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ABSTRACT 

RUTHENIUM CATALYZED DEAMINATIVE COUPLING REACTION OF  

AMINES VIA C-N BOND ACTIVATION 

 

Pandula T. Kirinde Arachchige B.Sc. (Hons) 

Marquette University, 2017 

 

C–N bond activation via transition-metal catalyst has attracted much attention 
during the past two decades. This strategy has become one of the most promising way to 
generate secondary amines, which are very important in a broad spectrum of applications 
in pharmaceutical industry, synthetic organic chemistry and material science. The 
secondary amines can be utilized as an important synthetic intermediate for further 
manipulations. The in-situ formed catalytic system generated from the tetranuclear Ru–H 
complex with 4-(1,1-dimethylethyl)-1,2-benzenediol ligand was found to be effective for 
the synthesis of secondary amines from the direct deaminative coupling of amines. The 
ruthenium catalyst was highly effective for promoting selective coupling of two different 
primary amines to afford the formation of unsymmetric secondary amines. The treatment 
of aniline-d7 with 4-methoxybenzylamine led to the coupling product with significant 
deuterium incorporation on CH2 (18% D). The most pronounced carbon isotope effect 
was observed on the α-carbon isolated from the coupling reaction of 4-
methoxybenzylamine. Hammett plot was constructed from measuring the rates of 4-
methoxyaniline with a series of para-substituted benzylamines 4-X-C6H4CH2NH2 (X = 
OMe, Me, H, F, CF3). (ρ = -0.8±0.1). A plausible mechanistic scheme has been proposed 
for the coupling reaction on the basis of these results. The catalytic coupling method 
provides a simple and chemoselective synthesis of secondary amine products without 
using any reactive reagents or forming wasteful byproducts. 
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Chapter 1 

1.0 Introduction 
 

Synthesis of amines has been received much attention due to their prominent 

presence in a wide variety of biologically important molecules. Therefore, much attention 

has been given to the development of efficient synthetic methods to prepare amines as 

useful intermediates.1 In particular, secondary amines were identified as an important 

functionality in many bioactive molecules (Figure 1.0.1).1,2  

F3C

O
H
N

Fluoxetine

O

S

HN

Duloxetine Atomoxetine

O

N
H

H
N

F3C

Cinacalcet

H
N

OH

R

R

Resveratrol derivatives  

Figure 1.0.1: Selected examples for pharmaceuticals with secondary amine 
functionality.2 

 

Development of efficient synthetic methods for secondary amines that utilize 

commonly available and abundant precursor molecules is a long-standing goal in 

chemical research. Secondary amines are important precursors in both pharmaceutical 
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industry as well as synthetic organic chemistry and material science, where the secondary 

amines can be utilized as an important synthetic intermediate for further manipulations to 

synthesize useful compounds. In general, selective and step-efficient one-pot synthesis of 

secondary amines is highly demanded.1-3 However, the traditional synthetic methods for 

secondary amines have been found to have serious drawbacks such as low selectivity, 

poor yields, harsh reaction conditions, and form copious amount of wasteful and toxic 

byproducts. Figure 1.0.2 is a summary of traditional methods used to prepare secondary 

amines.1,3 

H

R
N

R NH2 +
R' H

O

Reductive
amination

Alkylation or
condensation

Reductions R' N
H

O
R

R NH2 +R'

PG

PG

R
N

PG

H
N

H2N PG

R LG
R NH2

Addition

R'
NH

Radical
reactions

N-Protection

R
NH

R

R

Solid phase
synthesis

NH

R'
R X +

R'

R'

LG

R' R'

LG

 

 

Figure 1.0.2: Traditional methods for the synthesis of secondary amines. 
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Since the traditional methods have been found to have many drawbacks as 

discussed above, catalytic C–N bond activation methods have attracted much attention in 

both medicinal and industrial communities.  Transition metal catalyzed C-N activation 

reactions have emerged as one of the most promising strategies for the synthesis of 

secondary amines that encompass a broad spectrum of applications. In this chapter, 

strategies for synthesis of secondary amine products especially with respect to efficient 

catalytic cleavage of C–N bonds and their applications will be discussed. 

 

1.1 Stoichiometric and Catalytic Methods for N-Alkylation of Primary Amines 
   

1.1.1 N-Alkylation with Alkyl Halides 
 

 The Hoffmann alkylation method provides straightforward synthesis of secondary 

amines by treating primary amines 1 with alkyl halides.1,4 It is generally accepted that the 

reaction produced a mixture of secondary 2, tertiary 3 and quaternary ammonium salts 4 

(Scheme 1.1.1.1:). Since, secondary amines are prepared by treatment of tremendously 

excess amount of primary amines,1,5 the method has been recognized as an inefficient 

process and industrially unfavorable when enantiomerically pure compounds are 

employed.  

 

Scheme 1.1.1.1: Hoffmann N-Alkylation of aliphatic primary amines with alkyl 
halides. 
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1.1.2 Reductive Amination and Alkylation Methods 
 

In the reductive amination reaction of amines and carbonyl compounds, aldehydes 

or ketones are mixed with a reducing agent (e.g. NaBH4 or H2/Pd) to generate secondary 

amines without the formation of imine intermediate or iminium salts. In contrast, the 

indirect amination reaction involves the formation of intermediate imine products, which 

is then subjected to reduction in a stepwise fashion. Hitchings and co-workers reported 

the use of ammonia as the nitrogen source in the reaction with aldehydes 5 and 

benzotriazoles 6 followed by reduction with LiAlH4 (Scheme 1.1.2.1) for the synthesis of 

symmetrical secondary amines 7.6   

 

 Scheme 1.1.2.1: Ammonia as the nitrogen source for reductive amination of aldehydes. 

In the direct reductive amination reaction, the reducing agent must be chosen 

carefully as there might be a potential for the reduction of carbonyl substrates. NaBH3CN 

was the commonly used reducing agent among reducing agents have been reported.7 

However, a large-scale synthesis cannot be performed due to high toxicity of this reagent. 
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The major drawback of this method is the use of stoichiometric amount of the reducing 

agent.1   

1.1.3 Catalytic Reductive Amination of Carbonyl Compounds 
 

Depending on phase of a reducing agent used in a particular reaction, catalytic 

reductive amination can be classified as heterogeneous catalytic reductive amination (i. e. 

H2/Pd) or homogeneous catalytic reductive amination. Bieber and da Silva reported IrBr3 

catalyst can be effectively used to generate secondary amines by reductive alkylation of 

aliphatic ketones with aryl amines in the presence of excess zinc reductant (Scheme 

1.1.3.1). The reaction scope was found to be effective for a range of aryl and benzyl 

amines and low molecular weight ketones 8 yielding 70-100% of the products 9. 

However, excess of strong acid and ketone substrates were required in most of these 

cases.9 

 

+

O

N
H

IrBr3 (5 mol%)
Zn (3 mmol)

H2SO4 (1.4 mmol)
Dioxane:H2O (1:0.25)

1 mmol 1-3 mmol 70-88%

NH2

8 9  

Scheme 1.1.3.1: Ir catalyzed reductive amination of ketones.  

 

1.1.4 N-Alkylation with Alcohols 

Direct N-alkylation of amines with alcohols are not possible without transition 

metal catalysts. The first reaction of N-alkylation of amines with alcohols were reported 

in 1909 by Sabatier and Mailhe10 by using ThO2 catalyst. This was not accepted as a 
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possible transformation to apply as a useful strategy to prepare N-alkylated amines due to 

inapplicable reaction conditions.1b Adkins and Cramer11 was obtained 

ethylcyclohexylamine with excellent yield by the hydrogenation of aniline with ethanol 

by using raney nickel as the catalyst. However, this reaction required high temperature 

(200 °C) and with limited substrate scope. Later, raney nickel12, catalyzed 

transformations of alcohols with amines were observed by a Kohn and Rice in 1955. A 

mixture of aniline (25 mL) and an excess of a benzyl alcohol (100 mL) were refluxed 

with raney nickel, to obtain the alkylated product (Scheme 1.1.4.1). In this reaction, an 

alcohol was served as both reactant and solvent. Both the Schiff base 11 and/or the α-

hydroxyamines 10 may be hydrogenated to yield the corresponding secondary amine 

products. 

OH Reney Ni

O H HO
H
N

NH2

25 mL
100 mL

-H2

-H2O
N

H2(-H2O)

H
N

80%

H2

10 11

 
 Scheme 1.1.4.1: Mechanistic pathway for the preparation of N-benzylaniline. 

 

In 1984, Ohta13 and co-workers reported that RuCl2(PPh3)3 can be used to 

generate secondary amines in excellent yields when aminoarenes reacted with an 

equimolar amount of alcohols. This transformation required 150-180 °C and the tertiary 
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amines were formed predominantly in the presence of excess alcohol substrate. 

Mechanistic studies were used to postulate the nucleophilic attack of the aminoarene on 

aldehyde intermediate as the turnover limiting step of the reaction (Scheme 1.1.4.2). 

 

 

 

Scheme 1.1.4.2: Proposed mechanism for generation of N-alkylated amines. 

 

The aminoarene coordinates (a) to catalytically active species 12, RuLn, (Ln = Cl 

and PPh3) to generate ruthenium arylamino species 13. The alcohol adds to 13 to form 

alkoxide intermediate 14 via path b, which then oxidized (c) to form aldehyde and amine 

coordinated ruthenium complex 15. This type of oxidation reactions has been proposed 

by several other publications.14 In 1981, Lappert and Miles were able to isolate the 

alkylgermanium alkoxohydrido complex15 for the first time by the oxidative addition of 

an alcohol with alkylgermanium. Then the aminoarene would be nucleophilically attack 

(d) to the aldehyde by forming Schiff base complex 16, which was found to be the rate-
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determining step. The hydrogenation (e) completes the catalytic cycle A by generating N-

monoalkylated benzenamine with the regeneration of the active catalyst. Second 

alkylation will be proceeded by following similar pathway with secondary amine product 

formed from the cycle A (as depicted in cycle B).  

 

1.1.5 N-Alkylation of Amines with Primary Amines 
 

N-Alkylation of amines with primary amines has been rarely achieved without a metal 

catalyst. There are scattered examples in the literature for the self-condensation of 

primary amines.16 In 1925, Rosenmund and Jordan, showed that dibenzyl amine were 

formed from benzylamine over palladium at 200 °C in boiling xylene or alcohol with the 

evolution of ammonia. Few years later, in 1931 similar type of reactivity was observed by 

Kindler with the reaction of β-methylphenylethylamine 17 in boiling xylene or alcohol 

over 200 °C. The corresponding secondary amine product, di-β-phenylethylamine 18 

were formed in excellent yields.17 Nickel catalyst were also found to mediate deaminative 

alkylation under suitable conditions.18   

 

 Scheme 1.1.5.1: Deaminative symmetric coupling of primary amine. 
 

In 1973, Murahashi and co-workers reported a new catalytic process for the 

synthesis of unsymmetrical secondary or tertiary amines through reductive 

dehydrogenation by using palladium catalyst. The secondary amine and imine 20 
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products were formed from the reaction of secondary amines 19 with primary amines 

(Scheme 1.1.5.2:). Allylamines were reacted to give the imine products in 95% at room 

temperature, while other transformations required 120-160 °C.  

N
H + NH2

Pd-C
120 °C

10 h

N
H + N

19 55% (20) 30%  

Scheme 1.1.5.2: Formation of secondary amines on palladium black. 

De Angelis and co-workers16, in 1979 reported the symmetric coupling of the n-

nonylamine 21 to form 22 with raney nickel in xylene (Scheme 1.1.5.3:). They also 

observed that the other solvents such as toluene, benzene or cyclohexane were not very 

suitable for this transformation. However, very few symmetric coupling products have 

been successfully achieved by amine self-coupling to form secondary amines. 

NH2
Raney-Ni

Xylene
reflux

2 + NH3

21 22, 88%

H
N

 

 Scheme 1.1.5.3: Deaminative symmetric coupling with Ni catalyst. 

 

In 1983, Garrou and coworkers observed the formation of secondary amines on 

the [Ru2Cl3(PnBu3)6]Cl as the catalyst and proposed a mechanism for the amine coupling 

reaction.20 They proposed a decoordination of phosphine ligand during the formation of 

the active catalyst. Further kinetic studies showed that the hydrogenation of the imine 

intermediate cannot be the rate determining step for the coupling reaction, as the rate of 

the hydrogenation step was found to be 200 times faster than the overall reaction rate. It 
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is noteworthy that this early stage mechanistic studies only relied on the rate of the 

reactions without any kinetic isotope effect studies.  

 

 

Scheme 1.1.5.4: Proposed mechanism for deaminative coupling by Garrou et. al. 
 
 

Scheme 1.1.5.4 shows the rate determine step of the reaction is the formation of 

imine followed by dehydrogenation of amine (step a and f) to form active catalytic 

species 23. Then, nucleophilic attack on α-carbon of the imine would generate the mono 

amine co-ordinated ruthenium di amine species 24 (path b) which then undergoes the 
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formation of four membered metallocycle 25 by second amine coordination (c). Then, C-

N activation afforded the intermediate 26 (d) and new amine coordination via path e form 

27 by releasing the ammonia which formed during the C-N bond cleavage step. 

Hydrogenation of the coordinated imine product 27 by hydrogens, which came from the 

new amine molecule would produce the active catalytic species with the product.  

 Watanabe and co-workers20c observed similar reactivity pattern for the self amine 

coupling. Doctorovich and Trhpani20d reported secondary amine product (dibutylamine, 

84%) formation with pentacyanonitrosylferrate(II) as the stoichiometric reductant 

(Scheme 1.1.5.5).  

 

 

Scheme 1.1.5.5: Reaction of pentacyanonitrosylferrate(II) with n-butylamine. 
 

Dibenzylamine (30%), pyrrolidine (50%) and N-butylbenzylamine (58%) were 

also observed under similar conditions. To the best of our knowledge, this was the first 

reported heteroaliphatic coupling reaction in the literature. However, this reaction did not 

proceed under catalytic conditions as active catalyst was not regenerated (Scheme 

1.1.5.6). Nucleophilic attack on NO group of 28 by amine afford the intermediate species 

29, which then undergoes dehydration to form diazonium ion reactive species 30. 

Formation of alcohol may be explained by reaction of the coordinated diazonium ion 

with water, while its reaction with dibutylamine produces tributylamine affording species 

31. Alternatively, the reaction of 30 with an amine will be generated the 31 and 

symmetric secondary amine product. 
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Scheme 1.1.5.6: Proposed mechanism for the reaction of n-butylamine with 
pentacyanonitrosylferrate(II). 
 

1.2 Recent Developments on Catalytic Methods for N-Alkylation of Primary Amines 
 

 The development of a new, general catalytic procedures for the selective 

formation of aromatic carbon-nitrogen bond is of great significance in wide variety of 

organic synthesis.21 Over the years, the synthesis of N-alkylations of amines have 

received increased interests. In general, the formation of secondary amines with alkyl 

halides was found to be unsuitable method specially in large scale productions, because it 

forms toxic byproducts. To overcome cost ineffective methods which generate wasteful 

byproducts, the development of more environmentally friendly methods is highly sought 
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which has lower E-factors. As such, much attention has been drawn to develop methods 

with increasing environmental awareness and integrated in sustainable synthesis. 

Efficient catalytic methods provide attractive solutions for these problems.22 This section 

summarizes the recent progress in this area specifically aimed at catalytic syntheses of 

secondary amines. 

 

1.2.1 Formation of Secondary Amines from the Reaction of Alcohols 
 

 Homogeneous catalytic formation of secondary amine was established with 

simultaneous introduction of different rhenium23 and ruthenium24 catalysts. In recent 

years, the use of earth abundant metal catalysts for this process attracted considerable 

attention in the catalysis community. Transition metal catalysts such as iridium25, 

ruthenium26, copper27, silver28, iron29, osmium30, gold31, and palladium32 catalysts have 

been well studied for the alkylation of amines with alcohols in N-alkylation reaction. In 

2014, Moasser and Enyong26f reported a ruthenium catalyzed N-alkylation by using a 

simple amino amide ligand. One-pot alkylation of primary and secondary amines were 

achieved under different reaction conditions. They demonstrated the alkylation under 

mild conditions using the alcohol as solvent, where high selectivity was seen at high 

temperatures in organic solvents (Scheme 1.2.1.1). 
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Scheme 1.2.1.1: Ruthenium catalyzed, amino amide ligand enabled secondary 
amine formation with alcohols. 

  

 As shown in the Scheme 1.2.1.1, arylamines were used to prepare secondary 

amines selectively. However, the selectivity was obtained only when a large amount of 

alcohol was used as the solvent for the reaction. Ortho-substituted arylamines remained 

as an imine product without the hydrogen transfer. Benzyl amines and aliphatic amines 

were not very selective towards secondary amine formation due to the over alkylation 

reaction.  

In 2015, Kempe and co-workers reported that a novel PNP type cobalt complex 

33 (Figure 1.2.1.1) successfully catalyzes the selective formation of secondary amines 

with alcohols33. The cobalt catalyst (2 mol%) allows the reaction to be carried out under 

mild conditions (80 °C), which allow the selective formation of secondary aromatic 
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amines and the synthesis of unsymmetrical diamines (Scheme 1.2.1.2). However, more 

than stoichiometric amount of base was required to proceed the reaction. 

 

  

Co

Cl Cl

PR2
2R2

2P
N

NN

R1

NHHN

R1 = H; R2 = iPr  

      (32)                (33) 

Figure 1.2.1.1: (32) X-ray structure of the cobalt complex; (33) Active catalyst 
used to catalyze the secondary amines formation with alcohol and amine. 

 

OH
+

NH2
R

H
N

R
Toluene, 80 °C

24h
   (1.4 mmol)            (1 mmol)                                               (57 -86%)

[Co] (2 mol%)
tBuOK (1.2 mmol)

 

 Scheme 1.2.1.2: PNP type cobalt catalyzed N-alkylation with alcohol. 

 

Very recently, Beller and co-workers reported manganese pincer complexes 34 

(Figure 1.2.1.2) can be effectively employed the formation of secondary amines.2a 

Substituted anilines are monoalkylated with a variety of alcohols. The reaction tolerated a 

broad substrate scope including sensitive reducible functional groups such as furfuryl 

alcohol. Chemo selective monomethylation of primary amines were achieved using 
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methanol, and the metal catalyst 34 was found to be highly air stable. However, 75% base 

required for the reaction, and aliphatic and benzyl amines were not stable to form the 

corresponding secondary amine products. 

Mn
P

N P

CO

Br

CO

H

iPr

iPr2

2

34  

Figure 1.2.1.2: Active manganese PNP pincer complex for selective formation of 
secondary aromatic amines with alcohol. 

 
 

1.2.2 Catalytic Hydroamination of Alkynes and Alkenes 
 

 Catalytic heterofunctionalization is an important catalytic protocol that allows the 

formation of a wide variety of carbon to hetero atom bonds by adding substituents to 

alkenes or alkynes. Hydroamination is the addition of an N-H bond of an amine across a 

carbon-carbon double or triple bond of an unsaturated system.34 The hydroamination is 

an atom economical and green method if the reactants stoichiometrically formed the 

products. 

In 2008, Liu and Hartwig reported cyclization of aminoalkenes with a rhodium 

catalyst under mild conditions. (Scheme 1.2.2.1).35 Six-membered cyclic amine 36 was 

obtained from 1-Amino-2,2-diphenyl-5-hexene 35 and corresponding five-membered 

cyclic amine 38 was formed from 1-Amino-2,2-diphenyl-4-pentene 37 with the ligand 39 

and the catalyst [Rh(COD2)]BF4- in good yields. 
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Scheme 1.2.2.1: Rhodium catalyzed intramolecular hydroamination of primary 
aminoalkene to form six- and five-membered cyclic amines. 
 
 

 

 

Scheme 1.2.2.2: Gold catalyzed hydroamination with alkyne. 

 

In 2009, Shi and co-workers reported gold catalyzed hydroamination with alkynes 

40 and amine 41 to form the secondary amine products 42 in excellent yields (Scheme 

1.2.2.2).36 The gold catalyst system 43 has been found to be effective for the challenging 

transformations, such as intermolecular internal alkyne hydroamination reactions. 
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Product 42 were yielded by utilizing (40; R1 = Bu, R2 = H; R3 = Ph;) 81 % and (40 R1 = 

Ph, R2 = H; 41 R3 = p-F-Ph;) 97% with the catalyst 43. However, the reactions with 

internal alkynes required a catalyst loading up to 1 mol%. The major disadvantage of this 

reaction was two equivalents tungstonphosphoric co-catalyst are needed to reduce the 

hydroaminated product. 

In 2013, Buchwald and co-workers reported a highly enantio- and regio-selective 

(>86-99% ee) copper catalyzed hydroamination reaction of styrene. The reaction required 

diethoxymethylsilane (DEMS) and esters of hydroxylamines to form enantiosecective 

tertiary amine products.37  

 

O

O

O

O PAr2
PAr2

Ar = O

44  

Scheme 1.2.2.3: Enantio- and regio-selective hydroamination of styrene 
derivatives. 

 

A variety of substituted styrenes (with cis-, trans-, and β,β- disubstituted styrenes) 

was found to be suitable for yielding α-branched amines. The reported asymmetric 

intermolecular hydroamination (step a), would proceed by insertion of an alkene 49 into a 

chiral ligand 44 ((R)-DTBM-SEGPHOS) bounded Cu-H species by forming an 
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alkylcopper complex 46 (Scheme: 1.2.2.4). Subsequent oxidative addition (step b, 

intermediate species 48) of an electrophilic hydroxylamine species 47 followed by 

reductive elimination (step c), would form the enatioselective product 50. Active catalytic 

species was regenerated by the transmetalation with an external hydride-transfer reagent, 

in this case DEMS 49. 

 

Scheme: 1.2.2.4: Proposed catalytic cycle for hydroamination of alkenes. 

 

1.2.3 Catalytic Formation of Secondary Amines from the coupling of Amines 
 

 Olah and co-workers reported38 the synthesis of secondary amines from primary 

amines on Pt/C catalyst.   The results were similar as earlier observations by Doctorovich 

and Trhpani22d in 1999, who observed self coupling of amine substrates under microwave 

irradiation. There is no significant improvement in substrate scope for the reaction 
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developed. The proposed reaction pathway of Pt/C catalyzed reaction of primary amine 

to secondary amine in water under microwave irradiation is interesting as both retro-

reductive and reductive amination steps were introduced (Scheme 1.2.3.1).  

 

R NH R N R

R NH2 Pt/C

[Pt/C][H2]

R H

O
retro-reductive
amination

reductive
amination

H2O

NH3 R NH2

H2O

R N
H

R

53
52

51

54

55

 

Scheme 1.2.3.1: Proposed reaction pathway of Pt/C catalyzed reaction of primary 
amines. 

 

In the beginning of the catalytic cycle, alkylamine would be oxidized to form an 

imine product 53 by oxidative removal of dihydrogen, which is initially formed in situ in 

the reaction with 51. The aldehyde intermediate 54 could be formed by the hydrolysis of 

imine product in aqueous media by generating ammonia. Then alkylidenealkylamine 55 

is formed as the immediate from the reaction of an aldehyde with starting amine. Then 

the alkylidenealkylamine 55 would be reduced by Pt/C-dihydrogen species 52 to give a 

secondary amine and regenerate active catalyst 51. As can be seen in the Scheme 1.2.3.1, 

from primary amine to aldehyde can be identified as retro-reductive amination (oxidative 

deamination) and the product formation can be identified as reductive amination. 
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Beller and co-workers successfully developed the amine coupling reaction in 

2007.39 They reported selective dealkylation of amines by using Shvo catalyst 56 

(Scheme 1.2.3.2). This was the first reported arylation of aliphatic amines with anilines 

that proceeds under transfer hydrogenation conditions. 

 

 Scheme 1.2.3.2: Amination of aryl compounds by Shvo catalyst 56. 
 

A variety of functionalized anilines was transformed into secondary amines with 

n-hexylamine in the presence of Shvo catalyst in excellent yields. Apart from n-

hexylamine, few other substrates were transformed to corresponding secondary amines 

with aniline. In 2008, Peris group demonstrated that Ir catalyst 57 efficiently generate 

secondary amines from the coupling of aniline and few aliphatic amines (Scheme 

1.2.3.3).25a 

 
Scheme 1.2.3.3: N-Alkylation of aniline with aliphatic amines by Ir-carbene 
complex 57. 
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In 2009, William’s group reported an iridium complex, [Cp*IrI2]2 enabled 

coupling between aryl- or alkyl-amines and N,N-Diisopropylamine to synthesize 

branched secondary amine derivatives 58 (Scheme 1.2.3.4).40  

    

 Scheme 1.2.3.4: Conversion of aniline into N-isopropylaniline with Ir catalyst. 

 
 However, this study was limited to the synthesis of N-isopropyl substituted 

aniline derivatives from the alkyl transfer reaction pathway with di-isopropylamine 59. 

More recently, Xiao group demonstrated the utilization of a cyclometalated Ir catalyst 60 

to achieve the alkylation of anilines with bis-(isopropyl)amine (Scheme 1.2.3.5), but the 

reaction resulted in moderate yields with a very limited scope adding base as an 

additive.41  

NH2

0.5 mmol 59 (3 mmol) (19-85%)

[Ir] 1 mol%

5 mol% K2CO3, TFE
100 °C, 24 h

HN+
R

NH

R

N

O

Ir Cl

O

[Ir] =

60  

 Scheme 1.2.3.5: Cross-coupling of amines with Ir catalyst. 
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N
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 Scheme 1.2.3.6: Formation of secondary amines with Co-PNP catalyst. 

 
Very recently, Zhang group reported a cobalt-catalyzed selective N-alkylation of 

amines with aniline substrates to synthesize secondary aromatic amines.42 The utilization 

of Co PNP type catalytic system 61 selectively produced secondary amines with n-

hexylamine. The reaction tolerated for wide variety of functional groups including 

complex molecules (Scheme 1.2.3.5) with respect to aromatic amine substrate. However, 

most of them were prepared by using n-hexylamine as the substrate. The cobalt catalyzed 

monoalkylation of amines achieved via deaminative coupling reaction under “hydrogen-

borrowing” pathway (Figure 1.2.3.1), which is a generally accepted strategy in 

catalysis2a,22,33,39-44. 
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Figure 1.2.3.1: General scheme for “hydrogen-borrowing” strategy. 
 

 In summary, Transition metal catalysts can activate normally unreactive alcohols 

or amines by hydrogen abstraction procedure.  The inactive alcohol or amine is converted 

into a carbonyl or imine by abstracting the hydrogen by a catalyst. The more reactive 

carbonyl or imine intermediate undergoes a condensation reaction or any other type with 

a nucleophile. Finally, the hydrogen will be returned to the reacted substrate to form the 

products. The catalytic formation of secondary amines via amine coupling reactions have 

not been well established. In this context, our goal has been to develop novel 

environmentally benign, atom economical catalytic methods via C-N bond activation of 

primary amines to synthesize secondary mines. 
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1.3 Catalytic C-N Bond Activation Reactions 
 

Transition-metal catalyzed C-N bond activation reaction has been widely 

explored over the years. This catalytic method is a powerful tool for the synthesis of 

nitrogen containing molecules, (i. e. amines, amides, amino acids, nitriles) in which the 

metal bounded carbon and nitrogen species were typically involved in the catalytic 

cycle.45 The C-N activation by a transition-metal would also generate either metal 

bounded carbon, nitrogen or both species (C-M, C-N, C-M-N).45-47 In principle, the 

active species formed on the metal center could transferred to another active species to 

form carbon-carbon or carbon-hetero atom under favorable conditions (Figure 1.3.1). 

 

 

 

Figure 1.3.1: Schematic representation of C-N bond activation and new bond 
formation. 
 
 
The facile occurrence of the C-N bond metalation step is an important step for 

successful C-N activation reactions. As can be seen in Figure 1.3.1 an inert C-N bond 62 

was converted into more active metal bounded species 63 and 64 which could form new 
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activated species 65 and 66 to form new products by reductive elimination. There are 

three general mechanisms generally accepted as a reasonable explanation for the C-N 

bond metalation (Figure 1.3.2). 

 

a) oxidative addition 

 

b) β-N elimination 

 

c) C-H bond cleavage triggered C-N bond activation 

N
R1

R2
CH2R3

[M]
C-H

activation

N
R1

R2 R3

[M]

R3HC O

N
R1

R2
[M]

72 73  

Figure 1.3.2: General mechanisms for C-N bond metalation.  
 
 

Oxidative addition of C-N bond is the direct way to generate the metal bound 

active intermediate species 68 from the amine species 67 for further transformations. The 

β-N elimination is possible in the presence of directing atom or functional group (i. e. 

allyl) 69, which can be coordinated to metal center to activate the cleavage of C-N bond 

70 to form N-metalated moiety 71. The convenient way for the C-N bond activation is by 
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C-H bond cleavage triggered C-N bond activation through iminium ion formation 73 

(Figure 1.3.2: c) from desired amine derivative 72. This would be facilitated by the 

hydrogen acceptors on the metal center, such as ligands. Indeed, impressive progress has 

been achieved in transition-metal catalyzed C-N bond activation reactions throughout 

past few decades. 

 

1.3.1. Activation of the Arene C(sp2)-N Bond 

During past twenty years, researchers were keen to establish efficient ways to 

activate the C(sp2)-N bond by using transition metal catalysis. These methods would 

afford biaryls, borylation products and ethylene derivatives, which are fundamental 

structural motifs in myriads of pharmaceuticals and agrochemicals. MacMillan and co-

workers reported the first Suzuki type cross-coupling of aryltrimethylammonium salts. 

Ni(COD)2 catalyst was used in the presence of IMes as the ligand in dioxane as the 

solvent at 50 °C.48 

 

In 2009, Kakiuchi and co-workers reported the ruthenium-catalyzed C-C coupling 

reaction of aminoacetophenone with organoboranes via C-N bond activation.47i 

aminoacetophenone C-N bond was activated by relatively electron rich RuH2(CO)(PPh3)3 

by the assistance of the carbonyl directing group. A wide range of aminoacetophenones 

(i. e. -NH2, -NMe2, -N(Me)Ac) was shown to be amenable for this reaction. Furthermore, 

ortho substituted pivalophenones were formed with aryl- and alkyl-boronic acids 

affording in excellent yields (Scheme 1.3.1.1). 
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Scheme 1.3.1.1: Ruthenium-catalyzed cross-coupling reaction of 
aminoacetaphenone with organoborones.  
 
 
To gain further insight into the mechanism of this reaction, the group has been 

able to synthesize and investigated the conceivable intermediates, 78, 79 and 80 formed 

during the reaction. (Scheme 1.3.1.2).49 

 

 

 Scheme 1.3.1.2: Generation of ruthenium intermediate species.  
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 Firstly, the arylruthenium complex 79 was obtained in 6% yield with a 

stoichiometric reaction of RuH2(CO)(PPh3)3. Later, compound 79 was improved when 10 

equivalents of alkene (SiMe3CH=CH2) was introduced into the reaction system. Later, 

unsymmetrical complex 80 was also prepared by following the modified procedure. This 

was a direct observation of C-N bond cleavage is possible on the ruthenium center. The 

target coupling product 81 was obtained by conducting the stoichiometric reaction of 

intermediate 80 under similar reaction conditions, which was yielded expected product in 

97% yield. Moreover, the target Suzuki-type coupling was achieved under catalytic 

conditions.  

 

Scheme 1.3.1.3: Proposed mechanism for the Suzuki-type cross coupling. 

 

A reasonable catalytic cycle could be proposed for the formation of new C-C 

bond by arene Csp2-N activation (Scheme 1.3.1.3). At the beginning C-N bond activation 
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through oxidative addition of the 74 to the ruthenium complex to form ruthenium amido 

intermediate 83. Then the ruthenium amido complex 83 formed, would exchange the 

alkyl groups by transmetalation with an organoboronate to form intermediate species 84 

and finally reductive elimination yields the desired product by regenerating the active 

catalyst back to the system. 

 

1.3.2. Activation of the Olefinic C(sp2)-N Bond 
 

 

 Scheme 1.3.2.1: Heck type coupling reaction of N-vinylacetamide derivatives. 

  

 Loh and co-workers palladium-catalyzed intramolecular Heck reaction of N-

vinylacetamide derivatives were reported in 2015.50 Intramolecular olefinic C(sp2)-N 
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bond cleavage product was obtained in the presence of Et3N and Pd(OAc)2/PPh3 as the 

catalyst in DMF at 120 °C. l,l'-Disubstituted ethylene derivatives were selectively 

formed, which showed compatibility for both electron-rich and -poor groups on the 

phenyl ring and tolerated the aliphatic enamine moieties. The reaction was tolerated 

sterically hindered tert-butyl and cyclohexyl-substituted N-vinylacetamides as well 

(Scheme 1.3.2.5). 
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Scheme 1.3.2.2: Proposed mechanism for Heck reaction of N-vinylacetamide 
derivatives. 

 

 The mechanism of Heck reaction can be explained as depicted in Scheme 1.3.2.2. 

Oxidative addition of the C-Br bond to Pd(0) will form the oxidized form of the 

palladium complex 87, followed by intramolecular 5-exo-cyclization produce a new five 
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membered palladium complex 88. Then the C-N bond activation through β-N elimination 

was occurred to form the intermediate palladium species 89. Finally, protonation and 

sequential reductive elimination yielded the desired product utilizing Et3N as the 

hydrogen source with the regeneration of active catalytic species. 

 

1.3.3. Activation of the C(sp3)-N Bond of Amines 

1.3.3.1. Activation of the C(sp3)-N Bond of Allylic Amines 
 

 

Scheme 1.3.3.1.1: Proposed mechanism for C-N bond activation of allylic amines. 
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Allylic amines are considered to be a versatile building blocks in synthetic 

organic chemistry. Oxidative addition to the low-valent metal via C-N bond activation is 

the key aspect for the chemistry of the allylic amines.  

Palladium catalyzed C-N bond activation of allylic amines can be demonstrated as 

shown in Scheme 1.3.3.1.1 as a typical pathway to illustrate a C-N bond cleavage 

mechanism.45 Firstly, palladium-catalyst coordinates with the allylic substrate through the 

double bond while the NR2 group is activated by the Lewis acid by generating palladium 

coordinated species 93. Next, oxidative addition through the C-N bond to the Pd(0) 

provides the π-allyl palladium species 94 or 95. The binding phase would be dependent 

on the steric or directing groups present on the used ligands. SN2 type nucleophilic attack 

would be expected in the presence of "soft nucleophiles" (pKa of its conjugate acid > 25), 

on the allylic carbon atom of 94 or 95 gives the complex 96 with the inversion of the 

configuration with respect to palladium η2-C bond. Decoordination gives the product 91 

with the retention of configuration while regeneration of the low-valent palladium, which 

is shown in the Path I. Alternatively, if the "hard nucleophile" (pKa of its conjugate acid 

> 425) has been used, the nucleophilic attack would be possible on the palladium center 

in complex 94 generating 97 (Path II). Finally, reductive elimination will be generated 

the other enantiomer of the product 92. 

In 2011, Tsuji-Trost-type reaction (allylic alkylation) for the carbonyl compounds 

with allylic amines was developed by Zhang and co-workers which was explained as 

hydrogen-bond-promoted C-N bond activation.51 [Pd(allyl)Cl]2 with DPPF (1,1'-

Ferrocenediyl-bis(diphenylphosphine)), ligand promoted reaction was proceed efficiently 

via active enamine intermediates. The enamine intermediate generated from the 
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condensation of carbonyl compounds with pyrrolidine. Furthermore, excellent 

enantioselectivities were obtained, when a chiral ferrocene-based phosphinooxazoline 

was used as a ligand with chiral -allylic substituted ketones. It is noteworthy that C-N 

bond activation of allylic amines was only possible with the suitable hydrogen donor 

solvent, in this case methanol (Scheme 1.3.3.1.1). 

 

 

Scheme 1.3.3.1.2: Palladium-catalyzed allylic alkylation of carbonyl compounds. 

 

1.3.3.2. Activation of the C(sp3)-N Bond of Aliphatic Amines 
 

Milstein and co-workers first reported the rhodium-catalyzed reductive hydro-

denitrogenation reaction with tertiary amine 98 as the substrate.47c Quantitative product 

yield was achieved by using [RhCl(coe)2]2 as a catalyst under the H2 gas. However, this 

catalytic reaction was very limited due to pincer-type phosphine-amine substrate. Even 
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though, the transformation very atom economical, potential application was limited due 

to a narrow substrate scope. (Scheme 1.3.3.2.1). 

 

Scheme 1.3.3.2.1: Rhodium-catalyzed hydro-denitrogenation. 

 In 2011, Huang and co-workers developed a conceptually new strategy for 

oxidative C-N bond activation triggered via C-H activation.52 The C-N bond of tertiary 

amines was found to be cleaved with CuBr2 as a catalyst under O2. Copper-amide species 

were identified as the key intermediates for this C-N bond formation reaction. Thus, a 

new oxidative C-H amination of azoles with tertiary amines was established with a 

variety of azoles and tertiary amines contains α-H adjacent to the nitrogen atom (Scheme 

1.3.3.2.2). 

 

 

 Scheme 1.3.3.2.2: Copper-catalyzed oxidative amination of azoles. 
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Figure 1.3.3.2.3 shows the mechanistic rationale originally proposed by the 

observation of the mechanistic experiments. Initially, iminium type intermediate 106 will 

be formed by the activation of the C-H bond of the tertiary amine on the high-valent 

copper species in the presence of oxygen by elimination of H2O molecule. Subsequent 

hydrolysis of iminium type intermediate 106 produces the key copper-amide species 107, 

which will be coordinated to azole moiety quickly by forming intermediate 108. 

Cleavage of the C-H bond of the azole moiety leads to generate the copper complex 109, 

which would undergo reductive elimination to furnish the desired product 105 with the 

regeneration of the active catalytic species to complete the catalytic cycle. 
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Scheme 1.3.3.2.3: Proposed mechanism for oxidative amination of azoles. 
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In summary, transition-metal catalyzed C–N bond activation has prompted many 

novel methods for synthetic chemistry. It is evident that the new reactions developed over 

the years via C–N bond cleavage undoubtedly be useful for industrial and pharmaceutical 

applications. Various late transition-metal catalysts have been explored for novel C-N 

bond cleavage reactions. The catalytic C-N activation has been emerging as one of the 

most promising tools in synthetic organic chemistry, but the methods still require careful 

attention in order to develop industrially applicable coupling reactions. 
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Chapter 2 

Ligand Controlled Synthesis of Symmetrical and Unsymmetrical Secondary Amines 

from the Ruthenium Catalyzed Deaminative Coupling Reaction of Amines 

 

2.0 Introduction 
 

Carbon-nitrogen (C-N) bond is commonly present in many organic compounds 

including amino acids and other bioactive molecules. Catalytic C-N bond cleavage 

reactions are of fundamental importance in a variety of industrial and fine chemical 

syntheses as well as in biochemical processes.53 Considerable efforts have been devoted 

to develop efficient synthetic methods to utilize amines for the synthesis of a complex 

organic molecules such as pharmaceutical agents, polymer materials, dyes and 

agrochemicals.54 Even though many methods has been reported in the recent literature, 

selective synthesis of secondary amines from the alkylation of primary amines is still 

challenging due to selectivity of the reaction.42,43,55 Due to toxicity and high  mutagenic 

properties, alkyl halides have been identified as unsuitable substrates for industrial scale 

synthesis of N-alkylated amines. Transition-metal-catalyzed monoalkylation reactions of 

amines with alcohols as alkylating agent could be efficiently employed with ruthenium, 

iridium, iron and cobalt catalysts.26,56   

In industrial petrochemical process, heterogeneous Mo catalysts are commonly 

used for the industrial petroleum hydro-denitrogenation process of hydrocarbon 

feedstocks. For biochemically significant process, C-H oxidation metalloenzymes such as 

CytP450 and methane monooxygenase have been well known to mediate biochemical 
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oxidative N-dealkylation of amines, and N-demethylation of an amino group has been 

shown to be critical step for obesity-related diabetes gene regulation on mRNA.57 

Designing selective catalytic C-N bond cleavage methods has long been an enigmatic 

problem in homogeneous catalysis directed for the synthesis of complex organic 

molecules. As an alternative method, transition-metal-catalyzed N-alkylation via C-N 

bond activation of amines has been shown to be a promising pathway to generate 

secondary amines.  However, earlier efforts showed poor product selectivity and a limited 

scope for the reaction.19,58 

While a number of deallylation and aza-Cope type of activated and cyclic C-N 

bond cleavage reactions have successfully been employed in organic synthesis, selective 

C–N bond cleavage reactions of simple aliphatic amines have been rarely achieved in 

part due to their tendency for undergoing energetically more favorable dehydrogenation 

and oxidation reactions.59 Although many organic transformations via sp3 C-N bond 

cleavage have been widely investigated, the development of simple and practical 

protocols of selective sp3 C-N bond cleavage of primary and secondary amines has been 

proven to be exceedingly difficult in organic synthesis because they are intolerant under 

strong acidic and basic conditions.  Besides the limited examples of precious metal 

catalyzed amine synthesis, catalytic couplings between amines with more complex 

molecules have not been explored. In this context, recent advances have focused the 

development of catalytic methods that are, functional group-tolerant, environmentally 

benign, and mild reaction conditions. In particular, the challenge is still unsolved for 

direct formation of C-N bond between amine substrates to form aliphatic and aromatic, 

secondary amines. Here we describe our effort to design a catalytic system for the 
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formation of symmetric and unsymmetric secondary amines with a broad substrate scope 

including complex and bio-active molecules from deaminative coupling reactions of 

aliphatic and aromatic primary amines, which involve C-N bond activation of primary 

amine leaving ammonia as the only byproduct. 

 

2.1 Results and discussion 

Recently, our research group developed a convenient method for the synthesis for 

a well-defined cationic ruthenium-hydride complex [(ɳ6-C6H6)(PCy3)(CO)RuH]+BF4- 

(113) from the protonation reaction of tetranuclear ruthenium complex 

{[(PCy3)(CO)RuH]4(μ-O)(μ-OH)2} (112) with HBF4.OEt2 (Figure 2.1.1). The (113) can 

be obtained by two step synthetic procedures from the ruthenium hydride complex 

(PCy3)2(CO)RuHCl (110) (Scheme 2.1.1).60,64 Base hydrolysis reaction of 110 with 

potassium hydroxide in isopropyl alcohol produced the bimetallic ruthenium complex 

111 in (>90%) yield. The complex 111 could be purified by recrystallization techniques 

(85%) or chromatographic method (90%).6 The subsequent treatment of 111 with wet 

acetone at 95 ⁰C yielded complex 112 in 84 % yield as brown-red powder. Thus, the 

treatment of 112 (200 mg, 0.12 mmol) with HBF4.OEt2 (64 μL) in C6H6 at room 

temperature cleanly afforded the cationic ruthenium hydride complex 113, which was 

isolated as ivory-colored solid in 90% yield (Scheme 2.1.1). The characterization of the 

ruthenium-hydride complex was performed by NMR spectroscopy and X-ray 

crystallographic technique. The ruthenium hydride signal of 113 was observed at δ -10.39 

(d, JPH = 25.9 Hz) in CD2Cl2, and phosphine signal was observed at δ 72.9 ppm by 

31P{1H} NMR spectroscopy. The molecular structure of the ruthenium hydride 113 

showed a three-legged piano-stool geometry, which is capped by a ɳ6 benzene moiety.  
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Scheme 2.1.1: Synthesis of cationic ruthenium hydride complex (113). 

 

Figure 2.1.1: X-ray crystal structure of cationic ruthenium hydride complex 
(113). 
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Figure 2.1.2: X-ray crystal structure of 112 drawn with 50% thermal ellipsoids. 
cyclohexyl groups are omitted for clarity. 
 
 

 In 2014, our group reported selective catalytic synthesis of unsymmetrical ethers 

from the dehydrative etherification of two different alcohols61 (Scheme 2.1.2). In light of 

this reaction, our group envisioned the possibility of C-N bond cleavage reaction of 

primary amines to generate secondary amines. However, repeated initial attempts were 

failed for this synthetic approach by using catalyst 112/113.  

 

R
OH

+ R'
OH 113 (1 mol%)

OR R' + H2O

up to 90% selcetivity
R, R' = alkyl or aryl

PhCl, 110 °C

 

 Scheme 2.1.2: Ruthenium catalyzed synthesis of unsymmetrical ethers. 
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 In 2015, we reported that the cationic ruthenium-hydride complex with a phenol 

ligand exhibited a uniquely high catalytic activity for the hydrogenolysis of carbonyl 

compounds to yield the corresponding aliphatic products (Scheme 2.1.3).62 

R

O
+

113 3 (mol%)
+ H2O

R = Aryl or alkyl
R' = alkyl or H

PhOH (4 mol%)
Dioxane

110-130 °C

R'
H2 R R'

H H

 

 Scheme 2.1.3: Ru-H catalyzed hydrogenolysis of carbonyl compounds. 
 
 
Our group was very excited about activation of unstrained C-C bond via Ru based 

catalytic methods. Preliminary result, we recently detected the catalytic dehydrative C-C 

activation reactions by using 1,2 and 1,3-diols as the substrate and aromatic amines as the 

trapping agent (Scheme 2.1.4).  

 

 

 Scheme 2.1.4: Ru-H catalyzed C-C bond activation of unstrained diols. 
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In an effort to extend the scope of unstrained C−C activation of diols, we have 

been exploring the 1,4-diol substrates with 4-methoxyaniline with the catalyst 112 under 

various conditions. To our delight, we found that the aromatic C-N bond activated 

product (4-methoxy-N-(4-methoxyphenyl)benzenamine, (56% isolated yield) was formed 

from the reaction of 4-methoxyaniline, 2,5-hexandiol and HBF4.OEt2 as an additive in 

dioxane at 130 °C (Scheme 2.1.5). To the best of our knowledge, this was the first 

catalytic aromatic C-N bond cleavage reaction to generate the aromatic secondary amine 

products. Further investigations indicated that the diol substrate acted as a ligand to 

promote the secondary amine product. 

 

Scheme 2.1.5: Formation of secondary aromatic amine product via Ru catalyzed 
aryl C-N activation. 
 
 
These investigations and observations led us to think about the possibility of 

designing the C-N bond activation reaction by using ligand controlled catalysis. To 

promote ligand controlled catalysis, we initially screened the effect of phenol and related 

oxygen and nitrogen ligands on a number of ruthenium catalysts for promoting the C-N 

cleavage reaction. We also focused on primary amines with a number of mono or 

multidentate ligands and the ligands containing OH groups to promote for the better 

activity and selectivity for C-N cleavage reactions. After large number of ligand 
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screening, we found that benzenediols are the best ligands for promoting the formation of 

secondary amine products.  

Secondary amine products are an important precursor for a variety of 

pharmaceutical and industrially important intermediates. As will be presented below, the 

catalytic method employs environmentally friendly and cheaply available primary 

aliphatic and aromatic amines, and exhibits a broad substrate scope and high 

chemoselectivity towards the C-N bond cleavage reaction. This reaction does not utilize 

any reactive agents, such as acids/bases or oxidants, and no wasteful byproducts were not 

formed. The formation of NH3 is believed to be the driving force for the reaction. 

(Scheme 2.1.6).  

   

 

Scheme 2.1.6: Selective synthesis of secondary amines catalyzed by 112.
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2.2 Optimization studies 

2.2.1 Catalytic survey 
 

The coupling reaction of benzylamine and cyclohexylamine was used to screen 

the coupling reaction. Among the screened catalysts, both the tetranuclear Ru-H complex, 

112 and the cationic Ru-H, 113 were found to exhibit the most promising activity for the 

coupling reaction (Scheme 2.2.1). 

 

 Scheme 2.2.1: Coupling reaction of benzylamine and cyclohexylamine. 
 

 

Thus, the treatment of benzylamine (0.5 mmol) with cyclohexylamine (0.7 mmol) 

and 4-(1,1-dimethylethyl)-1,2-benzenediol (116) (10 mol%) in the presence of a metal 

catalyst (3 mol %) in chlorobenzene at 130 ⁰C was analyzed by GC-MS and NMR after 

16 h reaction time by using hexamethylbenzene as an internal standard. The results are 

summarized in Table 2.2.1.1, as analyzed by both GC and NMR spectroscopic methods.  

 

Table 2.2.1.1. Catalyst screening for the reaction of benzylamine with cyclohexylamine.a 
    

entry catalyst additive ligand yield (%)b

115a 117a 
1 [RuH2(CO)(PPh3)3] - - 0 0
2 [RuH2(CO)(PPh3)3] - 116 0 0
3 [RuH2(CO)(PPh3)3] HBF4

.OEt2 - 2 0 
4 [RuH2(CO)(PPh3)3] HBF4

.OEt2 116 22 <1 
5 RuHCl(p-cymene)2 - - <1 <1
6 RuHCl(p-cymene)2 - 116 <1 <1
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7 RuHCl(p-cymene)2 HBF4
.OEt2 - 2 <2 

8 RuHCl(p-cymene)2 HBF4
.OEt2 116 12 <1 

9 [RuCl2(PPh3)3] - - 4 <1
10 [RuCl2(PPh3)3] - 116 5 3
11 [RuCl2(PPh3)3] HBF4

.OEt2 - 26 26 
12 [RuCl2(PPh3)3] HBF4

.OEt2 116 20 17 
13 [RuCl3.3H2O)] - - <1 <4
14 [RuCl3.3H2O)] - 116 0 31
15 [RuCl3.3H2O]] HBF4

.OEt2 - 4 04 
16 [RuCl3.3H2O]] HBF4

.OEt2 116 5 20 
17 [Ru(COD)Cl2]x - - <10 6
18 [Ru(COD)Cl2]x - 116 14 7
19 [Ru(COD)Cl2]x HBF4

.OEt2 - 1 8 
20 [Ru(COD)Cl2]x HBF4

.OEt2 116 0 0 
21 RuHCl(CO)(PCy3)2 - - 68 20
22 RuHCl(CO)(PCy3)2 - 116 70 15
23 RuHCl(CO)(PCy3)2 HBF4

.OEt2 - 68 25 
24 RuHCl(CO)(PCy3)2 HBF4

.OEt2 116 62 24 
25 113 - - <5 <1
26 113 - 116 70 16
27 112 - - 27 7
28 112 - 116 74 22
29 112 HBF4

.OEt2 - 13 0 
30 112 HBF4

.OEt2 116 65 1 
aReaction conditions: catalyst (3 mol % Ru equivalents), ligand 116 (8 mg, 10 mol %), 
additive (7 mol %), Benzylamine (0.5 mmol), Cyclohexylamine (0.7 mmol), 
Chlorobenzene (2 mL), 130 °C, 16 h. bThe product yield of 115a was determined by 1H 
NMR using hexamethylbenzene as an internal standard. 
 
 

Among the surveyed ruthenium catalysts, complex 112 exhibited a uniquely high 

activity for the deaminative coupling of amines.  In the absence of HBF4
.OEt2 as an 

additive, the product was obtained in 74% yield, and conversion for the reaction found to 

be over 99%. To obtain the best results, we screened a number of Ru catalysts under 

different conditions, in combination with both additives and ligands. Even though 113 

gave 70% yield for the coupling reaction, we decided to use 112 as we observed highest 

yield and catalyst 112 is the precatalytic species for the catalyst 113.  The 112 is believed 
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to form the mononuclear Ru-H catalyst after the hydrolysis of the 112 catalyst under mild 

acidic or basic conditions, as the addition of 10 mol% of ligand 116 (pKa = 9.9, at 25 °C) 

might be good enough to form an active catalytic species under the optimized reaction 

conditions. Addition of HBF4.OEt2 to the catalyst 112 was not effective to increase the 

selectivity successfully. All the other catalysts were not effective as 112 for this 

transformation. Therefore, we decided to use 112 with the ligand 116 as the optimized 

catalytic system for the reaction, which avoids the catalyst 113, and HBF4.OEt2.  

 

2.2.2 Ligand screening and temperature effects 

Initially, we surveyed the effect of bidentate ligands with well-defined 

tetranuclear ruthenium hydride catalyst, 112, by using primary amines as the substrate to 

promote the formation of secondary amines. A large number of aliphatic diols, triols, 

polyols and even simple alcohols were screened under different reaction conditions. 

However, none of them gave a good product yield and selectivity. Then we decided to 

screen aromatic ligands including simple phenol derivatives and other common oxygen 

ligand systems. Catechol derivatives has been shown the highest activity by yielding over 

99% product (isolated yield, 95% with high selectivity), selectively for the homo 

coupling product 117s. Therefore, we decided to investigate the best ligand among 

benzenediols for this noble organic transformation. To find the best ligand among 

benzenediols and related compounds, we decided to use heterocoupling reaction between 

benzylamine/4-methoxybenzylamine with cyclohexylamine (Scheme 2.2.2.1).  
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Scheme 2.2.2.1: Coupling reactions of benzylamine/4-methoxybenzylamine and 
cyclohexylamine with different ligands (116/116a-n). 

 
The treatment of benzylamine or 4-methoxybenzylamine, 114 (0.5 mmol) and 

cyclohexylamine 114´ (0.5 mmol) with ligand (10 mol %) in the presence of tetranuclear 

ruthenium hydride catalyst 112 (3 mol %) in chlorobenzene at 130 ⁰C was analyzed by 

GC-MS and NMR techniques after 16-hour reaction time with the hexamethylbenzene as 

an internal standard. The results are summarized in Table 2.2.2.1. The different 

benzenediol ligands (116 and 116a-n) and analogous compounds are screened for the 

reaction as shown in the Figure 2.2.2.1. 
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Figure 2.2.2.1: Ligands used for the amine coupling reaction. 

  

Table 2.2.2.1 Ligand screening for the deaminative coupling reaction of benzylamine with 
cyclohexylamine.a 

entry ligand substrate catalyst additive Temp. 
(°C) 

yield (%)b 
115a/b 117a/c 

1 116 R = OMe 112 HBF4
.OEt2 140 71 20 

2 - R = OMe 112 HBF4
.OEt2 140 23 25 

3 116 R = OMe 112 HBF4
.OEt2 120 37 37 

4 116 R = OMe 112 - 140 75 19 
5 - R = OMe 112 - 120 0 0 
6 - R = H 112 - 120 0 0 
7 - R = H 112 - 125 trace 0 
8 - R = H 112 - 130 27 7 
9 - R = OMe 112 - 120 trace trace 
10 116 R = H 112 - 140 70 15 
11 - R = H 113 - 130 trace trace 
12 - R = H 113 - 140 5 trace 
13 116 R = H 113 - 130 70 16 
14 - R = H 113 - 140 5 trace 
15 116a R = H 112 HBF4

.OEt2 130 65 1 
16 116 R = H 112 - 130 74 22 
17 116b R = OMe 112 HBF4

.OEt2 140 65 28 
18 116c R = OMe 112 HBF4

.OEt2 140 61 26 
19 116c R = H 112 - 130 68 20 
20 116d R = H 112 HBF4

.OEt2 130 70 10 
21 116d R = OMe 112 - 130 60 20 
22 116d R = H 112 - 130 80 15 
23 116e R = H 112 - 130 63 18 
24 116f R = OMe 112 HBF4

.OEt2 140 62 27 
25 116f R = OMe 112 - 140 66 15 
26 116f R = H 112 - 130 60 12 
27 116g R = H 112 - 130 22 10 
28 116h R = H 112 - 130 30 15 
29 116i R = H 112 - 130 trace  trace 
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30 116j R = H 112 - 130 52 16 
31 116k R = H 112 - 130 40 10 
32 116l R = H 112 - 130 31 9 
33 116m R = H 112 - 130 15 10 
34 116n R = H 112 - 130 27 12 
35 - R = OMe - HBF4

.OEt2 140 trace 0 
36 116 R = OMe - - 140 trace 0 
37 - R = OMe - - 140 trace 0 
38 - R = OMe - H2SO4 130 0 trace 
39 - R = H - H2SO4 130 0 trace 
40e - R = H - H2SO4 130 0 trace 

aReaction conditions: catalyst (3 mol % Ru equivalents), additive (7 mol %), benzylamine 
(0.5 mmol), cyclohexylamine (0.5 mmol), ligand (8 mg, 10 mol %), chlorobenzene (2 mL), 
130 °C, 16 h. bThe product yield of 115a/b was determined by 1H NMR using 
hexamethylbenzene as an internal standard. eStoichiometric amount of conc. H2SO4 was 
used. 

The reaction did not proceed without catalyst, and ligand were found to be 

mandatory for the selective transformation. The product yield was found to be 23% 

(Table 2.2.2.1, entry 2,) without the ligand even at higher temperature, such as 140 °C 

with 4-methoxybenzylamine. After addition of the ligand, yield of the product was 

increased up to 71% (conversion over 95%). Similar results were obtained with benzyl 

amine as the substrate (Table 2.2.2.1, entry 4) which confirmed the importance of the 

ligand for the reaction. Further investigations were carried out to probe steric and 

electronic environment on the ligands, to get the selective product. As can be seen in 

entry 15-26, the product yield was 60-70% with the different benzenediol ligands. This 

observation suggested that the more sterics or moderate electron donating groups were 

not very important to improve selectivity towards heterocoupling over homocoupling. In 

the presence of strong electron withdrawing ligand selectivity was not improved. These 

observations suggested that there is no significant impact on changing steric or electronic 

environment on the ligand for the reactivity or selectivity of the screened reaction. It is 

noteworthy that the entry 22, yield of the product was 80% (over 99% conversion) in the 
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presence of 4-flurobenzenediol as a ligand. However, the attempts taken to develop the 

reaction by using 4-flurobenzenediol as a ligand did not work successfully for the other 

substrates. It has been shown that the 112 ligand promotes the reaction by achieving 74% 

of the desired product under optimized conditions and found to be effective for the other 

reactions as well.  

The coupling reactions were performed to find optimum temperature with the 

catalytic system. It has been shown that the C-N activation reactions require the 

temperatures of 130 °C. Desired product did not form at or below 125 °C, as shown in 

entry 5-7, (Table 2.2.2.1) suggesting that the reaction required at least 130 °C as 

optimum temperature. Entry 28-34 (Table 2.2.2.1) cleary showed that the other relevant 

phenolic and amine derivatives used were not worked as best as catechol derivatives. 

However, o-hydroxybenzylalcohol (122) gave the 60% of the desired product under 

optimized conditions, suggested that the reaction could be possible with two hydroxyl 

groups which are located at close proximities (It is not necessary to have two phenolic 

groups to support the reaction). Desired product was not obtained with the additives or 

solvent along. (Table 2.2.2.1).  

Furthermore, it was found that catalytic and stoichiometric amounts of strong 

acids such as conc. sulphuric acid, did not give any products. This results clearly 

demonstrated that the catalytic C-N bond activation is not possible without the ruthenium 

catalyst and the selectivity and reactivity has been greatly improved by the addition of 

catechol ligands. Out of those screened benzenediol ligands, ligand 116 was selected as 

best ligand for the amine coupling reaction. 
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2.2.3 Solvent and temperature effect study 

 

Scheme 2.2.3.1: Screening for solvent and temperatue by coupling reactions of 
benzylamine and cyclohexylamine. 

 

Table 2.2.3.1: Solvent effect on the reaction of benzylamine and cyclohexylamine.a 

Entry Solvent Temperature /⁰C Yield of 115a (%)b 

1 Chlorobenzene 130 74 
2 Chlorobenzene 125 <10 
3 Dioxane 130 66 
4 Dioxane (Anhydrous) 130 68 
5 Dioxane (Anhydrous) 120 trace 
6 Methanol 130 trace 
7 THF 130 30 
8 CH3CN 130 0 
9 Toluene 120 0 
10 Toluene 120 0 
11 Toluene 130 60 
12 1,2-DCE 130 40 
13 DCM 130 <10 

aReaction conditions: catalyst (3 mol % Ru equivalents), benzylamine (0.5 mmol), 
cyclohexylamine (0.5 mmol), 116 (8 mg, 10 mol %), solvent (2 mL), 16 h. bThe product 
yield of 115a was determined by 1H NMR using hexamethylbenzene as an internal 
standard. 

 

To establish the best solvent for the reaction, we next conducted the reaction in 

various solvents by using 112/116 for the coupling reaction (Scheme 2.2.3.1) of 

benzylamine with cyclohexylamine (Table 2.2.3.1). The treatment of benzylamine (0.5 
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mmol) and cyclohexylamine (0.5 mmol) with ligand 116 (10 mol%) in the presence of 

112 (3 mol %) in different solvents at 130 ⁰C was analyzed by GC-MS after 16 hour of 

the reaction time. It was found that the nature of the solvent considerably affects the 

activity of the coupling reaction. Of the solvents tested, chlorobenzene, toluene and 

dioxane were found to be effective for the amine coupling reaction.  No catalytic activity 

was observed with acetonitrile as solvent because it strongly coordinates to the ruthenium 

center and inhibits the catalytic activity. Attempts to decrease the temperature by using 

the different solvents were not successful (Table 2.2.3.1, entry 2,5, 9 and 10). THF also 

coordinate to Ru center and are less effective for the catalytic reaction observed (Table 

2.2.3.1, entry 7). Once again, the optimum temperature was confirmed as 130 ⁰C for the 

deaminative coupling reaction of amines.  

 

2.2.4 Catalyst loading effect 

 
Table 2.2.4.1 shows the screening results for the coupling reaction under different 

amounts of catalyst loading. The treatment of benzylamine (0.5 mmol) and 

cyclohexylamine (0.5 mmol) with 116 (10 mol%) in chlorobenzene at 130 ⁰C with the 

112 was analyzed by GC-MS after 16 hour of the reaction time (Scheme 2.2.4.1).  

 
Scheme 2.2.4.1: Effect of catalyst loading on the coupling reactions of 
benzylamine and cyclohexylamine. 
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Catalyst loading experimental results illustrated that the 3 mol% (Table 2.2.4.1, 

entry 3) of the catalyst loading is required for the complete conversion. The catalyst 

loading 1 mol% -1.5 mol% did not produce the product as expected (Table 2.2.4.1, entry 

1-3), while the application of 5 mol% (Table 2.2.4.1, entry 5) did not improve the yield 

significantly.   

Table 2.2.4.1: Effect of catalyst loading on the reaction of benzylamine and 
cyclohexylamine.a 

Entry Catalyst loading /mol% Yield of 115a (%)b 
1 1 20 

2 1.5 35 

3 2 50 

4 3 74 

5 5 79 
aReaction conditions: catalyst (3 mol % Ru equivalents), benzylamine (0.5 
mmol), cyclohexylamine (0.5 mmol), ligand (8 mg, 10 mol %), solvent (1 
mL), 16 h. bThe product yield of 115a was determined by 1H NMR using 
hexamethylbenzene as an internal standard.

 

2.2.5 Optimization for the coupling reaction of aniline 

Having established the optimized conditions for the ruthenium catalyzed N-

alkylation of amines with another primary amine substrate, we next investigated substrate 

scope of aromatic amines. The coupling reaction of aromatic amines with primary amines 

were not observed under the current optimized conditions. The treatment of 4-

methoxyaniline (0.5 mmol) and 4-methoxybenzylamine (0.7 mmol) with ligand 116 (10 

mol%) in the presence of 112 (3 mol %) were tested using different solvents, 

temperatures and time (Scheme 2.2.5.1). Products were analyzed by GC-MS with the 

hexamethylbenzene as an internal standard.  The screening results showed that the 
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aromatic amine coupling reaction with aliphatic amines observed at elevated temperature 

(140 °C) with a larger reaction time (20 hours).  

 

Scheme 2.2.5.1: Coupling reaction of 4-methoxyaniline and 4-
methoxybenzylamine. 

 

Finally, we established the optimized conditions for both aliphatic and aromatic 

amine coupling reaction. Secondary aliphatic amine can be selectively prepared by using 

primary aliphatic amines with 3 mol % 112 catalytic loading, 10 mol% 116, 16-hour 

reaction time at 130 ⁰C in chlorobenzene. Selective aromatic amine coupling reactions 

with primary aliphatic amines can be achieved with 3 mol % 112 catalytic loading, 10 

mol% 116, 20-hour reaction time at 140 ⁰C in chlorobenzene. Having the optimized 

conditions in hand, we next explored the substrate scope of various aryl and alkyl amines 

(both primary and secondary) to demonstrate the general applicability of this coupling 

reaction. 

 

2.3 Reaction Scope 

Having determined the optimal reaction conditions, we examined the scope of the 

transformation with regard to the amine substrate for the coupling reaction. Thus, a 

variety of amines have been employed for the reaction with other primary amine 

substrates, and the results are summarized in Table 2.3.1. 
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 Scheme 2.3.1: Asymmetric coupling reaction of aliphatic amines. 

 

Unsymmetrical amine products 115a-ff were selectively formed from the coupling 

of benzylic amines with a variety of aliphatic amines as well as benzylic amines 114 

(Table 2.4.1, entry 1-28). In these cases, <20 % of symmetric amine products were 

formed in crude mixtures, and pure unsymmetric amines were readily isolated by column 

chromatography on silica. Bioactive molecules, such as tryptamine derivatives and 

tyramine were tolerated the reaction by giving (Table 2.3.1, entry 30-32) excellent yields 

over 80% and 79% respectively without giving any homocoupling products. 

Unsubstituted, 4-methoxy-, and 4-fluoro-benzylamine reacted efficiently with 

cyclohexylamine, producing the corresponding secondary amine products 115a, 115b and 

115c in high isolated yields, respectively. The reaction of 4-trifluoromethylbenzylamine 

resulted in the product 115d in moderate yield (59%), due to strong electron withdrawing 

effect of an p-trifluoromethyl group. In addition, β-phenylmethylethylamine also 

furnished the reaction in moderate isolated yield (63%). Conversion for the reaction for 

all these cases were over 97%, along with the observation of 15% to 25% homocoupling 

products.  
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Table 2.3.1: Deaminative cross coupling reactions of primary amines.a 

 

Entry   (R-NH2)              (R´-NH2)                                    Products and bYield% 
                114                      114´                                 115(a-ff)                           117(a-y)    
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Table 2.3.1: cont…… 

O

O

NH2
O

O

N
H

R' O

O

N
H

O

O

27
28

29

30 X = OMe
31 X = H

32

R' = n-hexyl
R' = CH2CH2C6H4(4-OMe)

R' = Cyclohexyl

R' = Cyclohexyl
R' = Cyclohexyl

R' =Cyclohexyl

NH2

O NH2

N
H

X

NH2

HO

115aa - 75 (52)
115bb - 81 (69)

115cc - 89 (69)

115dd - 89 (67)
115ee - 80

115ff - 83 (79)

117y - 05
00

117w - 06

00
00

00

N
H

X

NH2

HN

H
N

HO

24 R' = Cyclohexyl 115x - 75 (59) 14
25 R' = CH(Me)C6H4(4-OMe) 115y - 63 (60) 04
26 R' = CH2CH(Me)C6H5 115z - 69 (56) 14

117j

O HN

O

HN R'O

HN
R'

H
N

 

aReaction conditions: amine (1 mmol), amine 2 (1.4 mmol), Ligand 116 (10 mol%), 
catalyst 112 (3 mol %) in chlorobenzene (2 mL) at 130 ⁰C. bIsolated yields are displayed 
in parenthesis. 

 

Substrates with an electron-withdrawing group were tested, and interestingly, 

these substrates having para-substituted electron withdrawing group such as chloro, 

phenyl, fluro and trifluromethyl 115f-m (Table 2.3.1, entry 6-13) with different types of 

primary amines were relatively less reactive in giving moderate isolated yields 55-66%. 

The coupling of phenethyl amines with both benzylic and aliphatic amines also gave the 
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selective formation of secondary amine products 115n-w (Table 2.3.1, entry 14-23), in 

very good yields. However, the coupling between n-hexylamines (Table 2.3.1, entry 15) 

typically resulted in a mixture of secondary 115o (51% isolated yield) and 115o´ tertiary 

amines (18% isolated yield).  Piperonylamine bearing 3,4-(methylenedioxy) group as 

substituents was also suitable substrate, affording 115x-z (Table 2.3.1, entry 24-26) 

secondary amine product with cyclohexylamine,  β-phenylmethylethylamine and 4-

methoxy-α-methylbenzenemethanamine in good yields. 1-Aminotetraline selectively 

formed the secondary amine product 115aa/bb without affording the homocoupling 

product having good isolated yields (Table 2.3.1, entry 27 and 28). The use of 

furfurylamine with cyclohexylamine also led to asymmetrical sec-amines product 115cc 

in 69% isolated yield, while a trimeric product 115cc´ (24%) and 6% of homocoupling 

dimeric product 117y was observed. The catalytic coupling method exhibits high 

selectivity toward the formation of unsymmetrical secondary amines without resorting to 

employing reactive reagents. As observed above, the homocoupling of alkyl amines may 

occur in some cases, and we were interested in designing the catalytic system to explore 

the reactions in the presence of only one type of amines. The isolated pure asymmetric 

amines were fully characterized by 1H and 13C NMR, HRMS and elemental analysis. 

 

 

Scheme 2.3.2: Symmetric coupling reactions of aliphatic amines.   
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Table 2.3.2: Scope for symmetric coupling reactions of aliphatic amines.a 

Entry      114 (Amine)                 117a-x (Products)          Conversion %             bYield 
 
 

N
H

X X

N
H

X X

N
H

O

O O

O

1 X = H
2 X = Me
3 X = OMe
4 X = Cl
5 X = Ph
6 X = F
7 X = CF3

8 X = OMe
9 X = Cl

10

11

12

13 R1 = OMe, R2 = H
14 R1 = H, R2 = F
15 R1 = H, R2 = OMe

16

NH2

X
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99
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90 (86)
93 (92)
88 (85)
91 (91)
84 (84)

85 (84)
91 (89)

80 (77)
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65 (61)
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75 (72)
dr = 7:1
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Table 2.3.2: cont…… 

 

aReaction conditions: amine (1 mmol), Ligand (10 mol%), catalyst 112 (3 mol %) in 
chlorobenzene (2 mL) at 130 ⁰C. bIsolated yields are displayed in parenthesis. c3,5-
ditertiarybutylcatecol (116a) used as a ligand. 

 

We next explored the substrate scope for the formation of symmetric secondary 

amines by using the catalyst 112/116 (Scheme 2.3.2) with one type of amine (Table 



63 
 

 
 

2.3.2). To our delight, aliphatic amines and benzylic amines reacted smoothly to afford 

the secondary amine products 117a-j (Table 2.3.2, entry 1-10) without the formation of 

tertiary amines or other side products. In case of 3,4,5-trimethoxybenzylamine the 

product 117k was isolated in 61% yield, while remaining imine product was formed 

without transferring hydrogen in the later stage of the catalytic cycle. This might be due 

to both strong electron donating groups and steric effects of the six methoxy groups on an 

imine product stabilize the imine product. In general, stereoselectivity of the novel 

catalytic method did not retained on the products. However, (S)-(−)-4-methoxy-α-

methylbenzylamine reacted to form separable diastereomers 117l in 7:1 ratio. This 

selectivity could be explained by the transition state of the C-N bond cleavage step, 

which is believed to be turnover limiting step. Assuming the transition state is having a 

six membered metallocycle, there are two possible transition states to activate the C-N 

bond and transfer the hydride on to the benzylic position as shown in Figure 2.3.1. 

 

        A      B 

Figure 2.3.1: Proposed transition states of the metal ligand complex during the 
formation of 117l. 
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As can be seen in Figure 2.3.1: A, 4-methoxyphenyl group in axial position has 

much higher steric repulsions, whereas the equatorial orientation which is shown in 

Figure 2.3.1: B would be sterically less favored. This is one possible explanation for the 

stereoselectivity of the compound 117l. To get further insights for this explanation DFT 

calculations was carried out.  Geometries were optimized with B3LYP and LANL2DZ 

basis set for Ru and 6-31G(d) for other atoms. Single-point energies were calculated with 

M06 and the SDD basis set for Ru and 6-311+G(d,p) for other atoms. The PCM solvation 

model in chlorobenzene solvent was employed in the single-point energy calculations. 

All calculations were performed with Gaussian 09 on the Pere cluster at Marquette 

University. The gas phase energy calculations indicated that the free energy change is 

favorable for the transition state B by 2.5 kcal/mol. 

 

                    A        B 

Figure 2.3.2: DFT optimized gas phase transition state of the metal ligand complex 
(PCy3 was replaced with PMe3 for convenience). 
 
 
 
On the other hand, (S)-β-methylphenethylamine gave the 20:23 mixture of 

diastereomers 117p with 93% as total isolated yield. The diastereomers found to be 
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difficult to separate by using column chromatographic techniques. The possible reason 

for this lack of stereoselectivity might be due to the formation of the coordinated enamine 

complex as shown in Figure 2.3.3.  

 

Scheme 2.3.3: Formation of metalalkeneamino complex with ruthenium catalyst. 

2-Aminoindane and cyclohexyl amine proceeded smoothly under the same 

conditions, furnishing the homocoupling products 117t and 117u (Table 2.3.2, entry 18-

19) in excellent yields. (±)-1-Methyl-3-phenylpropylamine yielded 1:1 diastereomeric 

mixture with 90% isolated yield. Interestingly, for sterically non-demanding aliphatic 

amines, a mixture of secondary and tertiary amines was formed. Thus, the reaction of 1-

hexylmine, 3-phenylpropanamine and fufurylamine resulted in the isolation of tertiary 

amine products (Table 2.3.2, entry 20-23) in 54%, 53% and 19% yields, respectively. 

The selectivity of secondary amine over tertiary amine was achieved by using 3,5-di-tert-

butylcatechol 116a as the ligand.  The catalytic method provides a direct chemoselective 

formation of secondary amine products.   
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Table 2.3.3: Scope for the asymmetric coupling reactions of aniline with amines.a 

Entry      118 (R-NH2)        114 (R´-NH2)                           119 (Product)              aYield % 
 

1
2
3
4

5

6 X = OMe
7 X = H
8 X = Cl

9 X = H, Y = OMe
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Table 2.3.3: cont…… 

 
aReaction conditions: aromatic amine (0.5 mmol), aliphatic/benzylamine (0.7 mmol) 
Ligand 116 (10 mol%), catalyst 112 (3 mol %) in chlorobenzene (2 mL) at 140 ⁰C. 
bIsolated yields are displayed in parenthesis. 

 

 

Scheme 2.3.4: Amino coupling reaction of aniline derivatives and bio-active 
molecules (R = alkyl, aryl; R´ = alkyl). 



68 
 

 
 

To further illustrate synthetic versatility of the catalytic coupling method, we next 

explored the coupling reaction of aniline derivatives with primary amine substrates of 

biological relevance (Table 2.3.3). The coupling of 4-methoxyaniline with para-

substituted benzylic amines led to the selective formation of unsymmetrical amine 

products (Table 2.3.3, entry 1-4) without a significant amount of symmetric amine 

products. The compounds with electron donating group facilitated the reaction by having 

excellent yields. Similarly, the reaction of para-substituted anilines with 3,4,5-

trimethoxybenzylamine afforded the coupling products (Table 2.3.3, entry 6-8) in high 

yields. The structure of 119f was determined by X-ray crystallography. 

 

Figure 2.3.3: X-ray crystal structure of 119f                                                                          
(3,4,5-Trimethoxy-N-(4-methoxyphenyl)benzenemethanamine). 

 

As observed in these cases, the homocoupling aromatic amines were not 

observed. To our delight, aromatic amines with electron donating group with alkyl 

amines and phenylalkylamines were reacted to form the secondary amine products in 

moderate to high yields. Substrates with ortho electron-donating methoxy group was 
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relatively ineffective. Anilines bearing cyclic moieties such as 3,4-dihydro-2H-1,5-

benzodioxepin-7-amine (Table 2.3.3, entry 14) were suitable substrates, affording 119n 

in excellent yield. Aniline derivatives with strong electron-withdrawing trifluoromethyl 

group was found to be a sluggish substrate for this reaction, and the product 119q (Table 

2.3.3, entry 17) was isolated in 40% yield. Interestingly, 3-amino-9-ethylcarbazole (a 

bioactive molecule) was afforded the reaction with n-hexylamine having very good 

isolated yield (70%), whereas benzylamine gave moderate yield (40%). The treatment of 

3,4,5-trimethoxyaniline with (R)-(+)-aminoglutethimide (a bioactive molecule) led to the 

optically active coupling product 119t, without any detectable racemization. In addition, 

amino acid derivatives were tested under the standard conditions, and decarboxylative, 

deaminative secondary amine products were obtained in excellent yields. However, L-

glutamine found to be specific substrate for this catalytic method.  L-glutamine was 

reacted with primary amines, such as 3-phenylpropylamine, 4-methoxybenzylamine and 

benzylamine to provide the cyclized imido products 119u, 119v and 119w in 75%, 70% 

and 66% isolated yields respectively. Ruthenium coordinated glutamine 120 proceeds to 

form ruthenium 2-amino-glutarimide intermediate species 121 by dehydrative six-exo-

trig cyclization which is leading to form the amine coupling product 119u-w (Scheme 

2.3.5). 

 

Scheme 2.3.5: Formation of intermediate, 2-amino-glutarimide species. 
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Encouraged by the results above showing a broad range of amines suitable for the 

ruthenium-catalyzed deaminative coupling reaction, we investigated the possibility of 2-

aminoacetaphenone with amino acid (L-phenylalanine). Surprisingly, reaction tolerated 

the carbonyl group by giving, 1-[2-[(1-phenylpropyl)amino]phenyl]-1-ethanone product 

with reasonable yield. Ruthenium catalyst has been reported for initial stage 

decarboxylation of amino acids.60e Ruthenium coordinated phenylalanine species 122 

would be afforded the product 123 by decarboxylative alkylation pathway. The product 

124 will be formed by β-H elimination of the intermediate species 123. The intermediate 

124 might be leaded to afford the product 119x by several possible pathways via the 

intermediate species 125 (Scheme 2.3.6). 

 

Scheme 2.3.6: Proposed reaction pathway for the formation of product 119x. 
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It is worth to say that, the major product of this reaction was characterized by 

NMR techniques and found to be quinoline derivative. This finding opens new area to 

discover the possibility of developing a new catalytic system for the formation of 

quinoline and quinazoline derivatives, is currently ongoing project. Our experiments 

further confirmed the reaction of primary amine with secondary amine gave the mixture 

of alkyl exchanged secondary and tertiary amine products with decent yields. However, 

selectivity must be improved for this transformation by changing the catalytic system. 

Finally, aniline, aliphatic amine units and highly functionalized amines proved to 

be suitable substrates for the coupling reaction with 112/116 catalytic system, affording 

secondary and tertiary amine products with decent to excellent yields without forming 

any toxic or wasteful byproducts. 

 

2.4 Mechanistic Studies 

The following kinetic experiments were performed to gain mechanistic insights 

into catalytic C-N bond cleavage step. The formation of symmetric coupling reaction of 

4-methoxybenzylamine was monitored under the optimized conditions (Scheme 2.4.1). 

 

 Scheme 2.4.1: Symmetric coupling reaction of 4-methoxybenzylamine. 
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2.4.1 Reaction profile 

Complex 112 (0.75 mol %) and 116 (10 mol %) were dissolved with 

chlorobenzene, and 4-methoxybenzylamine (2 mmol) was added to the reaction tube. The 

tube was kept in an oil bath maintained at 130 °C. The tube was taken out from the oil 

bath at 20 min time intervals and small amount of homogenized mixture was analyzed by 

1H NMR. The product concentration was measured by monitoring the appearance of the 

product signals on 1H NMR, which was normalized against the internal standard peak 

(hexamethylbenzene). The plot of relative concentration vs time was constructed, which 

is shown in Figure 2.4.1.  

 

Figure 2.4.1.1: Reaction profile for the coupling of 4-methoxyaniline with 
benzylamine catalyzed by 112/116 in chlorobenzene. 

 
As expected, the formation of bis(4-methoxybenzyl)amine (117c) was observed at 

the expense of the benzylamine substrate. Initially, the formation of imine product 

PhCH=NCH2Ph (117c´) was observed along with 117c, which then disappeared gradually 
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within 200 min. This observation suggested that the catalytic species remove the H from 

the amine to form the activated form of the substrate 114. This result provides an 

evidence for the hydrogen borrowing mechanism. 

 

2.4.2 H/D exchange experiment 
 

To examine H/D exchange pattern of benzylamine, the reaction of aniline-d7 (0.5 

mmol, 99% D) with 4-methoxybenzylamine (0.7 mmol) in chlorobenzene (1 mL) in the 

presence of 112 (3 mol %), was performed under optimized conditions, and the purified 

products were analyzed by both 1H and 2H NMR. A trace amount of deuterium 

incorporation (<5%) was observed at the ortho position to the benzylic methelene 

(Scheme 2.4.2.1).   

 

 

 Scheme 2.4.2.1: H/D exchange pattern of benzylamine with Aniline-d7. 
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Figure 2.4.2.1: 1H and 2H NMR spectra of the product 119y and 119-d isolated from the 
reaction of aniline-d7 with 4-methoxybenzylamine. 
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Control experiment was conducted with the pure product 119y, (107 mg, 0.5 

mmol) with aniline-d7 118-d (50 mg, 0.5 mmol) with the 112 (7 mg, 0.75 mol %) and 

116 (8 mg, 10 mol %) dissolved in chlorobenzene (1 mL). A trace amount (<5%) of 

deuterium incorporation at benzylic position was observed without detectable deuterium 

exchange in aniline group, suggesting the aniline might be strongly bonded to the active 

catalytic center or active catalytic species will not be generated without primary aliphatic 

amines. 

 

 

Scheme 2.4.2.2: Possible mechanistic rationale for the observed H/D exchange 
pattern. 

 

The results indicate that the ortho-metalation was significantly involved during 

the coupling reaction. No observable H/D exchange was on the deuterated aniline, 

suggesting that the aniline compound is not directly coordinated to the ruthenium center. 
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Possibly the aromatic amine acted as a nucleophile at the latter part of the catalytic cycle. 

Interestingly, significant amount (18%) of deuterium exchange was observed at the 

benzylic position of the product. This clearly indicated that the formation of imine as an 

intermediate and hydrogen transfer takes place at the latter stage the catalytic cycle.  One 

possible explanation for the mechanism of the reaction is via the formation of imine 

product which is a well-known transformation for Ru catalysts.60 Since the observed data 

are consistent with this argument, we propose that the amine activation and formation of 

an imine is a possible step for the reaction. (Scheme 2.4.2.2). 

 
2.4.3 Hammett Study 
 

H
N

X
NH2

+

X

NH2
112/116

PhCl, 140 °CO

(X = OCH3, CH3, H, Cl, F, CF3)
118                      114                                                    119  

Scheme 2.4.3.1: Hammett study of para-substituted benzylamine substrates, p-X-
C6H5CH2NH2 (X = OCH3, CH3, H, Cl, F, CF3). 

 

 Hammett studies of para-substituted benzylamine substrates were performed to 

determine the electronic effects of benzylamine substrates on the C-N bond cleavage step 

(Scheme 2.4.3.1). Para-substituted benzylamines, p-X-C6H5CH2NH2 (X = OCH3, CH3, 

H, Cl, F, CF3) (0.25 mmol), ligand (10 mol%) and the ruthenium hydride complex 112 (3 

mol %) were dissolved in chlorobenzene (2 mL) in six separate 25 mL Schlenk tubes. 1H 

NMR analysis were performed to find the kobs from a first-order plot of -ln([p-X-

C6H5CH2NH2]t/p-X-C6H5CH2NH2]0) vs. time. The Hammett plot of log(kX/kH) vs. σp is 
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shown in Figure 2.4.3.1. 

 

Figure 2.4.3.1: Hammett Plot of p-X-C6H5CH2NH2 (X = OCH3, CH3, H, Cl, F, 
CF3) with p-C6H5NH2. 
 
 

 

 

Scheme 2.4.3.2: Possible reaction pathways to illustrate the cationic character on 
the transition state.  

 

It was found that the benzylamines having electron donating groups accelerated 

the rate of the reaction.  The Hammett correlation of para-substituted benzylamine 
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substrates (p-X-C6H4CH2NH2 (X = OCH3, CH3, H, Cl, F, CF3) found to be ρ = -0.8±0.1. 

The negative value of ρ indicates considerable cationic character in the transition state on 

the C-N cleavage step. After the formation of the imine product, there might be an 

equilibrium with ruthenium complex to transfer proton and activation of C-N bond. As 

shown in the Scheme 2.4.3.2, transition state of the complex has a positive character. 

This consistent with the observed results from the Hammett experiment. Hydrogen 

bonding with nitrogen attached to aniline moiety would create favorable bonding 

interactions to activate the C-N bond via neutral ruthenium or ruthenium(II) path ways to 

afford the products. These pathways shown to be consistent with the well establish 

hydrogen borrowing methodology.3,9  

 

2.4.4 Carbon isotope effect study 
    

 

 Scheme 2.4.4.1: Homocoupling experiment for KIE study. 

 
13C KIE experiment was performed to determine the turnover limiting step of the 

catalytic reaction. Therefore, we performed Singleton’s NMR technique63 to measure the 

12C/13C kinetic isotope effect (KIE) for the homocoupling experiment with 4-

methoxybenzylamine, in order to establish the rate determining step of the reaction. 112 
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(0.75 mol%) and 116 (10 mol %) were dissolved in chlorobenzene (2 mL). The resulting 

mixture was stirred for 5 to 10 minutes until the solution turned to a reddish green color. 

Then, 4-methoxybenzylamine (2 mmol), and chlorobenzene (2 mL) were added to the 

reaction tube. It was stirred in an oil bath at 130 °C for 16 h. The tubes were cooled to 

room temperature and filtered through a small silica column (CH2Cl2), the conversion 

was determined by GC (86%, 89% and 88% conversion). Similarly, low conversion 

(15%, 13% and 12%) experiment was performed by adding catalyst (0.75 mol%), 116 (10 

mol %) and 4-methoxybenzylamine (5 mmol) were dissolved in chlorobenzene (5 mL). 

After the tube was sealed, it was brought out of the box, and was stirred in an oil bath at 

130 °C for 2h. Products were separated by a column chromatography on silica gel 

(hexanes/EtOAc) for 13C{1H} NMR analysis. The 13C NMR analysis of the product of 

N,N-Bis(4-methoxybenzyl)amine was performed by following Singleton’s 13C NMR 

method15. The NMR sample was prepared identically by dissolving N,N-bis(4-

methoxybenzyl)amine (200 mg) in CDCl3 (0.5 mL) in a 5 mm high precision NMR tube. 

The 13C{1H} NMR spectra were recorded with H-decoupling and 45 degree pulses. A 60 

s delay between pulses was imposed to minimize T1 variations (d1 = 120 s, at = 5.0 s, np 

= 245098, nt = 512, dm = ‘nny’). KIE was calculated by following the original Singleton 

procedure, found to be 1.02 at the benzylic position (Figure 2.4.4.1). This indicate that 

the C-N bond cleavage has been occurred at slowest step as the significant amount of C-

N bond cleaved from the 12C isotope during the lower conversion. The results are 

consistent with C-N bond cleavage step as turnover limiting step of the reaction. This 

result is also consistent with the previously discussed mechanistic data.  
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Figure 2.4.4.1: Observed kinetic isotope effect on the symmetric coupling 
product 117c; (Reference = C2). 

 

2.4.5 Efforts to detect catalytic intermediate species 
 

To search for active catalytic intermediates for the reaction, we performed NMR 

experiments and x-ray crystallographic preparations with the tetrameric ruthenium 

hydride complex. Thus far, we have not been successful on the preparation of single 

crystals for the active catalytic species. However, in 2015 our group demonstrated that 

the phenol ligands with the ruthenium hydride catalyst can be used to promote the 

hydrogenolysis reaction of ketones.14    
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Figure 2.4.5.1: Molecular structure of [(C6H5OH)(PCy3)(CO)RuH]+BF4-  
cocrystallized with a 2-propanol molecule. 

 

Figure 2.4.5.1 represents that the phenol ligand bonded to the Ru center by 

replacing the benzene ligand. Reaction of cationic Ru-H complex with catechol ligand 

expected to be formed η6 coordinated ruthenium catechol complex by replacing the 

benzene ligand. Similarly, we are assuming that the neutral Ru-H catechol complex 

would be formed after addition of catechol ligand to the tetranuclear ruthenium hydride 

catalyst following slow hydrolysis reaction (Scheme 2.4.5.1). Hydrolysis of reddish 

brown tetranuclear ruthenium hydride complex is well established in the presence of 

acidic or basic conditions, by producing di or mono nuclear complexes60.   
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 Scheme 2.4.5.1: Formation of neutral ruthenium catechol complexes. 

However, the complex shown in Scheme 2.4.5.1, might not be the active catalytic 

species for the amino coupling reaction. The following experiment was performed to get 

the information on active catalytic species. In a sealed NMR tube 112 (17 mg) and 116 (3 

mg) were dissolved in 1 mL of chlobenzene-d5. The resultant mixture was homogenized 

and 1H and 31P NMR spectra were recorded at room temperature. Then, 4-

methoxybenzylamine (4 mg) was added and 1H and 31P NMR spectra were recorded 

before and after heating at the 85 °C in an oil bath.  NMR studies has been clearly shown 

that the hydride signals18 δ -18.64 (dt, JHP = 13.2, 4.8 Hz), -15.28 (d, JHP = 34.5 Hz), -

15.01 (d, JHP = -16.8 Hz), and -14.55 (d, JHP = 20.1 Hz), disappeared with the prolong 

heating of the reaction mixture with the substrate at 85 °C, about 6 hours (Figure 

2.4.5.2). This result clearly indicated that the active catalytic species does not have a 

ruthenium hydride species. 
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Figure 2.4.5.2: a. 1H and 31P NMR spectra of the 112 (17mg) b. 1H and 31P NMR spectra 
of the 112 (17mg), 116 (3 mg) and 4-methoxybenzylamine heated at 85 °C, 6 hours. 
 

 

2.5 Proposed Mechanism 
 

Even though detailed reaction mechanism remains unclear, we present a plausible 

mechanistic scheme for the coupling reaction on the basis of these results (Scheme 

2.5.3). We propose that the cationic Ru-imine species 127 is initially generated from the 

b

b
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dehydrogenation of amine substrate. In supporting evidence for the Ru-imine species 

127, we have been able to detect the formation of 117c´ (an imine product) from the 

crude reaction mixture. The cumylamine (Scheme 2.5.1) substrate, which does not have 

a α-H was not proceeded to form the desired coupling product.  

 

Scheme 2.5.1: Homocoupling reaction with cumylamine. 

Earlier literature clearly indicated that the presence of α-H is mandatory to 

proceed the reaction. The observed H/D exchange pattern on both the coupling product 

and the recovered phenol substrate is consistent with a facile ortho-C–H activation step66. 

In support of this notion, Jia group reported that the alkoxide attack on the α-CH2 

position of the tertiary amine, generate an iminium-type intermediate via facile ortho-C–

H activation (Scheme 2.5.2).66b As discussed in chapter 1, there are three general 

mechanisms, (Oxidative addition,  β-N elimination and C-H bond cleavage) for transition 

metal mediated C–N bond metalation which can be used to rationalize the mechanism of 

the reaction.45b 

   

 Scheme 2.5.2: C-H bond cleavage triggered C-N bond activation path way. 
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The deuterium labeling pattern was examined from the reaction of aniline-d7 with 

4-methoxybenzylamine. A significant amount of deuterium was incorporated to the CH2 

position of 123 (18% D), but no deuterium incorporation was observed on the arene 

positions. The observed deuterium exchange suggests that the H/D ammonia-to-aniline-

d7 might have transferred to the imine byproduct during the course of reaction. Control 

experiment H/D exchange aniline-d7 with the product 119 was conducted, and the results 

shows that the H/D in cooperation on the CH2 position of 119 (<5% D). This result is 

consistent with the C-N bond activation via formation of the imine product. Furthermore, 

dehydrogenation of alcohol, formation of indole products with diol substrates by 

dehydrogenation are known for the tetrameric ruthenium catalyst.64 Recently we 

observed the formation of quinoline and quinazoline derivatives by dehydrogenation of 

amine substrates, where the formation of imine product was detected by both NMR and 

GC-MS analysis of crude mixtures. These results are consistent with the proposed 

mechanistic rationale via the imine formation.  

The significant carbon isotope effect on the CH2 carbon for the product is 

consistent with the C–N bond cleavage as the turnover-limiting step of the coupling 

reaction. In support of this notion, Singleton and co-workers showed that the observation 

of most pronounced carbon isotope effect has been a definitive evidence for establishing 

the rate-limiting step for both C–C and C–O bond forming reactions.63 The C–N bond 

cleavage step has also been commonly considered as the turnover limiting step for 

catalytic coupling reactions of nitrogen compounds.45b, 47  

 The Hammett plot was constructed from measuring the rate of the coupling of 4-

methoxyaniline with a series of para-substituted benzylamines 4-X-C6H4CH2NH2 (X = 
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OMe, Me, H, F, CF3) in the presence of 116 in toluene-d8. The Hammett plot of 

log(kX/kH) vs σp showed a linear correlation pattern. A negative linear slope (ρ = -0.79 ± 

0.1) is indicative of the formation of cationic character on the turnover limiting step. The 

observation of a strong promotional effect by the electron releasing group on 

benzylamine is consistent with a nucleophilic displacement of the coordinated amine via 

an electrophilic ruthenium−imine species.  

 NMR studies were performed in an effort to detect catalytically relevant species 

New phosphine peak at δ 71.5 and 71.1 ppm by 31P{1H} NMR were observed after 

heating the compound 114 with 112/116 at 85 °C for six hours. Disappearance of Ru−H 

signals of tetranuclear ruthenium complex which indicate the formation of new 

ruthenium complex with the ligand and 4-methoxybenzylamine. We tentatively assign 

the new set of peaks to an arene-coordinated Ru-catechol complex 126, in light of the 

previously observed arene exchange reactions.12c,13 (Figure 2.5.1).  

  

Figure 2.5.1: Proposed active catalytic intermediate species, (octahedral, 18 
electrons, Ru(II), L = solvent, RCH2NH2, H2O). 
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Scheme 2.5.3: Proposed mechanism for deaminative coupling of amines to form 
secondary amines. 
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The proposed mechanistic pathway begins with, coordination of the benzyl amine 

to the ruthenium ligand complex followed by α-H activation lead to form the active 

catalytic species 127. Then SN2 type nucleophilic attack on to the α-C by another 

molecule of amine would form a ruthenium bound diamine species 128. The complex 

128 then proceeds to activate the C-N bond through oxidative addition to form an 

intermediate species 129. Co-ordination of another amine molecule would produce the 

secondary amine product and intermediate species 130. Active catalytic species 127 will 

be regenerate by liberating ammonia molecule by β-H elimiation. Alternatively, β-H 

elimination would form the ruthenium co-ordinated imin intere intermediate species 131 

which can equilibrate with 132 imine product. 131 would proceeds to form the desired 

secondary amine product by co-ordination with another amine affording an intermediate 

species 130.  

 

2.6 Conclusion 
 

In conclusion, we have successfully developed a novel catalytic deaminative 

coupling method of primary amines to generate secondary amines. The catalytic method 

employs environmentally friendly and cheaply available amine substrates and exhibits a 

broad substrate scope and high chemo selectivity. We are currently exploring the detailed 

mechanism for these reactions. As an extension of the project we found several other 

important C-C and C-N bond forming reactions result from C-N bond activation. 
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2.7 Future Plans 
 

Now that, we have been able to demonstrate the ligand controlled catalysis for 

deaminative coupling reactions of amines, we plan to investigate the following new set of 

coupling reactions. 

Goal # 1: To establish the detailed mechanism, we plan to identify ruthenium 

intermediate by spectroscopic techniques. Both spectroscopic and experimental evidences 

will be taken to establish the possible catalytically active species for the coupling 

reaction. 

 

Goal #2: We will seek to probe other supportive ligands such as catechol and its 

derivatives, to promote catalytically more active and selective species for other coupling 

reactions. 

 

Figure 2.7.1: Different ruthenium hydride catalyst. 

 

Goal #3: We will use the ligand controlled catalysis to design new coupling 

reactions. We recently observed a new dehydrative cyclization reaction to produce 

quinazoline and quinoline derivatives of amino ketones with amines. We will complete 

the investigation on the scope of the reaction. 
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 Scheme 2.7.1: Ruthenium hydride catalyzed synthesis of quinazoline. 

 

We provisionally found a novel C-C bond forming reaction by deaminative and 

decarboxylative reaction of amino acids with ketones.62 Recently, we found the 

deaminative C-C bond formation reaction of primary amines with ketones. Since the C-N 

activation under this catalytic method was very successful, we tried to incorporate the 

method for the C-H activation reactions. Surprisingly intramolecular cyclization reaction 

was observed by aromatic C-H activation with primary amines and ketones. We will 

investigate the scope and selectivity of the novel cyclization reactions. 

 

 

 

Scheme 2.7.2: Ruthenium hydride catalyzed selective α-alkylation and aromatic 
C-H activation reactions. 
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Chapter 3 

Experimental Section 
 

3.0 General Information. 
 

All operations were carried out in a nitrogen-filled glove box or by using standard 

high vacuum and Schlenk techniques unless otherwise noted. All the solvents used were 

freshly distilled over appropriate drying reagents. Chlorobenzene was distilled from 

purple solutions of sodium and benzophenone, and hexanes was dried over calcium 

hydride prior to use. All organic substrates were received from commercial sources and 

were used without further purification. The 1H, 2H, 13C, and 31P NMR spectra were 

recorded on a Varian 400 MHz FT-NMR spectrometer, and the data are reported as: s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad; coupling 

constant(s) in Hz; integration. Mass spectra were recorded from Agilent 6850 GC-MS 

spectrometer by using a HP-5 (5% phenylmethylpolysiloxane) column (30 m, 0.32 mm, 

0.25 μm). High resolution mass spectra were obtained at the Mass Spectrometry/ICP Lab, 

Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 

Milwaukee, WI. Elemental analyses were performed at the Midwest Microlab, 

Indianapolis, IN. 
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3.1 General Procedure for the Catalytic Synthesis of Secondary Amines.  
 

In a glove box, complex 112 (13 mg, 0.75 mol %) and 4-(1,1-dimethylethyl)-1,2-

benzenediol (116), (16 mg, 10 mol %) were dissolved in chlorobenzene (1 mL) in a 25 

mL Schlenk tube equipped with a Teflon screw cap stopcock and a magnetic stirring bar. 

The resulting mixture was stirred for 5 to 10 minutes until the solution turned to a reddish 

green color. In an alternative procedure, the complex 113 (17 mg, 3 mol %) and 116 (16 

mg, 10 mol %) were dissolved in anhydrous 1,4-dioxane (1 mL). Two amine substrates 

(1.0 mmol and 1.4 mmol) in chlorobenzene (1 mL) were added to the reaction tube. After 

the tube was sealed, it was brought out of the glove box, and was stirred in an oil bath 

maintained at 130-140 °C for 16-20 h. The reaction tube was taken out of the oil bath, 

and was cooled to room temperature. After the tube was open to air, the solution was 

filtered through a short silica gel column by eluting with CH2Cl2 (10 mL), and the filtrate 

was analyzed by GC-MS. Analytically pure product was isolated by a simple column 

chromatography on silica gel (280-400 mesh, hexanes/EtOAc or 

hexanes/EtOAc/methanol). Yields were calculated on the basis of limited amine substrate 

with isolated desired product. 

 

3.1.1 Symmetric Coupling Reactions of Aliphatic Amines. 
 

In a glove box, complex 112 (13 mg, 0.75 mol %) and 116 (16 mg, 10 mol %) 

were dissolved in chlorobenzene (1 mL) in a 25 mL Schlenk tube equipped with a Teflon 

screw cap stopcock and a magnetic stirring bar. The resulting mixture was stirred for 5 to 

10 min until the solution turned to a reddish green color. Then, benzylamine (107 mg, 1.0 
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mmol), and chlorobenzene (1 mL) were added to the reaction mixture in a tube. After the 

Schlenk tube was sealed, it was brought out of the glove box, and was stirred in an oil 

bath maintained at 130 °C for 16 h. The reaction tube was taken out of the oil bath, and 

let it to cool to room temperature. Crude mixture was filtered through a short silica gel 

column by eluting with CH2Cl2 (10 mL), and the filtrate was analyzed by GC-MS. 

Analytically pure product was isolated by a simple column chromatography on silica gel 

(280-400 mesh, n-hexane/EtOAc). 

 

NH2

112 (0.75 mol %)
116 (10 mol %)

Chlorobenzene
130 °C, 16 h

N
H +

N

1 mmol                                           117a (99 %)                           117a' (1 %)    
 Scheme 3.1.1.1: Symmetric coupling reactions of aliphatic amines. 

 

3.1.2. Asymmetric Coupling Reactions of Aliphatic Amines. 
 

In a glove box, complex 112 (13 mg, 0.75 mol %), 116 (16 mg, 10 mol %) were 

dissolved in chlorobenzene (1 mL) in a 25 mL Schlenk tube equipped with a Teflon 

screw cap stopcock and a magnetic stirring bar. An amine substrate which is less reactive 

(1.0 mmol), amine substrate which is more reactive (1.4 mmol), and chlorobenzene (1 

mL) were added to the reaction tube. The tube was brought out of the glove box, and was 

stirred in an oil bath maintained at 130 °C for 16 h. The reaction tube was taken out of 

the oil bath, and let it to cooled to room temperature. Resultant solution was filtered 

through a short silica gel column by eluting with CH2Cl2 (10 mL), and the filtrate was 

analyzed by GC-MS. Analytically pure product was isolated by a simple column 

chromatography on silica gel (280-400 mesh, n-hexane/EtOAc/methanol). 
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Scheme 3.1.2.1: Symmetric coupling reactions of aliphatic amines. 

 

 

3.1.3. Asymmetric Coupling Reactions of Aromatic Amines. 
 

In a glove box, complex 112 (7 mg, 0.75 mol %) and 116 (8 mg, 10 mol %) were 

dissolved in chlorobenzene (1 mL) in a 25 mL Schlenk tube equipped with a Teflon 

screw cap stopcock and a magnetic stirring bar. The resulting mixture was stirred for 5 to 

10 min until the solution turned to a reddish green color. Aniline (47 mg, 0.5 mmol), 

Benzyl amine (75 mg, 0.7 mmol) and chlorobenzene (1 mL) were added to the reaction 

tube. After the tube was sealed, it was brought out of the glove box, and was stirred in an 

oil bath maintained at 140 °C for 20 h. The reaction tube was taken out of the oil bath, 

and was cooled to room temperature. Analytically pure product was isolated by a simple 

column chromatography on silica gel (280-400 mesh, n-hexane/EtOAc or n-

hexane/EtOAc/methanol). 

 

 Scheme 3.1.3.1: Asymmetric coupling reactions of aromatic amines. 
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3.2 Synthesis of Ru Catalysts 
 

The tetrametallic complex 112 was synthesized in two steps from the ruthenium-

hydride complex (PCy3)2(CO)RuHCl (110). Thus, the reaction of 110 with KOH in 2-

propanol produced the bimetallic complex 111, which was isolated in 85% yield after 

recrystallization in hexanes.  

 

3.3 Synthesis of [(η6-C6H6)RuH(CO)(PCy3)]+BF4- (113). 
 

  In a glove box, complex 112 (200 mg, 0.12 mmol) was dissolved in benzene (10 

mL) in a 25 mL Schlenk tube equipped with a Teflon screw-cap stopcock and a magnetic 

stirring bar. The tube was brought out of the box, and HBF4·OEt2 (64 μL, 0.48 mmol) 

was added via syringe under N2 stream. The color of the solution was changed from dark 

red to pale yellow immediately. After stirring for 1 h at room temperature, the solvent 

was removed under vacuum, and the residue was crashed by adding hexanes (20 mL). 

Filtering the resulting solid through a fritted funnel and recrystallization from 

CH2Cl2/hexanes yielded the product as a pale-yellow powder (262 mg, 95% yield). 

Single crystals of 113 suitable for X-ray crystallography were obtained from a slow 

evaporation of benzene and hexanes solution. 

For 113: 1H NMR (CD2Cl2, 400 MHz) δ 6.53 (s, C6H6), 2.0-1.2 (m, PCy3), -10.39 (d, JPH 

= 25.9 Hz, Ru-H); 13C{1H} NMR (CD2Cl2, 100 MHz), δ 196.4 (d, JCP = 19.3 Hz, CO), 

100.0 (C6H6), 38.4, 38.2, 30.2, 29.9, 27.4, 27.3 and 26.2 (PCy3); 31P{1H} NMR (CD2Cl2, 
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162 MHz) δ 72.9 (PCy3); IR (KBr) νCO = 1991 cm-1; Anal. Calcd for xx 

C25H40BF4OPRu: C, 52.18; H, 7.01. Found: C, 51.73; H, 6.91.60 

 

3.4 Reaction profile.  
 

In a glove box, complex 112 (28 mg, 0.75 mol %) and 116 (32 mg, 10 mol %) 

were dissolved chlorobenzene in a 25 mL Schlenk tube equipped with a Teflon screw cap 

stopcock and a magnetic stirring bar. The resulting mixture was stirred for 5 to 10 

minutes until the solution turned to a reddish green color. Then, 4-methoxybenzylamine 

(274 mg, 2 mmol), were added to the reaction tube and homogenized the solution. The 

tube was brought out of the glove box, and was kept in an oil bath maintained at 130 °C. 

The tube was taken out from the oil bath at 20 min time intervals and small amount of 

homogenized mixture was taken out in the glove box and the sample was analyzed by 1H 

NMR. The product concentration was measured by monitoring the appearance of the 

product signals on 1H NMR, which was normalized against the internal standard peak 

(hexamethylbenzene). The plot of relative concentration vs time is shown in Figure 

2.4.1.1. In an alternative procedure benzylamine (34 mg, 0.25 mmol) and catalyst 113 (3 

mg, 0.75 mol %)/116 (4 mg, 10 mol %) were dissolved in toluene-d8 (0.5 mL) in a J-

Young NMR tube equipped with a Teflon screw cap stopcock. The reaction tube was 

heated in an oil bath at 130 °C at 20 min time intervals, and the progress was monitored 

by 1H NMR. 
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3.5 Detection of Active Catalytic Intermediate Species  
 

In a glove box, complex 112 (0.017 mg, 10 μmol) and 116 (0.004 mg, 25 μmol) 

were dissolved in chlorobenzene-d5 (0.5 mL) in a J young tube equipped with a Teflon 

screw cap stopcock and a magnetic stirring bar. The resulting mixture was stirred for 5 to 

10 minutes until the solution turned to a reddish green color. After the tube was sealed, it 

was brought out of the glove box, and kept in an oil bath maintained at 85 °C. The 1H 

and 31P NMR spectra of the products were obtained. After that 4-methoxybenzylamine 

(0.014 mg, 100 μmol) was added into the tube. After the tube was sealed it was heated in 

an oil bath maintained at 85 °C for further six hours and 1H and 31P NMR spectra of the 

products were obtained. Similar experiment was conducted with the 113 catalyst. 

 

3.6 Deuterium Labeling Study. 
 

In a glove box, complex 112 (7 mg, 0.75 mol %) and 116 (8 mg, 10 mol %) were 

dissolved in chlorobenzene (1 mL) in a 25 mL Schlenk tube equipped with a Teflon 

screw cap stopcock and a magnetic stirring bar. The resulting mixture was stirred for 5 to 

10 minutes until the solution turned to a reddish green color. Aniline-d7 (50 mg, 0.5 

mmol) and 4-methoxybenzylamine (78 mg) in chlorobenzene (1 mL) were added to the 

reaction tube. After the tube was sealed, it was brought out of the glove box, and was 

stirred in an oil bath maintained at 140 °C for 20 h. Analytically pure product was 

isolated by a simple column chromatography on silica gel (280-400 mesh, n-

hexanes/EtOAc). The 1H and 2H NMR spectra of the product 119-d are recorded 

(Scheme 3.6.1). Control experiment was coduted with the pure product 119y, (107 mg, 
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0.5 mmol) with Aniline-d7 (50 mg, 0.5 mmol) with the catalyst (7 mg, 0.75 mol %) and 

116 (8 mg, 10 mol %) which were dissolved in chlorobenzene (1 mL). Trace (<5%) 

amount of deuterium incooparation at benzylic position was observed without detectable 

deuterium exchange in aniline group (Scheme 3.6.1) 

 

 

 Scheme 3.6.1: H/D exchange pattern of benzyl amine with aniline -d7. 

 

3.7 Hammett Study.  
 

In a glove box, complex 112 (20 mg, 0.75 mol %) and 116 (24 mg, 10 mol %) were 

dissolved in toluene-d8 (1.5 mL) in a 25 mL Schlenk tube equipped with a Teflon screw cap 

stopcock and a magnetic stirring bar. The resulting mixture was stirred for 5 to 10 minutes until 

the solution turned to a reddish green color. Then, 4-methoxyaniline (185 mg, 1.5 mmol), were 

added to the reaction tube and homogenized the solution, it was equally divided into 6 parts and 

p-X-C6H4CH2NH2 (0.3 mmol) were (X = OMe, Me, H, F, Cl, CF3) put into the divided portions 

separately. After that mixture was homogenized and transferred into J young NMR tube equipped 
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with a Teflon screw cap stopcock. The tubes were brought out of the glove box, and was kept in 

an oil bath maintained at 140 °C. Each tube was taken out from the oil bath at 30 min time 

intervals and it was analyzed by 1H NMR after cooled in ice-water bath. The reaction rate was 

measured by monitoring the appearance of the product signals on 1H NMR, which was 

normalized against the internal standard peak. The kobs was determined from a first-order plot of -

ln([p-X-C6H5CH2NH2]t/p-X-C6H5CH2NH2]0) vs time. The Hammett plot of log(kX/kH) vs σp is 

shown in Figure 3.7.1: 

 

Figure 3.7.1: First order plot of –ln([p-H-C6H4CH2NH2]t/[p-H-C6H4CH2NH2]o) vs. time. 

 

3.8 Carbon Isotope Effect Study. 
 

In a glove box, 112 (28 mg, 0.75 mol%) and 116 (32 mg, 10 mol %) were dissolved in 

chlorobenzene (2 mL) in a 25 mL Schlenk tube equipped with a Teflon screw cap stopcock and a 

magnetic stirring bar. The resulting mixture was stirred for 5 to 10 minutes until the solution 

turned to a reddish green color. Then, 4-methoxybenzylamine (274 mg, 2 mmol), and 

chlorobenzene (2 mL) were added to the reaction tube. After the tube was sealed, those were 

brought out of the box, and was stirred in an oil bath at 130 °C for 16 h. The tubes were cooled to 
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room temperature and filtered through a small silica column (CH2Cl2), the conversion was 

determined by GC (86%, 89% and 88% conversion). Similarly, low conversion (15%, 13% and 

12%) experiment was performed by adding 112 (52 mg, 0.75 mol%) and 116 (80 mg, 10 mol %) 

were dissolved in chlorobenzene (5 mL) in a 100 mL Schlenk tube equipped with a Teflon screw 

cap stopcock and a magnetic stirring bar.  Then, 4-methoxybenzylamine (685 mg, 5 mmol), and 

chlorobenzene (5 mL) were added to the reaction tube. After the tube was sealed, it was brought 

out of the box, and was stirred in an oil bath at 130 °C for 2h. Products were separated by a 

column chromatography on silica gel (hexanes/EtOAc) for 13C{1H} NMR analysis. The 13C 

NMR analysis of the product of N,N-Bis(4-methoxybenzyl)amine was performed by following 

Singleton’s 13C NMR method.63 The NMR sample was prepared identically by dissolving N,N-

Bis(4-methoxybenzyl)amine (200 mg) in CDCl3 (0.5 mL) in a 5 mm high precision NMR tube. 

The 13C{1H} NMR spectra were recorded with H-decoupling and 45 degree pulses. A 60 s delay 

between pulses was imposed to minimize T1 variations (d1 = 120 s, at = 5.0 s, np = 245098, nt = 

512, dm = ‘nny’). The data obtained were summarized in Table 3.8.1. 

 

Table 3.8.1: Average 13C Integration of the Product 119 Obtained from 4-Methoxybenzylamine at 
High Conversion (Virgin, R0; 88% conversion), at Low Conversion (R; avg 13% conversion) and 
the Calculated 13C KIE using 112/116. (C2 = reference) 

Carbo
n # 

High 
Conversion 

(R0) 

Low 
Conversion 

(R) 
R0/R KIE 

1 1.0844 1.0681 1.0152 1.0152 
2 1.0000 1.0000 1.0000 1.0000
3 1.9800 1.9862 0.9969 0.9969 
4 2.0735 2.0742 0.9997 0.9997
5 1.2465 1.2510 0.9964 0.9964
6 1.2338 1.2520 0.9854 0.9854
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 Scheme 3.8.1: Carbon isotope effect on product 117c. 

 

3.9 X-Ray Crystallographic Determination of 119f 
 

Colorless single crystals of 119f were grown in dichloromethane/n-hexane at 

room temperature. A suitable crystal with the dimension of 0.4341 × 0.0928 × 0.0487 

mm3 was selected and mounted on an Oxford SuperNova, Dual, Cu at zero, Atlas 

diffractometer. The crystal was kept at 100.0(3) K during data collection. Using Olex267, 

the structure was solved with the olex2.solve68 structure solution program using Charge 

Flipping and refined with the XL69 refinement package using Least Squares 

minimization. The molecular structure of 119f is shown in Figure 3.9.1. 

 

Figure 3.9.1: Molecular Structure of 119f. 
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3.9.1 Structure description 
 

The central bond NH-CH2 is twisted by 94.4º. The secondary amino group has a 

non-planar configuration with N-H bond making an angle of 17.1º with the CNC plane 

(0º for an ideal planar-trigonal coordination, 54.7º for a tetrahedral one – including LP). 

All Methoxy groups are coplanar to (conjugated with) the adjacent benzene rings, except 

OMe group O2-C15, which is rotated out of conjugation by 80.9º because of apparent 

sterical hindrances from its ortho-positioned counterparts. 

 

3.9.2 Crystal packing 
 

The molecules form translational chains along y axis through intermolecular H-

bonds N-H…O. The crystal structure overall is chiral. 
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Figure 3.9.2.1: Crystal packing of 119f.  
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3.10 Characterization of Organic Products 
 

N
H

115a
 

Table 2.3.1, compound 115a. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), benzylamine (107 mg, 1.0 mmol) and 

cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 115a 

was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 

10:1). Isolated yield: 138 mg, 73%. Data for 115a: 1H NMR (400 MHz, CDCl3) δ 7.35–

7.29 (m, 4H), 7.28–7.20 (m, 1H), 3.81 (s, 2H), 2.49 (tt, J = 10.3, 3.7 Hz, 1H), 1.96–1.88 

(m, 2H), 1.78–1.70 (m, 2H), 1.65–1.58 (m, 1H), 1.32–1.07 (m, 5H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 140.8, 128.3, 128.0, 126.7, 56.1, 51.0, 33.5, 26.1, 25.0 ppm; GC-

MS for C13H19N, m/z = 189 (M+).70 

 

N
H

115bO
 

Table 2.3.1, compound 115b. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzylamine (137 mg, 1.0 mmol) 

and cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 

115b was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 

to 10:1). Isolated yield: 172 mg, 78%. Data for 115b: 1HNMR (400 MHz, CDCl3)  δ 

7.25–7.21 (m, 2H), 6.88–6.83 (m, 2H), 3.79 (s, 3H), 3.74 (s, 2H), 2.47 (tt, J = 10.4, 3.7 
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Hz, 1H), 1.96–1.86 (m, 2H), 1.77–1.68 (m, 2H), 1.65–1.56 (m, 1H), 1.31 (br s, 1H), 

1.30–1.05 (m, 5H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 158.4, 133.0, 129.2, 113.7, 

56.0, 55.2, 50.4, 33.5, 26.1, 25.0 ppm; GC-MS for C14H21NO, m/z = 219 (M+).1H and 13C 

NMR spectral data were in good agreement with the literature values.71 

 

N
H

115cF
 

Table 2.3.1, compound 115c. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-fluorobenzylamine (125 mg, 1.0 mmol) and 

cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 115c 

was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 

10:1). Isolated yield: 147 mg, 71%. Data for 115c: 1H NMR (400 MHz, CDCl3) δ 7.31–

7.23 (m, 2H), 7.02–6.95 (m, 2H), 3.76 (s, 2H), 2.45 (tt, J = 10.3, 3.8 Hz, 1H), 1.94–1.85 

(m, 2H), 1.77–1.68 (m, 2H), 1.64–1.56 (m, 1H), 1.37 (br s, 1H), 1.32–1.04 (m, 6H); 

13C{1H} NMR (100 MHz, CDCl3) δ 161.7 (d, JCF = 244.2 Hz), 136.6 (d, JCF = 3.1 Hz), 

129.5 (d, JCF = 7.9 Hz), 115.1 (d, JCF = 21.2 Hz), 56.1, 50.2, 33.5, 26.1, 24.9 ppm; GC-

MS for C13H18FN, m/z = 207 (M+). 1H and 13C NMR spectral data were in good 

agreement with the literature values.72 

 

N
H

115 dF3C
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Table 2.3.1, compound 10d. A chlorobenzene (2.0 mL) solution of complex 112 (13 mg, 

150.75 mol %), 116 (16 mg, 10 mol %), 4-trifluromethylbenzylamine (175 mg, 1.0 

mmol) and cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The 

product 115d was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 

100:1 to 10:1). Isolated yield: 152 mg, 59%. Data for 115d: 1H NMR (400 MHz, CDCl3) 

δ 7.58–7.53 (m, 2H), 7.45–7.41 (m, 2H), 3.86 (s, 2H), 2.46 (tt, J = 10.3, 3.5 Hz, 1H), 

1.95–1.86 (m, 2H), 1.77–1.69 (m, 2H), 1.64–1.56 (m, 1H), 1.30–1.05 (m, 5H); 13C{1H} 

NMR (100 MHz, CDCl3) δ 145.1, 129.0 (q, JCF = 32.2 Hz), 128.2, 125.2 (q, JCF = 3.8 

Hz), 124.3 (q, JCF = 271.9 Hz), 56.2, 50.4,  33.5, 26.0, 24.9 ppm; GC-MS for C14H18F3N, 

m/z = 257 (M+). 1H and 13C NMR spectral data were in good agreement with the 

literature values.73, 74  

 

115 e

H
N

 

Table 2.3.1, compound 115e. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), β-methylphenethylamine (135 mg, 1.0 mmol) 

and cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 

115e was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 

to 10:1). Isolated yield: 136 mg, 63%. Data for 115e: 1HNMR (400 MHz, CDCl3) 7.35–

7.27 (m, 2H), 7.25–7.28 (m, 3H), 2.93 (sext, J = 7.0 Hz, 1H), 2.86–2.74 (m, 2H), 2.37 (tt, 

J = 10.6, 3.6 Hz, 1H), 1.89–1.62 (m, 5H), 1.62–1.54 (m, 1H), 1.26 (d, J = 6.9 Hz, 3H), 

1.24–0.95 (m, 5H); 13C{1H} NMR (100 MHz, CDCl3) δ 145.4, 128.5, 127.1, 126.3, 56.7, 
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54.0, 40.0, 33.3, 33.3, 26.1, 25.0, 20.3 ppm; GC-MS for C15H23N, m/z = 217 (M+). 

HRMS (IT-TOF/ESI) Calcd for C15H23N, ([M+H]+): 218.1903. Found: 218.1916. 

 

O

Cl
115 f

N
H

 

Table 2.3.1, compound 115f. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-chlorobenzylamine (141 mg, 1.0 mmol) and 

4-methoxybenzeneethanamine (211 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The 

product 115f was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 

100:1 to 10:1). Isolated yield: 158 mg, 57%. Data for 115f: 1HNMR (400 MHz, CDCl3) δ 

7.30–7.25 (m, 2H), 7.24–7.19 (m, 2H), 7.15–7.09 (m, 2H), 6.87–6.82 (m, 2H), 3.79 (s, 

3H), 3.76 (s, 2H), 2.87–2.82 (m, 2H), 2.80–2.74 (m, 2H), 1.73 (br s, 1H); 13C{1H} NMR 

(100 MHz, CDCl3) δ 157.9, 138.6, 132.5, 131.7, 129.5, 129.3, 128.4, 113.8, 55.1, 53.0, 

50.5, 35.2 ppm; GC-MS for C16H18ClNO, m/z = 275 (M+). HRMS (IT-TOF/ESI) Calcd 

for C16H18ClNO, ([M+H]+): 276.1094. Found: 276.1090.  

 

115 g

H
N

 

Table 2.3.1, compound 115g. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-pheylbenzylamine (183 mg, 1.0 mmol) and 

n-hexylamine (141 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 115g was 
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isolated by a column chromatography on silica gel (n-hexanes/ethyl acetate = 100:1 to 

10:1). Isolated yield: 179 mg, 66%. Data for 115g: 1HNMR (400 MHz, CDCl3) δ 7.61 – 

7.54 (m, 4H), 7.46 – 7.37 (m, 4H), 7.36 – 7.31 (m, 1H), 3.83 (s, 2H), 2.66 (t, J = 7.3 Hz, 

2H), 1.58 – 1.50 (m, 2H), 1.36 – 1.26 (m, 6H), 0.89 (t, J = 7.0 Hz, 3H), ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 141.0, 139.8, 139.6, 128.7, 128.5, 128.4, 127.1, 127.0, 53.7, 

49.6, 31.8, 30.1, 27.0, 22.6, 14.1 ppm; GC-MS for C19H25N, m/z = 267. 

 

115 h

H
N O

O

 

Table 2.3.1, compound 115h. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-pheylbenzylamine (183 mg, 1.0 mmol) and 

1,3-benzodioxol-5-ylmethylamine (211 mg, 1.4 mmol) was stirred at 130 °C for 16 h. 

The product 115h was isolated by a column chromatography on silica gel (n-

hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 178 mg, 56%. Data for 115h: 1HNMR 

(400 MHz, CDCl3) δ 7.62–7.55 (m, 4H), 7.47–7.39 (m, 4H), 7.37–7.32 (m, 1H), 6.90–

6.88 (m, 1H), 6.82–6.76 (m, 2H), 5.95 (s, 2H), 3.84 (s, 2H), 3.75 (s, 2H), 1.67 (br s, 1H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 147.7, 146.5, 140.9, 139.9, 139.3, 134.2, 

128.7, 128.6, 127.1, 127.1, 127.0, 121.2, 108.7, 108.0, 100.9, 52.9, 52.6 ppm; GC-MS for 

C21H19NO2, m/z = 317 (M+); HRMS (IT-TOF/ESI) Calcd for C21H19NO2 ([M+H]+): 

318.1489, Found: 318.1486. 

 



109 
 

 
 

F3C
115 i

N
H

 

Table 2.3.1, compound 115i. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-trifluromethylbenzylamine (175 mg, 1.0 

mmol) and n-hexylamine (141 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 

115i was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 

10:1). Isolated yield: 142 mg, 55%. Data for 115i: 1H NMR (400 MHz, CDCl3) δ 7.57 (d, 

J = 8.1 Hz, 2H), 7.44 (d, J = 8.1 Hz, 2H), 3.84 (s, 2H), 2.61 (t, J = 7.21 Hz, 2H), 1.58 (br 

s, 1H), 1.55–1.46 (m, 2H), 1.37–1.22 (m, 6H), 0.91–0.84 (m, 3H); 13C{1H} NMR (100 

MHz, CDCl3) δ 144.6, 129.1 (q, JCF = 32.3 Hz), 128.3, 125.3 (q, JCF = 3.8 Hz), 124.2 (q, 

JCF = 272.0 Hz), 53.5, 49.5, 31.7, 30.0, 27.0, 22.6, 14.0; GC-MS for C14H20F3N, m/z = 

259 (M+); HRMS (IT-TOF/ESI) Calcd for C14H20F3N ([M+H]+): 260.1621, Found: 

260.1627. 

 

F
115 j

N
H

 

Table 2.3.1, compound 115j. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-flurobenzylamine (125 mg, 1.0 mmol) and n-

hexylamine (141 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 115j was 

isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 10:1). 

Isolated yield: 132 mg, 63%. Data for 115j: 1HNMR (400 MHz, CDCl3) δ 7.30–7.24 (m, 
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2H), 7.02–6.95 (m, 2H), 3.74 (s, 2H), 2.59 (t, J = 7.3, 2H), 1.53–1.44 (m, 2H), 1.35–1.21 

(m, 6H), 0.90–0.84 (br m, 3H, peaks overlapped); 13C{1H} NMR (100 MHz, CDCl3) δ 

161.8 (d, JCF = 244.6 Hz), 136.2 (d, JCF = 3.1 Hz), 129.6 (d, JCF = 7.9 Hz), 115.0 (d, JCF = 

21.2 Hz), 53.3, 49.4, 31.7, 30.0, 27.0, 22.6, 14.0 ppm; GC-MS for C13H20FN, m/z = 209 

(M+). HRMS (IT-TOF/ESI) Calcd for C13H20FN ([M+H]+): 210.1653, Found: 210.1654. 

 

F
115 k

N
H

O

 

Table 2.3.1, compound 115k. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-flurobenzylamine (125 mg, 1.0 mmol) and 4-

methoxybenzylamine (192 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 

115k was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 

to 10:1). Isolated yield:  162 mg, 66%. Data for 115k: 1H NMR (400 MHz, CDCl3) δ 

7.35–7.29 (m, 2H), 7.27 (d, J = 8.3 Hz, 2H), 7.06–6.99 (m, 2H), 6.90 (d, J = 8.3 Hz, 2H), 

3.81 (s, 3H), 3.76 (s, 2H), 3.74 (s, 2H), 1.78 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) 

δ 161.8 (d, JCF = 244.6 Hz), 158.5, 135.9 (d, JCF = 3.1 Hz), 132.1, 129.6 (d, JCF = 7.9 Hz), 

129.2, 115.0 (d, JCF = 21.2 Hz), 113.7, 55.1, 52.4, 52.1; GC-MS for C15H16FNO, m/z = 

245 (M+). 1H and 13C NMR spectral data were in good agreement with the literature 

values.75  
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N
H

 

Table 2.3.1, compound 115l. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-flurobenzylamine (125 mg, 1.0 mmol) and β-

methylphenethylamine (189 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 

115l was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 

10:1). Isolated yield: 141 mg, 58%. Data for 115l: 1H NMR (400 MHz, CDCl3) δ 7.37–

7.30 (m, 2H), 7.26–7.19 (m, 5H), 7.03–6.96 (m, 2H), 3.74 (ABq, J = 13.5 Hz, 2H), 2.99 

(qt, J = 7.1, 7.0 Hz, 1H), 2.84–2.77 (m, 2H), 1.55 (br s, 1H), 1.28 (d, J = 7.0 Hz, 3H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 161.7 (d, J = 244.2 Hz), 145.1, 135.8 (d, J = 

3.1 Hz), 129.4 (d, J = 7.9 Hz), 128.5, 127.1, 126.3, 115.0 (d, JCF = 21.2 Hz), 56.1, 52.9, 

39.9, 20.0 ppm; GC-MS for C16H18FN, m/z = 243 (M+). HRMS (IT-TOF/ESI) Calcd for 

C16H18FN ([M+H]+): 244.1496, Found: 244.1500. 

 

F
115 m

N
H

O

 

Table 2.3.1, compound 115m. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-flurobenzylamine (125 mg, 1.0 mmol) and 4-

methoxybenzeneethanamine (211 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The 

product 115m was isolated by a column chromatography on silica gel (n-hexanes/EtOAc 
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= 100:1 to 10:1). Isolated yield: 142 mg, 55%. Data for 115m: 1H NMR (400 MHz, 

CDCl3) δ 7.27–7.21 (m, 2H), 7.15–7.10 (m, 2H), 7.03–6.96 (m, 2H), 6.87–6.82 (m, 2H), 

3.79 (s, 3H), 3.76 (s, 2H), 2.88–2.83  (m, 2H), 2.80–2.74 (m, 2H), 1.69 (br s, 1H); 

13C{1H} NMR (100 MHz, CDCl3) δ 161.8 (d, JCF = 244.6 Hz), 157.9, 135.8 (d, JCF = 3.1 

Hz), 131.8, 129.5, 129.5 (d, JCF = 7.9 Hz), 115.0 (d, JCF = 21.2 Hz), 113.8, 55.1, 53.0, 

50.6, 35.2 ppm; GC-MS for C16H18FNO, m/z = 259 (M+). HRMS (IT-TOF/ESI) Calcd 

for C16H18FNO ([M+H]+): 260.1445, Found: 260.1439. 

 

115 n

H
N

O

 

Table 2.3.1, compound 115n. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzeneethanamine (151 mg, 1.0 

mmol) and benzylamine (150 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 

115n was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 

to 10:1). Isolated yield: 169 mg, 70%. Data for 115n: 1H NMR (400 MHz, CDCl3) δ 

7.37–7.23 (m, 5H), 7.15 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 8.3 Hz, 2H), 3.82 (s, 2H), 3.80 

(s, 3H), 2.89 (t, J = 6.9 Hz, 2H), 2.80 (t, J = 6.9 Hz, 2H), 1.66 (br s, 1H); 13C{1H} NMR 

(100 MHz, CDCl3) δ 157.9, 140.1, 131.9, 129.5, 128.3, 128.0, 126.8, 113.8, 55.1, 53.8, 

50.6, 35.3 ppm; GC-MS for C16H19NO, m/z = 241 (M+). 1H and 13C NMR spectral data 

were in good agreement with the literature values.76  
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Table 2.3.1, compound 115o-a. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzeneethanamine (151 mg, 1.0 

mmol) and n-hexylamine (141 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 

115o-a was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 

to 10:1). Isolated yield: 119 mg, 51%. Data for 115o-a: 1H NMR (400 MHz, CDCl3) δ 

7.14–7.10 (m, 2H), 6.86–6.81 (m, 2H), 3.78 (s, 3H), 2.86–2.81 (m, 2H), 2.78–2.72 (m, 2H), 2.62–

2.57 (m, 2H), 1.68 (br s, 1H), 1.50–1.41 (m, 2H), 1.33–1.23 (m, 6H), 0.89–0.84 (m, 3H); 13C{1H} 

NMR (100 MHz, CDCl3) δ 157.9, 132.0, 129.6, 113.8, 55.2, 51.4, 49.9, 35.3, 31.7, 29.9, 27.0, 

22.6, 14.0 ppm; GC-MS for C15H25NO, m/z = 235 (M+); HRMS (IT-TOF/ESI) Calcd for 

C15H25NO ([M+H]+): 236.2009. Found 236.2005:  

 

115 o-b
O

N

 

Table 2.3.1, compound 115o-b. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzeneethanamine (151 mg, 1.0 

mmol) and n-hexylamine (141 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 

115o-b was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 



114 
 

 
 

to 10:1). Isolated yield: 57 mg, 18%. Data for 115o-b: 1H NMR (400 MHz, CDCl3) δ 7.11 

(d, J = 8.3 Hz, 2H), 6.83 (d, J = 8.3 Hz, 2H), 3.78 (s, 3H), 2.78–2.63 (m, 4H), 2.52 (t, J = 

7.5 Hz, 4H), 1.54–1.40 (m, 4H), 1.35–1.22 (m, 12H), 0.96–0.82 (m, 6H); 13C{1H} NMR 

(100 MHz, CDCl3) δ 157.8, 132.5, 129.6, 113.8, 56.1, 55.2, 53.9, 32.2, 31.8, 27.2, 26.6, 

22.6, 14.1 ppm; GC-MS for C21H37NO, m/z = 319 (M+); HRMS (IT-TOF/ESI) Calcd for 

C21H37NO ([M+H]+): 320.2948. Found: 320.2943. 

 

115 p
O

H
N

 

Table 2.3.1, compound 120p. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzeneethanamine (151 mg, 1.0 

mmol) and cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The 

product 115p was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 

100:1 to 10:1). Isolated yield: 187mg, 80%. Data for 115p: 1H NMR (400 MHz, CDCl3) δ 

7.13–7.08 (m, 2H), 6.83–6.79 (m, 2H), 3.75 (s, 3H), 2.86–2.81 (m, 2H),  2.74–2.68 (m, 

2H), 2.39 (tt, J = 10.6, 3.8 Hz, 1H), 1.88–1.78 (m, 2H), 1.74–1.64 (m, 2H), 1.62–1.54 (m, 

1H), 1.48 (br s, 1H), 1.29–0.95 (m, 5H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 157.8, 

132.0, 129.4, 113.7, 56.6, 55.0, 48.3, 35.5, 33.4, 26.0, 24.9 ppm; GC-MS for C15H23NO, 

m/z = 233 (M+). HRMS (IT-TOF/ESI) Calcd for C15H23NO ([M+H]+): 234.1852. Found: 

234.1854. 
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Table 2.3.1, compound 115q. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzeneethanamine (151 mg, 1.0 

mmol) and 2-aminoindane (186 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The 

product 115q was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 

100:1 to 10:1). Isolated yield: 144 mg, 54%. Data for 115q: 1H NMR (400 MHz, CDCl3) 

δ 7.22–7.12 (m, 6H), 6.89–6.83 (m, 2H), 3.80 (s, 3H), 3.65 (quintet, J = 7.0 Hz, 1H), 3.17 

(dd, J = 7.2 Hz, 2H), 2.96–2.90 (m, 2H), 2.82–2.70 (m, 4H), 1.67 (br s, 1H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 158.0, 141.6, 131.9, 129.5, 126.3, 124.6, 113.9, 59.5, 

55.2, 49.7, 39.9, 35.5 ppm; GC-MS for C18H21NO, m/z = 267 (M+); HRMS (IT-

TOF/ESI) Calcd for C18H21NO ([M+H]+): 268.1696, Found: 268.1699. 

 

115 rO

H
N

O

 

Table 2.3.1, compound 115r. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzeneethanamine (151 mg, 1.0 

mmol) and (R)-(+)-1-(4-methoxyphenyl)ethylamine (211 mg, 1.4 mmol) was stirred at 

130 °C for 16 h. The product 115r was isolated by a column chromatography on silica gel 

(n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 186 mg, 65%. Data for 115r: 1H NMR 
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(400 MHz, CDCl3) δ 7.21–7.15 (m, 2H), 7.10–7.05 (m, 2H), 6.87–6.79 (m, 4H), 3.79 (s, 

3H), 3.78 (s, 3H), 3.73 (q, J = 6.6 Hz, 1H), 2.79–2.60 (m, 4H), 1.86 (br s, 1H), 1.32 (d, J 

= 6.6, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 158.3, 157.8, 137.4, 131.9, 129.4, 

127.4, 113.7, 113.6, 57.4, 55.0, 48.9, 35.2, 24.1 ppm; GC-MS for C18H23NO2, m/z = 285 

(M+); HRMS (IT-TOF/ESI) Calcd for ([M+H]+): 286.1802, Found: 286.1798. 

 

115 s
O

NH

 

Table 2.3.1, compound 115s. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzeneethanamine (151 mg, 1.0 

mmol) and (±)-3-phenyl-1-propanamine (189 mg, 1.4 mmol) was stirred at 130 °C for 16 

h. The product 115s was isolated by a column chromatography on silica gel (n-

hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 228 mg, 73%. Data for 115s: 1H NMR 

(400 MHz, CDCl3)  δ 7.30–7.25 (m, 2H), 7.21–7.11 (m, 5H), 6.88–6.83 (m, 2H), 3.79 (s, 

3H), 2.94–2.84 (m, 1H), 2.82–2.70 (m, 3H), 2.70–2.52 (m, 3H), 1.82–1.72 (m, 1H), 1.66–

1.56 (m, 1H), 1.54 (br s, 1H), 1.10 (d, J = 6.3 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 157.9, 142.2, 132.0, 129.6, 128.3, 128.2, 125.6, 113.8, 55.2, 52.4, 48.5, 38.5, 

35.5, 32.2, 20.2 ppm; GC-MS for C19H25NO, m/z = 283 (M+); HRMS (IT-TOF/ESI) 

Calcd for C19H25NO ([M+H]+): 284.2009, Found: 284.2010. 
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Table 2.3.1, compound 115t. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 4-methoxybenzeneethanamine (151 mg, 1.0 

mmol) and 4-methoxybenzylamine (192 mg, 1.4 mmol) was stirred at 130 °C for 16 h. 

The product 115t was isolated by a column chromatography on silica gel (n-

hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 149 mg, 55%. Data for 115t: 1H NMR 

(400 MHz, CDCl3) δ 7.21 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 6.90–6.82 (m, 

4H), 3.80 (s, 3H), 3.79 (s, 3H), 3.75 (s, 2H), 2.87 (t, J = 7.1 Hz, 2H), 2.78 (t, J = 6.9 Hz, 

2H), 1.71 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 158.5, 157.9, 132.3, 131.9, 

129.5, 129.2, 113.7, 113.6, 55.1, 55.1, 53.2, 50.6, 35.2 ppm; GC-MS for C17H21NO2, m/z 

= 271 (M+). 1H and 13C NMR spectral data were in good agreement with the literature 

values.76 

 

115 u
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Table 2.3.1, compound 115u. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 2-(3-fluorophenyl)ethylamine (139 mg, 1.0 

mmol) and 2-aminoindane (186 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The 

product 115u was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 
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100:1 to 10:1). Isolated yield: 193 mg, 76%. Data for 115u: 1H NMR (400 MHz, CDCl3)  

δ 7.3–7.24 (m, 1H), 7.24–7.12 (m, 4H), 7.06–7.00 (m, 1H), 6.99–6.89 (m, 2H), 3.67 

(quintet, J = 6.9 Hz, 1H), 3.18 (dd, J = 15.5, 7.2 Hz, 2H), 3.01–2.92 (m, 2H), 2.89–2.81 

(m, 2H), 2.75 (dd, J = 15.5, 6.6 Hz, 2H), 1.63 (br s, 1H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 162.8 (d, JCF = 245.5 Hz), 142.5 (d, JCF = 7.2 Hz), 141.5, 129.8 (d, JCF = 8.3 

Hz), 126.4, 124.6, 124.3 (d, JCF = 2.7 Hz), 115.4 (d, JCF = 20.8 Hz), 113.0 (d, JCF = 21.0 

Hz) ppm; GC-MS for C17H18FN, m/z = 255 (M+); HRMS (IT-TOF/ESI) Calcd for 

C17H18FN ([M+H]+): 256.1496, Found: 256.1501. 

 

115 v

H
NF

 

Table 2.3.1, compound 120v. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 2-(3-Fluorophenyl)ethylamine (139 mg, 1.0 

mmol) and (R)-(+)-β-Methylphenethylamine (189 mg, 1.4 mmol) was stirred at 130 °C 

for 16 h. Yield: 60% (Determined by GC-MS, hexamethylbenzene as an internal 

standard.)  
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Table 2.3.1, compound 115w. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 2-(3-fluorophenyl)ethylamine (139 mg, 1.0 

mmol) and (R)-(+)-1-(4-methoxyphenyl)ethylamine (211 mg, 1.4 mmol) was stirred at 

130 °C for 16 h. The product 120w was isolated by a column chromatography on silica 

gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 157 mg, 58%. Data for 115w: 1H 

NMR (400 MHz, CDCl3) δ 7.27–7.16 (m, 3H), 6.98–6.80 (m, 5H), 3.80 (s, H), 3.73 (q, J 

= 6.6 Hz, 1H), 2.83–2.63 (m, 4H), 1.60 (br s, 1H), 1.32 (d, J = 6.6 Hz, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 162.8 (d, JCF = 245.4 Hz), 158.5, 142.6 (d, JCF = 7.2 Hz), 

137.3, 129.74 (d, JCF = 8.3 Hz), 127.5, 124.3 (d, JCF = 2.7 Hz), 115.4 (d, JCF = 20.9 Hz), 

113.7, 112.9 (d, JCF = 21.0 Hz), 57.5, 55.2, 48.5, 36.07 (d, JCF = 1.7 Hz), 24.2 ppm; GC-

MS for C17H20FNO, m/z = 273 (M+); HRMS (IT-TOF/ESI) Calcd for C17H20FNO 

([M+H]+): 274.1602, Found: 274.1604. 

 

115 x
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Table 2.3.1, compound 115x. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 1-(1,3-benzodioxol-5-yl)methanamine (151 

mg, 1.0 mmol) and cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. 

The product 115x was isolated by a column chromatography on silica gel (n-

hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 139 mg, 59%. Data for 115x: 1H NMR 

(400 MHz, CDCl3) δ 6.83–6.81 (m, 1H), 6.75–6.73 (m, 2H), 5.92 (s, 2H), 3.70 (s, 2H), 
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2.45 (tt, J = 10.4, 3.8 Hz, 1H), 1.95–1.84 (m, 2H), 1.77–1.67 (m, 2H), 1.64–1.54 (m, 1H), 

1.30–1.04 (m, 5H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 147.6, 146.3, 134.8, 121.1, 

108.6, 108.0, 100.8, 55.9, 50.7, 33.4, 26.1, 24.9 ppm; GC-MS for C14H19NO2, m/z = 233 

(M+). 1H and 13C NMR spectral data were in good agreement with the literature values.77  

115 y
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Table 2.3.1, compound 115y. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 1-(1,3-benzodioxol-5-yl)methanamine (151 

mg, 1.0 mmol) and (R)-(+)-1-(4-methoxyphenyl)ethylamine (211 mg, 1.4 mmol) was 

stirred at 130 °C for 16 h. The product 115y was isolated by a column chromatography on 

silica gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 171 mg, 60%. Data for 115y: 

1H NMR (400 MHz, CDCl3) δ 7.30–7.24 (m, 2H), 6.93–6.86 (m, 2H), 6.82–6.78 (m, 1H), 

6.77–6.67 (m, 2H), 5.93 (s, 2H), 3.82 (s, 3H), 3.76 (q, J = 6.6 Hz, 1H), 3.52 (q, J = 13.2 

Hz, 2H), 1.70 (br s, 1H), 1.34 (d, J = 6.6 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) 

δ 158.5, 147.6, 146.3, 137.4, 134.5, 127.7, 121.1, 113.8, 108.7, 108.0, 100.8, 56.5, 55.2, 

51.3, 24.4 ppm; GC-MS for C17H19NO3, m/z = 285 (M+); HRMS (IT-TOF/ESI) Calcd for 

C17H19NO3 ([M+H]+): 286.1438, Found: 286.1427. 
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Table 2.3.1, compound 120z. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 1-(1,3-benzodioxol-5-yl)methanamine (151 

mg, 1.0 mmol) and (±)-1-(4-methoxyphenyl)ethylamine (211 mg, 1.4 mmol) was stirred 

at 130 °C for 16 h. The product 115z was isolated by a column chromatography on silica 

gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 152 mg, 56%. Data for 115z: 1H 

NMR (400 MHz, CDCl3) δ 7.35–7.28 (m, 2H), 7.24–7.18 (m, 3H), 6.76–6.70 (m, 2H), 

6.70–6.65 (m, 1H), 5.93 (s, 2H), 3.66 (dd, J = 33.3, 6.9 Hz, 2H), 2.96 (sextet, J = 7.1 Hz, 

1H), 2.77 (d, J = 7.3 Hz, 2H), 1.66 (br s, 1H), 1.26 (d, J = 6.9 Hz, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 147.6, 146.4, 145.2, 134.1, 128.5, 127.2, 126.4, 121.1, 108.6, 

108.0, 100.8, 56.0, 53.5, 39.9, 20.1 ppm; GC-MS for C17H19NO2, m/z = 269 (M+); HRMS 

(IT-TOF/ESI) Calcd for C17H19NO2 ([M+H]+): 270.1489, Found: 270.1463. 

 

115 aa
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Table 2.3.1, compound 115aa. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 1,2,3,4-tetrahydro-1-naphthalenamine (147 

mg, 1.0 mmol) n-hexylamine (141 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The 

product 115aa was isolated by a column chromatography on silica gel (n-hexanes/EtOAc 

= 100:1 to 10:1). Isolated yield: 105 mg, 46%. Data for 115aa: 1H NMR (400 MHz, 

CDCl3) 7.37–7.30 (m, 1H), 7.21–7.05 (m, 3H), 3.77 (t, J = 4.8 Hz, 1H), 2.87–2.61 (m, 

1H), 2.03–1.91 (m, 1H), 1.91–1.81 (m, 2H), 1.78–1.68 (m, 1H), 1.56–1.46 (m, 2H), 1.41–

1.19 (m, 7H), 0.94–0.85 (m, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 139.3, 137.3, 
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129.0, 128.7, 126.5, 125.6, 55.4, 47.3, 31.8, 30.4, 29.3, 28.2, 27.1, 22.6, 18.9, 14.1 ppm; 

GC-MS for C16H25N, m/z = 231 (M+). HRMS (IT-TOF/ESI) Calcd for C16H25N 

([M+H]+): 232.2060, Found: 232.2053. 

115 bb
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Table 2.3.1, compound 115bb. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 1,2,3,4-tetrahydro-1-naphthalenamine (147 

mg, 1.0 mmol) and 4-methoxybenzeneethanamine (211 mg, 1.4 mmol) was stirred at 

130 °C for 16 h. The product 115bb was isolated by a column chromatography on silica 

gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 177 mg, 63%. Data for 115bb: 1H 

NMR (400 MHz, CDCl3) δ 7.28–7.23 (m, 1H), 7.21–7.13 (m, 4H), 7.12–7.07 (m, 1H), 

6.90–6.85 (m, 2H), 3.82 (s, 3H), 3.81 (t, J = 4.7 Hz, 1H), 3.05–2.89 (m, 2H), 2.87–2.69 

(m, 4H), 2.01–1.86 (m, 3H), 1.80–1.70 (m, 1H), 1.63 (br s, 1H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 157.9, 139.0, 137.3, 132.1, 129.6, 129.0, 128.5, 126.5, 125.6, 113.7, 

55.3, 55.2, 48.6, 35.7, 29.3, 28.2, 19.0 ppm; GC-MS for C19H23NO, m/z = 281 (M+);  

HRMS (IT-TOF/ESI) Calcd for C19H23NO ([M+H]+): 282.1852, Found: 282.1843. 
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Table 2.3.1, compound 115cc. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 2-(2-aminoethyl)furan (111 mg, 1.0 mmol) and 

cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 115cc 

was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 

10:1). Isolated yield: 124 mg, 69%. Data for 115cc: 1H NMR (400 MHz, CDCl3) δ 7.32 

(dd, J = 1.9, 0.9 Hz, 1H), 6.28 (dd, J = 3.2, 1.9 Hz, 1H), 6.14–6.12 (m, 1H), 3.78 (s, 2H), 

2.42 (tt,  J = 10.4, 3.8, Hz, 1H), 1.90–1.81 (m, 2H), 1.74–1.66 (m, 2H), 1.63–1.46 (m, 

2H), 1.28–1.02 (m, 5H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 154.2, 141.5, 110.0, 

106.4, 55.7, 43.2, 33.2, 26.0, 24.9 ppm; GC-MS for C11H17NO, m/z = 179 (M+). 1H and 

13C NMR spectral data were in good agreement with the literature values.78  
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Table 2.3.1, compound 120dd. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), 5-methoxytryptamine (190 mg, 1.0 mmol) and 

cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 115dd 

was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 

10:1). Isolated yield: 182 mg, 67%. Data for 115dd: 1H NMR (400 MHz, CDCl3) δ 8.21 

(br s, 1H), 7.26–7.20 (m, 1H), 7.08–7.05 (m, 1H), 7.02–6.99 (m, 1H), 6.85 (dd, J = 8.8, 

2.5 Hz, 1H), 3.86 (s, 3H), 3.07–2.90 (m, 4H), 2.45 (tt, J = 10.5, 3.7 Hz, 1H), 1.91–1.78 
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(m, 3H), 1.75–1.65 (m, 2H), 1.64–1.55 (m, 1H), 1.29–0.99 (m, 5H) ppm; 13C{1H} NMR 

(100 MHz, CDCl3) δ 153.8, 131.5, 127.8, 122.8, 113.6, 112.1, 111.8, 100.6, 56.8, 55.9, 

46.8, 33.5, 26.1, 25.9, 25.0 ppm; GC-MS for C17H24N2O, m/z = 272 (M+); HRMS (IT-

TOF/ESI) Calcd for C17H24N2O ([M+H]+): 273.1961, Found: 273.1960. 

115 ff
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Table 2.3.1, compound 115ff. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %), tyramine (136 mg, 1.0 mmol) and 

cyclohexylamine (139 mg, 1.4 mmol) was stirred at 130 °C for 16 h. The product 115ff 

was isolated by a column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 

10:1). Isolated yield: 124 mg, 69%. Data for 115ff: 1H NMR (400 MHz, CDCl3) δ 7.02 (d, 

J = 8.3 Hz, 2H), 6.72 (d, J = 8.3 Hz, 2H), 4.71 (br s, 1H), 2.93 (t, J = 6.9 Hz, 2H), 2.75 (t, 

J = 6.9 Hz, 2H), 2.47 (tt, J = 10.6, 3.6 Hz, 1H), 1.92–1.85 (m, 2H), 1.75–1.66 (m, 2H), 

1.64–1.55 (m, 1H), 1.31–1.03 (m, 5H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 155.5, 

130.0, 129.7, 115.9, 56.9, 47.6, 34.7, 32.9, 25.9, 25.0 ppm; GC-MS for C14H21NO, m/z = 

219 (M+); Anal. Calcd for C14H21NO: C, 76.67; H, 9.65. Found: C, 76.78; H, 9.35; 

HRMS (IT-TOF/ESI) Calcd for C14H21NO ([M+H]+): 220.1696, Found: 220.1698. 
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Table 2.3.2, compound 117a. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and benzylamine (107 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117a was isolated by a column chromatography on 

silica gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 88 mg, 89%. Data for 117a: 

1H NMR (400 MHz, CDCl3) 7.42–7.24 (m, 10H), 3.84 (s, 4H), 2.08 (br s, 1H); 13C{1H} 

NMR (100 MHz, CDCl3) δ 140.0, 128.4, 128.1, 126.9, 53.0 ppm; GC-MS for C14H15N, 

m/z = 197 (M+). 1H and 13C NMR spectral data were in good agreement with the 

literature values.79  
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Table 2.3.2, compound 117b. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 4-methylbenzylamine (121 mg, 1.0 mmol) 

was stirred at 130 °C for 16 h. The product 117b was isolated by a column 

chromatography on silica gel (n-hexane/ethyl acetate = 100:1 to 10:1). Isolated yield: 106 

mg, 94%. Data for 117b: 1H NMR (400 MHz, CDCl3) δ 7.27 (d, J = 7.9 Hz, 4H), 7.18 (d, 

J = 7.9 Hz, 4H), 3.80 (s, 4H), 2.38 (s, 6H), 1.70 (br s, 1H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 137.2, 136.4, 129.0, 128.1, 52.7, 21.1 ppm; GC-MS for C16H19N, m/z = 225 

(M+). 1H and 13C NMR spectral data were in good agreement with the literature 

values.79,80 
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Table 2.3.2, compound 117c. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol 116 (16 mg, 10 mol %) and 4-methoxylbenzylamine (137 mg, 1.0 mmol) 

was stirred at 130 °C for 16 h. The product 117c was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 111 mg, 

86%. Data for 117c 1H NMR (400 MHz, CDCl3) δ 7.29–7.24 (m, 4H), 6.91–6.86 (m, 4H), 

3.81 (s, 6H), 3.74 (s, 4H), 1.76 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 158.5, 

132.4, 129.2, 113.6, 55.1, 52.3 ppm; GC-MS for C16H19NO2, m/z = 257 (M+). 1H and 13C 

NMR spectral data were in good agreement with the literature values.79,80 
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Table 2.3.2, compound 117d. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 4-chlorobenzylamine (141 mg, 1.0 mmol) 

was stirred at 130 °C for 16 h. The product 117d was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 122 mg, 

92%. Data for 117d 1H NMR (400 MHz, CDCl3) δ 7.33–7.28 (m, 4H), 3.76 (s, 4H), 1.64 

(br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 138.5, 132.6, 129.4, 128.5, 52.2 ppm; 

GC-MS for C14H13Cl2N, m/z = 265 (M+). 1H and 13C NMR spectral data were in good 

agreement with the literature values.80,81 
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Table 2.3.2, compound 117e. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 4-phenylbenzylamine (183 mg, 1.0 mmol) 

was stirred at 130 °C for 16 h. The product 117e was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 148 mg, 

85%. Data for 117e 1H NMR (400 MHz, CDCl3) δ 7.59 (t, J = 8.4 Hz, 8H), 7.49–7.42 (m, 

8H), 7.34 (t, J = 7.6 Hz, 2H), 3.90 (s, 4H), 1.65 (br s, 1H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 140.9, 139.9, 139.4, 128.7, 128.6, 127.1, 127.0, 52.8 ppm (one carbon signal 

overlapped); GC-MS for C26H23N, m/z = 349 (M+). 1H and 13C NMR spectral data were 

in good agreement with the literature values.82 
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Table 2.3.2, compound 117f. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 4-phenylbenzylamine (125 mg, 1.0 mmol) 

was stirred at 130 °C for 16 h. The product 117f was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 106 mg, 

91%. Data for 117f 1H NMR (400 MHz, CDCl3) δ 7.36–7.28 (m, 4H), 7.07–6.99 (m, 4H), 

3.78 (s, 4H), 1.67 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 161.8 (d, JCF = 244.5 

Hz), 135.8 (d, JCF = 3.1 Hz), 129.6 (d, JCF = 8.0 Hz), 115.1 (d, JCF = 21.3 Hz), 52.3 ppm; 
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GC-MS for C14H13F2N, m/z = 233 (M+). 1H and 13C NMR spectral data were in good 

agreement with the literature values.81 
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Table 2.3.2, compound 117g. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 4-(trifluoromethyl)benzenemethanamine 

(175 mg, 1.0 mmol) was stirred at 130 °C for 16 h. The product 117g was isolated by a 

column chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 

140 mg, 84%. Data for 117g 1H NMR (400 MHz, CDCl3) δ 7.64–7.57 (m, 4H), 7.51–7.46 

(m, 4H), 3.88 (s, 4H), 1.75 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 144.1, 129.4 

(q, JCF = 32.4 Hz), 128.3, 125.3 (q, JCF = 3.8 Hz), 124.2 (q, JCF = 271.8 Hz), 52.6 ppm; 

GC-MS for C16H13F6N, m/z = 333 (M+). 1H and 13C NMR spectral data were in good 

agreement with the literature values.81,83 

 

N
H

117 h

O O

 

Table 2.3.2, compound 117h. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 3-methoxylbenzylamine (137 mg, 1.0 

mmol) was stirred at 130 °C for 16 h. The product 117h was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 108 mg, 

84%. Data for 117h 1H NMR (400 MHz, CDCl3) δ 7.29–7.22 (m, 2H), 6.97-6.91 (m, 4H), 
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6.84–6.78 (m, 2H), 3.82 (s, 6H), 3.80 (s, 4H), 1.71 (br s, 1H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 159.6, 141.9, 129.3, 120.4, 113.5, 112.4, 55.1, 53.0 ppm; GC-MS for 

C16H19NO2, m/z = 257 (M+). 1H and 13C NMR spectral data were in good agreement with 

the literature values.79 

 

N
H

117 i

Cl Cl

 

Table 2.3.2, compound 4i. A chlorobenzene (2.0 mL) solution of complex 112 (13 mg, 

0.75 mol %), 116 (16 mg, 10 mol %) and 3-chlorobenzylamine (141 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117i was isolated by a column chromatography on 

silica gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 118 mg, 89%. Data for 117i 

1H NMR (400 MHz, CDCl3) δ 7.37–7.34 (m, 2H), 7.29–7.19 (m, 6H), 3.77 (s, 4H), 1.65 

(br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 142.1, 134.2, 129.6, 128.1, 127.2, 126.2, 

52.5 ppm; GC-MS for C14H13Cl2N, m/z = 265 (M+). 1H and 13C NMR spectral data were 

in good agreement with the literature values.84 
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H
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Table 2.3.2, compound 117j. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 1-(1,3-benzodioxol-5-yl)methanamine (151 

mg, 1.0 mmol) was stirred at 130 °C for 16 h. The product 117j was isolated by a column 

chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 110 mg, 

77%. Data for 117j 1H NMR (400 MHz, CDCl3) δ 6.85 (s, 2H), 6.77–6.75 (m, 4H), 5.94 
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(s, 4H), 3.69 (s, 4H), 1.59 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 147.7, 146.5, 

134.3, 121.2, 108.7, 108.0, 100.9, 52.7 ppm; GC-MS for C16H15NO4, m/z = 285 (M+); 

HRMS (IT-TOF/ESI) Calcd for C16H15NO4 ([M+H]+): 286.1074, Found: 286.1070. 

 

N
H

117 k

O

OO

O

O O
 

Table 2.3.2, compound 117k. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 3,4,5-trimethoxylbenzylamine (197 mg, 1.0 

mmol) was stirred at 130 °C for 16 h. The product 117k was isolated by a column 

chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 115 mg, 

61%. Data for 117k 1H NMR (400 MHz, CDCl3) 6.56 (s, 4H), 3.84 (s, 12H), 3.81 (s, 6H), 

3.74 (s, 4H), 1.80 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 153.1, 136.6, 135.8, 

104.7, 60.7, 55.9, 53.3 ppm; GC-MS for C20H27NO6, m/z = 377 (M+); HRMS (IT-

TOF/ESI) Calcd for C16H15NO4 ([M+H]+): 378.1911, Found: 378.1892. 

 

N
H

117 l
O O

 

Table 2.3.2, compound 4l. A chlorobenzene (2.0 mL) solution of complex 112 (13 mg, 

0.75 mol %), 116 (16 mg, 10 mol %) and (R)-(+)-1-(4-methoxyphenyl)ethylamine (151 

mg, 1.0 mmol) was stirred at 130 °C for 16 h. The product 117l was isolated by a column 

chromatography on silica gel (n-hexanes/EtOAc = 100:1 to 10:1). Isolated yield: 107 mg, 
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75%, 7:1 mixture of diastereomers. Data for 117l 1H NMR (400 MHz, CDCl3) δ 7.13 (d, 

J = 8.6 Hz, 4H), 6.89–6.84 (m, 4H), 3.82 (s, 6H, 3.45 (q, J = 6.7 Hz, 2H), 1.54 (br s, 1H), 

1.25 (d, J = 1.2 Hz, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 158.4, 137.7, 127.6, 113.7, 

55.2, 54.2, 24.9 ppm; GC-MS for C18H23NO2, m/z = 285 (M+). 1H and 13C NMR spectral 

data were in good agreement with the literature values.85 

 

H
N

117 m
OO

 

Table 2.3.2, compound 117m. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 4-methoxybenzeneethanamine (151 mg, 

1.0 mmol) was stirred at 130 °C for 16 h. The product 117m was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 127 mg, 

89%. Data for 117m1H NMR (400 MHz, CDCl3) δ 7.10–7.05 (m, 4H), 6.84–6.79 (m, 

4H), 3.79 (s, 6H), 2.88–2.82 (m, 4H), 2.76–2.70 (m, 4H), 1.56 (br s, 1H); 13C{1H} NMR 

(100 MHz, CDCl3) δ 157.9, 131.9, 129.5, 113.8, 55.2, 51.2, 35.3 ppm; GC-MS for 

C18H23NO2, m/z = 285 (M+). HRMS (IT-TOF/ESI) Calcd for C18H23NO2 ([M+H]+): 

286.1802, Found: 286.1800. 

 

H
N

117 n
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Table 2.3.2, compound 117n. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 3-fluorobenzeneethanamine (139 mg, 1.0 
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mmol) was stirred at 130 °C for 16 h. The product 117n was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 114 mg, 

87%. Data for 117n 1H NMR (400 MHz, CDCl3) δ 7.26–7.18 (m, 2H), 6.98–6.83 (m, 

6H), 2.93–2.86 (m, 4H), 2.82–2.76 (m, 4H), 1.68 (br s, 1H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 162.9 (d, JCF = 245.7 Hz), 142.3 (d, JCF = 7.1 Hz), 129.9 (d, JCF = 8.3 Hz), 

124.3 (d, JCF = 2.8 Hz), 115.4 (d, JCF = 20.9 Hz), 113.1 (d, JCF = 21.0 Hz), 50.6, 35.9 (d, 

JCF = 1.4 Hz) ppm; GC-MS for C16H17F2N, m/z = 261 (M+). HRMS (IT-TOF/ESI) Calcd 

for C16H15NO4 ([M+H]+): 262.1402, Found: 262.1389. 

 

H
N

117 o

O O

 

Table 2.3.2, compound 117o. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 3-methoxybenzeneethanamine (139 mg, 

1.0 mmol) was stirred at 130 °C for 16 h. The product 117o was isolated by a column 

chromatography on silica gel (n-hexane/ethyl acetate = 100:1 to 10:1). Isolated yield:  

128 mg, 90%. Data for 117o 1H NMR (400 MHz, CDCl3) δ 7.23–7.16 (m, 2H), 6.80–6.71 

(m, 6H), 3.79 (s, 6H), 2.91 (t, J = 7.2 Hz, 4H), 2.79 (t, J = 7.2 Hz, 4H), 1.91 (br s, 1H); 

13C{1H} NMR (100 MHz, CDCl3) δ 159.6, 141.4, 129.4, 121.0, 114.3, 111.5, 55.1, 50.9, 

36.2 ppm; GC-MS for C18H23NO2, m/z = 285 (M+); HRMS (IT-TOF/ESI) Calcd for  

C18H23NO2 ([M+H]+): 286.1802, Found: 286.1798. 
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Table 2.3.2, compound 117p. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and (R)-(+)-β-methylphenethylamine (135 mg, 

1.0 mmol) was stirred at 130 °C for 16 h. The product 117p was isolated by a column 

chromatography on silica gel (n-hexane/ethyl acetate = 100:1 to 10:1). Isolated yield: 118 

mg, 93%, 2:7 mixture of diastereomers. Data for 117p 1H NMR (400 MHz, CDCl3) δ 

7.27–7.21 (m, 4H), 7.19–7.14 (m, 2H), 7.13–7.07 (m, 4H), 2.94–2.84 (m, 2H), 2.84–2.66 

(m, 4H), 1.49 (br s, 1H), 1.21–1.17 (d, J = 8.9 Hz, 6H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 145.1, 128.5, 127.0, 126.2, 56.7, 39.5, 19.8 ppm; GC-MS for C18H23N, m/z = 

253 (M+). 1H and 13C NMR spectral data were in good agreement with the literature 

values.86 

 

N
H

117 q
 

Table 2.3.2, compound 117q. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and α-methylbenzenepropanamine (149 mg, 1.0 

mmol) was stirred at 130 °C for 16 h. The product 117q was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 126 mg, 

90%, 1:1 mixture of diastereomers. Data for 117p 1H NMR (400 MHz, CDCl3) δ 7.58–

6.97 (m, 10H), 2.85–2.74 (m, 2H), 2.73–2.58 (m, 4H), 1.84–1.70 (m, 2H), 1.69–1.57 (m, 

1H), 1.15–1.04 (m, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 142.4, 142.4, 128.3, 
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128.3,128.2, 125.6, 49.4, 49.2, 39.3, 38.8, 32.4, 32.2, 21.1, 20.7 ppm; GC-MS for 

C20H27N, m/z = 281 (M+). 1H and 13C NMR spectral data were in good agreement with 

the literature values.87 

 

NH

117 r
 

Table 2.3.2, compound 117r. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 2-indanamine (133 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117r was isolated by a column chromatography on 

silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 91 mg, 73%. Data for 117r 

1H NMR (400 MHz, CDCl3) δ 7.30–7.24 (m, 4H), 7.24–7.18 (m, 4H), 3.83 (quintet, J = 

7.2 Hz, 2H), 3.26 (dd,  J = 15.4, 7.2 Hz, 4H), 2.85 (dd,  J = 15.4, 7.2 Hz, 4H), 1.77 (br s, 

1H); 13C{1H} NMR (100 MHz, CDCl3) δ 141.5, 126.3, 124.5, 58.1, 40.2 ppm; GC-MS 

for C18H19N, m/z = 249 (M+); HRMS (IT-TOF/ESI) Calcd for C18H19N ([M+H]+): 

250.1590, Found: 250.1598. 

 

H
N

117 s
 

Table 2.3.2, compound 117s. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and cyclohexylamine (99 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117s was isolated by a column chromatography on 
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silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 86 mg, 95%. Data for 117s 

1H NMR (400 MHz, CDCl3) δ 2.47 (tt, J = 10.6, 3.7 Hz, 2H), 1.82–1.74 (m, 4H), 1.68–

1.59 (m, 4H), 1.57–1.49 (m, 2H), 1.24–0.88 (m, 10H); 13C{1H} NMR (100 MHz, CDCl3) 

δ 52.8, 34.1, 26.0, 25.1 ppm; GC-MS for C12H23N, m/z = 181 (M+). 1H and 13C NMR 

spectral data were in good agreement with the literature values.88, 89 

 

N
H
117 t

 

Table 2.3.2, compound 117t. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and n-hexylamine (101 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117t was isolated by a column chromatography on 

silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 40 mg, 43%. Data for 117t 

1H NMR (400 MHz, CDCl3) δ 2.59 (t, J = 7.4, 4H), 2.24 (br s, 1H), 1.54–1.44 (m, 4H), 

1.35–1.19 (m, 12H), 0.90–0.82 (m, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 50.0, 31.7, 

29.8, 27.1, 22.6, 14.0 ppm; GC-MS for C12H27N, m/z = 185 (M+). 1H and 13C NMR 

spectral data were in good agreement with the literature values.89, 90 

 

N

117 t'
 

Table 2.3.2, compound 117t´. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and n-hexylamine (101 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117t´ was isolated by a column chromatography 
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on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 48 mg, 54%. Data for 

117t´ 1H NMR (400 MHz, CDCl3) δ 2.45–2.34 (m, 6H), 1.47–1.36 (m, 6H), 1.35–1.19 

(m, 18H), 0.92–0.83 (m, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ 54.1, 31.8, 27.3, 26.8, 

22.7, 14.1 ppm; GC-MS for C18H39N, m/z = 269(M+). 1H and 13C NMR spectral data 

were in good agreement with the literature values.89 

 

H
N

117 u
 

Table 2.3.2, compound 117u. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and n-butylamine (73 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117u was isolated by a column chromatography on 

silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 30 mg, 45%. Data for 117u 

1H NMR (400 MHz, CDCl3) δ 2.43 (t, J = 7.2 Hz, 4H), 1.37–1.25 (m, 4H), 1.24–1.11 (m, 

4H), 0.86 (br s, 1H), 0.75 (t, J = 7.3 Hz, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 49.6, 

32.1, 20.2, 13.7 ppm; GC-MS for C8H19N, m/z = 129 (M+). 1H and 13C NMR spectral 

data were in good agreement with the literature values.80 

 

N
H
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Table 2.3.2, compound 117v. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 3-phenyl-1-propanamine (135 mg, 1.0 

mmol) was stirred at 130 °C for 16 h. The product 117v was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 48 mg, 
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42%. Data for 117v 1H NMR (400 MHz, CDCl3) δ 7.32–7.25 (m, 4H), 7.32–7.15 (m, 

6H), 2.65 (t, J = 7.4 Hz, 8H), 1.84 (quintet, J = 7.5 Hz, 4H); 13C{1H} NMR (100 MHz, 

CDCl3) δ 142.0, 128.3, 128.3, 125.8, 49.4, 33.6, 31.5 ppm; GC-MS for C18H23N, m/z = 

253 (M+). 1H and 13C NMR spectral data were in good agreement with the literature 

values.91 

 

N

117 v´
 

Table 2.3.2, compound 117v´. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 3-phenyl-1-propanamine (135 mg, 1.0 

mmol) was stirred at 130 °C for 16 h. The product 117v´ was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 66 mg, 

53%. Data for 117v´ 1H NMR (400 MHz, CDCl3) δ 7.32–7.26 (m, 6H), 7.23–7.15 (m, 

9H), 2.62 (t, J = 7.8 Hz, 6H), 2.50 (t, J = 7.5 Hz, 6H), 1.77 (t, J = 7.6 Hz, 6H); 13C{1H} 

NMR (100 MHz, CDCl3) δ 142.1, 128.3, 128.3, 125.7, 53.3, 33.6, 28.4 ppm; GC-MS for 

C28H33N, m/z = 371 (M+). 1H and 13C NMR spectral data were in good agreement with 

the literature values.87 
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Table 2.3.2, compound 117w. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and Furfurylamine (97 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117w was isolated by a column chromatography 

on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 71 mg, 80%. Data for 

117w 1H NMR (400 MHz, CDCl3) δ 7.40–7.31 (m, 2H), 6.34–6.27 (m, 2H), 6.22–6.13 

(m, 2H), 3.78 (s, 4H), 1.89 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 153.3, 141.9, 

110.1, 107.2, 44.9 ppm; GC-MS for C10H11NO2, m/z = 177 (M+). 1H and 13C NMR 

spectral data were in good agreement with the literature values.92 
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Table 2.3.2, compound 117w´. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and Furfurylamine (97 mg, 1.0 mmol) was 

stirred at 130 °C for 16 h. The product 117w´ was isolated by a column chromatography 

on silica gel (n-hexane/ethyl acetate = 100:1 to 10:1). Isolated yield: 17 mg, 19%. Data 

for 117w´ 1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 1.8 Hz, 3H), 6.33 (dd, J = 3.1, 1.8 

Hz, 3H), 6.26 (d, J = 3.1 Hz, 3H), 3.67 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 

151.9, 142.2, 110.0, 109.0, 49.1 ppm; GC-MS for C15H15NO3, m/z = 257 (M+). HRMS 

(IT-TOF/ESI) Calcd for C16H15NO4 ([M+H]+): 258.1125, Found: 258.1116. 
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Table 2.3.2, compound 117x. A chlorobenzene (2.0 mL) solution of complex 112 (13 

mg, 0.75 mol %), 116 (16 mg, 10 mol %) and 2-thiopheneethanamine (127 mg, 1.0 

mmol) was stirred at 130 °C for 16 h. The product 117x was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 100:1 to 10:1). Isolated yield: 108 mg, 

89%. Data for 117x 1H NMR (400 MHz, CDCl3) δ (m, 2H), (m, 2H), (m, 2H), (s, 4H), (br 

s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 142.2, 126.8, 125.0, 123.5, 50.7, 30.2 ppm; 

GC-MS for C10H11NO2, m/z = 237 (M+). HRMS (IT-TOF/ESI) Calcd for C16H15NO4 

([M+H]+): 238.0719, Found: 238.0716. 

 

119 a
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H
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Table 2.3.3, compound 119a. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-methoxyaniline (62 mg, 0.5 mmol) and 4-

methoxybenzylamine (96 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119a 

was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 

40:1). Isolated yield: 97 mg, 80%. Data for 119a 1HNMR (400 MHz, CDCl3) δ 7.33–7.27 

(m, 2H), 6.91–6.86 (m, 2H), 6.81–6.76 (m, 2H), 6.66–6.60 (m, 2H), 4.22 (s, 2H), 3.81 (s, 

3H), 3.75 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 158.8, 152.2, 142.2, 131.4, 

128.9, 114.8, 114.3, 113.9, 55.8, 55.2, 48.8 ppm; GC-MS for C15H17NO2 m/z = 243 (M+). 

1H and 13C NMR spectral data were in good agreement with the literature values.75, 93 
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Table 2.3.3, compound 119b. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-methoxyaniline (62 mg, 0.5 mmol) and 

benzylamine (75 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119b was 

isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 40:1). 

Isolated yield: 61 mg, 57%. Data for 119b 1HNMR (400 MHz, CDCl3) δ 7.46–7.29 (m, 

5H), 6.87–6.81 (m, 2H), 6.69–6.63 (m, 2H), 4.33 (s, 2H), 3.79 (s, 3H), ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 152.1, 142.2, 139.5, 128.5, 127.5, 127.1, 114.8, 114.1, 55.7, 

49.1 ppm; GC-MS for C14H15NO, m/z = 213 (M+). 1H and 13C NMR spectral data were in 

good agreement with the literature values.94,95 
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Table 2.3.3, compound 119c. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-methoxyaniline (62 mg, 0.5 mmol) and 4-

phenylbenzylamine (128 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119c 

was isolated by a column chromatography on silica gel (n-hexane/ethyl acetate = 150:1 to 

40:1). Isolated yield: 101 mg, 70%. Data for 119c: 1H NMR (400 MHz, CDCl3) δ 7.61–

7.55 (m, 4H), 7.47–7.42 (m, 4H), 7.35 (tt, J = 7.3, 1.3, Hz, 1H), 6.82–6.77 (m, 2H), 6.69–
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6.65 (m, 2H), 4.34 (s, 2H), 3.75 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 152.5, 

141.7, 140.8, 140.2, 138.3, 128.7, 128.1, 127.3, 127.2, 127.0, 114.9, 114.6, 55.8, 49.2 

ppm; GC-MS for C20H19NO m/z = 289 (M+). 1H and 13C NMR spectral data were in good 

agreement with the literature values.96 
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Table 2.3.3, compound 119d. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-methoxyaniline (62 mg, 0.5 mmol) and 4-

fluorobenzylamine (88 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119d 

was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 

40:1). Isolated yield: 47 mg, 41%. Data for 119d: 1H NMR (400 MHz, CDCl3) δ 7.38–

7.30 (m, 2H), 7.07–6.99 (m, 2H), 6.83–6.76 (m, 2H), 6.66–6.59 (m, 2H), 4.26 (s, 2H), 

4.09 (br s, 1H), 3.75 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 162.0 (d, JCF = 

245.1 Hz), 152.4, 141.7, 135.0 (d, JCF = 3.1 Hz), 129.1 (d, JCF = 8.0 Hz), 115.3 (d, JCF = 

21.4 Hz), 114.8, 114.4, 55.7, 48.6 ppm; GC-MS for C14H14FNO m/z = 231 (M+). 1H and 

13C NMR spectral data were in good agreement with the literature values.97, 98 
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Table 2.3.3, compound 119e. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-chloroaniline (64 mg, 0.5 mmol) and 4-
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methoxybenzylamine (96 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119e 

was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 

40:1). Isolated yield: 73 mg, 59%. Data for 119e: 1H NMR (400 MHz, CDCl3) 7.30–7.25 

(m, 2H), 7.14–7.09 (m, 2H), 6.92–6.87 (m, 2H), 6.59–6.53 (m, 2H), 4.23 (s, 2H), 4.15 (br 

s, 1H), 3.81 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 158.9, 146.5, 130.7, 129.0, 

128.7, 122.1, 114.0, 114.0, 55.3, 47.9 ppm; GC-MS for C14H14ClNO, m/z = 247 (M+). 1H 

and 13C NMR spectral data were in good agreement with the literature values.99 

 

119 f

H
N

O

O

O

O

 

Table 2.3.3, compound 119f. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-methoxyaniline (62 mg, 0.5 mmol) and 3,4,5-

trimethoxybenzylamine (138 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 

119f was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 

40:1). Isolated yield: 138 mg, 91%. Data for 119f: 1H NMR (400 MHz, CDCl3) δ 6.81–

6.76 (m, 2H), 6.65–6.60 (m, 4H), 4.21 (s, 2H), 3.84 (s, 9H), 3.74 (s, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 153.3, 152.3, 142.1, 136.9, 135.3, 114.8, 114.3, 104.3, 60.8, 

56.0, 55.7, 49.7 ppm; GC-MS for C17H21NO4, m/z = 303 (M+). 1H and 13C NMR spectral 

data were in good agreement with the literature values.X-ray,100-102 
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Table 2.3.3, compound 119g. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), aniline (47 mg, 0.5 mmol) and 3,4,5-

trimethoxybenzylamine (138 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 

119g was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 

40:1). Isolated yield: 97 mg, 71%. Data for 119g: 1H NMR (400 MHz, CDCl3) δ 7.23–

7.17 (m, 2H), 6.75 (tt, J = 7.3, 1.1 Hz, 1H), 6.69–6.65 (m, 2H), 6.63 (s, 2H), 4.27 (s, 2H), 

4.13 (br s, 1H), 3.86 (s, 3H), 3.85 (s, 6H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 

153.3, 148.0, 136.8, 135.1, 129.1, 117.6, 112.8, 104.2, 60.7, 55.9, 48.7 ppm; GC-MS for 

C16H19NO3, m/z = 273 (M+). 1H and 13C NMR spectral data were in good agreement with 

the literature values.103, 104 
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Table 2.3.3, compound 119h. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-chloroaniline (64 mg, 0.5 mmol) and 3,4,5-

trimethoxybenzylamine (138 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 

119h was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 

40:1). Isolated yield: 111 mg, 72%. Data for 119h: 1HNMR (400 MHz, CDCl3) δ 7.14–
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7.10 (m, 2H), 6.58 (s, 2H), 6.58–6.54 (m, 2H), 4.23 (s, 2H), 3.84 (s, 3H), 3.84 (s, 6H) 

ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 153.4, 146.4, 137.0, 134.5, 129.0, 122.3, 

114.0, 104.1, 60.8, 56.0, 48.8 ppm; GC-MS for C16H18ClNO3, m/z = 307 (M+). Anal. 

Calcd for C16H18ClNO3: C, 62.44; H, 5.90. Found: C, 62.88; H, 6.05. 

 

119 i

H
N

O

 

Table 2.3.3, compound 119i. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-methoxyaniline (62 mg, 0.5 mmol) and 1-

hexanamine (40 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119i was 

isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 40:1). 

Isolated yield: 65 mg, 63%. Data for 119i: 1H NMR (400 MHz, CDCl3) δ 6.82–6.77 (m, 

2H), 6.63–6.58 (m, 2H), 3.75 (s, 3H), 3.39 (br s, 1H), 3.06 (t, J = 7.2 Hz, 2H), 1.61 

(quintet, J = 7.4 Hz, 2H), 1.44–1.26 (m, 6H), 0.91 (t, J = 6.9 Hz, 3H) ppm; 13C{1H} 

NMR (100 MHz, CDCl3) δ 152.1, 142.5, 114.8, 114.2, 55.8, 45.2, 31.6, 29.5, 26.8, 22.6, 

14.0 ppm; GC-MS for C13H21NO, m/z = 207 (M+). 1H and 13C NMR spectral data were in 

good agreement with the literature values.92 

 

119 j

H
N
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Table 2.3.3, compound 119j. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-methoxyaniline (62 mg, 0.5 mmol) and 3-phenyl-
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1-propanamine (95 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119j was 

isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 40:1). 

Isolated yield: 54 mg, 45%. Data for 119j: 1H NMR (400 MHz, CDCl3) δ 7.34–7.29 (m, 

2H), 7.25–7.18 (m, 3H), 6.80 (d, J = 8.9 Hz, 2H), 6.60 (d, J = 8.9 Hz, 2H), 3.76 (s, 3H), 

3.13 (t, J = 7.1 Hz, 2H), 2.75 (t, J = 7.6 Hz, 2H), 1.96 (quintet, J = 7.4 Hz, 2H) ppm; 

13C{1H} NMR (100 MHz, CDCl3) δ 152.2, 142.2, 141.7, 128.4, 128.4, 125.9, 114.8, 

114.3, 55.8, 44.6, 33.4, 31.0 ppm; GC-MS for C16H19NO, m/z = 241 (M+). 1H and 13C 

NMR spectral data were in good agreement with the literature values.104, 105 

 

119 k

H
N
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Table 2.3.3, compound 119k. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 3,4,5-trimethoxyaniline (62 mg, 0.5 mmol) and 2-(4-

hydroxyphenyl)ethanamine (96 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The 

product 119k was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 

150:1 to 40:1). Isolated yield: 77 mg, 51%. Data for 119k: 1H NMR (400 MHz, CDCl3) δ 

7.09–7.05 (m, 2H), 6.81–6.77 (m, 2H), 5.90 (s, 2H), 3.81 (s, 6H), 3.77 (s, 3H), 3.33 (t, J 

= 7.1 Hz, 2H), 2.86 (t, J = 7.1 Hz, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 154.4, 

153.9, 144.1, 130.7, 130.5, 129.8, 115.5, 91.1, 61.1, 55.9, 46.2, 34.4 ppm; GC-MS for 

C17H21NO4, m/z = 303 (M+); HRMS (IT-TOF/ESI) Calcd for C17H21NO4 ([M+H]+): 

304.1543, Found: 304.1507. 
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Table 2.3.3, compound 119l. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 3,4,5-trimethoxyaniline (62 mg, 0.5 mmol) and 2-

aminoindan (93 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119l was 

isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 40:1). 

Isolated yield: 88 mg, 74%. Data for 119l: 1H NMR (400 MHz, CDCl3) δ 7.29–7.17 (m, 

4H), 6.86–6.80 (m, 2H), 6.67–6.62 (m, 2H), 4.33 (tt, J = 6.8, 4.4 Hz,1H), 3.79 (s, 3H), 

3.37 (dd, J = 16.0, 6.8 Hz, 2H), 2.90 (dd, J = 16.0, 4.4 Hz, 2H) ppm; 13C{1H} NMR (100 

MHz, CDCl3) δ 152.2, 141.4, 141.4, 126.5, 124.9, 114.9, 114.9, 55.7, 54.9, 40.1 ppm; 

GC-MS for C16H17NO, m/z = 239 (M+); HRMS (IT-TOF/ESI) Calcd for C16H17NO 

([M+H]+): 240.1383, Found: 240.1377. 

 

119 m

H
N

O

 

Table 2.3.3, compound 119m. A chlorobenzene (2.0 mL) solution of complex 112 (7 

mg, 0.75 mol %), 116 (8 mg, 10 mol %), aniline (47 mg, 0.5 mmol) and 4-

methoxybenzylamine (96 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 

119m was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 

to 40:1). Isolated yield: 76 mg, 71%. Data for 119m: 1H NMR (400 MHz, CDCl3) δ 7.29 

(dd, J = 8.6 Hz, 2H), 7.22–7.16 (m, 2H), 6.88 (dd, J = 8.6 Hz, 2H), 6.77–6.72 (m, 1H), 
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6.70–6.65 (m, 2H), 4.26 (s, 2H), 3.80 (s, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 

158.9, 129.2, 129.0, 128.9, 118.0, 118.0, 114.0, 113.3, 55.3, 48.1 ppm; GC-MS for 

C14H15NO, m/z = 213 (M+). 1H and 13C NMR spectral data were in good agreement with 

the literature values.106,107 

 

119 n

H
NO
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Table 2.3.3, compound 119n. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 3,4-dihydro-2H-1,5-benzodioxepin-7-amine (83 mg, 

0.5 mmol) and 3,4,5-trimethoxybenzylamine (138 mg, 0.7 mmol) was stirred at 140 °C 

for 20 h. The product 119n was isolated by a column chromatography on silica gel (n-

hexane/EtOAc = 150:1 to 40:1). Isolated yield: 129 mg, 75%. Data for 119n: 1H NMR 

(400 MHz, CDCl3) δ 6.84 (d, J = 8.6 Hz, 1H), 6.59 (s, 2H), 6.38–6.34 (m, 1H), 6.31–6.26 

(m, 1H), 4.19 (s, 2H), 4.15 (t, J = 5.4 Hz, 2H), 4.09 (t, J = 5.5 Hz, 2H), 3.84 (s, 6H), 3.83 

(s, 3H), 2.14 (quintet, J = 5.5 Hz, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 153.3, 

152.1, 143.9, 143.6, 137.0, 134.4, 122.2, 108.7, 106.5, 104.5, 70.9, 70.8, 60.8, 56.1, 49.8, 

32.4 ppm; GC-MS for C19H23NO5, m/z = 345 (M+); Anal. Calcd for C19H23NO5: C, 

66.07; H, 6.71. Found: C, 66.57; H, 6.73.  
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Table 2.3.3, compound 119o. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-methoxyaniline (62 mg, 0.5 mmol) and 3,5-

dimethoxybenzylamine (117 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 

119o was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 

40:1). Isolated yield: 115 mg, 84%. Data for 119o δ 1H NMR (400 MHz, CDCl3) 6.82–

6.77 (m, 2H), 6.64–6.59 (m, 2H), 6.57 (d, J = 2.3 Hz, 2H), 6.40 (t, J = 2.3 Hz, 1H), 4.23 

(s, 2H), 3.79 (s, 6H), 3.76 (s, 3H), ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 160.9, 

152.0, 142.3, 142.2, 114.7, 114.0, 105.2, 98.9, 55.6, 55.2, 49.2 ppm; GC-MS for 

C16H19NO3, m/z = 273 (M+). 1H and 13C NMR spectral data were in good agreement with 

the literature values.108 
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Table 2.3.3, compound 119p. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-chloroaniline (62 mg, 0.5 mmol) and 3,5-

dimethoxybenzylamine (117 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 

119p was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 150:1 to 
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40:1). Isolated yield: 66 mg, 48%. Data for 119p: 1H NMR (400 MHz, CDCl3) δ 7.13–

7.08 (m, 2H), 6.58–6.53 (m, 2H), 6.52–6.49 (m, 2H), 6.38 (t, J = 2.2 Hz, 1H), 4.24 (s, 

2H), 3.78 (s, 6H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 161.1, 146.3, 141.3, 129.0, 

122.3, 114.1, 105.2, 99.1, 55.3, 48.6 ppm; GC-MS for C15H16ClNO2, m/z = 277 (M+). 

HRMS (IT-TOF/ESI) Calcd for C15H16ClNO2 ([M+H]+): 278.0942, Found: 278.0928. 

11q

H
N

O

O

F3C

 

Table 2.3.3, compound 119q. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 4-trifluoromethylaniline (81 mg, 0.5 mmol) and 3,5-

dimethoxybenzylamine (117 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 

119q was isolated by a column chromatography on silica gel (n-hexane/ethyl acetate = 

150:1 to 40:1). Isolated yield: 58 mg, 37%. Data for 119q: 1H NMR (400 MHz, CDCl3) δ 

7.39 (d, J = 8.6 Hz, 2H), 6.63 (d, J = 8.6 Hz, 2H), 6.51 (d, J = 6.5 Hz, 2H) 6.39 (t, J = 2.3 

Hz, 1H), 4.55 (br s, 1H), 4.30 (s, 2H), 3.78 (s, 6H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 161.1, 150.3, 140.9, 126.6 (q, JCF = 3.8 Hz), 124.9 (q, JCF = 270.6 Hz), 119.2 

(q, JCF = 32.6 Hz), 112.1 105.2, 99.1, 55.3, 48.0 ppm; GC-MS for C16H16F3NO2, m/z = 

311 (M+); HRMS (IT-TOF/ESI) Calcd for C16H16F3NO2 ([M+H]+): 312.1206, Found: 

312.1207. 
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Table 2.3.3, compound 119r. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 3-Amino-9-ethylcarbazole (105 mg, 0.5 mmol) and 

1-hexamine (71 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119r was 

isolated by a column chromatography on silica gel (n-hexane/ethyl acetate = 150:1 to 

40:1). Isolated yield: 103 mg, 70%. Data for 119r: 1H NMR (400 MHz, CDCl3) δ 8.09–

8.04 (m, 1H), 7.48–7.42 (m, 1H), 7.40–7.34 (m, 2H), 7.26 (d, J = 7.3 Hz, 1H), 7.19 (dd, J 

= 7.3, 1.2 Hz, 1H), 6.91 (dd, J = 8.6, 2.3 Hz, 1H), 4.32 (q, J = 7.2 Hz, 2H), 3.40 (br s, 

1H), 3.25 (t, J = 7.2 Hz, 2H), 1.72 (quintet, J = 7.4 Hz, 2H), 1.55–1.45  (m, 2H), 1.42 (t, 

J = 7.2 Hz, 3H), 1.41–1.33 (m, 4H), 1.12–0.92 (m, 3H) ppm; 13C{1H} NMR (100 MHz, 

CDCl3) δ 141.9, 140.2, 133.9, 125.2, 123.6, 122.6, 120.3, 117.8, 114.6, 109.0, 108.3, 

103.3, 45.7, 37.4, 31.7, 29.7, 27.0, 22.6, 14.0, 13.8 ppm; GC-MS for C20H26N2, m/z = 

294 (M+); HRMS (IT-TOF/ESI) Calcd for C20H26N2 ([M+H]+): 295.2169, Found: 

295.2167. 
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Table 2.3.3, compound 119t. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), (±)-aminoglutethimide (116 mg, 0.5 mmol) and 

3,4,5-trimethoxybenzylamine (138 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The 

product 119t was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 

100:1 to 5:1). Isolated yield: 82 mg, 40%. Data for 119t: 1H NMR (400 MHz, CDCl3) δ 

7.98 (br s, 1H), 7.07 (d, J = 8.7 Hz, 2H), 6.64 (d, J = 8.7 Hz, 2H), 6.59 (s, 2H), 4.24 (s, 

2H), 3.83 (s, 9H), 2.62–2.52 (m, 1H), 2.44 (dd, J = 13.2, 4.9 Hz, 1H), 2.31 (ddd, J = 14.2, 

4.8, 2.7 Hz, 1H), 2.16 (dd, J = 13.8, 4.8 Hz, 1H), 1.99 (sextet, J = 7.4 Hz, 1H), 1.87 

(sextet, J = 7.4 Hz, 1H), 0.85 (t, J = 7.4 Hz, 3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) 

δ 175.5, 172.5, 153.4, 147.0, 137.1, 134.5, 127.1, 113.4, 113.4, 104.4, 60.8, 56.1, 50.2, 

48.9, 32.9, 29.3, 26.9, 9.0 ppm; GC-MS for C23H28N2O5, m/z = 412 (M+);  
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Table 2.3.3, compound 119u. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), glutamine (73 mg, 0.5 mmol) and 3-phenyl-1-

propanamine (95 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119u was 

isolated by a column chromatography on silica gel (n-hexane/EtOAc = 50:1 to 1:1). 

Isolated yield: 92 mg, 75%. Data for 119u 1H NMR (400 MHz, CDCl3) δ 7.30–7.23 (m, 

2H), 7.22–7.12 (m, 3H),  6.73 (br s, 1H), 4.08 (dd, J = 9.0, 4.8 Hz, 1H), 3.28 (dd, J = 8.9, 

4.8 Hz, 1H), 2.63 (t, J = 7.5 Hz, 2H), 2.50–2.37 (m, 1H), 2.37–2.19 (m, 2H), 2.16–2.05 

(m, 1H), 1.84 (quintet, J = 7.4 Hz, 2H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 179.5, 

172.1, 141.4, 128.4, 128.3, 126.0, 57.1, 39.3, 33.2, 30.8, 29.4, 25.7 ppm; GC-MS for 

C14H18N2O2, m/z = 246 (M+); HRMS (IT-TOF/ESI) Calcd for C14H18N2O2 ([M+H]+): 

247.1441, Found: 247.1408. 
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Table 2.3.3, compound 119v. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), glutamine (73 mg, 0.5 mmol) and (96 mg, 0.7 mmol) 

was stirred at 140 °C for 20 h. The product 119v was isolated by a column 

chromatography on silica gel (n-hexane/EtOAc = 50:1 to 1:1). Isolated yield: 87 mg, 

70%. Data for 119v: 1H NMR (400 MHz, CDCl3) δ 7.18 (d, J = 8.5 Hz, 2H), 6.92 (br s, 

1H), 6.83 (d, J = 8.5 Hz, 2H), 4.40–4.29 (m, 2H), 4.13 (dd, J = 9.0, 4.7 Hz, 1H), 3.77 (s, 

3H), 2.53–2.41 (m, 1H), 2.34–2.20 (m, 2H), 2.20–2.09 (m, 1H), 1.87 (br s, 1H) ppm; 
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13C{1H} NMR (100 MHz, CDCl3) δ 179.5, 172.2, 158.8, 130.1, 128.9, 113.8, 57.0, 55.1, 

42.7, 29.2, 25.5 ppm; GC-MS for C13H16N2O3, m/z = 248 (M+); HRMS (IT-TOF/ESI) 

Calcd for C13H16N2O3 ([M+H]+): 249.1234, Found: 249.1202. 

 

119 x

N

O
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Table 2.3.3, compound 119x. A chlorobenzene (2.0 mL) solution of complex 112 (7 mg, 

0.75 mol %), 116 (8 mg, 10 mol %), 1-(2-aminophenyl)ethanone (68 mg, 0.5 mmol) and 

(±)-phenylalanine (116 mg, 0.7 mmol) was stirred at 140 °C for 20 h. The product 119x 

was isolated by a column chromatography on silica gel (n-hexane/EtOAc = 50:1 to 1:1). 

Isolated yield: 42 mg, 35%. Data for 119x: 1H NMR (400 MHz, CDCl3) δ 9.36 (br d, J = 

5.1 Hz, 1H), 7.78–7.73 (m, 1H), 7.37–7.28 (m, 4H), 7.27–7.16 (m, 2H), 6.59–6.52 (m, 

1H), 6.47 (d, J = 8.6 Hz, 1H), 4.60 (quintet, J = 6.6 Hz, 1H), 2.63 (s, 3H), (d, J = 6.8 Hz, 

3H) ppm; 13C{1H} NMR (100 MHz, CDCl3) δ 201.1, 150.0, 144.8, 134.8, 132.6, 128.7, 

126.9, 125.7, 117.6, 114.2, 113.1, 52.6, 28.0, 25.0 ppm; GC-MS for C16H17NO, m/z = 

239 (M+); HRMS (IT-TOF/ESI) Calcd for C16H17NO ([M+H]+): 240.1383, Found: 

240.1373. 
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3.11 X-Ray Crystallographic data for 119f 
 
Table 3.11.1: Crystal data and structure refinement for 119f. 

Empirical formula  C17H21NO4  
Formula weight  303.35  
Temperature/K  100.0(3)  
Crystal system  monoclinic  
Space group  P21  
a/Å  8.5915(2)  
b/Å  7.48777(15)  
c/Å  12.7605(4)  
α/°  90.00  
β/°  108.580(3)  
γ/°  90.00  
Volume/Å3  778.12(3)  
Z  2  
ρcalcg/cm3  1.295  
μ/mm-1  0.753  
F(000)  324.0  
Crystal size/mm3  0.4341 × 0.0928 × 0.0487  
Radiation  CuKα (λ = 1.54184)  
2Θ range for data collection/° 7.3 to 148.3  
Index ranges  -10 ≤ h ≤ 10, -9 ≤ k ≤ 9, -15 ≤ l ≤ 15 
Reflections collected  8045  
Independent reflections  2988 [Rint = 0.0272, Rsigma = 0.0294] 
Data/restraints/parameters  2988/1/208  
Goodness-of-fit on F2  1.064  
Final R indexes [I>=2σ (I)]  R1 = 0.0294, wR2 = 0.0711  
Final R indexes [all data]  R1 = 0.0321, wR2 = 0.0732  
Largest diff. peak/hole / e Å-3 0.15/-0.15  
Flack parameter -0.13(14) 
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Table 3.11.2: Bond lengths for 119f. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C3 1.373(16) C1 C7 1.523(2)
O1 C14 1.432(18) C2 C3 1.392(2)
O2 C4 1.380(17) C3 C4 1.399(2)
O2 C15 1.430(2) C4 C5 1.395(19)
O3 C5 1.375(17) C5 C6 1.401(2)
O3 C16 1.434(17) C8 C9 1.397(2)
O4 C11 1.377(17) C8 C13 1.403(2)
O4 C17 1.420(2) C9 C10 1.398(2)
N1 C7 1.447(2) C10 C11 1.389(2)
N1 C8 1.393(19) C11 C12 1.393(2)
C1 C2 1.391(2) C12 C13 1.382(2)
C1 C6 1.389(2)

  

Table 3.11.3: Bond angles for 119f. 

Atom Atom Atom Angle/˚ Atom Atom Atom Angle/˚ 
C3 O1 C14 115.69(11) O3 C5 C4 115.30(12)
C4 O2 C15 112.35(12) O3 C5 C6 124.12(12)
C5 O3 C16 116.68(11) C4 C5 C6 120.58(13)
C11 O4 C17 116.63(12) C1 C6 C5 119.42(13)
C8 N1 C7 122.91(13) N1 C7 C1 115.01(13)
C2 C1 C7 117.15(13) N1 C8 C9 123.22(13)
C6 C1 C2 120.45(14) N1 C8 C13 118.92(14)
C6 C1 C7 122.33(13) C9 C8 C13 117.85(13)
C1 C2 C3 119.98(13) C8 C9 C10 120.92(13)
O1 C3 C2 124.13(13) C11 C10 C9 120.27(14)
O1 C3 C4 115.61(12) O4 C11 C10 125.51(14)
C2 C3 C4 120.25(13) O4 C11 C12 115.22(13)
O2 C4 C3 120.65(12) C10 C11 C12 119.27(13)
O2 C4 C5 120.05(13) C13 C12 C11 120.38(13)
C5 C4 C3 119.27(12) C12 C13 C8 121.30(14)
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Table 3.11.4: Fractional Atomic Coordinates (×104) and Equivalent Isotropic 
Displacement Parameters (Å2×103) for 119f. Ueq is defined as 1/3 of of the trace of the 
orthogonalised UIJ tensor. 

Atom x y z U(eq) 
O1 -1255.5(12) 2572.4(13) 2839.7(9) 21.2(2)
O2 1353.7(13) 546.1(13) 3928.8(9) 21.9(2)
O3 4424.8(12) 1631.3(14) 4209.7(9) 22.4(2)
O4 8250.9(13) 7758.2(15) 145.7(10) 29.0(3)
N1 3989.6(16) 8065.1(16) 2650.9(11) 23.7(3)
C1 2123.4(18) 5522.2(19) 2706.7(12) 19.9(3)
C2 530.4(18) 4918(2) 2535.9(13) 20.0(3)
C3 268.3(17) 3263.4(18) 2948.3(12) 18.7(3)
C4 1602.0(18) 2197.1(18) 3527.9(12) 18.0(3)
C5 3192.9(17) 2794.3(19) 3667.8(12) 19.3(3)
C6 3460.2(18) 4461.2(19) 3257.3(13) 19.8(3)
C7 2320.5(18) 7405(2) 2316.5(14) 23.5(3)
C8 4991.9(17) 7933.1(18) 1984.9(13) 20.1(3)
C9 4608.8(18) 6869.7(19) 1036.7(13) 21.6(3)
C10 5661.1(18) 6780.9(19) 398.6(13) 21.5(3)
C11 7115.8(17) 7749(2) 702.4(13) 21.1(3)
C12 7518.4(18) 8798.2(19) 1653.1(13) 22.2(3)
C13 6477.7(18) 8882.0(19) 2284.3(13) 21.5(3)
C14 -2616.4(18) 3507(2) 2094.9(13) 23.6(3)
C15 1002(2) 673(2) 4948.7(15) 33.0(4)
C16 6069.0(17) 2316(2) 4536.5(13) 22.8(3)
C17 7981(2) 6536(2) -745.8(15) 34.6(4)

 

 

Table 3.11.5: Anisotropic Displacement Parameters (Å2×103) for 119f. The Anisotropic 
displacement factor exponent takes the form: -2π2[h2a*2U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 
O1 19.0(5) 17.7(5) 25.1(6) 2.7(4) 4.5(4) 0.0(4)
O2 25.1(5) 14.2(5) 27.0(6) 2.8(4) 9.3(4) -0.6(4)
O3 19.0(5) 17.3(5) 28.4(6) 3.3(4) 4.1(4) -0.3(4)
O4 32.4(6) 26.9(6) 32.2(6) -4.7(5) 16.6(5) -2.7(5)
N1 28.9(7) 16.9(6) 27.9(7) -1.9(5) 12.9(6) -5.5(5)
C1 25.9(7) 16.0(7) 19.1(8) -0.3(5) 9.2(6) -1.2(6)
C2 23.1(7) 16.9(7) 19.6(8) 1.2(6) 6.3(6) 2.4(5)
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C3 21.9(7) 16.3(7) 18.8(7) -1.9(5) 7.8(6) -1.1(5)
C4 24.7(7) 12.2(6) 17.7(7) -0.6(5) 7.5(6) -1.3(5)
C5 21.4(7) 16.5(6) 19.5(7) -0.5(6) 6.0(5) 2.5(6)
C6 21.0(7) 18.0(7) 21.1(8) -2.0(6) 7.5(6) -1.5(6)
C7 26.3(7) 17.5(7) 28.4(8) 3.8(6) 11.1(6) 0.3(6)
C8 23.4(7) 13.2(6) 23.3(8) 4.1(6) 6.8(6) 3.1(5)
C9 22.9(7) 17.2(7) 22.3(8) 1.2(6) 3.7(6) -1.7(6)
C10 26.8(7) 16.9(7) 17.9(7) 0.1(6) 2.8(6) 2.2(6)
C11 24.5(7) 16.5(6) 22.6(8) 3.9(6) 7.8(6) 4.9(6)
C12 21.2(7) 16.7(7) 26.4(8) 0.2(6) 4.1(6) -1.0(6)
C13 26.4(7) 14.3(6) 22.2(8) -2.2(6) 5.6(6) -0.7(6)
C14 21.2(7) 24.2(8) 23.0(8) 2.9(6) 3.6(6) 0.1(6)
C15 44.0(9) 26.4(8) 35.1(10) 10.5(7) 21.6(8) 7.7(7)
C16 20.2(7) 23.6(7) 24.0(8) 0.2(6) 6.3(6) -2.5(6)
C17 47.4(10) 32.5(9) 30.4(10) -5.4(7) 21.7(8) -4.1(8)

 

 

 

 

Table 3.11.6: Hydrogen Bonds for 119f. 

 
D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 
N1 H1 O31 0.93(2) 2.35(2) 3.2792(17) 173.7(16)

 
1+X,1+Y,+Z 
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Table 3.11.7: Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement 
Parameters (Å2×103) for 119f. 

Atom x y z U(eq) 
H1 4200(20) 9050(30) 3125(16) 26(5) 
H2 -378 5634 2138 24 
H6 4546 4863 3355 24 
H7A 1875 7432 1499 28 
H7B 1649 8229 2603 28 
H9 3619 6198 823 26 
H10 5380 6056 -246 26 
H12 8514 9460 1869 27 
H13 6774 9596 2933 26 
H14A -2695 4701 2388 35 
H14B -3632 2845 2016 35 
H14C -2454 3612 1371 35 
H15A 1909 1282 5500 49 
H15B 869 -529 5213 49 
H15C -14 1353 4833 49 
H16A 6828 1410 4969 34 
H16B 6137 3391 4987 34 
H16C 6366 2614 3877 34 
H17A 7911 5321 -480 52 
H17B 8894 6609 -1049 52 
H17C 6952 6836 -1324 52 
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