
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2007

FASTER DYNAMIC PROGRAMMING FOR MARKOV DECISION FASTER DYNAMIC PROGRAMMING FOR MARKOV DECISION

PROCESSES PROCESSES

Peng Dai
University of Kentucky, daipeng@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Dai, Peng, "FASTER DYNAMIC PROGRAMMING FOR MARKOV DECISION PROCESSES" (2007). University
of Kentucky Master's Theses. 428.
https://uknowledge.uky.edu/gradschool_theses/428

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted
for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more
information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

FASTER DYNAMIC PROGRAMMING FOR MARKOV DECISION PROCESSES

Markov decision processes (MDPs) are a general framework used by Artificial Intelligence
(AI) researchers to model decision theoretic planning problems. Solving real world MDPs
has been a major and challenging research topic in the AI literature. This paper discusses
two main groups of approaches in solving MDPs. The first group of approaches combines
the strategies of heuristic search and dynamic programming to expedite the convergence
process. The second makes use of graphical structures in MDPs to decrease the effort of
classic dynamic programming algorithms. Two new algorithms proposed by the author,
MBLAO* and TVI, are described here.

KEYWORDS: Decision Theoretic Planning, Markov Decision Process, Dynamic
Programming, Heuristic Search, Topological Structure

Peng Dai

July 10, 2007

FASTER DYNAMIC PROGRAMMING FOR MARKOV DECISION PROCESSES

By

Peng Dai

Dr. Judy Goldsmith
Director of Thesis

Dr. Grzegorz W. Wasilkowski
Director of Graduate Studies

29 June 2007

RULES FOR THE USE OF THESES

Unpublished thesis submitted for the Master’s and Doctor’s degrees and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used only
with due regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the author,
and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part requires also the consent
of the Dean of the Graduate School of the University of Kentucky.

A library which borrows this thesis for use by its patrons is expected to secure the signature
of each user.

Name Date

THESIS

Peng Dai

The Graduate School

University of Kentucky

2007

FASTER DYNAMIC PROGRAMMING FOR MARKOV DECISION PROCESSES

THESIS

A thesis submitted in partial fulfillment of the
requirements of the degree of Master of Science in the
College of Engineering at the University of Kentucky

By

Peng Dai

Lexington, Kentucky

Director: Dr. Judy Goldsmith, Department of Computer Science

Lexington, Kentucky

2007

Copyright c© Peng Dai 2007

DEDICATION

I dedicate this to my closure at the University of Kentucky.

ACKNOWLEDGMENTS

This thesis is the result of many sources of help. First of all, Dr. Judy Goldsmith, my

advisor and thesis chair, who brought me into the world of AI planning, helped me in

study and doing research, and supported me all the time, deserves my faithful thanks. I

benefited a lot from our whole AI group, especially from Dr. Miroslaw Truszczyński and

Dr. Lengning Liu. I also thank Dr. William Dieter and Dr. Andrew Klapper for their useful

comments on earlier drafts of this document.

iii

Table of Contents

Acknowledgments. .iii

List of Tables. .vi

List of Figures .vii

Chapter 1 Introduction. 1

Chaper 2 Search. 2
2.1 Basic Searching Algorithms. 3

Chapter 3 Decision Theoretic Planning. 5

Chapter 4 Markov Decision Processes and Related Algorithms. 6
4.1 Markov Decision Processes. 6
4.2 Two basic dynamic programming algorithms for indefinite horizon MDPs. 7

4.2.1 Dynamic programming. 7
4.2.2 Value Iteration . 8
4.2.3 Policy Iteration. 9
4.2.4 Limitations . 9

Chapter 5 Planning Algorithms with the Help of Search Strategies. 11
5.1 RTDP .11
5.2 HDP .12
5.3 A*-based Algorithms. .12

5.3.1 AO* .12
5.3.2 LAO* .13
5.3.3 BLAO* .14
5.3.4 RLAO* .14
5.3.5 Comparison of LAO*, BLAO* and RLAO*. 17
5.3.6 MBLAO* .18

5.4 Experiments. .22

Chapter 6 Priority-based Algorithms. 30
6.1 Prioritized Sweeping. .30
6.2 Improved Prioritized sweeping. 30
6.3 Focussed Dynamic Programming. 31
6.4 Topological Value Iteration. 32
6.5 Experiments. .33

Chpater 7 Conclusion and Future Work. 37

iv

Bibliography .38

Vita .41

v

List of Tables

5.1 Convergence time on 10,000-state 5-successor state random MDPs. . . . 21
5.2 Maximum number of Bellman backups each iteration on 10,000-state 5-

successor state random MDPs. 21
5.3 Number of iterations on 10,000-state 5-successor state random MDPs. . . 22
5.4 Convergence time for different algorithms on different MDPs (δ = 10−6) . . 24
5.5 Number of backups performed for each algorithm on different MDPs (δ =

10−6) .24
5.6 # of backups performed by MBLAO* with different thread numbers on

MCar(300× 300) instances. 26
5.7 Speedups achieved against LAO* and percentage of backups from the back-

ward searches (δ = 10−6) . 28
6.1 Problem Statistics and convergence time in CPU seconds for different al-

gorithms with different heuristics (δ = 10−6) 34
6.2 Problem statistics and convergence time in CPU seconds for different algo-

rithms on solving artificially generated layered MDPs with different num-
ber of layers (|s|=20000,ma=10,ms=20,δ = 10−6) 35

6.3 Problem statistics and convergence time in CPU seconds for different algo-
rithms on solving artificially generated layered MDPs with different state
space (nl=20,ma=10,ms=20,δ = 10−6) 35

vi

List of Figures

5.1 Convergence time on 4-action 5-successor state random MDPs. 18
5.2 Convergence time on 10,000-state 4-action random MDPs. 19
5.3 Number of iterations on 10,000-state 4-action random MDPs. 20
5.4 Convergence time on 10,000-state 5-successor state random MDPs with. . 22
5.5 Statistics of random MDPs with fixed state space size and maximum suc-

cessor state number. .25

vii

Chapter 1

Introduction

The problem of decision theoretic planning has become a central research topic in AI, not

only because it is an extension to classical planning, but also due to its close connection

with solving real world problems. Markov decision processes (MDPs), a graphical and

mathematical framework, has been utilized by AI researchers to model decision theoretic

planning problems. Solving MDPs has been an interesting research area for a long time,

because of the slow convergence of MDP algorithms on real world domains. This paper

concentrates on advances in expediting the convergence of existing dynamic programming

algorithms, a basic tool to solve an MDP.

1

Chapter 2

Search

From Russell and Norvig’s [24] points of view, the job of AI is to design theagent program:

a function guiding the behavior of an agent, mapping from percept to actions. A specific

class of agents, calledgoal-based agents, is provided with the information of problem

states, its own percept, and also goal information. For example, the goal of a taxi driver

is to take a passenger to his destination, and the states of the problem are the different

situations the driver can possible meet while driving.Searchandplanningare the subfields

of AI devoted to finding action sequences that achieve the agent’s goals.

To illustrate why search is useful and how it is performed, let us consider the following

scenario: an agent wants to discover a path from the current states it is in to some goal state

g of a goal setG. Along the path, there are correlated costs, and the agent wants to discover

a path with the minimum expected cost. We denote this cost as thevalueof s. However,

it only knows the values of some states in the problem space, the goal information, and

the problem formulation. One possible strategy of the agent is to examine a set of possible

sequences of actions leading to states of known value. The result of the examinations is a

directed graph, where edges have costs attached. The agent then chooses one path with the

minimum cumulative cost. This process of looking for such a sequence is calledsearch. A

typical search problem is the graph shortest-path problem. Many problems can be reduced

to it, such as robot navigation, DNA sequence mapping [18], etc. A search algorithm takes

a problem as an input and outputs a solution in the form of an action sequence, or a plan.

Research on search has concentrated on finding the right search strategy for different

problems. The following four aspects are often used as criteria to evaluate those strategies

[24]:

• Completeness: if there is at least one solution, is the strategy guaranteed to find one

of them?

2

• Time complexity: what is the asymptotic time to find a solution in the worst and the

average case?

• Space complexity: how much storage space is needed to perform the search in the

worst and the average case?

• Optimality: is the strategy guaranteed to find the best if there are several solutions?

2.1 Basic Searching Algorithms

Search strategies can be classified into two categories:uninformed searchand informed

search. Uninformed search or blind search means that the agents (usually in the form of

programs) have absolutely no idea about the number of steps it takes to a goal state or any

information about state values. Their only ability is to distinguish a goal state from a non-

goal state. Some of the well known uninformed search strategies are:breadth-first search,

depth-first search, iterative deepening search, bidirectional search.

Strategies that use additional information of the problems are calledinformed searchor

heuristic search. A heuristic value function is usually denoted byh: h(n) = estimated cost

of the shortest path from the staten to a goal state. A straightforward use of the heuristic

values is to initialize the values of the state space. By doing so, the initial values are

usually more reasonable and informative than arbitrarily assigned initial values. Searching

and planning with the help of heuristic functions is usually faster than without.

A* [16] is a basic heuristic search algorithm used in state space search problems. It

estimates the value of a state by combining the two evaluation functionsg andh: f(n) =

g(n) + h(n), whereg(n) gives the cost from the start state to the staten, andh(n) is the

estimated cost of the cheapest path from the staten to the goal, sof(n) is the estimated

cost of the cheapest solution from the start state to the goal state that passes throughn.

Thus, in finding the cheapest solution we first search along states with lowerf values. A*

search is categorized as an informed search method, because it makes use of knowledge of

the universe by referring to the heuristic functionh. The heuristic functionh is said to be

admissibleif it never overestimates the value of any state. Admissible heuristic functions

3

are especially useful in informed search algorithms. It has been proved that A* search is

both complete and optimal whenh is admissible. Interested readers can find the proofs in

[24].

4

Chapter 3

Decision Theoretic Planning

In the problems discussed above, we assume there is only one possible outcome after tak-

ing an action. In the real world, there exist many problems with uncertain outcomes, or

nondeterministic problems. In a nondeterministic problem, an actiona makes the system

change from one states1 to another states′1. However,s′1 is not uniquely determined by

s1 anda. Often, there are a setS1 of possible resulting states after taking actiona in state

s1, and the system changes to some states′1 ∈ S1 nondeterministically.Decision theoretic

planning(DTP) is an attractive extension of the classical AI planning paradigm, because it

models problems in which actions may have uncertain and cyclic effects. Roughly speak-

ing, the aim of a DTP problem is to form a course of action that has low expected cost when

guaranteed to achieve the goal. Much work on DTP has used the Markov decision process

framework as a model.

5

Chapter 4

Markov Decision Processes and Related Algorithms

In this section, the definition of the Markov Decision Processes will be given first, followed

by the introduction of basic strategies of solving MDPs.

4.1 Markov Decision Processes

MDPs are used widely in the AI literature for representing stochastic sequential decision

problems. A standard MDP has the following components [9]:

A finite set ofstatesS: A states ∈ S is a description of the system at a given time.

If we regard that a system evolves discretely rather than continuously, we can partition a

system into a sequence ofstages, and a system is at one particular state at each stage. Any

event will make the system change from one states at staget to the another states′ and

proceeds to staget+ 1. In our work, we assume time is measured in discrete units.

A finite set ofactionsA: At each staget of the process and each states, the agent has

a set of applicable actionsAts ⊆ A. When an action is performed, the system makes a

nondeterministic transition.

Transition functionsT : S×S → R: Each action is appended with a transition function

that tells the likelihood of the system changing from one state to another state as a result of

performing that action.Ta(s′|s) gives the probability of transition from states to states′

after performing actiona.

Cost functions: C : S × A → R: Each state-action pair(s, a) is associated with an

instant cost. For some MDPs, cost functions can be replaced or complemented by the

reward functions.

The horizonof an MDP is the total number of stages the system is evaluated. When

the horizon is a finite numberH, solving the MDP means finding the best action to take

at each stage and state that minimizes the total expected cost. More concretely, the chosen

actionsa0, . . . , aH−1 should minimize the valuef(s) =
∑H−1

i=0 C(si, ai), wheres0 = s.

6

For infinite-horizonor indefinite-horizonproblems, problems when the horizon is infinite

or unknown, the cost is accumulated over an infinitely long path. To emphasize the relative

importance of instant costs, adiscount factorγ ∈ (0, 1] is used for future costs. With

discount factorγ, our goal is to minimizef(s) =
∑∞

i=0 γ
iC(si, ai).

Given an MDP, we define apolicyπ : S×N→ A to be a function from the state-stage

pairs(s, n) to actions, wheren ∈ N is the number of stages left. Avalue functionV π for

policyπ, V π : S → R, denotes the value of the total expected cost starting from states and

following the policyπ. A policy π1 dominates another policyπ2 if V π1(s) ≤ V π2(s) for

all s ∈ S. An optimal policyπ∗ is a policy that is not dominated by any other policies. It

guides the agent to pick the most appropriate action at each stage and state that minimizes

the total expected cost. We describe the expected cost accumulated by starting at states

and following the optimal policy by theoptimal value functionV ∗. Note thatV ∗ is unique,

while π∗ is sometimes not.

A goal-based MDPusually has two more componentss0 andG, wheres0 ∈ S is an

initial state or start state andG ⊆ S is a set of goal state. An optimal policy guides the

system froms0 to some state inG with the smallest expected cost. So to solve a goal-based

MDP means to findV ∗(s0) andπ∗(·). We usually only consider goal-based MDPs with

infinite time horizons. Throughout the rest of the paper, we will use goal-based MDPs as

our problem paradigm.

4.2 Two basic dynamic programming algorithms for indefinite horizon MDPs

This section studies two basic dynamic programming algorithms of solving MDPs:value

iterationandpolicy iteration.

4.2.1 Dynamic programming

Bellman showed that the set of value functionsV π, evaluated according to different horizon

values, can be solved by dynamic programming [2]. For finite-horizon MDPs,V π
0 (s) is

defined to beC(s, π(s)), andV π
t (t > 0) is defined iteratively:

V π
t (s) = C(s, π(s)) +

∑
s′∈S

Tπ(s)(s
′|s)V π

t−1(s′). (4.1)

7

Similarly, the optimal value functionV ∗0 (s) is defined to bemina∈A(s)C(s, a), andV ∗t

(t > 0) is defined iteratively:

V ∗t (s) = mina∈A(s)[C(s, a) +
∑
s′∈S

Ta(s
′|s)V ∗t−1(s′)]. (4.2)

For infinite-horizon or indefinite-horizon MDPs, since at any stage the number of stages

left is infinite or indefinite, we can regard all stages as the same. In this case, the policy

and value function of different states arestationary[3, 23, 2], because they do not depend

on the number of stages left. The value functions of a policyπ are defined as:

V π(s) = C(s, π(s)) + γ
∑
s′∈S

Tπ(s)(s
′|s)V π(s′), γ ∈ (0, 1], (4.3)

and the optimal value function is defined as:

V ∗(s) = mina∈A(s)[C(s, a) + γ
∑
s′∈S

Ta(s
′|s)V ∗(s′)], γ ∈ (0, 1]. (4.4)

The Bellman equationis an equality that is satisfied by a system of value functions in

the form of Equation4.2 or 4.4. By applying Bellman equations, we can use dynamic

programming techniques to compute the optimal value function. An optimal policy is easily

extracted by choosing an action for each state that contributes to its optimal value function.

The two basic dynamic programming algorithms to solve MDPs are value iteration and

policy iteration.

4.2.2 Value Iteration

The basic idea of value iteration [2] is to iteratively refine the grossly initialized value

functions. The pseudocode of a variant of value iteration namedGauss-Seidel value iter-

ation [3, 8] is shown in Algorithm1. This algorithm improves an evaluation function by

means of dynamic programming. The values of each state are initialized by their best cost

function values. Then value iteration iteratively updates the value function of the whole

state space by applying Equation4.4. We call one such update aBellman backup. The

Bellman residualof a states is defined to be the difference between the value functions of

s after and before a Bellman backup. TheBellman erroris the maximum Bellman residual

8

Algorithm 1: Gauss-Seidel Value Iteration

Input: S, A, γ, δ
for every states do
V (s)← minaC(s, a)
π(s)← argminaC(s, a)

end for
repeat

for every states do
Backup(s)

end for
until (Bellman error ofS < δ)

Backup(s)
V (s)← mina[C(s, a) + γ

∑
s′ Ta(s

′|s)V (s′)]
π(s)← argmina[C(s, a) + γ

∑
s′ Ta(s

′|s)V (s′)]

of all the states. We call a particular states convergedwhen the Bellman residual ofs is

smaller than a threshold valueδ, and all itssuccessors, the set of states that can be changed

from s, are converged. Otherwise,s is not converged orunconverged. When value itera-

tion finds, at some iteration, that the Bellman error is less than the input error boundδ, it

concludes that all the states are converged and terminates.

4.2.3 Policy Iteration

Howard’spolicy iteration[17] is another approach for solving MDP problems. It has two

interleaved phases: policy evaluation and policy improvement. In the policy evaluation

phase the value functions of the state space under the current optimal policy are updated by

solving systems of|S| linear equations. The policy improvement phase updates the current

optimal policy by choosing greedy actions based on the value functions calculated in the

policy evaluation phase. If a certain policy improvement step has no policy change, the

algorithm stops. In practice, although policy iteration spends more computational time at

each iteration, it converges in fewer iterations than does value iteration.

4.2.4 Limitations

Value iteration and policy iteration are both optimal and complete. Although they converge

in time polynomial in|S| and1/(1 − γ) [19], the two algorithms suffer from efficiency

9

problems. For realistic problems when the state spaces are large, these algorithms take a

long time to get an optimal policy. For this reason AI researchers have devoted energy to

finding algorithms that can converge faster. The main drawback of both algorithms is that

all the states in the state space are backed up in each iteration. There are several reasons

that this is not necessary. First, some states are not reachable from the start state, so they

are irrelevant in deciding the value function of the start state. Second, the value functions

of some states converge faster than others, so in some iterations we actually only need to

update values of a subset of the all the states. Third, the value functions of each state are

initialized by instant cost functions, and sometimes this initialization is too conservative,

so it normally takes quite a few iterations for VI and PI to converge.

10

Chapter 5

Planning Algorithms with the Help of Search Strategies

From the previous section we know that value iteration and policy iteration are not practical

for solving MDPs with large state spaces. To overcome this problem, researchers have

proposed algorithms that make use of search strategies. This section discusses planning

algorithms that fall into this category.

5.1 RTDP

Barto et al. [1] proposed the real-time dynamic programming (RTDP) algorithm. It is the

first dynamic programming approach combined with search. RTDP explores possible trials

(paths from the start state to a goal state) to simulate the execution of the system. At the be-

ginning of each trial, the current state is initialized to the start state. At each step of the trial,

RTDP backs up the current state, picks a greedy action based on the current value function,

and changes the current state stochastically according to the transition function. Each trial

stops when a goal state is reached or a maximum number of steps are accomplished. We

define a states′ reachablefrom another states if s′ can be changed froms within finite

number of transition steps, otherwise we says′ is unreachablefrom s. It is easily seen

that the states unreachable from the start state are ignored in the trials and therefore never

backed up.

The advantage of RTDP is that it can find a good sub-optimal policy quite fast, because

a policy is found when a trial terminates at a goal state. But its convergence is slow. Bonet

and Geffner extended RTDP to labeled RTDP (LRTDP) [7], and the convergence of LRTDP

is faster than RTDP. They define a states assolvedif the Bellman residuals ofs and all

the state that are reachable through the optimal policy froms are small enough. LRTDP

labels solved states when a trial is finished. In later trials, solved states are regarded as “tip”

states, and they are no longer backed up. LRTDP converges when the start state is solved.

11

5.2 HDP

HDP is another state-of-the-art algorithm by Bonet and Geffner [6]. It not only uses the

similar labeling technique as LRTDP, but also discovers the strongly connected components

in the solution graph of an MDP. HDP labels a component as solved when all the states in

that component have been labeled. HDP expands and updates states in a depth-first fashion

rooted at the start states. All the states belonging to the solved components are regarded as

tip states. Experimental results show that HDP converges faster than LAO* and LRTDP on

most of the racetrack MDP benchmarks when the heuristic functionhmin [7] is used.

5.3 A*-based Algorithms

The A* algorithm, discussed in Section2.1, is a heuristic search algorithm for deterministic

planning problems. This section discusses in detail some extensions and related MDP

algorithms to A*.

5.3.1 AO*

An extension to the A* algorithm,AO* [22], applies to acyclicAND/OR graphsor acyclic

MDPs. It finds an optimal solution that has the structure of a tree. Like other heuris-

tic search algorithms, AO* finds the optimal solution without considering the whole state

space. Theexplicit graphor solution graphof an MDP is a subgraph of the original MDP

that includes all the states that are reachable by applying the optimal policy from the start

state and related actions. In an MDP, the states in its explicit graph form the set of relevant

states, because the values of other states do not directly influenceV ∗(s0). A partial explicit

graph is defined similarly to a explicit graph, with the difference that the tip states of a

partial solution graph may not be a goal state. As the algorithm proceeds, it constructs and

expands a partial explicit graphG, which initially only contains the start state. A tip (leaf)

state ofG is terminalif it is a goal state; otherwise, it isnonterminal. AO* keepsexpanding

the partial solution graph until there are no more nonterminal tip states. A nonterminal tip

state is expanded by adding to the explicit graph one of its actions and all the successor

states that currently are not in the explicit graph. A setZ that contains all the newly added

12

states and theirancestors(the set of relevant states that can reach them) is built after the

expansion. AO* then repeatedly deletes fromZ states with no descendents inZ and backs

up the deleted states untilZ becomes empty. It is always possible to back up states inZ in

this way, since AND/OR graphs do not have cycles, and neither do the setsZ.

5.3.2 LAO*

Algorithm 2: Improved LAO*

Input: S, A, γ, δ
for every states do
V (s)← heuristic value
π(s)← argminaV (s)

end for
repeat

for all states do
s.expanded← false

end for
G← ∅
G← G ∪ {s0}
Search(G, s0)

until (Convergence Test(G, δ))
returnV (·), π(·)
Search(G, s)
s.expanded← true
Backup(s)
a← π(s)
for every successor states′ of a do

if s′.expanded = false and s′ is not a goal statethen
G← G ∪ {s′}
Search(G, s′)

end if
end for

LAO* [15, 14] is an extension to the AO* algorithm that can handle solutions which

contain loops. Thus, it can handle MDPs. Instead of updating states inZ by their topolog-

ical order, it calculates their values by value iteration, because topological orders among

these states may not exist. An improved version of LAO*, improved LAO* (ILAO*) [14],

interleaves the explicit graph construction and value iteration. Its pseudocode is shown in

Algorithm 2. Different with LAO*, ILAO* backs up states only once after each expansion.

13

Several runs of explicit graph construction are done until all the states in the most recent

explicit graph are converged.

5.3.3 BLAO*

Bhuma and Goldsmith extended the LAO* algorithm to BLAO* [4, 5] by searching

from both the start state and the goal state in parallel. BLAO* is the first bidirectional

heuristic search MDP algorithm. In detail, BLAO* has two searches: forward search and

backward search. Both searches use heuristic functions and start concurrently at each iter-

ation. The forward search is similar to the ILAO* algorithm. It begins at the start state and

expands the successor states of best known action towards the goal state. The backward

search originates from the goal state. During the backward search, a states in G that has

not been expanded is expanded along itsbest predecessor state. For one states′ to become

the best predecessor state of another states, it has to fulfill two requirements. First,s′ must

belong to the set of statesL, such that the current best action of each state inL hass as a

successor state. Second,s′ must be a state that has the highest probability of reachings of

all the states inL.

Each forward (backward) search branch terminates when the search loops back to an

expanded state, or reaches the goal (start) state. When both searches terminate, we call it

an iteration. After each iteration, the convergence test checks whether there exists some

unexpanded states or whether the maximum Bellman residual of all the states inG exceeds

some predefined threshold value. If not, the algorithm returns the optimal value function

and policy.

5.3.4 RLAO*

We studied the BLAO* algorithm [11] and discovered that, originally, the efficiency of

BLAO* has been greatly underestimated [5]. To fully compare unidirectional and bidirec-

tional heuristic search ideas, we introduced a sheer backward heuristic search algorithm

named RLAO*.

In the graphical representation of LAO*, each state points to several actions—those

14

Algorithm 3: BLAO*

Input: S, A, γ, δ
for every states do
V (s)← heuristic value
π(s)← argminaV (s)

end for
iteration← 0
repeat
iteration← iteration+ 1
for every states do
s.expanded← false

end for
G← ∅
G← G ∪ {s0} ∪ {goal}
//Start the following two threads concurrently
Forward Search(s0)
Backward Search(goal)

until (Convergence Test(G, δ))
returnV (·), π(·)
Forward Search(s)
s.expanded← true
a← π(s)
Backup(s)
while a has any unexpanded successor states′ do

if s′ is not the goal statethen
G← G ∪ {s′}
Forward search(s′)

end if
end while
Backward Search(s)
s.expanded← true
Backup(s)
s′ ← best predecessor state ofs
if s′ is not the start stateand has not been expandedthen

Backward search(s′)
end if

15

Algorithm 4: Reverse LAO*

Input: S, A, γ, δ
for every states do
V (s)← heuristic value
π(s)← argminaV (s)

end for
repeat

for all states do
s.expanded← false

end for
G← ∅
G← G ∪ {s0}
Search(G, s0)

until (Convergence Test(G, δ))
returnV (·), π(·)
Search(G, s)
s.expanded← true
Backup(s)
for every successor states′ of a do

if s′.expanded = false and s′ is not the start statethen
G← G ∪ {s′}
Search(G, s′)

end if
end for

that are applicable at that state, and each action points to some other states, which are the

successors of applying such action. For RLAO*, we maintain the same graphical structure.

In addition, we keep areverse graph, which contains the same set of vertices and edges

as the original graph, but the directions of all the directed edges in the original graph are

reversed. This means all the states point to the actions that lead to them, and all the actions

point to the states in which they can be applied.

The pseudocode of RLAO* is given in Algorithm4. The main idea is to propagate

the value functions from the goal to the start state by means of expansion. In the main

function, we iteratively expand the graph. In each iteration, we pick the goal state and

expand it. In expanding a state, we mark it as expanded, perform a backup and check if

it has any unexpanded successors in the reverse graph. If so, we pick one such state and

expand it. The RLAO* algorithm can also be seen as a depth first search on the reverse

16

graph. In this case, if we look at each expansion of LAO* as moving forward one step, we

can think of one expansion of RLAO* as moving backwards one step. The convergence

judgment of RLAO* is very similar to the LAO* algorithm, with the difference that the

explicit graphs are constructed in the backward manner.

5.3.5 Comparison of LAO*, BLAO* and RLAO*

To compare the three closely related algorithms—LAO*, BLAO*, and RLAO*, we con-

structed families ofrandom MDPs. The parameters of random MDPs are:

• the size of the state space,|S|;

• the maximum number of actions each state can have,ma;

• the maximum number of successor states of each action,ms.

Given a configuration of parameters, we build an random MDP as follows: For each

states, we let the pseudorandom number generator of C pick the number of actions from

(1, 2, . . . ,ma). Then, for each action, we allow the number of successor states of that ac-

tion to be(1, 2, . . . ,ms) with equal probability. The successor states are chosen uniformly

from S together with normalized transition probabilities. For each random MDP config-

uration, we generated 20 MDPs and ran the three algorithms on them and averaged their

statistics. The threshold valueδ here was consistently chosen to be10−6. In our experi-

ments, we found that RLAO* ran about 5% faster than LAO* and BLAO* when the state

space was small (under 5000 states) and sparsely connected (ma = 2,ms = 5). For densely

connected graphs with large state space, Figure5.1shows the convergence times when|S|

changes. Figure5.2 and Figure5.3 show the convergence times and number of iterations

asms varies. Table5.1 gives part of the convergence times when the number of actions

per state varies. Figure5.4plots the convergence times of the three algorithms when states

have 10 to 50 actions available.

Our experiments discovered that RLAO* converged slower than the other two when

the action number was large, because the branching factors of the backward search graphs

were usually larger than those of the forward search graphs.

17

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40

T
im

e
(s

ec
on

ds
)

states (x103)

LAO*
RLAO*
BLAO*

Figure 5.1: Convergence time on 4-action 5-successor state random MDPs

When the number of actions per state was relatively small, BLAO* displayed no advan-

tages over the other two algorithms. Nevertheless, when the number of actions was larger

than 10, BLAO* beat the other two. This is because the backward expansion of BLAO*

managed to keep the number of Bellman backups under control, shown in Table5.2 and

Table5.3. We also implemented another version of BLAO*, hoping to further control the

expanded states by strengthening the backward search. In the backward search of BLAO*

the expansion is always undertaken along the best previous state. In the new BLAO* algo-

rithm the backward expansion is not only along the best previous state, but every possible

predecessor. This means all the states that can reach the current state are backed up. How-

ever, the comparison between the two versions of BLAO* showed that the new algorithm

did not trivialize the problem, which from a different point of view, proved the effectiveness

of BLAO*.

5.3.6 MBLAO*

From our extensive experiments on the performance of LAO* and BLAO* [11], we

noticed that BLAO* consistently outperformed LAO* by about 10% in racetrack domains.

More promisingly, in random MDPs with largema, BLAO* sometimes ran three times

as fast as LAO*. This performance gain was not achieved by decreasing the size ofG to

18

 2

 4

 8

 16

 32

 64

 128

 256

 0 5 10 15 20 25 30

T
im

e
(s

ec
on

ds
)

Max successor states

LAO*
RLAO*
BLAO*

Figure 5.2: Convergence time on 10,000-state 4-action random MDPs

a larger extent. Rather, BLAO* converged faster than LAO* because it performed fewer

backups. In order to see why this happens, let us take a closer high-level look at the heuristic

search ideas.

Our first key observation is that, among all existing heuristic search MDP planners, the

heuristic functions in use are mostly generated in the backward manner. Take one of the

most recent heuristics,hmin [7], for example. It is an estimation of a least expensive path

from a state to the goal state.

hmin(s) = mina∈A(s)[C(s, a) +mins′hmin(s′)], γ ∈ [0, 1], Ta(s
′|s) > 0. (5.1)

The calculation of this heuristic function can be implemented by a breadth-first backward

search from the goal state. In fact, heuristic functions with similar semantics tohmin are all

generated in the backward manner. Thehmin heuristic replaces the normal weighted sum of

the successors’ values in the Bellman equation by the heuristic value of its best successor,

so it is a lower bound ofV ∗. Another fact is that the heuristic values of states near the initial

state are often less accurate than those of states near the goal, since further “away” from

the goal, a larger error in the estimation is propagated. In unidirectional heuristic search

algorithms, we only search in one direction: from the initial state to the goal state. So, as

long as the search has not reached the portion that is near the goal, when we do Bellman

19

 64

 128

 256

 512

 1024

 2048

 0 5 10 15 20 25 30

It
er

at
io

ns

Max successor states

LAO*
RLAO*
BLAO*

Figure 5.3: Number of iterations on 10,000-state 4-action random MDPs

backups, the valuesV (·) appeared on the right hand side of Bellman equations are quite

crude, since they are initiated by inaccurate heuristic functions and have not been polished

enough. So, the backups performed during these steps are not very useful. In BLAO*,

by doing backward searches from time to time, we can propagate more accurate values

from the goal state. Backups performed along the backward searches help refine the value

functions of states that are far away from the goal. In this case, the backups performed

during the early steps of the forward search make more sense.

The intuition behind MBLAO* is based on the above observation. We wondered: can

we further decrease the number of backups? Our previous attempt to change the single-

source backward search trial into a single-source backward search tree was not successful.

In MBLAO*, we tried something new. The idea is to concurrently start several threads. One

of them is the same as the forward search in BLAO*, and the rest of them are backward

searches, but with different starting points. In that way we change the single-source back-

ward search trial into multiple-source backward search trials. The reason for this change is:

On the one hand, one backward search from the goal could help propagate more accurate

values from the goal, but not other sources. On the other hand, the value of a state depends

on the values of all its successors, so the function of a single-source backward search is

20

actions LAO* RLAO* BLAO*

2 33.670000 32.830000 32.170000
4 13.570000 13.710000 13.070000
6 4.450000 4.600000 4.190000
8 1.600000 1.880000 1.310000
10 1.880000 2.210000 1.190000
20 1.420000 1.920000 0.760000
30 0.750000 1.770000 0.320000
40 0.660000 1.460000 0.240000
50 0.470000 1.430000 0.170000

Table 5.1: Convergence time on 10,000-state 5-successor state random MDPs

actions LAO* RLAO* BLAO*
10 9064 9986 7455
15 8700 9967 7326
20 8247 9987 6135
25 8875 9994 6135
30 9103 9980 4179
35 8788 9995 4138
40 6421 9996 5879
45 5948 9972 3057

Table 5.2: Maximum number of Bellman backups each iteration on 10,000-state 5-
successor state random MDPs

limited. This could be complemented by backward searches from other places.

We define theoptimal pathof an MDP to be the most probable path originating from

s0, if we follow the optimal policy and choose the successor states the ones with the highest

transition probabilities. Before we know the optimal policy, “optimal paths” are only con-

structed relative to the best known policy. The starting points for the backward searches are

selected from states along the optimal path, not including the start state. Since planning is

mostly interested in the states on the optimal path because of their contributions toV ∗(s0),

value propagations from middle points on this path could be helpful. Also note that the

optimal path may change from iteration to iteration, so the sources and trajectories of the

backward searches may also change. The pseudocode of MBLAO* is shown in Algorithm

21

 0

 0.5

 1

 1.5

 2

 2.5

 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
on

ds
)

actions

LAO*
RLAO*
BLAO*

Figure 5.4: Convergence time on 10,000-state 5-successor state random MDPs with

actions LAO* RLAO* BLAO*
10 25 35 29
15 25 29 29
20 24 23 24
25 19 23 19
30 6 12 10
35 6 8 7
40 7 9 11
45 10 8 18

Table 5.3: Number of iterations on 10,000-state 5-successor state random MDPs

5. The input numbern gives the total number of forward and backward search threads

in one iteration. As long as states in the explicit graphG have not converged, MBLAO*

initializesn (> 1) threads in parallel. One of them is the forward search originating from

the start state, and the rest of them are backward ones. After all the searches finish and we

say one iteration is done, the algorithm checks whetherG is converged.

5.4 Experiments

We investigated the performance of MBLAO* by comparing it to VI, BLAO*, and several

state-of-the-art unidirectional heuristic search MDP planners: LAO* (the improved ver-

sion), LRTDP, HDP and FDP. In our experiments, we tested the MDP planners on four

22

Algorithm 5: MBLAO*

Input: S, A, γ, δ, n
for every states do
V (s)← heuristic value
π(s)← argminaV (s)

end for
iteration← 0
repeat
iteration← iteration+ 1
G← ∅
for every states do
s.expanded← false

end for
//Start the followingn threads concurrently
Forward Search(s0)
for i← 1 to n− 1 do

pick one states along the optimal path
G← G ∪ {s}
Backward Search(s)

end for
until (Convergence Test(G, δ))
returnV (·), π(·)

MDP domains from the literature: racetrack [1], mountain car (MCar), single-arm pendu-

lum (SAP) and double-arm pendulum (DAP) [27] and the random MDP domain. Racetrack

MDPs are simulations of a race car on tracks with various sizes and shapes. The state space

is define by the position on the track and the instantaneous velocity of the car. At each state,

a car can take at most nine different actions, that is, to move toward eight directions or to

stay put. Each action has a small possibility of failure, which leads the car to an unin-

tended state. When a car runs into a boundary, it is sent back to the starting point. We

chose two racetrack MDPs. One is a small track with 1849 states, and the other has 21371

states. Mountain car is an optimal control problem, whose aim is to make the car reach the

destination with enough momentum within minimum amount of time. Like the racetrack

problems, the state space of MCar is defined by position and velocity of the car. SAP and

DAP are domains that address minimum time optimal control problems in two and four

dimensions respectively. They are similar to the MCar domain. The difference between

23

SAP and DAP, on the one hand, and MCar, on the other, is that the goal states1 in SAP

and DAP are reachable from the entire state space. All the algorithms except VI in our

list are initial-state driven algorithms, but in MCar and SAP and DAP domains, we do not

have any assumptions about initial states. When we run algorithms on them, we randomly

pick 10 states from the state space as initial states2, and average the statistics over these

experiments. For more detailed discussions on MCar, SAP and DAP, please refer to [27].

Domains explicit graph size VI LAO* BLAO* MBLAO* LRTDP HDP FDP
Racetrack(small) 76 0.06 0.01 0.01 0.00 0.02 0.78 0.09

DAP(104) 9252 1.27 0.74 0.73 0.52 1.01 70.83 4.24
Racetrack(big) 2250 2.08 1.73 1.37 0.80 20.06 10.49 11.13

MCar(300× 300) 2660 6.45 1.21 1.01 0.65 8.78 1.17 173.07
SAP(300× 300) 49514 48.51 4.36 3.64 3.11 N/A N/A N/A

MCar (400× 400) 24094 N/A 0.78 0.57 0.30 0.55 1.57 N/A

Table 5.4: Convergence time for different algorithms on different MDPs (δ = 10−6)

Domains explicit graph size VI LAO* BLAO* MBLAO* LRTDP HDP FDP
Racetrack(small) 76 29584 3195 2986 1877 5166 5781 32207

DAP(104) 9252 721091 250959 250105 232922 353487 217959 1831535
Racetrack (big) 2250 854840 325988 305916 283577 2728517 577160 3176598

MCar(300× 300) 2660 1102981 91015 86120 43225 453156 71640 83309915
SAP(300× 300) 49514 48690019 3015618 2764891 1828943 N/A N/A N/A

MCar (400× 400) 24094 N/A 457594 401740 352719 821740 400039 N/A

Table 5.5: Number of backups performed for each algorithm on different MDPs (δ = 10−6)

A specific domain with a specific state space is called aproblem. For example, MCar

with two dimensions, each of which has size300, is one particular MCar problem. We first

tested the convergence times of the algorithms on the “real-world” domain problems. For

MCar, SAP and DAP problems, we randomly chose 10 initial states for each problem and

call each pair consisting of a problem and an initial state aninstance. For every particular

problem, we averaged the statistics of the chosen instances. Throughout these experiments,

we fixed the thread number of MBLAO* to be 10. The convergence time and number of

backups performed by each algorithm were listed in Tables5.4and5.5. We used thehmin

heuristic function in all the experiments discussed in this section and set the cutoff time to

be 30 minutes.
1Regarding goal states in MCar, SAP and DAP, we refer to states that have positive instant reward. Each

SAP or DAP problem has only one goal state, which stands for the equilibrium point. But an MCar problem
has several, because the destination can be reached with various speeds.

2For MCar problems, we pick initial states with the constraints that they can reach a goal state.

24

In Table5.4we see that MBLAO* outperformed other algorithms in all the listed prob-

lems. Excluding MBLAO*, BLAO* outperformed the rest of the algorithms except on the

MCar(400 × 400) problem, where it ran slower than LRTDP. The reason for the generally

fast convergence of BLAO* and MBLAO* is clearly demonstrated by Table5.5. The num-

bers of backups performed by BLAO* were smaller than those by LAO*, and MBLAO*

performed even fewer.

We also tested the listed algorithms on the random MDP problems. We found in [11]

that the increases in the state space size|S| orms, the maximum number of successor states

each action can have, did not contribute much to the speedup of BLAO*. Therefore, in the

experiments, we fixed|S| = 10000 andms = 5 and variedma. Convergence times were

plotted in Figure5.5. We chose problems with a relatively small space size because those

random MDPs can easily fit in memory and can therefore be solved relatively quickly. Note

that the statistics on larger problems were similar to those with|S| = 10000. In this set

of experiments, we generated 20 instances for each possiblema value, and averaged the

convergence time of each algorithm on the instance for that particularma.

 0.25

 0.5

 1

 2

 4

 8

 16

 10 15 20 25 30 35 40 45 50

co
nv

er
ge

nc
e

tim
e

(s
ec

on
ds

)

maximum # of actions per state

LAO*
LRTDP

LAO*
BLAO*

MBLAO*

Figure 5.5: Statistics of random MDPs with fixed state space size and maximum successor
state number

From Figure5.5, we observed that MBLAO* and BLAO* always converged faster than

VI, LAO* and LRTDP. LAO* was faster than VI. LRTDP was slower than VI for small

25

 524288

 1.04858e+06

 2.09715e+06

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 1 (length of most probable path: 57)

 32768

 65536

 131072

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 2 (length of most probable path: 76)

 131072

 262144

 524288

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 3 (length of most probable path: 150)

 262144

 524288

 1.04858e+06

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 4 (length of most probable path: 191)

 262144

 524288

 1.04858e+06

 0 5 10 15 20 25 30 35 40 45 50

of
 b

ac
ku

ps

of threads

instance 5 (length of most probable path: 218)

 262144

 524288

 1.04858e+06

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 6 (length of most probable path: 245)

 262144

 524288

 1.04858e+06

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 7 (length of most probable path: 280)

 262144

 524288

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 8 (length of most probable path: 358)

 262144

 524288

 1.04858e+06

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 9 (length of most probable path: 497)

 262144

 524288

 1.04858e+06

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 10 (length of most probable path: 539)

 262144

 524288

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 11 (length of most probable path: 572)

 262144

 524288

 1.04858e+06

 2.09715e+06

 0 5 10 15 20 25 30 35 40 45 50

of

 b
ac

ku
ps

of threads

instance 12 (length of most probable path: 667)

Table 5.6: # of backups performed by MBLAO* with different thread numbers on
MCar(300× 300) instances

action numbers, but as good as LAO* for large action numbers. Following the pattern

that BLAO* outperforms LAO*, MBLAO* outperformed BLAO* in all the random MDP

problems. In the best case, MBLAO* ran 80% faster than BLAO*, more than three times

faster than LAO*, eight times faster than LRTDP and 18 times faster than VI, whenma =

50.

We then measured how the number of threads influenced the performance of MBLAO*.

In this experiment, we used a MCar(300 × 300) problem in particular. We chose 12 in-

stances and tested LAO*, BLAO*, and MBLAO* (with thread numbers from 3 to 50) on

26

them. The numbers of backups performed for each instance are plotted in the figures of

Table5.6, and the figures are arranged in ascending order of the length of the optimal path

of different problem instances. In each figure of Table5.6, LAO* and BLAO* are regarded

as MBLAO* with one and two search threads. We define theoptimal thread numberwith

respect to a problem instance to be the number of threads in a run of MBLAO* that per-

formed the least number of backups on that instance. From observing these figures, we had

the following conjectures.

• A larger thread number does not necessarily result in better performance. This is

because, when the number of threads is larger than “enough”, some of the backward

propagations are unnecessary, so the backward expansions themselves cause a lot of

overhead. Furthermore, too many backward searches distracts the algorithm from

the central efforts on the forward search.

• For different instances, the performance curves (figures in Table5.6) neither have

a common shape nor have the same optimal thread numbers (the correspondingx

values of the minimums in the figures).

• No rule is found about how the length of the optimal path influences the optimal

thread number. As the length of the optimal path increases, the optimal thread

number does not increase monotonically. At first, we considered that the harder

the problem—which probably leads to a longer optimal path—the more backward

searches we need. We tried to find a function of the optimal thread number based

on the length of the optimal path but failed. This can be partially by the fact that

the optimal thread number depends on many other factors, such as the internal graph

structure and branching factor of an MDP. However, our experiments show that the

optimal thread number seldom exceeded 10. So we do not expect MBLAO* to need

very large thread numbers in general.

From the experiments we have recounted, we know that bidirectional search algorithms

outperform their unidirectional counterparts. We want to know whether this is because the

27

backward search is itself superior to the forward search. We proposed RLAO* [11], a com-

pletely backward search algorithm. Experimental results showed that RLAO* converges

more slowly than LAO*, except for very small problems with small branching factors. The

faster convergence of LAO*, as compared to RLAO*, indicates that the speedup we get

from making the searches bidirectional is not simply because backward search is better

than forward search.

In our next experiment we computed the speedups of BLAO* and MBLAO* against

LAO* and calculated the proportion of backups done by the backward searches on prob-

lems from all the domains. For each domain we picked 50 problems (except for the race-

track, where we only picked three problems) and averaged the results. We abbreviate Ran-

dom MDP as RMDP in Table5.7. The first row of Table5.7gives theaccuracyof the initial

heuristic value. It is calculated as the percentage of the initial heuristic value of the start

state against its value with respect to the optimal policy. For example, if the initial heuristic

value for the start state is 10.0, and its actual value is 20.0, then the accuracy is 50%. The

second and fourth rows show the speedups BLAO* and MBLAO* achieved against LAO*.

The third and fifth rows show the percentage of backups performed by backward searches.

For MBLAO*, we chose the statistics for MBLAO* with the optimal thread number of

threads. The optimal thread numbers here did not exceed 10 and were seldom smaller than

5.

Racetrack DAP MCar SAP RMDP (|S| = 104) RMDP (|S| = 5× 104)
Accuracy (%) 66.91 64.65 68.19 72.29 57.12 59.76

BLAO* Speedup 1.15 1.18 1.11 1.20 1.85 1.73
BLAO* Backward < 0.1 < 0.1 0.155 < 0.1 '0.1 0.320

MBLAO* Speedup 2.06 1.56 1.28 1.39 3.32 2.99
MBLAO* Backward 0.126 0.148 0.206 < 0.1 '0.1 0.458

Table 5.7: Speedups achieved against LAO* and percentage of backups from the backward
searches (δ = 10−6)

From Table5.7we see that for both BLAO* and MBLAO*, the backward searches oc-

cupied a very small portion of the entire backups performed. This means forward searches

are the main focus of the bidirectional search algorithms since the majority of the time

was spent on forward search. The backups performed during the backward searches help

28

improve the usefulness of backups done in the forward search; the time spent in back-

ward searches is well worth it, given the consequent performance gain. In Table5.7, we

can see that the backward searches never performed over 0.5% of the backups done by

both searches, yet the best speedup bidirectional search achieved was more than a factor of

three.

Another interesting observation is that the accuracies of initial heuristic values of ran-

dom MDP problems were around 10% lower than for the other problems. This is because

random MDP problems are often highly nondeterministic, so that the least costly estimates

are sometimes too optimistic. Coincidentally, BLAO* and MBLAO* achieved the best

speedups on random MDP problems. This fact leads to our consideration about what types

of problems BLAO* and MBLAO* are best for. The basic function of the backward search

is to propagate and refine value functions. Thus, the worse the heuristic estimates are, the

more profitable the backward search can be in the first few iterations. This is because,

during the backups performed by the backward searches, the value improvement space is

larger. On the other hand, the ability of the forward search to detect this improvement is

limited when the forward search frontier has not reached the part with good heuristic esti-

mates. Furthermore, crude initial heuristics also mean we might have to consider a larger

number of branches, some of which are suboptimal, before the value functions converge.

Therefore, the backward searches in these types of problems are multi-functional.

29

Chapter 6

Priority-based Algorithms

Heuristic search with the help of reachability analysis is not the only approach to expedite

the convergence of the states. Another solution is to generate an order of state backups,

or to update value functions of states according to some priority functions, so that it takes

fewer iterations for the value functions to converge than backing up states in an arbitrary

order. Priority-based algorithms is another area we have been working on. In this section,

we discuss three priority-based algorithms as well as our work.

6.1 Prioritized Sweeping

The prioritized sweeping (PS) algorithm was originally a reinforcement learning algorithm

[21]. It has been extended to a dynamic programming technique to solve MDPs by using

the same prioritization method on state backups. In a goal-based MDP, we usually start

from the goal state and sweeps towards the initial state. The algorithm keeps a priority

queue to determine when to back up a state. Initially, the priority queue only contains the

goal state. At each step, PS pops a state from the queue with the highest priority and backs

up all its predecessors, all the predecessors whose Bellman residual are greater than some

threshold value are inserted into the priority queue, where the priorities of these states

are their Bellman residuals. PS tends to pay more attention to the state space where the

maximum potential changes in the value functions can be done.

6.2 Improved Prioritized sweeping

Improved Prioritized sweeping(IPS) [20] is an improved version of the prioritized sweep-

ing based dynamic programming algorithm. In IPS, three possible ways were proposed to

generalize the priority computation so that it works for general positive-cost MDPs:

• Changes in value, meaning the larger the change in value function, the higher the

30

priority value. However, if the value functions are arbitrarily initialized, sometimes

the great changes in value only indicates how inaccurate the initial value function is;

• Low upper bound on value, implemented by scaling the value function by a newly-

introduced monotone increasing functionm(·) on value functions. It is more ad-

vanced than changes in value because it is useful regardless of how value functions

are initialized;

• Probability of reaching the goal, meaning the higher the probability of reaching the

goal, the higher the priority.

By trial and error, McMahan and Gordan found that a priority function combining the last

two approaches works well for racetrack MDPs [1].

6.3 Focussed Dynamic Programming

Focussed Dynamic Programming[13] combines ideas from deterministic search and dy-

namic programming methods. It is named so because the algorithm puts efforts into only

those states that are able to reach the goal states. Focussed dynamic programming attempts

to restrict the set of expanded states to those that are definitely necessary for optimal so-

lution construction, as well as paying attention to the order of updating states in dynamic

programming.

Following the Focussed Dynamic A* (D*) algorithm [25], focussed dynamic program-

ming does expansions in the backward manner, from the goal state towards the start state.

All states are initially assigned infinite values, and the value of any state at any time is an

upper bound of the state’s optimal value. The algorithm maintains a priority queue of states

to be expanded, ordered by increasing the summation of the heuristic cost from the start

state tos, p(s), and the heuristic cost froms to the goalq(s). When a states is popped

off the queue, each of its predecessors is backed up. The Bellman residual is calculated

and compared with a threshold valueβ. If it is greater thanβ, this predecessor is inserted

back to the queue with its newp+ q. The termination condition of this algorithm is that the

lowest key value of the queue is greater than the start state’s value.

31

6.4 Topological Value Iteration

We proposed a new prioritized based algorithm named Topological Value Iteration (TVI)

[12]. TVI is based on our observation that the values of an MDP are dependent on each

other. In an MDPM , if states′ is a successor state ofs after applying an actiona, then

V (s) is dependent onV (s′). For this reason, we want to back ups′ befores. We can regard

value dependency as causal relation over their designated states. Since MDPs are cyclic,

the causal relation can be cyclic and therefore quite complicated. The idea of TVI is the

following: We group states that are mutually causally related together and make them a

metastate, and let these metastates form a new MDPM ′. ThenM ′ is no longer cyclic. In

this case, we can back up metastates inM ′ according to their reverse topological order. In

other words, we can back up these big states in only onevirtual iteration.

To find those mutually causally related states, we studied the graphical structure of an

MDP. An MDPM can be regarded as a directed graphG(V,E). The setV in G has two

kinds of nodes. The first is state nodes, and each node represents a state in the system.

The second is action nodes, and every action of the MDP is mapped to a vertex in the

graph. The edges,E, in the graph are used to represent causal relations inM . If there is

an edgee from a state nodes to an action nodea, this meansa is an applicable action of

s. Conversely, an edgee pointing froma to s′ means if we apply actiona, the system has

a positive probability of changing to states′. For suchM andG, if we can find certain

paths → a → s′, we know that states is causally dependent ons′. So if we simplify

G by removing all the action nodes, and changing paths likes → a → s′ into a directed

edge froms to s′, we can get a causal relation graphGcr of the original MDPM . If there

is a path from states1 to states2, then we knows1 is causally dependent ons2. Thus the

problem of finding mutually causally related groups of states can be reduced to the problem

of finding the strongly connected components inGcr.

We use to Kosaraju’s algorithm [10] of detecting the topological order of strongly con-

nected components in a directed graph. Note that in HDP, Bonet and Geffner [6] used

Tarjan’s algorithm to detect strongly connected components in a directed graph, but they

32

do not use the topological order of these components as a clue to systematically back up

each component. Rather, they use the same marking strategy as in LRTDP [7] to mark

all the solved connected components and regard states in the solved components as “tip”

states.

The pseudocode of topological value iteration algorithm is shown in Algorithm6. We

first use Kosaraju’s algorithm to find the set of strongly connected componentsc ∈ C in

graphGcr, and their topological order. Note that eachc here maps to a set of states in

the original MDPM . We then apply value iteration to solve eachc ∈ C. Since there

are no cycles among those components, we can apply value iteration only once on each

component.

Algorithm 6: TVI

Input: S, A, γ, δ
change the MDP into a directed graphGcr

run Kosaraju’s algorithm onGcr and get a topological orderO on all the SCCs inGcr

while O 6= ∅ do
scc← the first SCC inO
O ← O − {scc}
Value Iteration(scc, δ)

end while
returnV (·), π(·)

6.5 Experiments

We tested TVI on two types of problem domains. The first domain is a model simulating

PhD qualifying exams. Consider the following scenario from a fictional CS department:

To be qualified for a PhD student in Computer Science, one has to pass exams in each CS

area. Every two months, the CS department offers exams in each area as long as there are

students participating. Each student is free to take each exam as many times as he wants as

long as he has not passed that exam. Each time, one student can take at most two exams. We

consider two types of grading criteria. The first criterion is quite simple. For each exam, we

only have pass and fail (and of course, untaken). Students who have not taken the exam and

who have failed the exam before have the same chance of passing that exam. The second

33

criterion is a little trickier. We assign pass, conditional pass, and fail to each exam, and the

probabilities of passing certain exams vary, depending on the student’s most recent grade

on that exam. We consider a state in this domain as a value assignment of the grades of

all the exams. For example, if there are five exams,〈fail, pass, pass, condpass, untaken〉

can be one possible state. We refer to the first criterion MDPs asQEs(x) and second as

QEt(x), wherex refers to the number of exams.

The second domain is artificially-generated “layered” MDPs. The rule of generating

these MDPs are the following: For each MDP, we define the number of states, and partition

them evenly into a numbernl of layers. These layers are numbered by numerical values.

We allow states in higher numbered layers to be the successor states of states in lower num-

bered layers, but not vice versa, so each state has only a limited set of allowable successor

statessucc(s). The other parameters of these MDPs are the same as random MDPs (dis-

cussed in Section5.3.5). The advantage of generating MDPs this way is that these layered

MDPs contain at leastnl connected components and the size of the biggest component is

at most|S|/nl. We believe there are layered MDPs that code actual applications. For ex-

ample, in some role-playing games a character has to accomplish a number of subgoals in

order to finally achieve an ultimate goal, and the MDPs of these games are layered.

algorithm QEs(7) QEs(8) QEs(9) QEs(10) QEt(5) QEt(6) QEt(7) QEt(8)
|S| 2187 6561 19683 59049 1024 4096 16384 65536
|a| 28 36 45 55 15 21 28 36
v ∗ (s0) 11.129919 12.640260 14.098950 15.596161 7.626064 9.094187 10.565908 12.036075
hmin 4.0 4.0 5.0 5.0 3.0 4.0 4.0 5.0
VI(h = 0) 1.08 4.28 15.82 61.42 0.31 1.89 10.44 59.76
LAO*(h = 0) 0.73 4.83 26.72 189.15 0.27 2.18 16.57 181.44
LRTDP(h = 0) 0.44 1.91 7.73 32.65 0.28 2.05 16.68 126.75
HDP(h = 0) 5.44 75.13 1095.11 1648.11 0.75 29.37 1654.00 2130.87
TVI(h = 0) 0.42 1.36 4.50 15.89 0.20 1.04 5.49 35.10
VI(hmin) 1.05 4.38 15.76 61.06 0.31 1.87 10.41 59.73
LAO*(hmin) 0.53 3.75 19.16 126.84 0.25 1.94 14.96 123.26
LRTDP(hmin) 0.28 1.22 4.90 20.15 0.28 1.95 16.22 124.69
HDP(hmin) 4.42 59.71 768.59 1583.77 0.95 30.14 1842.62 2915.05
TVI(hmin) 0.16 0.56 1.86 6.49 0.19 0.98 5.29 30.79

Table 6.1: Problem Statistics and convergence time in CPU seconds for different algorithms
with different heuristics (δ = 10−6)

We considered several variants of our first domain, and run VI, LAO*, LRTDP, and

TVI on them. The results were shown in Table6.1. The statistics show the following:

34

nl 20 40 60 80 100 200 300 400 500 600
VI(h = 0) 19.482 17.787 12.310 24.538 31.684 40.782 46.554 52.248 64.706 77.658
LAO*(h = 0) 6.088 6.584 5.702 7.297 9.250 12.801 12.463 12.259 16.255 21.991
LRTDP(h = 0) 9.588 9.651 8.483 8.352 11.165 11.108 13.125 13.443 14.160 22.057
TVI(h = 0) 2.563 2.686 2.587 2.624 2.805 3.186 3.061 4.065 4.264 5.131

Table 6.2: Problem statistics and convergence time in CPU seconds for different algorithms
on solving artificially generated layered MDPs with different number of layers (|s|=20000,
ma=10,ms=20,δ = 10−6)

|S| 10000 20000 30000 40000 50000 60000 70000 80000
VI(h = 0) 9.322 27.683 38.529 46.178 64.915 72.087 95.479 117.359
LAO*(h = 0) 3.056 6.201 10.561 13.663 21.409 23.461 29.248 38.746
LRTDP(h = 0) 3.903 8.814 10.725 20.708 27.156 53.773 49.954 50.730
TVI(h = 0) 1.212 2.589 4.055 5.571 7.133 8.626 10.307 11.969

Table 6.3: Problem statistics and convergence time in CPU seconds for different algorithms
on solving artificially generated layered MDPs with different state space (nl=20,ma=10,
ms=20,δ = 10−6)

• The TVI algorithm outperformed the rest of the algorithms in all our instances, with

different heuristic values. Generally, this fast convergence is due to both the appro-

priate update sequence of the state space and avoidance of unnecessary updates.

• Thehmin heuristic [6] helped the convergence of TVI more than it helped VI, LAO*

and LRTDP, especially in theQEt domains.

• TVI outperformed HDP, which also uses connected components. This is because

the ways of dealing with components of two algorithms are different. HDP updates

states of all the unsolved components together in a depth-first fashion until they all

converge. We pick the optimal sequence of backing up each component. We only

back up one of them at a time. Moreover, our algorithm does not spend time checking

whether all the components are solved, and we only update a component when it is

necessary.

The statistics of the performance on layered MDPs were included in Table6.2 and

Table6.3. For each element of the table, we smoothed it by taking the average of running

20 instances of MDPs with the same configuration. Note that varying|s|, nl, ma, andms

can yield huge number of MDP configurations, but only a few representatives are picked.

35

For the first experiment, we fixed the state space to be 20,000 and changed the number

of layers. Statistics in Table6.2show our TVI dominated others. Notice that, as the layer

number increased, the MDPs became more complex, since the states in large numbered

layers have relatively smallsucc(s), and therefore cycles in those layers were probably

more common, so it took greater effort to solve large numbered layers than small numbered

ones. The results also displayed a tendency that when the number of layers increased, the

running time of each algorithm also increased. However, the increase rate of TVI was the

smallest (the greatest against smallest running time is 2 of TVI in Table6.2versus 4 of VI,

3.5 of LAO*, and 2.3 of LRTDP). This was due to the fact that TVI applied the best update

sequence. As the layer number became large, although the update of the large numbered

layers required more effort, the time spent on the small numbered ones remained stable.

For the second experiment, we fixed the number of layers and let the state space size

vary. Again, TVI was better than other algorithms as seen in Table6.3. When the state

space was 80,000, TVI could solve the problems in around 12 seconds. This indicated

that TVI can solve large problems in a reasonable amount of time. Note that the statistics

we include here represent the common cases, but were not chosen intentionally in favor

of TVI. Our best result was that, TVI converged in 9 seconds for MDPs with|S|=20,000,

nl=200,na=20,ns=40, while VI needed more than 100 seconds, LAO* took 61 seconds

and LRTDP required 64 seconds.

36

Chapter 7

Conclusion and Future Work

Markov decision processes are a useful tool in representing decision theoretic planning

problems. Classic dynamic programming algorithms such as value iteration and policy

iteration usually converge quite slowly on big problems. This paper introduces several effi-

cient new algorithms in expediting the convergence of dynamic programming approaches.

Multi-threaded BLAO*, a family of bidirectional heuristic search algorithms, extends

the single-source backward search of BLAO* into a number of backward searches with

different sources. It takes the advantage of the fact that backups performed in the backward

search help propagate heuristic values from states whose heuristics are more accurately

initialized. Experimental results have provided evidence that MBLAO* converges faster

than not only BLAO*, but several state-of-the-art forward heuristic search algorithms.

Topological value iteration, a simple priority-based algorithm, is flexible, since it stud-

ies the graphical structure of an MDPs and makes full use of it. TVI solves MDPs by

discovering the strongly connected components in the directed graph representation of an

MDP and prioritizing dynamic programming on the components by their topological or-

der. It has been shown to be especially useful on MDPs with evenly distributed strongly

connected components.

We believe that heuristic search and priority-based approach are very promising re-

search topics in AI planning. One of our ongoing research project is on using graphical

structure to expedite the convergence time in reinforcement learning MDP algorithms [26].

Apart from regarding the two topics individually, an integration of heuristic search and pri-

oritization is also very interesting. Actually, focussed dynamic programming [13] can be

regarded as a combination of both. In the future, we plan to dig deeper along this path. We

also think these two strategies can be used in combination with other common techniques

such as factored MDPs, value approximation, and linear programming.

37

Bibliography

[1] A.G. Barto, S.J. Bradke, and S.P. Singh. Learning to act using real-time dynamic

programming.Artificial Intelligence J., 72:81–138, 1995.

[2] R. Bellman.Dynamic Programming. Princeton University Press, Princeton, NJ, 1957.

[3] Dimitri P. Bertsekas.Dynamic Programming and Optimal Control, volume 2. Athena

Scientific, 2000-2001.

[4] Kiran Bhuma. Bidirectional LAO* algorithm (a faster approach to solve goal-directed

MDPs). Master’s thesis, University of Kentucky, Lexington, 2004.

[5] Kiran Bhuma and Judy Goldsmith. Bidirectional LAO* algorithm. InProc. of Indian

International Conferences on Artificial Intelligence (IICAI), pages 980–992, 2003.

[6] B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with un-

certainty and full feedback. InProc. of 18th International Joint Conf. on Artificial

Intelligence (IJCAI-03), pages 1233–1238. Morgan Kaufmann, 2003.

[7] B. Bonet and H. Geffner. Labeled RTDP: Improving the convergence of real-time

dynamic programming. InProc. 13th International Conf. on Automated Planning

and Scheduling (ICAPS-03), pages 12–21, 2003.

[8] Craig Boutilier. Planning, learning and coordination in multiagent decision processes.

In Conference on Theoretical Aspects of Rationality and Knowledge, pages 195–201,

1996.

[9] Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Struc-

tural assumptions and computational leverage.J. of Artificial Intelligence Research,

11:1–94, 1999.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.In-

troduction to Algorithms, Second Edition. The MIT Press, 2001.

38

[11] Peng Dai and Judy Goldsmith. LAO*, RLAO*, or BLAO*? InAAAI Workshop on

Heuristic Search, pages 59–64, 2006.

[12] Peng Dai and Judy Goldsmith. Topological value iteration algorithm for Markov deci-

sion processes. InProc. 20th International Joint Conference on Artificial Intelligence

(IJCAI-07), pages 1860–1865, 2007.

[13] Dave Ferguson and Anthony Stentz. Focussed dynamic programming: Extensive

comparative results. Technical Report CMU-RI-TR-04-13, Carnegie Mellon Univer-

sity, Pittsburgh, PA, March 2004.

[14] Eric Hansen and Shlomo Zilberstein. LAO*: A heuristic search algorithm that finds

solutions with loops.Artificial Intelligence J., 129:35–62, 2001.

[15] Eric A. Hansen and Shlomo Zilberstein. Heuristic search in cyclic AND/OR graphs.

In Proc. of the 15th National Conference on Artificial Intelligence (AAAI-98), pages

412–418, 1998.

[16] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic

determination of minimum cost paths.IEEE Transactions on Systems Science and

Cybernetics, SSC-4(2):100–107, 1968.

[17] R.A. Howard.Dynamic Programming and Markov Processes. MIT Press, Cambridge,

Massachusetts, 1960.

[18] Richard E. Korf and Weixiong Zhang. Divide-and-conquer frontier search applied to

optimal sequence alignment. InProc. of the 17th national conference on Artificial

intelligence (AAAI-00), pages 910–916, 2000.

[19] Michael L. Littman, Thomas Dean, and Leslie Pack Kaelbling. On the complexity

of solving Markov decision problems. InProc. of the 11th Annual Conference on

Uncertainty in Artificial Intelligence (UAI-95), pages 394–402, Montreal, Quebec,

Canada, 1995.

39

[20] H. Brendan McMahan and Geoffrey J. Gordon. Fast exact planning in Markov deci-

sion processes. InProc. of the 19th International Joint Conference on Planning and

Scheduling (ICAPS-05), 2005.

[21] Andrew Moore and Chris Atkeson. Prioritized sweeping: Reinforcement learning

with less data and less real time.J. of Machine Learning, 13:103–130, 1993.

[22] Nils J. Nilson.Principles of Artificial Intelligence. Tioga Publishing Company, Palo

Alto, Ca., 1980.

[23] M.L. Puterman.Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley, New York, 1994.

[24] Stuart Russell and Peter Norvig.Artificial Intelligence: A Modern Approach. Prentice

Hall, 1995.

[25] Anthony Stentz. The focussed D* algorithm for real-time replanning. InProc. of

the International Joint Conference on Artificial Intelligence (IJCAI-95), pages 1652–

1659, 1995.

[26] Richard S. Sutton and Andrew G. Barto.Reinforcement Learning: An Introduction.

The MIT Press, 1998.

[27] David Wingate and Kevin D. Seppi. Prioritization methods for accelerating MDP

solvers.J. of Machine Learning Research, 6:851–881, 2005.

40

Vita

1. Background.

(a) Date of Birth: Feb. 1st, 1979

(b) Place of Birth: Nanjing, China

2. Academic Degrees.

(a) M.S., June 2004

School of Computing, National University of Singapore, Singapore

(b) B.S., June 2001

Computer Science Department, Nanjing University, Nanjing, China

3. Professional Experience.

(a) Software Engineer, Alcatel Shanghai Bell, No.388 Ningqiao Road, Pudong,

Jinqiao, Shanghai, China

4. Professional Publications.

(a) Peng Dai and Judy Goldsmith. Multi-threaded BLAO* Algorithm. InProc.

20th International FLAIRS Conference, pages 56-62, 2007.

(b) Peng Dai and Judy Goldsmith. Topological Value Iteration Algorithm for Markov

Decision Processes. InProc. of 20th International Joint Conference on Artifi-

cial Intelligence (IJCAI-07), pages1860-1865, 2007.

(c) Peng Dai and Judy Goldsmith. LAO*, RLAO*, or BLAO*?. InProc. of AAAI

Workshop on Heuristic Search, pages 59-64, 2006.

41

	FASTER DYNAMIC PROGRAMMING FOR MARKOV DECISION PROCESSES
	Recommended Citation

	Abstract
	Title Page
	Acknowledgments
	List of Tables
	Table 5.1
	Table 5.2
	Table 5.3
	Table 5.4
	Table 5.5
	Table 5.6
	Table 5.7
	Table 6.1
	Table 6.2
	Table 6.3

	List of Figures
	Figure 5.1
	Figure 5.2
	Figure 5.3
	Figure 5.4
	Figure 5.5

	Chapter 1 Introduction
	Chapter 2 Search
	Basic Searching Algorithms

	Chapter 3 Decision Theoretic Planning
	Chapter 4 Markov Decision Processes and Related Algorithms
	Markov Decision Processes
	Two basic dynamic programming algorithms for indefinite horizon MDPs
	Dynamic programming
	Value Iteration
	Policy Iteration
	Limitations

	Chapter 5 Planning Algorithms with the Help of Search Strategies
	RTDP
	HDP
	A*-based Algorithms
	AO*
	LAO*
	BLAO*
	RLAO*
	Comparison of LAO*, BLAO* and RLAO*
	MBLAO*

	Experiments

	Chapter 6 Priority-based Algorithms
	Prioritized Sweeping
	Improved Prioritized sweeping
	Focussed Dynamic Programming
	Topological Value Iteration
	Experiments

	Chapter 7 Conclusion and Future Work
	Bibliography
	Vita

