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Photochemical cleavage reactions have found a widespread used in biological 
applications that require the photorelease of biologically active molecules such as 
proteins, peptides, neurotransmitters, and nucleotide phosphates.  This research focuses 
on the design of photoremovable protecting groups which can be utilized to release these 
biomolecules by photolysis.  These biomolecules are attached to the photoremovable 
protecting group at the sites of functional groups that are present within these substrates.  
Such functional groups are carboxylates, phosphates, thiolates, or phenolates, which upon 
exposure to light, are released as anions of varying basicities.  The photochemical 
reaction involved is an electrocyclic ring closure between aromatic groups that are 
bridged by a carboxamide linkage. The key intermediate produced by electrocyclization 
is thought to have zwitterionic character.  This zwitterionic intermediate is believed to 
expel the leaving group as the anion. 

One of the aromatic groups attached to the amide carbonyl carbon has been a 
benzothiophene ring system with leaving groups such as LG- = Cl-, PhS-, HS-, PhCH2S- 
that are present at the C-3 position.  The photochemical expulsion of these LG-s is 
experimentally known to occur in triplet excited state.  Furthermore, the initial step in the 
mechanism has been shown to involve the transfer of triplet excitation energy from the 
chromophore to the benzothiophene ring.  When this energy transfer is unfavorable, 
energetically, the quantum yield is expected to be low.  This is the case when 
thioxanthone is the chromophore and benzothiophene is the energy acceptor. 

The projects described herein involve efforts to lower the triplet excited state 
energy of the energy acceptor to make the triplet excitation energy transfer step more 
efficient.   With benzothiophene as energy acceptor this step is endothermic.  This project 
replaces the benzothiophene ring system with a naphtho[1, 2-b]thiophene  so that energy 
transfer will be somewhat exothermic.  An additional replacement attempted to use 
phenyl-2-thienyl ketone as energy acceptor. 

With the naphtho[1,2-b]thiophene energy acceptor the expulsion of the C-3 LG- = 
Cl- is more efficient (Φ = 0.084) than with the benzothiophene ring system under 
comparable aqueous buffered conditions using 385 nm light to generate the initial triplet 



 

 

excited state of thioxanthone chromophore.  With benzothiophene as energy acceptor Φ = 
0.035.  Quenching experiments show that the photocyclization occurs via a short-lived 
triplet excited state localized primarily on the naphthothiophene ring.  The initial 
cyclization must therefore be a very fast reaction.  The limiting step likely is the triplet 
energy transfer step, which is only 46% efficient.  Another source of inefficiency is the 
intersystem crossing step of the thioxanthone, which is 67% efficient.  Subsequent to 
energy transfer, the remaining reaction steps are 27% efficient.  These efficiencies are 
obtainable through a series of sensitized photolyses using xanthone and thioxanthone and 
the anilide obtained by replacing the thioxanthone chromophoric group and are thought to 
be representative of those for the actual thioxanthone linked by carboxamide to 
naphthothiophene. 
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CHAPTER 1 

INTRODUCTION 

1.1.  General Introduction 

    Our research program mainly focuses on development of photoremovable 

protecting groups (PPGs) which can be utilized for biological studies.  The study of PPGs 

has received a fair share of attention since their first discussion by Kaplan1 and Engles2 in 

the late 1970s.  They can release biomolecules by irradiation, which allows spatial and 

temporal control of the release.3, 4  This ability allows them to be used widely in 

synthesis, physiology, molecular biology and medicine.  Their applicability has led to 

considerable interest in designing new types of PPGs.  A number of reviews and books 

on PPGs in synthesis1-5, and mechanistic studies1,6,7 have appeared in recent years.  

 Several different names can be found in the literature for PPGs.  Most widely 

used names are "phototriggers", "caged compounds", and "photo-labile protecting 

groups".  The cage compound is used to describe a biological molecule where activity or 

function is masked by chemical modification with a PPG.  The time period for the release 

of the bioeffectors upon photolysis will need to be fast enough to allow a study of 

interest.  As examples in the case of caged protein kinase A8a, the bioeffectors can be 

released over minutes8a, or seconds in the case of cage tyrosine Ca/calmodulin inhibitor8b, 

or milliseconds as with cage ATP8c, or microseconds as with caged neurotransmitters.7,8d   

 This chapter states the goal of the current project, provides some background 

information, summarizes mechanistic studies, and gives some advantages and 

disadvantages of currently available PPGs and applications.  Our group focuses on the 
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caged compounds that expel leaving groups via zwitterionic intermediates produced 

through electrocyclic ring closure reactions of benzothiophene carboxamides derivatives. 

Some background information on the photorelease of leaving groups via zwiterionic 

intermediate also will be discussed.  For most PPGs, the direct release of leaving groups 

from the protecting groups, or indirect release of leaving groups from sensitized 

photolysis has been reported.  Finally, some background information about sensitized 

photolysis will be discussed. 

1.2.  The Goal of the Project and Problem Statement 

 Although a plethora of PPGs is currently available to release biologically 

important molecules (LG-) (Figure 1.1), no universal PPG exists.  The photolysis 

wavelength is the most addressable problem.  The majority of cage compound use UV 

radiation for releasing biomolecules.  The use of UV light can cause cell damage and 

mortality due to unintended side reactions of biomolecules8b.  Many biological systems 

involve enzymes in an aqueous medium at high ionic strength.  Under such physiological 

conditions the premature release of the bioeffectors can occur in the dark.8  Another 

problem is the limited basicity of the releasable biological anion with most reported 

caged compounds.  Almost all biological systems consist of biomolecules like proteins 

and peptides.  The building blocks of those molecules are amino acids.  These amino 

acids contain side chain functionality like phenolates and thiolates, which are basic and 

difficult to mask by the majority of PPGs.  Few satisfactory compounds are currently 

available for thiols including the sulfhydryl group of cystein.9  Those that have been 

reported have serious drawbacks, which will be discussed in a future section. Our 
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research focuses on developing new caged compounds that overcome the above 

mentioned problems.  

 

 

Figure 1.1.  Common photoremovable protecting groups and biologically important 
leaving groups 

 

Our group focuses on the caged compounds that expel leaving groups via 

zwitterionic intermediates produced through electrocyclic ring closure reactions of 

benzothiophene carboxamides10 (Scheme 1.1).  The above PPG allows the photolysis 

wavelength to be varied by attaching different chromophoric A structures to the nitrogen 

of the amide linker.  

A problem found with this approach is that the attachment of chromophores 

absorbing light at longer wavelengths causes a decrease in the quantum yields for the 
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photochemical reaction.  For example, with the N-phenyl group as A in compound 1, Φ = 

0.23 and the compound photolysis at 310 nm.11  With the benzophenone moiety as A in 

compound 2, Φ = 0.15 and the compound photolysis at 365 nm.11  With the thioxanthone 

moiety as A  in compound 3a, photolysis occurs at 386 nm and Φ = 0.069.10  

Scheme 1.1.  Expulsion of Leaving Groups via Zwitterionic Intermediate Produced 
Through Electrocyclic Ring Closure Reaction of Benzothiophene Carboxamide10 

 

 
 

Furthermore, quenching studies of the above compounds with 1,3-pentadiene 

indicate that these PPGs undergo photochemical electrocyclic ring closure reaction via 

the triplet excited state.  Comparison of the triplet excited state energies of the 

chromophores to that of the benzothiophene ring suggests a solution to the above 

problem.  

For N-phenyl compound 1, the benzothiophene moiety absorbs the light.  The 

initial singlet excited state intersystem crosses to generate the triplet benzothiophene, 

which releases the leaving group.  The triplet benzothiophene has an energy ET = ca. 69 
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kcal mol-1.12   With the para-benzoyl substituent attached to the N-phenyl group, the 

resulting benzophenone moiety absorbs the light at 365 nm.  The benzothiophene absorbs 

at the shorter wavelength of 310 nm.  So for compound 2 the lowest singlet excited state 

is localized on the benzophenone moiety.  Intersystem crossing of this singlet excited 

state should be rapid and generates the triplet excited state, which has an energy ET = ca. 

69 kcal mol-1.  This energy is equal to the triplet energy of the benzothiophene (ET = ca. 

69 kcal mol-1).  However, when the benzophenone moiety is replaced by the thioxanthone 

group, which absorbs light at 386 nm, intersystem crossing produces a triplet excited 

state of ET = ca. 64 kcal mol-1.13  This triplet excited state is expected to lie below that of 

the benzothiophene triplet excited state.  Triplet energy transfer to the benzothiophene 

moiety would then be endothermic. 

N

Me

O

S
Cl

ET > 80 kcal mol-1

ET = ca. 69 kcal mol-1

N

Me

O

S
Cl

S

ET = ca. 64 kcal mol-1

N

Me

O

S
Cl

O

ET = ca. 69 kcal mol-1

1 2 3a

= 0.23
h 310 nm

= 0.15
h 365 nm

= 0.069
h 386 nm

ET = ca. 69 kcal mol-1 ET = ca. 69 kcal mol-1

O

 
To summerize the above, the quantum yields decrease in the order 0.23, 0.15 and 

0.069, when changing A from N-phenyl to benzophenone moiety to thioxanthone group.  

It could be postulated that the triplet excited state energy of the chromophore must be 

transferred to generate the triplet excited state of the benzothiophene group.  For 
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example, in case of thioxanthone compound whose quantum efficiency is the lowest, 

energy transfer is estimated to be endothermic by ca. 5 kcal mol-1.  

The goal of the current research is to facilitate the above triplet energy transfer 

from the chromophore to the thiophene ring system.  In order to accomplish this; the 

triplet energy of the thiophene ring system should be lower.  Some modifications will 

need to be done on the benzothiophene ring.  For example, the benzothiophene ring in 

compound 3 could be replaced by the naphtho[1,2-b]thiophene 4 or phenyl-2-thienyl 

ketone 5 with ET = 62 kcal mol-1.14,15 

 
 

The proposed compounds that need to be synthesized are compound 6, and 

compound 7, which bears a leaving group LG- (Br- and Cl- respectively) at C-3 position 

and contains a carboxylic acid group at C-2 position to couple with the amine of the 

chromophore.  The synthesis and photochemical studies will be discussed in Chapter 

2,and 3. 
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The rationale for proposing the above compounds, naphtho[1,2-b]thiophene 4 and  

phenyl-2-thienyl ketone 5 for studies are facile.  First, as mentioned above, the quenching 

studies10,11 using 1,3-pentadiene suggests that the photochemical reaction involves triplet 

excited states.  DFT calculations10 on N-(9-oxothioxanthenyl) benzothiophene compound 

3 provides more information about the triplet excited state potential surfaces involved in 

the photoreaction of the PPG 3 with LG- = Cl- (Scheme 1.2).  

Scheme 1.2.  Photoreaction of N-(9-oxothioxanthenyl)benzothiophene Compounds 

 

According to Figure 1.2, the initial lowest excited state, 3Thiox, is located 59 kcal 

mol-1 in energy above the S0 state.  Experimentally, the energy may be 64 kcal mol-1.13.  

The 3Thiox is not of much geometric difference from the S0 state.  Another minimum 

with the triplet excitation localized mostly on the benzothiophene (3Bzt), is located about 

4 kcal mol-1 below the 3Thiox.  This latter energy may be as high as 69 kcal mol-1 for 

benzothiophenes, according to the literature12.  Geometrically, 3Bzt is different from 

3Thiox in that 3Bzt C-3' carbon bearing the leaving group is pyramidal.  The 

pyramidalized carbon attacks the C-1 carbon or the C-3 carbon to cyclize to form two 

isomers. These DFT calculations suggest that it may be reasonable to increase the 

quantum yields for reaction with benzothiophene replacements with other thiophene 
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groups that have lower triplet excited state energies than the thioxanthone triplet excited 

states.  

 

 
Figure 1.2.  Relative enthalpies of the stationary points on the ground-state S0 and the 
lowest triplet T1 surfaces relevant for formation of the ring closure product from 3. 
Unpaired spin density isosurfaces are shown for open-shell species.10 

 

1.3.  Background of PPGs 

1.3.1.  Criteria for the Successful PPG 

 The definition of the good PPG depends on the application.  Criteria for the 

successful PPG for the release of common biological molecules have been proposed.3,5 

The desired properties in a PPG are: 

 1. The protected molecule should be stable in the absence of light. 

 2. The photoprotected substance must be soluble in aqueous buffered media. 

 3. The photoprotected substance must be stable to hydrolysis, especially  

      at higher ionic strength. 

 4. The irradiation wavelength should be over 300 nm to avoid photolyzing.  
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     biological media and should not be absorbed by the photoproduct, nor the 

     biological media. 

     5. The photochemical reaction should be fast and have high quantum efficiency. 

 6. The cage compounds and the photoproduct must be biologically harmless. 

Even though no PPG meets all the criteria, they can be considered to be excellent 

guidelines for designing and developing caged compounds.  There are several PPGs 

reported which satisfy the criteria to different extent. 

1.3.2.  Introduction to Some PPGs, Mechanism of Photorelease, Advantages and 

 Disadvantages 

 

 The four most widely used PPGs to date are based on o-nitrobenzyl derivatives, 

benzoin derivatives, phenacyl derivatives and coumarin derivatives.  More details about 

each of these will be discussed in following sections.  

1.3.2.1.  The o-Nitrobenzyl Group 

  

 o-Nitrobenzyl groups are the most widely used in biological applications up to 

now.  The use of o-nitrobenzyl group to release benzoic acid was first reported by 

Barltrop et al.16
   The uncaging of o-nitrobenzyl groups bearing  a leaving groups at the α-

position is thought to follow the following mechanism (Scheme 1.3).17   Once compound 

10 is irradiated by light the singlet aci-nitro intermediate 11 is formed by [1,5] hydrogen 

shift from o-methylene group.  This short lived species can be detected by laser-flash 

photolysis.  It isomerizes by hydrogen transfer to form another aci-nitro isomer 12, which 

facilitates cyclization to generate benzoxazole intermediate 13, which is a UV-silent.  Its 

presence is established by time-resolved IR.  The ring opening reaction takes place to 
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form hemiacetal 14.  Its presence is indicated by a new strong IR band for the nitroso 

group and the absence of a signal for a carbonyl group.  Finally formation of 

nitrosobenzaldehyde 15 is established by appearance of the IR band for the carbonyl 

group. 

Scheme 1.3.  Mechanism of Photorelease of o-nitrobenzyl Group 

 

 The o-Nitrobenzyl group has some good absorption and photochemical properties.  

Quantum yields for release of leaving groups are considerably high, and absorption 

extends past 300 nm.  However, it also has a number of drawbacks.  A nitrosoarene is the 

byproduct of the release of the leaving groups (LG-) from the o-nitrobenzyl protecting 

groups.  Nitrosoarenes are toxic to cells.  They also can oxidize newly released thiols or 

thiols already exists in living systems.18  The o-nitrobenzyl group had been thought to be 

suitable for caging cystein (Cys) residue.9  Unfortunately the nitrosoarene will undergo 

reduction in the ground state by released thiol which would be oxidized.18  Indeed, one of 

the function of the glutathione (GHS) with its cystein sulfhydryl group is to reduce the 

toxicity of foreign substances19 including nitrosocompounds by converting them to less 

toxic compounds like arylhydroxylamine , N-arylsulphenamides and anilines.18  o-
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Nitrobenzyl groups are therefore not suitable for caging biomolecule which contains 

sulfhydryl group like Cys and GHS. 

1.3.2.2.  The Benzoin group (Desyl, Bnz) 

 Benzoin compounds were first studied by Sheehan and Wilson 20 and were found 

to expel acetate groups. Several different mechanisms of release have been proposed.20,21  

It was shown that substitution on the benzene ring, solvent, and the nature of the leaving 

group strongly influence mechanism.  Wirz and Givens21 reported the more recent 

mechanism for the non-substituted benzoin group to release phosphate (R =H and LG- = 

OPO (OEt2) (Scheme 1.4).  The lowest excited triplet state 316 is the reactive excited 

state of 16.  It is formed within few picoseconds by excitation through intersystem 

crossing (ISC) of 116.  There are two solvent dependent competing pathways (a,b) to 

release LG- that originate from this triplet.  Path (a) dominates in most solvents except 

water and fluorinated alcohol to form benzofuran derivative 18 within 20 ns.  It is 

assumed that this remarkably fast transformation is cyclization to form biradical 17. In 

water and fluorinated alcohol, reaction path (b) dominates, and forms 20 as major 

product. 

 The photo reaction is relatively clean and uniform and leads to form a biologically 

inert byproduct.  The byproduct benzofuran is nonpolar and can be easily separated from 

other polar or acidic components.  The benzoin ester can be cleaved by relatively high 

absorption wavelength of 366 nm.  The benzoin group also processes  several drawbacks.  

The protection of chiral molecules with benzoin compounds can be problematic since the 

benzoin bears a chiral center too.  Thus, incorporation of the chiral leaving group will 
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result in the formation of diastereomers.  Another problem is the lower solubility of 

protected substrate and the main by-product in aqueous media. 

Scheme 1.4.  Mechanism of Photorelease of Benzoin Group 

 

1.3.2.3.  The p-Hydroxyphenacyl (pHP) Group 

p-Hydroxyphenacyl group has been reported in  synthetic organic chemistry 22, 

neurobiology3,7a,23 enzyme catalysis.7b,23b,24  This is an excellent alternative for o-
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nitrobenzyl and benzoin group due to its remarkable properties. The mechanism of the 

photolysis is understood as Scheme 1.5 based on time resolved transient absorption 

analysis.4,6,17a,25 

Scheme 1.5.  Mechanism of Photorelease of p-hydroxyphenacyl Group

 

 

The triplet molecule 21 rearranges to generate the triplet biradical 322 with a 

lifetime less than 1 ns by concerted expulsion of the leaving group and the phenolic 

proton.  The 322 undergoes intersystem crossing to give its ground state 122 which 

cyclizes to form cyclopropanone 23.  Hydrolysis of the propanone 23 intermediate 

generates the carboxylic acid 24 while decarbonylation gives the alcohol 26.  This 

mechanism also provide pathway for the minor photolysis product 27 by hydrolysis of 
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122.  This product is predominant for the ring-contraction photoreactions where ring 

strain discourages or prevent formation of the cyclopropanone intermediate 23.26  The 

photolysis reactions of p-Hydroxyphenacyl compounds often have high quantum yields 

and chemical yields.  Other important features are good aqueous solubility and stability, 

and the lack of quenching by O2 in aqueous media. But the disadvantage is that the 

photolysis wavelength lies deep in the UV, which limits their applications.  

1.3.2.4.  Coumarin-4-ylmethyl Groups (CM) 

The coumarin groups have been attractive to the researchers because they absorb 

at very long wavelengths, even longer than 400 nm.  Some also have the feature of being 

able to undergo two-photon excitation, so that photolysis can occur with near IR light of 

wavelengths 700-800 nm.  However, the coumarin groups rely on an SN1 reaction that 

occurs in the short lived singlet excited state.27  With the increasing basicity of leaving 

group anion, the excited state SN1 elimination of the leaving group slows, and the 

reaction becomes inefficient.28  So the coumarin is limited to weakly basic leaving groups 

such as carboxylates and phosphates.  The mechanism of photorelease of coumarin-caged 

esters is shown in Scheme 1.6.29  Photolysis initially produces the lowest 1( π, π *) 

excited singlet state 128.  Deactivation occurs by fluorescence and non-radiative 

processes, respectively, and competes with the heterolytic cleavage of C-LG bond to 

form a singlet ion pair 29.  The initially formed ion pair 29 is the key intermediate.  The 

coumarinylmethyl cation either reacts directly with nucleophiles or solvent to generate a 

new stable coumarylmethyl product 30 or recombines with LG- to regenerate reactant.  
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Scheme 1.6.  Mechanism of Photorelease of Coumarin-caged Compounds 

 

Poor leaving groups such as alcohols, phenols, and thiols are resistant to 

heterolysis.  Such groups can be released when caged through a carbonate linkage with 

the (6-bromo-7-hydroxyalkoxycoumarin-4-yl) methyl moiety 31 as given in Scheme 1.7.  

The initially formed carbonic or thiocarbonic acid 32 is unstable and undergoes 

decarboxylation to form alcohol or thiols 32. 
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Scheme 1.7.  Decarboxylative Photorelease of Alcohols, Thiols, and Amines17a  

 

1.4.  Applications 

 Photoremovable protecting groups have various uses in diverse field such as 

photolithograpy30, peptide synthesis31, medicine and drug discovery32, studying 

biological process6,32-35,20a etc..  The following section will briefly discuss some of the 

applications where PPGs are useful. 

1.4.1.  Studying Neurotransmitters 

 Investigation of the kinetics of neurotransmitter mediated reactions on cell 

surfaces is a well known example.6  This broad area of research has been covered in 

several reviews.32-35 Neurotransmitters are responsible for important physiological 

functions. Glutamate, γ-aminobutyric acid (GABA), glycine, aspartate and kainic acid are 

the well known examples for neurotransmitters and neurotransmitter inhibitors.  They 

bind to a receptor and cause the opening of ion channel resulting in a flow of current.  

Activation of synaptic transmission in the nervous system occurs on a sub-micron spatial 

scale and on a sub-millisecond time scale.  So experimental procedures for studying those 

processes requires similar precision.  Use of caged compounds to release 



17 

 

 

 

neurotransmitters is a useful strategy for that.  Numerous photoactivable derivatives of 

neurotransmitter and neurotransmitter antagonists are available.  When the 

neurotransmitters are released from their cages in a controlled manner, the resulting ion 

current can be monitored to provide information on the kinetics of the process.  Grewer 

and co-workers36 have reported the development of a  nitrobenzyl protected caged 

compound, α-carboxy-2-methylnitrobenzyl (αCNB) ester of glycine with higher quantum 

efficiency (Φ= 0.38) and thermal stability at physiological pH.  The decay of the aci-nitro 

intermediate occurs on the microsecond time scale.  So this is a useful tool for 

investigation of the process involved in the opening of the glycine receptor channels and 

the effect of mutations of the glycine receptor.  Kander, et al.37 have reported pHP 

glutamate for studying long term potentiation and long term depression.  They examined 

the role of postsynaptic cellular changes in CA1 hippocampal pyramidal cells which are 

thought to be involved in the mechanism of memory and learning.  

1.4.2.  Studying Photorelease of Protein and Peptides. 

  Proteins and peptides involve a wide range of biological activities and 

functions. Synthetic peptides can be used to selectively inhibit protein activity.  

Photoactivable peptides have the potential for such kinds of applications. Derivatizing an 

amino acid side chain in peptides can change their activity.  Warker, et al.8b have 

described derivatization of tyrosine side chain in RS-20 by nitrobenzyl group.  RS-20 is 

the target peptide for calmodulin, which binds to Ca2+ and is involved in a number of 

Ca2+ mediated reactions.  They reported that caged peptides inhibit this calmodulin-

dependent activity weakly, whereas uncaged version of same peptide inhibit nearly 2 

orders of magnitude more. 
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 The mechanism of protein folding is poorly understood and very difficult to 

study. Most of the methods applied, such as stopped-flow mixing or hydrogen-deuterium 

exchange, have time resolution of 0.1 ms.  Hansen and co-workers38 proposed a method 

to study these complex processes by using the benzoin group.  They studied the time 

dependent changes of α-helix formation using benzoin protected villin.  A small loop was 

formed by the N-terminus of the peptide with a cystein residue on the side chain of one 

internal amino acid using benzoin as the linker (Figure 1.3).  This cross link prohibited 

the folding. When irradiation with light, cleavage of that link takes place and the protein 

forms an α-helical structure.  These refolding processes were monitored by time-resolved 

photoacoustic calorimetry.  The great advantage here is that no denaturant is used and 

protein folding can be observed in the natural environment. 

 

Figure  1.3. Strategy for synthesis of caged villin and photolysis38 
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1.4.3.  Light-Directed Synthesis of High Density Arrays of Peptides and 

Oligoneucletides (Biochips))))    

    This is one of the most interesting applications of photoremovable protecting 

groups.  Application of this was first reported by Fodor and co-workers for combinatorial 

synthesis of peptides using 6-nitroveratryloxycarbonyl (NVOC) PPG.31  This is a 

combination three areas, solid phase synthesis, photoremovable protecting groups, and 

photolithography.  In this process a protected building block is attached to a solid 

support.  As show in Figure 1.4, a substrate S bears amino groups that are blocked by 

PPG X.  Irradiation of specific region with light through a mask M1 leads to deprotection 

of protecting groups X.  Amino groups in those areas of the substrate are now free to 

couple with building blocks protected with PPG X as A-X. Different mask M2 is use to 

active different region of substrate.  Then second building block B protected by X is 

added and attached to the newly exposed area.  Repetition of irradiation and coupling 

steps using mask with variable pattern and different building blocks leads to the synthesis 

of desired polypeptide biochip. 

 

Figure 1.4.  Light directed synthesis of high density array of peptide. 
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1.4.4.  Applications of Caged Ca2+ 

    Ionized calcium Ca2+ is the single most important information carrier in cells.  

Changes in Ca2+ concentration control a variety of cellular functions including muscle 

contraction, secretion of neurotransmitters, and enzymes, gene transcription, synaptic 

plasticity, movement of cells, and wound healing.  PPGs for Ca2+ allow the rapid 

concentration changes of Ca2+.  It cannot be caged by derivatization like other caged 

molecules.  Usually Ca2+ is caged by complexation of chelator molecule that can change 

the affinity of Ca2+ upon irradiation.  Some available Ca2+ chelators are given in Figure 

1.5.  Azid-1 is the novel caged calcium chelator developed by Adams et al39  

 

Figure 1.5.  Calcium chelators 

 

Scheme 1.8.  Photorelease of Ca2+ from Azid-1 

 



21 

 

 

 

 Azid-1 binds a calcium with a dissociation constant (Kd) of 230 nM which, 

changes to 120 µM by irradiation with UV light (330-380 nm).  The photolysis of Azid-1 

release Ca2+ with unit quantum yield (Scheme 1.8). The photolysis of azid-1 releases N2 

to form nitrinium ion, which reacts with water to form an amidoxime cation  The electron 

withdrawing ability of this cation reduces the chelator's Ca2+ affinity.  Long term changes 

in synaptic efficacy is thought to be the neuronal basis for learning and memory.  They 

studied long term depression in rat cerebellar slices by monitoring synaptic current of the 

Purkinje cell while simultaneously introducing Azid-1. 

1.5.  Background on Zwitterionic Intermediates with the Expulsion of Leaving 

Groups   

 Numerous studies on photochemical electrocyclic ring closure reaction which 

generate zwitterionic intermediates have been reported over the past 40 years.40  Most of 

them involve cyclization of a 6π electron system with an amide functional group.  

According to Scheme 1.1, N-aryl-substituted benzothiophene carboxamides can undergo 

electrocyclic ring closure to give zwitterionic intermediates.  Various leaving group 

anions of biological importance can be released from the zwitterionic intermediates.  The 

electrocyclic ring closure should be a photochemically allowed conrotatory process to 

form a six-membered ring. This conrotatory mode has been established by Witkop and 

coworkers41 (Scheme 1.9).  Because of the absence of a leaving group at the C-3 carbon, 

their study provides information on this aspect.  For their example the initial cyclization 

is followed by suprafacial 1,5-H migration, to give a tetracyclic product.  The conrotatory 

motion involved in the first step of the reaction is inferred from the stereochemistry at the 

ring junction in the photoproduct.  Although Witkop’s benzothiophene 33 does not have a 

leaving group at the C-3 position, Castle and coworkers42 reported studies that have 
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chloride as a leaving group at the C-3 position of the benzothiophene ring (Scheme 1.10).  

The focus of the research by Castle, however, was to take advantage of the 

photocyclization reaction for the synthesis of heterocyclic ring systems, which is useful 

for medicinal chemistry. 

Scheme 1.9.  Witkop's Mechanism of Conrotatory Electrocyclic Ring Closure Reaction 
of Benzothiophene Carboxanilide41

 

 
The photochemical reaction observed by Castle and co-workers is essentially the 

same as that studied in this project, although neither the mechanism nor quantum yields 

were studied.  Furthermore, the triplet multiplicity was never specified or established 

experimentally, by either Witkop or Castle.   

Scheme 1.10.  Photocyclization of Naphthothiophene Anilide42  
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The dependency of  Φ on the basicity of leaving group  was studied by Sarker and co-workers.11  

A variety of leaving groups (Cl-, PhCH2CO2
-, PhS-, PhCH2S-, PhO-) attached at the C-3 position 

in the benzothiophene ring could be released with various quantum yields, and in high chemical 

yields upon photolysis at λ = 310 nm. (Scheme 1.11).  They reported that carboxanilide 35 

could release various leaving groups at 310 nm that vary in basicity in essentially 

quantitative yields to form 37.  However, quantum yields decreased with increasing 

basicity of the leaving group (Figure 1.3).  Quantum yields were over the range 0.23-

0.007 (LG- = Cl-, PhCH2CO2
-, PhS-, PhCH2S-, PhO-) (Table 1.1).  Dependence of Φ on 

LG- basicity is consistent with the formation of ground state intermediate 36, which 

expels leaving group in competition with ring opening to give starting material.  

Quenching studies and a heavy atom effect indicated that the reaction takes place through 

a triplet excited state.  Even though the photolytic wavelength is low, the ability to 

release relatively basic leaving groups such as thiolates and phenolates is advantageous 

for biological studies.   

Table 1.1.  Quantum Yield for Releasing Different Leaving Groups (LG-) from 
Benzothiophene Carboxanilide 

LG- Cl- PhCH2CO2
- PhS- PhCH2S- PhO- HO- 

ΦΦΦΦ    0.23 0.16 0.10 0.075 0.074 0.007 

. 
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Scheme 1.11.  Mechanism of Releasing Leaving Groups from Benzothiophene 
Carboxanilide11

 

 

    

Figure 1.6.  Dependence of Φ on LG- basicity11 
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  By incorporating a p-benzoyl group onto the benzene ring of anilide 35 

(Scheme 1.12) the photolytic wavelength could be extended to 365 nm.  The quantum 

yield was only somewhat lower compared to benzothiophene carboxanilide 35. 

Scheme 1.12.  Photorelease of Leaving Group from Benzothiophene Carboxamide with 
Benzophenone Chromaphore 

 

As given in Scheme 1.2, incorporating thioxanthone as the chromophoric group they 

could extend photolytic wavelength to 385 nm.10   Without any substituent in compound 

3a  in the benzothiophene moiety they reported the formation of two products by 

cyclization at the C-1 and C-3 positions (Scheme 1.2) of the thioxanthone ring system to 

form 8 and 9 in a 42:58 ratio in aqueous phosphate buffer in acetonitrile.  When 

substituent Y was a carboxylic or methyl ester at the C-6 position of benzothiophene 3c  

the only product formed was via cyclization at the C-1 position (8c).  By incorporating a 

carboxylic acid group at the C-6 position they also were able to increase the aqueous 

solubility by a considerable amount.  Product quantum yields for this system are given in 

Table 1.2.  Decreasing quantum yield in the presence of oxygen and piperyline indicated 

a triplet excited state reaction.  Involvement of a triplet excited state was further 

supported by incorporating a heavy atom, bromine at C-7 position of thioxanthone ring 

system.  When a heavy atom is in the molecule, it increases the quantum yield for the 

reaction. Similar to benzothiophene carboxanilide, this system also show decrease in 
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quantum efficiency when increasing leaving group basicity.  However it could be 

increase the photolytic wavelength and solubility, the disadvantage of this system is the 

low quantum yield compare to benzothiophene carboxanilide 35 and compound with 

benzophenone chromophore 38. 

Table 1.2.  Quantum Yields for Compound 3a-c 

Reactant LG- Solvent Φ 

3a   Cl- N2 saturated 0.069 

3b  Cl- N2 saturated 0.039 

Cl- O2 saturated 0.019 

3c  Cl- N2 saturated 0.034 

PhS- N2 saturated 0.017 

PhCH2
- N2 saturated 0.011 

HS- N2 saturated 0.008 

1.6.  The Sensitized Release of Leaving Group 

 
 Energy transfer is the process by which the excitation energy of an excited state 

molecule (Sensitizer or Donor) is transferred to a neighboring molecule (Quencher or 

Acceptor).  PPGs can be cleaved to release leaving groups by two different methods, 

direct irradiation and sensitized irradiation.  Direct irradiation involve a PPG which is 

light sensitive and which upon irradiation, undergoes chemical change which releases the 

protected molecule.  Here the light absorption and bond cleavage take place within the 

same molecule.  Sensitized irradiation utilizes an external molecule, called a sensitizer, to 

absorb light and transfer its energy to generate the triplet excited state of the PPG 
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quencher which would then undergo chemical transformation and release a leaving 

group.  The two components can be linked together or just separated in the media.   

As noted above, to make the energy transfer efficient, the energy transfer process 

must be exergonic.  In addition, the sensitizer should be able to undergo efficient 

intersystem crossing, in other words, the triplet quantum yield 3Φ should be high enough 

to populate enough triplet excited states and the triplet lifetime should be long enough to 

enable the triplet energy transfer.44  The general process is shown in Scheme 1.13. 

 

Scheme 1.13.  General Scheme for Photosensitization 

   

… = bond linker or separation of two components 

Q = PPG, S = sensitizer 

 

An example of intermolecular energy transfer has been provided by Steiner, 

Creen, and co-workers.44   They reported that a sensitizer such as thioxanthone can 

increase the sensitivity of 2-(2-nitrophenyl)propyl group to two-photon excitation 

(Scheme 1.13). 

Wӧll et al45 reported intramolecular triplet sensitization of 2-(2-

Nitrophenyl)propyl chromophore by thioxanthone.(Scheme 1.14).here the sensitizer is 

directly attached to the photoactive chromophore. 
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Scheme 1.14.  Intermolecular Triplet Sensitization of the 2-(2-Nitrophenyl)propyl 
Chromophore14,44 

 

In the current project, the chromophore, thioxanthone is attached to the nitrogen 

of an amide linker.  The results of sensitized photolysis can complement those of direct 

photolysis, where the chromophore intramolecularly transfers its triplet energy to the 

reactive aromatic thiophene site that eventually releases the leaving group.  The 

intermolecular energy transfers (sensitization) are also possible. Study on the efficiency 

of energy transfer between thioxanthone and naptho[1,2-b]thiophene also will be 

discussed in Chapter 2. 
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Scheme 1.15.  Intramolecular Triplet Sensitization of the 2-(2-Nitrophenyl)propyl 
Chromophore14,45
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CHAPTER 2 

PHOTOCHEMICAL ELECTROCYCLIC RING CLOSURE AND 

LEAVING GROUP EXPULSION FROM N-(9-

OXOTHIOXANTHENYL)NAPHTHO[1,2-b]THIOPHENE 

CARBOXAMIDES AND SENSITIZED RELEASE OF LEAVING 

GROUPS FROM NAPHTHO[1,2-b] THIOPHENE ANILIDE BY 

THIOXANTHONE SENSITIZER. 

2.1 Introduction 

 

 As mentioned in the Chapter 1, benzothiophene carboxamide, 3 which 

contains thioxanthone as a chromaphoric group expels leaving groups 

inefficiently by photolysis. Quenching studies indicate that the electrocyclization 

occurs in the triplet excited state to produce a triplet excited state diradical that 

intersystem crosses to give the zwitterionic intermediate.  It is thought that energy 

transfer from triplet excited chromaphore to benzothiophene ring is required for 

electrocyclization reaction.  This triplet excited state is expected to lie below that 

of the benzothiophene triplet excited state.  According to DFT calculations triplet 

energy transfer to the benzothiophene moiety would then be endothermic by ca. 

5k cal mol-1.1  So efforts have made here to lower the triplet excited state energy 

of the benzothiophene part of the molecule, so that energy transfer will be 

exothermic.  Naphtho[1,2-b]thiophene has an approximate triplet excited state 

energy of 62 kcal mol-1.2  This triplet energy is lower than the benzothiophene 

triplet energy of ca. 69 kcal mol-1.  It was planned to replace the benzothiophene 

moiety with napthothiophene ring system in order to facilitate the energy transfer 

from the triplet excited state of thioxanthone of ca. 64-65 kcal mol-1.  
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 In this chapter we will discuss the synthesis of compound 6a, 6b and 

photochemistry related to N-(9-oxothioxanthenyl)naphtho[1,2-b]thiophene 

carboxamide.  The direct photolysis of this compound and the identity of 

photoproduct are reported.  Quantum yields for direct photolysis are determined.  

Comparison is made to the analogues with a benzothiophene ring system in place 

of the naphthothiophene ring system.  Quenching studies are performed to test the 

multiplicity of the photoreaction.  

 For comparison, the direct and triplet sensitized photochemistry of anilide 

2-1 are studied.  The triplet sensitized photolysis provides a means to estimate the 

efficiency of intramolecular triplet excitation from the thioxanthone to the 

naphthothiophene ring system in 2-1. 

 

 Photochemical experiments will be described that estimate the efficiency 

of intramolecular triplet excitation transfer from the thioxanthone to the 

naphthothiophene (Scheme 2.1).  
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Scheme 2.1  Sensitized Photolysis of Naphtho[1, 2-b] thiophene and Electrocyclic Ring 
Closure Reaction by Thioxanthone Sensitizer  

 

2.2  Results and Discussion 

2.2.1 Synthesis of 3-chloronaptho[1,2-b]thiophene-2-carboxylic acid N-methyl-(9-

oxo-9H-thioxanthen-2-yl) amide 6a    

 The napthothiophene carboxamide, 6a was synthesized by coupling 2-

methylaminothioxanthone 2-2 with acid chloride 2-3 (Scheme 2.2).  Synthesis of amine 

2-2 (Scheme 2.3) involved six steps starting from thiophenol with 5-nitro-2-

chlorobenzoic acid to form 2-4 which underwent cyclization reaction to give the nitro 

compound 2-5.  The nitro compound 2-5 was reduced to amine 2-6 with iron powder.3 

The amine was converted to the amide 2-7 by reaction with acetic anhydride.  Then the 

amide 2-7 was alkylated to obtain the N-methyl amide 2-8.  Hydrolysis of 2-8 furnished 

the 2-methylaminoxanthone-9-one 2-2.   

 Synthesis of the acid chloride 2-3 (Scheme 2.4) involved 2 steps.  Commercially 

available naphthalene-2-carboxaldehyde gave 3-(2-naphthyl)propenoic acid 2-9 with the 
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malanoic acid4, which was converted to 3-chloronaphtho[1,2-b]thiophene-2-carbonyl 

chloride 2-3 by refluxing with SOCl2.   

Scheme 2.2  Synthesis of 3-chloronaptho[1,2-b]thiophene-2-carboxylic acid N-methyl-
(9-oxo-9H-thioxanthen-2-yl) amide 6a 

 

2.2.2.  Photolysis of Compound 6a  

 It is important for biological applications that caged biomolecules bearing a 

photoremovable protecting groups have appreciable solubility in aqueous buffered 

media.5,6  Compound 6a was sparingly soluble in DMSO.  Attempts were made to 

dissolve compound 6a in DMSO-d6 and then filtered to obtain a clear solution.  The 

resultant clear solution was treated with two drops of pH = 7 phosphate buffer.  After 

adding the buffer a turbid solution was produced.  A  nitrogen saturated sample of 20 mg 

of 6a in 2 mL DMSO-d6, filtered through a syringe filter, was photolyzed  using Pyrex-

filtered light from a Hanovia 450 W medium pressure mercury lamp.  A single 

photoproduct either 2-10 or 2-11, (Scheme 2.4) was observed after 30 min.  After 1.5 h 

50% conversion was achieved.  The product was distinguished from photoreactant by its 

N-methyl peak in the 1H NMR spectrum which was shifted downfield from δ 3.64 to δ 

3.98.  Due to the above solubility problem, the quantum yield was not determined.  But 

the high conversion of the photoreactant to the photoproduct in DMSO-d6 provided the 

incentive to increase the solubility of compound 6a in aqueous buffered media by 
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attaching  the carboxylic acid group to the naphthothiophene ring at C-6 position, as with 

compound 6b.   

Scheme 2.3  Synthesis of Compound 2-2 
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Scheme  2.4  Synthesis of Compound 2-3 

 

Scheme 2.5.  Photolysis of Compound 6a 

 

2.2.3.  Synthesis of Photoreactant 6b 

 The synthesis of the compound 6b is given in the Scheme 2.6.  The compound 6b 

was synthesized by a coupling reaction between the amine 2-2 and the acid chloride 2-12 

followed by demethylation of the methyl ester 2-13 using trimethyltin hydroxide. 
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Scheme 2.6. Synthesis of Photoreactant 6b 

 

 The synthesis of 2-12 involves 5 steps starting from commercially available 

dimethyl 2,6-naphthalenedicarboxylate (Scheme 2.7).  Partially hydrolysis of dimethyl 

2,6-naphthalenedicarboxylate with methanolic KOH gave 6-cabomethoxy-2-

napthalenecarboxylic acid 2-14.  The carboxylic acid group of 2-14 was reduced to the 

alcohol 2-15 using BH3.THF complex followed by PCC oxidation to produce aldehyde 2-

16.  Condensation of 2-16 with malonoic acid gave 3-(2-napthyl) propenoic acid 4 2-17, 

which was converted to the acid chloride 2-12 by refluxing with SOCl2.  Hydrolysis of 

compound 2-12 gave the corresponding carboxylic acid 2-18 which was converted to the 

acid chloride 2-12 prior to the coupling reaction with amine 2-2to form 6b. 
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Scheme 2.7  Synthesis of Acid Chloride 2-12 

 

2.2.4.  UV Spectra of Compound 6b 

   

Figure 2.1.  UV spectra of 2.45×10-4 M solution of compound 6b and 2.02×10-4 M 
photoproduct 2-19 in 33% aq dioxane containing 100 mM pH 7 phosphate buffer. 
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 The absorption spectrum of the compound 6b was recorded in 33% 100 mM pH 7 

phosphate buffer in dioxane (Figure 2.1).  The absorption maximum at 386 nm had ε = 

4707 M-1 cm-1.  The compound was photolysed at this wave length for the subsequent 

photochemical studies. 

2.2.5.  Preparative Direct Photolysis of Compound 6b 

  Preparative direct photolysis of 50 mL of 9.40 x 10-3 M of 6b in argon saturated, 

buffered aq dioxane with a 200 W medium pressure mercury lamp equipped with a Pyrex 

filter gave a single photoproduct in 64% yield after 3 h (Scheme 2.8).  Solid photoproduct 

was collected by filtration at time intervals during the photolysis.  Solid photoproduct 

adhered onto the vessel surface during photolysis ultimately limiting the conversion 

achieved in the photolysis.  1H NMR spectroscopy of the precipitated product showed a 

single peak at δ 3.88 ppm corresponding to the N-methyl group.  NMR analysis of the 

remaining solution after concentration to remove all solvent showed the same spectrum. 

The photolysis thus appeared to produce a single regioisomeric photoproduct.  In this 

regard, 6b showed a similar photochemical outcome as the previously studied 

benzothiophenes 3b and 3c, which gave a single regioisomer, while benzothiophene 3a 

showed a pair of N-methyl signals in the 1H NMR spectrum corresponding to two 

regioisomeric photoproducts produced upon direct photolysis1.  It was initially believed 

that the structure of the photoproduct of 6b was 2-19 rather than 2-20 (Scheme 2.8) on 

the basis of precedent.1  Repeated attempts failed to produce satisfactory crystals for X-

ray diffraction to elucidate the structure. However, good evidence for the structural 

assignment of the photoproduct as 2-19 was instead provided by the 400 MHz 1H NMR 

COSY spectrum, which showed six vicinal couplings as cross peaks corresponding to 
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proton pairs b-c, h-k, g-i, i-j, j-d, e-f (Scheme 2.6) within the benzenoid rings of structure 

2-19.  If the structure were 2-20, only five vicinal couplings would have been observed, 

and such a structure would not account for the presence of the extra cross peaks observed 

in 1H NMR COSY which are readily accommodated by vicinal protons e-f of structure 2-

19 (See Appendix-1 -Figure 33 for COSY ). 

Scheme 2.8  Photochemical Electrocyclization of Compound 6b 

 

 

2.2.6.  Quantum Yield Determination for Compound 6b 

 Quantum yields for the formation of product were determined by direct photolysis 

of 6b at 386 nm.  1H NMR spectroscopy was initially used to quantify the photoproduct 

by integrating the N-CH3 protons against an N-CH3 signal of DMF added as standard.  

For three runs the average quantum yield was Φ = 0.083 for 56% conversion.  The 

quantum yields did not vary significantly with % conversion.  Nor did the quantum yields 
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vary with the concentration of reactant.  At the relatively high 1.7 – 3.3 x 10-3 M 

concentrations of 6b used for the NMR determinations, most of the photochemistry 

would occur at the front face of the cell, possibly lowering the efficiencies due to 

competitive absorption of light by the photoproduct.  However, the quantum yields were 

found to be essentially unchanged at > 10-fold lower concentrations of 1.0 x 10-4 M 

reactant.  At the lower concentrations of 6b, Φ = 0.084 for duplicate measurements at 

16.4% conversions.  For these latter runs, the photoproduct was quantified by absorption 

spectroscopy with use of a calibration curve (Figure 2.2), constructed from known 

mixtures of reactant and product.  The similar Φ values found for the two different 

concentrations suggest that internal filter effect by product formed at the front face of the 

cell was insignificant, because the photoproduct absorption is minimum at photoreactant's 

absorption wavelength (Figure 2.1).   
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Figure 2.2.  Calibration curve for compound 2-19 using absorption spectroscopy 

 

2.2.7.  Quenching Studies of Photoreactant 6b 

   For the benzothiophene 1 and 3 the photochemistry was shown to occur in the 

triplet excited state, as evidenced by efficient quenching of the reaction by the triplet 

quencher 1,3-pentadiene.2,7  This conclusion was additionally supported by our 

computational study, which delineated the progress of the triplet excited state reaction on 

the the potential energy surfaces2.  In the case of napthothiophene 6b repeated attempts 

failed to quench the triplet excited state by 1,3-pentadiene. However, naphthothiophene 6 

b photoreaction is quenched inefficiently at high concentrations of the triplet quencher, 
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cyclohexadiene.  Thus, the quenching evidence for a triplet excited state is less definitive 

than was the case for 1 and 3.  The data points show a poor fit to straight line and show 

significant curvature at low concentrations of quencher, and inefficient quenching is 

observed at high concentrations.  This quenching profile (Figure 2.3) also is suggestive of 

the involvement of two triplet excited states in the reaction.  A long-lived triplet excited 

state appears to be quenched at very low concentrations of cyclohexadiene.  A very short-

lived triplet (ca. 2 ns) excited state which would account for the inefficient quenching 

observed at the higher concentrations of cyclohexadiene.  Whereas the longer-lived triplet 

excited state may reside on the thioxanthone, which would normally have a long 

microsecond triplet lifetime in the case of the isolated molecule in solution (13.3 µs in 

methanol and 6.7 µs in CH3CN)8, the short-lived triplet excited would likely reflect the 

occurrence of a facile reaction that deactivates the triplet excited state.  Such a facile 

reaction could be the cyclization of the thiophene ring with the thioxanthone benzo 

group.  Inefficient quenching behavior is observed with anilide 2-1 at all concentrations 

of the quencher.  From the Stern-Volmer slope (kqτ) of 70.7.M-1, 3τ. = ca. 7 ns. 
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Figure 2.3.  Quenching of amide 6b by 1,3-cyclohexadiene, and quenching of anilide 2-1 
by 1,3-cyclohexadiene.  Note: Benzothiophene systems (anilide and thioxanthone) 
readily quenched with pyperylene.  Life times of triplet excited states are 932 ns and 7µs 
respectively.2,7  

2.2.8.  Synthesis of Anilide 2-1 

 The anilide derivative 2-1 of naphthothiophene-2-carboxylic acid 2-18 was 

synthesized for use as a triplet energy acceptor in sensitized photolysis that were 

performed with xanthone and thioxanthone to estimate the efficiency of intramolecular 

triplet energy transfer from the thioxanthone moiety to the naphthothiophene-2-

carboxamide ring in reactant 6b.  

 The anilide was also need for comparison of quenching to compound 6b by 

cyclohexadiene.  Synthesis of photoreactant 2-1 involves coupling of acid chloride 2-12 

and N-methylaniline followed by demethylation of the ester 2-21 with trimethyltin 

hydroxide (Scheme 2.9). Characterization of compound 2-1 was done by 1H NMR, 13C 

NMR, HRMS and elemental analysis.  The absorption spectrum of the acid 2-1 (Figure 
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2.4) showed a shoulder at 352 nm (ε= 1730 M-1 cm-1) and an intense, lower wavelength 

absorption in aq.in 25% aq. dioxane containing 100 mM phosphate buffer. 

  

Figure 2.4.  UV spectra of 5.00×10-4 M solution of compound 2-1 in 25% 100mM pH 7 
phosphate buffer in dioxane. 

Scheme 2.9.  Synthesis of Anilide 2-1 
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2.2.9.  Preparative Direct Photolysis of Photoreactant 2-1. 

 

 For preparative photolysis, Pyrex-filtered light from a Hanovia medium pressure 

mercury lamp was used.  Preparative photolysis of 10-2 M solution of the acid 2-1 in 

nitrogen saturated 25%dioxane containing 100 mM phosphate buffer (pH =7) resulted in 

nearly quantitative expulsion of the chloride leaving group and formation of the 

photoproduct 2-22 as quantified by 1H NMR integration against DMF as an internal 

standard (Scheme 2.10). The photoproduct 2-22 was identified by 1H NMR spectroscopy 

13C NMR, HRMS and elemental analysis. The absorption spectrum of 2-22 (Figure 2.5) 

showed a long wavelength maximum at 373 nm (ε = 9000 M-1 cm-1) in aq. dioxane 

containing phosphate buffer. 

  

Figure 2.5  UV spectra of 1.00×10-4 M solution of photoproduct 2-22 in 25% 100 mM, 
pH 7 phosphates buffer in dioxane. 
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Scheme 2.10  Photolysis of Photoreactant 2-1 in 25% Phosphate Buffer in Dioxane 

 

2.2.10.  QuantumYields for Direct and Sensitized Photolysis of compound 2-1 

 The quantum yield for direct photolysis was determine at 365 nm using a high 

pressure mercury lamp as the light source.  The quantum yield for the formation of 2-22 

in nitrogen saturated 25% aq. dioxane containing100 mM phosphate buffer was found to 

be 0.17 according to 1H NMR spectroscopy using DMF as standard. 

To estimate the efficiency for triplet excitation transfer from the thioxanthone 

chromophore to the naphthothiophene ring system in 6, triplet sensitized photolyses of 

anilide 2-1 were conducted using xanthone and thioxanthone as triplet energy donors. 

The sensitized photolyses of anilide 2-1 give 2-22 as the photoproduct in 4:1 

dioxane: water (v/v) containing 100 mM phosphate buffer at pH = 7.  The chemical 

yields were not determined.  

The quantum yields for the direct and the xanthone and thioxanthone triplet 

sensitized photolyses of anilide 2-1 are summarized in Table 2.1.  For xanthone as the 

triplet sensitizer, concentrations of anilide 2-1 were kept sufficiently low so that singlet 

sensitization would be negligible9.  Concentrations of xanthone sensitizer and anilide 2-1 

also had to be chosen to minimize direct absorption of light by the anilide at the 
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photolysis wavelength, 365 nm.  In addition, a range of photochemical conversions were 

examined to determine whether possible triplet energy transfers from sensitizer to 

photoproduct 2-22 formed would lower the observed quantum yield Φ.  In the case of 

thioxanthone a much longer photolysis wavelength of 386 nm could be used, which 

lessened the latter concern.  

From the xanthone and thioxanthone sensitized quantum yields, the efficiency of 

intermolecular triplet energy transfer from thioxanthone as the sensitizer to the 

naphthothiophene ring system of anilide 2-1 as the quencher can be estimated.   

First, in the case of xanthone as sensitizer the triplet excited state cyclization 

efficiency, Φr, can be calculated using eq. 2.1 with Φisc determined experimentally (vide 

infra) and assuming Φet = 1 for exothermic energy transfer.  

Φ = φisc φet φr..........................................eq. 2.1 

 

Table 2. 1.  Quantum Yield Data for Direct and Sensitized Photolyses of Anilide 2-1.  

2-1, M Sensitizer, M Wavelength, nm Φisc Φobs 

2.56×10-3 None 385  n/aa 0.17 

2.33×10-3b Xanthone, 4.00×10-2 c 365  0.98 0.27d 

2.41×0-3 Thioxanthone, 2.50×10-3 e 386  0.67 0.081 

aNot applicable.  bConcentrations of quencher were kept low to avoid singlet energy transfer9  

cXanthone absorbed 85.9% of the light.  dCorrection applied for direct absorption by compound 2-1 up 

to 14% of incident light. eThioxanthone absorbed 99.8% of the light 
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This is a reasonable assumption, in light of the high triplet excited state energy of 

xanthone (ET = ca. 74 kcal mol-1)10 and the much lower triplet energy estimated for an 

unsubstituted [1,2-b]naphthothiophene as a model for the energy accepter in compound 

6(b) (the theoretical value is ET = ca. 62 kcal mol-1).  From Φisc for thioxanthone and Φr 

the intermolecular energy transfer efficiency, Φet = 0.46 is obtained as an estimate for the 

donor acceptor pair, thioxanthone and anilide 2-1. 

2.2.11. Triplet Yields for Xanthone and Thioxanthone 

 

 

 The values for Φisc for xanthone and thioxanthone in aq dioxane 

containing buffer were determined experimentally by the method of Lamola and 

Hammond11 for use in Eq. 2.1 to calculate the Φr and Φet values (Table 1).  Their method 

for obtaining Φisc, as implemented here, involved the sensitized E to Z isomerization of 

(E)-1,2-diphenylpropene (Scheme 2.11).   

 The compound to be studied (xanthone and thioxanthon) was used as a sensitizer 

for (E) to (Z) isomerization of 1,2-diphenylpropene and the triplet quantum yields were 

calculated.  To quantfication of the (E) and the (Z) isomers could be done by GC-MS 

analysis. The amount of the light absorbed was measured by ferroxilate actinometry 

using the splitting ratio method.  The following equation (eq.2.2) described by Lamola 

and Hammond10b was used to calculate the triplet quantum yield of the thioxanthone and 

the xanthone. 

             ���� = ��→	

 (1 + �) ............................................................................eq 2.2 

where,    ��→� = 2.303� log � �
(����)� ;  ��→� is conversion of trans to cis without back  

                     reaction; α, the conversion at the stationary state; and � , the conversion   
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                      measured experimentally. 

              � = !�"#$�%&
!���%&

 ; !'()*+%�  )*, !-.+%� are the concentrations of trans and cis isomer   

                    at photostationary state. 

  I = the light absorbed for the photoreaction. 

The reported value for the 
!�"#$�%&

!���%& 
= 0.81 for 1,2-diphenylpropene sensitized by a high 

energy sensitizer.  

The following example describes the calculation of the triplet quantum yield. 

Example: One of the experiments performed gave the following GC data after irradiation 

of 1.473 mmol of trans-1,2-diphenylpropene in aqueous dioxane in the presence of 

xanthone as the high energy sensitizer for 4 hours . The intensity of light absorbed was 

0.068 mE h-1. 

GC data: Area (trans) = 477683122 

  Area (cis) = 47463272 

Calculations:    
!�"#$�%&

!���%& 
= 0.81 

1.47543345 − �
� = 0.81 

    so � =0.814 mmol 

    � = 1.4753345 × 8 9:9;<=:=
(=9:9;<=:=>9::;?<@==)A=0.133 mmol 

   then         � = 2.303 × 0.814 log B.?@9 CCDE
(B.?@9 CCDE�B.@<<CCDE)=0.145 
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   so that    ���� = B.@9F CCDE×(@>B.?@)
B.B;? CGHIJ×9 H = 0.98 

Scheme 2.11.  E to Z isomerization of (E)-1,2-diphenylpropene in the presence of 
sensitizer 

 

The two experiments, the average was found to be Φisc = 0.67 for thioxanthone 

25% aqueous 100 mM phosphate buffer in dioxane.  The average for xanthone was Φisc = 

0.98 in the same aq solvent.  The litrature values for xanthone and thioxanthone in non 

polar solvent are 0.9711 and 0.8512 respectively.  In ethyl acetate reported values are 0.99 

and 0.9013  In methanol the literature value for thioxanthone is 0.5612.  No values have 

been previously reported for aq dioxane.  The Φisc for this solvent had to be determined, 

because recent paper showed on the basis of DFT calculations(B3LYP/TZVP or TZVPP 

and COSMO moldel for  solvent environment)14 that Φisc  could change significantly 

when the solvent contained substantial amount of water.  To check our implementation, 

we determined Φisc = 1.05 for benzophenone in benzene, which is within experimental 

error of the known unit efficiency in this case.  For xanthone the Φisc in aq dioxane with 
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buffer is not significantly different from the literature value of 0.97 in in 

carbontetrachloride.11  With thioxanthone the presence of water with the dioxane 

substantially lowers Φisc, and our value is comparable to that reported for methanol. 

2.3.  Conclusions 

Although the photochemistry upon direct photolysis of [1,2-b]naphthothiophene 

6b is significantly more efficient (Φ = 0.084) than the corresponding benzothiophene 3 

(Φ = 0.035) 2, the observed quantum yield is still substantially lower than the values 

obtained for direct or xanthone sensitized photolysis of anilide 2-1, where Φ = 0.17 or Φ 

= 0.27, respectively.  Evidently, the triplet excited state energy transfer from the 

thioxanthone to the naphthothiophene ring system is still a somewhat inefficient process 

with an efficiency of 46%.  This is in the context of thioxanthone ET = 64-65 kcal mol-1 

and naphthothiophene ET = 62 kcal mol-1, keeping in mind that these triplet energies are 

only approximate.  The observed Φ = 0.084 is fully accounted for by eq. 2.1 using φisc = 

0.67, φet = 0.46, φr = 0.27 obtained the determination of xanthone and thioxanthone triplet 

sensitized quantum yields. 

2.4.  Experimental 

Chemicals and General Methods 

 

 All the chemicals were purchased from Sigma-Aldrich, VWR, or TCI America 

and used as received unless otherwise mentioned.  The 1H, and 13C NMR spectra were 

recorded on a Varian 300 or 400 spectrometer.  Solutions required for the actinometry 

was prepared using the procedure reported by Zimmerman.12  HRMS spectra were 
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collected using a Shimadzu LCMS-IT-TOF instrument at the Department of Chemistry 

and Biochemistry UW-Milwaukee, Wisconsin.  Midwest Micro Lab, LLC, Indianapolis, 

Indiana 45250, performed all elemental analyses.  All melting point determinations were 

made on Fisher-Johnes melting point apparatus.  UV absorption was measured by a Cary 

5000 UV spectrophotometer.  GC-MS analysis was done using an Agilent 6850 GC-MS 

spectrometer with a HP-5 (5% phenylmethylpolysiloxane) column (30 m×0.32 mm×0.25 

μm). 

Preparation of N-(9-oxothioxanthenyl)naphtho[1,2-b]thiophene carboxylic acid 

methyl ester 2-13 

 

The procedure was adapted from the procedure reported by Sarker and coworkers.2 1.47 g 

(4.58 mmol) of 2-18 was refluxed with 50 mL benzene and 20 mL of SOCl2 for 5 h.  The 

benzene and SOCl2 were removed in vacuo.  The remaining SOCl2 was co-distilled with 

anhydrous DCM twice and the yellow residue of 2-12 was used for next step.  A solution 

of 2-methylaminoxanthen-9-one(2-2) (0.920g, 3.82 mmol) and 11 mL of triethylamine in 

10 mL of anhydrous CH2Cl2 was added to acidchloride 2-12 dissolved in 30 mL of 

anhydrous CH2Cl2 at room temperature.  A catalytic amount of DMAP was added.  The 

reaction mixture was warmed at temperatures below 40 oC for 96 h under nitrogen while 

stirring.  The reaction mixture was filtered to remove triethylamine hydrochloride, 
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washed with saturated aqueous NaHCO3, water, 2 M HCl, water brine.  Then extract was 

dried over anhydrous Na2SO4 and concentrated in vacuo to obtain a golden yellow solid 

containing 2-13.  The crude compound was purified by silica gel flash column 

chromatography eluting with 30% ethyl acetate in hexane initially and gradually  

increasing polarity to 60% ethyl acetate in hexane to obtain 1.18 g (57% yield) of product 

as yellow colored crystals, mp. 228-230 oC. The spectral data: 1H NMR (400 MHz, 

CDCl3)  δ 3.62 (s, 3H), 3.95(s, 3H),7.40-7.54 (m, 4H), 7.60 (t, J  = 8.4 Hz, 1H),  7.73 (d, 

J = 10.1 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.99 (d, J = 8.4 Hz, 1H), 8.15 (d , J = 8.9 Hz, 

1H), 8.55-8.59 ( m, 2H), 8.62(s, 1H); LCMS (APCI-IT-TOF) m/z: [M+H]+ Calcd for 

C29H18ClNO4S2 544.0439;  Found 544.0423; Anal. Calcd. for C29H18ClNO4S2: C, 64.04; 

H, 3.33; N, 2.58. Found: C, 64.24; H, 3.41; N, 2.58.   

Preparation of N-(9-oxothioxanthenyl)naphtho[1,2-b]thiophene carboxylic acid 6b  

 

 To stirred solution of 1.000g( 1.840 mmol ) of N-(9-oxothioxanthenyl)naptho[1,2-

b]thiophene carboxylic acid methyl ester 2-13 in DCE at 80 °C under argon was added 5 

equivalent 0.3300g (9.200.mmol) of the weight of ester 2-13 of trimethyltin hydroxide.  

The reaction mixture was refluxed under nitrogen.13   The reaction was monitored by 
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TLC.  When the reaction was complete, the solvent was removed in vacuo and ethyl 

acetate was added.  Dilute HCl was added to the ethyl acetate and after extraction; the 

organic layer was washed several several times with water, brine, and dried over 

anhydrous sodium sulfate.  Concentrtion in vacuo gave a yellow solid residue.  The 

yellow residue was washed with water to remove remaining trimethyltin hydroxide.  The 

product was filtered and dried under vaccum to give 0.9360g (96 % yield) of compound 6 

(Y = -COOH, LG = -Cl) as yellow powder, m.p.294-296 oC.  .The spectral data : 1H 

NMR (400 MHz, DMSO-d6)  δ 3.56 (s, 3H), 7.46 (t, J  = 8.5 Hz, 1H), 7.76 (m, 3H), 7.80 

(s, 2H), 8.10 (m, 3H), 8.37 (d, J = 8.5 Hz, 1H), 8.45 (s, H), 8.60 (d, J  = 14.1, 1H), 13.2 

(s,br,1H).  13C NMR (100 MHz, DMSO-d6): δ 38.4, 120.1, 120.7,127.1, 127.5, 127.9, 

128.2, 128.3, 128.6, 129.3, 129.6, 129.9, 130.0, 131.1, 131.8,132.8, 133.7, 134.5, 135.5, 

135.9, 136.7, 161.9,167.7, 178.8; LCMS (APCI-IT-TOF) m/z: [M-H]+ Calcd for 

C28H16ClNO4S2 528.0137;  Found 528.0130; Anal. Calcd. for C28H16ClNO4S2: C, 63.45; 

H, 3.04; N, 2.64. Found: C, 63.73; H, 3.34; N, 2.58. 

Preparation of 4-Nitrophenyl Sulphide-2-carboxylic acid (2-4) 

 

 The procedure was adapted from the procedure reported by Amstutz and co-

workers.15  To a solution of 21.4g. (105 mmol) of 5-nitro-2-chlorobenzoic acid in 300 mL 

absolute ethanol , 12.4g (119 mmol) of thiophenol, 15.7 g (280 mmol) of potassium 

hydroxide dissolved in 300 mL ethanol while stirring.  Then reaction mixture was 

refluxed overnight under nitrogen.  After two thirds of the alcohol had been removed in 
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vacuo, the residue was diluted with water, acidified with conc HCl to pH=2, filtered and 

the solid precipitate was washed with water.  The crude product was crystallized with 

80% aqueous ethanol to obtain 24.1g (82%) of compound 2-4 as dark yellow crystals, mp 

233-234 °C (lit. mp.232.2-234.5)14.  1H-NMR (400 MHz, DMSO-d6): δ 6.87 (d, J = 10.0 

Hz, 1H), 7.54-7.68 (m, 5H), 8.19 (dd, J = 9.1, 3.4 Hz, 1H), 8.66 (d, J = 9.5 Hz, 1H); 13C-

NMR (100 MHz, DMSO-d6): δ 126.2, 127.0, 127.2, 127.5, 130.5, 131.5, 131.0, 136.2, 

144.3, 152.4, 166.2.  

 

Preparation of 2-nitroxanthone (2-5)15 

 

 To 185 mL of concentrated sulphuric acid at 100 °C was added 21.2 g (77.0 

mmol) of 4-nitrophenylsulphide-2-carboxylic acid 2-4.  The temperature of the mixture 

was maintained at 100-105 °C for 1 h.  The reaction mixture was cooled to room 

temperature and poured onto 100 g of ice.  The resultant precipitate was filtered, washed 

with water, sodium bicarbonate solution, and water.  After air drying , 18.9 g (95%) of 2-

5 was obtained as NMR pure yellow-green solid, mp 225-228 °C(lit. mp 226.8-226.9 

crystallized sample from nitrobenzene).15  This compound was used in the next step 

without further purification.  The spectral data were as follows:  1H NMR (400 MHz, 

DMSO-d6) δ 7.67 (t, J = 7.7 Hz, 1H), 7.85 (t, J = 7.5 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 

8.15 (d, J = 9.5 Hz, 1H), 8.46 -8.52 (m, 2H), 9.08 (d, J = 2.5 Hz, 1H).  
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Preparation of 2-Amino-thioxanthen-9-one (2-6)  

 

 The procedure was adapted from a procedure reported by Sarker2 and Moon.3  A 

mixture of 18.8 g (73.4 mmol) of 2-nitroxanthone 2-5, 800 mL of ethanol, 200 mL of 

water, 23.6 g (440 mmol) ammonium chloride, and 16.4g (294 mmol) iron powder was 

refluxed for 5 h while mechanically stirring.  After hot vacuum filtration through silica 

gel, the silica gel was washed with ethanol and the wash combined with the original 

filtrate.  The combined filtrate was concentrated in vacuo.  The product was extracted 

into CHCl3.  The CHCl3 extract was dried over anhydrous sodium sulfate and 

concentrated in vacuo to give 12.0 g (72% yield) of 2-6 as a dark yellow powder, mp 

226-228 °C (lit. mp 231-233°C).6  The spectral data were similar to that reported 

previously2: 1H NMR (400 MHz, DMSO-d6) δ 5.66 (2H, br), 7.06 (d, J = 8.5 Hz, 1H), 

7.45-7.51 (m, 2H), 7.61-7.77 (3H, m), 8.41 (d, J = 8.5 Hz, 1H) .  

Preparation of N-(9-oxo-9H-thio-xanthen-2-yl) acetamide (2-7)  

 

 Procedure was adapted from the procedure reported by Sarker and coworkers.16  

A mixture of 11.0 g (48.2 mmol) of amino ketone 2-6, 200 mL glacial acetic acid, and 

81.1 mL (859 mmol) of acetic anhydride was stirred for 5 h at room temperature.  After 
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adding 300 g of ice water with stirring, the resultant precipitate was filtered, washed with 

water and 50 mL methanol.  The precipitate was washed with CHCl3 and dried under 

vacuum to give 8.12 g (63% yield) of acetamide derivative 2-7 as a light yellow 

crystalline powder, mp 241-242 oC.  The 1HNMR spectral data were similar to that 

previously reported.16:  1H NMR (400 MHz, DMSO-d6) δ 2.11(s, 3H), 7.59 (t, J = 7.6 Hz, 

1H), 7.71-7.84 (m, 3H), 8.05 (d, J = 8.5 Hz, 1H), 8.46 (d, J = 7.96 Hz, 1H), 8.71 (s, 1H), 

10.35 (s, 1H); 13C NMR (100 MHz, DMSO-d6) δ 24.6, 118.5, 125.2,127.2, 127.8, 128.58, 

129.42, 129.79, 130. 87, 133.56, 133.59, 137.38, 138.95, 148.48, 169.46, 179.29. 

Preparation of N-methyl-N-(9-oxo-9H-thioxanthen-2-yl)-acetamide (2-8)2 

 

 The procedure was similar to Sarker and coworkers2.  To a stirred solution of 9.50 

g (35.3 mmol) of N-(9-oxo-9H-thio-xanthen-2-yl)acetamide 2-7 in 170 mL of anhydrous 

THF was added 1.81 g (45.2 mmol) of NaH (60%) under N2.  The mixture was stirred for 

15 min followed by drop wise addition of 3.32 mL (53.3 mmol) of methyl iodide.  The 

reaction mixture was stirred at room temperature for 48 h and then concentrated in vacuo 

to obtain the crude solid residue.  To the residue was added CHCl3, followed by filtration 

and concentration in vacuo to obtain 7.5 g (75% yields) of methyl amide 2-8 as a yellow 

powder.  Crystallization with ethanol gave dark yellow needles mp 246-248 °C (lit. 246-

248)2.  The 1 HNMR spectral data were similar to that previously reported2.  The spectral 
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data as follows: 1H NMR (400 MHz, CDCl3) δ 1.92 (s, 3H), 3.33 (s, 3H), 7.41-7.74 (m, 

5H), 8.44 (s, 1H)), 8.62 (d, J = 9.8 Hz, 1H).  

Preparation of 2-methylaminothioxanthen-9-one (2-2) 

 

 Procedure was similar to that of Sarker and coworkes.2  A mixture of 7.00g (24.7 

mmol) of amide 2-8 and 250 mL of aqueous 2 M NaOH was refluxed for 12 h.  The 

reaction mixture was cooled to room temperature and the precipitate was filtered, washed 

with water, and dried to obtain 4.8 g (81 % yield) of 2-2 as a yellow powder, mp 173-174 

°C (lit mp 172-175 °C)2.  The 1 H NMR spectral data were similar to that previously 

reported.2 : 1H NMR (400 MHz, CDCl3)  δ 2.95 (s,3H), 3.98 (bs, 1H), 6.98 (d, J = 8.7 Hz, 

1H ), 7.36-7.48 (m, 2H), 7.53-7.60 (m, 2H), 7.77 (s, 1H), 8.64 (d, J = 8.1 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 30.7., 109.5, 120.1, 124.9, 125.6, 125.9, 126.7, 128.7, 129.8, 

130.20, 131.6, 137.8, 148.0, 180.0.  

Preparation of 3-(2-naphthyl)propenoic acid (2-9)17 
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To a solution of 50 mL pyridine (621 mmol) and 11.4 g of malonic acid (110 mmol) was 

added 14.2 g (90.1 mmol) of naphthalene-2-carboxaldehyde in increments followed by1 

mL( 100 mmol) of of piperdine at room temperature.  The reaction mixture was refluxed 

until evolution of CO2 ceased (1.5 h).  Afterwards, it was cooled to room temperature.  

The solution was then poured into 50 mL of ice and conc HCl to give a precipitate.  The 

precipitate was filtered, washed with water and dried.  The solid was crystallized from 

ethanol to obtained 17.5 g (97% yield) of product 2-9 as an off white crystalline solid mp 

206-208 °C (lit. mp 208-209°C).15  1H NMR (400 MHz, DMSO-d6) δ 6.70 (d, J = 16.1 

Hz, 1H), 7.54-7.60 (m, 2H) 7.78 (d, J = 16.1 Hz, 1H), 7.88-8.00 (m, 4H), 8.20 (s, 1H), 

12.51(s, 1H). (100 MHz, DMSO-d6) δ 119.9, 124.3, 127.2, 127.7, 128.1, 128.9, 130.1, 

132.4, 133.3, 134.2, 144.4, 168.1. 

Preparation of 3-chloronaphthol[1,2-b]thiophene-2-carbonyl chloride (2-3)18 

 

 A mixture of 17.5 g (88.0 mmol) of 2-9, 100 mL of chlorobenzene, 1.6 mL (20 

mmol) of pyridine and 36.4 mL (500 mmol) of thionyl chloride was refluxed for 72 h.  

After cooling to room temperature suction filtration gave 16.5 g (67% yield) of product 

2-3 as yellow needles, mp 191-193 oC (lit mp 191-192 oC).16  1H NMR (400 MHz, 

DMSO-d6) δ 7.73 (m, 2H), 7.90 (dd, J = 8.7, 1.1 Hz, 1H) 8.13 (d, J = 8.7 Hz, 1H), 8.12-

8.15 (m, H), 7.25-8.28 (m, 1H); 13C NMR (100 MHz, DMSO-d6)  δ 120.4, 123.8, 126.5, 

126.5, 127.8, 128.4, 128.6, 129.7, 132.3, 134.8, 137.2, 162.1. 
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Preparation of 3-chloronaphthol[1,2-b]thiophene-2-carboxylic acid N-methyl-(9-

oxo-9H-thioxanthen-2-yl) amide 6(a) 

 

 To a solution of 1.2 g ( 5.0 mmol) of 2-methylaminoxanthen-9-one 2-2 and 15 mL 

of triethylamine in 30 mL of anhydrous CH2Cl2 was added 1.7 g (6.1 mmol) of 3-

chloronaphthol[1,2-b]thiophene-2-carbonyl chloride 2-3 suspension in 10 mL of 

anhydrous CH2Cl2 at room temperature.  A catalytic amount of DMAP was added.  The 

reaction mixture was heated to temperature below 40 oC for 96 h under nitrogen while 

stirring.  The reaction mixture was filtered to remove triethylamine hydrochloride, 

washed several times with saturated aqueous NaHCO3, water and then with 2 M HCl, 

water and brine.  After drying over anhydrous Na2SO4, the solution was concentrated in 

vacuo to obtain a golden yellow crystalline solid containing 6 (a).  Crystallization from 

ethanol gave 1.36 g (57% yield) of product as dark yellow colour powder, mp 210-212 

oC.  The spectral data were as follows: 1H NMR (400 MHz, CDCl3)  δ 3.64 (s, 3H), 7.35-

7.62 (m, 7H), 7.65 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 

7.96 (d, J = 8.5 Hz,  1H), 8.56 (s, 1H), 8.58 (s, 1H);  13C NMR (100 MHz, CDCl3) δ 38.5, 

111.4, 122.2, 124.4, 126.3, 126.9, 127.4, 127.6, 128.9, 129.0, 129.4, 129.6, 130.1, 130.2, 

130.9, 132.9, 133.2, 136.5, 136.9, 136.8, 137.1, 139.9, 142.0, 162.9, 171.3, 179.5. 
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Direct Photolysis of Compound 6(a) to give 2-10 or 2-11 
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A solution was obtained by dissolving 150 mg of compound 6 (a) in 50 mL DMSO 

followed by syringe filtration to remove a small amount of suspended reactant.  Then the 

clear solution was saturated with nitrogen gas for 30 min and photolyzed by a 450 W 

medium pressure Hg lamp with a Pyrex filter.  After 4 h the precipitate was , washed with 

water, and dried in vacuo to obtain 85 mg of a yellow crystalline solid of 2-10 or 2-11 mp 

> 300 oC.  1H NMR (400 MHz, CDCl3): 3.98 (s, 3H), 7.60-7.75 (m, 8H), 7.83 (d, J = 9.1 

Hz, 1H), 7.94 (d, J = 9.6 Hz, 1H), 8.29 (d, J = 8.7 Hz, 1H), 8.35 (d, J = 7.7 Hz, 1H) The 

13C NMR could not be obtained due to poor solubility. 

Preparation of 6-cabomethoxy-2-naphthalenecarboxylic acid (2-14) 

 

 The procedure is similar to that reported by Wendt and coworkers.19  A 

suspension of 10.0 g (40.9 mmol) of dimethyl 2,6-naphthalenedicarboxylate in 60 mL 

dioxane was heated at 80 oC until all solid dissolved. The solution of 2.6 g (42 mmol) of 

KOH in 2 mL of MeOH was slowly added and, the reaction mixture was stirred for 2 h at 

80 oC.  The reaction mixture was cooled to room temperature, filtered and the precipitate 
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was washed with diethyl ether.  The precipitate was dissolve in water and the solution 

acidified to pH 2 with 2 M HCl.  The resultant precipitate was filtered, washed with 

water, and dried to obtain 8.5 g (90% yield) of 2-14 as a colorless powder, mp 249-

251oC.  The spectral data were similar to that reported previously.18  1H NMR (400 MHz, 

DMSO-d6) 3.95 (s, 3H), 8.06 (d, J = 8.6 Hz, 2H), 8.24 (d, J = 8.6 Hz, 2H), 8.69 (s, 1H), 

8.68 (s, 1H), 13.34 (br, 1H). 

Preparation of 6-hydroxymethyl-naphthalene-2-carboxylic acid methyl ester (2-15) 

 

 This method was adapted from Phillippe and coworkers20 and Krisnamurthy and 

coworkers.21  To a suspension of 1.5 g (6.5 mmol) of 2-14 in 30 mL of anhydrous THF at 

-15 oC was added 13 mL of BH3.THF complex slowly.  The reaction mixture was stirred 

overnight at room temperature under nitrogen.  Water was added and the mixture was 

concentrated in vacuo.  Saturated NaHCO3 was added and the mixture extracted by ethyl 

acetate.  The ethyl acetate extract was washed several times with water, brine, dried over 

anhydrous Na2SO4, and concentrated in vacuo to give 1.1g of crude product as a colorless 

powder. The product was purified by silica gel chromatography eluting with 50% ethyl 

acetate in hexane to obtain 0.8g (57 %) of colourless product 2-15 mp 125-127 oC.  The 

spectral data were similar to that reported previously19: 1H NMR (400 MHz, DMSO-d6) 

3.91 (s, 3H), 4.84 (s, 2H), 7.54 (d, J = 9.4 Hz, 1H), 7.85 (d, J = 7.7 Hz, 2H), 7.93 (d, J = 

9.4 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 8.61 (s, 1H). 
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Preparation of methyl -6-formylnaphthalene-2-carboxyllate (2-16) 

 

 The procedure for the PCC oxidation was adopted from the procedure reported by 

Corey and coworkers 22 with some modifications.  To a mixture of 3.51 g (16.3 mmol) of 

PCC in 60 mL of anhydrous CH2Cl2 was added 1.50 g of celite and a solution of 1.60 g 

(7.40 mmol) of alcohol 2-15 in 10 mL of anhydrous CH2Cl2 and the reaction mixture was 

stirred for 3 h at room temperature.  The solution was decanted into another flask and the 

remaining solid material was washed with CH2Cl2 several times and combined to the 

decanted solution.  The combined supernatant liquid was filtered through Florisil (60-100 

mesh) column until the orange colour of the solution disappeared.  The filtrate was 

evaporated under vacuo to obtain 1.31 g (82 % yields) of pure product 2-16 mp 134-136 

°C.  The spectral data were as follows: 1HNMR (400 MHz, DMSO-d6) δ 3.95 (s, 3H), 

7.98 (d, J = 9.0 Hz, 1H) 8.10 (d, J = 9.1, 1H), 8.30 (t, J =7.8 Hz, 2H), 8.66 (s, 1H), 

8.72(s, 1H), 10.20(s, 1H). 13C NMR (100 MHz, DMSO-d63) δ 52.8, 123.7, 126.4, 129.9, 

130.9, 130.82, 130.65, 134.4, 135.4, 135.9, 166.4, 139.5,  

Preparation of 2-17 
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The procedure adapted from that reported by Summers and coworkers.17  To a solution of  

3.49 g (33.6 mmol) of malonic acid in 16 mL pyridine at room temperature was added 

6.00(28.0 mmol) of methyl 6-formylnaphthalene-2-carboxylate 2-16 in and 1 mL 

piperidine.  The reaction mixture was refluxed 1.5 h until the evolution of CO2 ceased.  

The reaction mixture was cooled and poured in to 20 mL conc HCl in ice to produce 

precipitate.  The precipitate was filtered, washed with water, and dried.  The precipitate 

was crystallized from 95% ethanol to obtained 6.72 g (93.7% yield) of product 2-17 as a 

colorless crystalline product, mp 206-208 °C.  1H NMR (400 MHz, DMSO-d6) δ 3.92(s, 

3H), 6.76(d, 1H), 7.77 (d, J = 16.1 Hz, 1H), 8.04(m, 3H), 8.15 (d, 1H), 8.29(s, 1H), 

8.65(s, 1H), 12.61(s, 1H). 13C NMR (100 MHz, CDCl3) δ 52.6, 121.4, 125.4, 125.9, 

128.2, 129.2, 129.4, 129.6, 130.4, 130.7, 133.2, 134.7, 135.4, 143.8, 166.6, 167.9.  

(APCI-IT-TOF) m/z: [M-H]- Calcd for255.0663;  Found 255.0660. 

Preparation of 2-18 

 

The procedure was adapted from the procedure reported by Castle and coworkers18 with 

modifications.  A mixture of 6.70 g (26.2 mmol) of 2-17 in 40 mL of chlorobenzene, with 

2 mL of pyridine and 11.4 mL (157 mmol) of thionyl chloride was refluxed for 96 h.  

After cooling to room temperature, suction filtration gave a yellow crude product of 2-12.  

The crude sample of 2-12 was refluxed for 5 h in water, cooled to room temperature and 

suction filtered to obtain 5.68 g (68% yield) of product 2-18as yellow needles, mp 204-

205 oC.  The spectral data were as follows:  1H NMR (400 MHz, DMSO-d6) δ 3.95 
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(s,3H), 7.96 (d, J = 9.0 Hz,1H), 8.16 (dd, J = 8.4 Hz, J = 2.0 Hz,1H), 8.21 (d,J = 9.1Hz, 

1H), 8.35 (d, J = 9.1 Hz, 1H), 8.77 (d, J = 1.5 Hz, 1H); LCMS (APCI-IT-TOF) m/z: [M-

H]- Calcd for C15H9ClO4S 3 318.9837;  Found 318.9833.  Anal. Calcd. for C15H9ClO4S: C, 

56.17; H, 2.83. Found: C, 53.36; H, 2.45. 

Photolysis of compound 6(b) to form 2-19 

A 1.0×10-2 M solution of 6(b) in N2 saturated 33% 100 mM aqueous phosphate buffer in 

dioxane was irradiated with a 450 W Hanovia medium pressure mercury lamp with a 

Pyrex filter for 2 h.  The product was isolated by filtration, washed with water, CHCl3 and 

dried under vacuum. The product was a yellow crystalline solid, mp >300°C.  The 

spectral data were as follows: 1H NMR (400 MHz, DMSO-d6)  δ 3.88 (s, 3H), 7.54 (t, J = 

9.2 Hz, 1H), 7.67 (t, J = 10.5 Hz, 1H),  7.81 (t, J = 7.9 Hz, 1H), 7.89 (t, J = 8.6 Hz, 2H), 

7.98 (d, J = 7.9 Hz,  1H), 8.10 (d , J = 9.9 Hz, 1H), 8.15 (d , J = 7.9 Hz, 1H) 8.35 (d , J = 

7.9 Hz, 1H), 8.60(s,1H).  The 13C NMR could not be obtained due to poor solubility in 

DMSO-d6. The 1HNMR was taken at 40°C and a COSY spectrum in DMSO-d6 

(Appendix-1) was obtained at 60°C.  LCMS (APCI-IT-TOF) m/z: [M+H] + Calcd for 

C28H15NO4S2 492.0370; Found 492.0360.  Anal. Calcd. for C28H15NO4S2: C, 66.14; H, 

3.06; N, 2.84. Found: C, 66.29; H, 3.02; N, 2.83 
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Preparation of photoreactant 2-1 

 

 To stirred solution of 3.00 g (7.32 mmol)of compound ester 2-21 in 

dichloromethane at 80 °C under Ar was added 5(6.59, 36.6mmol) equivalents of weight 

of ester 2-21 of trimethyltin hydroxide. The mixture was refluxed and monitored by TLC.  

After the reaction was complete 50 mL of ethyl acetate was added, followed by aq HCl. 

After extraction, the organic layer was collected and washed several times with water, 

brine, dried over anhydrous sodium sulfate and concentrated in vacuo to obtain pale 

yellow crystalline solid.  The solid product was washed with water to remove remaining 

trimethyltin hydroxide.  Suction filtration and drying gave 2.47g (96% yield)of 2-1 as 

pale yellow crystalline solid mp280-282 °CThe spectral data were as follows:  1H NMR 

(400 MHz, DMSO-d6) δ 3.47(s, 3H), 7.16 (d, J = 8.3, 1H), 7.27 (t, J = 7.7, 2H), 7.34(s, 

1H), 7.36(s, 1H), 7.75(d, J = 8.3 Hz, 1H),8.11 (s, 3H), 8.14(m, 3H), 8.71 (s, 1H), 13.3(s, 

1H) . 13CNMR (100 MHz, DMSO-d6) δ 38.37, 120.7, 120.9, 123.9, 127.3, 127.9, 128. 2, 

128.7, 129.7, 129.8, 130.2, 130.1, 131.2, 132.1, 132.5, 134.6, 143.2,161.8,167.8.  LCMS 

(APCI-IT-TOF) m/z: [M-H] - Calcd for C21H14ClNO3S 394.0310; Found 394.0304.   

 

 



67 

 

 

 

Preparation of Photoreactant 2-21 

 

 A solution of 4.10 g (12.9 mmol) of 2-18 was refluxed with 50 mL benzene and, 

20 mL (283mmol) of SOCl2 was refluxed for 5 h.  The reaction mixture was concentrated 

in vacuo dicholoromethane was added followed by concentration in vacuo to give a dry 

solid residue acid chloride that was used without further purification.  To the acid 

chloride 2-12 in 30 mL oh anhydrous CH2Cl2 added 1.15 mL (1.13 g, 10.6 mmol) of N-

methylaniline and 31.5 mL of triethylamine in 10 mL of anhydrous CH2Cl2.  A catalytic 

amount of DMAP was added.  The reaction mixture was heated at temperatures below 40 

oC for 96 h while stirring under nitrogen.  The reaction mixture was filtered to remove 

trimethylamine hydrochloride, washed several times with saturated aqueous NaHCO3, 

water, 2 M HCl, water and brine and dried over anhydrous Na2SO4  and concentration in 

vacuo gave 4.49.g of a pale yellow crystalline solid (85 % yield) of 2-21, mp 158-160 °C.  

The spectral data were as follows:  1H NMR (400 MHz, DMSO-d6) δ 3.55 (3H,s), 3.99 

(3H,s), 7.16-7.27 (m, 4H), 7.76 (d, J = 9.1 Hz, 1H), 7.86 (d, J = 8.9 Hz, 1H), 7.98 (d, J = 

8.8 Hz, 1H), 8.15(dd, J = 8.8 Hz,1.53, 1H), 8.66 (d, J = 2.0 Hz, 1H). 13C NMR (100 

MHz, CDCl3) δ 38.2, 52.4, 120.9, 123.2, 126.6, 126.8, 127.3, 127.5, 128.2, 129.2, 130.4, 

130.9, 131.3, 134.9, 135.8, 142.9, 162.5, 166.7. LCMS (APCI-IT-TOF) m/z: [M+H] + 
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Calcd for C22H16ClNO3S 410.0612; Found 410.0602. Anal. Calcd. for C22H16ClNO3S: C, 

64.47; H, 3.93; N, 3.42. Found: C, 64.84; H, 4.01; N, 3.37. 

Preparation of compound 2-24 by direct photolysis of 2-22 

 

 A 1.0×10-2 M (200mg in 50 mL) solution of 2-1 in nitrogen saturated 25% 100 

mM aqueous phosphate buffer in dioxane was irradiated with a 450 W Hanovia medium 

pressure mercury lamp with a Pyrex filter for 90 min.  The photoproduct was isolated by 

filtration.  The photoproduct was washed with water and a small amount of CHCl3 and 

dried under vacuum to give 178m.g (98%yield) of 2-22 as a crystalline solid, mp > 

300°C. The spectral data were as follows:  1H NMR (400 MHz, DMSO-d6) δ 3.73 (3H, s), 

7.45 (t, J =7.3 Hz, 1H), 7.62 (m), 8.03 (d, J = 9.4 Hz, 1H), 8.14 (d, J = 10.3Hz, 1H), 

8.21(d, J =10.4 Hz, 1H), 8.64(s,1H), 8.75(s,1H), 8.76(s, 1H).  The 13C NMR could not be 

obtained due to poor solubility in DMSO-d6.  LCMS (APCI-IT-TOF) m/z: [M+H] + 

Calcd for C21H13NO3S 360.0689; Found 360.0680. 

Sensitized Photolysis of Compound 2-1 by Xanthone and Thioxanthone. 

 A solution containing 0.0274g (0.0692 mmol)of compound 2-1(2.33×10-3 M) and 

0.2318 g(1.181mmol) of xanthone (4× 10-2 M) in 29.5mL of nitrogen saturated 25% 100 

mM aqueous phosphate buffer in dioxane was irradiate at 365 nm with a 450W Hanovia 
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medium pressure mercury lamp with a Pyrex filter for 2-3 hours. Photolysate was 

evaporated and freeze dried.  To the residue was added a standard DMF solution and 

2mL DMSO-d6.The solution was filtered to remove salt and 1H NMR was taken to 

quantify the photoproduct and quantum yield was determined by using the general 

procedure for quantum yield determination described below.  Similar procedure was 

followed for a solution containing 0.0282g (0.0713 mmol) of compound 2-1(2.41×10-3 

M) and 0.0159 g (0.0749 mmol) of thioxanthone (2.50× 10-3 M) at wavelength 395 in 

29.5 mL of the same solvent system. 

Triplet Yield Determination for Xanthone and Thioxanthone. 

 A solution containing of 0.2894g (1.475 mmol) of pure (E)-1,2-diphenylpropene 

(0.05 M) and 0.3131 g (1.475 mmol).of thioxanthone (0.05 M) in 29.5 mL of nitrogen 

saturated 25% 100mM phosphate buffer in dioxane was irradiate at 390 nm with a 450W 

Hanovia medium pressure mercury lamp with a Pyrex filter for 2-3 hours solution of in 

photolysate was evaporated and freeze dried. The residue was dissolved in anhydrous 

benzene and dried over anhydrous Na2SO4.The syringe filtered sample of the solution 

was injected to GC-MS with a HP-5 (5% phenylmethylpolysiloxane) column (30 m×0.32 

mm×0.25 μm) to find the ratio of two isomers of 1,2-diphenypropene.  Similar procedure 

was followed with a solution containing 0.2894g (1.475 mmol) of pure (E)- 1,2-

diphenylpropene (0.05 M) and 0.3131 g (1.475 mmol).of thioxanthone (0.05 M) in 29.5 

mL of the same solvent system. 
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Quantum Yield Determination. 

General Procedure for Product Quantum yield Determination 

 A semi-micro optical bench was used for quantum yield determinations using 

ferroxilate actinometry23, similar to the apparatus described by Zimmerman.24  A 200 W 

high pressure mercury lamp was used as light source.  Light from the UV lamp was 

passed through the Oriel monochromator, which was set to desired wavelengths.  The 

light was collimated through a lens.  A fraction of light was split 90° degrees by a beam 

splitter to a 10×3.6 cm side cylindrical quartz cell containing and actinometer solution.  

The photolysate was contained in 10×1.8 cm quartz cylindrical cell of 29.5 mL volume. 

Behind the photolysate was mounted a quartz cell containing 29.5 mL of actinometer. 

The light absorbed quantified by ferroxiolate actinometry using the splitting ratio 

technique.  All quantum yields reported herein where the average of two or more 

independent runs. 

2. 5.  Supporting Information -Appendix-1  
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CHAPTER 3  

PHOTOCHEMICAL ELECTROCYCLIC RING CLOSURE AND 

LEAVING GROUP EXPULSION FROM 5-BENZOYL-3-

BROMOTHIOPHENE-2-CARBOXYLIC ACID N-METHYL-(9-OXO-

9H-THIOXANTHEN-2-YL) AMIDE 

 

3.1. Introduction 

 

 As discussed in the chapter 1, phenyl-2-thienyl ketone 5 has triplet exited state 

with energies of 62 kcal mol-1.1  Those triplets are lower in energy than benzothiophene 

triplet (69 kcal mol-1).  So it was planned to replace the benzothiophene moiety with 

phenyl-2-thienyl ketone in order to facilitate the energy transfer from the triplet excited 

state of thioxanthone  In this chapter we will discuss the synthesis of 5-benzoyl-3-

bromothiophene-2-carboxylic acid N-methyl-(9-oxo-9H-thioxanthen-2-yl) amide 7 and 

some photochemistry related to that.  The direct photolysis of this compound and the 

identity of photoproduct are reported.  Quantum yields for direct photolysis are 

determined. 

3.2. Results  

 

3.2.1. Synthesis of Photochemical Reactant 7. 

 

 The photoreactant 5-benzoyl-3-bromothophene-2-carboxylic acid N-methyl-(9-

oxo-9H-thioxanthen-2-yl) amide 7 was synthesized by reacting the acid chloride 3-1 with 

2-methylaminothioxanthen-9-one 2-2 ( Scheme 3.1).  Synthesis of acid chloride 3-1 

involved 6 steps starting from 4-bromothiophene carboxyaldehyde.  The Grignard 

reaction of aldehyde with phenyl magnesium bromide formed secondary alcohol 3-2 
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which was converted to ketone 3-3 by oxidation with Jone's reagent.  The ketone group 

was protected by making the acetal 3-4 before α lithiation.  Then the α lithiated 

compound was treated with dry ice to obtain caboxylic acid 3-5.  Deprotection of the 

acetal with glacial acetic acid gave the carboxylic acid 3-6 which was converted to 

compound 3-1 by refluxing with SOCl2(Scheme 3.2)  

Scheme 3.1 Synthesis of Compound 7 

 

3.2.2. Crystal Structure of Photochemical Reactant 7 

 

 According to the X-ray crystallographic analysis (by Oxford Supernova 

diffractometer using Cu(Kα) radiation, the compound 7 exhibits folded shape with amide 

group I a cis-configuration(Figure 3.1).  Both thioxanthone and thiophene moieties are 

rotated out of conjugation with the amide group because of steric hindrances.  There are 

some deviations from planarity for atom C1 of thiophene ring and some folding of 

thioxanthone along S…O line.  There is some stacking interaction between C21…C26 

benzene rings related by inversion center.  The bond distances from the carbon (C2) 

occupied by the bromide leaving group to two ortho positions of the thioxanthone ring 

system to the amide group are 3.88 Å and 4.90 Å. 
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Scheme 3.2  Synthesis of compound 3-1 

 

Figure 3.1. Crystal structure of photoreactant 7       
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3.2.3. UV Spectra for the Photoreactant 7  

 

 The compound 7 exhibits absorption maxima at 388 nm in aqueous acetonitrile 

(Figure 3.2) with ε = 6270 M-1 cm-1. 

 

Figure 3.2. Absorption spectra of  1.0 x 10-4 M of compound 7 ((..........)and 1.0 x 10-4 
photoproduct produced from 3-7(       ) in 10 % aq. phosphate buffer (pH= 7) in CH3CN. 

 

3.2.4. Preparative Direct Photolysis 

 

 For preparative photolysis, Pyrex-filtered light from a Hanovia 450 W medium 

pressure mercury lamp was used.  Photolysis of 10-2 M sample of 7 in N2 saturated 10% 

H2O containing 100 mM phosphate buffer at pH 7 in CH3CN resulted in expulsion of the 

bromide leaving group and formation of single regioisomeric photoproduct (Scheme3. 2).  

However, the cyclization and expulsion of leaving group from compound 7 was very 

slow.  After photolysis for three days solid product formed was filtered washed with 

water and dried to obtain 30 mg of photoproduct. The product was identified and 

distinguished from photoreactant by 1H NMR as N-methyl peak shifted downfield from δ 
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3.55 to 3.93 ppm, and also aromatic region counts for 12 protons instead of 13 protons 

which were counted for photoreactant.  The melting point was found to be 244-245 oC for 

the photoproduct, whereas, 132-133 oC for the photoreactant 7.Repeated attempts were 

done to make crystals for determination of structure using x-ray diffraction. But the 

compound was obtainable only as a powder. The absorption spectra of the photoproduct 

3-7 or 3-8 showed a long wave length maximum at 410 nm with ε = 6990 M-1 cm-1 in 

aqueous acetonitrile containing 10%  pH 7 phosphate buffer (Figure 3.2). 

Scheme 3.3  Photolysis of Compound 7 
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3.2.5. Quantum Yield 

 

 

 The quantum yield for the electrocyclic ring closure reaction of amide 7 was 

determined at 388 nm in N2 saturated 10% phosphate buffer at pH 7 in CH3CN.  The light 

output for the photochemical reaction was 0.034 mE/h.  After 21.5 h photolysis of the 6.3 
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x 10-3 M solution, the quantum yield of the reaction was found to be 0.004.  The quantum 

yield determination was carried out using ferrioxalate actinometry.  The quantum yield 

determinations involved quantifying the photoproduct formed by using 1H NMR 

spectroscopy with DMF as an internal standard.  In addition, attempts were made to 

obtain the quantum yield for a 1.0 x 10-4 M solution (A = 0.627), but the photoproduct 

could not be quantified by absorption spectroscopy due to overlap with the 

photochemical reactant absorption spectrum, which could not be adequately 

deconvoluted.  As found, this particular photoreaction is inefficient. 

3.3. Discussion and Conclusion 

DFT calculations showed that the crucial step in the electrocyclization of 

benzothiophene amides with attached thioxanthone chromophores involves excitation 

transfer from the initial thioxanthone triplet excited state to the benzothiophene ring.  An 

important structural change that accompanies excitation transfer is the pyramidylization 

of the C-3 carbon bearing the leaving group in the benzothiophene ring.  This structural 

change seems to be important in the conrotatory electrocyclic ring closure step to form 

the triplet excited state of the putative zwitterionic intermediate.  In the case of the 

previously studied benzothiophene amide with attached thioxanthone chromophore, the 

energy transfer from the thioxanthone to the benzothiophene is ca. 5 kcal mol-1 

endothermic in the triplet excited state.  The initial triplet excited state energy of 

thioxanthone is 64-65 kcal mol-1, whereas the triplet excited state energy of the 

benzothiophene acceptor is 69 kcal mol-1.  Therefore, for the current project the objective 

was to replace the benzothiophene ring with a conjugated thiophene that had a triplet 
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energy that would be lower than that of the thioxanthone, in order to facilitate the triplet 

excitation transfer in the critical step of the electrocyclization. 

Two choices were thought to be appropriate for substituting the benzothiophene 

ring system with a thiophene that would have a triplet excitation energy below 64-65 kcal 

mol-1, which would be favorable for energy transfer from thioxanthone.  The first choice 

which was implemented was to introduce a 5-benzoylthiophene ring system in place of 

the benzothiophene, e.g. see structure 7 (Scheme 3.2).  In structure 7 the 5-

benzoylthiophene ring is estimated to have a triplet energy of 62 kcal mol-1 on the basis 

of unsubstituted 2-benzoylthiophene as the model compound.1  This choice was also 

considered appropriate, because the electronic configuration of the triplet excited state 

would be 3π,π*, which would be essentially unchanged from that of the benzothiophene 

system that is being replaced. 

Photophysical and theoretical studies of 2-benzoylthiophene indicate that the 

lowest energy singlet excited state is n,π*, whereas S2 is π,π*.  These assignments can be 

made on the basis of solvent effects on the energies of the corresponding bands in the 

absorption spectrum.  As expected, the π,π* bands appear at 256 nm and 284 nm and are 

red shifted with increasing polarity of the solvent.  On the other hand, the longer 

wavelength n,π* band at >350 nm is blue shifted with increase in solvent polarity. 

The relative energies of the two singlet excited states are also supported by 

theoretical calculations.  In the ground state, ab initio calculations show the thienyl ring 

to be almost coplanar with the C=O, such that transfer of charge occurs from sulfur to 

oxygen.  S is +0.273 and O is -0.223.  The C=O and the thiophene S are cisoid in the 

ground state, due to the favorable electrostatic interaction.  Thus, sulfur strongly interacts, 
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conjugatively, with the C=O in 2-benzoylthiophene.  Moreover, sulfur should have a 

stabilizing effect on the π,π* excited state of the compound, but not to the extent that this 

configuration would lie below the n,π* state in the singlet excited state manifold. 

The phosphorescence spectrum is consistent with a lowest π,π* triplet 

configuration, in contrast with the singlet excited states.  This assignment is based on the 

fact that the emission does not show the vibronic progression typical of the carbonyl 

group, which would be the case, if the emissive triplet was n,π* in character.  Moreover, 

the lifetime of the phosphorescence is quite long, τ > 100 ms at 77 K, which is a 

characteristic of π,π* triplets.  The π,π* assignment for the configuration of the lowest 

energy triplet excited state is further consistent with the CNDO/S calculation.  Note that 

qualitatively, one would expect that the π,π* configuration should be stabilized relative to 

the n,π* configuration by the thienyl sulfur, as shown for the singlet excited state.  

Moreover, the large triplet singlet splitting typical of π,π* excited states (25-30 kcal mol-

1) vs. the small 5-6 kcal mol-1 S-T splitting typical for n,π* singlet could be responsible 

for the inversion of the π,π* and n,π* configurations in the triplet excited state manifold. 

The above electronic disposition of n,π* and π,π* singlet and triplet excited states 

is favorable for spin orbital coupling and intersystem crossing.  The quantum yield for 

intersystem crossing in 2-benzoylthiophene is 0.9, which reflects that the change in 

multiplicity is accompanied by a change in orbital angular momentum in going from the 

n,π* singlet to the π,π* triplet. 

The above photophysical properties are also manifested in reduced reactivity of 2-

benzoylthiophene towards hydrogen abstraction from 2-propanol.  It is well-known that 

n,π* triplet excited states of ketones such as benzophenone undergo efficient 
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photoreduction by hydrogen atom abstraction from 2-propanol to produce ketyl radicals 

that recombine to give pinacols. 

The photolysis of 7 was very slow.  In part, this was seen as due to the strong 

overlap between the absorption spectrum of the product and the photochemical starting 

material.  Whereas in the previously studied benzothiophene amide with thioxanthone 

chromphore, 3, the reactant absorbed at 385 nm, while the photoproduct absorbed at 432 

nm.  In the case of 7 the starting material absorbs at 388 nm and the photoproduct absorbs 

at 410 nm and 425 nm in 10% aqueous phosphate buffer in CH3CN.  Three days 

photolysis gave only a 4% yield of photoproduct with a 450 W Hanovia medium pressure 

mercury lamp. 

The quantum yield of photoproduct was estimated as Φ = 0.004 for a single 

photolysis.  The quantitative determination of the photoproduct was done by NMR 

spectroscopy using DMF as a standard.  The experimental conditions are not optimal for 

the quantum yield determinations, because the absorbance in the 1 cm path cell was A = 

39 for the 0.0063 M solution.  Attempts were made to obtain the quantum yield for a 1.0 

x 10-4 M solution (A = 0.627), but the photoproduct could not be quantified by absorption 

spectroscopy due to overlap with the photochemical reactant absorption spectrum, which 

could not be adequately deconvoluted.  The issue here is that it is potentially important 

for the incident light to penetrate some distance into the sample, so as to avoid forming 

photoproduct within a thin layer at the front face of the cell.  This would lower the 

observed quantum yield due to the internal filter effect of the photoproduct formed early 

in the photolysis.  To avoid the effect, the more dilute solution is desirable, but would 

require an alternate analytical method to quantify the photoproduct than NMR 
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spectroscopy.  HPLC analysis might be a suitable alternate method for product 

quantification.   

Although the quantum yield may be low due to the aforementioned experimental 

flaws, it is thought that more likely the compound 7 is inherently and unexpectedly less 

reactive than the benzothiophene system 3.  The initial concern might be the electronic 

configuration might not be similar to that of the benzothiophene, which is expected to be 

π,π* in both.  Theoretical calculations will be needed to ascertain details of the electronic 

configuration of the triplet excited state of the 5-benzoylthiophene in7.  Such calculations 

would reveal whether the C-3 position of the thiophene ring is indeed pyramidalized, as 

is the case for the benzothiophene ring system.  One concern with 7 is that the triplet 

excitation is localized in the S-conjugated carbonyl group.  Whether such localization of 

excitation elsewhere in the benzoylthiophene moiety suppresses pyramidalization is the 

question.  The low quantum yield has nothing to do with the low chemical yield, which 

should be 100% regardless, so long as the photoproduct does not compete for light with 

the reactant. 

In the meantime, it was urgent to ascertain whether another choice would be more 

appropriate as a replacement for the benzothiophene ring system.  Efforts therefore 

focused upon testing a naphthothiophene ring system in place of benzothiophene.  In the 

naphthothiophene the triplet excited state is estimated to be a 62 kcal mol-1, which would 

lie below the triplet energy of the thioxanthone. 
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3.4. Experimental 

 

The NMR spectra were recorded at 400 MHz or 300 MHz for 1H and 100 MHz or 75 

MHz for 13C with TMS as the standard.  Oxford Supernova diffractometer using Cu(Kα) 

radiation was used to X-ray crystallographic analysis.  All melting points were 

determined using Fischer-Jones melting point apparatus.  Absorption measurements were 

recorded on an Agilent 8453 UVspectrometer.  All commercial reagents were used 

without further purification unless otherwise noted.The solvent used for photolysis were 

CH3CN (99.3+%, HPLC grade, Sigma-Aldrich), deionized water, CD3CN (99.8% d, 

Cambridge), and D2O (99.9% d, Cambridge).  Solutions required for the actinometry was 

prepared using the procedure reported by Zimmeman.2  

Preparation of 5-benzoyl-3-bromothiophene-2-carboxylic acid N-methyl-(9-oxo-9H-

thioxanthen-2-yl) amide (26)  

 

 

 To a solution of 1.2 g (5.0 mmol) of 2-methylaminoxanthen-9-one 2-2 and 15 mL 

of triethylamine in 30 mL of anhydrous CH2Cl2 was added 2.0 g (6.1 mmol) of 3-bromo-

4-benzoylthiophene-2-carbonyl chloride 3-1 dissolved in 10 mL of anhydrous CH2Cl2 at 

5-8 oC in an ice bath.  A catalytic amount of DMAP was added.  The reaction mixture 

was warmed to room temperature and stirred for 72 h under nitrogen.  The reaction 

mixture was filtered to remove trimethylamine hydrochloride, washed several times with 
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saturated aqueous NaHCO3 solution, water, with 2 M HCl, water and brine.  The CH2Cl2 

solution was then dried over anhydrous Na2SO4 and concentrated in vacuo to obtain 2.30 

g (86 % yield) of a golden yellow solid of 7.  Crystallization of the solid material with 

ethanol gave 2.00 g (74.9 %) of yellow colored powder, mp 158-159 °C. The spectral 

data were as follows:  1H NMR (400 MHz, CDCl3) δ 3.58 (s, 3H), 7.29 (s, 1H), 7.44 (t, J 

= 7.8 Hz, 3H),  7.50 (t, J = 8.0 Hz, 2H), 7.57 (t, J = 5.2 Hz, 2H), 7.64 (dt, J = 8.0, 1.75 

Hz, 1H), 7.72 (s, 1H), 7.74 (s,1H), 8.52 (d, J = 2.5 Hz, 1H), 8.60 (d, J = 8.3 Hz, 1H); 13C 

NMR (100 MHz, CDCl3)  δ 38.5, 111.4, 126.3, 126.9, 127.4, 127.5,  129.0, 129.3, 129.5, 

130.0, 130.1, 130.9, 132.9, 133.2, 136.4, 136.8, 136.7, 137.0, 140.1, 141.1, 144.1, 162.4, 

179.35, 186.9. 

Photolysis of compound 7 

 

 A solution of 50 mL of 6.3 x 10-3  M 7 in 10% aqueous phosphate buffer in 

acetonitrile was flushed with N2 for 30 min.  Then it was photolyzed using a 450 W 

medium pressure mercury lamp with a Pyrex filter for 3 days.  Resultant precipitate was 

filtered, washed with acetonitrile and water, and dried to obtain 30 mg of product 3-7 or 

3-8 as a yellow powder, mp 244-245 °C.  The spectral data were  as follows: 1H NMR 

(400 MHz, CDCl3) δ 3.93 (s, 3H), 7.52 (t, J = 7.2 Hz, 1H), 7.60-7.77 (m, 7H),  7.75 (t, J 

= 9.3 Hz, 1H), 8.08 (s, 1H), 8.09 (s,1H), 8.11 (d, J = 8.1 Hz, 1H), 8.26 (d, J = 8.1 Hz, 



83 

 

 

 

1H); 13C NMR (100 MHz, CDCl3) δ 30.8, 118.2, 120.2, 125.5, 126.1, 126.7, 127.0, 

128.7, 129.12, 130.1, 132.2, 132.7, 133.3, 135. 7, 135.5, 137.2, 138.0, 138.9, 139.1, 

145.7, 157.8, 183.5, 188.7. 

Preparation of 3-2 

 

 The procedure was adapted from a procedure reported by Alexander.3   To 8.17 g 

of (336 mmol) of Mg was added to 300 mL anhydrous diethyl ether in dry three neck 

flask attached to a condenser.  Using an addition funnel solution of bromobenzene 49.3 g 

(314 mmol) in 15 mL of anhydrous diethyl ether was added slowly.  Reaction mixture 

was stirred until all Mg has dissolved.  Then 30.0 g (157 mmol) of 4-bromobenzene 

carboxyaldehyde in anhydrous ether was added into it slowly.  Reaction mixture was 

refluxed for 3 h.  The reaction mixture was added into cold solution of 3M HCl to quench 

the reaction.  Ether was added to dissolve all compound.  The ether layer was separated, 

dried over anhydrous Na2SO4 and evaporated.  The crude solid material was 

recrystallized from hexane to obtained 37.6 g (89%) of compound 3-2 as a white solid, 

mp. 81-82 °C.  The spectral data were as follows:  1H NMR (400 MHz, CDCl3):  δ 2.47 

(s, 1H), 5.97 (d, J = 3.9 Hz, 1H), 6.75 (t, J = 1.5 Hz, 1H), 7.14-7.46 (m, 5H); 13C NMR 

(100 MHz, CDCl3):  δ 72.1, 109.1, 122.5, 126.2, 127.3, 128.4, 128.7, 142.1, and 149.3. 
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Preparation of 2-benzoyl- 4-bromothiophene (3-3). 

 

To prepare Jone's reagent 26.7 g (268 mmol) of chromic oxide was dissolved in 23 mL of 

conc. H2SO4, diluted with water to 100 mL at 0 °C.  To a solution of 13.5 g ( 50.0 mmol) 

of 3-2 in 100 mL acetone was added 14 mL of Jone's reagent previously prepared 

portionwise while maintaining the temperature below 20 °C.  The reaction mixture was 

stirred further for 3 h.  The liquid in the flask was decanted into another flask.  The solid 

material remaining in the flask was washed with ether and combined to the above liquid.  

To remove excess Cr(VI) ion, sodium bisulphite was added until orange color 

dissapeared, then washed with water, saturated NaHCO3 and brine.  Then it was filtered 

through Florosil, dried over anhydrous Na2SO4 and evaporated in vacuo to obtain 10.7 g 

(87% yield) of 3-3 as off white crystals, mp 84-86 °C.  The spectral data were as follows: 

1H NMR (400 MHz, CDCl3) δ 7.5 (m, 3H), 7.6 (t, J = 9.8 Hz, 2H), 7.84 (m, 1H), 7.85 (m, 

1H); 13C NMR (75 MHz, CDCl3) δ 110.8, 128.6, 129.2, 131.5, 132.7, 136.5, 137.2, 

144.4, 187.9.  

Preparation of 1,3-Dioxane, 2-(3-bromothienyl)-2-phenyl (3-4) 
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 The procedure was adapted from the procedure reported by Angibaud.4  To a 

solution of 21.0 g (78.6 mmol) of 2-benzoyl-4-bromothiophene 3-3 in 120 mL of 

anhydrous benzene was added 14.4 g (188 mmol) of 1,3-propanediol and 10 mg of p-

toluene sulfonic acid.  The reaction mixture was refluxed for 3 days using Dean-Stark 

apparatus to remove water, cooled to room temperature, washed with saturated NaHCO3, 

water and brine, dried over anhydrous Na2SO4 and evaporated to obtain colorless oil. 

Upon standing for two days it gave 21.9 g (86 % yield) of acetal 3-4 as colorless crystals, 

mp. 61-63 oC.  The spectral data were as follows:  1H NMR (400 MHz, CDCl3)  δ 1.63 

(m, 1H), 1.92 (m, 1H), 4.02 (m, 4H), 6.75 (s, 1H), 7.12 (s, 1H),  7.13-7.53 (m, 3H), 7.53 

(t, J = 7.5 Hz, 2H).  13C NMR (75 MHz, CDCl3)  δ 25.3, 62.1, 99.3, 108.9, 123.5, 126.6, 

128.3, 128.4, 128.6, 129.1, 140.5, 149.1. 

Preparation of 3-5 

 

 Procedure was adapted from the procedure reported by Katritzky.5  12.0 g (36.8 

mmol) of 3-4 in 60 mL anhydrous diethyl ether was treated with 50 mL of 1M PhLi 

(Prepared by dissolving 0.82 g (118 mmol) Li and 9.24 g (58.8mmol) of bromobenzene 

in 600 mL of anhydrous diethyl ether.  The dark brown mixture was stirred for 5 h at 

room temperature and it was slowly added to the flask which contained dry ice and kept 

for an overnight at room temperature.  Then the compound was extracted with water and 

washed with ether.  On acidification with conc. HCl (to pH= 2) the acid was obtain as 
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brown oil.  The oil formed was extracted into diethyl ether, dried with anhydrous Na2SO4 

and evaporated under vacuo to obtain 8.62 g (66% yield) of 3-5 as brown solid, mp.149-

151 oC.  The spectral data were as follows: 1H NMR (400 MHz, CDCl3)  δ 1.64 (m, 1H), 

1.91 (m, 1H), 4.02 (m, 4H), 6.9 (s, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 9.8 Hz ,2H), 

7.55 (d, J = 7.6 Hz, 2H); 13C NMR (75 MHz, CDCl3):  δ 25.1, 62.0, 99.0, 117.5, 126.2, 

127.2, 129.1, 130.9, 139.6, 155.1, 166.2. 

Preparation of 5-benzoyl-3-bromo-2-thiophenecaboxylic acid (3-6) 

 

 Procedure was adapted from procedure reported by Babler.6  To 10.0 g (28.4 

mmol) of 3-5 was added 100 mL of glacial acetic acid and 25 mL of water.  The reaction 

mixture was heated at 65 oC for overnight while stirring.  Then water was added to dilute 

the reaction mixture, and extracted with ether.  The ether layer was dried over anhydrous 

Na2SO4 and evaporated under vacuo.  Remaining CH3COOH was evaporated by vacuum 

distillation to give 7.92 g of brown color solid.  Recrystallization of brown color solid 

with aqueous ethanol formed 7.16 g (81% yield) of 3-6 as off white color crystals, 

mp176-178oC.  The spectral data were as follows:  1H NMR (400 MHz, CDCl3  7.55 (t, J 

= 7.8 Hz, 2H), 7.62 (s, 1H), 7.68 (t, J = 7.4 Hz, 1H), 7.89 (d, J = 7.0 Hz, 2H); 13C NMR 

(100 MHz, DMSO-d6) δ 115.8, 129.3, 133.9, 135.4, 136.3, 138.7, 145.0, 161.5, 186.9. 
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Preparation of 5-benzoyl-3-bromo-thiophenecarbonyl chloride 3-7 

 

 To a solution of 4.00 g (12.9 mmol) of 3-6 in 100 mL benzene was added 6.12 g 

(51.4 mmol) of SOCl2 and refluxed for 3 h.  Then the reaction mixture was evaporated 

under vacuum.  Remaining SOCl2 was co-evaporated with CH2Cl2 to obtained 3-1 and it 

was used to next step without further purification. 

Procedure for Product Quantum Yield Determination 

 A semi-micro optical bench was used for quantum yield determinations, similar to 

the method described by Zimmerman.2 A 200 W high pressure mercury lamp was used as 

a light source. Light from the UV lamp was pased through the Oriel monochromator, 

which was set to 388 nm wavelength. The light was collimated through a lens.  A fraction 

of the light was diverted 90° by a beam splitter to a 10 cm x 3.6 cm side quartz cell 

containing 41.5 mL of an actinometry solution.  The photolysate was contained in 27 mL 

volume quartz cylindrical cell with 10 cm x 1.8 cm dimensions.  Behind the cell 

containing photolysate was mounted a quartz cylindrical cell 10 cm x 1.8 cm containing 

27 mL of actinometry solution.  The light absorbed was quantified the ferrioxalate 

actinometry using the splitting ratio method. 

 For compound 7, photolysate was evaporated to remove CH3CN. Then anhydrous 

benzene was added.  Anhydrous sodium sulphate was added to remove water and 
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evaporated again under vacuum to remove remaining water and benzene.  The residue 

was dissolved in CDCl3. DMF was added as a standard for NMR analysis.  Product was 

analyzed by 1H NMR spectroscopy using DMF as the internal standard and conversion 

was 4.3%.  

3.5.  Supportive Information-Appendix-1 
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CHAPTER 4  

CONCLUSIONS 

 

 Photoremovable protecting groups (PPGs) are widely used in applications in 

biochemistry, cellular biology, and physiology because they allow light-controlled 

release of bioeffectors with microscopic spatial resolution.  Various PPGs have been 

developed for various functionalities and applications.  Although a number of such PPGs 

are currently in use, no universal photochemically removable protecting group exists that 

are suitable for all applications.  Some of the common protecting groups were discussed 

in Chapter 1.  While these groups have several advantages, they also have drawbacks, 

such as requiring UV light, slow release rates, harmful or reactive byproduct formation, 

premature release of the bioeffector leaving group under aqueous conditions at high ionic 

strength, and limited basicity of the releasable leaving group.   

 Thus the major goals for this project were the following:  (1) to extend the 

photolysis wavelength for achieving release of bioeffectors from the 350 nm region into 

the visible wavelength region and (2) determine the efficiency for triplet excited state 

energy transfer from the chromophore to the thienyl aromatic ring system that is linked to 

the chomophore via a carboxamide linker. 

In this project a thioxanthone serves as the chromophore and is linked to a 

naphtho[1,2-b]thiophene via a carboxamide linker.  Direct photolyses at 386 nm 

generates the excited singlet state, which intersystem crosses to the triplet excited state 

manifold.  The lowest energy triplet excited state must then transfer excitation energy to 

the naphthothiophene.  This would be followed by electrocyclization to form the 
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zwitterionic intermediate, which would expel the leaving group anions.  Importantly, the 

energy transfer step would be slightly exothermic with the thioxanthone triplet excitation 

donor and the naphthothiophene energy acceptor.  By making this energy transfer step 

more efficient, it was thought that the quantum yield for leaving group expulsion would 

increase over and above that found for a previously studied PPG, which had the 

thioxanthone linked to a benzothiophene ring system.  In that case, Φ = 0.035 for release 

of LG- = Cl-.  The energy transfer step was considered unfavorable, energetically, 

comparing the energy of the chromophore (ET = ca. 64-65 kcal mol-1) to that of the 

benzothiophene (ET = ca. 69 kcal mol-1). 

The naphthothiophene system was successfully synthesized by a multistep route 

and coupled to the thioxanthone to give compound 6b.  Photolysis did result in release of 

LG- = Cl-.  However the quantum yield was somewhat disappointing.  Observed quantum 

yield was Φ = 0.081.  The possibility was considered that the relatively inefficient 

photoreaction was due to the an inefficient energy transfer step involving the 

thioxanthone and naphtho[1,2-b] thiophene. 

To estimate the efficiency for triplet excitation transfer from the thioxanthone 

chromophore to the naphthothiophene ring system in 6b, triplet sensitized photolyses of 

the corresponding anilide 2-1 was studied.  In anilide 2-1 the naphtho[1,2-b]thiophene 

(ET = ca.62 kcal mol-1 ) ring is the triplet energy acceptor, and the triplet energy donors 

(sensitizers) xanthone (ET = ca. 74 kcal mol-1 ) and thioxanthone (ET =  ca. 64-65 kcal 

mol-1 ).  In this case we have kept the leaving group (LG- = Cl) as chloride ion.  The 

quantum yields obtained for direct and xanthone sensitized photolysis of napthothiophene 

anilide 2-1 where Φ = 0.17 or Φ = 0.27, respectively.  Evidently, the triplet excited state 
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energy transfer from the thioxanthone to naphthothiophene ring system is still a 

somewhat inefficient process with an efficiency of 46%.  This is in the context of 

thioxanthone ET = ca. 64-65 kcal mol-1 and napthothiophene ET = ca. 62 kcal mol-1, 

keeping in mind that these triplet energies are only approximate.  The values for Φisc for 

xanthone and thioxanthone was required for the calculation of energy transfer efficiency.  

The values for Φisc are already known for both xanthone and thioxanthone in certain 

nonpolar and polar solvents. But such values for 2: 1 dioxane : water containing 100 mM 

phosphate buffer at pH = 7 are unavailable.  So value for Φisc for xanthone and 

thioxanthone in aq dioxane containing buffer were determined.  For xanthone the Φisc in 

aq dioxane with buffer was found to be 0.98 and  is not significantly different from the 

literature value of 0.97 in carbon tetrachloride.  With thioxanthone the presence of a 

protic solvent substantially lowers Φisc.  In aq dioxane Φisc was found to be 0.67. 

Quenching experiments were performed to find the multiplicity of reactive 

excited state and the triplet lifetime.  The photoreaction is quenched inefficiently at high 

concentrations of the triplet quencher, cyclohexadiene (ET  = ca.53 kcal mol-1).  For the 

benzothiophene linked energy acceptor 6b the photochemistry was shown to occur in the 

triplet excited state, as evidenced by efficient quenching of the reaction by the triplet 

quencher 1,3-pentadiene and by computational studies.  The lifetime of the triplet excited 

state in this case was 7 µs, which would be consistent with triplet energy primarily 

localized on the thioxanthone chromophore.  The long lifetime suggests that energy 

transfer from the thioxanthone to the benzothiophene was rather inefficient, such that the 

chromophore lifetime had not been shortened appreciably by energy transfer.  In the case 

of the naphthothiophene linked thioxanthone,6b the inefficient quenching observed 
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suggests that the lifetime of the triplet excited state is very short (ca. 2 ns) and therefore 

the triplet excited state is difficult to quench.  This suggests that much of the triplet 

excitation energy is transferred to the naphthothiophene ring, which has a short lifetime 

due to the rapid electrocyclization and further reaction that ensues.  This latter type of 

quenching behavior was also observed for anilide 2-1, which was also difficult to quench 

with cyclohexadiene.  It is noteworthy that the Stern-Volmer quenching plot for 6b does 

not intersect 1 on the origin.  The plot would have to curve downward to intersect unity, 

suggesting that a longer lived triplet excited state is being quenched at low quencher 

concentrations.  The curved nature of the plot suggests that there are two triplet excited 

states involved in the reactivity of 6b. 

The photolysis of 6b produced a single regioisomeric photoproduct.  In this 

regard, 6b showed a similar photochemical outcome as the previously studied 

benzothiophenes 3b and 3c, which gave a single regioisomer, whereas benzothiophene 3a 

showed a pair of N-methyl signals in the 1H NMR spectrum corresponding to two 

regioisomeric photoproducts produced upon direct photolysis.  It was initially believed 

that the structure of the photoproduct of 6b was 2-19 rather than 2-20 on the basis of 

precedent.  Good evidence for the structural assignment of the photoproduct as 2-19 was  

provided by the 400 MHz 1H NMR COSY spectrum, which showed six vicinal couplings 

as cross peaks corresponding to proton pairs b-c, h-k, g-i, i-j, j-d, e-f (Scheme 2.8) within 

the benzenoid rings of structure 2-19.  If the structure were 2-20, only five vicinal 

couplings would have been observed, and such a structure would not account for the 

presence of the extra cross peaks observed in structure 2-19 in Scheme 2.8. 
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In addition to naptho[1,2-b]thiophene carboxamide with thioxanthone we 

synthesized carboxamide 7 with benzoylthiophene,  which has a triplet excited state that 

is of lower energy than the thioxanthone chromophore.  If the energy transfer is 

favorable, energetically, one would expect that the the photoreactivity would be more 

efficient than observed for the benzothiophene system 3a-c.  Very slow photolyis was 

actually observed 388 nm.  The photoproduct absorbs at 410 nm and 425 nm.  This slow 

reaction was seen as due to strong overlap between the absorption spectrum of the 

photoproduct and the photochemical starting material.  The quantum yield was estimated 

as Φ= 0.004.  Although the quantum yield may be low due to aforementioned absorption 

of light by photoproduct in competition with the reactant, it is also thought that the 

compound might be inherently and unexpectedly less reactive than the benzothiophene 

system.  The initial concern might be the electronic configuration of benzoylthiophene 

might not be similar to that of benzothiophene, which is expected to have a π,π* triplet 

excited state.  Theoretical calculation will be needed to ascertain details of the electronic 

configuration of the triplet excited state of the benzoylthiophene. 
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     Figure 2.  13 C NMR spectrum of compound 6 (b) in DMSO-d6 
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     Figure 3.  1H NMR spectrum of compound 6 (a) in CDCl3 
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     Figure 4.  Expansion of the aromatic region of Figure 3 
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      Figure 5.  1H NMR spectrum of compound 2-1 in DMSO-d6 
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      Figure 6.  13C NMR spectrum of compound 2-1 in DMSO-d6 
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     Figure 7.  1H NMR spectrum of compound 2-2 in CDCl3 
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      Figure 8.  13 C NMR spectrum of compound 2-2 in CDCl3 
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      Figure 9.  1H NMR spectrum of compound 2-3 in DMSO-d6 
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      Figure 10.  1C NMR spectrum of compound 2-3 in DMSO-d6 
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      Figure 11.  1H NMR spectrum of compound 2-4 in DMSO-d6 
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      Figure 12.  1C NMR spectrum of compound 2-4 in DMSO-d6 
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  Figure 13.  1 H NMR spectrum of compound 2-5 in DMSO-d6 
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Figure 14.  1 H NMR spectrum of compound 2-6 in DMSO-d6 
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Figure 15.  1 H NMR spectrum of compound 2-7 in DMSO-d6 
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Figure 16  13C NMR spectrum of compound 2-7 in DMSO-d6 

 



116 

 

 

 

 PPM 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0

S

N

O CH3

C

O

CH3

2-8  

Figure 17  1H NMR spectrum of compound 2-8 in CDCl3 
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Figure 18.  1H NMR spectrum of compound 2-9 in DMSO-d6 
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Figure 19.  13C NMR spectrum of compound 2-9 in DMSO-d6 
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Figure 2. 1 H NMR spectrum of 2-8  in CDCl3 . 

 

Figure 2. 13 CNMR spectrum  of 2-8  in CDCl3 . 

 

Figure 2. 1 HNMR spectrum  2-9  in DMSO-d6 . 

 

 

Figure 20.  1H NMR spectrum of compound 2-10 or 2-11  in CDCl3.  Solubility is poor in most of the solvent. 
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Figure 21.  1H NMR spectrum  of compound 2-10 or 2-11 in CDCl3 (Expansion of aromatic region) 
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Figure 22.  1H NMR spectrum of compound 2-13 in CDCl3 
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Figure 23.  13C NMR spectrum of compound 2-13 in CDCl3  
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Figure 24.  1H NMR spectrum of compound 2-14 in DMSO-d6  
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Figure 25.  1H NMR spectrum of compound 2-15 in DMSO-d6 
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Figure 26.  1HNMR spectrum of compound 2-16 in DMSO-d6 
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Figure 27.  13C NMR spectrum of compound  2-16 in DMSO-d6 
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Figure 28.  1H NMR spectrum of compound 2-17 in DMSO-d6 
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Figure 29.  13C NMR spectrum of compound 2-17 in DMSO-d6 
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Figure 30.  1H NMR spectrum of compound 2-18 in DMSO-d6 
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Figure 31.  1H NMR spectrum of compound 2-19 in DMSO-d6 
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Figure 32.  Expansion of aromatic region of 1 H NMR spectrum of 2-19 in DMSO-d6 
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Figure 33.  1H NMR COSY spectrum  
of compound 2-19 in DMSO-d6 at 60° 
C.  Protons which shows vicinal 
coupling are connected by each 
curved line in 1D 1H NMR. 
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Figure 34.  1H NMR spectrum of compound 2-21 in CDCl3 
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Figure 35.  13C NMR spectrum of compound 2-21 in CDCl3 
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Figure 36.  1H NMR spectrum of compound 2-22 in DMSO-d6 
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Figure 37.  1H NMR spectrum of compound 3-2 in CDCl3 
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Figure 38.  13C NMR spectrum of compound 3-2 in CDCl3 
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Figure 39.  1H NMR spectrum of compound 3-3 in CDCl3 

 



139 

 

 

 

1
1
0
.8

1
3
8

1
2
8
.6

3
4
0

1
2
9
.1

6
9
9

1
3
1
.4

5
4
2

1
3
2
.7

8
9
6

1
3
6
.4

8
6
6

1
3
7
.1

6
9
8

1
4
3
.9

6
3
2

1
8
6
.9

4
7
4

 

Figure 40.  13C NMR spectrum of compound 3-3 in CDCl3 
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Figure 41.  1H NMR spectrum of compound 3-4 in CDCl3 
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Figure 42.  1H NMR spectrum of compound 3-5 in CDCl3 
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Figure 43.  13C NMR spectrum of compound 3-5 in CDCl3 
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Figure 44.  1H NMR spectrum of compound 3-6 in CDCl3 
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Figure 45.  13C NMR spectrum of compound 3-6 in DMSO-d6 
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Figure 46.  1H NMR spectrum of compound 3-7 in CDCl3 
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Figure 47.  Expansion of the aromatic region of the 1 H NMR spectrum of compound 3-7 in CDCl3 
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Figure 48.  13 C NMR spectrum of compound 3-7 in CDCl3 
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Figure 49.  1 H NMR spectrum of compound 7 in CDCl3 
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Figure 50.  Expansion of the aromatic region of the  1 H NMR spectrum of 3-7  in CDCl3 
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Figure 51.  13C NMR spectrum of compound 7 in CDCl3 


