be a set of transactions accessing the database

consisting of n data items X = {x1, · · · , xn}. Assume that each data item is check-

pointed by a checkpointing transaction that runs at the site which contains the data

item. Let S = {Cki
i | 1 ≤ i ≤ n} be a set of checkpoints, one for each data item and

let ST = {T
C

ki
i

| 1 ≤ i ≤ n} be the set of checkpointing transactions that produce S.

Let ε be a conflict serializable schedule over T
⋃
ST. Then S is a tr-consistent global

checkpoint iff there is no path between any two checkpointing transactions belonging

to ST in the global serialization graph corresponding to the schedule ε.

Proof: (If Part) Suppose there is no path between any two checkpointing transac-

tions in ST in the global serialization graph. Then we prove that the set S forms a

29

tr-consistent global checkpoint. It is sufficient to prove that there exist a serialization

order σ1σ2 of T with respect to ε such that σ1STσ2, i.e., each checkpointing transac-

tion in ST is executed only after every transaction in σ1 has finished execution and

before any transaction in σ2 starts execution.

We say Ti −→
+ ST if there exists a path from Ti to some checkpointing transaction

in ST. Similarly, we say ST −→
+ Ti if there exists a path from some checkpointing

transaction in ST to Ti. Any transaction in T belongs to at least one of the following

three sets.

1) σa = {Ti ∈ T | Ti −→
+ ST}

2) σb = {Ti ∈ T | ST −→
+ Ti}

3) σc = {Ti ∈ T | neither Ti −→
+ ST nor ST −→

+ Ti}

From Observation 1, we know that σc = φ since Ti must access at least one data item.

In addition, we have σa

⋃
σb

⋃
σc = T. Since σc = φ, σa

⋃
σb = T

Let Tv ∈ σa, then Tv −→
+ ST by definition. In particular Tv −→

+ T
C

ki
i

for some

i, which means that Tv has finished accessing xi before TC
ki
i

takes checkpoint on data

item xi.

Claim:For every data item xj , Tv must have finished accessing xj before T
C

kj
j

∈ ST

starts execution.

Proof of claim: The following three cases arise.

1) Tv −→
+ T

C
kj
j

. This means Tv has finished accessing xj before T
C

kj
j

takes check-

point on xj .

2) T
C

kj
j

−→+ Tv. This case cannot arise since Tv −→
+ T

C
ki
i

we have T
C

kj
j

−→+

T
C

ki
i

, a contradiction to the assumption that there is no path between any two

checkpointing transactions in ST.

30

3) Neither Tv −→
+ T

C
kj
j

nor T
C

kj
j

−→+ Tv. From Observation 1, Tv does not access

xj . In this case we can simply treat Tv as a transaction that has executed before

T
C

kj
j

has started.

Therefore Tv must have finished accessing every data item xj (that it needs to access)

before T
C

kj
j

starts execution. This proves our claim. So, each transaction in σa finishes

execution before any of the checkpointing transactions in ST has started execution.

Similarly, we can prove that each transaction Tv ∈ σb starts accessing any data

item xj only after checkpointing transaction T
C

kj
j

∈ ST has finished execution.

Let σ1 = σa, the set of all transactions that have finished execution before none

of the checkpointing transactions in ST has started execution. Let σ2 = σb, the set of

all transactions that have started execution after every checkpointing transaction in

ST has finished execution. We have σ1

⋃
σ2 = T and σ1

⋂
σ2 = σa

⋂
σb. Moreover,

(σa

⋂
σb) = φ, because if (σa

⋂
σb) 6= φ, let Ti ∈ (σa

⋂
σb). Then, by definition of

σa and σb, there exists T
C

kv
v
, T

C
kw
w
∈ ST, such that Ti −→

+ T
C

kv
v
, and T

C
kw
w
−→+ Ti.

Hence T
C

kw
w
−→+ T

C
kv
v
, a contradiction to the assumption that there is no path

between any two checkpointing transactions in ST. Therefore, we have σ1STσ2.

(Only-if Part) Conversely, suppose S is a tr-consistent global checkpoint, then

we prove that no two transactions in ST have a path between them in the global

serialization graph. Suppose there is a path from T
C

ki
i

∈ ST to T
C

kj
j

∈ ST. Then

there exists a transaction Tc1 ∈ T such that T
C

ki
i

−→+ Tc1 −→ T
C

kj
j

.

First we show that Tc1 starts execution after every checkpointing transaction in

ST has finished. Because of the path T
C

ki
i

−→+ Tc1, we know that Tc1 must start

execution after T
C

ki
i

∈ ST has finished. Since T
C

ki
i

∈ ST, where ST produces a

tr-consistent global checkpoint S, by definition of tr-consistent global checkpoint,

besides T
C

ki
i

, Tc1 must start execution after every other checkpointing transaction

T
C

kv
v
∈ ST, where v 6= i, finishes execution. Therefore Tc1 starts execution after every

checkpointing transaction in ST has finished. On the other hand, on xj , Tc1 has

31

started execution before T
C

kj
j

∈ ST has started due to the edge Tc1 −→ T
C

kj
j

. This

implies ST is not a tr-consistent global checkpoint.

Hence a global checkpoint S is tr-consistent with respect to a serializable schedule

of a set of transactions iff there is no path between any two checkpointing transactions

in ST in the global serialization graph corresponding to the schedule. ⋄

Theorem 2.2.1 is useful for verifying whether a given global checkpoint is tr-

consistent. For instance, in Figure 2.4, S = {TC0
1
, TC1

2
, TC0

3
, TC1

4
, TC0

5
} forms a tr-

consistent global checkpoint because no two elements in S have a path between them.

However, this theorem does not help in constructing a tr-consistent global checkpoint

incrementally. This is because if there is no path between two checkpoints of two

different data items, it does not mean that these two checkpoints together can be

part of a tr-consistent global checkpoint. For example, in Figure 2.4, there is no

path between TC1
5
and TC2

2
. However, checkpoints C1

5 and C2
2 cannot belong to a

tr-consistent global checkpoint because data item x4 does not have a checkpoint that

can be combined with C1
5 and C2

2 to extend it to a tr-consistent global checkpoint.

For instance, C1
4 cannot be used because there is a path from TC1

4
to TC2

2
and the

remaining checkpoints of x4 cannot be used for similar reasons. Therefore, additional

restrictions need to be added in order to be able to extend a given set of checkpoints

to a tr-consistent global checkpoint. As mentioned earlier, our goal is to come up

with the necessary and sufficient conditions for a set of checkpoints of a set of data

items to be part of a tr-consistent global checkpoint. The next theorem addresses

this problem. For that we need to introduce some new terminology.

Next, we introduce some terminology for developing the necessary and sufficient

conditions for a set of checkpoints to be part of a tr-consistent global checkpoint.

Netzer and Xu [7] introduced the concept of zigzag paths between checkpoints of a

distributed computation and used it to establish the necessary and sufficient condi-

tions for a set of checkpoints of a set of processes involved in a distributed computation

32

to be part of a consistent global checkpoint of the computation. We generalize their

definition of zigzag paths to checkpoints in distributed database systems and use it

for establishing the necessary and sufficient conditions for a set of checkpoints of a

set of data items to be part of a tr-consistent global checkpoint of the database.

Definition 14. Let T be a set of transactions executing on a database. Let Cki
i be a

checkpoint taken by the checkpointing transaction T
C

ki
i

on data item xi, and let C
kj
j

be another checkpoint taken by checkpointing transaction T
C

kj
j

on data item xj. We

say a zigzag path with respect to T exists from T
C

ki
i

to T
C

kj
j

if there exists a set of

transactions T′ = {Ti1, Ti2 , · · · , Tiv} ⊆ T such that

a) Ti1 ∈ T′ is a transaction such that T
C

ki
i

−→ Ti1 in the global serialization graph;

b) for any Tik ∈ T′(1 ≤ k < v), Tik+1
∈ T′(1 < (k + 1) ≤ v) is a transaction such

that

1: Tik ←− Tik+1
(we call such an edge as reverse edge);

or

2: Tik −→ Tik+1
or (Tik −→ T

C
kw
w

and T
C

kw
w
−→+ Tik+1

for some w);

c) Tiv ∈ T ′ is a transaction such that Tiv −→ T
C

kj
j

;

For example, in the global serialization graph shown in Figure 2.4,

1: A zigzag path exists from TC1
5
to TC2

4
, the path being TC1

5
−→ T1 −→ T4 −→ TC2

4
.

2: A zigzag path exists from TC1
5
to TC2

2
, the path being TC1

5
−→ T1 −→ T4 ←−

T3 −→ TC2
2
.

3: No zigzag path exists between TC1
2
and TC1

4
or between TC2

4
and TC2

2
.

Note that any directed path in the global serialization graph is also a zigzag path but

not conversely.

33

A checkpoint Cki
i (or, the corresponding checkpointing transaction T

C
ki
i

) is in-

volved in a zigzag cycle (Z-cycle for short) iff there is a zigzag path from T
C

ki
i

to

itself. Example checkpoints that are involved in Z-cycle in Figure 2.4 include check-

points TC1
5
, the Z-cycle being TC1

5
−→ T1 −→ T4 ←− T3 ←− T9 −→ TC1

5
; and TC1

1
,

the Z-cycle being TC1
1
−→ T4 ←− T3 −→ TC1

1
. TC2

4
is also on a Z-cycle. Next, we

establish the necessary and sufficient condition.

Theorem 2.2.2. A set S′ of checkpoints, each checkpoint of which is from a different

data item, can belong to the same tr-consistent global checkpoint with respect to a

serializable schedule of a set of transactions iff no checkpoint in S′ has a zigzag path

to any checkpoint (including itself) in S′ in the global serialization graph corresponding

to that schedule.

Proof:

(If-Part:) Suppose no checkpoint in S′ has a zigzag path to any checkpoint (in-

cluding itself) in S′. We construct a tr-consistent global checkpoint S that contains

the checkpoints in S′ and one checkpoint for each data item not represented in S′ as

follows:

• For each data item that has no checkpoint in S′ and that has a checkpoint with

a zigzag path to a member of S′, we include in S its first checkpoint that has no

zigzag path to any checkpoint in S′. Such a checkpoint is guaranteed to exist

because the virtual checkpoint of a data item, representing the state of the data

item after all the transactions in T have terminated, does not have an outgoing

zigzag path.

• For each data item that has no checkpoint in S′ and that has no checkpoint

with zigzag path to a member of S′, we include its initial checkpoint. (It is

also the first checkpoint that has no zigzag path to any member of S′ and there

cannot be a zigzag path from any checkpoint in S′ to this initial checkpoint).

34

We claim that S is a tr-consistent global checkpoint. From Theorem 2.2.1, it is

sufficient to prove that there is no path between any two checkpoints of S in the global

serialization graph. Suppose there is a path from a checkpoint A ∈ S to a checkpoint

B ∈ S. Assume that the checkpoint A was taken on data item xi and checkpoint B

was taken on data item on xj .

Case 1: A,B ∈ S′. This condition implies that a zigzag path from A to B exists,

contradicting the assumption that no zigzag path exists between any two checkpoints

in S′.

Case 2: A ∈ S− S′ and B ∈ S′. This contradicts the way S− S′ is constructed

(checkpoints in S− S′ are chosen in such a way that no zigzag path exists to any

member of S′ from those checkpoints).

Case 3: A ∈ S′ and B ∈ S− S′. B cannot be an initial checkpoint, since no

checkpoint can have a path to an initial checkpoint. Then by the choice of B, B

must be the first checkpoint on xj that has no zigzag path to any member of S′. The

checkpoint preceding B on xj , say D, must have a zigzag path to some member of

S′, say E. Since D precedes B on xj , we have, in the local serialization graph of xj ,

D −→+ B, which also exists in the global serialization graph.

Let Tu be a transaction (that accessed xj which results in the creation of the edge

Tu −→ B in the serialization graph) that lies on the zigzag path from A to B. Note

that such transaction exists because B and D are checkpoints of data item xj and

we assume that a checkpoint is taken only after the state of the data item has been

changed by one or more transactions.

Claim: There exists a zigzag path from A to E in the global serialization graph.

Proof of the claim: Since D −→+ B, Tu −→ B, and B is created by a check-

pointing transaction, we get D −→+ Tu in the local serialization graph of xj from

Observation 3. Any path in the local serialization graph is also a path in the global

serialization graph. Therefore the path D −→+ Tu can be found in the global serial-

35

ization graph. Then in the global serialization graph, the zigzag path from A to Tu,

the reverse path D ←−+ Tu, and the zigzag path from D to E form a zigzag path

from A to E, which is a contradiction to the assumption that no zigzag path exists

between any two checkpoints in S′. Hence the claim is true.

Case 4: A ∈ S− S′ and B ∈ S− S′. As in case 3, B must be the first checkpoint

of xj that has no zigzag path to any member of S′ and A must be the first checkpoint

of xi that has no zigzag path to any member of S′. Then the checkpoint that precedes

B on data item xj , say D, must have a zigzag path to some member of S′, say E.

Then, as in case 3, there exists a zigzag path from A to E. This contradicts the

choice of A that A is the first checkpoint on data item xi with no zigzag path to any

member of S′.

Therefore S, containing S′, is a tr-consistent global checkpoint.

(Only-if Part:) Conversely, suppose there exists a zigzag path between two check-

points in S′ (not necessarily distinct), then we show that they cannot belong to the

same tr-consistent global checkpoint. Assume that a zigzag path exists from A to B

(A could be B) and along such a path, the length of consecutive reverse edges is at

most w. We use induction on w to show that A and B cannot belong to the same

consistent global checkpoint.

Base case (w = 0): If the length of consecutive reverse edges is at most zero, the

zigzag path from A to B is in fact a path from A to B. Then, from Theorem 2.2.1,

A and B cannot belong to the same consistent global checkpoint.

Base case (w = 1): Suppose the length of consecutive reverse edges along the

zigzag path from A to B is at most one. Let the consecutive reverse edges with

length equal to one from A to B be T1,1 ←− T2,1, · · · , T1,u ←− T2,u, as shown in Fig-

ure 2.5(a). Suppose those reverse edges are components of local serialization graph

corresponding to data items x1,1, · · · , x1,u respectively.

36

Claim: Not all x1,1, · · · , x1,u can be equal to xi, where A takes place.

Proof of claim: Suppose x1,1, · · · , x1,u are all equal to xi. Then A, T1,1, T2,1,

· · · , T1,u, T2,u are transactions accessing xi (recall that we use A for the checkpoint-

ing transaction that takes the checkpoint A as well as the checkpoint itself). From

Observation 1, the following two cases arise:

1) A −→+ T2,u. In this case, a path A −→+ B via T2,u exists and hence A and B

cannot be part of a tr-consistent global checkpoint, by Theorem 2.2.1.

2) T2,u −→
+ A. In this case, since T2,u −→ T1,u, we must have T1,u −→

+ A from

Observation 3. In this case, when we consider the reverse edge T1,u−1 ←− T2,u−1,

the following two sub-cases arise:

2.1) A −→+ T2,u−1. In this case, a cycle T1,u −→
+ A −→+ T2,u−1 −→

+ T1,u

from T1,u to itself exists. However, a cycle cannot exist if the schedule of

T ∪TC ∈ CSR.

2.2) T2,u−1 −→
+ A. in this case, since T2,u−1 −→ T1,u−1, we must have

T1,u−1 −→
+ A from Observation 3. If this is the case, we need to con-

sider the previous reverse edge T1,u−2 ←− T2,u−2 in the zigzag path and

make a similar argument with that edge. Proceeding like this, we will end

up with a path T1,1 −→
+ A; since A −→+ T1,1, we have A −→+ A, i.e., A

is on a cycle which is a contradiction to the assumption that the schedule

of T ∪TC ∈ CSR is serializable.

So, our assumption that x1,1, · · · , x1,u are all equal to xi is wrong and hence the proof

of the claim. This situation is illustrated in Figure 2.5(b). In this figure, dotted lines

indicate the possible paths and the dotted lines with X mark indicate the impossible

paths.

Using arguments similar to the one above, we can show that x1,1, · · · , x1,u cannot

all be xj . Figure 2.5(c) illustrates how we can get a contradiction by showing the

37

existence of a cycle. So far, we have proved that there must exist a data item asso-

ciated with a reverse edge that is different from both xi and xj . Let us assume such

a data item is x1,p with associated reverse edge as T1,p ←− T2,p. Next we prove our

claim that A and B cannot belong to a tr-consistent global checkpoint. We will use

Figure 2.5(d) for understanding the basic idea behind the proof.

On data item x1,1 that both T1,1 and T2,1 have accessed, no checkpoint taken after

T1,1, say D1, (refer to Figure 2.5(d)) can be combined with A to form a consistent

global checkpoint due to the path A −→+ D1 (by Theorem 2.2.1). Therefore, on

x1,1 we can only use some checkpoint C1 taken before T2,1 accessed x1,1 to construct

a tr-consistent global checkpoint containing A. Using a similar argument, on x1,2,

which both T1,2 and T2,2 have accessed, no checkpoint taken after T1,2 accessed, say

D2, can be combined with C1 to form a consistent global checkpoint due to the path

from C1 −→
+ D2 (refer to Figure 2.5(d)). So we have to use some checkpoint C2 on

x1,2, which was taken before T2,2 accessed x1,2. Similarly, on x1,p, which both T1,p and

T2,p have accessed, we have to use some checkpoint Cp, which was taken before T2,p

to construct a tr-consistent global checkpoint containing A.

On the other hand, on data item x1,u that both T1,u and T2,u have accessed, no

checkpoint taken before T2,u, say Cu, can be combined with B to construct a tr-

consistent global checkpoint due to the path Cu −→
+ B. Therefore, on x1,u, we can

only use some checkpoint Du taken after T1,u accessed x1,u to construct a tr-consistent

global checkpoint containing B. Similarly, on x1,u−1, which both T1,u−1 and T2,u−1

have accessed, no checkpoint taken before T2,u−1, say Cu−1 can be combined with Du

to construct a tr-consistent global checkpoint due to the path Cu−1 −→
+ Du. So

we have to use some checkpoint Du−1 on x1,u−1 that was taken after T1,u−1 accessed

x1,u−1. Proceeding like this, on x1,p, which both T1,p and T2,p have accessed, we have

to use some checkpoint Dp, which was taken after T1,p accessed x1,p, to construct a

tr-consistent global checkpoint containing B.

38

(d)

jT2,2T1,2

x jT2,1

x i T1,1

x j x jx j

x i
A T1,1

x 1,1
T2,1 T1,2 T2,2

x 1,2 x j1,u−1x
1,u−1

x 1,u

x j
BT2,2T1,2

x iT2,1

x i T1,1

x i
A 1,u−1

x ix i

T

x i

D1

A T1,1

x 1,1
T2,1

C1

D2

C2

T1,2 T2,2

x 1,2

Dp

T1,p T2,p

x 1,p x 1,u x j
B

Cp

X

X

X
X

A B

X

X

X

X

BT T2,u−1 T1,u T2,u

T T2,u−1 T1,u T2,u

1,u−1 T2,u−1 T1,u T2,u

T2,u−1

Cu

T2,uT1,u

Du

u−1C

1,u−1x
T1,u−1

Du−1

(a)

(b)

(c)

x

Figure 2.5: Illustration of proof for case 1

Thus, there exists a data item x1,p which is neither xi nor xj such that we can

only use a checkpoint taken before T1,p and T2,p have accessed x1,p to construct a

tr-consistent global checkpoint containing A; on the other hand, we can only use a

checkpoint taken after T1,p and T2,p have accessed x1,p to construct a tr-consistent

global checkpoint containing B. So, for data item x1,p, there is no checkpoint that

can be combined with both A and B to construct a tr-consistent global checkpoint.

This proves the Theorem in the base case w = 1.

Next, assume that if there is a zigzag path from A to B which contains consecutive

reverse edges of length at most k, then A and B together cannot belong to a tr-

39

consistent global checkpoint. We prove that if there exists a zigzag path from A to

B which contains consecutive reverse edges of length at most k + 1, then A and B

cannot belong to the same tr-consistent global checkpoint.

Suppose the sequence of consecutive reverse edges along the zigzag path from A

to B are T1,1 ←− · · · ←− Tu1,1 (u1 ≤ k + 2), T1,2 ←− · · · ←− Tu2,2 (u2 ≤ k + 2),

· · · , and T1,v ←− · · · ←− Tuv,v (uv ≤ k + 2). Thus, on the zigzag path from A to

B that we consider, we have consecutive reverse edges of lengths u1 − 1, · · · , uv − 1,

(ui ≤ k + 2 ∀i). Each of these reverse edges should come from the local serialization

graph of a data item. Suppose the reverse edges are edges of local serialization graphs

of data items x1,1, · · · , xu1−1,1, . . . , . . ., x1,v, · · · , xuv−1,v respectively. Figure 2.6(a)

shows the zigzag path along with the data items from which each of the reverse edges

along the path comes. First, we show that at least one of the data items x1,1, · · · ,

xu1−1,1 . . . , . . . x1,v, · · · , xuv−1,v is not equal to xi (recall that A is a checkpoint of the

data item xi).

Suppose x1,1, · · · , xu1−1,1 . . . , . . ., x1,v, · · · , xuv−1,v are all the same as xi. Then

A, T1,1, · · · , Tu1,1 . . . , . . . T1,v, · · · , Tuv,v are transactions accessing xi. Based on

Observation 1, two cases arise:

1) A −→+ Tuv,v. In this case, a path A −→ B via Tuv,v exists, and hence A and B

together cannot be part of a tr-consistent global checkpoint by Theorem 2.2.1.

2) Tuv,v −→
+ A. In this case, because of the sequence of reverse edges T1,v ←−

· · · ←− Tuv,v on xi, from Observation 3, we have T1,v −→
+ A. Then, when we

consider the sequence of reverse edges T1,v−1 ←− · · · ←− Tuv−1,v−1, the following

two sub-cases arise:

2.1) A −→+ Tuv−1,v−1. In this case, a cycle (namely, T1,v −→
+ A −→+

Tuv−1,v−1 −→
+ T1,v) from T1,v to itself exists, which is a contradiction

to the fact that the schedule of T ∪TC ∈ CSR.

40

2.2) Tuv−1,v−1 −→
+ A. In this case, because of the sequence of reverse edges

T1,v−1 ←− · · · ←− Tuv−1,v−1 on xi, based on Observation 3, we have

T1,v−1 −→
+ A. In this case, we need to consider the previous sequence

of reverse edges T1,v−2 ←− · · · ←− Tuv−2,v−2 and repeat the analysis simi-

lar to case 2.1.

Continuing this process, we will end up with a cycle in the serialization graph which

is a contradiction to the fact that T ∪TC ∈ CSR. This means that our assumption

that x1,1, · · · , xu1−1,1 . . . , . . . x1,v, · · · , xuv−1,v are all xi is wrong. In Figure 2.6(b),

dotted lines without an X mark show the possible paths and the dotted lines with

an X mark show the impossible paths.

Using similar arguments, we can show that not all the data items x1,1, · · · , xu1−1,1

. . . , . . . x1,v, · · · , xuv−1,v can be equal to xj . Figure 2.6(c) illustrates this.

So far we have proved that there must exist a data item associated with at least

one reverse edge in the zigzag path from A to B that is different from both xi and xj .

Suppose such a data item is xg,p and is associated with the reverse edge Tg,p ←− Tg+1,p

which is one of the reverse edges in the sequence of reverse edges T1,p ←− · · ·Tup,p.

Next, we prove that A and B cannot be part of a tr-consistent global checkpoint. We

use Figure 2.6(d) to aid in understanding the proof.

On data item x1,1 that both T1,1 and T2,1 have accessed, no checkpoint D1, taken

after T1,1 has accessed x1,1, can be combined with A to construct a tr-consistent global

checkpoint because there is a path from A to D1. Therefore we can only use some

checkpoint C1, taken before T2,1 on x1,1 to construct a consistent global checkpoint

containing A. On x1,2, which both T1,2 and T2,2 have accessed, no checkpoint taken

after T1,2, say D2, can be combined with C1 to form a consistent global checkpoint

because there is a zigzag path from C1 to D2 with consecutive reverse edges of length

at most k (by induction hypothesis). So we have to use some checkpoint C2 on x1,2,

which was taken before T2,2 accessed x1,2.

41

Proceeding like this, on data item xg,p, which was accessed by the transactions Tg,p

and Tg+1,p, no checkpoint Dp taken after both Tg,p and Tg+1,p have accessed xg,p can

be combined with Cp−1, to construct a tr-consistent global checkpoint by induction

hypothesis (due to the existence of the zigzag path containing consecutive reverse

edges of length at most k). So we have to use some checkpoint Cp which was taken

before Tg,p and Tg+1,p have accessed xg,p.

On the other hand, on x1,v, which both T1,v and T2,v have accessed, no checkpoint

Cv that was taken before T2,v accessed x1,v can be combined with B to construct a

tr-consistent global checkpoint because Cv has a zigzag path to B with consecutive

reverse edges of length at most k. Therefore, on x1,v, we have to use some checkpoint

Dv, that was taken after T1,v accessed x1,v. On x1,v−1, which both T1,v−1 and T2,v−1

have accessed, we cannot use any checkpoint Cv−1 that was taken before T2,v−1 to

construct a consistent global checkpoint containing Dv due to the existence of a

zigzag path with consecutive reverse edges of length at most k. So we have to use

some checkpoint Dv−1 on x1,v−1 that was taken after T1,v−1 accessed. Proceeding like

this, on xg,p, we have to use some checkpoint Dp that was taken after Tg,p has accessed

to construct a tr-consistent global checkpoint containing Dp+1.

Thus, for the data item xg,p, which is different from both xi and xj , no checkpoint

that was taken before Tg,p accessed xg,p can be used to construct a tr-consistent global

checkpoint containing A and no checkpoint taken after Tg+1,p accessed xg,p can be used

to construct a tr-consistent global checkpoint containing B. Since no checkpoints

exists between Tg,p and Tg+1,p on xg,p , it does not have any checkpoint that can be

combined with both A and B to construct a tr-consistent global checkpoint.

Therefore, A and B cannot belong to a tr-consistent global checkpoint. This

proves the theorem. ⋄

Corollary 1. A checkpoint of a data item in a distributed database can be part of a

tr-consistent global checkpoint of the database iff it does not lie on a zigzag cycle.

42

(d)

X

iX

T2,1T1,1

X1,1

uT
2 ,2

u 2 −1,2X
2 −1,2TuT2,2T1,2

X1,2

uT
v−1 ,v−1

u v−1
X −1,v−1X1,v−1

T1,v−1 T2,v−1

Tu v−1 −1,v−1

uT
v ,v

u v −1,vX
T2,v

X1,v
−1,vv

TT1,v u

X
B

j

T2,1T1,1 uT
1 ,1

iXiX
1 −1,1Tu uT

2 ,22 −1,2TuT2,2T1,2

iX iX
T1,v−1

uT
v−1 ,v−1

iX iX

v−1
T −1,v−1

T2,v−1

u

uT
v ,v

T2,vT1,v

iX iX
v −1,vTu

X j
B

T2,1T1,1 uT
1 ,1

jXjX
1 −1,1Tu uT

2 ,22 −1,2TuT2,2T1,2

jX jX
T2,v−1

uT
v−1 ,v−1

jX jX
1,v−1

v−1
T −1,v−1

T

u

uT
v ,v

T2,v

jX jX
T1,v v −1,vTu

X j
B

A
X u 1 −1,1X

T2,1T1,1

X1,1
1 −1,1Tu uT

1 ,1

1C

1D

2C

2D

u 2 −1,2X
uT

2 ,2
T2,2T1,2

X1,2 Tg+1,pTg,p

Xg,p

pD

pC

T2,pT1,p

X1,p −1,pX
T

pu ,p

u

p −1,pT p

u T1,v−1

v−1D

v−1C

X1,v−1 u v−1
X −1,v−1

uT
v−1 ,v−1

2,v−1T

v−1
T −1,v−1u

vD

vC

uT
v ,v

u v −1,vX
T2,vT1,v

X1,v
v −1,vTu

jX
B

X

X

X

X

A

i

A

X

X

A
X

uT
1 ,1

u −1,11
T u 1 −1,1X

X

X

i
2

Tu −1,2

(a)

(b)

(c)

i

Figure 2.6: Illustration of proof under case 2

43

Proof: Follows from the Theorem 2.2.2 by taking S
′

as the singleton set containing

the checkpoint. ⋄

2.2.1 Applications

Corollary 1 and Theorem 2.2.2 are useful for constructing tr-consistent global check-

points incrementally. We can start with any checkpoint of any data item that is not

on a Z-cycle, and keep adding checkpoints from other data items without violating the

conditions in Theorem 2.2.2 until we have finished constructing a tr-consistent global

checkpoint of the entire database. This would help in failure recovery, because when

a failure occurs the database needs to be restored to a tr-consistent global checkpoint.

When data items are checkpointed independently, some of the checkpoints of some

of the data items may be useless because they cannot be part of any tr-consistent

global checkpoint, as illustrated in Corollary 1. So, Theorem 2.2.2 can throw light on

designing non-intrusive checkpointing protocols that allow each of the data items to

be checkpointed independently while at the same time ensuring all checkpoints to be

useful.

A federated database system (FDBS) is a collection of cooperating database sys-

tems [8, 22, 17, 18, 20]. Kleewein [21] discusses practical issues with commercial

implementation of federated databases. The individual database systems in a FDBS

could be heterogeneous and distributed across several geographically separated sites.

In such a system, the individual databases are somewhat autonomous and hence

almost all transactions updating a database will be local transactions. Thus, the

individual databases can be checkpointed independently in a non-intrusive manner.

However, when a failure occurs, all the component databases should be restored to

a transaction-consistent global checkpoint. So, constructing a tr-consistent global

checkpoint would be useful in such systems. Federated database systems are likely to

play an important role in the future, especially in integrating medical databases. Even

44

though the concept of federated databases have been proposed in the early 90’s, it has

not been widely implemented. FDBSs are suitable for integrating complex data. For

example, as Muilu et al. [19] point out, large-scale biobank-based post-genome era re-

search projects like GenomEUtwin (an international collaboration between eight Twin

Registries) require extensive amounts of genotype and phenotype data combined from

different data sources located in different countries. Building a solid infrastructure for

accessing such data requires using the model of federated databases. Muilu et al. [19]

also describe how they constructed a federated database infrastructure for genotype

and phenotype information collected in seven European countries and Australia and

connected this database setting via a network called TwinNET.

2.3 Conclusion

Checkpointing has been traditionally used for handling failures in distributed database

systems. An efficient checkpointing protocol should be non-intrusive in the sense that

it should not block the normal transactions while checkpoints are taken. A simple ap-

proach would be to run a read only transaction which would read the entire database

and store it in stable storage. The underlying concurrency control algorithm would

ensure that the saved state is tr-consistent. This approach would be very inefficient,

especially in the presence of long-living transactions. If each data item is indepen-

dently checkpointed, not all the checkpoints taken may be useful for constructing a

tr-consistent global checkpoint of the entire database. We have presented the nec-

essary and sufficient condition for a set of checkpoints of a set of data items in the

database to be part of a tr-consistent global checkpoint of the database. This the-

ory helps in determining which checkpoints are useful for constructing tr-consistent

global checkpoints and which are not. It also helps in constructing tr-consistent global

checkpoints of the database incrementally starting from an useful checkpoint of any

data item. Moreover, the necessary and sufficient conditions established can throw

45

light on designing non-intrusive checkpointing methods which allow data items to be

checkpointed independently while at the same time ensure each checkpoint taken is

part of a tr-consistent global checkpoint.

46

Chapter 3

A Non-intrusive Checkpointing Protocol for Distributed Database

Systems

Non-intrusive checkpointing protocols for distributed database systems are preferable

to intrusive checkpointing protocols since they do not interfere with normal system

activities. For example, executing transactions are not aborted, delayed, or quiesced

in order to save a tr-consistent global checkpoint.

Communication-induced checkpointing approaches designed for distributed com-

putations running on distributed systems are non-intrusive checkpointing protocols.

Baldoni et al. [5] presented two non-intrusive checkpointing protocols for database

systems which are adaptations of communication-induced checkpointing protocols for

distributed computations.

Even though the notion of data items in database systems corresponds to pro-

cesses in distributed computations, communication-induced checkpointing protocols

designed for distributed computations cannot be directly applied to distributed database

systems. Checkpointing and recovery in a distributed database system differs from

checkpointing and recovery for distributed computations in the following aspects: (i)

When a failure occurs, the processes involved in a distributed computation need to

be restarted from a consistent global checkpoint; however, in a distributed database

system, when a failure occurs, the states of the data items of the database need to

be restored to a state which represents a tr-consistent global checkpoint. (ii) De-

pendencies among the states of the processes involved in a distributed computation

47

are caused by messages exchanged between processes; in distributed database sys-

tems dependencies among the states of the data items exist because of the concurrent

interleaved execution of transactions. (iii) For distributed computations, states of

processes are saved in stable storage whereas in database systems, states of data

items are saved in stable storage.

When restoring a database from checkpoints, it is important that the checkpoints

of the data items to which the database is restored form a transaction-consistent global

checkpoint. In coordinated checkpointing protocols, first the arriving transactions are

blocked, then the state of the data items of the database are saved after the currently

executing transactions finish and then the blocked transactions are allowed to execute.

On the other hand, communication-induced checkpointing protocols such as the one

proposed in [5], allow the data items to be checkpointed independently and some

forced checkpoints are also taken if the dependency relation among checkpoints of

data items satisfies some condition. Forced checkpoints are taken in such a way

that every checkpoint of every data item is part of a transaction-consistent global

checkpoint.

One problem with the protocols in [5] is that they induce a large number of forced

checkpoints. We designed a non-intrusive checkpointing protocol which reduces the

checkpointing overhead. Our protocol is motivated by the concept of logical check-

points introduced by Vaidhya [54], and the fact that most distributed database sys-

tems are deterministic, where transaction logging mechanisms are built-in components

for recovery and safety purposes.

The DM on a data item may take two types of checkpoints, namely, physical

checkpoints and logical checkpoints [54]. We say a physical checkpoint of a data item

has been taken at time t1 (local time) if the state of the data item has been stored

in the stable storage at time t1. We say a logical checkpoint of a data item has been

taken at time t1 if adequate information has been saved in stable storage to allow

48

the state of the data item at time t1 to be reconstructed. A physical checkpoint is

trivially a logical checkpoint, however, the converse is not true.

One approach to take logical checkpoint of a data item at time t1 is to take a

physical checkpoint at some time t0 < t1 and log all operations performed on that data

item between time t0 and t1 into stable storage. This approach can be summarized

as [54]:

physical checkpoint + operation log = logical checkpoint

This approach for taking a logical checkpoint may only be used in deterministic

systems, because it implements a logical checkpoint using a physical checkpoint and

the operation log, which require the system to be deterministic.

3.1 Proposed Protocol

The design of our protocol has been motivated by the protocols of Baldoni et al. [5].

Next, we briefly review the basic idea behind the protocols of Baldoni et al. [5].

3.1.1 Basic Idea Behind the Protocols of Baldoni et al.

Baldoni et al. [5] assume that each data manager DMx managing data item x main-

tains a variable tsx, which stores the timestamp of the last checkpoint of x. Another

variable ix is used to maintain the index of the last checkpoint of x. There is a one-to-

one correspondence between the values taken by ix and tsx; tsx may be incremented

unevenly while ix is incremented by one each time. Therefore each checkpoint of x

taken at time tx, denoted by C ix
x is also denoted by Ctsx

x . Moreover, data managers

can take basic checkpoints of data items independently and periodically. To facili-

tate this function, a timer is associated with each data manager and when the timer

expires, a checkpoint is taken and the timer is reset. Checkpoints taken this way are

called basic checkpoints. In addition, whenever a condition that needs to be prevented

49

is detected by means of comparing timestamps, data managers are directed to take

additional checkpoints (referred to as forced checkpoints) in order to ensure that each

local checkpoint belongs to a transaction-consistent global checkpoint. The decision

to take forced checkpoints is made based on the control information (timestamps)

piggybacked with commit messages of transactions. Next, we discuss briefly how the

control information is maintained and communicated.

Let RTi
/WTi

be the set of read/write operations issued by a transaction Ti, which

is under the control of transaction manager TMi. Each time an operation of Ti is

issued by TMi to a data manager DMx on data item x, besides the execution of the

operation, DMx returns the pair (identity of the data item x, value of its current

timestamp tsx) to TMi. TMi stores in MAX TSTi
the maximum value among the

timestamps collected from all the data items that are read and/or written by Ti.

When the transaction Ti is about to commit, the transaction manager TMi sends a

COMMIT message to each data manager DMy involved in RTi
/WTi

. The COMMIT

messages are piggybacked with MAX TSTi
. Whenever a COMMIT message is re-

ceived by DMy, if MAX TSTi
piggybacked in COMMIT is larger than the value of

the local variable tsy, a forced checkpoint is taken on data item y and tsy is updated

to the value of MAX TSTi
. In addition, whenever a basic checkpoint is taken (when

timer expires), the local tsx is incremented by 1. Based on how often the forced check-

points are taken, two protocols are introduced in [5]. In the first protocol (we call it

as Protocol 1), a forced checkpoint is taken whenever the condition MAX TSTi
> tsx

holds.

When a site in a distributed database system fails, the states of all the data items

at that site have to be restored from checkpoints in the stable storage during the

recovery process. If a data item x is restored to a checkpoint with timestamp tsx,

the state of the other data items in the database are restored to their checkpoints

with the smallest timestamp that is greater than or equal to tsx. Such a state is

50

guaranteed to be transaction-consistent as proved in [5]. If a data item only has local

checkpoints with timestamps less than tsx, it remains in its current state.

Let us call the above mentioned protocol of Baldoni et al. [5] as Protocol 1.

To reduce the checkpointing overhead of Protocol 1, they [5] also proposed another

protocol (let us call it as Protocol 2) to reduce the number of forced checkpoints based

on the idea of lazy checkpointing introduced by Wang [44] for distributed systems.

This protocol introduces a system parameter Z ≥ 1 known to all data managers. This

protocol ensures that ∀x (x is a data item) if there exists a checkpoint timestamped

a × Z (where a ≥ 0 is an integer), then a tr-consistent global checkpoint containing

that checkpoint exists. In addition to the control variables used in Protocol 1, each

data managerDMx in Protocol 2 has an additional variable Vx, which is incremented

by Z (where Z is a predetermined positive integer) each time a forced checkpoint on

x, timestamped a × Z, is taken. Protocol 2 does not take forced checkpoints as

often as Protocol 1, because it skips taking some forced checkpoints that would have

been taken under Protocol 1. It takes forced checkpoint only when MAX TSTi
> Vx

becomes true.

3.1.2 Proposed Checkpointing Protocol

Our protocol reduces the checkpointing overhead further using a different approach.

The basic idea behind our protocol is that whenever a forced checkpoint needs to be

taken, our protocol tries to avoid it by only placing a marker into the log. Our proto-

col takes a forced checkpoint only when it can not be avoided. We use the concept of

logical checkpoints to reconstruct a transaction-consistent global checkpoint by com-

bining physical checkpoints and the information maintained in the log appropriately.

During recovery, physical checkpoints together with logs are used to restore the items

of the database to a transaction-consistent global checkpoint.

Similar to the approach in [5], each data manager DMx has a variable tsx. tsx

51

stores the timestamp of the last checkpoint (a physical checkpoint or just a marker

in the log) of data item x. ix denotes the index value of the last physical checkpoint

of data item x. In addition, we have a variable tsphysical that stores the timestamp

of the last physical checkpoint. In the log, a physical checkpoint is represented by

Checkpoint(tsx, C
ts
x), where Cts

x is a link to the location of this physical checkpoint

in the stable storage. This log entry means a physical checkpoint Cts
x with timestamp

tsx has been taken. We denote by Checkpoint.tsx the first element in this tuple. A

marker, on the other hand, uses a pair Marker(tsphysical, tsx). tsphysical is the times-

tamp of the previous physical checkpoint that the marker depends on for recovery

and tsx is the timestamp of the marker. We use Marker.tsphysical and Marker.tsx

to refer to the first and second element in this tuple. We also use a variable called

mnum to control the size of the consecutive markers within a reasonable range, called

mmax and initialized as Z. If the number of consecutive markers exceeds mmax = Z,

we will have to take a forced checkpoint rather than continue placing a marker into

the log in order to reduce the recovery time when a failure occurs. The proposed

checkpointing protocol is given in Table 3.1. The corresponding recovery protocol

under this checkpointing scheme is given in Table 3.2.

3.2 Performance Analysis

3.2.1 Performance Analysis

Hereafter, we call Protocol 1, Protocol 2 and our protocol Protocol A, B,

and C respectively. Both protocols B and C are derived from Protocol A and they

differ in the way in which they suppress forced checkpoints. Firstly, let us analyze the

number of basic checkpoints taken under protocols A, B and C. Protocols A and C

reset timer at the same point for the same set of transactions. i.e., if there is a basic

checkpoint taken by Protocol A, there must be a corresponding basic checkpoint taken

under Protocol C, and vice versa. Therefore, both protocols take the same number of

52

basic checkpoints. Protocol B is likely to take more basic checkpoints than Protocol

A since it does not reset timer when suppressing a forced checkpoint, which means

it does not reset timer as often as protocol A and C, and hence takes more basic

checkpoints.

Both protocol B and C take less forced checkpoints than A since they suppress

some forced checkpoints. Moreover, Protocol C takes less forced checkpoints than

Protocol B. The parameter Z in Protocol C functions similar to the parameter Z in

Protocol B. Suppose they have the same value. Let us assume Protocol A is used in

a database system for a specific transaction pattern and we also assume that on data

item x, there are a total of m forced checkpoints taken between two consecutive basic

checkpoints (i.e., basic checkpoint interval). If we use Protocol A in the same system

with the same transaction pattern, the number of forced checkpoints taken will be

⌊m
Z
⌋. Protocol C is not sensitive to MAX TSTi

in the sense that a data item places a

marker in the log instead of taking forced checkpoints until the number of consecutive

markers placed in the log reaches Z. On the other hand, under Protocol B, on average,

⌊2×m
Z
⌋ forced checkpoints will be taken between any two consecutive basic checkpoints,

the lower on the number of forced checkpoints in this case being ⌊m
Z
⌋ which occurs

when the local timestamp is increased by one each time a COMMIT (MAX TSTi
)

arrives; the upper bound is m and occurs if the value of MAX TSTi
carried by

COMMIT (MAX TSTi
) is always larger than Vx. This means Protocol B is sensitive

to MAX TSTi
and it takes more forced checkpoints than Protocol C. On average,

our protocol (Protocol C) saves ⌊2×m
Z
⌋ − ⌊m

Z
⌋ ≤ ⌈m

Z
⌉ checkpoints on each data item

in each basic checkpoint interval.

Since our protocol avoids taking forced checkpoints by placing markers in the

log, during recovery, our protocol may have to require data items to roll back to an

earlier physical checkpoint than Protocol B in order to reconstruct the most recent

consistent state. In other words, under Protocol C, compared to under Protocol B,

53

d4

0

0

0

0

0

0

0

10

10

10

10

10

10

10

10

24

23

21

17 20

20

20

20

20

20

20

20

26

26

26

26

Marker Failed Point

26

26

26

26

(a)

(b)

0

Physical Checkpoint Ignored Checkpoint

d1

d2

d3

d4

d1

d2

d3

Figure 3.1: Recovery cost

more time may be needed to restore the database to a consistent state when a failure

occurs. But statistical analysis and our simulations show that the expected recovery

cost on a data item is the same for both Protocols B and C. We define the recovery

cost on a data item as the total number of forced checkpoints that are suppressed

and the physical checkpoints that are not used during recovery (i.e., checkpoints that

lie between the most recent checkpoint on the data item before failure and the actual

physical checkpoint to which the data item is restored to during the recovery). These

checkpoints are the cost we must pay in order to decrease the number of checkpoints

taken. We illustrate this using Figure 3.1.

In Figure 3.1(a), suppose data item d1 initiates recovery at the point indicated by

the cross mark after checkpoint with timestamp 26 has been taken if Protocol A is

used. Under Protocol B, suppose such a checkpoint is ignored (suppressed) to reduce

the number of checkpoints taken. Then, under Protocol B, d1 has to roll back to the

checkpoint with timestamp ⌊26
10
⌋ × 10 = 20, assuming Z = 10. The state represented

by the checkpoint with timestamp 26 is the ideal state to which we would like d1 to

be restored even though it does not exist. The checkpoint with timestamp 20 is the

54

physical checkpoint to which the data item is restored during the recovery. Therefore,

the recovery cost is the number of forced checkpoints that are supposed to be taken

in Protocol A but suppressed by Protocol B as well as possible basic checkpoints that

are never used during recovery. Since the timestamp difference is 6, we can derive

that the upper bound of the recovery cost is 6 for data item d1. Similarly, under

Protocol B, the states of all other data items di (d2, d3 and d4 in Figure 3.1(a)) have

to be restored to checkpoint 20; then the log needs to be replayed until their state

reaches the state represented by the logical checkpoint with timestamp 26, since the

logical checkpoints with timestamp 26 forms the latest transaction-consistent global

checkpoint with respect to this failure. All of them have an upper bound 6 of the

recovery cost. In a distributed database system where transactions access all the data

items with the same probability, the recovery cost for each data item should be similar

in value under Protocol B. Therefore if Protocol B is used, we can use one random

variable for a data item to predict the total recovery cost for the whole system.

Checkpoints taken for the execution of the same set of transactions under our

protocol is shown in Figure 3.1(b). In Figure 3.1(b), failure occurs after data item d1

takes checkpoint 26 has been taken if Protocol A is used. Under our protocol, check-

point 26 is not taken and only a marker is inserted in the log. When d1 recovers, it

has to restore its state to checkpoint 17 since checkpoint 17 is the nearest physical

checkpoint. Recall that the number of suppressed forced checkpoints between check-

point 26 and checkpoint 17 can not exceed 10 (Z = 10). So, the recovery costs in this

example are 9 for d1, 3 for d2, 2 for d3 and 5 for d4. Under our protocol, each data

item has no longer similar recovery cost, but the recovery cost of each data item is

≤ Z. Therefore for analyzing the recovery cost of our protocol, we used a random

variable for predicting the recovery cost of each data item.

A protocol that results in low recovery cost as well as low checkpointing overhead

is ideal. The recovery cost can also be interpreted as the penalty we pay during

55

recovery if we suppress some forced checkpoints. Based on this useful parameter,

we compare our protocol (Protocol C) with Protocol B and see how our protocol

trades longer recovery time for less checkpointing overhead in the system, compared

to Protocol B.

Under Protocol B, each data item may have recovery cost ranging from 0 to Z−1

with equal probability. This is the only random variable, denoted as R, we use for

evaluating the recovery cost. In addition, all data items should have similar recovery

cost and therefore we can make reasonable assumption that they are equal in value

(our simulation also shows the similarity of the recovery cost among all the data

items). For example, suppose Z = 5 and we have two data items x1 and x2. Then,

when a failure occurs, the expected total recovery cost due to that failure under

Protocol B is

2× (0× 1
5
+ 1× 1

5
+ 2× 1

5
+ 3× 1

5
+ 4× 1

5
) = 4.

In general, the expected total recovery cost can be expressed as n × E(R) = n ×

1
2
× (Z − 1), where n is the number of data items and E(R) is the expected value of

random variable R.

On the other hand, under our protocol, the recovery cost for each data item x is a

random variable Rx taking values from 0 to Z − 1. For example, if we assume Z = 5

and the database has two data items (x1 and x2), we calculate the joint probability

ΣRx where x ∈ {x1, x2}. Possible values for Rx1 + Rx2 lies in {0, 1, 2, 3, 4, 5, 6, 7, 8}.

If Rx1 + Rx2 = 0, there is only one possibility (0 + 0 = 0). Rx1 + Rx2 = 1, there are

two possibilities (0 + 1 = 1 or 1 + 0 = 1). Similarly, if Rx1 +Rx2 = 2, there are three

possibilities; if Rx1 +Rx2 = 3, there are four possibilities; if Rx1 +Rx2 == 4, there are

five possibilities; if Rx1 +Rx2 = 5, Rx1 +Rx2 = 6, Rx1 +Rx2 = 7, and Rx1 +Rx2 = 8,

there are four, three, two and one possibilities respectively. Therefore the expected

total recovery cost is

0× 1
25

+ 1× 2
25

+ 2× 3
25

+ 3× 4
25

+ 4× 5
25

+ 5× 4
25

+ 6× 3
25

+ 7× 2
25

+ 8× 1
25

= 4.

56

In general, the expected total recovery cost can be expressed as E(
∑n

x=1Rx).

This simple example shows that Protocol B of Baldoni et al. has the same recovery

cost as our protocol. This is also true for any Z and for any amount of data items

consisting of the distributed database system, based on the following reasoning. Since

∀x where 1 ≤ x ≤ n, Rx is independent of each other, then

E(
∑n

x=1Rx) =
∑n

x=1E(Rx) = n× 1
2
× (Z − 1).

Since the expected total recovery cost are the same for a failure under both Protocol

B and C, we know that on each data item, the expected recovery cost should also be

the same (close to 1
2
× (Z − 1)) because we have a fixed number of data items in the

system.

From the brief analysis above, we realize that our protocol reduces the checkpoint-

ing overhead by reducing the numbers of forced checkpoints taken without introducing

additional cost for recovery. In addition, our protocol is easy to implement since the

cost of placing markers into the log is low and the log is a built-in component of most

database systems. In the next subsection, we show the superiority of our protocol

over protocols in [5] through our simulation results.

3.2.2 Simulation Results

We simulated a distributed database system with 10 data items and the transactions

can access all the data items with equal probability. In the simulation, a random

data item initiates recovery and the total recovery cost for the recovery process is

calculated under Protocols B and C. Then the average recovery cost is calculated

for each data item under both protocols. In the simulation, under both Protocols

B and C, we counted the number of suppressed forced checkpoints, as the recovery

cost. When counting the recovery cost under Protocol B, we also counted the basic

checkpoints that lie between the physical checkpoints restored to and the most recent

57

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500 600 700

b
a
s
ic

 c
h
e
c
k
p
o
in

ts

transactions

Basic Checkpoints

Protocol A
Protocol B
Protocol C

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700

fo
rc

e
d
 c

h
e
c
k
p
o
in

ts

transactions

Forced Checkpoints

Protocol A
Protocol B
Protocol C

(a) (b)

Figure 3.2: Simulation results (a) basic checkpoints (b) forced checkpoints

suppressed forced checkpoint. Under Protocol C, no such basic checkpoints exist and

we only count suppressed forced checkpoints.

Figure 3.2(a) shows the number of the basic checkpoints taken as the number

of transactions processed varies. As we expected, as the number of transactions

increases, the basic checkpoints in the system also increase. In addition, Protocol A

and C take more or less the same number of basic checkpoints but Protocol B takes

much more.

Figure 3.2(b) shows the number of the forced checkpoints taken as the number

of transactions processed varies. As predicted in our theoretical analysis, Protocol B

takes more forced checkpoints than C. They both take much less forced checkpoints

than Protocol A. Figure 3.3(a) shows the total number of checkpoints (basic and

forced) in the system for Protocol A, B and C.

Figure 3.3(b) shows the difference in the average(expected) recovery cost for one

data item under Protocol B and C for varied number of transactions. As we can

see from Figure 3.3(b), the difference in the average recovery cost for a data item

among Protocols B and C for the same transaction pattern is small. This similarity

does not depend on the number of transactions. In order to show the similarity of

58

 0

 100

 200

 300

 400

 500

 600

 100 200 300 400 500 600 700

to
ta

l
c
h
e
c
k
p
o
in

ts

transactions

Total Checkpoints

Protocol A
Protocol B
Protocol C

 0

 2

 4

 6

 8

 10

 100 200 300 400 500 600 700 800

a
v
e
ra

g
e
 r

e
c
o
v
e
ry

 c
o
s
t

transactions

Average Recovery Cost

Protocol B
Protocol C

(a) (b)

Figure 3.3: Simulation results (a) total checkpoints (b) average recovery cost

the average recovery cost among Protocols B and C mathematically, we conducted

the two-sample t-test for the data in Figure 3.3. The two-sample t-test is used to

determine if two population means are equal. A common application of this method

is to test if a new process or treatment is superior to a current process or treatment.

The two-sample t-test for two sets of data is defined as:

H0 (null hypothesis): µ1 = µ2

Ha (alternative hypothesis): µ1 6= µ2

Test Statistics: T = Y1−Y2√
s21
N1

+
s22
N2

where N1 and N2 are the sample sizes, Y1 and Y2

are the sample means, and s21 and s22 are the sample variances.

Significance Level: α

Critical Region: Reject the null hypothesis that the two means are equal if

T < −t(α
2
,υ) or T > t(α

2
,υ), where t(

α
2
, υ) is the critical value of the t distribution

with υ degrees of freedom where υ =
(
s21
N1

+
s22
N2

)
2

(
s2
1

N1
)

2

(N1−1)
+

(
s2
2

N2
)

2

(N2−1)

Table 3.3 shows the result from the Minitab program. The fourth line of the table

shows that the sample data for Protocol B have 36 samples, the mean is 2.86, the

59

standard deviation is 1.05 and the standard deviation of mean is 0.18. The fifth

line shows the data for Protocol C have also 36 sample with mean 3.010, standard

deviation 0.655, and standard deviation of mean 0.11. The T value of this test is

−0.74 shown in the ninth line. In order to reject the null hypothesis H0 that the two

means are equal, the value of T must satisfy T < −t(α
2
,υ) or T > t(α

2
,υ). Let us choose

the Significance Level criteria as α = 0.05 = 5%. Then we have t(α
2
,υ) = −2.00172

which is shown in the 13th line, where υ = 58 (degree of freedom υ is given by DF

in the ninth line). It is obviously false and therefore the null hypothesis H0, which

is µ1 = µ2 must stand with 1 − 5% = 95% confidence. We can finally conclude that

there is no significant difference between population B and C with 95% confidence.

3.3 Conclusion

Checkpointing has been traditionally used for handling failures in distributed database

systems. An efficient checkpointing protocol should be non-intrusive in the sense that

it should not block the normal transactions while checkpoints are taken. In this chap-

ter, we presented a non-intrusive checkpointing protocol for distributed database sys-

tems which has low checkpointing overhead compared to some existing checkpointing

protocols while at the same time does not increase the recovery cost.

60

Table 3.1: Proposed Checkpointing Protocol

• Initialization:
tsx = 0;
ix = 0;
tscheckpoint = 0;
mnum = 0;
mmax = Z;

• Taking basic checkpoints, when the time expires:
ix ← ix + 1;
tsx ← tsx + 1;
Take checkpoint Ctsx

x ;
tsphysical ← tsx;
Write Checkpoint(tsx, C

ts
x) into the log;

mnum ← 0;
Reset the local timer.

• Taking forced checkpoints or placing markers in the log, when DMx receives
COMMIT (MAX TSTi

) from TMi:
if tsx < MAX TSTi

and mnum ≤ mmax then

ix ← ix + 1;

tsx ← MAX TSTi
;

Place the marker Marker(tsphysical, tsx) into the log;

mnum ← mnum + 1;

Reset the local timer;

else if tsx < MAX TSTi
and mnum > mmax then

ix ← ix + 1;

tsx ← MAX TSTi
;

tscheckpoint← tsx;

Take forced checkpoint Cts
x ;

Write Checkpoint(tsx, C
ts
x) into the log;

mnum ← 0;

Reset the local timer;

endif
process the COMMIT message.

61

Table 3.2: Recovery Protocol Based on the Checkpointing Protocol

• Whenever a data item x needs to roll back and initiate recovery:
Locate the latest checkpoint information in the log;
if it is a checkpoint in the form of Checkpoint(tsx, C

ts
x)

- Track through the link Cts
x in Checkpoint(tsx, C

ts
x) in the stable storage

and restore the state of the data item to that checkpoint;

- Broadcast Recovery(tsx) message to all the data items in the distributed
database system where tsx = Checkpoint.tsx

else if it is a marker in the log of the form of Marker(tscheckpoint, tsx)

- Continue searching backward in the log until reaching the entry
Checkpoint(tsx, C

ts
x) where Checkpoint.tsx = Marker.tscheckpoint;

- Track through the link Cts
x in the Checkpoint(tsx, C

ts
x) to the stable

storage and restore the state of the data item;

- Redo all the operations in the log between Checkpoint(tsx, C
ts
x) and

Marker(tscheckpoint, tsx);

- Broadcast Recovery(tsx) message to all the data items in the distributed
database system where tsx = Marker.tsx;

endif
Resume normal database processing.

• Whenever a data item y receives Recovery(tsx) message:
Track backward through all the checkpoint or marker entries in the log and
locate the one with the smallest tsy such that tsy ≥ tsx;
if it is a checkpoint in the form of Checkpoint(tsy, C

ts
y)

- Track through the link Cts
y in the Checkpoint(tsy, C

ts
y) to the stable

storage and restore the state of the data item to that checkpoint;

else if it is a marker in the log of the form Marker(tsphysical, tsy)

- Continue searching backward in the log until reaching a
Checkpoint(tsy , C

ts
y) entry where Checkpoint.tsy = Marker.tsphysical;

- Track through the link Cts
y in the Checkpoint(tsy, C

ts
y) to the stable

storage and restore the state of the data item;

- Redo all the operations in the log between Checkpoint(tsy, C
ts
y) and

Marker(tscheckpoint, tsy);

endif
Resume normal database processing.

62

Table 3.3: Two Sample T-test Result

1 Two-Sample T-Test and CI: B, C

2 Two-sample T for B vs C

3 N Mean StDev SE Mean

4 B 36 2.86 1.05 0.18

5 C 36 3.010 0.655 0.11

6 Difference = mu (B) - mu (C)

7 Estimate for difference: −0.153315

8 95% CI for difference: (−0.567235, 0.260605)

9 T-Test of difference = 0 (vs not =): T-Value = −0.74 P-Value = 0.461 DF =
58

10 Inverse Cumulative Distribution Function

11 Student’s t distribution with 58 DF

12 P (X ≤ x) x

13 0.025 −2.00172

63

Chapter 4

An Enhanced Model-based Communication-Induced Checkpointing

Protocol for Distributed Systems

For distributed computations running in distributed systems, communication-induced

checkpointing protocols have recently received lot of attention due to their following

attractive features: (i) Each process involved in the distributed computation can

take checkpoints independently without any coordination with other processes in the

computation, called basic checkpoints. (ii) Each basic checkpoint taken is ensured

to be part of a consistent global checkpoint of the computation; this is achieved

by forcing processes to take some additional checkpoints, called forced checkpoints.

It is known that designing a communication-induced checkpointing protocol with

optimal number of forced checkpoints is not possible. So, one of the main goals of

a communication-induced checkpointing protocol is to reduce the number of forced

checkpoints while making all checkpoints useful.

As we noted in Chapter 1, communication-Induced checkpointing protocols have

been classified into two subclasses, namely, index-based and model-based protocols.

In the model-based protocols, a communication pattern that could result in Z-cycles

is identified. The protocols then monitor and detect the formation of such commu-

nication patterns and take forced checkpoints to prevent such undesirable checkpoint

and communication patterns from occurring, thereby make all checkpoints useful.

In this chapter, we present a model-based communication-induced checkpointing

protocol. Next we present the motivation behind designing this checkpointing proto-

64

’C

l,b+1C

kP

sP
?

µ
γ

m’’

m’

j

m

iP

P

P l

C l,b

C k,y

i,xC

i,xC

,is prime in M()Pk

j,z+1C

k,y+1C

:A checkpoint can be predicted under NESZC but not under NSZC

Under NSZC, a forced checkpoint is taken even though it is unnecessary

Under NESZC, no forced checkpoint is taken

γ
j,z

Figure 4.1: Example showing unnecessary forced checkpoints induced by the protocol
in [34].

col.

4.1 An Example Showing Our Motivation

The model-based checkpointing protocol presented by Baldoni et al. [34] defines Sus-

pect Z-cycle (SZC), a pattern that may lead to Z-cycles. A SZC is a Checkpoint and

Communication Pattern SZC(Ij,z, Ci,x, µ, Ik,y) such that: ∃m,m′ : Cj,z◦m◦Ci,x◦µ
k,y
•

m′ with 



i send(m) ∈ Ij,z

ii µ is prime in M(Ci,x, Pk)

iii ∄e ∈ Ij,z+1 : e
hb
→ receive(µ.last).

(4.1)

The authors in [34] proved that if there is a Z-cycle then there also exists a SZC.

Therefore, eliminating all SZCs eliminates all Z-cycles. Besides, they designed a

model-based checkpointing protocol that tracks SZCs and forces processes to take

additional checkpoints to eliminate all SZCs, and hence all Z-cycles.

However, their protocol may take some unnecessary forced checkpoints while try-

ing to eliminate SZCs. For example, in the CCP illustrated in Figure 4.1, upon the

reception of µ.last, the protocol in [34] will detect the SZC(Ij,z, Ci,x, µ, Ik,y), since

the CCP satisfies all the three conditions for the existence of an extended SZC, and

65

direct Pk to take the forced checkpoint Ck,y+1 to prevent the SZC(Ij,z, Ci,x, µ, Ik,y)

detected. In this example, let us denote the SZC(Ij,z, Ci,x, µ, Ik,y), which leads to

the ZC(Ci,x, µ
k,y
• ζ) where ζ = m′ • m′′ ◦ m, by Z1. Ck,y+1 is however unneces-

sary since there exists another SZC(Ij,z, Ci,x, γ, Il,b) in this CCP , which leads to the

ZC(Ci,x, γ
k,y
• ζ ′) where ζ ′ = m′′ ◦ m. Let us denote this SZC by Z2. Clearly Z2

satisfies all the following three conditions:

1. send(m) ∈ Ij,z

2. γ is prime in M(Ci,x, Pl)

3. ∄e ∈ Ij,z+1 : e
hb
→ receive(γ).

So, the protocol in [34] would have directed Pl to take a forced checkpoint Cl,b+1

before receiving γ to break Z2. As a result of Pl taking the checkpoint Cl,b+1, the

Z-cycle, ZC(Ci,x, µ
k,y
• ζ) where ζ = m′ • m′′ ◦ m, has been broken, which makes

the forced checkpoint Ck,y+1 unnecessary. So, upon receiving the message µ.last, Pk

does not have to take the forced checkpoint Ck,y+1. But the protocol proposed in [34]

would still force Pk to take the forced checkpoint Ck,y+1. The reason for such an

unnecessary forced checkpoint taken by the protocol in [34] is that the existence of

Cl,b+1 is not captured by Pk upon the reception of µ.last. This unawareness makes

Pk to take the unnecessary forced checkpoint Ck,y+1. In order to know the existence

of Cl,b+1, the following three types of information will suffice.

1. To whom and when Pk has sent messages, i.e., the destination of m′.

2. The existence of the causal path γ from Pi to Pl (in this example, γ is a single

message), which forms the inner SZC(Ij,z, Ci,x, γ, Il,b). γ can be tracked by Pk

only if it can be included in the causal past of Pk. i.e., there exists a causal

path γ′ that can bring the information about the existence of γ to Ps before

sending µ.last.

66

3. The receiving of the message γ must occur before the receiving of m′.

Item 1 contains information about the causal future since m′ is sent by Pk. On the

other hand, items 2 and 3 can be tracked by Pk from the information about the causal

past upon receiving µ.last. i.e., Pk checks weather there exists γ that strongly visibly

doubles µ •m′. Our goal is to design a protocol that captures this information and

makes informed decision to take forced checkpoints.

4.2 The Sufficient Condition

To help track the formation of potential Z-cycles, we make the following definition.

Definition 15. An Extended SZC (ESZC) is a Checkpoint and Communication

Pattern ESZC(Ij,z, Ci,x, µ, Ik,y) such that: ∃m,m′ : Cj,z ◦m ◦Ci,x ◦µ
k,y
• m′ satisfying





(i) send(m) ∈ Ij,z

(ii) µ is prime in M(Ci,x, Pk)

(iii) ∄e ∈ Ij,z+1 : e
hb
→ receive(µ.last)

(iv) µ •m′ is not strongly visibly doubled.

(4.2)

Next, we prove that if there is a Z-cycle there must exist an ESZC. Much of the

proof of this result is similar to the proof given in [34].

Lemma 4.2.1. If there exists ZC(Ci,x, µ
k,y
• ζ) such that |ζ | = 1 then there exists an

ESZC(Ik,y, Ci,x, µ
′, Ik,y).

Proof: Suppose a Z-cycle ZC(Ci,x, µ
k,y
• ζ) with |ζ | = 1 (i.e., ζ = m). We suppose

the prime causal chain in M(Ci,x, Pk) is µ′ (this chain exists as the set M(Ci,x, Pk)

contains at least µ). Since both send(m) and receive(µ′.last) occur in the process

Pk, either receive(µ
′.last)

hb
→ send(m) or send(m)

hb
→ receive(µ′.last).

67

A. Suppose receive(µ′.last)
hb
→ send(m). This is impossible because this implies

send(m)
hb
→ receive(m)

hb
→ Ci,x

hb
→ send(µ′.f irst)

hb
→ receive(µ′.last), a contra-

diction to the assumption receive(µ′.last)
hb
→ send(m).

B. Suppose send(m)
hb
→ receive(µ′.last). It has the following properties.

B.1 µ′ • m is not visibly doubled, and hence is not strongly visibly doubled,

not violating condition (iv) of Definition 15. This is because µ′ • m is a

Z-path from Ii,x to Ii,x−1 (Definition 9).

B.2 Condition (iii) of Definition 15 is not violated. This is because if it is vio-

lated, then there exists an event e ∈ Ik,y+1 such that e
hb
→ receive(µ′.last).

Then, sincem◦Ci,x◦µ
′
k,y
• m, send(m) ∈ Ik,y and µ′ is prime inM(Ci,x, Pk),

we know that receive(µ′.last) ∈ Ik,y and thus receive(µ′.last)
hb
→ Ck,y+1

hb
→

e, which is a contradiction to the assumption e
hb
→ receive(µ′.last).

Thus we showed in case B, conditions (iii) and (iv) of the Definition 15 are

satisfied. Trivially, conditions (i) and (ii) are also satisfied.

Hence we conclude the existence of an ESZC and the lemma follows. 2

Next, we prove this result in the general case.

Theorem 4.2.2. If there exists ZC(Ci,x, µ
k,y
• ζ), then there exists an ESZC.

Proof: Suppose a Z-cycle ZC(Ci,x, µ
k,y
• ζ) exists. We use induction on the length

of ζ . If |ζ | = 1 then the theorem follows from Lemma 4.2.1. Next we assume that

if there exists ZC(Ci,x, µ
k,y
• ζ) where |ζ | < K (K ≥ 2), then there exists an ESZC

and prove that if there exists ZC(Ci,x, µ
k,y
• ζ) where |ζ | = K, then there exists an

ESZC.

Let us consider Ij,z such that send(ζ.last) ∈ Ij,z and a causal chain µ′ is prime in

M(Ci,x, Pk) (this chain exists as the set M(Ci,x, Pk) contains at least µ). Since events

68

’

C

b,sC

bP

iP

k,yC
kP

µ ’.last

µ ’’

µ

ζ

.firstζ

ζ
µ

*

i,x

Figure 4.2: Proof for case A

receive(µ′.last) and send(ζ.first) occur in Pk, either receive(µ
′.last)

hb
→ send(ζ.first)

or send(ζ.first)
hb
→ receive(µ′.last):

A. If receive(µ′.last)
hb
→ send(ζ.first), we claim the existence of ZC(Ci,x, [µ

′◦µ′′]
b,s
•

ζ∗) where µ′′ is a causal path and µ′′
b,s
• ζ∗ = ζ for some b and s (see Figure 4.2),

hence |ζ∗| < |ζ |. This is because the checkpoint interval Ib,s must exist, oth-

erwise the message chain ζ would be causal. If chain ζ is causal, we have

send(ζ.first)
hb
→ receive(ζ.last)

hb
→ Ci,x

hb
→ send(µ′.f irst)

hb
→ receive(µ′.last), a

contradiction to the assumption receive(µ′.last)
hb
→ send(ζ.first).

B. If send(ζ.first)
hb
→ receive(µ′.last), we get the Z-cycle ZC(Ci,x, µ

′
k,y
• ζ). We

have the following three sub-cases. Note that the three subcases cover all the

possibilities, since (iii ∩ iv) ∪ (iii) ∩ (iv) = (iii ∩ iv) ∪ (iii) ∪ (iv).

B.1 (iii ∩ iv) : i.e., ∄e ∈ Ij,z+1 : e
hb
→ receive(µ′.last) and ∃m′: µ • m′ is not

strongly visibly doubled. By definition, we get an ESZC(Ij,z, Ci,x, µ
′, Ik,y)

and the claim follows.

B.2 (iii) : i.e., ∃e ∈ Ij,z+1 : e
hb
→ receive(µ′.last). This implies that there ex-

ists at least one causal message chain µ′′ that starts after Cj,z+1 such that

µ′′.last is received by Pk before µ
′.last or receive(µ′′.last) = receive(µ′.last).

Since events send(ζ.first) and receive(µ′′.last) occur in Pk, either send(ζ.first)
hb
→

receive(µ′′.last) or receive(µ′′.last)
hb
→ send(ζ.first). Hence the following

two subcases arise:

69

(a) Suppose send(ζ.first)
hb
→ receive(µ′′.last). Then we get ZC(Cj,z+1, µ

′′
k,y
•

ζ∗) where ζ∗ = ζ − ζ.last (see Figure 4.3.(a)), hence |ζ∗| < |ζ |.

(b) Suppose receive(µ′′.last)
hb
→ send(ζ.first). We claim the existence

of ZC(Cj,z+1, [µ
′′ ◦ µ′′′]

b,s
• ζ∗) where µ′′′ is a causal path and µ′′′

b,s
•

ζ∗ = ζ − ζ.last for some b and s (see Figure 4.3.(b)), hence |ζ∗| <

|ζ |. This is because the checkpoint interval Ib,s must exist, otherwise

the message chain ζ − ζ.last is causal. If ζ − ζ.last is causal, we

have send(ζ.first)
hb
→ receive(ζ∗.last)

hb
→ Cj,z+1

hb
→ send(µ′′.f irst)

hb
→

receive(µ′′.last), a contradiction to the assumption receive(µ′′.last)
hb
→

send(ζ.first).

B.3 (iv) : i.e., ∀m′: µ•m′ is strongly visibly doubled by causal chain γ. Suppose

m′ is sent to Pc. Since events send((ζ−m
′).f irst) and receive(γ.last) occur

in Pc, either send((ζ −m′).f irst)
hb
→ receive(γ.last) or receive(γ.last)

hb
→

send((ζ −m′).f irst):

(a) If send((ζ−m′).f irst)
hb
→ receive(γ.last). Then, there is a ZC(Ci,x, γ

c,t
•

(ζ −m′)). Let ζ∗ = ζ −m′ (see Figure 4.4.(a)), hence |ζ∗| < |ζ |.

(b) If receive(γ.last)
hb
→ send((ζ − m′).f irst), we claim the existence of

ZC(Ci,x, [γ◦µ
′′]

b,s
• ζ∗), where µ′′ is a causal path and µ′′

b,s
• ζ∗ = ζ−m′

for some b and s (see Figure 4.4.(b)), hence |ζ∗| < |ζ |. The checkpoint

interval Ib,s must exist, otherwise the message chain ζ −m′ is causal.

If ζ − m′ is causal, we have send((ζ − m′).f irst)
hb
→ receive((ζ −

m′).last)
hb
→ Ci,x

hb
→ send(γ.first)

hb
→ receive(γ.last), a contradiction

to the assumption receive(γ.last)
hb
→ send((ζ −m′).f irst).

Thus we have proved that if there exists a ZC(Ci,x, µ
k,y
• ζ) where |ζ | = K, it is either

already an ESZC(Ij,z, Ci,x, µ
′, Ik,y) or it contains a Z-cycle with |ζ∗| < |ζ | = K. So,

by the induction hypothesis, the theorem is true.2

70

’’

C

j,zC

jP

iP

kP

k,yC
.firstζ

j,z+1C

.lastζ

ζ

ζ *
µ

µ ’

i,x

’

C

jP

iP

kP

j,z+1C

b,sC

j,zC

bP

k,yC .firstζ

,,,
µ

.lastζ

ζ

ζ

µ

µ
,,

*

i,x

(a) (b)

Figure 4.3: Illustration of proof for case B.2

.first

C

jP

iP

kP

.lastγ

k,yC

cP
c,tC

j,zC

.lastζ

ζ

γζ
µ

m

ζ−(

*
γ ’

’

’

m’)

i,x

’

C

jP

iP

kP
k,yC

j,zC

bP
b,sC

.lastγ
cP

c,tC

m ’

’’µ

’µ’γ.lastζ

ζ

γζ

)(ζ− .firstm

*

i,x

(a) (b)

Figure 4.4: Illustration of proof for case B.3

Theorem 4.2.3. If a checkpoint and communication pattern (Ĥ, CĤ) of a distributed

computation satisfies the No-Extended-Suspect-Z-cycle (NESZC) property, (i.e., no

ESZC exists in (Ĥ, CĤ)), then it satisfies the NZC property.

Proof: By Theorem 4.2.2, if a ZC exists then an ESZC exists in (Ĥ, C
Ĥ
). i.e.,

ZC ⇒ ESZC. Hence NESZC ⇒ NZC.2

The following theorem shows the relation between the protocol in [34] ensuring

No-Suspect-Z-cycle (NSZC) and our protocol ensuring NESZC.

Theorem 4.2.4. If our protocol induces a forced checkpoint for ensuring NESZC,

the protocol in [34] also induces a forced checkpoint for ensuring NSZC.

Proof: Since an ESZC is also a SZC, the theorem follows from Theorem 4.2.3.2

The converse may not be true. For example in Figure 4.1, there exists a SZC(Ij,z, Ci,x,

µ, Ik,y) but no ESZC(Ij,z, Ci,x, µ, Ik,y) exists. Our protocol uses a stronger condition

than the one used by Baldoni et al. [34] to induce forced checkpoints. So, our protocol

71

is likely to induce less forced checkpoints, in general.

4.3 Relation Between Existing Model-based Checkpointing Protocols

Theorem 4.2.2 shows if there exists a Z-cycle, then there exists an ESZC and the

converse may not be true. Therefore the set of ESZCs contains the set of Z-cycles.

Similarly, from the proof of Theorem 4.2.4, if there exists an ESZC, then there exists

a SZC and the converse may not be true. Hence, the set of SZCs contains the set of

ESZCs. The concept of Core-Z-cycle (CZC) introduced in [52] is essentially another

term of SZC. Trivially, if there exists an SZC, then there exists a Z-path. But the

converse in not true in general. Hence the set of Z-paths contains the set of SZCs.

Note that RDT protocols prevent the formation of Z-paths.

Protocol in [45] interprets the concept of SZC from a different perspective, the

obsoleteness of a checkpoint. A checkpoint C1 is said to be obsolete to the most

recent checkpoint C2 on Pi if C1
hb
→ C2. By checking the obsoleteness of checkpoints,

protocol in [45] prevents the formation of potential Z-cycles. An essential compo-

nent of SZC is that it checks if ∃e ∈ Ij,z+1 : e
hb
→ receive(µ), which is same as

checking if checkpoint Cj,z is obsolete with respect to Ck,y+1 since Cj,z
hb
→ Ck,y+1 (Fig-

ure 4.5.(a)). However the converse may not be true. In Figure 4.5.(b), there is no

∃e ∈ Ij,z+1 : e
hb
→ receive(µ) but Cj,z is still obsolete since Cj,z

hb
→ Ck,y+1 through

Pb. Therefore, if there exists a pattern satisfying ∃e ∈ Ij,z+1 : e
hb
→ receive(µ), there

exists the obsoleteness of Cj,z but the converse may not be true. Since the definition

of SZC and the protocol in [45] contains the negation of ∃e ∈ Ij,z+1 : e
hb
→ receive(µ)

and obsoleteness respectively, we derive the following: the communication pattern

detected and prevented by protocol in [45], contains an SZC; but if there is an SZC,

it may not contain a communication pattern detected by the protocol in [45].

Now we will discuss the relationship between of our protocol and protocols in [34,

45, 52]. Under all these three protocols [34, 45, 52], a process, based on local infor-

72

mation and information received in messages from other processes, tries detect if a

Z-cycle is likely to form. For example, in the communication pattern illustrated in

Figure 4.1, upon receiving µ.last, protocols in [34, 45, 52] will make Pk only to check

if a potential Z-cycle will be formed based on the information it has and it does not

take into consideration the fact that Pl (the process to which Pk has sent a message)

has also detected a formation of the same potential Z-cycle based on the information

it has. This potential Z-cycle detected by Pl makes the detection of the potential

Z-cycle by Pk redundant. Therefore, in order for Pk to make more informed decision

regarding the detection of potential Z-cycles, our protocol uses additional information

(i.e., the condition iv in Definition 15) to check if other processes, especially those

it has sent messages to, have detected potential Z-cycles. This is the essence of our

proposed protocol. Since our protocol gathers Z-cycle information from both itself

and some other processes, it makes a more informed decision regarding the forma-

tion of potential Z-cycles. In other words, if there exists a ESZC, there must exist a

communication pattern detected by protocols in [34, 45, 52] to prevent Z-cycles. How-

ever, the converse is not true in general. Hence, each of the communication patterns

detected and prevented by the algorithms in [34, 45, 52] contain ESZC.

In other words, based on these discussions, we can conclude the following. Ex-

istence of ZC implies existence of ESZC; existence of ESZC implies existence of

communication pattern detected by the protocol in [45]; existence of communication

pattern detected by protocol in [45] implies existence of SZC; existence of SZC im-

plies the existence of Z − path. Thus, the set of communication patterns detected

and prevented by our protocol is the smallest of the sets of communication patterns

detected and prevented by all these other protocols. This relationship between our

protocol and the set of communication patterns detected and prevented by protocols

in [34, 45, 52] is given in Figure 4.6. In the next section, we present our protocol

which tracks and prevents the formation of ESZCs.

73

γ

ζ i,x

i

jP

kP
k,y

j,z

P

C

C

ζ.last

C :The most recent checkpointk,y+1

C

e
j,z+1C µ µ

ζ i,x

i

jP

kP
k,y

j,z

b
b,s

j,z+1

P

C

C

ζ.last P
C

C :The most recent checkpointk,y+1

C

C

e
γ

(a) (b)

Figure 4.5: Essential components of Baldoni’s and Garcia’s protocols

Core−Z−Cycles

Z−Paths

All Communication Patterns

Z−Cycles

Communication Patterns detected by

Exteded−Suspect−Z−Cycles

Garcia’s Algorithm

Suspect−Z−Cycles

Figure 4.6: Relation between some existing model-based communication-induced
checkpointing protocols

4.4 An Enhanced Model-based Checkpointing Protocol

The protocol presented in this section ensures all checkpoints to be useful by pre-

venting the formation of ESZCs on-the-fly. In order to track the formation of

ESZC(Ij,z, Ci,x, µ, Ik,y), whenever a process receives a message m = µ.last from some

other process, it checks if the conditions for the existence of ESZC are satisfied. If

so, then it takes a forced checkpoint before processing the message m. We first intro-

duce the data structures and the predicates for tracking ESZCs. Some of the data

74

structures used are similar to the ones used in [34] so we can compare easily.

How to track µ
k,y
• m′ where µ is prime in M(Ci,x, Pk)

To detect if µ is prime in M(Ci,x, Pk), we have to use the vector V C, described

in Section 1.2.1. When a process Pk receives a message m, if the predicate ∃i :

(m.V C[i] > V Ck[i]) hold, then Pk can conclude that the causal message chain µ

where m = µ.last is prime in M(Ci,x, Pk). To detect if a non-causal concatenation in

the interval Ik,y, involving the prime causal message chain µ and a message m′ exists,

a boolean variable after first sendk is maintained by Pk. after first sendk is set

to TRUE when the first send event occurs in a checkpoint interval of Pk. It is set

to FALSE each time a local checkpoint is taken. Hence, upon receiving a message

m (with m = µ.last), Pk detects that µ
k,y
• m′ where µ is prime in M(Ci,x, Pk) if the

following predicate holds: (after first sendk ∧ (∃i : m.V C[i] > V Ck[i])).

How to track Cj,z ◦m ◦ Ci,x

Each process Pk maintains a vector of integers Imm Predk of size n and a matrix

of integers Predk, of size n× n [34]. Imm Predk[ℓ] represents the latest checkpoint

interval from which process Pℓ sent a message m to Pk which has been delivered to

Pk in its current checkpoint interval, say Ik,y−1 (in other words, Cℓ,Imm Pred[ℓ] is an

immediate predecessor of checkpoint Ck,y, once Ck,y is taken). All the entries of this

vector are set to −1 each time a checkpoint is taken by Pk. Predk[i, j] represents,

to the knowledge of Pk, the highest checkpoint interval from which process Pj sent

a message m which has been delivered by Pi in a checkpoint interval Ii,x−1 with

x ≤ V Ck[i] (note that x ≤ V Ck[i] simply means that the information about Ci,x has

been brought to Pk through a message). Similarly all the entries of the matrix Predk

are initialized to −1, and its content is piggybacked on each message m sent by Pk

(denoted as m.Pred). The rule to update its entries are the following as given in [34].

75

1. whenever a checkpoint is taken by Pk, ∀j : Predk[k, j] = max(Predk[k, j],

Imm Predk[j]);

2. upon the arrival of a message m at Pk, ∀ℓ, t : Predk[ℓ][t] = max(Predk[ℓ, t],

m.Pred[ℓ, t]).

By examining the matrix Predk, Pk can determine the existence of Cj,z ◦m ◦ Ci,x if

the entry Predk[i, j] is equal to z. Since we don’t worry about the value of z and

only worry about the existence of the pattern Cj,z ◦m ◦ Ci,x, as long as Predk[i, j] is

not −1, we know the pattern Cj,z ◦m ◦ Ci,x exists.

How to determine ∄e ∈ Ij,z+1 : e
hb
→ receive(µ.last)

Upon the arrival of a messagem included in a prime causal chain (i.e., ∃i : (m.V C[i] >

V Ck[i])), in order to track the above condition, we need to know if there exists a j

(i.e., Pj) such that m.Pred[i, j] + 1 does not belong to the causal past of the receive

event of m. There are two possibilities for m.Pred[i, j] + 1 to belong to the causal

past of the receive event of m. The information about m.Pred[i, j] + 1 could have

been brought to Pk by m or can be bought to Pk by some other causal message chain

before receiving m. The first possibility is captured in m.V C[j], and the second is

captured in V Ck[j]. Hence the predicate becomes: (∃j : m.Pred[i, j]+1 > m.V C[j]∧

m.Pred[i, j]+1 > V Ck[j]), or simply (∃j : m.Pred[i, j]+1 > max(m.V C[j], V Ck[j])).

Since m.V C[j] and V Ck[j] can not be less than 0, m.Pred[i, j] + 1 can not be less

than 1 and thus m.Pred[i, j] can not be −1. Therefore the predicate which tracks

∄e ∈ Ij,z+1 : e
hb
→ receive(µ.last) also tracks Cj,z ◦m ◦ Ci,x.

How to check if µ •m′ is not strongly visibly doubled.

Each process Pi can use single matrix causali to check if µ •m′ is not strongly visibly

doubled. However, this simple data structure can only track a subset of all the

76

’

C

iP

kP

k,yC

i,xC kP,M()

µ.last

b,s

j,zC

C

b

j

P

P

m’

γ µ is prime in
m

γ

i,x

Figure 4.7: Case send(γ′.f irst)
hb
→ receive(m′)

m’

C
iP

kP
k,yC

i,xC kP,M()

µ.last

b,s

j,zC

C

b

jP

P

γ µ is prime in
m

γ ’

i,x

Figure 4.8: Case receive(m′)
hb
→ send(γ′.f irst)

strongly visible doublings. For example, in Figure 4.7, the causal path γ′ that brings

the strong visible doubling information to Pk happens before receiving message m′

(i.e., send(γ′.f irst)
hb
→ receive(m′)).

In order to improve the tracking of strong visible doubling, we need to design

more sophisticated data structures to track the situations such as the one illustrated

in Figure 4.8 as well, wherein the causal path γ′ that brings the strong visible dou-

bling information to Pk happens after the receive of message m′ (i.e., receive(m′)
hb
→

send(γ′.f irst)). Besides the matrix causal that can tell us the visibly doubling in-

formation, we need extra data structure to track if receive(γ.last)
hb
→ receive(m′) to

satisfy the definition of strongly visible doubling.

77

µ

P

l,bC
lP

i,xC

kP

m

k,zC

i

Figure 4.9: Case i = j

µ

P

l,bC
lP

j,yC

kP

m

k,zC

iP

i,xC

µ

’

j

Figure 4.10: Case i 6= j

So, for tracking strong visible doubling, we require that each process Pi maintains

n boolean matrices of size n × n, Preji : 1 ≤ j ≤ n. If i = j, i.e., Preii[k][l] : 1 ≤

k, l ≤ n is TRUE (see Figure 4.9) if in the current checkpoint interval of Pi, (i)

Pi has received the last message µ.last of a causal path µ that originated from Pk,

(ii) Pi received the first message m from Pl in its current checkpoint interval; (iii)

receive(µ.last)
hb
→ receive(m). Similarly, if i 6= j, Preji [k][l] : 1 ≤ k, l ≤ n is TRUE

(see Figure 4.10) if Pi, in its current checkpoint interval, has received a message m′

which is the last message of a causal path mu′ (i.e., mu′.last = m′ that originated

from Pj such that (i) Pj has the knowledge of Pk through causal path µ, (ii) Pj receives

the first message m from Pl a nd (iii) this knowledge about Pk happens before the

receiving of the first message from Pl.

Process Pi initializes Prei as follows: Preii[k, l] = TRUE, if i = k = l; the rest

78

of the entries of Preii[k, l] are set to FALSE. Similarly, Preji [k, l] = TRUE if i 6=

j ∧ (k = l = j); the rest of the entries of this matrix are set to FALSE. Whenever a

new checkpoint is taken by Pi, the matrices Preji : 1 ≤ j ≤ n are re-initialized.

When Ps sends a message m, the ℓ matrices Preℓs : 1 ≤ ℓ ≤ n are piggybacked

with m, denoted as m.Preℓ : 1 ≤ ℓ ≤ n. When a message m, sent by Ps is delivered

to Pi, Preji [k][l] : 1 ≤ j, k, l ≤ n are updated as follows:

1. For each h such that m.V C[h] > V Ci[h](h 6= i) : for every ℓ, , Prehi [ℓ, ] is set

to m.Preh[ℓ, ].

2. For each h such that m.V C[h] = V Ci[h](h 6= i): for every ℓ, , Prehi [ℓ, ] is

updated to Prehi [ℓ, ] ∨m.Preh[ℓ, ].

3. Preii is updated as follows: If m is the first message received from Ps in its

current checkpoint interval, Preii is updated using the following rules; other-

wise, Preii is not updated. In order to track if a messages is the first message

from a process in its current checkpoint interval, Pi maintains a Boolean array

first receivei of size n. first receivei[j] is set to TRUE when Pi receives the

first message from Pj in its current checkpoint interval; it is reset to false when

a new checkpoint is taken. Therefore, Preii is updated, only if upon receiving

m first receivei[s] = FALSE.

1) Since any causal path that has already been recorded in Preii must hap-

pen before the receiving of message m, this information need to be up-

dated. We introduce a new array of boolean variables ExistCausalii[ℓ] :

1 ≤ ℓ ≤ n, and (ExistCausalii[ℓ] = TRUE) iff (∃ : Preii[ℓ][] =

TRUE). If ExistCausalii[ℓ] = TRUE, it means there exists a causal

path from a checkpoint in process Pℓ to a checkpoint in Pi. Therefore, we

set Preii[ℓ][s] = TRUE if ExistCausalii[ℓ] = TRUE. This procedure can

be illustrated using Figure 4.11. In Figure 4.11, when Pi receives m from

79

’

P

jP

kP
k,zC

m

sP
s,aC

i,xC

j,yC

m

µ

i

Figure 4.11: Case (3.1)

Ps, it knows it already has a causal path to its current checkpoint interval

from Pk since Preii[k][j] = TRUE. Then, ExistCausalii[k] = TRUE and

hence we set Preii[k][s] = TRUE. This basically means, ∀ℓ : Preii[ℓ][s] =

Preii[ℓ][s] ∨ ExistCausalii[ℓ] where (ExistCausalii[ℓ] = TRUE) iff (∃ :

Preii[ℓ][] = TRUE).

2) Set Preii[s][s] = TRUE, since there is a causal path from Ps to the current

checkpoint interval of Pi.

3) We also have to take into account the transitive dependency caused by the

receiving of m. For example, in Figure 4.12, to the knowledge of Pi, Ps

has the knowledge of Pk (k 6= i) which precedes the receiving of m′ from

Pl. i.e., Presi [k][l] = TRUE. So, we set Preii[k][s] = TRUE, due to the

causal dependency captured by the causal path µ •m from Pk to Pi. In

other words, ∀ℓ(ℓ 6= i) : Preii[ℓ][s] = Preii[ℓ][s] ∨ ExistCausalsi [ℓ] where

(ExistCausalsi [ℓ] = TRUE) iff (∃ : Presi [ℓ][] = TRUE).

Each process Pi also needs to maintain a vector send listi to track the tuple: to

whom and when Pi has sent the first message in its current checkpoint interval. If

Pi sends the first message m in its current checkpoint interval to Pj and the current

value of V C when sending m is V Cm
i , send listi is updated as follows: send listi =

send listi ∪ (Pj, V Cm
i).

80

’

P

l,bC
lP

kP
k,zC

m

s,aC

m

i,xC
iP

µ

s

Figure 4.12: Case (3.3)

µ

P

sP

jP

s,aC

j,yC

k,zC

m

iP
i,xC

k

Figure 4.13: Example showing matrix causal

With the help of the data structure send list and Pre, we can track the strongly

visibly doubling better. For example, in Figure 4.7, if V Cm′

i � m.V C, when Pk

receives m = µ.last, Pk can track whether PCM path µ • m′ is strongly visibly

doubled by simply checking if ∃ : m.Prej [i][] = TRUE. In Figure 4.8, for example,

if V Cm′

i ≤ m.V C when Pk receives m = µ.last, Pk can check if PCM path µ •m′

is strongly visibly doubled by checking if m.Prej[i][k] = TRUE. In summary, when

Pk receives µ.last, if ¬((V Cm′

i � m.V C) ∧ (∃ : m.Prej [i][] = TRUE)) ∨ (V Cm′

i ≤

m.V C ∧ m.Prej[i][k])), Pk knows that PCM path µ • m′ is not strongly visibly

doubled. Therefore a forced checkpoint needs to be taken.

81

How to prevent ESZC

Our goal is to design a Communication-Induced Checkpointing protocol that elim-

inates ESZCs. Based on the discussion above, if a process receives a message and

detects that all the predicates mentioned above are satisfied, it detects the exis-

tence of an ESZC and takes a forced checkpoint to eliminate the ESZC. From the

discussions in Section 4.4 to 4.4, we arrive at the following condition for prevent-

ing ESZCs. Upon the arrival of a message m (i.e., µ.last = m) at process Pk in

the checkpoint interval Ik,y, if the predicate (after first sendk ∧ (∃i : m.V C[i] >

V Ck[i]) ∧ (∃j1 : m.Pred[i, j1] + 1 > max(m.V C[j1], V Ck[j1])) ∧ (∃j2 : (Pj2, V Cm′

k) ∈

send listk ∧ ¬((V Cm′

i � m.V C ∧ (∃ : m.Prej2[i][] = TRUE)) ∨ (V Cm′

i ≤ m.V C) ∧

m.Prej2[i][k])))) holds, Pk detects that at least one ESZC(Ij1,P redk[i,j1], Ci,x, µ, Ik,y)

is being formed. In this case, Pk takes a forced checkpoint Ck,y+1 before processing

m. Following is the formal description of our protocol that prevents the formation of

ESZC and hence Z-cycles.

Initialization at process Pk:

Take an initial checkpoint;

after first sendk := FALSE;

∀i : i 6= k, V Ck[i] := 0;V Ck[k] := 1;

∀i, j : k = i = j, P rekk[i, j] := TRUE ∧ ∀i, j, l : i 6= k ∧ i = j = l, P reik[j, l] := TRUE

else Preik[j, l] := FALSE;

∀i, j : Predk[i, j] := −1;

∀h : Imm Predk[h] := −1;

∀h : k = h, first receivek[h] := TRUE; k 6= h, first receivek[h] := FALSE;

send listk = Ø;

When a message m arrives at Pk from Ps:

82

if (after first sendk ∧ (∃i : m.V C[i] > V Ck[i]) ∧ (∃j1 : m.Pred[i, j1] + 1 >

max(m.V C[j1], V Ck[j1])) ∧ (∃j2 : (Pj2, V Cm′

k) ∈ send listk ∧ ¬((V Cm′

k �

m.V C ∧ (∃ : m.Prej2[i][] = TRUE)) ∨ (V Cm′

k ≤ m.V C ∧m.Prej2[i][k]))))

then take ckpt(Pk); %take a forced checkpoint%

∀h: {

if (m.V C[h] > V Ck[h])

then {V Ck[h] := m.V C[h];

∀ℓ, , Prehk[ℓ, ] := m.Preh[ℓ, ];}

if (m.V C[h] = V Ck[h])

then ∀ℓ, , Prehk[ℓ, ] := Prehk[ℓ, ] ∨m.Preh[ℓ, ];

}

if (¬first receivek[s]) then {first receivek[s] := TRUE;

∀ℓ : Prekk[ℓ][s] = Prekk[ℓ][s] ∨ (∃ : Prekk[ℓ][] = TRUE);

Prekk[s][s] = TRUE;

∀ℓ(ℓ 6= k) : Prekk[ℓ][s] = Prekk[ℓ][s] ∨ (∃ : Presk[ℓ][] = TRUE);}

∀i, j : Predk[i][j] := max(m.Pred[i, j], P redk[i, j]);

Imm Predk[s] := max(Imm Predk[s], m.V C[s]);

deliver(m);

Procedure send(m, Pk, Pj): %send message m from Pk to Pj%

m.content := data;

m.V C := V Ck;

m.Pred := Predk;

m.Pre := Prek;

83

if (m is the first message sent to Pj in Pk’s current checkpoint interval)

then send listk := send listk ∪ (Pj , V Cm
k); %V Cm

k denotes the value of V Ck while

sending m%

send m from Pk to Pj ;

after first sendk := TRUE;

When a basic checkpoint is scheduled for Pk:

take ckpt(Pk); %take a basic checkpoint%

Procedure take ckpt(Pk):

Take a checkpoint;

∀h : Predk[k, h] := max(Predk[k, h], Imm Predk[h]);

∀h : Imm Predk[h] := −1;

V Ck[k] := V Ck[k] + 1;

after first sendk := FALSE;

∀i, j : k = i = j, P rekk[i, j] := TRUE ∧ ∀i, j, l : i 6= k ∧ i = j = l, P reik[j, l] := TRUE

else Preik[j, l] := FALSE;

∀h : k = h, first receivek[h] := TRUE; k 6= h, first receivek[h] := FALSE;

send listk = Ø;

4.5 Simulation Results

We compared the performance of our protocol with the protocol of Baldoni et al. [34]

through simulation. For the evaluation, we simulated up to 50 distributed compu-

tations, the number of processes involved in each computation varying from 8 to 25.

Our goal was to study the effect of communication pattern on the number of forced

84

checkpoints taken. In each computation, a fixed number of messages were exchanged.

The number of messages exchanged varied from 1500 to 1800. A process takes a

basic checkpoint after receiving a certain number of messages. This number was

varied from 25 to 50 for various scenarios. The number of forced checkpoints taken

was recorded under both the protocols for each scenario. For example, Figure 4.14

gives the simulation result for which 50 distributed computations were simulated (i.e.,

SN = 50). Each distributed computation consisted of 8 processes and each compu-

tation exchanged 1500 (M = 1500) messages. Along the x-axis, we listed the 50

distributed computations. Corresponding to each distributed computation, we plot-

ted the number of forced checkpoints taken by each of these computations along the

y-axis (to save space, the y-axis does not start at 0). A process takes a basic check-

point after receiving a random number of messages (the random number being chosen

between 20 and 25) since it took the last checkpoint (forced or basic). This interval

for the number of messages received before taking a basic checkpoint is indicated in

the figure as IN = 25− 35.

We use a centralized method to simulate a distributed computation to simplify our

programming. Instead of letting an individual process to determine when, how and to

whom to send a message, messages are generated one-by-one by a central generator.

Secondly, we randomize the origin and destination of each message created by the

generator to make all the messages evenly distributed in the system.

Simulation results show that our protocol has a significant improvement over the

protocol of Baldoni et al. [34] in terms of the number of forced checkpoints taken.

In this case, the Average Improvement on each sample computation is 29.87% (rep-

resented by AI = 29.87%). We varied the number of messages exchanged to 1500,

1600 and 1800 with the respective number of processes 15, 20 and 25; we also varied

the parameter IN to 25-35, 40, 30-50 respectively. Figures 4.15, 4.16, and 4.17 show

the results of our simulation for these scenarios. Under each scenario, the average

85

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 5 10 15 20 25 30 35 40 45 50

fo
rc

ed
 c

he
ck

po
in

ts

samples

Forced Checkpoints taken by Baldoni’s and our algorithm

SN=50
 M=1500
 P=8
 IN=25-30
 AI=29.87%

Our algorithm
Baldoni’s

Figure 4.14: The results of our simulation for 50 random distributed computations
each of which consisted of 8 processes (P = 8), exchanged 1500 messages and took
basic checkpoints with parameter IN=25-30

improvement (AI) in terms of the number of forced checkpoints taken by processes

is listed on the lower right corner of each figure. These results show that our pro-

tocol consistently takes significantly less number of forced checkpoints compared to

the protocol of Baldoni et al. This is because our protocol is capable of tracking the

formation of communication patterns that can lead to Z-cycles more efficiently and

prevent them by taking less number of forced checkpoints.

4.6 Conclusion

In this chapter, we presented an enhanced model-based checkpointing protocol. Our

protocol piggybacks an extra boolean array Pre of size O(n3) with each application

message compared to the protocol in [34] to help eliminate Z-cycles in a more informed

way. This extra information helps in detecting the formation of ESZCs which uses

a stronger predicate compared to the one used for detecting SZCs in [34]. As a

result of this stronger condition to detect potential Z-cycles, our protocol induces less

86

 250

 300

 350

 400

 450

 500

 550

 600

 0 5 10 15 20 25 30 35 40 45 50

fo
rc

ed
 c

he
ck

po
in

ts

samples

Forced Checkpoints taken by Baldoni’s and our algorithm

SN=50
 M=1500
 P=15
 IN=25-35
 AI=32.52%

Our algorithm
Baldoni’s

Figure 4.15: The results of our simulation for 50 random distributed computations
each of which consisted of 15 processes, exchanged 1500 messages and took basic
checkpoints with parameter IN=25-30

number of forced checkpoints than [34] as confirmed by our simulation results.

87

 200

 250

 300

 350

 400

 450

 500

 550

 0 5 10 15 20 25 30 35 40 45 50

fo
rc

ed
 c

he
ck

po
in

ts

samples

Forced Checkpoints taken by Baldoni’s and our algorithm

SN=50
 M=1600
 P=20
 IN=40-40
 AI=33.91%

Our algorithm
Baldoni’s

Figure 4.16: The results of our simulation for 50 random distributed computations
each of which consisted of 20 processes, exchanged 1600 messages and took basic
checkpoints with parameter IN=40-40

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 10 20 30 40 50 60

fo
rc

ed
 c

he
ck

po
in

ts

samples

Forced Checkpoints taken by Baldoni’s and our algorithm

SN=60
 M=1800
 P=25
 IN=30-50
 AI=32.39%

Our algorithm
Baldoni’s

Figure 4.17: The results of our simulation for 60 random distributed computations
each of which consisted of 25 processes, exchanged 1800 messages and took basic
checkpoints with parameter IN=30-50

88

Chapter 5

Conclusion and Future Work

In this dissertation, we presented our research results in the area of fault-tolerance

in distributed systems and distributed database systems. We established the neces-

sary and sufficient conditions for a set of checkpoints of a set of data items to be

part of a transaction-consistent global checkpoint and also presented a non-intrusive

checkpointing protocol for distributed database systems. We then presented a low-

overhead model-based communication-induced checkpointing protocol for distributed

systems.

5.1 Research Accomplishments

Necessary and Sufficient Conditions

Netzer and Xu [7] introduced the notion of zigzag paths between checkpoints of pro-

cesses involved in a distributed computation running in a distributed system. Based

on this they also presented the necessary and sufficient conditions for a set of check-

points of a set of processes involved in a distributed computation to be part of a con-

sistent global checkpoint of the distributed computation. We generalized this notion

of zigzag paths between checkpoints of processes involved in a distributed compu-

tation to zigzag paths between checkpoints of data items in a distributed database.

Based on this generalization, we developed the necessary and sufficient conditions for

a set of checkpoints of a set of data items of a distributed database systems to be

89

part of a tr-consistent global checkpoint. This condition is useful for constructing

tr-consistent global checkpoints from a set of local checkpoints of a set of data items

incrementally. This can also shed light on developing non-intrusive checkpointing

algorithms for distributed database systems.

A Non-intrusive checkpointing algorithm for Distributed Database Sys-

tems

Based on the intuition gained from the development of the necessary and suffi-

cient conditions, we developed a non-intrusive checkpointing protocol for distributed

database systems. It uses the concept of logical checkpoints to reduce the checkpoint-

ing overhead as well as recovery overhead. The performance of the protocol has been

evaluated through mathematical modeling as well as simulation.

A Model-based Communication-induced Checkpointing Protocol for Dis-

tributed Systems

We introduced the concept of Extended Suspect Z-cycles around a checkpoint of a

process involved in a distributed computation and proved that eliminating Extended

Suspect Z-cycles eliminates Z-cycles. Extended Suspect Z-cycles are on-line trackable

whereas Z-cycles are not on-line trackable. We designed data structures that each

process involved in a distributed computation need to maintain to track Extended

Suspect Z-cycles on-line and developed a communication-induced checkpointing algo-

rithm which tracks Extended Suspect Z-cycles and prevents them. The protocol has

been evaluated through simulation.

5.2 Future Work

Wemade some fundamental contributions to the areas of distributed database systems

as well as distributed message passing systems. However, this is the first step in

90

developing useful algorithms and models that can be applied to real-world problems.

In the future, we will continue our research in this direction and develop better

model-based communication-induced checkpointing algorithms. We will also develop

recovery algorithms based on the developed checkpointing algorithms.

A More Efficient Model-based Communication-induced Checkpointing Al-

gorithm Preventing Fully-informed Suspect Z-cycles (FSZC) for Distributed

Messaging Systems

We already have some initial results in the direction of developing a better communication-

induced checkpointing algorithm. We found that there is still room to improve the

model-based communication-induced algorithm we presented in Chapter 4 for dis-

tributed computation. We found out that Extended Suspect Z-cycle (ESZC) is just

a special case of a set of checkpoint and communication patterns. We propose to

define this general set of patterns as Fully-informed Suspect Z-cycles. We will ex-

tend the concept of Extended Suspect Z-cycles to Fully-informed Suspect Z-cycles by

introducing the concept of c-causal Z-path. The c-causal Z-path is a subset of the

causal Z-path where in the sequence of the causal messages [m1, m2, ..., mq], there

exists a checkpoint after the receiving event of m1 and before the sending event of

the next message m2. We use [m1, C,m2, ..., mq] to express such a sequence of causal

messages. Here is our formal definition of FSZC based on c-causal Z-path.

Definition 16. An Fully-informed SZC (denoted as FSZC) is a Checkpoint and

Communication Pattern FSZC(Ij,z, Ci,x, µ, Ik,y) such that: ∃m,m′ : Cj,z ◦m ◦ Ci,x ◦

91

µ
k,y
• m′ and receive(m′) ∈ Il,w with





i send(m) ∈ Ij,z

ii µ is prime in M(Ci,x, Pk)

iii ∄e ∈ Ij,z+1 : e
hb
→ receive(µ.last)

iv µ •m′ is not strongly visibly doubled

v ∄ a c-causal chain µ∗ in M(Cj,z, Pk) such that receive(µ∗.last)
hb
→ receive(µ.last)

vi ∄ a c-causal chain µ∗∗ : [m1, C,m2, ..., mk, ..., mq] in M(Ci,x−1, Pk)

such that receive(µ∗∗.last)
hb
→ receive(µ.last),

receive(mk) ∈ Il,u, u ≤ w and receive(mk)
hb
→ receive(m′)

(5.1)

As we can see, we add two more conditions, i.e., (v) and (vi), to the definition of

ESZC to form FSZC. Also condition (iii) is actually a special case of condition (v)

if we visualize a message sent and received in the same checkpoint interval between

Cj,z and Cj,z+1 exists. Similarly condition (iv) is a special case of condition (vi) if we

imagine a message sent and received in the same checkpoint interval between Ci,x−1

and Ci,x exists. However we can not combine conditions (iii) and (v) into one since

no such message sent and received in the same checkpoint interval could exist and we

have to track them by different means. So are conditions (iv) and (vi). The above

definition shows the relation between ESZC and FSZC: a FSZC is also a ESZC

but the converse is not necessarily true. Together with the result from Chapter 4

Section 4.3, we know the relation among all model-based communication algorithms

proposed in current literature [34, 45, 52, 51, 53] plus our future algorithm can be

presented as in Figure 5.1. In the figure, each circle represents all the communication

patterns that satisfy the conditions such as SZC, ESZC, FSZC etc. that different

algorithms intent to track. Apparently, the closer is the circle to the Z-cycle circle,

the less forced checkpoints will be taken in the system, since optimally we only want

92

Core−Z−Cycles

Z−Paths

All Communication Patterns

Z−Cycles

Communication Patterns detected by

Fully−informed

Exteded−Suspect−Z−Cycles

Suspect−Z−Cycles

Garcia’s Algorithm

Suspect−Z−Cycles

Figure 5.1: Relation of all algorithms including our future work

to prevent the real Z-cycles from happening even though it is not possible. Since

FSZC is the closest to Z-cycle, algorithm preventing FSZC is likely to incur the

least number of forced checkpoints.

Tracking FSZC can help reduce even more forced checkpoints. On the other

hand, preventing FSZC guarantees the checkpointing algorithm not producing any

useless checkpoint, which we will prove formally by using mathematical induction.

Proposing More Efficient Model-based Communication-induced Check-

pointing Algorithms for Distributed Systems

We will develop more efficient model-based communication-induced checkpointing

algorithms. We probably can discover some new model that is capable of prevent-

ing Z-cycles better. These new models may reduce the forced checkpoints even more.

However, from the experience of discovering FSZC and designing algorithm for track-

ing it we learn that we have to design complicated data structures as well as algorithms

to accomplish the task. For example, from SZC to FSZC, the complexity of data

structure has increased from a O(n2) integer array to a O(n3) integer array. Therefore

while designing new model-based communication-induced checkpointing algorithms,

93

we have to balance between the complex data structures used and the reduction in

forced checkpoints.

Rollback Recovery Algorithms for Model-based Communication-induced

Checkpointing Algorithms

Our proposed model-based communication-induced checkpointing algorithms focused

on the checkpointing processes where they try to produce only useful checkpoints and

reduce the number of forced checkpoints as much as they can. In fault tolerance, how

to roll back to a consistent global checkpoint is another important issue besides how to

take useful checkpoints. In the index-based communication-induced algorithms, the

rollback process is simple. In model-based communication-induced algorithms since

there is no index involved, we have to use other heuristics such as the vector clock to

discover recovery lines. There is some work in the literature discussing the recovery

methods for model-based communication-induced algorithms such as constructing the

Rollback Dependency Graph [25] and performing reachability analysis to calculate

the recovery line. We need to study them thoroughly and adapt the appropriate

approaches to all our newly proposed algorithms.

Comparing Our New Model-based Communication-induced Checkpoint-

ing Algorithm with Index-based Communication-induced Checkpointing

Algorithms

We have understood the relation among all the algorithms in the domain of model-

based communication-induced checkpointing algorithms (see Picture 5.1). We still

want to explore the relation between model-based communication-induced check-

pointing algorithms and index-based communication-induced checkpointing algorithms,

and compare the performance in terms of the communication overhead and the num-

ber of forced checkpoints. Our expectation is that model-based communication-

94

induced checkpointing algorithms would produce less forced checkpoints since it has

better picture of the checkpoint and communication patterns in the system but it

may incur more communication overhead. It is a tradeoff and we want to evaluate

quantitatively the relation between communication overhead and forced checkpoints.

This will help us to develop better communication-induced algorithms that balance

both factors. It also helps us to categorize all the current communication-induced

algorithms so that we can use the most efficient algorithm under different circum-

stances such as some applications require minimum forced checkpoints while others

may prefer minimum communication overhead.

Designing Algorithm to Identify Zigzag Paths in the Global Serialization

Graphs

We have proved that a set S′ of checkpoints, each checkpoint of which is from a dif-

ferent data item, can belong to the same tr-consistent global checkpoint with respect

to a serializable schedule of a set of transactions iff no checkpoint in S′ has a zigzag

path to any checkpoint (including itself) in S′ in the global serialization graph cor-

responding to that schedule. The next question is how to identify zigzag paths in

the global serialization graph. Therefore we need to design the algorithm to identify

the zigzag paths in the global serialization graph based on our Definition 14 of zigzag

paths. Such an algorithm will help us identify useless checkpoints and may also throw

light on new non-intrusive algorithms for distributed database systems.

95

Bibliography

[1] A. Silberschatz, H. F. Korth and S. Sudarshan, Database System Concepts,
1996.

[2] M. Singhal and N. G. Shivaratri, Advanced Concepts in Operating Systems,
1994.

[3] B. Randell, Reliable computing systems, Operating Systems: an Advanced
Course, SpringerVerlag, New York, 1979.

[4] R Elmasri and S. B. Navathe, Fundamentals of Database Systems, Addison-
Wesley, 2007.

[5] R. Baldoni, F. Quaglia and M. Raynal, Consistent checkpointing for transaction
systems, The Computer Journal, 44(2), 92-100, 2001.

[6] K. M. Chandy and L. Lamport, Distributed snapshot: determining global states
of distributed systems ACM Transactions on Computer Systems, 63-75, Febu-
rary 1985.

[7] R. H. B. Netzer and J. Xu, Necessary and sufficient conditions for consistent
global snapshots, IEEE Transactions on Parallel and Distributed Systems, 6(2),
165-169, Feburary 1995.

[8] A. P. Sheth and J. E. Larson, Federated database systems for managing dis-
tributed heterogeneous, and autonomous databases, ACM Computing Surveys,
22(3), 183-286, September 1990.

[9] Vijay Kumar and Shawn D. Moe, Performance of recovery algorithms for cen-
tralized database management systems, Information Sciences, 86(1), 101-147,
September 1995.

[10] R. B. Hagmann, A crash recovery scheme for a memory-resident database sys-
tem, IEEE Transactions on Computers, 35(9), 839-843, 1986.

[11] S. Pilarski and T. Kameda, Checkpointing for distributed databases: starting
from the basics, IEEE Transactions on Parallel and Distributed Systems, 3,
602-610, 1992.

[12] H. Garcia-Molina and K. Salem, IEEE Transactions on Knowledge and Data
Engineering, 4(6), 509-516, December 1992.

96

[13] J. Lin and M. H. Dunham, A survey of distributed database checkpointing,
Distributed Parallel Databases, 5, 289-319, 1997.

[14] G. Ferran, Distributed checkpointing in a distributed data management system,
Proc. Real-Time Systems Symposium, Miami Beach, Florida, 43-49, 1981.

[15] H. Kuss, On totally ordering checkpoints in distributed databases, Proceedings
of the ACM International Conference on Management of Data, 1982.

[16] R. D. Schlichting and F. B. Schneider, Fail-stop processors: An approach to
designing fault-tolerant computing systems, ACM Trans. Computing Systems,
1(3), 222-238.

[17] J. L. Zhao and A.Segev and A. Chatterjee, A universal relation approach to fed-
erated database management, Proceedings of Eleventh International Conference
on Data Engineering, 1995.

[18] J. L Zhao, Schema coordination in federated database management: a compar-
ison with schema integration, Decision Support Systems, 20(3), 243-257, July
1997.

[19] J. Muilu and L. Peltonen and J.-E. Litton, The federated database a basis
for biobank-based post-genome studies, integrating phenome and genome data
from 600000 twin pairs in Europe, European Journal of Human Genetics, 15,
718-723, May 2007.

[20] J. Kim and G. Fox, A hybrid keyword search across peer-to-peer federated
databases, Proceedings of International Conference on Advances in Databases
and Information Systems, 2004.

[21] J. Kleewein, Practical issues with commercial use of federated databases, Pro-
ceedings of the 22th International Conference on Very Large Data Bases, 1996.

[22] A. Deshpande and J.M. Hellerstein, Decoupled query optimization for feder-
ated database systems, Proceedings of 18th International Conference on Data
Engineering, 2002.

[23] K. Salem and H. Garcia-Molina, Checkpointing memory-resident databases,
Proceedings of the Fifth International Conference on Data Engineering, 452-
462, 1989.

[24] A.-P. Liedes and A. Wolski, SIREN: a memory-conserving, snapshot-consistent
checkpoint algorithm for in-memory databases, Proceedings of the 22nd Inter-
national Conference on Data Engineering, April 2006.

[25] L. Alvisi and K. Marzullo, Trade-offs in implementing causal message logging
protocols, Proceedings of the 1996 ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing Systems (PODC), 58-67, 1996.

97

[26] S. H. Son and A. K. Agrawala, Distributed checkpointing for globally consistent
states of databases, IEEE Transactions on Software Engineering, 15(10), 1157-
1167, October 1989.

[27] C. Pu, On-the-fly, incremental, consistent reading of entire databases, Proceed-
ings of the 11th Conference on Very Large Database, Morgan Kaufman Pubs.
(Los Altos, CA), Stockholm, 367–375, 1985.

[28] S. Pilarski and T. Kameda, A novel checkpointing scheme for distributed
database systems, Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Prin-
ciples of Database Sys., Nashville, TN, 1990.

[29] D. Manivannan and M. Singhal, Quasi-synchronous checkpointing: models,
characterization, and classification, IEEE Transactions on Parallel and Dis-
tributed Systems, 10(7), 703-713, July 1999.

[30] S. H. Son, An algorithm for non-interfering checkpoints and its practicality in
distributed database systems, Information Systems, 14(5), 421-429, 1989.

[31] K. M. Chandy and L. Lamport, Distributed snapshots: determining global
states of distributed systems, ACM Transactions on Computer Systems, 3(1),
63-75, 1985.

[32] L. Lamport, Time, clocks and the ordering of events in a distributed system,
Communications of the ACM, 21(7), 558-565, 1978.

[33] D. Manivannan and M. Singhal, A low-overhead recovery technique using quasi
synchronous checkpointing, Proceedings of IEEE International Conference on
Distributed Computing Systems, 100-107, 1996.

[34] R. Baldoni, F. Quaglia and B. Ciciani, A VP-accordant checkpointing protocol
preventing useless checkpoints, Proceedings of Seventeenth IEEE Symposium
on Reliable Distributed Systems, 10(7), 61-67, 1998.

[35] R. Baldoni, J. M. Helary and M. Raynal, Rollback-dependency trackability:
a minimal characterization and its protocol, Information and Computation,
(165), 144-173, 2001.

[36] R. Baldoni, J. M. Helary and A. Mostefaoui and M. Raynal, A communication-
induced checkpointing protocol that ensures rollback-dependency trackability,
Proceedings of IEEE International Symposium on Fault Tolerant Computing,
68-77, 1997.

[37] ”I. C. Garcia and L. E. Buzato, An efficient checkpointing protocol for the min-
imal characterization of operational rollback-dependency trackability, Proceed-
ings of the 23th IEEE International Symposium on Reliable Distributed Systems,
18(20), 126-135, 2004.

[38] J. M. Helary, A. Mostefaoui and R. H. B. Netzer and M. Raynal,
Communication-based prevention of useless checkpoints in distributed compu-
tations, Distributed Computing, (13), 29-43, 2000.

98

[39] J. Tsai, An efficient index-based checkpointing protocol with constant-size con-
trol information on messages, IEEE Transactions on Dependable and Secure
Computing, 2(4), 287-296, 2005.

[40] J. Tsai, S. Y. Kuo and Y. M. Wang, Theoretical analysis for communication-
induced checkpointing protocols with rollback-dependency trackability, IEEE
Transactions on Parallel and Distributed Systems, 9(10), 963-971, 1998.

[41] J. Tsai, On properties of RDT communication-induced checkpointing protocols,
IEEE Transactions on Parallel and Distributed Systems, 14(8), 755-764, 2003.

[42] J. Tsai, S. Y. Kou and Y. M. Wang, More properties of communication-induced
checkpointing protocols with rollback-dependency trackability, Journal of In-
formation Science and Engineering, 21, 239-257, 2005.

[43] R. Baldoni, F. Quaglia and P. Fornara, An index-based checkpointing algo-
rithm for autonomous distributed systems, IEEE Transactions on Parallel and
Distributed Systems, 10(2), 181-192, 1999.

[44] Y. M. Wang, Consistent global checkpoints that contains a given set of local
checkpoints, IEEE Transactions on Computers, 46(4), 456-468, 1997.

[45] I. C. Garcia and L. E. Buzato, Checkpointing using local knowledge about
recovery lines, University of Campinas, Brazil, TR-IC-99-22, 1999.

[46] R. Koo and S. Toueg, Checkpointing and rollback-recovery for distributed sys-
tems, IEEE Trans. Software Eng., 13(1), 23-31, 1987.

[47] J. Tsai, S. Y. Kuo and Y. M. Wang, Evaluations on domino-free communication-
induced checkpointing protocols, Information Processing Letters, 69(1), 31-37,
1999.

[48] M. Singhal and N. G. Shivaratri, Advanced Concepts in Operating Systems,
McGraw-Hill, 105, 1994.

[49] J. Fidge, Timestamps in message-passing systems that preserve the partial or-
dering, Proceedings of the 11th Australian Computer Science Conference, 10(1),
56-66, 1988.

[50] F. Mattern, Virtual time and global states of distributed systems, Parallel and
Distributed Algorithms, Elsevier Science, North-Holland, 215-226, 1989.

[51] J. Wu, Y. Luo and D. Manivannan, An enhanced model-based communication-
induced checkpointing protocol for distributed systems, Proceedings of the 25th
Internation Conference on Parallel and Distributed Computing and Networking,
2007.

[52] F. Quaglia, R. Baldoni and B. Ciciani, Computational Fluid Dynamics, Her-
mosa, Albuquerque, NM, 1976.

99

[53] J. Wu and D. Manivannan, An enhanced model-based checkpointing protocol
for preventing useless checkpoints, International Journal of Parallel, Emergent
and Distributed Systems, 24(5), 383-406, 2009.

[54] N. H. Vaidya, Staggered consistent checkpointing, IEEE Transactions on Par-
allel and Distributed Systems, 10(7), 694-702, July 1999.

[55] R. E. Strom and S. A. Yemini, Optimistic Recovery: an Asynchronous Approach
to Fault-Tolerance in Distributed Systems, 1984.

[56] Y. M. Wang and W. K. Fuchs, Lazy checkpoint coordination for bounding
rollback propagation In Proc. 12th IEEE Int. Symp. on Reliable Distributed
Systems, IEEE Computer Society Press, 78-85, 1993.

[57] J. Wu, D. Manivannan and B. Thuraisingham, Necessary and sufficient con-
ditions for transaction-consistent global checkpoints in a distributed database
system, Information Sciences, Elsevier, 179(20), 3659-3672, September 2009.

[58] J. Wu and D. Manivannan, An efficient non-intrusive checkpointing algorithm
for distributed database systems, Springer Lecture Notes in Computer Science
Series, 4308, 82-87, 2006.

[59] J. Wu, D. Manivannan and B. Thuraisingham, Transaction-consistent global
checkpoints in a distributed database system, Proceedings of the 2008 Interna-
tional Conference on Data Mining and Knowledge Engineering , 2008.

100

Vita

Personal Data:

Name: Jiang Wu

Date of Birth: 10/24/1975

Place of Birth: Xi’an, Shaanxi, China

Educational Background:

• Master of Science in Computer Science, Bowling Green State University, 2002.

• Bachelor of Engineering in Communication Engineering, Xidian University,

China, 1998.

Professional Experience:

• Data Warehouse Analyst, 04/2007 - present.

Information System, Marshfield Clinic, Marshfield, WI, USA.

Publications:

• Jiang Wu and D. Manivannan, An enhanced model-based checkpointing proto-

col for preventing useless checkpoints, International Journal of Parallel, Emer-

gent and Distributed Systems, 24(5):383-406, 2009.

• JiangWu, Yi Luo and D. Manivannan, An enhanced model-based communication-

induced checkpointing protocol for distributed systems, in Proceedings of the

25th Internation Conference on Parallel and Distributed Computing and Net-

working, 2007.

• Jiang Wu, D. Manivannan and Bhavani Thuraisingham, Necessary and suffi-

cient conditions for transaction-consistent global checkpoints in a distributed

101

database system, Information Sciences, Elsevier, 179(20):3659-3672, Septem-

ber 2009.

• Jiang Wu, D. Manivannan and Bhavani Thuraisingham, Transaction-consistent

global checkpoints in a distributed database system, in Proceedings of the 2008

International Conference on Data Mining and Knowledge Engineering (ICDMKE

2008), London, U.K., July 2-4, 2008.

• Jiang Wu and D. Manivannan, An efficient non-intrusive checkpointing algo-

rithm for distributed database systems, Springer Lecture Notes in Computer

Science Series, No.4308 pp:82-87.

102

	CHECKPOINTING AND RECOVERY IN DISTRIBUTED AND DATABASE SYSTEMS
	Recommended Citation

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Checkpointing in Distributed Database Systems
	Background
	Motivation

	Checkpointing Distributed Computations
	Background
	Motivation

	Contribution of the Thesis
	Organization of the Dissertation

	Necessary and Sufficient Conditions for Transaction-Consistent Global Checkpoints of a Distributed Database System
	Serialization Graphs
	Necessary and Sufficient Conditions
	Applications

	Conclusion

	A Non-intrusive Checkpointing Protocol for Distributed Database Systems
	Proposed Protocol
	Basic Idea Behind the Protocols of Baldoni et al.
	Proposed Checkpointing Protocol

	Performance Analysis
	Performance Analysis
	Simulation Results

	Conclusion

	An Enhanced Model-based Communication-Induced Checkpointing Protocol for Distributed Systems
	An Example Showing Our Motivation
	The Sufficient Condition
	Relation Between Existing Model-based Checkpointing Protocols
	An Enhanced Model-based Checkpointing Protocol
	Simulation Results
	Conclusion

	Conclusion and Future Work
	Research Accomplishments
	Future Work

	Bibliography
	Vita

