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ABSTRACT OF DISSERTATION

CONSTRUCTION OF EFFICIENT AUTHENTICATION SCHEMES USING

TRAPDOOR HASH FUNCTIONS

In large-scale distributed systems, where adversarial attacks can have widespread impact,

authentication provides protection from threats involving impersonation of entities and

tampering of data. Practical solutions to authentication problems in distributed systems

must meet specific constraints of the target system, and provide a reasonable balance

between security and cost. The goal of this dissertation is to address the problem of building

practical and efficient authentication mechanisms to secure distributed applications. This

dissertation presents techniques to construct efficient digital signature schemes using

trapdoor hash functions for various distributed applications. Trapdoor hash functions are

collision-resistant hash functions associated with a secret trapdoor key that allows the key-

holder to find collisions between hashes of different messages. The main contributions of

this dissertation are as follows:

1. A common problem with conventional trapdoor hash functions is that revealing a

collision producing message pair allows an entity to compute additional collisions

without knowledge of the trapdoor key. To overcome this problem, we design an

efficient trapdoor hash function that prevents all entities except the trapdoor key-

holder from computing collisions regardless of whether collision producing message

pairs are revealed by the key-holder.

2. We design a technique to construct efficient proxy signatures using trapdoor hash

functions to authenticate and authorize agents acting on behalf of users in agent-

based computing systems. Our technique provides agent authentication, assurance

of agreement between delegator and agent, security without relying on secure

communication channels and control over an agent’s capabilities.

3. We develop a trapdoor hash-based signature amortization technique for authenticating

real-time, delay-sensitive streams. Our technique provides independent verifiability of

blocks comprising a stream, minimizes sender-side and receiver-side delays, minimizes

communication overhead, and avoids transmission of redundant information.

4. We demonstrate the practical efficacy of our trapdoor hash-based techniques for

signature amortization and proxy signature construction by presenting discrete log-



based instantiations of the generic techniques that are efficient to compute, and

produce short signatures.

Our detailed performance analyses demonstrate that the proposed schemes outperform

existing schemes in computation cost and signature size. We also present proofs for security

of the proposed discrete-log based instantiations against forgery attacks under the discrete-

log assumption.

Keywords: Authentication, digital signature, proxy signature, signature amortization,

trapdoor hash functions
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Chapter 1

Introduction

This dissertation presents techniques for constructing efficient and scalable digital

signature schemes using trapdoor hash functions [3, 4, 26, 44, 74] that are designed for

providing authentication in emerging large-scale distributed systems.

A distributed system consists of multiple autonomous processing and storage elements

that communicate through any form of communication network to provide a common

service that covers all aspects of computing and information access. Distributed systems

are designed for a myriad of purposes that can include providing resource access to a

large number of clients in a transparent, open and scalable manner, and for processing

complex and resource intensive programs in an efficient and cost-effective manner. The

commercialization of the Internet and the subsequent development of new distributed

computing technologies have revolutionized the manner in which governments, business

organizations and academic institutions operate and offer their services to clients. Today

emerging distributed systems like storage area networks, Cloud computing, and content

delivery networks (CDNs) are at the forefront of technologies that are transforming the

paradigm of how information is accessed, processed and stored.

Existing technologies like CDN and Cloud computing continue to evolve. We can

attribute the evolution of these systems to two lines of research: (1) development of new

frameworks and architectures for improving utilization and efficiency; and (2) designing new

or transforming existing applications that can benefit from deployment in these emerging

systems. Part of the research effort that is driving the evolution of distributed computing

technologies is in the field of security. Large-scale distributed systems that are designed

to provide services to a large group of users also provide a platform for adversarial users

to launch a myriad of attacks with widespread consequences, impacting a large number of

components and clients. Moreover, as the number of clients that use distributed computing

systems for sensitive tasks (like Internet-based monetary transactions) continue to grow,

the cost of attacks due to lack of security measures is increasing as well. Researchers

have identified several security threats in systems like CDN and Cloud computing that

must be protected against to avoid the large costs of successful attacks. For instance, new

applications and architectures for Cloud computing need to address security issues related
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to isolation management, multi-tenancy, data exposure, virtual OS security, encryption of

data at rest and in transit, service level agreements (SLAs) to obtain Cloud security, trust

and compliance issues, among several other security requirements.

Security in distributed systems is a broad area of research that entails authentication,

authorization, confidentiality, integrity, and availability. Authentication forms an important

part of the spectrum of solutions for protecting network-based operations as well as support-

ing underlying infrastructure. Authentication allows an entity to establish the legitimacy of

a claimed property to another entity. Authentication helps prevent impersonation attacks

where an adversary masquerades as a victim’s intended communication partner to send

malicious data to or receive sensitive information from the victim, and allows the victim to

detect malicious tampering of data sent from the intended source. Authentication schemes

can provide protection against identity theft or privacy breaches, malware distribution,

routing disruptions and copyright infringements, among many other threats. We can use

several well-known mechanisms to provide authentication with varying degree of security,

performance and features which include password-based techniques, message authentication

codes [30], integrity codes [18] and digital signatures [77]. Digital signatures are public key

cryptographic schemes that are primarily used for message authentication, and also provide

non-repudiation and integrity assurance. Digital signature is among the most popular

technique for providing authentication in current computer systems. We can attribute

the popularity of digital signatures to their use in the generation of digital certificates,

an important component of a public key infrastructure, that are extensively employed to

provide entity authentication for organizations wishing to provide secure access to their web

servers. Digital signatures also play an important role in authenticating electronic mail,

software distribution, financial transactions, and electronic documents of legal significance.

Conventional digital signature schemes, like RSA and DSA [77], are designed to

authenticate a single message exchanged between two communicating parties. In distributed

systems, data can be stored, processed and routed among multiple locations during the

process of an application workflow. In many distributed applications, using conventional

digital signatures to authenticate messages can lead to high computation and communi-

cation overhead. Examples include applications where the same message is manipulated

by multiple entities (e.g., routing using the Border Gateway Protocol), a large number of

messages need to be processed by a single entity (e.g., processing feedback in multicast

applications) or only a portion of the message that needs to be authenticated is available

at the sender at the time of transmission (e.g., distribution of real-time content). A
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commercially viable security solution must achieve a reasonable balance between security

and cost. The design and construction of authentication schemes must take into account

the architecture of the target system and must be tailored towards meeting the specific

constraints of the target system to provide a good balance between security and cost. The

design of digital signatures must also continuously evolve to tackle new security threats in

emerging design and applications of modern distributed systems.

1.1 Research motivation

Cryptographic hash functions are an important building block for a large number of security

schemes. Cryptographic hash functions are extensively used for the following purposes: (1)

Construction of message authentication codes that can be used for providing data integrity,

symmetric data origin authentication, and identification in symmetric-key schemes; (2)

Securing password-based authentication protocols from exposure and dictionary attacks;

(3) Construction of key derivation function for generating secret keys in key agreement

protocols, like Secure Sockets Layer, and; (4) Generation of universally unique identifier

that is used to uniquely identify information in distributed systems.

Digital signature schemes employ hash functions for message compression, providing

message integrity, non-repudiation and to prevent forgery [60]. In most digital signature

schemes, the first step before signing a message is to compute a hash of the message.

Next, the hash value of the message is signed in place of the original message. This

technique is called the hash-then-sign paradigm. Digital signature schemes require the

hash function to be collision resistant, pre-image resistant and second pre-image resistant.

Replacing the standard cryptographic hash function with a different cryptographic primitive

during generation of digital signatures can lead to new forms of signature schemes with

desirable properties. For instance, by generating a signature on a redundancy function of

the message, we obtain a signature scheme providing message recovery that can be used to

eliminate the communication cost of transmitting the message along with the signature. By

generating a signature on a message encrypted using the receiver’s public key, we obtain a

signcryption scheme that can be used for authenticated transfer of encrypted messages. We

use this “hash-replacement” technique as our motivation to develop new forms of digital

signature schemes that use trapdoor hash functions instead of conventional cryptographic

hash functions to compute the message digest before signing.

Trapdoor hash functions are collision-resistant hash functions associated with a special

trapdoor key that enables the possessor of the key to find collisions between hashes of

3



different messages. Informally, a (trapdoor) collision occurs when two distinct messages

have the same (trapdoor) hash value, in which case, the messages are called a collision-

producing message pair. A trapdoor hash function is associated to a (private, public) key

pair, also referred to as a (trapdoor, hash) key pair. An entity computes trapdoor hash

value of a message using the hash key. Collisions are computationally infeasible to find (or

compute) without the knowledge of the trapdoor key. However, given the trapdoor key

along with the trapdoor hash on a message, it is feasible to find a collision with another

given message. When a trapdoor hash function is used within a hash-then-sign signature

scheme, it permits the party with knowledge of the trapdoor to re-use the signature value to

authenticate other messages of choice by finding collisions between the hash of the original

signed-message and the new message that needs to be signed. Depending on the efficiency

of the trapdoor hash function, this technique of authenticating messages can offer several

potential benefits: (1) The computation cost of generating a signature can be reduced

to the cost of finding collisions; (2) The cost of verifying a signature can be reduced to

comparing two hash values; (3) The communication cost of transmitting authenticating

information pertaining to a message can be reduced to the size of the trapdoor hash value.

We experiment with various techniques of using the collision finding property of trapdoor

hash functions to develop authentication schemes that offer performance advantages over

existing schemes while providing security guarantees against forgery attacks.

1.2 Thesis contributions

In this dissertation we introduce new techniques to construct various forms of digital

signature schemes using trapdoor hash functions that are suitable for solving emerging

security issues related to authentication in modern distributed systems. The general idea

behind our techniques is that, rather than generating conventional signatures on a message

using a secret key, we use the process of computing hash collisions using a trapdoor key

to authenticate messages. Our contributions include the following: (1) We present generic

techniques to construct proxy signatures and stream authentication schemes using trapdoor

hash functions. Our proposed generic techniques allow the choice of cryptosystem and

primitives for implementation, open to future improvements; (2) We present instantiations

of our generic constructions using primitives from the discrete log-based cryptosystem to

demonstrate the efficacy of the proposed techniques in building practical instances; (3) We

evaluate the performance of the proposed discrete log-based signature constructions in terms

of communication, computation and storage costs and compare it with existing schemes in
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the literature; (4) We conduct an extensive analysis of the security of the proposed signature

schemes where we examine the most general mathematical assumptions that are conjectured

to be hard, like the discrete log (DL) assumption, and aim to deduce relations between such

assumptions and hardness of forging the proposed signatures. Next we elaborate on the

specific contributions of this dissertation.

1.2.1 Building an efficient key-exposure-resistant trapdoor hash function

Trapdoor hash functions have been primarily used in the past to construct non-interactive

non-transferable signature schemes called chameleon signatures [44]. Chameleon signatures

are verifiable by no one other than the intended recipient. The general idea behind

chameleon signatures is to have the signer compute the trapdoor hash of a message m using

the hash key of the recipient and sign the resulting digest. If the recipient uses its trapdoor

key and computes a hash collision between the original signed message m and a second

message m′ to obtain a forged signature on m′, to provide non-repudiation, the signer must

be able to demonstrate this forgery to a third party. This is typically done by the signer

revealing a third message, m′′ that has the same trapdoor hash value as m′ (or m). The

ability of a signer to demonstrate forgery by a receiver requires a trapdoor hashing scheme

that allows an entity to compute a trapdoor hash collision with a third message given two

messages that result in a collision of their respective trapdoor hash values. However, this

property of trapdoor hash value is undesirable when used for authenticating new messages

as we explain next.

In this dissertation, we present new techniques to build various forms of digital signatures

using trapdoor hash functions. We base our constructions on a central idea that given a

message, m, a trapdoor hash of m computed using the signer’s hash key, and a signature

σ on the trapdoor hash of m computed using signer’s secret (signing) key, the signer can

authenticate a new message m′ by computing a hash collision between m and m′ using its

(secret) trapdoor key. Any entity that has previously verified σ on m and wishes to check

the authenticity of m′, simply checks whether the trapdoor hash values of m and m′ are

equal. This collision based technique to authenticate messages requires that given m and

m′, it is computationally infeasible for the receiver, or any other third party, to compute

m′′ that has the same trapdoor hash value as m′ (and consequently, m as well) — existing

trapdoor hashing schemes [3, 4, 26, 44, 74] were not designed to provide this requirement.

We present a new discrete log-based trapdoor hash function that possesses the required

security and performance characteristics to serve as a building block in the construction of
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proposed digital signatures schemes. The proposed trapdoor hash function uses ephemeral

keys for collision computation and never allows a third party to compute additional trapdoor

hash collisions given collision producing message pairs. We provide formal definitions of

trapdoor hash functions and their security properties for schemes that use ephemeral keys

for collision computation. We present a detailed theoretical analysis, including correctness,

security and performance, of the proposed trapdoor hashing scheme.

1.2.2 Proxy signatures for authenticating agents in agent-based computing

systems

Today, many large-scale and complex distributed systems like peer-to-peer networks,

pervasive and ubiquitous computing environments, Cloud systems, and Grids are highly

dynamic, decentralized and loosely coupled with constituent components that are spread

throughout a network. Researchers have advocated agent-based computing as the natural

computational model for such systems [40]. Agents are software instances that can be

delegated by a user to carry out operations on its behalf. However, use of agent-based

computing in multi-Cloud, Grid and other distributed systems opens up new avenues for

adversarial users to compromise the system. Security in Clouds and other computing

systems heavily rely on establishing trust relationships among the actors involved. In agent-

based computing, users have to establish trust relationships with agents which includes their

security, reliability, availability, and business continuity guarantees. Moreover, sensitive

information stored and processed by agents need to be protected from exposure, alteration

and corruption. We study the problem of providing efficient authentication of agents in

agent-based computing environments.

Proxy signatures have found extensive use in providing message authentication for

agents acting on behalf of users in applications such as Grid computing, communications

systems, personal digital assistants, information management, and e-commerce. Importance

of proxy signatures has been repeatedly highlighted by applied cryptographers through

different variations, namely, threshold proxy signatures, blind proxy signatures and so

forth. Unfortunately, most recent constructions of proxy signatures only improve on minor

weaknesses of previously built schemes, and most often do not deliver formal security

guarantees.

We propose a technique to construct provably secure proxy signature schemes using

trapdoor hash functions that can be used to authenticate and authorize agents acting on

behalf of users in agent-based computing systems. We demonstrate the effectiveness of our

approach for creating practical instances by constructing a discrete log-based instantiation of
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the proposed generic technique that achieves superior performance in terms of verification

overhead and signature size compared to existing proxy signature schemes. We provide

formal definitions, security specifications, and a detailed theoretical analysis, including

correctness, security and performance, of the proposed proxy signature scheme.

1.2.3 A trapdoor hash based mechanism for stream authentication

Large number of activities in the Internet, like distribution of digital audio, video, software,

games, stock quotes and live news feeds, involve transmission of digital streams. In

such applications, the end-user’s tolerance for high latency, low data rates and playback

interruption is small. This means individual components of the stream (like audio or video

frames) need to be processed upon reception, with minimal delay, before the entire stream is

received. To protect such delay-sensitive digital streams against malicious attacks, security

mechanisms need to be designed to process long sequence of bits in an efficient manner that

allows the receiver to verify the security of individual components of the stream without

excessive delays. This is typically done by dividing the stream into smaller blocks and using

a security mechanism to secure each block comprising the stream.

We study the problem of efficient authentication for real-time and delay-sensitive data

streams commonly seen in content distribution, multicast and peer-to-peer networks. We

propose a novel signature amortization technique based on trapdoor hash functions for au-

thenticating individual data blocks that comprise a digital stream. Our technique represents

a radical departure from traditional approaches for amortizing signatures and provides the

following features: (1) Resilience against arbitrary transmission losses of intermediate blocks

in the stream without affecting verifiability of remaining blocks; (2) Small and constant

memory/compute requirements at the sender and receiver for authenticating a stream;

(3) Minimal constant communication overhead needed for transmission of authenticating

information along with the stream; (4) No wasted bandwidth due to redundant transmission

of authenticating information. Our proposed technique makes authentication of streams

practical and efficient. We substantiate this claim by constructing a discrete-log based

instantiation of the proposed technique. The discrete log-based scheme provides adaptive

stream verification, where the receiver has control over modulating computation cost

versus buffer size. Our performance analysis demonstrates that the proposed discrete log-

based scheme incurs the least per-block communication and signature generation overheads

compared to existing schemes with comparable features.
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1.3 Thesis organization

In Chapter 2, we provide description of common cryptographic concepts and terminologies

relevant to the thesis. We present background information on discrete log-based digital

signatures and trapdoor hash functions that are used as building blocks to construct the

proposed authentication schemes. We discuss related research on applications of trapdoor

hash functions, proxy signatures and stream authentication using digital signatures. In

Chapter 3, we present a novel discrete log-based trapdoor hashing scheme that provides

all necessary security and performance properties that make it suitable for use as a

building block in the construction of the proposed signature schemes. Chapter 4 presents

a technique to construct proxy signatures using trapdoor hash functions along with a

discrete log-based instantiation of the proposed technique that can be used for providing

efficient authentication of agents in agent-based computing systems. Chapter 5 presents

a technique for signature amortization using trapdoor hash functions followed by a

discrete log-based instantiation of the proposed technique that can be used for providing

efficient authentication of real-time and delay-sensitive streams. Chapter 6 concludes the

dissertation with a summary of key research contributions and possible research directions

in the area of efficient authentication protocols.

Copyright c© Santosh Chandrasekhar 2011
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Chapter 2

Background and related work

In this chapter, we present a brief introduction to common cryptographic concepts

and terminologies, provide a technical description of trapdoor hash functions and digital

signatures along with their security properties. We also discuss related research work

on application of trapdoor hash functions, development of proxy signatures, and flow

authentication mechanisms.

2.1 Cryptographic concepts and terminologies

Authentication: Authentication is the process by which an entity establishes a claimed

property to another entity. For example, an entity claiming a legitimate use of a

service, or an entry to a system, can establish the claimed legitimacy through use of

authentication. The notion of authentication can be further categorized into entity

authentication and message authentication.

Entity authentication is a process of verifying that an entity’s identity is as claimed

through acquisition of some evidence and, that the authenticated entity was active

at the time the evidence was created or acquired. A successful entity authentication

results in a belief held by the verifier that the authenticated entity possesses the

claimed identity.

Message authentication (or data-origin authentication) is the process of verifying

whether a message is from a purported source and involves identifying the source

of a message. If the message has been modified by an entity which is not the

purported source, message authentication should fail. Thus, message authentication

provides implicit message integrity. Authentication is based on the possession of

some secret information which is known only to the entities participating in the

authentication. The basis of authentication can be classified into the following

categories: (1) Something you know, like passwords and cryptographic keys; (2)

Something you are, like biometric retinal scans and fingerprints, and; (3) Something

you posses, like smartcards and physical keys.

9



One-way trapdoor function: A one-way trapdoor function, fk : D 7→ R is a function

which is easy to evaluate for all x ∈ D and difficult to invert for almost all values in

R. However, if the trapdoor information k is known, then for all values y ∈ R, it is

easy to compute x ∈ D satisfying y = fk(x).

Negligible function: A negligible function diminishes to 0 faster than the reciprocal of

any polynomial. In cryptography, the security of a scheme is judged according to

whether the probability of security failure of the scheme is negligible in terms of the

cryptographic key length. A function f(n) : N 7→ R is said to be a negligible quantity

in n if, for any polynomial p(n), there exists a natural number n0 such that, for all

n > n0,
1

f(n) > p(n), i.e., reciprocal of f(n) is unbounded by any polynomial function

of n.

Probabilistic Polynomial Time: Deterministic algorithms follow the same sequence of

operations each time they execute with the same input. By contrast, randomized

algorithms make random decisions at certain points during their execution; hence

their execution paths may differ each time they execute with the same input. The

random decisions are based upon the outcome of a random number generator. While

some random moves lead to a correct result, others lead to incorrect results. A PPT

algorithm is a randomized algorithm with bounded error probability whose running

time for each input is a polynomial function of the input size. The error probability

is determined from its input of randomness.

Computational infeasibility: A computationally feasible problem is a problem that can

be solved by an efficient algorithm, i.e., a deterministic or randomized algorithm with

execution time expressed as a polynomial function of the input size. Computationally

feasible problems can be solved using resources that are manageable, even if the

size of the problem is large. All problems that are not computationally feasible are

called computationally infeasible. An entity, armed with a polynomial-time algorithm,

cannot solve most instances of a computationally infeasible problem with manageable

resources. An efficient algorithm for solving a computationally feasible problem need

not be efficient in a practical sense because the degree of the polynomial that bounds

its time complexity is simply too large. Also, algorithms with non-polynomial time

complexities can be useful for solving small instances of computationally infeasible

problems efficiently. Practically efficient algorithms are polynomial-time algorithms

where the polynomials have very small degrees. In this dissertation, we sometimes
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use the term “efficient” to mean “computable (or solvable) by a practically efficient

algorithm”.

Provable Security: Cryptographic protocols or schemes are built using atomic primi-

tives, like Advanced Encryption Standard (AES) or one-way functions, that are based

on mathematical problems conjectured to be hard. Security assurances provided by

cryptographic protocols rely on the confidence in the security of the underlying prim-

itives. A limited viewpoint in cryptography regards the security of a cryptographic

protocol to be equivalent to solving the underlying mathematical problem. However,

many attacks on cryptographic schemes succeed, not by cryptanalyzing the underlying

primitive, but rather by finding a weakness in the protocol design [10, 12].

The reductionist security argument provides a means to researchers to, in a sense,

“provably” demonstrate the security of a cryptographic protocol. The idea of a

reductionist security argument is as follows: Assume that the goal is to provide

authentication via digital signatures. The first step is to describe a formal adversarial

model and define what it means for a signature scheme to be secure. Based on the

model and security definition, a particular scheme can be analyzed against attacks

from the point of view of satisfying the definition. Eventually, one proves that the

scheme is secure via a reduction showing that anyone who has an algorithm to mount

a successful attack on the signature scheme, can use the same algorithm to solve the

underlying mathematical problem (that is used as the basis for the claimed security

of the signature scheme) with relatively little additional effort. This type of security

proof allows cryptanalysts to focus on studying the security of the atomic primitive (or

the hardness of underlying mathematical problem) rather than directly cryptanalyzing

a security protocol — if cryptanalysts were to find a weakness in the protocol, they

would have discovered a weakness in the underlying atomic primitive. Moreover, if the

underlying atomic primitive is known to be secure (or the underlying mathematical

problem is hard), we can deduce, without further cryptanalysis, that the protocol is

secure. For a reductionist security argument to hold, a formal notion of security of

the underlying atomic primitive is required.

Random Oracle Model: A central step in proving the security of a cryptographic

protocol using the reductionist security argument is to describe an adversarial

model. An adversarial model describes the means, capabilities and goals of an

adversary acting against the target cryptographic protocol. Important components
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of an adversarial model include abstraction of the communication channels and

formalization of mathematical objects, like infinite random strings and oracles. Models

used for proving the security of a cryptographic protocol include the standard model,

generic group model and the random oracle model. The standard model does not

use any special mathematical objects and assumes existence of a reliable but insecure

communication channel. Proofs in the standard model are typically unappealing [63]

and lead to protocol constructions that are inefficient in practise [10]. The generic

group model assumes that non-trivial properties of the representation of the elements

of an algebraic structure (e.g. a group) under consideration cannot be exploited [58].

The generic group model provides the adversary with a random encoding of the

algebraic structure and oracle to answer permissible operations in the algebraic

structure [76]. Generic group models are typically used for computing the lower

bounds on the complexity of mathematical problems conjectured to be hard (like the

discrete log problem) that form the basis of several cryptosystems using algorithms

that only make use of operations in the algebraic structure and do not consider the

encoding of the elements of the algebraic structure.

The random oracle model is a popular choice in the security research community to

obtain security results for many efficient and practical schemes that are constructed

using hash functions. In the random oracle model, the behavior of a hash function is

emulated by a deterministic and efficient function that outputs uniformly distributed

random values. All entities including the adversary, are given access to the random

oracle OH that behaves as follows: The oracle OH initializes an empty list L. The list

L stores tuples of the form (mi, hi), where mi ∈ {0, 1}
∗ are queries and hi ∈ {0, 1}

n

are random answers. For efficiency the list L can be sorted by mi. When an entity

queries OH with a value mi, the oracle searches the list L for the tuple (mi, hi). If

the oracle finds the tuple, OH returns hi as the answer. If not, the oracle chooses a

random value hi ∈ {0, 1}
n, stores (mi, hi) (at an appropriate location) in the list L

and returns hi as the answer. Random oracles do not exist in practise. In the real-

world, hash functions only emulate the random oracle behavior to a precision where

the difference is preferably a negligible quantity. However, if hash functions used in

a cryptographic scheme or protocol have no “obvious” flaw, then a security proof for

such a scheme using their idealized version can be considered as a useful test-bed

for checking the security of the scheme or protocol. Today, designing a cryptographic

scheme so that it is argued to be secure in the random oracle model is widely accepted
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as a good engineering principle.

2.2 Digital signatures

A digital signature is a cryptographic mechanism to provide authentication, message

integrity and non-repudiation. The process of signing entails transforming the message

and some secret information held by the entity into a tag, called a signature. This signature

provides a means for an entity to bind some information regarding itself (e.g., its identity) to

the message that is signed, and prove ownership of a message to another entity. A signature

is authentic if it was indeed created by the specified entity.

Most digital signature schemes employ hash functions for message compression,

providing message integrity, non-repudiation and for preventing forgery [60]. Formally a

digital signature scheme can be defined as follows:

Definition 2.2.1. A digital signature scheme DS is the tuple 〈ParGen, KeyGen, SigGen,

SigVer〉 whose components are defined as follows:

ParGen: A PPT algorithm that takes a security parameter λ as input and outputs system

public parameters params.

KeyGen: A PPT algorithm that takes system parameters params as input and outputs a

(private, public) key pair (SK,PK).

SigGen: A PPT algorithm that takes system parameters params, a message m and a secret

key SK as inputs and outputs a signature σ on m.

SigVer: A deterministic algorithm that takes system parameters params, public key PK,

message m and a candidate signature σ on m as inputs and outputs Valid or Invalid.

A signature σ on a message m signed using SK is said to be authentic or valid under

PK if it passes the verification procedure, i.e., SigVer with params, σ, m and PK as inputs,

outputs Valid. We say that (m,σ) is a valid (message, signature) pair under public key PK.

2.2.1 Security of digital signatures

Let (SK,PK) represent the (private, public) key pair of an arbitrary entity E. A forged

signature σ on a message m is one that is valid under public key PK where E never

signed the message m. The goal of an adversary A is to forge signatures that appear to be

generated by some other entity E. Security of digital signatures is judged by their ability
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to resist signature forgery by relying on the difficulty of solving some well-known problem

such as the DL problem and the integer factorization problem.

A forgery can be either a total break, selective forgery or an existential forgery. A total

break occurs when an adversary is able to compute the private key of the signer. Selective

forgery allows an adversary to create a valid signature on a message chosen by or known to

the adversary beforehand. Existential forgery occurs when an adversary is able to forge a

signature on some message, where the adversary has little or no control over the message

on which the signature forgery is obtained.

An adversary can launch the following two-types of attacks to forge signatures:

1. Key-only attack: An adversary knows only the signers public key PK.

2. Message attack: An adversary is able to obtain valid (message, signature) pairs for a

set of messages that are known to or chosen by the adversary. Message attacks can

be further classified into the following three categories:

(a) Known-message attack: An adversary obtains a set of valid (message, signature)

pairs, where the messages are known to the adversary but not chosen by it.

(b) Chosen-message attack: An adversary obtains a set of valid (message, signature)

pairs, where the messages are chosen by the adversary before any signatures are

obtained.

(c) Adaptive chosen-message attack: An adversary is allowed to use the signer as

an oracle and request signatures on messages which are chosen by the adversary.

The choice of messages can depend on the signer’s public key or previous signed

messages.

In principle, an adaptive chosen-message attack, where the adversary attempts to forge

a signature by using the signer as an oracle and requesting signatures on messages of

choice, is the most difficult to prevent. Advantage of an adversary in forging a signature

is the probability that the adversary outputs a valid forgery. A signature scheme is said

to be secure if there exists no PPT forger that breaks the scheme with non-negligible

advantage. A detailed discussion on the types of attacks on digital signatures and their

security considerations can be found in [60].

2.2.2 Discrete log-based signatures

Primitives from DL-based cryptosystems have been extensively employed in the construction

of a large number of security protocols. These include the ElGamal [32] signature schemes
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and its variants [38], ElGamal encryption [32] and Diffie Hellman [27] key exchange and

its derivatives. The security of these protocols rely on the intractability of the discrete log

problem. The DL problem and assumption can be defined as follows:

Definition 2.2.2. Let p and q be primes such that q | (p − 1), whose sizes are determined

by a security parameter λ. Let α be an element of order q in Z
∗
p that generates the unique

cyclic subgroup G of Z∗
p of order q. The DL Problem in G can be defined as follows: Given

(p, q, α ∈ Z
∗
p, β ∈ G), find an index k, 0 ≤ k ≤ q− 1, such that β = αk mod p or determine

that there is no such index.

Let A be a PPT algorithm that solves the DL problem in G. Define the advantage of

the DL solver A as: AdvDL
A (λ) = Pr[A(p, q, α, β) = k | α ∈R Z

∗
p, 0 ≤ k ≤ q − 1, β = αk

mod p], where the notation ∈R denotes “randomly chosen from”. The probability is over

the random choices of α, k, the size of security parameter λ, and the input of randomness

for the algorithm A.

DL Assumption: The cyclic subgroup G satisfies the DL Assumption if AdvDL
A (λ) is a

negligible function.

The ElGamal family of signatures continue to be one of the most efficient signature

schemes in terms of storage overhead, signature size and computation cost. Moreover,

the National Institute of Standards and Technology (NIST) adopted a specific variant of

ElGamal (DSA) for use in their Digital Signature Standard (DSS), specified in FIPS 186

and adopted in 1993 [77]. Other popular signature schemes within this family include the

provably secure Schnorr variant [72], and Nyberg-Rueppel family of signature schemes with

message recovery [64].

System public parameters, common to all variants of ElGamal, are chosen as params =

〈p, q, α〉, where p and q are 1024-bit and 160-bit primes, respectively, q | p − 1, and α is

an element of order q in Z
∗
p. The long-term (private, public) key pair of an entity is given

by (x,X), where x ∈R Z
∗
q and X = αx ∈ Z

∗
p. To sign a message m, an entity first chooses

an ephemeral private key k ∈R Z
∗
q and computes ephemeral public key r = αk mod q.

Next, the entity computes the signature value t by solving a signing equation that can be

expressed in the generalized form as:

±A ≡ ±xB ± kC mod q

The quantities, A, B and C permute over H(m), r and t individually, or over functions

f(·, ·), g(·, ·) of (m, r), (m, t) and (r, t), and unity, where, H : {0, 1}∗ 7→ Z
∗
q is a cryptographic

hash function. The parameter t together with r constitute the resulting signature σ = 〈t, r〉
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on m. The signature σ on m can be verified under public key X by checking whether

the equivalence, αA ≡ XBrC mod p, holds. The functions f : {0, 1}∗ × Z
∗
q 7→ Z

∗
q and

g : Z∗
q × Z

∗
q 7→ Z

∗
q are carefully chosen so that the signing equation can be solved for t, the

essence of the signature. For the DSA variant, A = H(m), B = r, C = t, and verification

involves checking whether αH(m) ?
≡ Xrrt mod q holds.

In this dissertation we present instantiations of various forms of trapdoor hash-based

signature schemes using a particular variant of the ElGamal family of signatures, called the

Schnorr signature scheme [72]. Denoted as DL-Schnorr, the Schnorr signature scheme can

be described as follows:

DL-Schnorr.ParGen: Entities choose and agree upon common system public parameters

params = 〈p, q, α, H〉, where p and q are 1024-bit and 160-bit primes, respectively,

q | p − 1, α is an element of order q in Z
∗
p and H : {0, 1}∗ 7→ Z

∗
q is a cryptographic

hash function.

DL-Schnorr.KeyGen: An entity uses the system public parameters params, to generate its

private and public key pair, (SK,PK) = (x,X), where x ∈R Z
∗
q and X = αx ∈ Z

∗
p.

DL-Schnorr.SigGen: Given a message m ∈ 0, 1∗, an entity uses its private key SK = x and

executes the following:

1. Choose an ephemeral private key k ∈R Z
∗
q and compute the corresponding

ephemeral public key as r = αk mod q.

2. Solve for the signature value t in the equation, t ≡ xH(m||r) + k mod q, where

m||r denotes the concatenation of r to m.

The entity outputs σ = 〈t, r〉 as the resulting signature on message, m.

DL-Schnorr.SigVer: To verify a signature σ on m under public key X, an entity executes

the following:

1. Parse σ as the tuple 〈t, r〉 and compute h = H(m||r).

2. Compute r′ = αtX−h mod q.

If r ≡ r′ mod q, then σ is a valid signature on m and the entity outputs V alid. Else,

verification fails and the entity outputs Invalid.

Security of the Schnorr signature scheme against forgery is based on the following well-

known theorem [70].
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Theorem 2.2.1. The Schnorr variant [72] of the ElGamal family of signatures is secure

against an adaptive chosen message attack in the random oracle model under the discrete

logarithm assumption.

2.2.3 Proxy signatures

The concept of a proxy signature was introduced by Mambo et al. [57]. Proxy delegation

is a process by which an entity, the delegator, transfers its signing rights and capabilities

to another entity, the proxy. Following delegation, the proxy can generate signatures,

called proxy signatures on behalf of the delegator. Mambo et al. [57] classified proxy

delegation into partial delegation, full delegation and delegation by warrant, presented

possible constructions for proxy signatures, and provided an informal security analysis.

Later classifications of proxy signatures included partial delegation by warrant [43], and

strong/weak proxy signatures [47].

Since their introduction, researchers have focused on developing new proxy signatures

by enhancing the security or efficiency of previous schemes, but only relying on heuristic

security arguments [6, 45, 65, 78, 79]. Motivated by this, Boldyreva et al. [13] proposed the

first formal security notion for proxy signature schemes and presented a provably secure

variant of Kim et al.’s scheme [43]. Later, Lee et al. [48] analyzed the necessity of secure

channels in proxy signature schemes like [47, 57, 69, 43]. Malkin et al. [56] extended the

model by Boldyreva et al. for one level of delegation, to fully hierarchical proxy signatures

and proved the equivalence of proxy signatures and key-insulated signatures [28]. Zhang et

al. [83] proposed the first proxy signature scheme based on bilinear pairings in elliptic and

hyperelliptic curves. More recently, Schuldt et al. [73] proposed a stronger security model

compared to models by Boldyreva et al. [13] and Malkin et al. [56], and presented a generic

construction of a provably secure proxy signature scheme based on sequential aggregate

signatures in their stronger security model.

Proxy signatures have found extensive use in solving authentication issues in mobile

agent applications where autonomous software agents need to migrate across heterogeneous

execution environments and reliably perform transactions in electronic commerce [13, 47,

46]. Delegation of rights is also common in providing authorization for delegated entities

in distributed systems and for workflow management of information systems [5]. Leiwo et

al. [49] proposed a means to authenticate state alterations in distributed shared objects

using proxy signatures. Leiwo et al. [49] used the scenario of free software distribution

to show how proxy signatures could be used by core group members to sign update
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state messages on behalf of the administrator. Ahn et al. [1] proposed integration of

a role-based delegation framework [7] in pervasive computing environments to provide

selective information sharing while minimizing the risks of unauthorized access. Proxy

signatures have potential application in securing such access delegation systems to provide

authentication and non-repudiation in addition to access control. Proxy signatures can also

be used to provide authentication of user proxies in Grids [31, 80].

2.2.4 Signature-based stream authentication techniques

Conventional techniques for message authentication require the sender and the receiver to

have the ability to store the entire message before authenticating the message. However,

in many instances, like transmission of audio, video, live news feeds, stock quotes and

other forms of digital content, the message is split into smaller blocks, and individual

blocks in the stream need to be authenticated upon reception with minimal delay before

the entire stream is received [33]. Researchers have proposed several techniques for

stream (or flow) authentication that aim at reducing the computation and communication

overhead associated with securing individual blocks that comprise a stream. These

techniques can be divided into MAC-based schemes like Timed Efficient Stream Loss-

tolerant Authentication (TESLA) [68] (and its variants) and signature-based schemes like

Efficient Multichained Stream Signature (EMSS) [68], Augmented Chain (AC) graph-based

stream authentication [34], Signature Amortization using Information Dispersal Algorithm

(SAIDA) [66], and Wong and Lam (WL) [82]. While TESLA is efficient and robust against

data loss, it requires time synchronization between a signer and a verifier, sufficiently large

buffers for storing all unverified blocks (until the verification key is received), and storage

of long key chains which can lead to scalability issues. This makes TESLA less suitable for

authenticating stream, and vulnerable to DoS attacks that cause buffer overflow.

To reduce per-block overhead, signature-based stream authentication techniques either

rely on amortizing a single signature over multiple blocks or designing extremely fast

signature schemes, like k-time signatures [71] and Bins and Balls (BiBa) [67] to sign each

block. Designing extremely fast signature schemes often come at the cost of unreasonably

high storage and communication overheads [66, 82]. To amortize a signature over multiple

blocks in a stream, EMSS and AC use hash chains, SAIDA splits the signature and hash

value of each block over multiple blocks, and WL uses Merkle trees. EMSS, AC and SAIDA

are probabilistic authentication schemes, i.e., the ability of a receiver to verify a received

block depends on whether the receiver has some additional blocks of the stream in its
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possession (which inherently requires a verifier to maintain a buffer with multiple data

blocks). Thus, the probability that a receiver is able to verify a block depends on the nature

(bursty, independent, etc.) and probability of data loss during stream transmission. EMSS

and AC rely on redundant placement of multiple hashes in each block to deal with blocks

that are lost during transmission. SAIDA relies on erasure codes to recover from losses.

In probabilistic authentication schemes, maintaining a reasonable probability of verification

in the presence of high data loss leads to higher per-block communication overhead and

increased size of verifier-side data buffer. If per-block communication overhead is restricted,

verification probability drops with an increase in data loss.

The WL scheme is the only known deterministic stream authentication protocol. In

the WL scheme, a stream is divided into segments, with each segment containing multiple

blocks (in WL each block is a single packet). The computational overhead at the signer

and verifier, the signer’s buffer size and the per-block communication overhead are highly

dependent on the segment size. Computational overhead at the signer and verifier increases

with a decrease in the segment size. On the other hand, the buffer size at the signer and

the per-block communication overhead increase with an increase in the segment size. With

a reasonable block size (say, 16 [82]), the signer-side delay increases (affecting real-time

performance) along with the per-block communication overhead (to a magnitude of 100’s

of bytes).

Recently, Lysyanskaya et al. [55] proposed a stream authentication technique, Authenti-

cated Error-Correcting Codes (AECC) using error correcting codes that is provably secure in

a formal adversarial network model that limits the capabilities of an adversary to injecting

and deleting packets in discrete quantities. The AECC scheme only requires one signature

operation for the entire stream and adds only a constant size authentication overhead per

packet. However, the AECC scheme requires the sender to possess the entire stream before

signing and thus, cannot be used for real-time generated content.

2.3 Trapdoor hash functions

Trapdoor hash functions are collision-resistant hash functions associated with a special

trapdoor key that enables the possessor of the key to find collisions between hashes of

different messages. A trapdoor hash function is associated to a (private, public) key pair,

also referred to as a (trapdoor, hash) key. Collisions are computationally infeasible to find

without the knowledge of the trapdoor key. However, given the trapdoor key along with

the trapdoor hash on a message, it is feasible to find a collision. A trapdoor hashing scheme
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consists of four algorithms for parameter generation, key pair generation, hash generation

and collision computation, respectively. Formally a trapdoor hashing scheme can be defined

as follows:

Definition 2.3.1. A trapdoor hashing scheme, TH, is a tuple 〈ParGen, KeyGen, HashGen,

TrapColGen〉 whose components are defined as follows:

ParGen: A PPT algorithm that takes a security parameter λ as input and outputs system

public parameters params.

KeyGen: A PPT algorithm that takes params as input and outputs a (trapdoor, hash) key

pair (TK,HK).

HashGen: A PPT algorithm that takes params, HK, a message m and a random element r

as inputs, and outputs the hash THHK(m, r).

TrapColGen: A PPT algorithm that takes params, a pair (TK,HK), a message m, a

random element r and an additional message m′ 6= m as inputs, and outputs a collision

parameter c such that THHK(m, r) = THHK(m′, c).

The function TH is said to be associated with the (long-term) hash key HK. For

trapdoor hash function to be practical, computing the digest of a message using the HashGen

algorithm and collisions using the TrapColGen algorithm must be achievable in polynomial

time.

2.3.1 Security properties of trapdoor hash functions

Security notions associated with trapdoor hashing schemes include collision forgery

resistance and semantic security [74]. Collision forgery resistance implies that given system

parameters, params and hash key, HK, it is computationally infeasible to find a tuple

〈m,m′, r, c〉 such that THHK(m, r) = THHK(m′, c). Semantic security of a trapdoor

hashing scheme ensures that for all hash keysHK, and all pairs of messagesm andm′, where

m 6= m′, the probability distributions of the hash values THHK(m, r) and THHK(m′, r)

are computationally indistinguishable.

Another well-known property of trapdoor hash function is resistance to key exposure [4].

A trapdoor hashing scheme is said to suffer from the key exposure problem if given the system

parameters params and the tuple 〈m,m′, r, r′,HK〉 such that THHK(m, r) = THHK(m′, r′),

the trapdoor key, TK corresponding to the hash key, HK can be computed in polynomial

time. The problem of key exposure was first discovered by Ateniese et al. [3]. Ateniese et al.
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observed that when a trapdoor hashing scheme is used for constructing non-interactive non-

transferable signature scheme, called chameleon signatures, vulnerability of the trapdoor

hash function to key exposure undermines the property of non-transferability. In Chapter 3,

we present further details on the effects of key exposure in trapdoor hash functions on

applications of trapdoor hash functions in chameleon, online/offline and other signature

schemes.

2.3.2 A discrete log-based trapdoor hash function

Krawczyk et al. [44] proposed a simple DL-based trapdoor hashing scheme, DL-TH, which was

later used by Shamir et al. [74] in the construction of their online/offline signature scheme.

The ParGen, KeyGen, HashGen and TrapColGen algorithms of the DL-based hashing scheme

are executed as follows:

DL-TH.ParGen: Entities choose and agree upon common system public parameters params =

〈p, q, α,H〉, where p and q are 1024-bit and 160-bit primes, respectively, q | p − 1, α

is an element of order q in Z
∗
p and H : {0, 1}∗ 7→ Z

∗
q is a cryptographic hash function.

DL-TH.KeyGen: An entity uses the system public parameters params, to generate its (private)

trapdoor key and (public) hash key pair, (TK,HK) = (y, Y ), where y ∈R Z
∗
q and

Y = αy ∈ Z
∗
p.

DL-TH.HashGen: An entity generates a trapdoor hash of a messagem ∈ Z
∗
q using the hash key

Y , by choosing an element r ∈R Z
∗
q and computing the hash as TH Y (m, r) = αH(m)Y r

mod q. The function TH is said to be associated with the hash key Y . Note that

the trapdoor hash function on the hashed message m does not affect any security

properties [44].

DL-TH.TrapColGen: Given the trapdoor key and hash key pair (TK,HK), m, r ∈ Z
∗
q and

an additional message m′(6= m) ∈ Z
∗
q, an entity computes a collision parameter c ∈ Z

∗
q

such that, THHK(m, r) = THHK(m′, c), by solving c ≡ y−1(H(m) − H(m′)) + r

mod q. Since m′ 6= m and r is uniformly distributed in Z
∗
q, the computed value c 6= r

is unique and is also uniformly distributed in Z
∗
q [74].

The DL-TH trapdoor hashing scheme is collision resistant as defined by Shamir et al. [74].

We present a brief proof of resistance of DL-TH against collisions.

Theorem 2.3.1. The trapdoor hashing scheme, DL-TH is collision resistant.
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Proof: [74] Collision forgery resistance implies that given system parameters params and

hash key HK as inputs, a PPT collision forger F has negligible probability to successfully

output the tuple 〈m, r,m′, r′〉 that satisfies m 6= m′ and THHK(m, r) = THHK(m′, r′).

To the contrary, assume that there exists a PPT collision forger F that outputs

〈m, r,m′, r′〉 that satisfies m 6= m′ and αH(m)Y r ≡ αH(m′)Y r′ mod q with a probability

which is not negligible. The discrete log y of the hash key Y with respect to the basis α

can be calculated in polynomial time from the output, as follows: From the equality in the

trapdoor hash values of m and m′ we know that H(m) + yr ≡ H(m′) + yr′ mod q. Also,

given that m 6= m′ and H is a cryptographic hash function, we know that H(m) 6= H(m′)

and (r′ − r) is non-zero modulo q. Thus, the discrete log of Y with respect to the basis α

can be computed as y = (r′ − r)−1(H(m) −H(m′)) mod q. This contradicts the discrete

log assumption.

The trapdoor hashing scheme described above suffers from the well known key exposure

problem [4]. Given two pairs (m, r) and (m′, c) such that THHK(m, r) = THHK(m′, c),

any third party can compute the trapdoor key TK as

TK = (H(m)−H(m′))(c− r)−1 mod q (2.1)

In Chapter 3 we use the DL-TH scheme as a basis for construction of an efficient trapdoor

hashing scheme, called DL-MTH, that is collision-resistant, key-exposure-resistant and

semantically secure. We use the proposed DL-MTH scheme as a building block to construct

efficient authentication schemes for securing various distributed applications.

2.3.3 Applications of trapdoor hash functions

The concept of a trapdoor hash function was originally derived from the notion of trapdoor

commitments proposed by Brassard et al. [15]; Krawczyk et al. [44] used trapdoor hash

functions (referred to as chameleon hash) to construct a non-interactive non-transferable

signature scheme, called chameleon signatures (closely related to undeniable signatures),

under the hash-and-sign paradigm. Chameleon signature allows a signer to undeniably

commit to the contents of a signed document, but does not allow the recipient of the

signature to disclose the signer’s commitment to a third party without the signer’s consent.

The problem of key-exposure in trapdoor hash functions was first identified by Ateniese

et al. [3] who presented a partial solution to the problem by constructing an identity-

based trapdoor hash function that uses a different public key to compute the digest of

each message. Chen et al. [26] proposed the first construction of a key-exposure free

trapdoor hash function in Gap Diffie-Hellman Group with bilinear pairings and described
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an application of chameleon signatures in receipt-free electronic voting schemes. Later,

Ateniese et al. [4] proposed several constructions of trapdoor hash functions without key

exposure, and provided several applications of trapdoor hashing like private auctions and

secure software distribution. Shamir et al. [74] employed trapdoor hash functions to

develop a new paradigm, called hash-sign-switch, that can be used to convert any signature

scheme into an online/offline signature scheme [29]. In online/offline signature schemes, the

signature generation procedure is split into two phases that are performed offline (before

the message to be signed is known) and online (after the message is known). By shifting the

computational burden to the offline phase, online/offline signatures can achieve very high

efficiency for signing messages during the online phase.

Mehta et al. [59] introduced the idea of using trapdoor hash functions to build one-

time proxy signatures (one proxy signature per delegation) by exploiting the key-exposure

property of trapdoor hash functions. In their scheme, the verifier need not be aware of the

existence of a proxy. The delegation process is considered confidential and verification of

a proxy signature requires only the delegator’s public key, and follows standard signature

verification procedures. Mehta et al. use techniques inherited from chameleon signatures

to resolve disputes between verifier and delegator, and between proxy and delegator.

2.4 Summary

In this chapter, we presented a brief introduction to common cryptographic concepts

and terminologies that will aid the reader in understanding the topics covered by this

dissertation. We provided a technical description of digital signatures and trapdoor

hash functions along with their security properties and a brief review of a well-known

discrete log-based signature scheme, DL-Schnorr [72] and trapdoor hashing scheme, DL-

TH [44]. We also discussed related research work on proxy signatures [57] that are used

for authenticating agents acting on behalf of users, signature amortization schemes that

are used for authenticating individual blocks comprising a data stream and applications of

trapdoor hash functions in the construction of chameleon [44], online/offline [29] and proxy

signatures.

In the next chapter we present a novel and efficient discrete log-based trapdoor hash

function that will be used as a building block to construct various authentication schemes

including a proxy signature-based agent authentication scheme, and signature amortization-

based stream authentication scheme.
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Chapter 3

Building an efficient key-exposure-resistant trapdoor hash function

3.1 Introduction

Trapdoor hash functions were originally designed to construct non-interactive non-transferable

signature schemes, called chameleon signatures [44]. The idea is to use a trapdoor hash

function to compute the digest h of a message m and sign h using an arbitrary signing

algorithm. If the hash key associated to the trapdoor hash function belongs to the recipient,

then the signature is verifiable by no one other than the intended recipient. The recipient

can obtain a signature on a second message m′ by using its trapdoor key to compute a

hash collision between the original signed message m and m′. In this case, the signer can

prove that the signature on m′ is a forgery by revealing the original signed message m with

the same hash value as m′. Since it is infeasible for the signer to compute trapdoor hash

collisions, revealing m is seen as a proof of forgery by the recipient and revokes the original

and forged signatures, thus providing non-repudiation.

The original chameleon signature scheme by Krawczyk et al. [44] uses a trapdoor hash

function that is vulnerable to key exposure. Ateniese et al. [3] observed that a signature

forgery by the recipient (i.e., revealing a message m′ with the same hash value as the

original signed message m) results in the signer recovering the trapdoor key of the recipient.

Following the recovery of trapdoor key, the signer can invalidate other signatures which were

designated to be verified by the corresponding hash key, thus denying other signatures given

to the recipient. Due to the potential damage to the recipient resulting from a signature

forgery, a third party is likely to believe the authenticity of a recipient’s claim. Thus, the

threat of key exposure creates a strong disincentive for the recipient to forge signatures,

undermining the property of non-transferability provided by the scheme. To fix this issue

Ateniese et al. [3] proposed an identity-based trapdoor hashing scheme where the signer uses

a different hash key to sign each message. A hash collision produced by the recipient only

results in the exposure of trapdoor key associated to the single hash key used for signing a

single message, thus preventing the signer from denying signatures on other messages. The

aforementioned solution to the key exposure problem is partial, as the scheme still allows the

exposure of a single-use trapdoor key. Chen et al. [26] proposed the first key-exposure free
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trapdoor hash function in Gap Diffie-Hellman Group with bilinear pairings that prevents

exposure of the trapdoor key even if a message pair resulting in a hash collision is revealed.

Later, Ateniese et al. [4] presented non-pairing based key-exposure-free trapdoor hashing

schemes. Both Chen et al.’s and Ateniese et al.’s schemes [4, 26] prevent key exposure by

using an ephemeral component, which we call a transaction identifier, during computation

of a message digest that is unique for every message that is hashed. More specifically, in

the schemes by Chen et al. and Ateniese et al., the trapdoor hash function TH takes a

hash key HK, message m, a random value r and a transaction identifier i as inputs and

outputs the digest value h = THHK(m, r, i). Collisions can only be computed under the

same transaction identifier i, i.e., given the tuple 〈m, r, i〉, an entity with the trapdoor key

TK can generate 〈m′, r′〉 such that THHK(m, r, i) = THHK(m′, r′, i).

3.1.1 Problem statement

The constructions of key-exposure-free trapdoor hash functions by Chen et al. [26] and

Ateniese et al. [3, 4] are tailored towards addressing the property of non-transferability

and message hiding in chameleon signatures. The message hiding property of chameleon

signatures ensures that during settlement of disputes between a signer and a recipient to

ascertain whether or not a purported message was indeed the original one committed by the

signer, if the contested signature is invalid, the signer must be able to produce a message

that is different from the original signed message (thus, hiding the original message) and

authenticated by the same signature as the one on the purported message. To provide

message hiding and non-transferability, majority of the trapdoor hashing schemes by Chen

at al. [26] and Ateniese et al. [3, 4] (except one scheme proposed in [4]) require that given two

messages that result in a collision of their respective trapdoor hash values under the same

transaction identifier, an entity must be able to compute a trapdoor hash collision with a

third message under the given transaction identifier, without revealing the secret trapdoor

key. More specifically, if the recipient computes a hash collision between the original signed

message m and a new message m′ such that h = THHK(m, r, i) = THHK(m′, r′, i), where

i is the transaction identifier and (r, r′) are random values, then the signer can compute

a pair 〈m′′, r′′〉 such that THHK(m′′, r′′, i) = h. This property, although beneficial for

chameleon signatures, represents a security flaw when trapdoor hash functions are used to

construct signature schemes where, rather than authenticating messages using conventional

digital signatures, we use the process of computing hash collisions using a trapdoor key to

authenticate messages.
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The general idea behind using collision computation for message authentication is as

follows: Let A be an entity in possession of a (private, public) key pair, (SK,PK) and a

(trapdoor, hash) key pair, (TK,HK). Assume that A generates a signature σ using SK on

the trapdoor hash of a message THHK(m, r) and publishes 〈σ,m, r〉 in a publicly available

directory. Any entity that wishes to communicate with A first retrieves 〈σ,m, r〉 and verifies

the validity of σ on THHK(m, r) using HK and PK. Now, when A needs to generate a new

signature on a new messagem′, it computes r′ such that THHK(m, r) = THHK(m′, r′) using

its trapdoor key TK. The value r′ represents a signature onm′ that can be verified by simply

checking whether THHK(m, r) = THHK(m′, r′). In this scheme, the ability of a third party

to compute a message m′′, r′′ such that THHK(m, r) = THHK(m′, r′) = THHK(m′′, r′′)

results in a forged signature σ onm′′. Moreover, we note that using collision computation for

message authentication provides performance advantages over the conventional technique

of authenticating messages using digital signatures when the cost of computing collisions is

cheaper than signature generation and when cost of hash computation is cheaper than

signature verification. We observe that the two schemes by Harn et al. [37] and the

scheme by Ateniese et al. [4] that do provide the property of preventing additional collisions

are computationally more expensive for collision and hash computation than the cost of

conventional signature generation and verification, respectively. These inefficiencies of

existing trapdoor hashing schemes by Harn et al. and Ateniese et al. undermine our

incentive to use the process of computing collisions, instead of conventional signatures,

for message authentication. Thus, building authentication schemes that use collision

computation for message authentication require a trapdoor hashing scheme that is efficient,

key-exposure-free, collision-resistant and never allows a third party to compute hash

collisions given two messages that hash to the same value.

3.1.2 Contributions

In this chapter, we introduce an efficient, discrete log-based trapdoor hashing scheme

that is resistant to collisions and key-exposure. The proposed trapdoor hashing scheme

is designed for use as a building block to construct signature schemes that employ the

process of computing hash collisions using a trapdoor key to authenticate messages. The

proposed scheme achieves key-exposure-freeness by splitting the (trapdoor, hash) key pair

into two components, one permanent and the other ephemeral, and using the ephemeral

keys to compute trapdoor hash collisions between digest values of two distinct messages.

Unlike prior schemes by Chen et al. [26] and Ateniese et al. [4], the proposed scheme
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ensures that it is computationally infeasible for a third party to compute an additional

collision with the knowledge of a message pair whose trapdoor hash values are equal. We

provide formal definitions of trapdoor hash functions, collision forgery resistance and key

exposure resistance for schemes that use ephemeral keys for collision computation. We also

present a detailed security analysis of the proposed discrete log-based trapdoor hashing

scheme and prove its resistance to collision forgery and key exposure under the discrete log

assumption. We present a performance comparison of the proposed scheme against existing

key-exposure-free trapdoor hashing schemes. Our performance comparison demonstrates

that the proposed scheme achieves superior performance compared to existing key-exposure-

free trapdoor hashing schemes.

Chapter Organization: The rest of this chapter is organized as follows. In Section 3.2

we present formal definitions of trapdoor hash functions and their security properties, that

are tailored towards schemes with multiple trapdoors. In Section 3.3 we present a novel

discrete log-based trapdoor hashing scheme that is collision-resistant, key-exposure-free and

prevents a third party from computing additional collisions given a message pair that have

the same trapdoor hash values. We present a detailed analysis of the proposed scheme in

Section 3.4 including its correctness, security and performance. Section 3.5 summarizes the

chapter.

3.2 Definitions

In this section we present a definition of trapdoor hashing scheme that extends traditional

definitions [74] by allowing constructions of trapdoor hash functions that can generate

collisions using ephemeral keys. We also re-define notions of collision forgery resistance and

key exposure resistance pertaining to trapdoor hash functions with ephemeral components.

A trapdoor hashing scheme with multiple trapdoors can be defined as follows:

Definition 3.2.1. A trapdoor hashing scheme, TH, is a tuple 〈ParGen, KeyGen, HashGen,

TrapColGen〉 whose components are defined as follows:

ParGen: A probabilistic polynomial-time (PPT) algorithm that takes a security parameter

λ as input and outputs system public parameters params.

KeyGen: A PPT algorithm that takes params as input and outputs a (trapdoor, hash) key

pair (TK,HK).

HashGen: A PPT algorithm that takes params, HK, a message m and a random element r

as inputs, and outputs the hash THHK(m, r).
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TrapColGen: A PPT algorithm that takes params, a pair (TK,HK), a message m, a

random element r and an additional message m′ 6= m as inputs, and outputs a

collision parameter c and HK ′ such that THHK(m, r) = THHK ′(m′, c). When

HK ′ 6= HK, the public key HK ′ along with the corresponding private key TK ′ is

called an ephemeral key pair.

The function TH is said to be associated with the (long-term) hash key HK. In the

past, researchers have suggested trapdoor hash functions with ephemeral components [3, 4].

However, traditional definitions for collision resistance of trapdoor hashing schemes [74] do

not address trapdoor hash functions with multiple trapdoors. Moreover, prior definitions of

key exposure resistance [3, 4] are tailored towards specific properties required for ensuring

non-transferability of chameleon signatures. In this section, we provide more general

definitions of collision resistance and key exposure resistance of a trapdoor hash function

with ephemeral components.

Definition 3.2.2. Let TH be a trapdoor hash function associated with hash key HK with

corresponding trapdoor key TK. Given system parameters params, and hash keys HK and

HK ′, a collision forgery is defined as finding a tuple 〈m, r,m′, c〉 such that:

[m 6= m′] ∧ [THHK(m, r) = THHK ′(m′, c)]. (3.1)

When HK = HK ′, the collision is called a simple collision, and when HK 6= HK ′, the

collision is called an ephemeral collision.

Let F be a PPT algorithm that takes hash keys HK and HK ′, and system parameters

params as inputs, and outputs the tuple 〈m, r,m′, c〉 that satisfy the conditions in (3.1).

Let Col(〈m, r, m′, c〉, HK, HK ′) be a predicate denoting that (3.1) holds. We define the

advantage of the PPT collision forger F as:

Adv
CFg
F (λ) = Pr[Col(F(params,HK,HK ′),HK,HK ′)]

The probability is over random choices of HK, HK ′, the size of the security parameter λ

and the input of randomness for the algorithm F .

Collision Forgery Resistance: A trapdoor hashing scheme TH =〈ParGen, KeyGen,

HashGen, TrapColGen〉 is collision-forgery-resistant if, for all PPT algorithms F of

polynomial time complexity in the security parameter λ that output 〈m, r,m′, c〉 satisfying

[Col(F(params, HK, HK ′), HK, HK ′)] ∧ [HK = HK ′], AdvCFg
F (λ) is negligible.

Ephemeral Collision Forgery Resistance: A trapdoor hashing scheme TH =〈ParGen,

KeyGen, HashGen, TrapColGen〉 is ephemeral-collision-forgery-resistant if, for all PPT
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algorithms F of polynomial time complexity in the security parameter λ, that output

〈m, r,m′, c〉 satisfying [Col(F(params, HK, HK ′), HK, HK ′)] ∧ [HK 6= HK ′], AdvCFg
F (λ)

is negligible.

Another security property of trapdoor hashing scheme, captured by the notion of

semantic security, is that a trapdoor hash value h = THHK(m, r) must not reveal any

information about the possible message m that was hashed. Let X be a random variable

that takes on a finite set of values x1, x2, . . . , xn, with probability P (X = xi) = pi, where

0 ≤ pi ≤ 1 for each i, 1 ≤ i ≤ n, and
∑n

i=1 pi = 1. The entropy of X, denoted by H [X], is

the measure of information provided by an observation of X, or equivalently, the measure of

uncertainty about the outcome of an experiment before an observation of X. The entropy

of X is defined to be H [X] =
∑n

i=1 pi lg(
1
pi
). Let H [X|Y = y] denote the entropy of the

variable X given the value of a random variable Y . Since, HashGen is a PPT algorithm, the

value THHK(·, ·) is a random variable distributed over all strings in the range of THHK(·, ·),

where the probability space is the set of all possible outcomes resulting from the random

moves of HashGen. LetM denote the message space. Let m denote a random variable that

takes on the finite set of values in the domain of TH from the message spaceM. Semantic

security of a trapdoor hashing scheme is defined as follows:

Definition 3.2.3 ([4]). A trapdoor hashing scheme is said to be semantically security if,

for all hash keys HK, the conditional entropy H [m|h] of the message m given its trapdoor

hash value h = THHK(m, r) equals the total entropy H [m] of the message space M.

A well-known property of trapdoor hash function is with regards to key exposure

resistance [4]. Informally, a trapdoor hashing scheme is said to suffer from the key exposure

problem if given the system parameters params and the tuple 〈m, r,m′, r′,HK,HK ′〉 such

that THHK(m, r) = THHK ′(m′, r′), the trapdoor key TK corresponding to the hash key

HK can be computed in polynomial time. A trapdoor hashing scheme is said to be resistant

to key exposure or key-exposure-free if, given the same inputs as before, it is computationally

infeasible to compute TK. Formally, the key exposure problem and key exposure resistance

can be defined as follows:

Definition 3.2.4. Let TH be a trapdoor hash function associated with hash key HK with

corresponding trapdoor key TK. Given the system parameters params, hash key HK, and

the tuple 〈m, r,m′, r′,HK ′〉 such that THHK(m, r) = THHK ′(m′, r′), key exposure is the

problem of finding the trapdoor key TK corresponding to HK.
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Let K be a PPT algorithm that takes system parameters params, a hash key HK, and a

tuple 〈m, r,m′, r′,HK ′〉 such that THHK(m, r) = THHK ′(m′, r′) as input and outputs the

trapdoor key TK corresponding to hash key HK. Let Col(TK,HK) be a predicate denoting

that the trapdoor key TK corresponds to the hash key HK. We define the advantage of the

PPT collision forger K as:

Adv
KExp
K (λ) = Pr[Col(K(params,HK,m, r,m′, r′,HK ′),HK)]

The probability is over random choices of HK, the size of the security parameter λ and the

input of randomness for the algorithm K.

Key Exposure Resistance: A trapdoor hashing scheme TH = 〈ParGen, KeyGen,

HashGen, TrapColGen〉 is key-exposure-resistant if, for all PPT algorithms K of time com-

plexity polynomial in the security parameter λ, that output TK satisfying [Col(K(params,

HK, m, r, m′, r′, HK ′), HK)], AdvKExp
K (λ) is negligible.

3.3 Proposed key-exposure-free trapdoor hashing scheme, DL-MTH

The trapdoor hashing scheme, DL-TH, described in Section 2.3.2 suffers from the key-

exposure problem. In this section, we use DL-TH as a basis for construction of an efficient,

collision-resistant, key-exposure-resistant trapdoor hashing scheme, DL-MTH.

Intuitively, the trapdoor hashing scheme DL-TH suffers from key exposure because

extracting the trapdoor key given a collision involves solving a simple equation with one

unknown [cf. Eqn. 2.1, Section 2.3.2]. To prevent this, we utilize multiple trapdoors in our

collision computation. The use of multiple trapdoors for collision computation has the effect

of converting the equation for extracting the trapdoor key (given a collision) from having

one unknown, into an equation with two unknowns, which in turn, makes it computationally

infeasible to compute the trapdoor key given a collision producing message pair.

The ParGen, KeyGen, HashGen and TrapColGen algorithms of the proposed DL-based

trapdoor hashing scheme, called DL-MTH are executed as follows:

DL-MTH.ParGen: Entities choose and agree upon common system public parameters params =

〈p, q, α,H〉, where p and q are 1024-bit and 160-bit primes, respectively, q | p − 1, α

is an element of order q in Z
∗
p and H : {0, 1}∗ 7→ Z

∗
q is a cryptographic hash function.

DL-MTH.KeyGen: An entity uses the system public parameters params, to generate its

(private) trapdoor key and (public) hash key pair, (TK,HK) = (y, Y ), where y ∈R Z
∗
q

and Y = αy ∈ Z
∗
p.

31



DL-MTH.HashGen: An entity generates a trapdoor hash of a message m ∈ Z
∗
q using the hash

key Y , by choosing an element r ∈ Z
∗
q and computing the hash as TH Y (m, r) =

αH(m||Y )Y r mod q. The function, TH is said to be associated with hash key Y .

DL-MTH.TrapColGen: Given the trapdoor key and hash key pair (TK,HK), m, r ∈ Z
∗
q and

an additional message m′(6= m) ∈ Z
∗
q, an entity finds a trapdoor collision parameter

c ∈ Z
∗
q as follows:

1. Choose an ephemeral trapdoor key z ∈R Z
∗
q and compute the corresponding

ephemeral hash key Z = αz ∈ Z
∗
p.

2. Using trapdoor keys y and z, solve for c such that TH Y (m, r) = TH Z(m
′, c).

Compute c as c = z−1(H(m||Y )−H(m′||Z) + yr) mod q.

In the schemes by Chen et al. [26] and Ateniese et al. [3, 4], an entity computes a

trapdoor hash value using an ephemeral component, called a transaction identifier, i, as

h = THHK(m, r, i). Collisions can be computed using the long-term trapdoor key under

the same transaction identifier, i.e., given the tuple 〈m, r, i〉, an entity with the trapdoor

key TK can generate 〈m′, r′〉 such that THHK(m, r, i) = THHK(m′, r′, i). Due to the

message hiding property of the key-exposure-resistant trapdoor hashing schemes by Chen

et al. and Ateniese et al., revealing a collision 〈m, r, ,m′, r′, i〉 allows any third party to

compute 〈m′′, r′′〉 such that THHK(m, r, i) = THHK(m′, r′, i) = THHK(m′′, r′′, i) without

compromising the long-term trapdoor key. Thus, the schemes by Chen et al. [26] and

Ateniese et al. [3, 4] can never be used in schemes where a signer authenticates a new

message by finding collisions between the hash of the original signed-message and the new

message that needs to be signed.

Unlike the schemes by Chen et al. [26] and Ateniese et al. [3, 4], the DL-MTH scheme

allows collisions of the form THHK(m, r) = THHK ′(m′, r′), where revealing the tuple

〈m, r, ,m′, r′,HK ′〉, does not allow a third party to forge additional collisions or reveal

the trapdoor key [cf. Section 3.4.2]. Thus, the form of collisions produced by the proposed

scheme can be used in authentication schemes that use collision computation using the

trapdoor key to authenticate new messages.

Notice that in the proposed scheme, an entity is required to use multiple keys (long-term

and ephemeral) during collision computation. Without this requirement, i.e., if we compute

a collision using only the long-term key as c = y−1(H(m||Y )−H(m′||Y ) + yr) mod q, the

resulting tuple 〈m, r,m′, c〉, with TH Y (m, r) = TH Y (m
′, c) can be used to compute the

long-term trapdoor key. The requirement of using ephemeral keys for collision computation
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in the proposed DL-MTH scheme is similar to the requirement of using ephemeral keys to

compute signatures using the ElGamal family of signature schemes [38].

3.4 Analysis of the DL-MTH trapdoor hashing scheme

We present a theoretical analysis of the proposed DL-based trapdoor hashing scheme, DL-

MTH, including correctness, security and performance.

3.4.1 Correctness

In this section, we demonstrate that given system parameters params, the trapdoor key and

hash key pair (TK,HK), the pair m, r ∈ Z∗
q and an additional message m′(6= m) ∈ Z∗

q,

the collision parameter c that is computed according to the DL-MTH.TrapColGen procedure

described in Section 3.3 results in generating a collision between the trapdoor hash values

of m and m′.

During computation of c, we know that Z = αz ∈ Z
∗
p and c = z−1(H(m||Y )−H(m′||Z)+

yr) mod q. Thus,

TH Z(m
′, c) = αH(m′||Z)Zc

= αH(m′||Z)Zz−1(H(m||Y )−H(m′||Z)+yr)

= αH(m′||Z)α(H(m||Y )−H(m′||Z)+yr)

= α(H(m||Y )+yr)

= α(H(m||Y )Y r = TH Y (m, r)

Thus, the technique to compute trapdoor hash collisions in the proposed DL-MTH is

correct.

3.4.2 Security

In this section we provide a detailed security analysis of the proposed DL-based trapdoor

hashing scheme DL-MTH. We prove the following theorems to show that the difficulty of

forging collisions and key exposure in the DL-MTH scheme is based on the difficulty of solving

the discrete logarithm problem in subgroup of Z∗
p.

Theorem 3.4.1. The proposed trapdoor hashing scheme DL-MTH is collision forgery resistant

and ephemeral collision forgery resistant.

Proof: We prove the forgery resistance property of the proposed trapdoor hashing

scheme by showing that the discrete log problem in subgroup of Z
∗
p reduces to collision

forgery, thus violating the well known discrete log assumption.
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Based on Defn. 3.2.2, we need to consider two cases: (1) When HK = HK ′ (for collision

forgery resistance); (2) When HK 6= HK ′ (for ephemeral collision forgery resistance). The

proof for the first case is well-known and the reader is referred to the proof of Theorem 2.3.1

for details.

For the case when HK 6= HK ′, assume that there exists a PPT collision forger F as

defined in Defn. 3.2.2 against the proposed trapdoor hashing scheme with non-negligible

advantage. Given the hash keys HK, HK ′(6= HK) and parameters 〈p, q, α〉, F runs

in polynomial time and outputs the tuple 〈m, r,m′, c〉 such that m 6= m′, r 6= c and

THHK(m, r) = THHK ′(m′, c) with non-negligible probability. Given F we can construct

a PPT algorithm G that breaks the discrete log problem as follows. G is given a DLP

instance 〈p, q, α,X〉. G needs to find x ∈ Z
∗
q such that X = αx mod p. G chooses y ∈R Z

∗
q,

computes Y = αy mod p. G independently runs (in parallel) two instances of forger F ,

where each instance of F executes with independent randomness on 〈p, q, α,X, Y 〉 as inputs,

until each instance of F produces the collision forgeries 〈m1, r1,m
′
1, c1〉 and 〈m2, r2,m

′
2, c2〉,

respectively. If m1 = m2 or r1 = r2 or m′
1 = m′

2 or c1 = c2 repeat execution of F . Given

that THHK(m1, r1) = THHK ′(m′
1, c1) and THHK(m2, r2) = THHK ′(m′

2, c2), we obtain

the following two linear equations:

H(m1||X) + xr1 = H(m′
1||Y ) + yc1 mod q

H(m2||X) + xr2 = H(m′
2||Y ) + yc2 mod q

It is straightforward to argue that the two equations are linearly independent, and thus,

can be solved for x and y. This concludes the proof.

Theorem 3.4.2. The proposed trapdoor hashing scheme, DL-MTH is key-exposure-resistant.

Proof: Observing the modified collision computation in DL-MTH, key exposure

resistance implies that given two tuples 〈m, r,HK〉 and 〈m′, r′,HK ′〉, such that m 6= m′,

r 6= r′, HK 6= HK ′ and THHK(m, r) = THHK ′(m′, r′), the probability that a PPT

algorithm outputs TK is negligible.

To the contrary, assume that there exists a PPT algorithm that outputs TK in

polynomial time with non-negligible probability. The discrete log of hash key HK ′ can

be computed as:

TK ′ ≡ (r′)−1(H(m||HK) + TK ∗ r −H(m′||HK ′)) mod q

This contradicts the well known discrete log assumption. Thus, the proposed trapdoor

hashing scheme is resistant to key exposure.
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In addition to collision forgery resistance and key exposure-freeness, the proposed

trapdoor hashing scheme also provides semantic security. A trapdoor hashing scheme is

said to be semantically secure if, for all hash keys HK, and all pairs of messages m and m′,

m 6= m′, the probability distributions of the hash values THHK(m, r) and THHK(m′, r)

are computationally indistinguishable. We omit the proof here as it closely follows the

technique by Ateniese et al. [4].

3.4.3 Performance

Table 3.1 shows a performance comparison of the proposed scheme, DL-MTH with the schemes

of Harn et al. (MCDLTH and MCRSATH) [37] and a scheme by Ateniese et al. (NRTH) [4] that

provide features similar to the proposed scheme. In Table 3.1, the term x denotes the cost

of modular exponentiation with 160-bit exponent and 1024-bit modulus, and e denotes the

cost of modular exponentiation with 1024-bit exponent and 1024-bit modulus,.

Table 3.1: Performance comparison of proposed trapdoor hashing scheme DL-MTH with
existing schemes.

MCDLTH [37] MCRSATH [37] NRTH [4] DL-MTH

Hash computation 3x 1e 2x 2x

Collision computation 1x 1e 1x 1x

Public key size (bits) 1024 1024 1024 1024

Hash size (bits) 160 1024 160 160

Underlying Problem DL RSA DL DL

From the table we can see that the proposed scheme DL-MTH and the NRTH schemes are

more efficient than the other schemes for hash computation. The MCDLTH scheme requires

an additional exponentiation compared to the proposed scheme. The RSA-based MCRSATH

scheme requires exponentiations with 1024-bit exponent which tend to be approximately 6

times slower compared to exponentiations with 160-bit exponents required by the DL-based

schemes. Moreover, the MCRSATH is the least efficient in terms of collision computation cost,

public key size and hash size compared to all three DL-based schemes. The DL-MTH, NRTH

and MCDLTH are equally efficient during collision computation, require public keys of the

same size and produce the same length hash value.

Overall, the DL-MTH and the NRTH offer similar performance across all parameters, with

the MCDLTH scheme being less efficient for computing the hash value, and the MCRSATH

being less efficient in all respects. However, the exponentiation operation during collision

computation in the NRTH scheme must be performed online. On the other hand, the proposed
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scheme allows the exponentiation during collision computation to be performed offline, in

which case, the online phase of collision computation in the proposed scheme is considerably

faster compared to the NRTH scheme. Thus, the DL-MTH offers the best overall performance

compared with existing schemes of [37] and [4].

3.5 Summary

Trapdoor hash functions were originally designed for constructing non-interactive and non-

transferable signature schemes, called chameleon signatures [44]. Chameleon signatures are

verifiable by no one other than the intended recipient. To provide non-repudiation and

message hiding in chameleon signatures, majority of existing trapdoor hashing schemes [3,

4, 26, 44, 74] allow an entity to compute a trapdoor hash collision with a third message given

two messages that result in a collision of their respective trapdoor hash values. Moreover,

the handful (to be specific, only three) of existing trapdoor hash functions [4, 37] that

provide the property of preventing additional collisions are computationally more expensive

than conventional signatures. Thus, existing trapdoor hash functions are not suitable for use

in signature schemes that use the process of computing hash collisions using a trapdoor key,

rather than generating conventional signatures using a secret key, to authenticate messages.

In this chapter, we presented a key-exposure and collision-resistant, discrete log-based

trapdoor hash function that is efficient to compute and ensures that it is computationally

infeasible for a third party to compute additional hash collisions with the knowledge of

a message pair whose trapdoor hash values are equal. We provided formal definitions of

trapdoor hash functions and their security for schemes that use ephemeral keys for collision

computation. We also presented a theoretical analysis, including correctness, security and

performance, of the proposed trapdoor hashing scheme. In our security analysis we proved

the resistance to collision forgery and key exposure under the discrete log assumption. Our

performance comparison of the proposed scheme against existing key-exposure-free trapdoor

hashing schemes demonstrates that the proposed scheme achieves superior performance in

terms of computation overhead during trapdoor hash and collision computation compared

to existing schemes.

Copyright c© Santosh Chandrasekhar 2011
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Chapter 4

Efficient proxy signatures based on trapdoor hash functions

4.1 Introduction

Today, many large-scale and complex distributed systems like peer-to-peer networks,

pervasive and ubiquitous computing environments, Cloud systems, and Grids are highly

dynamic, decentralized and loosely coupled with constituent components that are spread

throughout a network. Researchers have advocated agent-based computing as the natural

computational model for such systems [40]. For instance, agent-based computing has

been used in Grids, by employing agents (also called proxies) to eliminate the need to

have the user online during long-lived computations, scheduling access to resources and

map computations onto resources [17, 31]. Industry, government, and academia have

been developing applications for mobile agents for use in telecommunications systems,

personal digital assistants, information management, and e-commerce [62] where clients

need to search for special services or products, negotiate with potential business entities

and perform remote operations on behalf of some other clients. More recently, Weissman et

al. [81] proposed the use of agents in Cloud computing systems to accelerate applications

by performing optimized operations at strategic network locations in the Cloud with high

bandwidth to/from a Cloud service relative to the service user.

4.1.1 Addressing security in agent-based systems

Use of agent-based computing in multi-Cloud, Grid and other distributed systems opens

up new avenues for adversarial users to compromise the system. Security in Clouds and

other IT systems heavily rely on establishing trust relationships among the actors involved.

In agent-based computing, users have to establish trust relationships with agents which

includes their security, reliability, availability, and business continuity guarantees. Moreover,

sensitive information stored and processed by agents need to be protected from exposure,

alteration and corruption.

One technique of establishing trust relationships with agents is by strengthening the role

of Service Level Agreements (SLAs) to include security guarantees on top of QoS. However,

in the context of securing Agent-based systems, SLAs are currently in their nascent form
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and require considerable advancements to mature. In the meantime, researchers need to

focus on developing mechanisms that would aid in providing these security guarantees.

These mechanisms include encryption, authentication, authorization and integrity checks.

Agents-based security solutions have been used in Grids [17, 31] to provide authentica-

tion and access control. Combination of user agents and resource agents in Grids have been

used for implementing security policies that can support single sign-on, interoperability

among different local policies, and authenticated and authorized access to resources in the

Grid [17, 31]. Agent-optimized multi-Cloud applications can also benefit from a Grid-

like security architecture, where we can enhance the capabilities of agents to perform

authentication and authorization on behalf of a service user in addition to accelerating

Cloud applications. An effective technique for providing authentication (in addition to

authorization) in agent-based systems is by use of proxy signatures.

4.1.2 Application of proxy signatures in agent-based systems

Proxy delegation is a process by which an entity, the delegator, transfers its signing rights

and capabilities to another entity, the proxy. Following delegation, the proxy can generate

signatures on behalf of the delegator. The process of proxy delegation has been classified

into three broad categories, namely, full delegation, partial delegation and delegation-by-

warrant or certificate. Full delegation is a rather intuitive solution in which the delegator

securely transfers its secret key to the proxy. This requires absolute trust on the proxy,

a secure channel and provides unrestricted signing rights to proxy. In a partial delegation

scheme, the delegator also uses a secure channel to transfer a delegation key derived from

its secret key to the proxy. The proxy then derives its proxy signing key pair from the

delegation key. However, the proxy still maintains unrestricted signing capabilities. As

opposed to full and partial delegation that require secure channel and absolute trust on the

proxy, delegation-by-warrant approach eliminates these impractical requirements [13]. A

warrant embodies a set of business and security policies agreed in advance by the delegator

and the proxy that restrict the signing capabilities of the proxy. The delegator generates

a warrant and a signature on the warrant, called a certificate, and sends the (warrant,

certificate) pair to the proxy. The proxy generates signatures — using its own private key

— on messages that must conform to the warrant, and includes the (warrant, certificate)

pair in the resulting signatures. Any entity wanting to verify a proxy signature must check

the validity of the proxy signature as well as delegator’s agreement on the signed message.
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In agent-based systems, users would play the role of delegators and delegate their signing

rights to agents (proxies) using warrants that limit signing capabilities of agents. Agents

could span multiple administrative domains with different local security policies in each

domain. In such scenarios, warrants can map security policies between different domains

and allow integrating local policies of multiple domains into the global security framework.

A proxy signature not only provides assurance that an agent is the authentic originator

of a message, but also that the agent is legitimately acting on behalf of a user within

constraints specified in the warrant. Moreover, proxy signatures simplify security auditing

and obtaining support for investigations by providing non-repudiation.

4.1.3 Problem statement

The importance of proxy signatures has been repeatedly highlighted by applied cryp-

tographers: variations of proxy signatures include threshold proxy signatures [78], blind

proxy signatures [6], proxy signatures with warrant recovery [45] and so forth. However,

many recent developments in the area of proxy signatures rely on heuristic arguments

demonstrating security rather than providing provable security guarantees [13]. Moreover,

formal construction of provably secure proxy signatures by Boldyreva et al. [13], Malkin

et al. [56] and Schuldt et al. [73] have introduced unnecessary complexity in the design of

proxy signatures which lead to high computational and communication overhead.

4.1.4 Contributions

In this chapter, we make the following contributions towards securing multi-agent systems:

1. We propose an elegant technique to construct a provably secure proxy signature using

trapdoor hash functions [3, 4, 44, 74] that can be used to authenticate and authorize

agents acting on behalf of users in agent-based computing systems. The generic

technique allows the choice of primitives open to policy specifications. Moreover,

security of the proposed technique does not rely on availability of a secure channel.

2. The proposed generic technique only requires execution of a conventional signature

scheme during the offline delegation phase and not during the online proxy signature

generation phase; this improvement is due to the use of trapdoor hash functions [59,

74] as a building block. Thus, the proposed technique inherently provides the efficiency

of online/offline signature schemes [29].

3. We demonstrate the effectiveness of our approach for creating practical instances by

applying properties of discrete log-based cryptosystem to produce an efficient proxy
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signature scheme. We compare the performance of the discrete log-based scheme

with existing schemes. Our performance analysis shows a clear improvement in the

performance over prior schemes, which can be attributed to our proxy signature

construction technique.

Chapter Organization: The rest of this chapter is organized as follows. We present

a generic technique to construct proxy signature schemes using trapdoor hash functions

and provide formal definitions and security specifications in Section 4.2 and provide a

detailed proof of security of the generic construction using the random oracle model [11]. In

Section 4.3, we use primitives from discrete log based cryptosystem to present an efficient

instantiation of the proposed technique. We perform a theoretical analysis of the DL-based

proxy signature scheme in Section 4.4. We summarize the Chapter in Section 4.5.

4.2 Technique to construct proxy signatures using trapdoor hash functions

In this section, we present the basic idea behind the construction of proxy signature schemes

using trapdoor hash functions followed by formal definitions, security specifications and

semantics of trapdoor hash-based proxy signature schemes. Finally we present the proposed

generic trapdoor hash-based proxy signature scheme.

4.2.1 Basic idea

We begin with providing the basic idea behind the construction of proxy signature schemes

using trapdoor hash functions. We also provide heuristic arguments in support of informal

security requirements like undeniability, identifiability and verifiability that were introduced

by Lee et al. [47]. A formal security treatment of the proposed scheme is provided later in

the chapter.

Fig. 4.1 shows the basic idea behind the construction of a trapdoor hash-based

proxy signature scheme. A proxy signature scheme is divided into four phases, namely,

initialization, proxy delegation, proxy signature generation and proxy signature verification.

During the initialization phase, all entities choose and agree upon common system public

parameters and generate their (public, private) key pairs. An entity (the delegator) wanting

to delegate signing rights to another entity (the proxy), does the following:

1. Creates an appropriate warrant. The delegator and the proxy agree upon warrant

specifications by out of band mechanisms, perhaps using and abiding by formal

business policies. The structure of the warrant plays an important role in restricting
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Figure 4.1: Basic technique of using a trapdoor hash function to generate proxy signatures.

the proxy’s signing rights by dictating the types of messages that the proxy can sign,

the validity period and other restrictions [13, 73].

2. Computes a trapdoor hash of the warrant. The associated hash key belongs to the

proxy being designated.

3. Generates a signature on the trapdoor hash of warrant. In the instantiation of

the proposed generic proxy signature scheme, we use the provably secure Schnorr

variant [72]. However, the choice of the signing equation is open to policy

specifications. The delegator’s signature on the warrant prevents misuse of signing

rights by illegitimate modifications of the warrant by a malicious delegator, proxy, or

any other adversary.

4. Sends the (warrant, signature) pair to the proxy over an insecure channel. We assume

the channel is reliable and do not consider network reliability issues.

After receiving the (warrant, signature) pair, the proxy checks the warrant specifications.

If the warrant is bogus, the proxy aborts; otherwise, it verifies the delegator’s signature on

the warrant. This completes the proxy delegation phase.

Note, unlike most common proxy signature schemes [13, 47, 43], the proxy signing key

pair is not derived from the delegator’s signature, in the proxy delegation phase. In our
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scheme, the proxy does not generate a signature on a message, in the traditional sense, on

behalf of the delegator. Instead, the proxy uses its trapdoor key, known exclusively to itself,

to find a trapdoor collision between the trapdoor hash of the warrant and the given message.

This guarantees undeniability. The proxy then tags the result of the collision along with

the delegator’s signature, warrant and message to collectively generate the proxy signature.

Any entity that wants to verify the proxy signature does the following:

1. Checks whether the message conforms to the warrant.

2. Obtains the hash key of the proxy from a publicly available directory and computes

the trapdoor hash of the warrant. This provides strong identifiability.

3. Checks the delegation agreement by verifying the delegator’s signature on the hashed

warrant. If verification fails, the verifier aborts. This guarantees verifiability.

4. Computes the trapdoor hash of the message using the result of the collision contained

in the proxy signature.

5. Verifies that the proxy indeed stamped the message with the secret trapdoor key, by

comparing the trapdoor hash of the message and the warrant. If the hash values do

not match, the verifier aborts.

Verification of subsequent proxy signatures, exchanged by the same (proxy, verifier) pair

gets more efficient: the verifier computes the trapdoor hash of the message and compares

it with the previously computed trapdoor hash of warrant. Intuitively, this improvement

in efficiency happens because the delegator’s signature on the warrant contained within the

proxy signature does not change from one message to another.

4.2.2 Definitions, security specifications and semantics

We now formally define a trapdoor hash-based proxy signature scheme. We assume existence

of a public key infrastructure, where each entity is associated with a certificate signed by

a certificate authority (CA). This public key certificate binds the entity’s identity with its

public key. The CA is responsible for ensuring that no two identities are bound to the

same public key (i.e., public keys are unique). The CA is also responsible for differentiating

keys used for signing and trapdoor hashing and including the purpose of key usage in the

certificate. To further simplify our constructions, we assume that identities are unique

to each entity and cannot be spoofed (for eg., by generating identities as hash of public

keys). Thus, users can be uniquely identified by their public keys, and vice versa, using
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certificates, and without relying on proofs of knowledge [73]. Moreover, we also assume a

publicly available directory, from which entities can retrieve public key certificates of other

entities, given their identities. We explicitly include warrants and its structure as part of

our definition and security model to avoid trivial attacks involving malicious alteration of

warrants [13].

Definition 4.2.1. A trapdoor hash-based proxy signature scheme TPS is the tuple 〈ParGen,

KeyGen, SigGen, SigVer, (Delegate, Accept), PSigGen, PSigVer〉 whose components are

defined as follows:

ParGen: A PPT algorithm that takes a security parameter λ as input and outputs system

public parameters params.

KeyGen: A PPT algorithm that takes params as input and outputs a (private, public) key

pair (SK,PK) and a (trapdoor, hash) key pair (TK,HK).

SigGen: A PPT algorithm that takes params, a message m and SK as inputs and outputs

a signature σ on m.

SigVer: A deterministic algorithm that takes params, PK, m and σ as inputs and outputs

Valid if σ was generated on m using SK and Invalid otherwise.

Delegate, Accept: A pair of interactive algorithms for proxy delegation that are defined as

follows:

Delegate: A PPT algorithm that takes params, SK and HK as inputs and computes

a delegation certificate cert containing the following: (1) A warrant w that

contains a message space descriptor as defined in [13] and identities of delegator

and proxy; (2) A random element r; (3) A signature σ generated using SK on

THHK(w, r). Delegate has no local output. Delegate will interact with Accept

for delegation of signing rights.

Accept: A deterministic algorithm that takes params, cert, PK and HK as input,

and outputs 〈Accept, cert〉 if: (1) w conforms to agreement between delegator

and proxy, and (2) σ was generated on THHK(w, r) using SK; and 〈Reject,⊥〉

otherwise.

PSigGen: A PPT proxy signature generation algorithm that takes params, cert, a message

m and TK as inputs and outputs a proxy signature σP on m conforming to warrant

w.
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PSigVer: A deterministic algorithm that takes params, PK, HK, m and σP as inputs and

outputs Valid if: (1) m conforms to w, and (2) σP was generated on m using TK;

and Invalid otherwise.

Modeling the Adversary. Our security model is based on models by Boldyreva et al. [13]

and Schuldt et al. [73]. Our security model integrates components of both models, along

with some modifications specifically tailored toward trapdoor hash-based proxy signature

schemes. Similar to the models by Boldyreva et al. and Schuldt et al., our model does not

require the adversary to have knowledge of the private key of dishonest users playing the

security game, i.e., our model is not in the registered key model. Thus, our model captures

attacks where the adversary registers public keys for which the corresponding private key

is not known [73]. Also, similar to prior models, our underlying security game involves an

adversary that has the ability to play the role of any arbitrary entity except a single honest

entity. The adversary attempts to forge a regular or a proxy signature of the single honest

entity. The adversary is given access to standard and proxy signing oracle. The adversary

can interact with the honest entity multiple times playing the role of different entities each

time.

The issue of proxy signing key exposure differentiates our security model from models

by Boldyreva et al. and Schuldt et al. Schuldt et al. were the first to model the possibility

of proxy signing key exposure in proxy signature schemes — the adversary is given the

capability to gain knowledge of proxy signing keys, while playing the security game with an

honest entity, which can be potentially used to forge standard or proxy signatures. Schuldt

et al. argue that proxy signatures are often used in applications where signing is performed

in hostile environments. While secure storage is available for a proxy’s long-term secret key,

the proxy signing key, stored in a less trusted device, is vulnerable to exposure/compromise.

Thus, secure proxy signatures should not leak information about the long-term key of the

proxy when the proxy signing key is exposed.

While in Schuldt et al.’s model, any arbitrary proxy signing key of the honest entity can

be exposed to the adversary, Boldyreva et al.’s model only allows exposure of proxy signing

keys that are generated during self-delegation by the honest entity. The different treatment

of proxy key exposure arises because, the technique to avoid leakage of information about

the long-term key in presence of proxy signing key exposure requires a fresh proxy key pair

to be generated during delegation which, in case of Boldyreva et al., only occurs during self

delegation, whereas, in case of Schuldt et al., occurs during every delegation run.
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Unlike the schemes by Boldyreva et al., Schuldt et al. and other common proxy signature

schemes [43, 47, 56], the proposed trapdoor hash-based proxy signature scheme does not

involve generation of any proxy signing key. In the proposed scheme, the proxy finds

collisions between trapdoor hashes of the warrant and the given message, and tags the

result of the collision along with the delegation certificate to collectively generate a proxy

signature. Collision computation involves use of the long-term trapdoor key. Thus, all

signature generation operations in the proposed scheme involve use of long-term keys1.

This excludes our scheme from application in environments where delegation is performed to

protect long-term keys. Fortunately, existing applications of proxy signatures like securing

mobile agent communication, Grid computing, and multi-Cloud systems, are not intended

for protection of long-term keys, but rather for providing authentication (in addition to

authorization) in absence of the original signer in a delegation-based framework. Thus, the

possibility of exposure of proxy signing keys is excluded from our security model. However,

our scheme can be modified to be proven secure in the models allowing key exposure.

Informally, similar to the approaches by Boldyreva et al. and Schuldt et al., we can also

necessitate the generation of a fresh (trapdoor, hash) key pair during each delegation run.

In this case, the long-term private (signing) key of the proxy would only be used to certify

the per-delegation (trapdoor, hash) key pair. As long as a secure signature scheme is used

in the per-delegation certification process, we can allow exposure of per-delegation private

(trapdoor) key without any leakage of information regarding the long-term key.

Security Model. We now formally describe our security model. Let E be a set of entities

containing a single honest entity e. The remaining entities e′ ∈ E − {e} are corrupted by

an adversary A. The goal of the adversary A, modeled as a PPT algorithm, is to output

one or more of the following forgeries:

Type I: A outputs a forged signature of e on a message m′, where e never signed message

m′.

Type II: A outputs a forged proxy signature of e on message m′ conforming to warrant

w′ on behalf of an arbitrary entity e′, where one of the following holds: (1) e′ never

delegated e; (2) e′ delegated e under warrant w 6= w′; (3) e′ delegated e under warrant

w′ but e did not generate a proxy signature on m′ under the warrant w′.

1We note that the long-term key used for proxy signature generation is not a signing key that is used for
conventional signature generation. Instead, the proxy uses its trapdoor key for proxy signature generation.
The trapdoor key is used exclusively for collision computation and the long-term signing key of proxy is
never used in our scheme.
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Type III: A outputs a forged proxy signature of an arbitrary entity e′ on a message m′

conforming to warrant w′ on behalf of entity e where one of the following holds: (1)

e never delegated e′ as a proxy; (2) e delegated e′ under a different warrant w 6= w′.

The adversary is allowed to select and register public keys and hash keys for any corrupted

entity e′, play the role of e′ as a delegator while performing proxy delegation or request

e to participate in a proxy delegation playing the role of a proxy. There is no limitation

on the number of times the adversary can request any two entities in E to perform proxy

delegation. The adversary controls all communications, in the sense that no secure channel

exists between a proxy and a delegator. However, we assume that the channel is reliable

with usual connotations of message delivery. Next, we describe the game that adversary A

plays with entity e in an attempt to forge a standard or proxy signature.

Specifications of the Game. Consider a game GTPS
A (λ), where λ is a security parameter.

The game is played by adversary A with entity e in an attempt by A to produce a Type I,

Type II or a Type III forgery.

The game GTPS
A (λ) is initialized as follows. All entities in E choose and agree upon

the system public parameters params. Entity e generates its (private, public) key pair

(SKe, PKe) and its (trapdoor, hash) key pair (TKe,HKe), and registers (PKe,HKe) in a

publicly available directory. The adversary A is given access to PKe, HKe, a signing oracle

OS and a proxy signature generating oracle OPS that are described below. The adversary

creates four empty sets Ms, Mp, E
′ and Dee. In addition, the adversary creates empty sets

Dee′ and De′e for each e′ ∈ E − {e}. At any point during the game the adversary A can

generate (or derive) the (public, hash) key pair (PKe′ 6= PKe,HKe′ 6= HKe) of an entity

e′ ∈ E − {{e} ∪E′} and register (PKe′ ,HKe′) in a publicly available directory. After each

key registration for entity e′, E′ is set to E′ ∪ {e′}. The game is executed as follows:

The adversary A makes the following requests to the honest entity e in any order and

any number of times.

• Request e to delegate e′ ∈ E′: A can request e to delegate A as a proxy, playing the role

of e′. Entity e executes Delegate(params, SKe,HKe′) → (certee′ = 〈wee′ , ree′ , σe〉)

and sends certee′ to A. If Accept(params, certee′ , PKe,HKe′) outputs Accept then

Dee′ is set to Dee′ ∪ {(wee′ , ree′ , σe)}, otherwise A aborts.

• Request e′ ∈ E′ to delegate e: A can request e to be delegated as a proxy on behalf

of A playing the role of e′. A executes Delegate(params, SKe′ ,HKe) → (certe′e =
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〈we′e, re′e, σe′〉) and sends certe′e to e. If Accept(params, certe′e, PKe′ ,HKe) outputs

Accept, then De′e is set to De′e ∪ {(we′e, re′e, σe′)}, otherwise e aborts.

• Request e to delegate itself: A can request e to delegate itself. Entity e executes

Delegate (params, SKe,HKe) → (certee = 〈wee, ree, σe〉) and sends certee to A.

If Accept(params, certee, PKe, HKe) outputs Accept, then Dee is set to Dee ∪

{(wee, ree, σe)}.

The adversary A makes the following queries to oracles OS and OPS in any order and

any number of times:

• Query oracle OS : A queries oracle OS with message m and obtains a signature σ on

m valid under PKe. Ms is set to Ms ∪ {m}.

• Query oracle OPS : A queries oracle OPS with message m, warrant wxe, l ∈ N and

x ∈ E′∪{e} as input. If Dxe[l] is not defined or (wxe, ·, ·) /∈ Dxe[l], where Dxe[l] is l-th

element in the set Dxe, the query is invalid and oracle returns ⊥. Otherwise, the oracle

returns σP ← PSigGen(params,Dxe[l],m, TKe) and Mp is set to Mp ∪ {(wxe,m)}.

Outcome of the Game. At the completion of the game GTPS
A (λ), the adversary outputs

a forgery of the form σ′ or σ′
P . The outcome of the game is decided as follows:

1. If A outputs a Type I forgery, σ′ on message m′, which implies [V alid ← SigVer

(params, PKe, m
′, σ′)] ∧ [m′ /∈Ms], then GTPS

A (λ) outputs Success.

2. If A outputs a Type II forgery, σ′
P on message m′ conforming to warrant w′ under

the delegation parameter cert′ = 〈w′, r′, σ′〉, which implies [∃x ∈ E′ ∪ {e}] ∧ [valid←

PSigVer(params, σ′
P , PKx, HKe)] ∧ [(w′,m′) /∈Mp], then GTPS

A (λ) outputs Success.

3. If A outputs a Type III forgery, σ′
P on message m′ conforming to warrant w′

under the delegation parameter cert′ = 〈w′, r′, σ′〉 which implies [∃x ∈ E′] ∧

[valid ← PSigVer(params, σ′
P , PKe, HKx)] ∧ [(w′, r′, σ′) /∈ Dex], then GTPS

A (λ)

outputs Success.

4. Else, GTPS
A (λ) outputs Failure.

Adversary A, on input (PKe,HKe) and security parameter λ, plays the game GTPS
A (λ)

with entity e. Define the advantage of A as: AdvTPS
A (λ) = Pr[Success ← GTPS

A (λ)]. The

trapdoor hash-based proxy signature scheme, TPS is secure against adaptive chosen message

attack if AdvTPS
A (λ) is negligible for all PPT algorithms A of time complexity polynomial

in the security parameter λ.
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4.2.3 Trapdoor hash-based proxy signatures schemes, TPS

Let an entity D act as the delegator, wanting to delegate signing rights to another entity P,

the proxy. Let TH be a trapdoor hash function that computes key exposure-free collisions.

A näıve implementation of the basic idea presented in Section 4.2.1 poses some

weaknesses. During delegation, a delegator generates a signature, σ on the trapdoor hash

of a warrant, THHK(w, r) using the hash key of a proxy. The proxy can use its trapdoor

key, TK to find 〈w′, c,HK ′〉 such that THHK(w, r) = THHK ′(w′, c), essentially forging the

delegator’s signature on a new warrant, w′ of its choice. To prevent this simple forgery, we

require the delegator to generate a signature on THHK(w, r)||w instead of THHK(w, r)

during proxy delegation. Now, even though the proxy can find a collision between

w and w′ such that THHK(w, r) = THHK ′(w′, c), we observe that THHK(w, r)||w 6=

THHK ′(w′, c)||w′, thus, preventing the forgery.

With the aforementioned fix in place, after a proxy obtains the delegator’s signature

σ on m = THHK(w, r)||w, the proxy can still produce a forged standard signature of the

delegator by outputting σ on m′ = THHK ′(w′, c)||w (existential forgery), where w′ 6= w

and THHK(w, r) = THHK ′(w′, c). To avoid this, we introduce a mechanism to differentiate

between delegator’s standard signatures and signatures created for delegation, by requiring

that standard signatures be generated on 1||m instead of m, similar to the technique

introduced by Boldyreva et al. [13].

We now present a generic construction of trapdoor hash-based proxy signature scheme,

TPS. The ParGen and KeyGen algorithms are as defined in Definition 4.2.1. The system

public parameters are given by params. The delegator D’s long-term (private, public) key

pair is given by (SK,PK). The proxy P’s long-term (trapdoor, hash) key pair is given

by (TK,HK). The remaining components of the proposed trapdoor hash-based proxy

signature scheme, TPS are defined as follows:

TPS.SigGen: Given system parameters params, and a message m, the delegator performs

the standard signing operation of the underlying signature scheme on 1||m using its

secret key, SK and outputs the signature σ.

TPS.SigVer: Given system parameters params, a messagem, public key PK and a candidate

signature σ, an entity prepends 1 to m and verifies σ on 1||m under public key PK

following the verification algorithm of the underlying signature scheme. If verification

is successful the verifier outputs V alid, otherwise outputs Invalid.

TPS.Delegate: The delegator D delegates a proxy P as follows:
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1. Chooses a random element r and generates a warrant w containing identities D,

P and a message space descriptor.

2. Computes trapdoor hash of warrant as THHK(w, r), where HK is the hash key

of P, and generates a signature σ on h = THHK(w, r)||w using its private key

SK.

3. Sends the delegation certificate cert = 〈σ,w, r〉 to P.

TPS.Accept: After receiving the delegation parameters from D, the proxy P performs the

following operations:

1. Checks whether warrant w conforms to the agreement with D. If check fails,

outputs 〈Reject,⊥〉 and aborts.

2. Computes THHK(w, r) and sets h = THHK(w, r)||w.

3. Verifies signature σ on h under public key PK. If verification is successful outputs

〈Accept, cert〉, otherwise, outputs 〈Reject,⊥〉.

TPS.PSigGen: Given a message m, and delegation certificate cert, P generates a proxy

signature σP as follows:

1. Checks whether the message m conforms to restrictions specified in the warrant

w. If check fails, aborts.

2. Computes collision parameter c, and HK ′ using TK such that THHK(w, r) =

THHK ′(m, c), where TK is the trapdoor key of P.

3. Outputs the proxy signature σP = 〈cert,m, c,HK ′〉 on the message m conform-

ing to warrant w.

TPS.PSigVer: Given a proxy signature σP , an entity can verify the delegation agreement,

identify the proxy and verify the proxy signature on message m conforming to warrant

w as follows:

1. Checks whether the message m conforms to warrant specifications w. If check

fails, outputs Invalid and aborts.

2. Looks up the hash key HK of P and public key PK of D from a publicly available

directory.

3. Computes THHK(w, r), sets h = THHK(w, r)||w and verifies signature, σ on h

under public key PK. If verification fails, outputs Invalid and aborts.
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4. Otherwise, computes THHK ′(m, c) and checks whether THHK ′(m, c) = THHK(w, r).

If check fails, outputs Invalid, otherwise, outputs Valid.

To verify P’s subsequent proxy signature, σP = 〈cert,m′′, c′′,HK ′′〉 on message m′′, an

entity only computes THHK ′′(m′′, c′′) and checks whether the hash value equals h. If the

hash values are equal, the proxy signature is valid. Verification of σ on h||w is not repeated.

The security of the proposed proxy signature scheme can be summarized by the following

theorem.

Theorem 4.2.1. The proposed proxy signature scheme, TPS, is secure provided that the

underlying standard signature scheme is secure (as defined in [13]), and TH is semantically

secure, key-exposure-resistant, collision-forgery-resistant and ephemeral-collision-forgery-

resistant.

Proof: We show that for every adversary A against the trapdoor hash-based proxy

signature scheme, TPS, with non-negligible advantage AdvTPS
A (λ), we can construct an

adversary B, which breaks the underlying signature scheme, or forges a trapdoor collision

with non-negligible advantage. All entities agree upon system parameters params. Entity

e generates its (private, public) key pair (SKe, PKe) and the (trapdoor, hash) key pair

(TKe,HKe). The adversary B is given access to a signing oracle OSe that generates

standard signatures using SKe by performing the signing operation of the underlying

signature scheme and a trapdoor collision oracle OCLe that generates collisions for the

trapdoor hash function associated with HKe (i.e., OCLe takes messages m, m′, and random

element r as inputs and outputs 〈c,HK ′〉 such that THHKe(m, r) = THHK ′(m′, c)).

Adversary B runs A (both modelled as PPT algorithms) on inputs PKe and HKe and

answers requests and queries made by A as follows:

• When adversary A requests B to register PKe′ 6= PKe and HKe′ 6= HKe, B stores

PKe′ and HKe′ (SKe′ and TKe′ are unknown to B). B initializes two empty sets Dee′

and De′e. E
′ is set to E′ ∪ {e′}.

• When A requests e to designate A as a proxy, playing the role of e′ ∈ E′, B

does the following: (1) Creates a warrant wee′ and chooses ree′ ; (2) Computes

m = THHKe′
(wee′ , ree′e)||wee′ and queries oracle OSe with m as input and obtains

a signature σe (using SKe) on m; (3) Sends certee′ = 〈wee′ , ree′ , σe〉 to A. A checks

whether σe is a valid signature on m under PKe. If σe is valid, then Dee′ is set to

Dee′ ∪ {certee′}, otherwise B aborts.
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• When A requests e to be designated as a proxy on behalf of A playing the role of e′ ∈

E′, A does the following: (1) Creates a warrant we′e and chooses re′e; (2) Generates

a signature σe′ on m = THHKe(we′e, re′e)||we′e; (3) Sends certe′e = 〈we′e, re′e, σe′〉 to

B. B checks whether σe′ is a valid signature on m under PKe′ . If σe′ is valid, then

De′e is set to De′e ∪ {certe′e}, otherwise, B aborts.

• When A requests e to designate itself, B does the following: (1) Creates a warrant

wee and chooses ree; (2) Computes m = THHKe(wee, ree)||wee and queries oracle OSe

with m as input and obtains a signature σe (using SKe) on m; B sends certe′e =

〈wee, ree, σe〉 to A. A checks whether σe is a valid signature on m under PKe. If σe

is valid, then Dee is set to Dee ∪ {certee}, otherwise B aborts.

• When A queries oracle OS with message m, B makes the query 1||m to its signing

oracle OSe and forwards the response σe to A. Ms is set to Ms ∪ {m}.

• When A queries oracle OPS with message m, warrant wxe, l ∈ N and x ∈ E′ ∪ {e} as

input, B responds as follows: If Dxe[l] is not defined or (wxe, ·, ·) /∈ Dxe[l], the query is

invalid and B returns ⊥. Otherwise B parses Dxe[l] as (wxe, rxe, σx). B queries oracle

OCLe with inputs m,wxe, rxe to obtain a response 〈c,HK ′〉. B returns the proxy

signature σP = 〈certxe,m, c,HK ′〉 to A. Mp is set to Mp ∪ {(wxe,m)}.

The adversary outputs a forgery of the form σ′ or σ′
P . If A’s forgery is a Type I forgery

of the form σ′ on message m′, the signature σ′ is in fact a forged standard signature on

message 1||m′ valid under public key PKe, such that 1||m′ /∈Ms. B outputs the forgery σ′

on message 1||m′ valid under PKe.

If A’s forgery is a Type II forgery of the form σ′
P on message m′ conforming to warrant

w′, B parses σ′
P as 〈cert′,m′, c′,HK ′〉. Next, B parses cert′ as 〈w′, r′, σ′〉, where σ′ is a

signature on THHKe(w
′, r′) valid under PKx (x ∈ E′ ∪ {e}) and (w′,m′) /∈Mp. B outputs

a collision forgery 〈w′, r′,m′, c′,HK ′〉 such that THHKe(w
′, r′) = THHK ′(m′, c′), under the

hash key HKe.

If A’s forgery is a Type III forgery of the form σ′
P on message m′ conforming to warrant

w′, B parses σ′
P as 〈cert′,m′, c′,HK ′〉. Next, B parses cert′ as 〈w′, r′, σ′〉, where σ′ is a

signature on THHK(w′, r′)||w′ (x ∈ E′) valid under PKe and cert′ /∈ Dex. B outputs the

forgery σ′ on message m′ = THHK(w′, r′)||w′ valid under public key PKe.
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4.3 A discrete log-based proxy signature scheme, DL-TPS

Performance sensitive settings, such as mobile agent applications [47, 46], require efficient

proxy signature. In this chapter, we demonstrate the potential of our generic approach [cf.

Section 4.2.3] to create practical instances by using cryptographic primitives from discrete

log-based cryptosystem to construct an efficient trapdoor hash-based proxy signature

scheme.

Let an entity D act as the delegator, wanting to delegate signing rights to another entity

P, the proxy. The ParGen, KeyGen, Delegate, Accept, PSigGen and PSigVer algorithms of

trapdoor hash-based proxy signature scheme, DL-TPS, are executed as follows:

DL-TPS.ParGen: Entities choose and agree upon common system public parameters params =

〈p, q, α,H,G〉, where p and q are 1024-bit and 160-bit primes, respectively, q | p − 1,

α is an element of order q in Z
∗
p and H,G : {0, 1}∗ 7→ Z

∗
q are cryptographic hash

functions.

DL-TPS.KeyGen: The delegator D chooses its long-term private key x ∈R Z
∗
q and computes

the corresponding long-term public key as X = αx ∈ Z
∗
p. The proxy P chooses its

long-term trapdoor key y ∈R Z
∗
q and computes the corresponding long-term hash key

as Y = αy ∈ Z
∗
p.

DL-TPS.SigGen: Given system parameters params, a message m the delegator D generates

a standard signature on m as follows:

1. Choose an ephemeral private key k ∈R Z
∗
q and compute the corresponding

ephemeral public key r = αk ∈ Z
∗
p.

2. Solve for t in the equation: t ≡ k + xH(m||r) mod q (this is the well-known

DL-Schnorr [72] signature scheme). Signature on m is given by σ = 〈t, r〉.

DL-TPS.SigVer: Given a candidate signature σ on message m, system parameters params

and public key X, verification proceeds as follows:

1. If r = αtX−H(m||r) mod q, the signature σ = 〈t, r〉 on message m is valid under

the public key X. Output V alid.

2. Otherwise, output Invalid and abort.

DL-TPS.Delegate: The delegator D delegates a proxy P as follows:
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1. Choose an ephemeral private key k ∈R Z
∗
q and compute the corresponding

ephemeral public key r = αk ∈ Z
∗
p.

2. Generate a warrant w and compute the trapdoor hash of w as TH Y (w, r) =

αhwY r mod q, where hw = H(w||Y ). The warrant w specifies restrictions on

the messages the proxy signer is allowed to sign.

3. Solve for t in the equation: t ≡ k + xG(TH Y (w, r)||w||r) mod q (Schnorr [72]-

type signing).

4. Form the delegation certificate cert containing the signature, σ = 〈t, r〉 and

warrant, w, and send cert to P.

DL-TPS.Accept: After receiving the delegation certificate cert = 〈σ,w〉, where σ = 〈t, r〉,

from D, the proxy P performs the following operations:

1. Check whether warrant w conforms to the agreement with D. If check fails,

output 〈Reject,⊥〉 and abort.

2. Compute TH Y (w, r) = αhw+yr mod q and h = G(TH Y (w, r)||w||r).

3. If r = αtX−h mod q, the signature σ = 〈t, r〉 on h is valid under the public key

X of D. Output 〈Accept, cert〉. Otherwise, output 〈Reject,⊥〉.

DL-TPS.PSigGen: Given a message m, P generates a proxy signature σP as follows:

1. Check whether the message m conforms to restrictions specified in the warrant

w. If check fails, abort.

2. Choose an ephemeral trapdoor key z ∈R Z
∗
q and compute the corresponding

ephemeral hash key Z = αz ∈ Z
∗
p.

3. Compute hm = H(m||Z) and using trapdoor key y and ephemeral key z, solve

for c in the equation: c = z−1(hw − hm + yr) mod q.

4. The proxy signature σP is the tuple 〈cert,m, c, hm〉 on the message m conforming

to warrant w. Send σP to the verifier V.

DL-TPS.PSigVer: Given a proxy signature σP , V can verify the delegation agreement,

identify the proxy and verify the proxy signature on message m conforming to warrant

w as follows:

1. Check whether the message m conforms to warrant w. If check fails, output

Invalid and abort.
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2. Look up the hash key Y of P from a publicly available directory. Compute

TH Y (w, r) = αhwY r mod q and h = G(TH Y (w, r)||w||r).

3. Compute r′ = αtX−h mod q. If r′ 6= r mod q, output Invalid and abort.

4. Compute Z ′ = α(hw−hm)c−1

Y rc−1

mod p. Check whether hm = H(m||Z ′). If

check fails, output Invalid. Otherwise, output Valid.

To verify P’s subsequent proxy signatures on a new message m, the verifier V only

computes Z ′ = α(hw−hm)c−1

Y rc−1

mod p and checks whether hm = H(m||Z ′). If the hash

values are equal, the proxy signature is valid. Next, we perform a detailed analysis of the

proposed proxy signature scheme, DL-TPS.

4.4 Analysis of the DL-TPS proxy signature scheme

We present a theoretical analysis of the proposed DL-based proxy signature scheme, DL-TPS,

including correctness, security and performance.

4.4.1 Correctness

A proxy signature scheme constructed following the procedures in Section 4.2 is correct if

an arbitrary proxy signature, σP = 〈cert,m, c, hm〉 on message m conforming to warrant w,

generated by a proxy P on behalf of D, passes the proxy signature verification procedure DL-

TPS.PSigVer, using the long term public key of D and the long-term hash key of P, provided:

(1) All entities choose and agree upon the system public parameters params = 〈p, q, α,H,G〉;

(2) D and P honestly execute key generation algorithm DL-TPS.KeyGen; (3) D honestly

executes proxy delegation signature generation algorithm, DL-TPS.Delegate scheme, and

(4) P honestly uses his long-term trapdoor key y and ephemeral trapdoor key z to compute

c such that TH Y (w, r) = TH Z(m, c).

Proposition 4.4.1. The proposed DL-based proxy signature scheme, DL-TPS is correct.

Proof: Provided the aforementioned correctness conditions hold, the proxy signature

σP = 〈cert,m, c, hm〉 on message m conforming to warrant w passes the proxy signature

verification procedure DL-TPS.PSigVer, using the long-term public key of D and the long-

term hash key of P if the following conditions are met: (1) D’s signature σ on h =

G(TH Y (w, r)||w||r) mod q passes verification following the signature verification algorithm

of DL-TPS.Accept and (2) The hash value, TH Y (w, r) mod q equals TH Z(m, c) mod q.

We first show that the signature verification algorithm of DL-TPS.Accept executed on the

signature σ = 〈t, r〉 on h, under the public key X outputs 〈cert,Accept〉. During verification
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of σ we observe:

αtX−h = α(k+xh−hx) = αk = r

Thus, the signature σ on h is valid under public key of D.

Next we show that the value of c ∈ Z
∗
q computed during execution of DL-TPS.PSigGen

represents a collision between TH Y (w, r) and TH Z(m, c). This can be seen as follows:

TH Z(m, c) = αhm+zc = αhm+z(z−1(hw−hm+yr)) = αhw+yr = TH Y (w, r)

What remains to be shown is that the quantity Z ′ computed during execution of DL-

TPS.PSigVer equals the ephemeral hash key Z computed by the proxy during execution

of DL-TPS.PSigGen. This can be seen as follows:

α(hw−hm)c−1

Y rc−1

= αc−1(hw−hm+yr) = αz(hw−hm+yr)−1(hw−hm+yr) = αz = Z

where, c = z−1(hw − hm + yr) mod q.

4.4.2 Security

In this section we provide a detailed security analysis of the the proposed DL-based proxy

signature scheme DL-TPS, following notions of security against adaptive chosen message

attack.

Given that DL-MTH exhibits properties of collision forgery resistance, ephemeral collision

forgery resistance, key exposure resistance and semantic security, and the provable security

guarantees provided by the well-known DL-Schnorr [72] signature scheme, we state and

prove the following theorem.

Theorem 4.4.2. The DL-based proxy signature scheme DL-TPS is secure against adaptive

chosen message attack in the random oracle model [11] under the DL assumption.

Proof: We show that for every adversary A against the DL-based proxy signature

scheme with non-negligible advantage, AdvDL−TPS
A (λ), we can construct an adversary B,

which solves the DL problem with non-negligible advantage AdvDL
B (λ). The hash functions

H and G behave as a random oracles (denoted as OH and OG, respectively). The system

parameter param is given as the tuple 〈p, q, α,H,G〉. Entity e generates its (private, public)

key pair (SKe, PKe) and the (trapdoor, hash) key pair (TKe,HKe). The adversary B is

given access to the public keys PKe and HKe, and simulates signing oracle, OS , the proxy

signature generating oracle, OPS and the hashing oracles, OH and OG.

Adversary B runs A (both modelled as PPT algorithms) on inputs PKe and HKe and

answers requests and queries made by A as follows:
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• When adversary A requests B to register PKe′ 6= PKe and HKe′ 6= HKe, B stores

PKe′ and HKe′ (SKe′ and TKe′ are unknown to B). B initializes two empty sets Dee′

and De′e. E
′ is set to E′ ∪ {e′}.

• WhenA requests e to designateA as a proxy, playing the role of e′ ∈ E′, B does the fol-

lowing: (1) Creates a warrant wee′ ; (2) Chooses h, t ∈R Z
∗
q and computes r = αtPK−h

e

mod p; (3) If H(wee′ ||HKe′) is defined, then retrieves hwee′
= H(wee′ ||HKe′), other-

wise chooses hwee′
∈R Z∗

q, setsH(wee′ ||HKe′) = hwee′
and stores hwee′

in the hash entry

for H(wee′ ||HKe′); (4) Computes THHKe′
(wee′ , r); (5) If G(THHKe′

(wee′ , r)||wee′ ||r)

is defined, then B aborts. Otherwise sets G(THHKe′
(wee′ , r)||wee′ ||r) = h and stores

h in its hash entry ; (6) Sets σe = 〈t, r〉 and sends certee′ = 〈wee′ , σe〉 to A. A checks

whether σe is a valid signature on the hash, h (obtained by querying OG with inputs

wee′ , r and HKe′) under PKe. If σe is valid, then Dee′ is set to Dee′ ∪ {certee′},

otherwise B aborts.

• When A requests e to be designated as a proxy on behalf of A playing the role of

e′ ∈ E′, A does the following: (1) Creates a warrant we′e; (2) Chooses k ∈R Z
∗
q

and computes αk; (3) Queries oracle OG with we′e, r and HKe as inputs to obtain

h = G(THHKe(we′e, r)||we′e||r), and (4) Generates a signature σe′ = 〈t, r〉 (using

SKe′) on h. A sends certe′e = 〈we′e, σe′〉 to B. B checks whether σe′ is a valid signature

on h under PKe. If σe′ is valid, then De′e is set to De′e∪{certe′e}, otherwise, B aborts.

• When A requests e to designate itself, B does the following: (1) Creates a warrant

wee; (2) Chooses h, t ∈R Z
∗
q and computes r = αtPK−h

e mod p; (3) If H(wee)

is defined, then retrieves hwee = H(wee||HKe), otherwise chooses hwee ∈R Z
∗
q,

sets H(wee||HKe) = hwee and stores hwee in the hash entry for H(wee||HKe); (4)

Computes THHKe(wee, r); (5) If G(THHKe(wee, r)||wee||r) is defined, then aborts,

otherwise sets G(THHKe(wee, r)||wee||r) = h and stores h in its hash entry ; (6) Sets

σe = 〈t, r〉 and sends certee = 〈wee, σe〉 to A. A checks whether σe is a valid signature

on hash of wee (obtained by querying OG with inputs wee,r and HKe) under PKe. If

σe is valid, then Dee is set to Dee ∪ {certee}, otherwise B aborts.

• When A queries oracle OS with message m, B does the following: (1) Chooses t, h ∈R

Z
∗
q and computes r = αtPK−h

e mod p; (2) Checks whether H(m||r) is defined, and

if so, aborts; (3) Otherwise, sets H(m||r) = h and σe = 〈t, r〉. B sends σe to A. Ms

is set to Ms ∪ {m}.
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• When A queries oracle OPS with message m, warrant wxe, l ∈ N and x ∈ E′ ∪ {e} as

input, B responds as follows: If Dxe[l] is not defined or (wxe, ·) /∈ Dxe[l], the query is

invalid and B returns ⊥. Otherwise, B parses Dxe[l] as (wxe, σx = 〈t, r〉), and performs

the following operations: (1) Chooses c ∈R Z
∗
q; (2) Retrieves h and hwxe , where

h = G(THHKe(wxe, r)||wxe||r) and hwxe = H(wxe||HKe); (3) Chooses hm ∈R Z
∗
q and

computes Z = α(hwxe−hm)c−1

HKrc−1

e mod p; (4) If H(m||Z) is defined then aborts,

otherwise sets H(m||Z) = hm and stores hm in the hash entry for H(m||Z). B sends

σP = 〈wxe, σx,m, c, hm〉, to A. Mp is set to Mp ∪ {(wxe,m)}.

• When A queries oracle OG with message m, an element r and hash key HKx (x ∈

E′∪{e}) as inputs, B returns h if G(THHKx(m, r)||m||r) is defined, i.e., ∃h such that

h = G(THHKx(m, r)||m||r). Otherwise, B does the following: (1) IfH(m||HKx) is de-

fined, retrieves hm = H(m||HKx), otherwise, chooses hm ∈R Z
∗
q , sets H(m||HKx) =

hm and stores hm in the hash entry for H(m||HKx); (2) Uses HKx, r, hm to compute

THHKx(m, r); (3) Chooses h ∈R Z
∗
q, sets G(THHKx(m, r)||m||r) = h, stores h in the

hash entry for G(THHKx(m, r)||m||r) and returns h to A.

• When A queries oracle OH with message m and element r as inputs, B returns h

if H(m||r) is defined, that is if ∃h such that h = H(m||r). Otherwise, B chooses

h ∈R Z
∗
q, sets H(m||r) = h, stores h as the hash entry for H(m||r) and returns h to

A.

• When A queries oracle OH with message m as input, B returns h if H(m) is defined,

that is if ∃h such that h = H(m). Otherwise, B chooses h ∈R Z
∗
q, sets H(m) = h,

stores h as the hash entry for H(m) and returns h to A.

The adversary outputs a forgery of the form σ′ or σ′
P . If A’s forgery is a Type I forgery

of the form σ′ on message m′, B uses the (provably secure) forged Schnorr signature [72] to

break the discrete log problem and output SKe.

If A’s forgery is a Type II forgery of the form σ′
P on message m′ conforming to warrant

w′, B parses σ′
P as 〈σ′, c′, h′m〉 and σ′ as 〈r′, t′〉. B computes hw′ = H(w′||HKe) and

Z ′ = α(hw′−h′

m)c′−1

HKr′c′−1

e mod p. Since, (w′,m′) /∈ Mp we know that 〈w′, r′,m′, c′, Z ′〉

represents a collision forgery, i.e., THHKe(w
′, r′) = TH Z′(m′, c′), where Z ′ is computed

as in DL-TPS.PSigVer. Following Theorem 3.4.1, B uses the forged collision to break the

discrete log problem and output TKe corresponding to HKe.

If A’s forgery is a Type III forgery of the form σ′
P on message m′ conforming to warrant

w′, B parses σ′
P as 〈σ′, c′, h′m〉 and σ′ as 〈r′, t′〉. In this case, e is the delegator and e′ ∈ E′
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is the proxy. If A did not make the query (w′, r′,HKe′), where r′ = αk′ mod q, to oracle

OG, then B aborts. Otherwise, let h′ be the response B gave when A made this query. B

rewinds A to the point where A makes the (w′, r′,HKe′) query to OG and gives A a new

randomly chosen value h′′ 6= h′ ∈R Z
∗
q. B continues the execution of A, until A outputs

a forgery σ′′
P on message m′ conforming to warrant w′. If the forgery is not of the form

〈σ′′, ·, ·〉, where σ′′ = 〈r′, t′′〉, then B aborts. Otherwise, B computes the private key SKe

corresponding to PKe of the honest entity as: SKe = (t′ − t′′)(h′ − h′′)−1. Thus, B is able

to solve the discrete logarithm problem with non-negligible probability.

4.4.3 Performance

Table 4.1: Performance comparison of proposed proxy signature scheme DL-TPS with existing
schemes.

MUO [57] KPW [43] PH [69] MLKK) [48] HSMW [39] ZNS [83] DL-TPS

Delegation 3e 3e 4e 4e 3s + 2p 2s+ 2p 6e

Proxy Sig Gen 1e 1e 1e 1e 5s 2s 1e

Proxy Sig Ver 4e 3e 3e 4e 5p 1s+ 2p 5e(2e)

Public key size (bits) 2048 1532 1532 2048

Proxy Sig size (bits) 1344 1504 480 160 640

Secure Channel Y N N N N N N

Provably Secure N Y N N Y N Y

Table 4.1 shows a comparison of the proposed proxy signature scheme, DL-TPS, with

those developed by Mambo et al. (MUO) [57], Kim et al. (KPW) [43], Petersen et al.

(PH) [69], Lee et al. (MLKK) [48], Huang et al. (HSMW) [39] and Zhang et al. (ZNS) [83]. In

Table 4.1, the term e denotes the cost of modular exponentiation with a 160-bit exponent,

s denotes the cost of scalar multiplications and p denotes the cost of pairing computation.

All computation, storage and communication costs are based on a security benchmark of

1024-bits. The size of proxy signature shown in the table excludes the size of warrant and

message for all schemes. For the DL-TPS scheme, the cost of verifying initial and subsequent

proxy signatures exchanged between any pair of proxy and verifier are different. The table

entry for proxy signature verification cost for the DL-TPS scheme shows the cost of verifying

subsequent proxy signatures exchanged between any pair of proxy and verifier in parenthesis

(and the cost of initial proxy signature verification outside parenthesis).

The performance characteristics of the KPW scheme is the same as its provably secure

variant by Boldyreva et al. [13] and its proxy non-designated variant by Lee et al. [47]. The

scheme by Lee et al. [47], however, requires a secure communication channel between the
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delegator and the proxy. Lee et al. (MLKK) [48] proposed a variant of the scheme in [47] to

overcome this weakness. For the sake of uniformity in comparison, we consider a security

benchmark of 1024 bits — the system public parameters of DL-TPS, MUO, KPW, MLKK, and PH

are given by the tuple params = 〈p, q, α〉, where p and q are 1024-bit and 160-bit primes,

respectively, and α is an element of order q in Z
∗
p. Also, we assume the employment of

Schnorr signature for proxy signature generation in the MUO, KPW, PH and MLKK schemes.

We observe that the proposed DL-TPS scheme achieves the best proxy signature

verification efficiency for subsequent messages exchanged between any pair of proxy and

verifier, while maintaining comparable signature generation performance. Our proxy

signature verification is 33% more efficient compared to the next most efficient proxy

signature schemes, KPW and PH. Although the delegation process is expensive in DL-TPS,

we argue that this step would not be performed often and the majority of computational

overhead would be caused by proxy signature generations and verifications. The HSMW and

ZNS schemes use considerably more expensive bilinear pairing operations in the delegation

and proxy signature verification phases. To the best of our knowledge, the best known

result for computing a single Tate pairing equals approximately 11110 multiplications in

Zq, where q is a 171-bit prime (for security benchmark of 1024-bits) [8]. Moreover, the HSMW

requires the largest amount of space (10KB) for storage of system parameters [52].

For schemes, DL-TPS, MUO, KPW, MLKK and PH, the size of the long-term public key,

excluding shared components (primes p and q) equals 2048-bits. The pairing-based schemes,

HSMW and ZNS, use public keys of size 1532-bits.

The proposed DL-TPS scheme also produces the smallest proxy signatures compared to

MUO, KPW, PH and MLKK. Even though the HSMW and ZNS schemes produce smaller signatures,

they suffer from significant computational overhead. Thus, the DL-TPS scheme achieves

the best all-round performance compared with other schemes in the literature while being

provably secure.

4.5 Summary

We presented a simple and elegant technique to construct a provably secure proxy signature

using trapdoor hash functions that can be used to authenticate and authorize agents acting

on behalf of users in agent-based computing systems. Unlike most common proxy signature

schemes [13, 47, 43], the proxy signing key pair is not derived from the delegator’s signature

during the proxy delegation phase. Instead of generating a signature on the message in

the traditional sense, the proxy uses its trapdoor key (known exclusively to itself) to find
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a trapdoor collision between the trapdoor hash of the warrant and the given message. We

provided a rigorous security analysis of the proposed generic construction TPS.

We instantiated our scheme using primitives from discrete log-based cryptosystem to

yield the DL-TPS proxy signature scheme. We provided definitions, security specifications

and performed a theoretical analysis of the proposed scheme, DL-TPS, including correctness,

security and performance. As shown in Table 4.1, DL-TPS yields superior performance in

terms of proxy signature verification compared to the schemes in [13, 39, 43, 47, 57, 69, 83]

and produces the smallest proxy signatures compared to schemes in [13, 43, 47, 48, 57, 69].

We believe that our work plays a crucial role in providing authorization and authentication

of agents in Multi-Agent Systems. In the future we plan to further investigate improvements

in efficiency of our proposed technique through the use of primitives from LFSR-based

cryptosystems [24, 35].

Copyright c© Santosh Chandrasekhar 2011
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Chapter 5

Efficient stream authentication using trapdoor hash functions

5.1 Introduction

Many Web-based services involve distribution of content like digital audio, video, software,

games, stock quotes, streaming presentations and live news feeds through distributed

networking technologies such as content distribution networks (CDNs), multicast networks

and peer-to-peer networks. Unfortunately, these modern distributed systems, designed to

distribute content to a large group of users, also provide an ideal platform for adversarial

users to launch a myriad of attacks with widespread consequences. Adversaries can

masquerade as legitimate content providers to distribute malicious content possibly infected

with worms, viruses, etc. Adversaries can also place themselves in the content distribution

path, for example, by compromising Web caches [53], and modify the content in ways that

can potentially harm client devices. Authenticating the content plays a crucial role in

preventing these attacks.

Although CDNs like Akamai employ mechanisms for providing physical security, host

system security, access control, software reliability and integrity, and 24x7 monitoring and

response, these mechanisms are primarily designed for providing security of the CDN’s

service network infrastructure and ensure proper functioning of its distributed network

of servers rather than protecting content distributed through the CDN [2]. The task of

protecting content is the responsibility of content providers. Unfortunately, much of the

content provided over the Internet today is transmitted without any protection mechanism.

For instance Amazon, YouTube and many other highly popular content providers distribute

their content over an insecure connection. Although encryption is not necessary in the

instances like browsing products sold by Amazon and videos on YouTube, authenticating

content is becoming increasingly necessary. Popular content providers often provide

highly personalized user experience by inserting targeted advertisements and dynamically

generated content. Today the majority of mass-viewed content is dynamically generated and

multimedia-rich that include combination of text, audio, still images, animation, video, and

interactive forms that are gathered from a myriad of sources, assembled and presented to

the user. In such scenarios, malicious modification of content by malicious sources becomes
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a legitimate threat. To highlight this point, recently, Google and MSN (Microsoft(R))

were observed to be distributing malware after attackers were able to masquerading as a

legitimate advertising provider and inserting malicious advertisements (by exploiting two

Internet Explorer, one Java, and four Adobe Reader flaws) that installed the HDD Plus

malware [16]. YouTube was also a victim of an attack where malicious code was inserted

into pages (by exploiting a cross-site scripting vulnerability) displaying the targeted videos

that would launch when users opened the video clip redirecting users to pornographic sites

and display falsified news alerts [36]. While flaws in software that were exploited were

eventually patched, these attacks could be prevented by using authentication mechanisms

to protect the content.

Using conventional techniques for message authentication require the sender and the

receiver to have the ability to store the entire message before processing the message.

However, in most instances of distributing content, like digitized multimedia, the content

provider transmits the content in the form of digital streams that a receiver is required to

consume at more or less the stream arrival rate without excessive delay. To protect such

delay-sensitive digital streams against malicious attacks, security mechanisms need to be

designed to process long sequence of bits in an efficient manner that allows the receiver

to verify the authenticity of the stream in portions (to avoid possessing the entire stream

before verification) without excessive processing delays associated with each portion of the

stream. This is typically done by dividing the stream into blocks (or chunks) and using an

efficient security mechanism to secure each block of data. In this chapter, we focus on the

problem of efficient stream authentication using digital signatures. The goal is to provide

integrity, origin authentication, and non-repudiation for individual blocks that comprise a

digital stream.

5.1.1 Problem statement

Efficient authentication of stream poses several challenges:

1. Authentication of delay-sensitive streams requires high verification rates which

translates to requiring minimal computational overhead to verify individual blocks

and avoiding excessive accumulation of data in buffers before verification can proceed.

For instance, to maintain jitter-free playback of on-demand media distributed through

CDN’s, per-block verification rates at client devices must equal or exceed the rate at

which blocks arrive at the device.
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2. For real-time generated digital streams, a sender must be able to sign a block as soon

as it is generated with minimal computational overhead. For instance, to prevent

delays in distribution of real-time content, like stock quotes and live news feeds, that

can influence critical business decisions, per-block signing rates at content originators

must exceed the rate at which blocks are generated.

3. Stream transmission is typically done using unreliable transport protocols, like UDP,

to provide a high throughput, which can cause loss of datagrams during transmission.

Thus, stream authentication mechanisms must be designed to tolerate arbitrary loss

of data blocks without affecting the ability of a receiver to verify remaining received

blocks.

4. Authenticating information such as signatures and hash values placed within a block

(which we call per-block communication overhead) must be limited to a small, constant

size to prevent excessive bandwidth utilization while transmitting signed streams.

5.1.2 Contributions

We propose a novel trapdoor hash-based signature amortization technique for efficient

stream authentication. From a high-level functional perspective, the proposed technique

is the first in the literature to simultaneously provide the following features:

1. The proposed technique tolerates out-of-order arrival of blocks in the stream and is

resilient to transmission losses of an arbitrary number of intermediate blocks, without

affecting the verifiability of remaining blocks in the stream. These properties stem

from the ability of the receiver to verify each block based on the contents of any

previously received block.

2. Our technique minimizes delays in transmitting a stream following the block-signing

process and playback of the stream following the block-verification process. We do

this by designing highly efficient block signing and verification procedures that require

constant number of operations and limited memory.

3. The proposed technique limits communication overhead incurred while sending the

authenticating material to a small, constant-sized signature that is augmented to

each block in the stream. Moreover, we avoid wastage of bandwidth by not needing

redundant placement of the same authenticating information in multiple blocks.
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The proposed technique represents the first known attempt in the literature to use trapdoor

hash functions for building a signature amortization scheme. Trapdoor hash functions

provide the unique capability to find collisions between hashes of different messages using

a secret trapdoor key. We use this capability to design a signature amortization technique

where we compute a signature on the trapdoor hash of a block and amortize it over multiple

blocks by finding trapdoor collisions with the hash of the signed block. The receiver verifies

the authenticity of a block by computing its trapdoor hash value and comparing it with the

hash value of any other block in the stream. The proposed technique ensures authenticity

of the stream as no other entity besides the sender can generate the collisions without

knowledge of the secret key. We demonstrate the efficacy of the proposed technique to build

a practical stream authentication scheme by constructing a discrete-log based instantiation

of the proposed technique. The resulting stream authentication scheme, called DL-SA,

provides adaptive block verification where the receiver can choose to verify individual blocks,

or batch-verify multiple blocks using less computation at the cost of maintaining a small

buffer. We analyze the security of DL-SA and compare its performance against existing

stream authentication schemes with comparable features. Our security analysis proves

that DL-SA is resistant against forgery attacks under the discrete log assumption. Our

performance comparison demonstrates that DL-SA incurs the least per-block communication

and signature generation overheads compared to the existing schemes.

Chapter Organization: The rest of this Chapter is organized as follows. We present

details of using stream authentication mechanisms in CDN’s in Section 5.2. In Section 5.3,

we present a novel trapdoor hash-based signature amortization technique for stream

authentication and discuss security and performance merits of the proposed technique.

In Section 5.4 we present a discrete-log based instantiation of the proposed technique.

We perform a security and performance analysis of discrete-log based scheme, DL-SA, in

Section 5.5. Section 5.6 summarizes the chapter.

5.2 Securing content distribution: a motivating application

In this section, we present an application of using signature amortization for stream

authentication in securing on-demand and real-time content typically distributed via CDN’s.

We highlight specific challenges associated to efficiently authenticating content and later,

present a viable approach toward solving existing problems. This application is not meant

to be the sole motivation for the signature amortization mechanism we are introducing,

but only an illustration of some of its potential uses and benefits. The proposed signature
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amortization technique can also be applied to provide authentication in multicast and peer-

to-peer networks.

5.2.1 System architecture overview

Figure 5.1 shows a high-level architecture of a CDN. The components include a core data

center, multiple edge caches each serving multiple clients, and the CDN backbone (Internet

or WAN). Edge caches are strategically distributed worldwide to lower content delivery

costs to requesting clients. Both core data centers and edge caches consist of a media server

and a content distribution manager (CDM). The media servers provide storage of media

content. The media server at the core data center serves as the content origin for both

on-demand and real-time content. Clients can include devices like PCs, laptops, PDAs,

cell phones. A CDM provides several functionalities including: (1) Usage tracking service

that enables logging, accounting and billing of content usage. (2) Caching service that

implements content caching techniques. (3) Content processing service that fetches the

requested content from the media server (or stores content into the media server), splits the

media file into blocks (or packet flows), and transmits the blocks to other edge caches or to

clients. (4) Request processing service that provides navigation of the CDN to locate the

content.

When a client requests or subscribes to digital media content, the request is propagated

to the edge cache closest to the client. If the cache contains the requested content, the edge

cache transmits the content to the client. If not, then the request is forwarded to the core

data center, which sends the content to the client. If a content is cacheable, the edge cache

fetches the content from the core data center (or alternatively, the core data center pushes

cacheable content to the edge cache) using an appropriate caching strategy to serve future

requests for the content.

5.2.2 Stream authentication in content distribution networks

Threats involved in distribution of content include masquerading attacks where an adversary

poses as an edge cache or a core data center or a third-party provider that serves

data for dynamically generated content to distribute malicious content (possibly infected

with worms, viruses, etc.), compromising attacks where an adversary takes control of

legitimate content providing hosts (edge cache/core data center/third-party provider)

to inject malicious content and man-in-the-middle attacks where an adversary performs

modification of content during transmission from core data center to the edge cache or from

65



...

...

CORE DATA CENTER

Routers

Media Server

Content Distribution
Manager (CDM)

Switches

CLIENTS

Content

Packet
flow

Signed
flow

GET

FLOW SIGNING

SPLIT

SIGN

SEND

FLOW VERIFICATION
AT CLIENT

Signed
packet

Packet
without
signature

GET

VERIFY

EXTRACT

PLAY

INTERNET

EDGE CACHE

(AMORTIZED)
1

5

3

6

2
Content origin

4

7

Content receiver

Figure 5.1: Architecture of a content distribution network.

the edge cache to the client or from the core data center to the client. Stream authentication

can help prevent these attacks by providing the ability to sign and verify each block in the

stream. All content originates at the core data center and the stream signing mechanism

is implemented at the core CDM as part of its content processing service. We assume the

existence of a public key infrastructure (PKI) responsible for generating certificates for the

core CDM, and distributing the public key and certificate of the core CDM to all verifying

entities. We do not delve into the details of roles and models of a PKI in this discussion.

Referring to Figure 5.1, when a request arrives at the core CDM, the content processing

service retrieves the content from the media server (Step 1 ). The core CDM then splits the

content into a stream of blocks, signs each block (using a suitable signature amortization

technique), places the authenticating information within the block (Step 2 ) and transmits

the signed stream of blocks to the requesting entity (Steps 3 and 5 ). If the content is
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not generated in real-time, the content processing service stores the signed stream at the

media server to prevent redundant signing operations when subsequent requests arrive for

the same content. The stream verification mechanism should be implemented by both the

CDM at an edge cache and at the client machine. When a signed stream arrives at an edge

cache, the content processing service at the CDM verifies individual blocks in the stream

(Step 6 ), stores the signed content into the cache’s media server (Step 7 ), and later, when

a request arrives for the content sends the signed stream to the requesting client (Step 8 ).

Verification of signed streams at edge caches ensures that packets failing verification are not

forwarded to the requesting client thereby preventing unnecessary usage of bandwidth and

processing time at the client machine. When a signed stream arrives at the client machine,

the requesting application verifies each block in the stream and removes the authenticating

information placed inside the block before it plays of the media content (Step 4 ).

To provide reasonable quality of service to clients of CDNs, a stream authentication

mechanism must overcome the following challenges: (1) Delays in real-time content

transmission can affect client applications such as stock traders that rely on timely delivery

of live news feeds and stock quotes for critical decision making. As content is transmitted

from the core data center to the client, delays are introduced by the operations of signing

each block at the core data center and transmission delays from core data center to the client.

(2) High per-block processing overhead can severely degrade content playback performance

in devices like PDAs and cell phones with limited memory and processing power. Storage

and computation requirements of verifying a signed block increases the block’s processing

overhead. (3) Loss of blocks can be high when distributing content using non-reliable

transport protocols or through lossy channels like wireless transmission. (4) Available

bandwidth in CDNs is limited. To provide good scalability and reduce transmission delays,

content size should be minimized for a desired quality of service. Placing authenticating

information in each block increases the content size and consequently bandwidth and time

requirements to transmit the content. In the next section, we present a novel signature

amortization technique using trapdoor hash functions that can be used to build efficient

stream authentication mechanisms and overcome the aforementioned challenges.

5.3 Proposed signature amortization technique

In this section we present a novel trapdoor-hash based signature amortization technique that

can be used for authenticating digital streams in CDN’s, multicast systems and peer-to-peer

networks.
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5.3.1 Trapdoor hash-based signature amortization technique

The proposed signature amortization technique works by authenticating the initial block

of a stream using a signature on trapdoor hash of the block’s contents, and authenticating

subsequent block of the stream by finding trapdoor collisions with the hash of the signed

(initial) block. As long as the initial block containing the signature is reliably delivered (and

verified), the verifier can authenticate any block in the stream by matching its trapdoor

hash value with any previously computed trapdoor hash — all blocks in the stream hash to

the same value, and thus, trapdoor hash of any arbitrary block in the stream can be used

for comparison during block verification.

The stream S is denoted as a logically ordered sequence of blocks 〈p0, p1, . . . 〉. The

contents of each block pi, is denoted by mi. The sender possess a long-term (private,

public) key pair (SK,PK) as well as a (trapdoor, hash) key pair (TK0,HK0). We assume

existence of a public key infrastructure, where each entity is associated with a certificate

signed by a certificate authority (CA) binding the entity’s identity with its public key. The

PKI is responsible for distribution and maintenance of public keys and certificates to all

entities in the system.

The proposed signature amortization technique can be divided into two phases: Stream

signing and stream verification. During the stream signing phase, the sender generates the

authenticating information for each block in the stream as follows:

Initial block generation: The sender generates a signature σ using SK on the trapdoor

hash h0 = THHK0
(m0, r0) of the contents m0 of first block p0 in the stream. The first

block p0 contains 〈m0, r0, σ〉.

Subsequent block generation: To sign subsequent blocks pi (i ≥ 1) with content

mi, the signer generates a collision parameter ri such that THHKi−1
(mi−1, ri−1) =

THHKi
(mi, ri) using trapdoor keys TKi and TKi−1. Note that the pairs (TKi−1,HKi−1)

and (TKi,HKi), need not be different [cf. Section 3.2]. When ephemeral trapdoor

and hash keys are used, each key pair is utilized for authenticating one block and then

discarded. Block pi contains 〈mi, ri〉 and optionally HKi depending on whether an

ephemeral trapdoor key is used for collision computation (i.e., TKi 6= TKi−1).

During the verification phase, the receiver checks the authenticity of each block in the

stream as follows:
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Initial block verification: When the receiver obtains the initial block p0 of the stream,

it extracts 〈m0, r0, σ〉 from the block, computes h0 = THHK0
(m0, r0) and verifies the

signature σ on h0 under PK.

Subsequent block verification: For each subsequent block, pi (i ≥ 1) in the stream,

the receiver parses the received block as 〈mi, ri〉 and computes the trapdoor hash of

mi as hi = THHKi
(mi, ri). It then checks whether hi matches the trapdoor hash

hj = THHKj
(mj , rj) of the contents mj of an arbitrary block pj that was received

prior to pi. If trapdoor hashes match, the verification is successful. Otherwise, the

receiver sends an error message to the signer and aborts.

5.3.2 Features of the proposed signature amortization technique

We present a brief discussion on security and performance merits of the proposed trapdoor

hash-based signature amortization technique for stream authentication.

Robustness Against Packet Loss: In the proposed technique, to compute the trapdoor

hash value of the contents mi of a block pi (i ≥ 0), the verifier needs to know ri which is

contained within block pi. Moreover, verification of each subsequent block pi (i ≥ 1) depends

on trapdoor hash value of any block pj received prior to pi. Thus, the proposed technique

can tolerate arbitrary loss of blocks in the stream as long as the initial block containing

the signature is reliably delivered to the receiver — any subsequent block can be verified

by comparing its trapdoor hash value with the trapdoor hash value of the initial block.

The proposed technique can use several techniques for reliable delivery of the signature

block including re-transmissions, error-correcting codes, placement of signature in multiple

blocks, or by transmitting the signature using a separate reliable channel [55, 82, 66].

Fast Signing and Verification Rates: The proposed technique requires the sender to

maintain a single block in its buffer, which is used for computing trapdoor collisions for the

current block. Also, since verification of each block is dependent on one other block, the

verifier only needs to maintain content of a single block in its buffer. Thus, the proposed

technique is highly suitable for authenticating real-time and delay sensitive streams, and

resilient against denial of service (DoS) attacks that exploit buffer overflow. Computation

costs at the sender side involve one signature generation for the initial block and one collision

computation for subsequent blocks. At the receiver side, initial block authentication requires

one signature verification, and authentication of subsequent blocks requires one trapdoor

hash computation. Thus, computation costs at sender and receiver side remain constant

per block.
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Constant Per-Packet Communication Overhead: Communication overhead incurred

by the initial block, p0 includes the signature σ and the random string r0 used in the

computation of trapdoor hash of message m0. Each subsequent block pi contains a random

string (collision result) ri (and an optional ephemeral hash key HKi depending on the

choice of the trapdoor hashing scheme) used in the computation of trapdoor hash of message

mi. Thus, each block incurs constant communication overhead and there is no redundant

placement of the same authenticating material in multiple blocks.

Prevention of Packet Modification: Prevention of content modification using the

proposed signature amortization technique relies on the forgery resistance of the signature

scheme (used during initial packet authentication) and trapdoor hashing scheme possessing

the following properties: (1) Collision forgery resistance; (2) Key exposure resistance; (3)

Semantic Security. The goal of the adversary is to modify contents of an existing block or

insert a new block in the stream so that the malicious block p′i (i = 0, 1, . . . ) in the stream

of blocks 〈p0, p1, . . . 〉 passes the verification procedure at the receiver side. We assume the

channel is insecure and the adversary is able to capture and store contents of all blocks

that comprise the stream. If the trapdoor hash function is collision resistant, creating a

malicious initial block p′0 requires the adversary to forge a signature on the contents of the

malicious block p′0. Thus, given a collision resistant trapdoor hash function and a forgery

resistant signature scheme, forging an initial block would be computationally infeasible.

Forging a subsequent block p′i (i ≥ 1) in the stream requires the adversary to forge a

collision between trapdoor hash of some previous block in the stream and the contents of

the malicious block. Given a collision resistant trapdoor hash function, collision forgery

is computationally infeasible without knowledge of the trapdoor key. Moreover, by using

key exposure-free trapdoor hash functions we ensure that given a pair of messages whose

trapdoor hash values result in a collision, the adversary is not able to extract the trapdoor

key of the sender.

5.4 A discrete log-based signature amortization scheme, DL-SA

We now present a discrete-log based instantiation of the proposed technique for signature

amortization using trapdoor hash functions. The proposed scheme uses the trapdoor

hashing scheme DL-MTH described in Chapter 3.

During initialization, given the security parameter λ as input, all entities choose and

agree upon common system public parameters params = 〈p, q, α,H,G〉, where p and q are

1024-bit and 160-bit primes, respectively, q | p − 1, α is an element of order q in Z
∗
p and
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H,G : {0, 1}∗ 7→ Z
∗
q are cryptographic hash functions. The sender’s long-term (private,

public) key pair is given by (SK,PK) = (x,X), where x ∈R Z
∗
q and X = αx ∈ Z

∗
p. The

sender’s long-term (trapdoor, hash) key pair is given by (TK0,HK0) = (y0, Y0), where

y0 ∈R Z
∗
q and Y0 = αy0 ∈ Z

∗
p.

The stream S is partitioned into segments s0, s1, . . . with each segment si containing

multiple blocks pi,0, pi,1, . . . . The number of blocks in each segment need not be the same

to accommodate for time-varying generation of streams [82]. However, for simplicity we

assume that each segment contains n blocks

We now consider the authentication of the first segment s0 in the stream containing

the blocks p0, p1, . . . , pn−1 (for ease of notation, we drop the subscript indicating the

segment number). During the stream signing phase, the sender generates the authenticating

information for each block in the first segment of the stream as follows:

Initial block generation: The sender generates a signature σ using SK on the trapdoor

hash of the contents m0 of first block p0 in the stream as follows:

1. Choose an ephemeral private key k0 ∈R Z
∗
q and compute the corresponding

ephemeral public key r0 = αk0 ∈ Z
∗
p.

2. Compute the trapdoor hash of m0 as TH Y0
(m0, r0) = αhm0

+y0r0 mod q, where

hm0
= H(m0||Y0), using its long term hash key Y0.

3. Solve for t in the equation: t ≡ k0 + xG(TH Y0
(m0, r0)||m0||r0) mod q (this is

the well-known DL-Schnorr [72] signature scheme).

4. Signature on m0 is given by σ = 〈t, r0〉.

The signer appends σ to the contents of the first block p0 to generate the signed block

p0 = 〈m0, σ〉.

Subsequent block generation: To sign subsequent blocks pi (i ≥ 1) with content mi,

the signer computes the following:

1. Choose an ephemeral trapdoor key yi ∈R Z
∗
q and compute the corresponding

ephemeral hash key Yi = αyi ∈ Z
∗
p. Store the pair (yi, Yi).

2. Compute hmi
= H(mi||Yi) and using trapdoor key y0 and ephemeral key yi,

solve for ri in the equation: ri = y−1
i (hm0

− hmi
+ y0r0) mod q.

The signer appends ri and Yi to the contents of the subsequent block pi to generate

the signed subsequent block pi = 〈mi, ri, Yi〉.
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During the verification phase, the receiver checks the authenticity of the each block in

the first segment of the stream as follows:

Initial block verification: When the receiver obtains the initial block p0 of the stream,

it extracts 〈m0, σ〉 from the block and verifies σ = 〈t, r0〉 as follows:

1. Look up the long-term hash key Y0 and public key X of sender from a publicly

available directory and store (X,Y0). Compute hm0
= H(m0||Y0).

2. Compute TH Y0
(m0, r0) = αhm0Y r0

0 mod q and h = G(TH Y0
(m0, r0)||m0||r0).

3. Compute r′ = αtX−h mod q. If r′ 6= r0 mod q, output Invalid and abort.

4. Otherwise, output Valid and store TH Y0
(m0, r0) in cache.

Subsequent block verification: Depending on whether a subsequent block needs to be

individually verified or batch verified along with previously cached blocks, verification

proceeds in one of the two following ways:

Individual block verification: When we desire individual verification of a subse-

quent block, pi (i ≥ 1), the receiver parses the received block pi as 〈mi, ri, Yi〉,

stores Yi, and verifies pi as follows:

1. Retrieve TH Y0
(m0, r0) from cache and compute hmi

= H(mi||Yi).

2. Compute TH Yi
(mi, ri) = αhmiY ri

i mod q.

3. Check whether TH Y0
(m0, r0) = TH Yi

(mi, ri). If check fails, output Invalid.

4. Otherwise, output Valid.

Batch block verification: When we desire batch verification of multiple cached

blocks, pa, pa+1, . . . , pa+l (l ≥ 2), the receiver parses each the received block pi

as 〈mi, ri, Yi〉, stores each Yi, and batch verifies all blocks in its cache as follows:

1. Compute hmi
= H(mi||Yi) for i = a, a+1, . . . , a+l and retrieve TH Y0

(m0, r0)

from cache.

2. Compute h =
∑l

i=0 hma+i
mod q

3. Check whether αh
∏l

i=0 Y
ra+i

a+i =
∏l

i=0 THY0
(m0, r0) mod q. If check fails,

output Invalid.

4. Otherwise, output Valid.

The procedure is repeated for authenticating blocks within subsequent segments si (i ≥

1) of the stream with the following differences. The signer generates the signature, σi,0 =
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〈ti,0, ri,0〉 on the trapdoor hash of mi,0 (contents of the first block pi,0 of the segment

si, i ≥ 1) following the initial block generation procedure of DL-SA. To authenticate a

subsequent block pi,j (j ≥ 1), the signer skips step 1 of the subsequent block generation

procedure and computes the collision parameter ri,j of the message mi,j (contained in

pi,j) as ri,j = y−1
i (hmi,0

− hmi,j
+ y0ri,0) mod q using the stored trapdoor key yi. The

signer appends ri,j to the contents of the subsequent block pi,j to generate the signed

subsequent block pi,j = 〈mi,j , ri,j〉 (that does not contain a hash key). The verifier verifies

the subsequent block using the stored hash key Yi. This repeated use of the (trapdoor, hash)

key pairs (y0, Y0), (y1, Y1), . . . , (yn, Yn) to authenticate the blocks in subsequent segments of

the stream saves computation at the sender and receiver, in addition to drastically reducing

the per-block communication overhead.

During batch verification of multiple packets pa, pa+1, . . . , pa+l, the cached blocks need

not be contiguous or sequential (the indices do not indicate the order in which packets

were sent, but instead, only serve to indicate the number of blocks in the receiver’s cache).

Batch verification only requires that the receiver is able to cache blocks regardless of their

logical sequence at the sender and can tolerate arbitrary loss of intermediate blocks and

non-sequential arrival of blocks.

5.5 Analysis of the DL-SA signature amortization scheme

We now present a thorough analysis of the proposed signature amortization scheme DL-SA

including its correctness, security and performance evaluation.

5.5.1 Correctness

The proposed discrete log-based signature amortization scheme, DL-SA is correct if the

initial block p0 and all subsequent blocks pi in the stream pass the verification procedure

at the receiver, provided: (1) All entities honestly choose and agree upon the system public

parameters params = 〈p, q, α,H,G〉; (2) The sender honestly executes the key generation

algorithm to generate its (private, public) key pair (SK,PK) and (trapdoor, hash) key

pair (TK,HK); (3) The sender honestly executes the initial block signing procedure to

generate σ on trapdoor hash of m0; (4) The sender honestly computes the trapdoor collision

parameter ri, and hash value hmi
to authenticate each subsequent block pi in the stream.

Proposition 5.5.1. The proposed DL-based signature amortization technique, DL-SA is

correct.
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Proof: We prove the correctness of the proposed DL-based signature amortization

technique, by showing that the initial packet p0 and subsequent packets pi (i ≥ 1) pass

the verification procedure at the receiver provided the aforementioned conditions hold true.

During verification of the initial signature σ = 〈t, r0〉 on m0 we observe the following:

αtX−h = α(k0+xh−hx) = αk0 = r0 (5.1)

where h = G(THY0
(m0, r0)||m0||r0). Thus, σ passes the verification procedure under public

key X.

When a subsequent packet pi containing mi, ri and Yi is individually verified we observe

the following:

TH Yi
(mi, ri) = αhmiY ri

i

= αhmi
+yiri

= αhmi
+yiy

−1

i (hm0
−hmi

+y0r0) (Since ri = y−1
i (hm0

− hmi
+ y0r0) mod q)

= αhmi
+hm0

−hmi
+y0r0

= αhm0
+y0r0

= TH Y0
(m0, r0) mod q

Thus, pi passes the verification procedure at the receiver. What remains to be shown is that

cached packets pa, . . . , pa+l (l ≥ 2) pass the batch verification procedure at the receiver. We

know that for each i ≥ 1, TH Yi
(mi, ri) = TH Y0

(m0, r0). During verification of packets

pa, . . . , pa+l we observe the following:

αh

l∏

i=0

Y
ra+i

a+i = α
∑l

i=0
hma+i

l∏

i=0

Y
ra+i

a+i

= (αhmaY ra
a )(αhma+1Y

ra+1

a+1 ) . . . (αhma+lY
ra+l

a+l )

=
l∏

i=0

αhm0Y r0
0

=

l∏

i=0

TH Y0
(m0, r0) mod q

Thus, packets pa, . . . , pa+l pass the batch verification procedure at the receiver.

5.5.2 Security

Security of the proposed DL-based signature amortization scheme depends on the following

two factors: (1) forgery resistance of the signature scheme used for signing the initial
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block in the stream and (2) collision forgery, ephemeral collision forgery and key exposure

resistance of the trapdoor hashing scheme used for signing each subsequent block in the

stream. Security of the Schnorr signature scheme against forgery is based on the well-

known Theorem 2.2.1. In Chapter 3 we show that the DL-MTH trapdoor hashing scheme is

collision forgery resistant, ephemeral collision forgery resistant and key exposure resistance.

We now describe an adversarial model that we use to demonstrate that the proposed DL-SA

scheme is secure against adaptive chosen message attack under the discrete log assumption.

Adversarial Model: Consider a game GDLSA
A (λ), where λ is a security parameter. The

game is played by a PPT adversary A with an honest entity e. The game GDLSA
A (λ)

is initialized as follows. On security parameter λ as input, all entities choose and agree

upon the system public parameters params. Entity e generates its (private, public) key

pair (x,X) and its (trapdoor, hash) key pair (y0, Y0), and registers (X,Y0) in a publicly

available directory. A is provided with the target public key, X and hash key, Y0 of the

honest entity e. The adversary is also given access to a block signing oracle OS that

generates signatures on data blocks that are valid under X and Y0. The adversary proceeds

adaptively and request the oracle OS for signed data blocks. When A queries OS with input

m, OS returns 〈m,σ〉, where σ = 〈t, r〉 is a Schnorr signature on h = G(TH Y0
(m, r)||m||r)

that is valid under public key X following the initial block verification procedure of DL-

SA. When A queries OS with input 〈p0, p1, . . . , pn,mn+1〉, where p0 = 〈m0, t0, r0〉 and

pi = 〈mi, ri, Yi〉 (i = 1, . . . , n), OS verifies each block following the verification procedures

described in Section 5.4, and if all blocks are valid, returns pn+1 = 〈mn+1, rn+1, Yn+1〉 such

that TH Y0
(m0, r0) = TH Yn+1

(mn+1, rn+1).

The goal of the adversary is to output one or more of the following forgeries:

Type I: A outputs a forged initial block pF0 containing 〈mF
0 , σ

F 〉 such thatmF
0 was never

submitted as a query to OS and σF = tF0 , r
F
0 passes DL-SA’s initial block verification

procedure under public key X.

Type II: A outputs a forged sequence of blocks 〈pF0 , p
F
1 , . . . , p

F
n 〉 such that the

following hold: (1) mF
n was never submitted as part of a query to OS ; (2)

〈pF0 , p
F
1 , . . . , p

F
n−2,m

F
n−1〉 was submitted as a query toOS and pFn−1 = 〈m

F
n−1, r

F
n−1, Y

F
n−1〉

was received as a response, and (3) pF0 passes DL-SA’s initial block verification

procedure under public key X, and 〈pF1 , . . . , p
F
n 〉 pass DL-SA’s subsequent block

verification procedure under hash key Y0.
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The advantage of the adversary, AdvDLSA
A (λ), is the probability that A successfully

outputs a Type I or a Type II forgery after proceeding adaptively with oracles OH , OG and

OS . We say that the proposed DL-based signature amortization technique is secure against

adaptive chosen message attack if AdvDLSA
A (λ) is negligible for all PPT algorithms A of

polynomial time complexity in the security parameter λ.

Based on Theorems 2.2.1, 3.4.1, and 3.4.2, we now prove that the signature amortization

scheme, DL-SA is secure against an adaptive chosen message attack.

Theorem 5.5.2. The proposed signature amortization scheme, DL-SA is secure against

adaptive chosen message attack under the discrete log assumption.

Proof: Given A, we can construct a PPT algorithm B that breaks the discrete log

problem. Algorithm B acts as a simulator that runs A, answering A’s oracle queries, to

convert a successful attack by A on the proposed signature amortization scheme DL-SA into

an attack on the discrete log of a target public key PK = X. B simulates the hash functions

H and G as random oracles OH and OG, respectively, and a stream block signature oracle

OS that answers queries of A.

B chooses a ∈R Z
∗
q, computes Y0 = Xa mod p and assigns X and Y0 as the public key

and hash key, respectively, of an arbitrary entity e. B initializes an empty list MS to store

the queries of A to oracle OS and the corresponding (simulated) responses of B. When

A queries OH with a message m, B returns h if H(m) is defined (that is, ∃h such that

h = H(m)). Otherwise, B chooses h ∈R Z
∗
q, sets H(m) = h, stores h as the hash entry

for H(m) and returns h to A. Similarly, B simulates responses to A’s queries to hashing

oracle OG (modelling the hash function G). When A queries OS with input m, B does the

following:

1. Checks whether 〈m, ·〉 ∈MS . If so, retrieves that entry, parses it as 〈m,σ〉 and returns

σ to A.

2. Otherwise, chooses g, t ∈R Z
∗
q and computes r = αtX−g mod q.

3. Chooses g ∈R Z
∗
q, sets H(m||r) = h and stores h as the hash entry for H(m||r).

4. Computes THY0
(m, r) = αH(m||Y0)Y r

0 mod q, sets G(THY0
(m, r)||m||r) = g and

stores g as the hash entry for G(THY0
(m, r)||m||r).

5. Stores 〈m, t, r〉 at the next available location in MS .

6. Returns 〈t, r〉 to A.
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When A queries OS with input 〈p0, p1, . . . , pn,mn+1〉, B does the following:

1. Checks whether 〈p0, ·, · · · 〉 ∈ MS (where, p0 = 〈m0, t0, r0〉). If not B returns ⊥

and aborts. B retrieves that entry and parses it as 〈p0, p
′
1, . . . , p

′
i〉. If i < n the

query is invalid, and B returns ⊥ and aborts. Otherwise, rearrange 〈p1, . . . , pn〉 to

get 〈p̄1, . . . , p̄n〉 such that ∀s < t, r̄s ≤ r̄t (i.e., the pi’s are arranged in increasing

order of their r component). Similarly, rearrange 〈p′1, . . . , p
′
n〉 to get 〈p̄′1, . . . , p̄

′
n〉. For

j = 1, . . . n, check whether p̄′j = p̄j. If not, query is invalid, and B returns ⊥ and

aborts.

2. If i > n, returns p′n+1. Otherwise, B chooses hn+1, rn+1 ∈R Z
∗
q, retrieves h0 =

H(m0||Y0) and if no such h0 exists aborts. B computes Yn+1 = α(h0−hn+1)r
−1

n+1Y
r0r

−1

n+1

0

mod p. Set H(mn+1||Yn+1) = hn+1 and stores hn+1 as the hash entry for

H(mn+1||Yn+1).

3. Concatenates pn = 〈mn+1, rn+1, Yn+1〉 to the entry in MS corresponding to 〈p0, ·, · · · 〉.

4. B returns pn = 〈mn+1, rn+1, Yn+1〉 to A.

Eventually A outputs a Type I or Type II forgery. When A outputs a Type I forgery of

the form pF0 containing 〈mF
0 , σ

F 〉, this implies that 〈tF0 , r
F
0 〉 is a forged Schnorr signature

on mF
0 . Based on Theorem 2.2.1, B outputs the discrete log x of the target public key

X. When A outputs a Type II forgery of the form 〈pF0 , p
F
1 , . . . , p

F
n 〉, this implies that one

of the following must hold true: (1) Assume that A submitted m as a query to OS to

receive 〈t, r〉 as a response. Also, assume that A submitted 〈p,m′〉, where p = 〈m, t, r〉,

as a query to OS to receive 〈m′, r′, Y ′〉 as a response. A uses 〈m,m′, r, r′, Y0, Y
′〉 (where,

THY0
(m, r) = THY ′(m′, r′)) to compute the discrete log y0 of Y0 (performs a key exposure)

and using y0 generates the forged block pFn . (2) A generates the pair 〈rFn , Y
F
n 〉 such that

THY0
(mF

0 , r
F
0 ) = THY F

n
(mF

n , r
F
n ) (i.e., performs an ephemeral collision forgery). In either

case, B computes the discrete log x of the target public key X as x = y0 − a mod q.

5.5.3 Performance

In this section we present an experiment-based performance evaluation of the proposed

scheme, DL-SA. First, we provide a brief description of the system setup used for our

experiments that simulates a wider-scale approach for real-world content authentication.

Next, we describe our approaches for improving the efficiency of the proposed scheme in our

simulations. Finally, we compare the performance of the proposed scheme, DL-SA with the
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WL [82] scheme and the CHFS [71] schemes based on results obtained through our experiments.

We choose the WL and CHFS schemes for comparison as they are the only known signature

amortization techniques in the literature that exhibit features that are comparable to the

proposed scheme, which include, the ability to independently verify each block in the stream

(and thus, are robust against arbitrary loss of intermediate blocks) and the capability to

authenticate real-time streams. Shortcomings of other schemes in providing the independent

verifiability and real-time authentication support are elaborated in Section 2.2.4.

System Set-up: Our performance comparison involves experiments to test the perfor-

mance of each scheme which include the average per-block signing and verification timings,

the average number of additional bits that needs to be appended to a block to provide

authentication, and the size of the public key (representing the storage overhead) that

is required for verifying the authenticity of each block in the stream. We conducted

our experiments on a single machine with Intel(R) Core(TM) i7 processor with 6 GiB

RAM running 64-bit Windows(R) 7. For each scheme, we implemented a stream signing

mechanism and a stream verification mechanism using the Java.Security package in Java

Standard Edition 6 using the Eclipse integrated development environment. The signing and

verification mechanisms are each modeled as a class with methods (or subroutines) for the

necessary cryptographic operations.

On a wider-scale test-bed, the signing and verification mechanisms will be implemented

as shared libraries or objects (possibly remote) at the server-side and client-side as part of

the operating system to allow loading the subroutines of a library into multiple applications

at runtime. The approach of using shared libraries for content authentication is similar to

Microsoft’s Authenticode(TM) technology for the Internet Explorer that is used for signing

and verifying executable software distributed over the Internet. The flexibility provided

by dynamic linking of shared libraries will permit multiple flavors of server-side CDM

software and client-side stream playback software to utilize the authentication mechanism.

Another alternative is to implement the stream authentication procedure as an extension

to the transport layer protocols that are used to packetize the stream before transmission.

However, this approach only permits signing a stream at the time of transmission and does

not allow offline signing (for non-real time generated streams) and storage of a signed stream

for future replay (or for caching). An application layer approach (using shared libraries)

to signing and verifying content provides more flexibility compared to a transport layer

mechanism.

In our experiments, we represent the content as a large file (between 50 to 100 MiB
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in size) that is given to an instance of stream signing class as input during runtime. A

method in the signing class splits the file into blocks of equal length, groups the blocks into

equal sized segments and stores the blocks in a two-dimensional array, where each column

of the array represents a segment containing multiple blocks. This array of blocks is given

as input to the block signing method that outputs the signed blocks which are, in turn,

stored in a two dimensional output array. To simulate transmission losses, random entries

in the array of signed blocks are replaced with a null value. Next, the array of signed blocks

(representing the signed stream) is given as input to an instance of the stream verification

class that verifies each block in the array. Our system setup of using Java classes to represent

the stream signing and verification mechanisms is a sufficiently accurate simulation of a real-

world deployment scenario and is adequate for the purposes of performance analysis.

Speed-up of DL-SA: In the DL-SA scheme, exponentiation is the most expensive operation

required to sign and verify each block. The exponentiation operations can be sped up

using the Lim and Lee (LL) technique [51] and the simultaneous multi-exponentiation [60]

at the expense of requiring the sender and receiver to store pre-computed values. For an

exponent e of size 160-bits and a base α of size 1024-bits, the standard square-and-multiply

technique requires 240 multiplications on average. In contrast, the LL method requires only

24 multiplications to compute αe with storage of 1020 1024-bit values (which equates to

127.5 KiB). For fixed bases α1, α2, . . . , αk, the simultaneous multi-exponentiation technique

can be used to efficiently compute αe1
1 αe2

2 · · ·α
ek
k using 299 multiplications with storage

of 2k values (the pre-computation requires (2k − 2) multiplications, but only needs to be

performed once).

We employ the LL and simultaneous multi-exponentiation techniques to optimize the

cost of computing exponentiations and thus, improve the efficiency of the proposed scheme.

Depending on how the optimization techniques are used, we obtain two variants of DL-SA.

The first variant (called the DL-SA.1) uses the LL technique for all exponentiation operations

at the sender and receiver. The second variant (called the DL-SA.2) uses LL technique

to compute exponentiations at the sender, the LL technique to compute exponentiations

during individual block verification and simultaneous multi-exponentiation during batch

verification of blocks.

Performance Comparison: Table 5.1 shows the performance comparison of both variants

of the proposed scheme against the WL and CHFS schemes. Our test-bed is used to simulate

each scheme. In Table 5.1, the term x denotes the cost of modular exponentiation with

160-bit exponent in the DL-based cryptosystem, e denotes the cost of RSA encryption
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Table 5.1: Performance comparison of proposed signature amortization scheme, DL-SA with
existing schemes.

Scheme Sig.
Size
(Bits)

Signing Cost Verification Cost PK
size
(Bits)

Individual Batch

Opns Timing
(ms)

Opns Timing
(ms)

Opns Timing
(ms)

WL.1 [82] 704 0.06d +
1.94h

0.39 0.06e +
0.88h

0.01 N/A N/A 1024

WL.2 [82] 1152 0.06d +
1.94h

0.02 0.06e +
0.88h

0.01 N/A N/A 2048

CHFS [71] 2320 0.03d +
349.22h

1.74 184h 0.83 N/A N/A 720

DL-SA.1 160 0.03x +
1h

0.03 2.06x +
1h

0.21 0.06x +
l+1

l
x+h

0.16 to
0.11

1024

DL-SA.2 160 0.03x +
1h

0.03 2.06x +
1h

0.21 0.06x +
2.49

l
x+h

0.11 to
0.09

1024

(i.e., modular exponentiation with 16-bit exponent), d denotes the cost of RSA decryption

(i.e., modular exponentiation with 1024-bit exponent), h is the cost of cryptographic hash

computation and l is the number of blocks that are batch verified in the proposed DL-SA

scheme (3 ≥ l ≥ 32 for DL-SA.1 and 20 ≥ l ≥ 32 for DL-SA.2). All computation, storage and

communication costs are based on a security benchmark of 1024-bits.

For the WL scheme, we divide the stream into blocks of 1024-bytes in size, group 16 blocks

into a segment, and amortize a signature over each segment as suggested by Wong et al. [82].

The first variant WL.1 uses the RSA signature scheme and the second variant WL.2 uses the

eFFS signature scheme [82]. For the CHFS we divide the stream into blocks of 240-bytes in

size, group 32 blocks into a segment, and use 36-time key pairs to amortize a RSA signature

over each segment as suggested by Rohatgi et al. [71]. The signature size represents the size

of the authenticating information contained in each block. Signing and verification costs

represents the average cost for signing and verifying each block. The columns showing the

number of operations required to sign and verify each block contain only the most significant

(expensive) operations. For the DL-SA scheme, we assume that each segment contains 32

blocks, each of size 1024-bytes. The signature size corresponds to subsequent segments. All

public keys necessary to verify the entire stream are transmitted in the first segment using

an additional 1024-bits per block and not transmitted for subsequent segments.

The performance analysis shows that the DL-SA scheme incurs the smallest per-block

communication overhead and provides the fastest block signing rates compared to the WL
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and CHFS schemes. Although both variants of the WL scheme provides faster verification

compared to the proposed scheme, they suffer from several problems which include variable

communication overhead per-block, the inability to support authentication of multiple

simultaneous streams, and introducing sender-side delay to maintain reasonable costs

(see [71] for details). The DL-SA scheme does not suffer from any of the drawbacks of

the WL scheme. The most efficient variant of the WL scheme, WL.2 uses the largest secret key

(131072-bits) and the largest public key compared to the other schemes. The CHFS scheme

also overcomes all drawbacks of the WL scheme but incurs more overhead compared to DL-SA

in terms of signing cost, verification cost and per-block signature size. The DL-SA scheme

provides the best balance between features and performance compared to both WL and CHFS

schemes.

5.6 Summary

Mechanisms of stream authentication in content distribution networks help prevent

masquerading attacks and malicious modification of content during transmission. However,

efficient authentication of live, on-demand content is a challenging task and requires

fast signing and verification, tolerance against transmission loss and small per-block

communication overhead. We presented a novel trapdoor hash-based signature amortization

technique that meets these challenges to provide efficient authentication of delay-sensitive

and real-time streams in content distribution, multicast and peer-to-peer networks. Our

signature amortization technique works by authenticating the initial block in a stream

using a signature on the trapdoor hash of the block contents and authenticating subsequent

blocks of the stream by finding trapdoor collisions with the hash of the signed initial block.

We demonstrated the efficacy of the proposed technique to build practical instances by

presenting a discrete log-based instantiation of the proposed technique called DL-SA. The

DL-SA scheme was designed to allow both individual verification of a single block in the

stream or batch-verification of multiple blocks to reduce the average verification cost per

block. We provided a detailed analysis of the proposed scheme including its correctness,

security and performance. We demonstrated that the DL-SA scheme incurs the smallest

per-block communication overhead and provides the fastest block signing rates compared

to existing stream authentication schemes of Wong et al. [82] and Rohatgi et al. [71] that

also provide the ability to independently verify each block in the stream.

Copyright c© Santosh Chandrasekhar 2011
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Chapter 6

Conclusion and future work

6.1 Thesis contributions

In this dissertation, we presented authentication schemes that can be used to secure

distributed applications against various threats, including malicious manipulation of data,

and adversaries masquerading as legitimate entities. To this end, we developed techniques

to construct proxy signatures and signature amortization schemes using trapdoor hash

functions. The proposed proxy signature scheme is designed to authenticate agents acting

on behalf of users in agent-based computing systems. The proposed signature amortization

scheme is designed to authenticate each block comprising a stream in content distribution

systems. Our performance analysis shows that for a desired level of security, the proposed

schemes outperform previous schemes, both in computation cost, and communication

overhead. To summarize, we make the following contributions:

• The goal of this dissertation is to present new techniques to build various authen-

tication schemes that use the collision finding property of trapdoor hash functions

to authenticate messages. Our motivation for using trapdoor collisions for message

authentication stems from the following observation: When a trapdoor hash function

is used within a hash-then-sign signature scheme, it permits the party with knowledge

of the trapdoor to re-use the signature value to authenticate other messages of choice

by finding collisions between the hash of the original signed-message and the new

message that needs to be signed. To achieve our goal, we developed a key-exposure

and collision-resistant discrete log-based trapdoor hash function that, unlike existing

trapdoor hashing schemes [3, 4, 26, 44, 74], is suitable for use as a building block to

construct authentication schemes that use the process of computing hash collisions

using a trapdoor key, rather than generating conventional signatures using a secret

key, to authenticate messages. The proposed scheme is designed to ensure that it

is computationally infeasible for a third party to compute additional hash collisions

with the knowledge of a message pair whose trapdoor hash values are equal. The

proposed scheme is resistant to collision forgery and key exposure under the discrete

log assumption. The proposed scheme is more efficient compared to existing key-
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exposure-free trapdoor hashing schemes in terms of computation overhead during

trapdoor hash and collision computation.

• Agent-based computing is a popular approach for designing large-scale and complex

distributed systems [40]. Agents are software instances that can be delegated by a

user (individual or a company) to carry out operations on its behalf. To secure agent-

based computing systems against malicious attacks, users have to establish trust

relationships with agents which includes their security, reliability, availability, and

business continuity guarantees. Moreover, sensitive information stored and processed

by agents need to be protected from exposure, alteration and corruption. We study

the problem of providing efficient authentication of agents in agent-based computing

environments. To this end, we proposed a simple and elegant technique to construct

provably secure proxy signature schemes using trapdoor hash functions that can be

used to authenticate and authorize agents acting on behalf of users in agent-based

computing systems. Unlike most common proxy signature schemes [13, 47, 43],

the proxy signing key pair is not derived from the delegator’s signature during the

proxy delegation phase. Instead of generating a signature on the message in the

traditional sense, the proxy uses its trapdoor key (known exclusively to itself) to find

a trapdoor collision between the trapdoor hash of the warrant and the given message.

We demonstrated the effectiveness of our approach for creating practical instances

by constructing a discrete log-based instantiation of the proposed generic technique,

called the DL-TPS scheme. The DL-TPS yields superior performance in terms of proxy

signature verification among the schemes in [13, 39, 43, 47, 57, 69, 83] and produces

the smallest proxy signatures compared to schemes in [13, 43, 47, 48, 57, 69]. The

proposed scheme is resistant to forgery attacks under the discrete log assumption.

• In networks designed to distribute content, mechanisms for stream authentication

can help prevent malicious modification of content during transmission and attacks

where adversaries masquerade as legitimate content providers to distribute malicious

content. Efficient authentication of live and on-demand content requires fast

signing and verification, tolerance against transmission loss and small per-block

communication overhead. We developed a novel trapdoor hash-based signature

amortization technique that meets these challenges to provide efficient authentication

of delay-sensitive and real-time streams in content distribution, multicast and peer-to-

peer networks. The basic idea behind the proposed signature amortization technique
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is to authenticate the initial block of a stream using a signature on the trapdoor hash

of the block contents and authenticate subsequent blocks of the stream by finding

trapdoor collisions with the hash of the signed initial block. We also constructed a

discrete log-based instantiation of the proposed technique, called DL-SA. The DL-SA

scheme allows both individual verification of a single block in the stream or batch-

verification of multiple blocks to reduce the average verification cost per block. The

proposed scheme is secure against forgery attacks under the discrete log assumption.

The proposed scheme incurs the smallest per-block communication overhead and

provides the fastest block signing rates compared to existing stream authentication

schemes of Wong et al. [82] and Rohatgi et al. [71] that also provide the ability to

independently verify each block in the stream.

6.2 Future research directions

Future research work on topics covered by this dissertation can proceed along the following

three directions: (1) Studying the feasibility of building additional forms of signatures using

trapdoor hash functions; (2) Further improving efficiency of proposed trapdoor hash-based

signature schemes; (3) Building practice-oriented security proofs for the proposed signature

schemes.

6.2.1 Building additional forms of signatures using trapdoor hash functions

The proposed trapdoor hash-based authentication techniques are all based on the idea of

replacing traditional hash functions in signature schemes with trapdoor hash functions and

authenticating new messages by finding a collision with a previously signed message using

a trapdoor key. This general idea can be applied to develop additional forms of digital

signature schemes.

We are currently in the process of developing an aggregate signature scheme using

trapdoor hash functions. The paradigm of signature aggregation allows combining multiple

signatures into a single condensed signature, whose verification simultaneously establishes

the validity of all component signatures. Depending on the type of message each participant

signs, condensed signature schemes can be classified into multisignature and aggregate

signature schemes. An aggregate signature scheme involves compression of n signatures

σ1, . . . , σn, where each σi is a signature on a distinct message mi under public key

PKi, into a single aggregate signature σ on messages m1, . . . ,mn that can be verified

under public keys PK1, . . . , PKn. On the other hand, a multisignature is an aggregate
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signature generated on a common message. Both multisignature and aggregate signature

schemes can be constructed in a sequential [54] or non-sequential manner [14]. Condensed

signatures offer bandwidth and storage savings, and are usually more efficient to verify

compared to verifying all component signatures individually. Due to these advantages,

condensed signatures have found numerous applications like, securing multicast feedback

acknowledgement [19, 22], securing ad hoc routing [21, 42], authenticating delegates in

mobile code systems [75], securing path-vector routing protocols [23, 41, 84] and building

efficient certificate chains [54].

Assume a trapdoor hashing scheme that allows multiple entities to compute collisions

with a given hash value. Intuitively, the method for producing trapdoor hash based

aggregate signatures exploits the general practice of generating signatures on hashes of

messages (rather than on the message itself). By replacing traditional hash functions with

trapdoor hash functions in the signature generation process, each signer participating in

the aggregate signature scheme can find collisions between hashes of different messages.

Thus, by using trapdoor collisions among the different messages that each participant

signs, each signer can produce signatures on a common hash value that can be combined

using a multisignature construction technique to produce the resulting aggregate signature.

This is because, as noted earlier, multisignatures are essentially aggregate signatures with

the restriction that each signer signs the same message, or rather, the same hash value.

This method for constructing aggregate signatures represents a significant departure from

traditional aggregate signature construction techniques and can provide researchers with

new opportunities to built novel aggregate signature schemes that can take advantage of

various existing multisignature construction techniques to achieve the desired efficiency and

scalability needs. For instance, the multisignature by Micali et al. [61] outperforms all

known aggregate signatures in terms of computation overhead for signature generation,

aggregation and verification.

6.2.2 Further improving efficiency of proposed trapdoor hash-based signature

schemes

The schemes proposed in this dissertation demonstrate improved performance over existing

schemes in the literature. The discrete log-based instantiations of the proposed generic

techniques serve as the first step in building efficient authentications schemes. The

proposed generic techniques allow the use of any type of digital signature and trapdoor

hashing schemes provided that the security properties of the constituent schemes meet

the requirements described in this dissertation. Future implementations of the proposed
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generic techniques can use primitives from various cryptosystems and new constructions of

signature and trapdoor hashing schemes to further enhance the efficiency of the proposed

trapdoor hash-based authentication schemes.

One technique to further improve the performance of the proposed schemes is through

the use of linear feedback shift register (LFSR)-based cryptosystems to develop new

instantiations of the proposed techniques. An nth order LFSR is an electronic switching

circuit with n storage units regulated by a clock that causes the content of each storage

unit to shift to the next unit in line with each clock pulse. Traditionally, LFSRs have

been used to generate key streams in stream ciphers. More recently, Gong et al. [35] and

Lenstra et al. [50] have proposed the use of LFSR to build public key cryptosystems. LFSR-

based cryptosystems use reduced representation of finite field elements and extremely fast

sequence operations to provide substantial savings of communication and computational

overhead for a desired level of security. For instance, the XTR cryptosystem [50] uses 340-

bit keys to provide security equivalent to a DL-based cryptosystem that uses 1024-bit keys.

Moreover, sequence operations in XTR is three times faster than modular exponentiations

in the DL-based cryptosystem [22, 21, 23].

We have used LFSR-based cryptosystems in the past to build efficient and scalable

multisignatures [22, 21], aggregate signatures [23], blind signatures [20] and proxy

signatures [25]. Future implementations of the proposed techniques can use LFSR-

based cryptosystems to achieve performance improvements over the discrete log-based

instantiations presented in this dissertation.

6.2.3 Building practice-oriented security proofs for the proposed signature

schemes

In this dissertation we use the complexity theoretic framework to formalize the security

proofs of the proposed authentication schemes. The proposed security proofs use proba-

bilistic polynomial time adversaries, polynomial time transformations and show that the

adversary succeeds in breaking the proposed scheme with negligible probability. Although

such proofs form a good baseline to demonstrate the security of our schemes, their impact

in practice is limited. Practitioners can better judge the security of a scheme when provided

with data like the number of cycles of adversarial computations a scheme can withstand,

minimum key size (or parameter size) needed to withstand attacks, and so forth.

Future work on the proposed schemes can involve refining the security proofs by taking

a practice-oriented approach [9] where one can attempt to present quantitative results

regarding the security of the proposed authentication schemes. Future security proofs
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can place quantitative bounds on the success probability of an adversary in breaking the

proposed schemes. The success probability can be expressed in terms of quantifiable values

such as the number of oracle queries made by the adversary, the amount of time an adversary

computes, the key length (or the parameter length).

Copyright c© Santosh Chandrasekhar 2011
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