
Marquette University
e-Publications@Marquette

Dissertations (2009 -) Dissertations, Theses, and Professional Projects

Investigations of Synthetic Models of Mononuclear
Nonheme Iron Dioxygenases
Michael Bittner
Marquette University

Recommended Citation
Bittner, Michael, "Investigations of Synthetic Models of Mononuclear Nonheme Iron Dioxygenases" (2014). Dissertations (2009 -).
Paper 386.
http://epublications.marquette.edu/dissertations_mu/386

http://epublications.marquette.edu
http://epublications.marquette.edu/dissertations_mu
http://epublications.marquette.edu/diss_theses


INVESTIGATIONS OF SYNTHETIC MODELS OF MONONUCLEAR 

NONHEME IRON DIOXYGENASES 

 
 

 

 

 

 

 

 

 

by 

Michael M. Bittner, B.S. 

 

 

 

 

 

 

 

 

 

A Dissertation submitted to the Faculty of the Graduate School, 

 Marquette University, 

 in Partial Fulfillment of the Requirements for 

 the Degree of Doctor of Philosophy 

 

 

 

 

 

 

 

 

 

Milwaukee, Wisconsin 

 

 

August 2014 

 

 

 

 

 

 

 



ABSTRACT 

Investigations of Synthetic Models of Mononuclear  

Nonheme Iron Dioxygenases 

 

 

Michael M Bittner, B.S. 

 

Marquette University, 2014 

 

 

 

Ring cleaving dioxygenases, such as o-aminophenol dioxygenase (APDO) and 

extradiol catechol dioxygenases (CatD), play an important role in human metabolism and 

the degradation of aromatic pollutants, yet questions still remain concerning the enzymatic 

mechanisms.  One area of the catalytic cycle that remains controversial is the geometric 

and electronic structure of the intermediate formed after O2 binding to the Fe(II) centers. 

Synthetic model systems can be useful for studying enzyme active sites, as they are easier 

to modify and characterize than the enzymes themselves.  However, synthetic models of 

APDOs have been relatively rare thus far.  

We prepared several monoiron(II) complexes that faithfully model the enzyme-

substrate intermediates of o-aminophenol dioxygenases (APDO) and catechol 

dioxygenases.  The complexes use either the Ph2Tp (Ph2Tp = hydrotris(3,5-diphenylpyrazol-

1-yl)borate) or Ph2TIP (Ph2TIP = tris(4,5-diphenyl-1-methylimidazole)phosphine) 

supporting ligands and one of three bidentate, redox-active ligands: 4-tert-

butylcatecholate, 4,6-di-tert-butyl-2-aminophenolate, or 4-tert-butyl-1,2-

phenylenediamine.  These complexes have been extensively characterized with 

crystallographic, spectroscopic, and electrochemical techniques, in conjunction with 

computational methods (e.g, density functional theory).  Each complex is reactive towards 

O2, and the geometric and electronic structures of the resulting species were examined with 

various methods to determine whether the oxidation is iron-based, ligand-based, or a 

combination of both.   

Treatment of the Ph2Tp / Ph2TIP monoiron(II) aminophenolate complex with a 

phenoxyl radical results in formation of a complex containing an iron(II) center 

coordinated to an iminobenzosemiquinonate radical, that to the best of our knowledge has 

no synthetic precedence.  Further oxidation leads to a complex best described as a ferric 

center bound to the iminiobenzosemiquinate radical.  The electronic structures of these 

complexes were determined with the aid of spectroscopic and computational methods. 

Several monoiron(II) complexes were also prepared to model the active-site 

structure of -diketone dioxygenase (Dke1).  For this purpose, we employed the Ph2Tp 

supporting ligand and acacX substrate ligands, where acacX represents the anion of dialkyl 

malonate.  Upon exposure to O2 in toluene it was found that the complexes exhibited 

reactivity similar to Dke1, although at a much slower rate than the native enzyme.  
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Chapter 1 

 

 

 

 
Introduction:  Structure and Function of Nonheme Iron 

Dioxygenases 

 

 
Vetting, M. W.; D'Argenio, D. A.; Ornston, L. N.; Ohlendorf, D. H. Biochemistry 2000, 39, 7943. 

 

Abstract:  Mononuclear nonheme iron dioxygenases play a central role in the 

biodegradation of various aromatic and aliphatic compounds.  Despite their prevalence in 

Nature, certain aspects of the enzymatic mechanisms remain poorly understood.  In the 

ring-cleaving dioxygenases, the catalytic cycle is thought to involve formation of 

substrate-based radical after binding of O2 to the Fe(II) center, although the identity of 

this intermediate is controversial.  We have explored fundamental questions regarding the 

reactivity of iron-containing dioxygenases using a biomimetic approach that combines 

coordination chemistry, spectroscopy, electrochemistry, and reactivity studies. 

 

Portions of this chapter have appeared in the paper: Bittner, M. M.; Kraus, D.; Lindeman, 

S. V.; Popescu, C. V.; Fiedler, A. T. Chem. Eur. J. 2013, 9686-9698. 
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1.A.  Nonheme Iron Dioxygenases 

A number of important metalloenzymes are found in metabolic pathways evolved 

by bacteria to breakdown and assimilate recalcitrant pollutants – a process referred to as 

bioremediation.1,2  Single and multi-ring hydrocarbons are a major class of pollutants 

amenable to bioremediation.  The aerobic degradation of these compounds is largely 

mediated by nonheme iron-containing dioxygenases (enzymes capable of incorporating 

both atoms of O2 into substrate).3  For example, the first step in the catabolism of 

naphthalene is its oxidation to the corresponding cis-1,2-diol (Figure 1.1) – a reaction 

catalyzed by naphthalene 1,2-dioxygenase (NDO).4  After aromatization of the diol to the 

corresponding catechol, the aromatic ring is oxidatively opened by either an intradiol- or 

extradiol-cleaving catechol dioxygenase (CatD).5  The resulting products are then further 

degraded to yield intermediates that can feed into the Krebs cycle, thereby allowing the 

organisms to utilize the pollutant as a source of energy.1 

 

 

Figure 1.1.  Biodegradation pathway of naphthalene. 
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Nonheme Fe dioxygenases have been shown to oxidatively cleave a wide variety of 

aromatic substrates, including catechol, protocatechuates,6 hydroquinones7-9, o-

aminophenols10,11, and salicylates12-14 (Figure 1.2).  With the exception of the intradiol 

catechol dioxygenases, these ring-cleaving dioxygenases generally share a common 

active-site structure: the high-spin monoiron(II) center is bound to one aspartate (or 

glutamate) and two histidine residues in a facial array, along with two or three H2O 

ligands (Figure 1.3)4,5,15-18.  This “2-His-1-carboxylate (2H1C) facial triad” is the 

dominant coordination motif found among nonheme monoiron enzymes involved in O2 

activation – other examples include the -ketoglutarate- and pterin-dependent 

oxygenases and isopenicillin N-synthase (IPNS)19-21.  The 2H1C structure facilitates 

catalysis by permitting the Fe center to bind both substrate and O2.  In the extradiol 

CatDs, substrate coordinates to Fe in a bidentate, monoanionic fashion with concomitant 

dissociation of all H2O ligands18,22,23.  The resulting five-coordinate Fe2+ center then 

binds O2 in the vacant site adjacent to the bound substrate.18,24 
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Figure 1.2.  Various aromatic substrates cleaved by nonheme Fe dioxygenases. 

 

 

Figure 1.3.  Common active-site structure of nonheme Fe dioxygenases, featuring the 2-

His-1-carboxylate facial triad of protein residues.5   
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While the vast majority of nonheme iron dioxygenases are found in bacteria, a few 

significant examples occur in mammals (including humans). For instance, a key step in 

tryptophan degradation involves the O2-mediated ring-cleavage of 3-hydroxyanthranilate 

(HAA) by HAA-3,4-dioxygenase (HAD; Figure 1.4)25.  This reaction occurs as the final 

step in the kynurenine pathway that coverts excess tryptophan to quinolinic acid, which is 

then used to produce the NADH cofactor.26  X-ray crystallographic studies revealed a 

nonheme Fe center coordinated by the canonical 2H1C facial triad.  

 

 

Figure 1.4.  Selected reactions in the kynurenine pathway. 

 

1.B.  Catalytic Mechanism of the Nonheme Iron Dioxygenases  

The catalytic mechanism of the extradiol CatDs has been studies extensively with 

experimental and computational methods.  The first step involves bidentate coordination 

of substrate to Fe with loss of a proton, accompanied by displacement of the H2O 

ligands5,18,23.  The resulting five-coordinate Fe(II) center then binds O2 in the vacant site 
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adjacent to the bound substrate18,24.  Formation of a short-lived ferric-superoxo 

intermediate is thought to trigger the transfer of one electron from the substrate ligand to 

iron, resulting in a bound o-semiquinone radical18.  The existence of this putative 

intermediate would likely require deprotonation of the distal –OH group by a second-

sphere residue, although it is not clear whether these three events (O2 coordination, 

electron transfer, and proton transfer) occur in a stepwise or concerted manner.  The 

degree of semiquinone character on the substrate ligand in the O2-bound form of the 

enzyme is also uncertain (vide infra);  however, it is well-established that the next step of 

the catalytic cycle involves generation of an Fe(II)-alkylperoxo species, which undergoes 

a Criegee rearrangement and hydrolysis to eventually yield the ring-opened product.  

Interestingly, the general catalytic strategy employed by the ring-cleaving dioxygenases 

differs substantially from the O2-activation mechanism employed by cytochrome P450s27, 

methane monooxygenase28, and α-ketoglutarate dependent dioxygenases29.  In these 

enzymes, O2 is used to generate an iron(IV)-oxo intermediate that performs the 

demanding hydroxylation of an aliphatic substrate.  In contrast, structural, mutagenic, and 

radical trap experiments and also computational studies have revealed that the ring-

cleaving dioxygenase mechanism does not involve high-valent Fe intermediates (Figure 

1.5).23,30-32 
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Figure 1.5. Proposed mechanism for extradiol catechol dioxygenases and o-aminophenol 

dioxygenases. 

 

While there is broad agreement concerning the generic mechanism shown in Figure 

1.5, the electronic structure of the critical Fe/O2/substrate intermediate remains disputed.  

While Fe/O2 adducts are normally described as ferric-superoxo species (such as 

intermediate I in Figure 1.5), early studies by Lipscomb33 and Bugg34 lead to the proposal 

that ring-cleaving dioxygenases proceed instead via a superoxo-Fe(II)-

(imino)semiquinone species (II).  The radical character of the substrate was presumed to 

facilitate reaction with the superoxo ligand, thereby overcoming the large kinetic barrier 

to formation of the peroxy intermediate.  This hypothesis was partly inspired by model 

studies that had demonstrated the “non-innocent” nature of metal-bound      
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catecholates35-37 and iminophenolates38.   Subsequent experiments with a substrate 

analogue featuring a cyclopropyl moiety as a radical probe indicated formation of 

semiquinonate (SQ) radical during the catalytic cycle of MhpC, a well-studied ECDO.39  

Density functional theory (DFT) analysis by Siegbahn further supported this electronic 

structure description40-42.   In addition, Emerson et al. demonstrated that a pair of ECDOs, 

Fe-HPCD and Mn-MndD, are equally active with either Fe or Mn in their active sites, 

despite the intrinsically different redox potential of the two metal ions.43  This result lead 

to the conclusion that the Fe (or Mn) oxidation state does not change during the catalytic 

cycle; instead, the metal ion only serves to conduct an electron from the bound substrate 

ligand to O2, thus yielding intermediate II directly.     

Despite this large body of evidence, recent studies have challenged the prevailing 

notion that a substrate-based radical is generated in the catalytic cycles of ECDOs (and, 

by extension, other ring-cleaving dioxygenases). Firstly, Lipscomb and coworkers 

succeeded in isolating the Fe/O2 adduct of a HPCD mutant (H200N) bound to the 

“unactivated” substrate 4-nitrocatechol.  Interrogation with EPR and Mössbauer 

spectroscopies revealed that this species contains an Fe3+O2
•  unit with S = 2 – 

inconsistent with the presence of a SQ ligand.44  A follow-up study of H200N HPCD 

with the native substrate resulted in the isolation and spectroscopic characterization of 

novel intermediate best described as a hydroperoxo-Fe(III)-semiquinone species (III in 

Figure 1.5).45  However, a recent computational study by Ye and Neese suggested that 

this intermediate is not catalytically viable.46  Their calculations of the ECDO mechanism 

found no evidence that a SQ-containing intermediate (either II or III) is required for 

catalysis.  Instead, they favor a mechanism in which the ferric-superoxo adduct (I) 
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converts directly to a hydroperoxo-bridged species (Figure 1.5).  The kinetic barrier for 

this step is lowered by concomitant transfer of a proton from the second-sphere histidine 

residue to the nascent peroxo group.   

Compared to the extensive literature that exists for the extradiol CatDs, there have 

been few mechanistic studies of nonheme Fe dioxygenases that oxidize non-catechol 

substrates, such as o-aminophenols and hydroquinones.5  Proposed catalytic cycles for 

these dioxygenases largely follow the ordered mechanism described above for the 

extradiol CatDs.   For instance, based on X-ray crystallographic studies, Zhang et al. 

suggested the catalytic cycle shown in Figure 1.6 for HAD.30  As in the extradiol CatDs 

mechanism, the electronic structure of the key Fe/O2/HAA adduct is uncertain. 

 

. 

Figure 1.6.  Proposed mechanism for HAD.47 
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1.C.  A New Class of Nonheme Iron Dioxygenases  

Despite the prevalence of the 2H1C facial triad, a new class of mononuclear nonheme 

Fe dioxygenases has recently emerged that employ the 3-histidine (3His) facial triad 

instead.48,49  As with NDO and the extradiol CatDs, these enzymes are largely found in 

bacteria where they serve to degrade xenobiotic compounds (the lone exception is 

cysteine dioxygenase (CDO), an enzyme found in mammalian cells that initiates the 

catabolism of L-cysteine; see Figure 1.7).50,51  Members of this “3His family” catalyze 

novel transformations that have expanded the known boundaries of Fe dioxygenase 

chemistry.  For example, the enzyme -diketone dioxygenase (Dke1) is one of the few 

dioxygenases capable of oxidatively cleaving aliphatic C-C bonds.52,53  Dke1 converts 

acetylacetone – a toxic and prevalent pollutant – to acetic acid and 2-oxopropanal (Figure 

1.7).  It was first isolated from a bacterial strain (Acinetobacter johnsonii) that is capable 

of growing on acetylacetone and other -diketones as its sole carbon source.50  X-ray 

diffraction (XRD) studies confirmed that the metal center in Dke1 is facially coordinated 

by three His residues and presumably 2-3 H2O molecules, although these were not 

resolved in the structure (Figure 1.8).54,55 While the active site can bind several first-row 

transition metal ions, only Fe(II) results in catalytic activity.52  Spectroscopic studies 

suggest that substrate coordinates to Fe as the deprotonated -keto-enolate in a bidentate 

manner.56 
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Figure 1.7.  Reactions catalyzed by nonheme Fe dioxygenases with the 3His triad.   
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Figure 1.8. Crystallographically-derived structures of (A) the 2-His-1-carboxylate facial 

triad,14 and (B) the 3His facial triad in Dke1 active site.   

 

Other Fe dioxygenases with the 3His triad include gentisate 1,2-dioxygenase (GDO)57 

and salicylate 1,2-dioxygenase (SDO),12,13,58 both of which oxidatively cleave aromatic 

C-C bonds (Figure 1.7).  Sequence analysis also suggests that 1-hydroxy-2-naphthoate 

dioxygenase (HNDO) belongs to the 3His family of Fe dioxygenases,13,59 although 

crystallographic data are currently lacking.  Each of these microbial enzymes participates 

in the degradation pathways of polycyclic aromatic hydrocarbons.13,57,60  The reaction 

catalyzed by GDO is very similar to those catalyzed by the extradiol CatDs and likely 

follows a similar mechanism.57  However, the reactions of SDO and HNDO are 

fundamentally different due to the lack of a second hydroxyl group.10,13,61  Only a handful 

of enzymes are capable of cleaving monohydroxylated aromatic compounds, and most of 

these examples involve aminophenol substrates in which the amino moiety assumes the 

role of the second hydroxyl group. SDO and HNDO are therefore unique in performing 

the oxidative cleavage of aromatic rings with only one electron-donating group.        

Finally, the enzyme quercetin dioxygenase (QDO), which catalyzes the aerobic 

breakdown of plant flavonols by fungi and some bacteria (Figure 1.7), employs a 
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variation of the 3His motif.62,63  An X-ray structure of bacterial QDO from Bacillus 

subtilis revealed two monoiron active sites per subunit.64  Both Fe(II) centers are 

pentacoordinate with four protein ligands (one Glu and three facial His) and one H2O 

ligand.  However, in the site closest to the C-terminus, the Glu ligand is only weakly 

bound with an Fe-OGlu distance of 2.44 Å.64  Thus, QDO can be considered a member of 

the 3His family with an extra Glu residue at the interface of the first- and second-

coordination spheres.  While QDO from B. subtilis was isolated with Fe2+, the enzyme 

exhibits equal or greater activity with other transition-metal ions.64  Indeed, nearly all 

QDOs can function in vitro with multiple divalent metal ions, including Mn2+, Fe2+, Co2+, 

Ni2+, and Cu2+.64-66 

Given the prevalence and effectiveness of monoiron enzymes with the “canonical” 

2H1C triad, the emergence of the 3His family of Fe dioxygenases raises an interesting 

question: what is the significance of this change in Fe coordination environment for 

catalysis?  Interestingly, a mutant of Dke1 in which the His104 ligand was replaced with 

Glu was able to partially bind Fe2+ (~30% of wild type) yet exhibited no catalytic 

activity.67  Similarly, a mutant of IPNS in which the Asp ligand was replaced with His 

was inactive although it contained approximately the same amount of Fe as the wild type 

enzyme.68  Thus, the 2H1C and 3His motifs are not functionally interchangeable, yet it 

remains unclear exactly how these ligand-sets tune the catalytic properties of their 

respective enzymes.   

Another open question concerns the mechanism of oxidative C-C bond cleavage in 

the 3His dioxygenases.  Based on kinetic data for Dke1, Straganz has proposed that the 

reaction proceeds via direct addition of O2 to the bound substrate to give an 
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alkylperoxidate intermediate.69  The nucleophilic peroxidate then attacks the carbonyl 

group to yield a dioxetane species, which subsequently collapses to the products via 

concerted C-C and O-O bond cleavage (Figure 1.9A).  This mechanism resembles the 

one proposed for the intradiol CatDs in which the role of the Fe center is to activate 

substrate, not O2.
70,71  A more conventional O2-activation mechanism has also been 

proposed for Dke1 that involves initial formation of an Fe-superoxo intermediate, 

followed by reaction with bound substrate (Figure 1.9B).72  The mechanisms of SDO and 

HNDO are also unsettled.  The lack of a second electron-donating group on the 

substrates, noted above, makes it unlikely that these enzymes follow the same catalytic 

cycle as the extradiol CatDs, which involves a Criegee rearrangement to form a lactone 

intermediate.5,23  This step requires ketonization of the second –OH group to transfer 

electron-density onto the ring – an impossibility for the SDO and HNDO substrates.  

Thus, these 3His Fe dioxygenases require an alternative strategy for oxidative ring 

scission that has yet to be determined.   

 

 

Figure 1.9.  Proposed mechanism for Dke1. 
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1.D.  Biomimetic Studies of Nonheme Iron Dioxygenases  

Our knowledge of metalloenzymes has greatly benefited from the development of 

small-molecule analogs that replicate important structural, spectroscopic, and/or 

functional properties of the enzyme active sites.73  The intra- and extradiol CatDs have 

been the target of numerous synthetic modeling studies, which have been extensively 

reviewed by Que and Gebbink.20,74-77   By comparison, few efforts have been made to 

produce models of ring-cleaving dioxygenases with non-catechol substrates, such as the 

o-aminophenol or hydroquinone dioxygenases.78,79   

To date, synthetic models of Fe dioxygenases have yielded little insight into the 

electronic structure of the critical Fe/O2/substrate intermediates, which are thought (by 

some) to possess a coordinated substrate radical.78,80-83  Notably, all relevant models of 

the extradiol CatDs feature unambiguous [Fe3+catecholate]+ units.  Similarly, the 

Fe(III)iminosemiquinone complexes generated by Wieghardt and coworkers exclusively 

undergo ligand-based reductions to give the corresponding Fe(III)imidophenolate(2-) 

species.78,81,83  Thus, previous modeling studies have provided no evidence to support the 

existence an Fe(II)/substrate radical species in the catalytic cycles of ring-cleaving 

dioxygenases.  

Biomimetic studies of the 3His family of Fe dioxygenases have also been lacking.  A 

notable exception is Limberg’s structural and functional model of Dke1.  In 2008, 

Limberg et al. reported that the reaction of [Fe(MeTp)(Phmal)] (where Phmal = the anion 

of diethyl phenylmalonate; MeTp = tris(3,5-dimethylpyrazolyl)borate) with O2 at room 

temperature in MeCN results in dioxygenolytic ring cleavage of the bound ligand; yet no 

attempt was made to trap reactive intermediates.72  The unique reactions performed by 
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the 3His family of Fe dioxygenases, as well as their relevance to bioremediation 

processes, make them worthy targets for biomimetic studies.  Thus, one theme of our 

research efforts has been the design of metal complexes that serve as structural and 

functional models of dioxygenases with the 3His facial triad (Dke1, SDO, GDO, HNDO, 

and QDO).   

A key advantage of the biomimetic approach is that the properties of the dioxygenase 

models can be modified in a straightforward and systematic manner, thereby allowing 

one to isolate those factors that play crucial roles in modulating electronic structure and 

catalytic activity.  While similar changes can be made to protein active sites via 

mutagenesis, such modifications often cause widespread and ill-defined changes in 

structure that result in loss of activity.  For instance, in the 2H1C and 3His families, many 

variants arising from point mutations of coordinating residues fail to bind Fe(II), and 

most are catalytically inactive, limiting the information that can be derived from 

mutagenesis studies.49,84  In contrast, the flexible synthetic approach described here will 

provide a series of Fe complexes with a broad range of geometric and electronic 

properties.  By exploring the reactivities of these various complexes with O2, we have 

been able to formulate structure-reactivity correlations that are transferrable to the 

biological systems.  In addition, the biomimetic approach is ideally suited for the 

isolation and characterization of catalytic intermediates that are difficult to observe in 

studies of the metalloenzymes, since it permits a great deal of control over ligand 

properties and reaction conditions.  
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1.E. Importance of Non-innocent Ligands 

As shown above, redox active ligands play an important role in the mechanism of 

nonheme iron dioxygenases; specifically, the possible formation of a Fe2+-(substrate 

radical) intermediate.  While redox noninnocence of the substrate ligand is vital from a 

mechanistic standpoint; the electronic structure of compounds containing these types of 

ligands are often difficult to characterize, since multiple assignments of metal and ligand 

oxidation states are possible.  This necessitates careful examination of these complexes 

with a variety of spectroscopic and computational methods in order to obtain an accurate 

description of their electronic structure.85-89 

 

 

Figure 1.10.  Oxidation states accessible by catechols.  

 

 Figure 1.10 shows the possible oxidation states of catechols, the prototypical 

example of a noninnocent redox active ligand.  It is important to note that while it is 

possible to for these ligands to undergo electron-transfer, an area that has been studied 

extensively, they can also transfer two protons.  This gives these ligands the ability to 

facilitate proton-coupled electron transfers (PCET)- a scenario that has received less 

attention.  By synthesizing Fe2+ compounds with noninnocent ligands like aminophenols, 
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catechols, and phenylenediamines we hope to gain a better understanding of the possible 

intermediates and the role of PCET in the catalytic cycle of nonheme iron dioxygenases. 

 

1.F.  Specific Aims of this Project 

Our research involves a combination of synthetic inorganic chemistry, physical 

characterization (crystallography, electrochemistry, and spectroscopy), computational 

methods, and examination of reactivities (Figure 1.11).  With this integrated approach, 

we have addressed fundamental questions regarding the catalytic activity of nonheme Fe 

dioxygenases.  Specifically, we have: 

1. Synthesized several monoiron(II) complexes with tris(imidazolyl)phosphane (TIP) 

ligands in an effort to model the 3His facial triad of some Fe dioxygenases.  

[Chapter 2] 

2. Prepared synthetic models of putative catalytic intermediates in the mechanism of 

aminophenol dioxygenases.  Significantly, we succeed in generating the first synthetic 

example of an Fe(II) center coordinated a biologically-relevant iminosemiquinonate 

ligand.  A combination of crystallographic, spectroscopic, and computational methods 

were used to probe the electronic structure of this unique complex.  The 

corresponding Fe(III)-iminosemiquinone complex was also prepared and examined 

with similar techniques. [Chapters 3 and 4] 

3. To explore the role of redox-active ligands in O2 activation, we synthesized and 

structurally-characterized iron(II)-Ph2TIP-based complexes with ligands derived from 

catechol and o-phenylenediamine.  These complexes, in conjunction with the 

aminophenolate complex described in Chapter 4, constitute a unique series of high-
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spin Fe(II) complexes with redox-active ligands.  Each complex is oxidized in the 

presence of O2, and the geometric and electronic structures of the resulting species 

were examined with spectroscopic and computational methods.  The kinetics of the 

O2 reactions and the identities of ring-cleavage products (if any) were also examined. 

[Chapter 5] 

4. Examined the reactivity of Dke1 models with O2.  Building upon earlier studies 

performed by Drs. Heaweon Park and Jake Baus, three novel Ph2Tp-based complexes 

with dialkyl-malonate anions were prepared.  We demonstrated that these complexes 

exhibit dioxygenase activity and thus serve as functional Dke1 models. [Chapter 6]   

 

 

 

Figure 1.11. Schematic illustrating of the various methods employed in our modeling 

studies of nonheme Fe dioxygenases. 
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Chapter 2 

 

 

 
Synthesis and Structural Characterization of Iron(II) 

Complexes with Tris(imidazolyl)phosphane Ligands: A 

Platform for Modeling the 3 Histidine Facial Triad of 

Nonheme Iron Dioxygenases 

 

 
 

Abstract: Two monoiron(II) complexes containing the ligand tris(4,5-diphenyl-1-

methylimidazole)phosphine (Ph2TIP) have been prepared and structurally characterized 

using X-ray crystallography and NMR spectroscopy.  The key feature of each of complex 

is the [Fe(κ3-TIP)]2+ unit in which the remaining coordination sites are occupied by easily 

displaced ligands. The viability of these complexes was demonstrated through the synthesis 

of Ph2TIP-based complexes with a β-diketonate ligand that represents a faithful model of β-

diketone dioxygenase (Dke1). 
 

Portions of the following chapter have appeared in the following paper: Bittner, M. M.; 

Baus, J. S.; Lindeman, S. V.; Fiedler, A. T. Eur. J. Inorg. Chem. 2012, 2012, 1848. 
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2.A.  Introduction 

Mononuclear nonheme iron dioxygenases play a central role in the oxidative 

catabolism of a wide range of biomolecules and pollutants.90,91,3 Members of this enzyme 

family include the extradiol catechol dioxygenases,21,92,93 Rieske dioxygenases4,17, 

homogentisate dioxygenase,94,5 and (chloro)hydroquinone dioxygenases95-98. These 

enzymes feature a common active-site motif in which the ferrous center is facially ligated 

by one aspartate (or glutamate) and two histidine residues [the so-called 2-His-1-

carboxylate (2H1C) facial triad].19, 42 However, recent structural studies have shown that 

the Asp/Glu ligand in some monoiron dioxygenases is replaced with His, resulting in the 

3His facial triad.48 For example, cysteine dioxygenase (CDO)99,50 – the first 3His enzyme 

to be structurally characterized – catalyzes the initial step in l-cysteine catabolism by 

converting the thiol into a sulfinic acid (Figure 2.1).  Other 3His Fe dioxygenases include 

gentisate 1,2-dioxygenase (GDO)57,100 and salicylate 1,2-dioxygenase (SDO),58,101,102 

both of which oxidatively cleave aromatic C–C bonds (Figure 2.1). Each of these 

microbial enzymes participates in the degradation pathways of polycyclic aromatic 

hydrocarbons. While the reaction catalyzed by GDO is very similar to those catalyzed by 

the extradiol catechol dioxygenases and likely follows a similar mechanism, SDO is 

unique in performing the oxidative cleavage of an aromatic ring with only one electron-

donating group. 
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Figure 2.1.  Cleavage of several different examples nonheme iron dioxygenase 

substrates. 

 

In synthetic models, the 2H1C triad is typically modeled with anionic, tridentate 

supporting ligands such as tris(pyrazol-1-yl)borates (Tp),103-107 bis(pyrazolyl)acetates,108-

110 and bis(1-alkylimidazol-2-yl)propionates.111 The last two ligand sets replicate the 

mixed N2O donor set of the 2H1C triad by the inclusion of carboxylate arms. Given the 

unique and significant reactions catalyzed by the 3His family of Fe dioxygenases, it is 

important to develop supporting ligands with specific relevance to the 3His facial triad. 

To this end, we have sought to exploit the tris(imidazol-2-yl)phosphane (R2TIP) 

framework shown in Figure 2.2, which accurately mimic the charge and donor strength of 

the 3 His coordination environment. These ligands were initially generated to model the 

3His ligand sets found in the active sites of carbonic anhydrase (Zn2+) and cytochrome c 
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oxidase (Cu2+).112-118 To date, the application of the TIP framework to Fe systems has 

been limited to homoleptic [Fe(TIP)2]
2+/3+ complexes119-121 and carboxylatebridged 

diiron(III) species.121,73,74 

 

 

Figure 2.2.  Phosphine ligand used as supporting ligand in various Fe(II) complexes 

synthesized. 

 

A key advantage of the R2TIP ligand is that their steric properties can be easily 

modified by altering the R substituent(s). Thus far, we have primarily employed the 

Ph2TIP and, as the steric bulk of the phenyl rings discourages both dimerization and 

formation of the homoleptic [Fe(TIP)2]
2+ complexes. The “one-pot” approach, however, 

is not always successful for various combinations of supporting and “substrate” ligands. 

Thus, as described in this chapter, we have generated several Fe2+ complexes with Κ3-

TIP ligands that also contain displaceable ligands (such as solvent, triflate, and benzoate) 

bound to the opposite face of the octahedron. These complexes resemble the resting states 

of 3 His Fe dioxygenases, which feature two or three cis-labile H2O molecules.55,54 In 

addition, it is shown that these TIP-based complexes serve as excellent precursors for the 

formation of monoiron complexes with three facial imidazole donors and various bound 

substrates, including β-diketonates and salicylates (mimics of Dke1 and SDO, 
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respectively). Thus, the chemistry described here establishes a valuable platform for 

future synthetic modeling studies of nonheme Fe dioxygenases with the 3His facial triad. 

 

2.B. Results and Discussion 

The novel Ph2TIP ligand was synthesized by means of lithiation of 4,5-diphenyl-1-

methylimidazole at the 2-position at –78 °C, followed by addition of PCl3 (0.33 equiv.).  

Reaction of Ph2TIP with Fe(OTf)2 in MeCN provided the complex [1](OTf)2 in 60% yield 

(Figure 2.3). Crystals suitable for X-ray diffraction (XRD) analysis were obtained by 

layering a concentrated MeCN solution with diethyl ether. 

 

 

Figure 2.3.  Synthesis of Fe(II) complexes with the Ph2TIP ligand. 
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Table 2.1. Selected metric parameters for [Fe2+(LN3)(MeCN)3]
2+ complexes. Bond 

lengths in Å and angles in degrees. 
 [1](OTf)2·0.5Et2O[a] [Fe(trisoxtBu)(MeCN)3]2+ 

(ref.122)[b] 

[Fe(tpmPh2)(MeCN)3]2+ 

(ref.123)[c] 

Fe1-N2 2.186(1) 2.257(2) 2.199(2) 

Fe1-N4 2.177(1) 2.205(2) 2.196(2) 

Fe1-N6 2.182(1) 2.215(2) 2.205(3) 

Fe1-N7 2.196(1) 2.163(2) 2.131(3) 

Fe1-N8 2.179(1) 2.131(2) 2.166(2) 

Fe1-N9 2.205(1) 2.171(3) 2.156(3) 

Fe-NTIP (av.) 2.181 2.226 2.200 

Fe-Nsolv (av.) 2.193 2.155 2.151 

    

N2-Fe1-N4 88.87(5) 84.62(6) 84.40(9) 

N2-Fe1-N6 91.43(5) 82.12(6) 85.84(9) 

N4-Fe1-N6 88.32(5) 86.89(7) 83.27(9) 

N7-Fe1-N8 85.48(5) 90.25(8) 87.6(1) 

N7-Fe1-N9 82.06(5) 91.33(8) 86.4(1) 

N8-Fe1-N9 83.23(5) 86.00(8) 90.3(1) 

[a] Average values for the two independent, but chemically equivalent [1]+ cations. [b] trisoxtBu = 1,1,1-

tris(4-tert-butyloxazolin-2-yl)-ethane. [c] tpmPh2 = tris(3,5-diphenylpyrazol-1-yl)methane. 

 

 

The structure features two symmetrically independent [1]2+ units with nearly 

identical metric parameters (Table 2.1; details concerning the data collection and analysis 

of all X-ray structures are summarized in Table 2.4). As shown in Figure 2.4, the six-

coordinate (6C) Fe2+ center is ligated by Ph2TIP and three MeCN ligands in a distorted 

octahedral geometry. As expected, the Ph2TIP ligand coordinates in a facial manner. The 

average Fe–N distance of 2.19 Å is indicative of a high-spin Fe2+ center (S = 2), 

consistent with the measured magnetic moment of 5.2 μB. The triflate counteranions are 

not bound to the metal centers, and the asymmetric unit also contains one equivalent of 

noncoordinated Et2O. 
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Figure 2.4. Thermal ellipsoid plot (50% probability) of [1](OTf)2•0.5Et2O. Only one of 

the symmetrically inequivalent [1](OTf)2 units is shown. Hydrogen atoms, counteranions, 

and noncoordinating solvent molecules have been omitted for clarity. 

 

 

 Two related high-spin Fe2+ structures with [Fe(LN3)-(MeCN)3]
2+ compositions 

have been reported in the literature, and their metric parameters are also provided in 

Table 2.1. The average Fe–NTIP distance of 2.18 Å in [1]2+ is significantly shorter than 

the distances observed for the analogous tris(3,5-diphenylpyrazol-1-yl)methane (tpmPh2)76 

and 1,1,1-tris(4-tert-butyloxazolin-2-yl)ethane (trisoxtBu)77 complexes, which display 

average Fe–N distances of 2.20 and 2.23 Å, respectively. Conversely, the average Fe–

NMeCN distance in [1]2+ is approximately 0.04 Å longer than those reported for the tpmPh2 

and trisoxtBu complexes. Both facts suggest that Ph2TIP is a somewhat stronger donor than 

other neutral N3 ligands that have appeared in the literature.  Elemental analysis 

performed with ground and dried crystals of [1](OTf)2 indicate that at least two MeCN 

ligands are removed under vacuum. In addition, evidence for Fe–OTf bonding in non-

coordinating solvents was obtained by using 19F NMR spectroscopy (see Figure 2.5). 
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Figure 2.5.  19F NMR spectra of [1](OTf)2 in CD3CN (black line) and CD2Cl2 (grey line) 

collected at room temperature. 

 

 

For [1](OTf)2 in CD3CN, the triflate counteranion gives rise to a sharp peak at δ = 

–79.2 ppm, which is identical to the chemical shift observed for [NBu4]OTf under the 

same conditions. The lengthy longitudinal relaxation time (T1 value) of 128 ms measured 

for this feature suggests that the triflate counteranion is only weakly associated with the 

[Fe(Ph2TIP)]2+ unit in MeCN. In contrast, the 19F NMR spectrum of [1](OTf)2 in CD2Cl2 

exhibits a broad feature at δ = –60.9 ppm with a short T1 value of 14 ms which indicates 

that the triflate ion is directly bound to the Fe center. 

Reaction of equimolar amounts of Fe(OTf)2, 
Ph2TIP, and sodium benzoate 

(NaOBz) in MeOH provided the colorless complex [Fe(Ph2TIP)(OBz)(MeOH)]OTf 

([2]OTf), as shown in Figure 2.6. X-ray-quality crystals were obtained from a solution of 

[2]OTf in MeOH layered with pentane. The resulting structure reveals a pentacoordinate 

(5C) iron(II) center with a Κ3-Ph2TIP ligand, monodentate benzoate ligand, and bound 

solvent (Figure 2.6). In addition to the second-sphere triflate anion, the asymmetric unit 
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also contains four MeOH molecules that do not directly interact with the [2]+ cation. The 

complex adopts a distorted square-pyramidal geometry (τ = 0.25)124 with an O2N2 

pseudobasal plane. Two phenyl rings of the Ph2TIP ligand lie across the vacant 

coordination site (i.e., parallel to the plane of the benzoate ligand), which prevents further 

solvent binding. The Fe–NTIP and Fe–O distances are typical for high-spin Fe2+ centers 

(Table 2.1). The H atom of the coordinated MeOH molecule was found objectively and 

refined.  The resulting O2···O3 distance of 2.610(2) Å and H3···O2 distance of 1.81(1) Å 

are indicative of an intramolecular hydrogen bond that closes a six-membered ring. 

 

 

Figure 2.6. Thermal ellipsoid plot (50% probability) derived from [2]OTf·4MeOH. Non-

coordinating solvent molecules, counter anions, and most H atoms have been omitted for 

clarity.  The dotted line indicates the hydrogen-bonding interaction between H3 of the 

MeOH ligand and O2 of the benzoate anion.
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Table 2.2 Selected metric parameters for ferrous carboxylate complex [2]OTf·4MeOH. 
 [2]OTf·4MeOH 

Fe1-N2 2.124(2) 

Fe1-N4 2.127(2) 

Fe1-N6 2.226(2) 

Fe-NLN3 (av.) 2.158 

Fe1-O1 2.011(1) 

Fe1-O3 2.105(1) 

O1-Ccarboxyl 1.273(2) 

O2-Ccarboxyl 1.254(2) 

  

N2-Fe1-N4 93.94(6) 

N2-Fe1-N6 85.36(6) 

N4-Fe1-N6 91.69(6) 

O1-Fe1-N2 153.44(6) 

O1-Fe1-N4 112.06(6) 

O1-Fe1-N6 88.38(6) 

O1-Fe1-O3 87.64(6) 

N2-Fe1-O3 93.34(6) 

N4-Fe1-O3 100.01(6) 

N6-Fe1-O3 168.29(6) 

τ value 0.25 

 

 

Complex [2]+ resembles the structure of [Fe(Ph,MeTp)-(OBz)(Ph,Mepyz)] (in which 

Ph,Mepyz = 3-phenyl-5-methylpyrazole) published by Fujisawa and co-workers.125 Both 

complexes feature a distorted square-pyramidal geometry with a monodentate benzoate 

ion linked to a neutral ligand by means of an intramolecular hydrogen bond. This result is 

consistent with our study of [Fe2+(LN3)(β-diketonato)]+/0 complexes that found only slight 

differences (on average) between Fe–NTIP and Fe–NTp bond lengths in 5C species, 

despite the different charges of the supporting ligands.126 
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Starting from either of these two Fe(Ph2TIP) precursors – [1](OTf)2 or [2]OTf – 

we were able to generate the complex [Fe(Ph2TIP)(acacPhF3)]OTf ([3]OTf; Figure 2.7; in 

which acacPhF3 = anion of 4,4,4-trifluoro-1-phenyl-1,3-butanedione). The acacPhF3 ligand 

was selected for two reasons: (i) it is a viable Dke1 substrate, 53,56 53,56 57,60 52,53 and (ii) 

previous studies in our laboratory found that [Fe(LN3)(acacPhF3)]+/0 complexes exhibit 

intense Fe2+-acacPhF3 MLCT bands that serve as useful spectroscopic markers.126 For both 

Fe(Ph2TIP) precursors, reaction with Na(acacPhF3) provides a deep purple solution that 

displays an absorption manifold centered at 502 nm (ε = 700 m–1cm–1;) (Figure 2.8). Not 

surprisingly, the [3]OTf spectrum closely resembles the one published for [Fe(4-

TIPPh)(acacPhF3)]OTf, although the absorption features are blueshifted in the former by 

approximately 400 cm–1.126 Crystals of [3]OTf were obtained from the reaction of 

[1](OTf)2 and Na(acacPhF3) in CH2Cl2, followed by crystallization in CH2Cl2/pentane. 

The asymmetric unit contains two independent units with virtually identical structures. 

As shown in Figure 2.7, the 5C Fe2+ center is coordinated to the Ph2TIP and acacPhF3 

ligands in a distorted trigonal-bipyramidal geometry (τ = 0.51) with the O atom proximal 

to the CF3 group (O1) in the axial position. The metric parameters of [3]OTf are not 

significantly different from those reported for [Fe2+(Ph2Tp)(acacPhF3)] and [Fe2+(4-

TIPPh)(acacPhF3)]OTf.126 
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Figure 2.7. Thermal ellipsoid plot (50% probability) derived from [3]OTf·2CH2Cl2. 

Non-coordinating solvent molecules, counteranions, and most H atoms have been omitted 

for clarity.  Only one of the two independent [3]+ units is shown. Selected bond lengths 

[Å] and angles [deg] for this unit: Fe1–O1 2.089(3), Fe1–O2 1.973(3), Fe1–N2 2.118(4), 

Fe1–N4 2.190(4), Fe1–N6 2.118(4); O1–Fe1–O2 87.2(1), O1–Fe1–N2 91.0(2), O1–Fe1–

N4 176.4(2), O1–Fe1–N6 89.5(2), O2–Fe1–N2 120.4(2), O2–Fe1–N4 96.5(2), O2–Fe1–

N6 146.3(2). 

 

 

Figure 2.8.  Electronic absorption spectra of the complexes [Fe(4-TIPPh)(acacPhF3)]OTf 

(solid line) and [3]OTf (dashed line) measured at room temperature in MeCN. 
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The solution structures of [2]OTf and [3]OTf in CD2Cl2 were probed using 1H 

NMR spectroscopy, and the observed chemical shifts, peak integrations, and T1 values 

are summarized in Table 2.3. The three imidazole ligands are spectroscopically 

equivalent in solution due to dynamic averaging of the ligand positions on the NMR 

spectroscopic timescale. The Ph2TIP derived resonances were assigned with the help of 

peak integrations and by making two assumptions: (i) T1 values follow the order ortho-

meta-para for each phenyl ring,105,126 and (ii) T1 values of the 4-Ph protons are shorter 

than the corresponding protons on the 5-Ph ring. Thus, the fast-relaxing peaks (T1 ≈ 1 

ms) near –20 ppm were attributed to the ortho protons of the 4-phenyl Ph2TIP 

substituents, which are positioned near the Fe2+ center. The peaks with the largest 

integration at (21.9) ppm were assigned to the 1-N-Me protons. The remaining 

resonances were then identified as the benzoate and acacPhF3 groups of [2]OTf and 

[3]OTf, respectively, by using the relative T1 values to assign the phenyl resonances of 

both ligands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

Table 2.3. Summary of 1H NMR spectroscopic parameters for [2]OTf and [3]OTf in 

CD2Cl2. 
 [2]OTf   [3]OTf  

Resonance δ[ppm] T1[ms] Resonance δ[ppm] T1[ms] 

o-4-Ph -21.0 1.1 o-4-Ph -16.0 0.4 

m-4-Ph 6.7 12.0 m-4-Ph 5.2 4.7 

p-4-Ph 9.0 31.6 p-4-Ph 9.3 13.3 

      

o-5-Ph 2.6 31.5 o-5-Ph 2.4 13.7 

m-5-Ph 6.3 159 m-5-Ph 6.1 88.2 

p-5-Ph 5.2 238 p-5-Ph 5.0 120 

      

N-1-Me 21.9 15.7 N-1-Me 20.2 5.9 

      

o-OBz 34.8 3.2 acac-o-Ph 22.6 1.7 

m-OBz 19.0 37.0 acac-m-Ph 9.5 20.0 

p-OBz 10.6 67.6 acac-p-Ph 17.3 45.5 

   Acac H 39.4 0.8 

 

 

This chapter has described the synthesis and X-ray structural characterization of 

iron(II) complexes supported by tris(imidazolyl)phosphane ligands Ph2TIP.  The 

complexes – [1](OTf)2, [2]OTf, and – feature easily displaced ligands, such as solvent 

molecules and/or carboxylates, in the coordination sites trans to the TIP chelate. Like the 

resting states of the enzymatic active sites, these “precursor” complexes are intended to 

serve as scaffolds that permit various substrate ligands to coordinate to the iron(II) center. 

The versatility of this approach was demonstrated by the formation of the Dke1 model 

[3]OTf from the reaction of Na(acacPhF3) with the Ph2TIP-based complexes [1](OTf)2 and 

[2]OTf. 
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2.C. Conclusions 

In this chapter we have described the synthesis and X-ray structural 

characterization of iron(II) complexes supported the tris(imidazolyl)phosphine ligand 

(Ph2TIP).  Two of the complexes – [1](OTf)2, and [2]OTf feature easily displaced ligands, 

such as solvent molecules and/or carboxylates, in the coordination sites trans to the TIP 

chelate.  These complexes exhibit variability in their coordination numbers (5C or 6C).  

Intra- and intermolecular hydrogen-bonding interactions between the ligands and solvent 

are evident in the solid-state structures of each complex {with the exception of 

[1(OTf)2]}.   

Like the resting states of the enzymatic active sites, these “precursor” complexes 

are intended to serve as scaffolds that permit various substrate ligands to coordinate to the 

iron(II) center.  The versatility of this approach was demonstrated by the formation of the 

Dke1 model [3]OTf from the reaction of Na(acacPhF3) with the Ph2TIP-based complexes 

[1](OTf)2 and [2]OTf.  The facile formation of [3]OTf indicates that the TIP ligands are 

resistant to displacement by strong, anionic ligands.  This is significant because half-

sandwich ferrous complexes with neutral LN3 ligands, such as trispyrazolymethanes, have 

been shown to suffer from high lability and a tendency to decompose to the more stable 

bisligand species.127 The relatively short Fe-NTIP bond lengths found in our series of 

complexes suggest that the TIP ligands bind tightly to the iron centers.  Thus, the 

precursor complexes described here provide a robust platform for the development of 

synthetic models of dioxygenases with the 3His facial triad. 
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2.D. Experimental 

All reagents and solvents were purchased from commercial sources and used as 

received unless otherwise noted. MeCN and CH2Cl2 were purified and dried using a 

Vacuum Atmospheres solvent purification system. 4,5-diphenyl-1-methylimidazole127 

was prepared according to literature procedures. The synthesis and handling of air-

sensitive materials were carried out under an inert atmosphere using a Vacuum 

Atmospheres Omni-Lab glovebox equipped with a freezer set to –30 °C. Elemental 

analyses were performed at Midwest Microlab, LLC in Indianapolis, IN. Infrared (IR) 

spectra of solid samples were measured with a Thermo Scientific Nicolet iS5 FTIR 

spectrometer equipped with the iD3 attenuated total reflectance accessory. UV/Vis 

spectra were obtained with an Agilent 8453 diode array spectrometer. NMR spectra were 

recorded on a Varian 400 MHz spectrometer. 19F NMR spectra were referenced using the 

benzotrifluoride peak at –63.7 ppm. 31P NMR spectra were referenced to external H3PO4 

(δ = 0 ppm). Magnetic susceptibility measurements were carried out using the Evans 

NMR method. 

Ph2TIP: 4,5-Diphenyl-1-methylimidazole (6.81 g, 29.1 mmol) was dissolved in 

THF (175 mL) and the solution was purged with argon for 25 min. The flask was cooled 

to –78 °C and nBuLi (32.0 mmol) was added dropwise. The solution was stirred for 30 

min at –78 °C and then for 30 min at room temperature. The reaction was cooled again to 

–78 °C and PCl3 (0.850 mL, 9.74 mmol) was added slowly. The mixture was allowed to 

slowly warm to room temp. over the course of several hours, and then 30% NH4OH (75 

mL) was added and stirred for 1 h. The layers were separated and the aqueous layer was 

extracted with THF (2-35 mL). The combined THF layers were washed with H2O and 



36 
 

brine (50 mL each), dried with MgSO4, and the solvent was removed under vacuum. The 

orange residue was triturated with pentane and washed with methanol, thereby providing 

a fine white powder (1.66 g); yield 24%. C48H39N6P (730.8): calcd. C 78.88, H 5.38, N 

11.50; found C 78.05, H 5.83, N 11.03. The disagreement indicates that small amounts of 

impurities are present. 1H NMR (400 MHz, CDCl3): δ = 7.48 (m, 12 H, Ar– H), 7.40 (m, 

6 H, Ar–H), 7.17 (m, 12 H, Ar–H), 3.64 (s, 9 H, CH3) ppm. 13C NMR (100 MHz, 

CDCl3): δ = 140.5, 140.0, 139.9, 134.8, 133.6, 131.1, 131.0, 129.2, 129.0, 128.2, 126.9, 

126.5, 33.4 ppm. 31P NMR (162 MHz, CDCl3): δ = –56.6 ppm. IR (neat cm-1): ν = 3053, 

2940, 2863, 1601, 1503, 1442, 1363, 1071, 1024, 961 cm–1. 

[Fe(Ph2TIP)(MeCN)3](OTf)2  ([1]OTf): Ph2TIP (1.32 g, 1.81 mmol) and Fe(OTf)2 

(670 mg, 1.90 mmol) were mixed in CH3CN (20 mL) and stirred until the solution had 

become clear (about 3h). The solution was filtered and layered with excess Et2O; X-ray-

quality crystals formed after one day. The white crystals were collected and dried under 

vacuum to provide 1.31 g of material; yield 60%. Elemental analysis showed that at least 

two of the coordinated CH3CN ligands are removed upon drying. 

C50H39F6FeN6O6PS2·CH3CN (1125.9): calcd. C 55.47, H 3.76, N 8.71; found C 55.02, H 

3.90, N 8.68. IR (neat, cm-1): ν = 3048, 2932, 2283 [ν(C-N)], 1466, 1444, 1257, 1222, 

1145, 1028, 983 cm–1.  

[Fe(Ph2TIP)(OBz)(MeOH)]OTf  ([2]OTf): Ph2TIP (779 mg, 1.07 mmol), NaOBz 

(155 mg, 1.07 mmol), and Fe(OTf)2 (378 mg, 1.07 mmol) were combined in MeOH (12 

mL). After stirring for several hours the precipitate was removed by filtration and the 

filtrate was reduced to about 5 mL in volume. Layering with pentane afforded the desired 

product as a white crystalline material (116 mg); yield 11%. X-ray diffraction analysis 
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revealed four uncoordinated MeOH molecules in the resulting structure, and elemental 

analysis indicated that two solvent molecules remain after drying under vacuum. 

C57H47F3FeN6O6PS·2CH3OH (1152.0): calcd. C 61.51, H 4.81, N 7.30; found C 61.35, H 

4.48, N 7.07. IR (neat, cm-1): ν = 3043, 2953, 1598, 1551, 1443, 1370, 1258, 1153, 1029, 

981 cm–1.  

[Fe(Ph2TIP)(acacPhF3)]OTf  ([3]OTf): A solution of 4,4,4-trifluoro-1-phenyl-1,3-

butanedione (126 mg, 0.584 mmol) and NaOCH3 (32 mg, 0.59 mmol) in THF was stirred 

for 30 min, after which the solvent was removed under vacuum to give white 

Na(acacPhF3). Na(acacPhF3) was then dissolved in CH3CN (5 mL) and slowly added to a 

solution of [1](OTf)2 (704 mg, 0.583 mmol) in CH2Cl2 (5 mL). The purple solution was 

stirred overnight and the solvent was removed under vacuum. The residue was dissolved 

in CH2Cl2 (5 mL), filtered, and layered with pentane to yield deep red crystals suitable 

for X-ray crystallography (457 mg); yield 68%. The X-ray structure revealed 

uncoordinated CH2Cl2 molecules in the asymmetric units, and elemental analysis 

suggests that a small amount of solvent (≈0.7 equiv.) remains after vacuum drying. 

C59H45F6FeN6O5PS·0.7CH2Cl2 (1210.36): calcd. C 59.24, H 3.86, N 6.94; found C 59.25, 

H 3.99, N 6.75. UV/Vis (MeCN): λmax (ε,m–1cm–1) = 519 (720), 494 (730) nm. IR (neat, 

cm-1): ν = 3058, 2955, 1602 [ν(C=O)], 1572, 1462, 1443, 1253, 1141, 1029, 981 cm–1. 

19F NMR (376 MHz, CD2Cl2): δ = –44.9 (acacPhF3), –77.7 (OTf) ppm.  
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Table 2.4. Summary of the X-ray crystallographic data collection and structure refinement. 
 [1](OTf)2·0.5Et2O [2]OTf·4MeOH [3]OTf·2CH2Cl2[a] 

Emperical formula C58H53F6FeN9O6.5PS2 C61H64F3FeN6O10PS C61H49Cl4F6FeN6O5PS 

Formula weight 1245.03 1217.06 1320.77 

Crystal System triclinic triclinic monoclinic 

Space Group P1¯ P1¯ Pc 

a [Å] 13.3432(3) 14.9470(5) 16.0689(5) 

b [Å] 15.8007(3) 15.1921(5) 20.6668(5) 

c [Å] 27.8621(6) 16.4349(6) 19.6239(4) 

α [°] 76.994(2) 90.642(3) 90 

β [°] 88.757(2) 113.784(3) 90.088(2) 

γ [°] 87.690(2) 115.873(4) 90 

V [Å3] 5718.4(2) 2992.3(3) 6516.9 

Z 4 2 4 

Dcalcd. [g/cm3] 1.446 1.351 1.325 

λ [Å] 1.5418 1.5418 0.7107 

μ [mm–1] 3.749 3.205 0.489 

θ range [°] 7 to 149 7 to 148 7 to 59 

Reflections collected 64740 39217 56565 

Independent reflections 22662 

(Rint = 0.0315) 

11891 

(Rint = 0.0299) 

28249 

(Rint = 0.0339) 

Data/restraints/parameters 22662/19/1591 11891/2/784 28249/12/1550 

GOF (on F2) 1.025 1.028 1.061 

R1/wR2 [I > 2σ(I)][b] 0.0332/0.0855 0.0413/0.1094 0.0608/0.1541 

R1/wR2 (all data) 0.0374/0.0886 0.0449/0.1128 0.0666/0.1613 

[a] One of the solvates in [4]OTf·2CH2Cl2 is partially occupied by a pentane molecule. 

[b] R1 = Σ ||Fo| – |Fc||/Σ|Fo|; wR2 = [Σw(Fo
2 – Fc

2 )2/Σw(Fo
2)2]1/2. 
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Chapter 3 

 

 

 
Synthetic Models of the Putative Fe(II)-

Iminobenzosemiquinonate Intermediate in the Catalytic Cycle 

of o-Aminophenol Dioxygenases 

 

 
 

Abstract: The oxidative ring cleavage of aromatic substrates by nonheme dioxygenases 

is thought to involve formation of a ferrous-(substrate radical) intermediate.  Here we 

describe the synthesis of the trigonal bipyramidal complex Fe(Ph2Tp)(ISQtBu) (5), the first 

synthetic example of an iron(II) center bound to an iminobenzosemiquinonate (ISQ) 

radical.  The unique electronic structure of this S = 3/2 complex and its one-electron 

oxidized derivative ([6]+) have been established on the basis of crystallographic, 

spectroscopic and computational analyses.  These findings further demonstrate the 

viability of Fe2+-ISQ intermediates in the catalytic cycles of o-aminophenol 

dioxygenases. 
 

Portions of this chapter have appeared in the paper: Bittner, M. M.; Lindeman, S. V.; 

Fiedler, A. T. J. Am. Chem. Soc. 2012, 134, 5460. 

 
All DFT calculations were performed by Dr. Adam Fiedler. 
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3.A.  Introduction 

In biochemical pathways, the oxidative ring cleavage of substituted aromatic 

compounds, such as catechols and o-aminophenols, is generally performed by 

mononuclear nonheme iron dioxygenases.5,23,90  While these enyzmes are usually found 

in bacteria, some play important roles in human metabolism: for instance, a key step in 

tryptonphan degradation involves the O2-mediated ring cleavage of 3-

hydroxyanthranilate (HAA) by HAA-3,4-dioxygenase (HAD; Figure 3.1).11,30 With the 

exception of the intradiol catechol dioxygenases, the ring-cleaving dioxygenases share a 

common O2-activation mechanism, illustrated in Figure 3.2.5,23,90  A notable feature of 

this proposed mechanism is the superoxo-Fe2+-(iminobenzo)-semiquinonate intermediate 

(B) that is thought to form after O2 binding to the enzyme-substrate complex (A).  The 

development of radical character on the substrate ligand presumably facilitates reaction 

with the bound superoxide yielding the key Fe2+-alkylperoxo intermediate (C).41,42 

Although the electronic structure of B remains somewhat controversial,128 evidence in 

favor of substrate radical character has been provided by radical-trap experiments39 and 

DFT calculations,41,42 as well as a remarkable X-ray structure of the Fe/O2 adduct of an 

extradiol dioxygenase in which the radical character of the bound substrate was inferred 

from its nonplanar geometry.18 
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Figure 3.1 Reaction Catalyzed by HAA Dioxygenase (HAD). 

 

 

Figure 3.2 Catalytic Cycle of Ring-Cleaving Dioxygenases. 

 

 Despite these biological precedents, synthetic analogues of intermediate B in 

which a ferrous center is coordinated to an (iminobenzo)semiquinone radical, (I)SQ, have 

been lacking in the literature, even though numerous ferric complexes with such ligands 

exist.35,36,38,78,80-83,129-131  Herein, we report the synthesis and detailed characterization of 

an Fe2+-ISQ complex, 2a, that represents the first synthetic model of this important type 

of enzyme intermediate.  We also examine the geometric and electronic structures of the 

species [3a]+ generated via one-electron oxidation of 2a. 
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3.B. Results and Discussion 

 In our efforts to generate synthetic models of HAD, we have used the 

tris(pyrazolyl)borate ligand, Ph2Tp, (where Ph2Tp = hydrotris(3,5-diphenylpyrazol-1-

yl)borate(1-)) to mimic the facial His2Glu coordination environment of the enzyme active 

site.  The reaction of [(Ph2Tp)Fe2+(OBz)]105 (OBz = benzoate) with 2-amino-4,6-di-tert-

butylphenol (tBuAPH2) in the presence of base provided the light yellow complex 

[(Ph2Tp)Fe2+(tBuAPH)] (4) in 71% yield.  The X-ray crystal structure of 4 reveals a five-

coordinate (5C) Fe2+ center in which the tBuAPH─ ligand binds in a bidentate fashion 

(Figure 3.3).  The average Fe1-NTp bond length of 2.15 Å is typical of high-spin Fe2+ 

complexes with Tp ligands105,126, while the short Fe1-O1 distance of 1.931(1) Å is 

consistent with coordination by an aminophenolate anion (Table 3.1)  The complex 

adopts a distorted trigonal-bipyramidal geometry (τ = 0.61) with the amino group of 

tBuAPH- in an axial position trans to N5.  To the best of our knowledge, 4 represents the 

first synthetic model of an aminophenol dioxygenase. 

 

 

Figure 3.3.  Synthesis and thermal ellipsoid diagram of complex 4.  For the sake of 

simplicity, the 5-Ph substituents of the Ph2Tp ligand have been omitted and only the amino 

hydrogens are shown.  Selected bond lengths are provided in Table 3.1 
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Table 3.1. Selected Bond Distances (Å) for Complexes 4-[6]+ 

 
 4 5 [6]SbF6

a 

Fe1-N1 2.101(1) 2.108(2) 2.071(7) 

Fe1-N3 2.127(1) 2.087(2) 2.038(7) 

Fe1-N5 2.223(1) 2.216(2) 2.134(6) 

Fe1-O1 1.931(1) 2.095(2) 2.082(6) 

Fe1-N7 2.214(1) 1.982(2) 2.017(8) 

O1-C1 1.345(2) 1.285(3) 1.26(1) 

N7-C2 1.451(2) 1.328(4) 1.33(1) 

C1-C2 1.398(2) 1.469(5) 1.47(1) 

C2-C3 1.388(2) 1.413(4) 1.42(1) 

C3-C4 1.388(2) 1.363(4) 1.35(2) 

C4-C5 1.403(2) 1.427(4) 1.43(2) 

C5-C6 1.394(2) 1.375(4) 1.37(2) 

C1-C6 1.420(2) 1.440(4) 1.44(1) 

aThe bond distances listed here represent the average distance in the two independent 

units of [6]+, while the uncertainty is taken to be the larger of the two σ-values. 

 

 

Figure 3.4. Electronic absorption spectra of 4 (─ - -), 5 (─), and [6]SbF6 (- - -) measured 

in CH2Cl2 at RT. 



44 
 

Reaction of 4 with 1 equiv of 2,4,6-tri-tert-butylphenoxy radical (TTBP•) at RT in 

CH2Cl2 gives rise to a distinct chromophore, 5, with a broad absorption manifold 

centered at 715 nm (εmax = 0.76 mM-1 cm-1; see Figure 3.4).  Addition of MeCN, 

followed by cooling to -30 °C, provides pale green crystals of 5 suitable for 

crystallographic analysis.  As with 4, the X-ray structure of 5 features a neutral 5C Fe 

complex with a distorted trigonal-bipyramidal geometry (τ = 0.58), although O1 now 

occupies an axial position instead of N7 (Figure 3.5).  The N7 atom in 5 is 

monoprotonated, confirming that 5 is generated via abstraction of an H-atom from the –

NH2 group of 4. 

 

 

Figure 3.5. Thermal ellipsoid plot (50% probability) of 5•2CH2Cl2.  Noncoordinating 

solvent molecules and most hydrogen atoms have been omitted for clarity.  The tBuISQ 

ligand is disordered in a 7:1 ratio; only the high-occupancy (major) species is shown 

here. 
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 Interestingly, the average Fe1-NTp bond distance observed for 5 (2.136 Å) is 

nearly identical to the value found for 4 (2.150 Å), suggesting minimal change in Fe 

charge.  Metric parameters for the O,N-coordinated ligand, however, are dramatically 

different in the two structures.  In the structure of 4, the six C-C bonds of the tBuAPH─ 

ring are approximately equidistant (1.40 ± 0.02 Å), reflecting its closed-shell, aromatic 

nature.  In contrast, the corresponding C-C bond distances in 5 exhibit the “four long/two 

short” distortion commonly observed for quinoid moieties (Table 3.1).35,36,38,78,80-83,129-131  

The short O1-C1 and N7-C2 distance of 1.285(3) and 1.328(4) Å, respectively, are also 

characteristic of ISQ─ ligands, as amply demonstrated by Wieghardt78,80-83,130,131 and 

others.38  Thus, the X-ray crystallographic data strongly support the formulation of 5 as 

[(Ph2Tp)Fe2+(tBuISQ)].  This assignment rationalizes the absorption spectrum of 5, which 

closely resembles those reported for Co2+ and Ni2+ complexes with a lone ISQ─ ligand.131 

 The X-band EPR spectrum of 5 displays an intense peak at g = 6.5, along with a 

broad derivative-shaped feature centered near g = 1.8 (Figure 3.6). Such spectra are 

typical of S = 3/2 systems with large and rhombic zero-field splitting parameters.130-132  

The simulated spectrum in Figure 3.6 assumed a negative D-value (with |D| ≫ hν), an 

E/D-ratio of 0.24, and g-values of 2.36, 2.30, and 2.17. Significant E/D strain was 

incorporated to adequately account for the broadness of the higher-field features. The 

combined experimental results therefore indicate that 5 contains a high-spin Fe2+ center 

(S = 2) antiferromagnetically coupled to a tBuISQ radical anion. 
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Figure 3.6.  X-band EPR spectrum of 5 at 20 K.  The derivative-shaped feature at g = 4.3 

(▼) arises from a minor ferric impurity, while the feature at g = 2.0 (*) is due to residual 

TTBP radical.  Parameters used to generate the simulated spectrum are provided in the 

text. 

 

Further evidence in favor of a ligand-based radical was obtained from density 

functional theory (DFT) calculations.  Two geometry-optimized models of 5 with S = 3/2 

were computed that differ with respect to their electronic configurations.  Analysis of the 

geometric and electronic structure of the first model (51) indicates that it contains an 

intermediate-spin Fe3+ center coordinated to a closed-shell imidophenolate ligand,      

tBuAP2-.  The optimized structure of 51 features a square-pyramidal geometry (τ = 0.18) 

with very short Fe-O1 and Fe-N7 distances of ~1.87 Å, in poor agreement with the 

experimental structure (Table 3.2).  Furthermore, the computed bond distances for the 

tBuAP2- ligand deviate sharply from the distances found experimentally for 5 with nearly 

all such differences being significantly greater than the estimated error (3σ) in the 

crystallographic data.  The second model (52) was generated via a broken-symmetry 

calculation in order to obtain the [(Ph2Tp)Fe2+(tBuISQ)] electronic configuration described 

above.  The resulting structure accurately reproduces the overall trigonal-bipyramidal 
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geometry of 5 and provides reasonably consistent Fe-ligand distances.  Most importantly, 

the computed and experimental tBuISQ─ bond distances exhibit remarkable agreement, 

with an rms deviation of merely 0.007 Å. (Table 3.2) Model 52 is also 9 kcal/mol more 

stable than 51, indicating an energetic preference for the Fe2+-tBuISQ form. 

To the best of our knowledge, the electronic structure of 5 has no precedent 

among synthetic complexes. While Fe2+-SQ intermediates are often invoked in the 

mechanisms of catechol dioxygenases, all relevant models to date feature unambiguous 

[Fe3+-catecholate]+ units.133-135 Similarly, the Fe3+-ISQ complexes generated by 

Wieghardt and co-workers exclusively undergo ligand-based reductions to give the 

corresponding Fe3+-AP species.81,130,131 The unique Fe2+-ISQ configuration of 5 is likely 

due to the presence of a high-spin, 5C Fe ion, whereas related complexes prepared by 

Wieghardt (such as [(L)Fe3+(RISQ)]+, where L = cis cyclam and R = H or tBu) generally 

feature lowspin, 6C Fe centers.81 Thus, changes in spin state and coordination geometry 

are capable of shifting the delicate balance between the Fe2+-ISQ and Fe3+-AP valence 

tautomers.   

Reaction of 5 with 1 equiv of an acetylferrocenium salt in CH2Cl2 provides a dark 

green species, [6]+, with intense absorption features at 770 and 430 nm (Figure 3.4). 

Treatment of [6]+ with 1 equivalent of reductant (such as Fe(Cp*)2) fully regenerates 5, 

indicating that the two species are related by a reversible one-electron process (Figure 

3.7). EPR experiments with frozen solutions of [6]+ failed to detect a signal in either 

perpendicular or parallel mode, indicative of an integer-spin system.  Indeed, the 

magnetic moment of [6]+ was found to be 5.0(1) µB at RT, close to the spin-only value for 

an S = 2 paramagnet. 
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Figure 3.7.  Interconversion of 5 and [6]+ by one-electron reactions. Top: Spectrum A = 

0.55 mM solution of 5 at RT in CH2Cl2. Spectrum B = Formation of [6]+ after addition of 

0.9 equivalents of the oxidant acetylferrocenium tetrafluoroborate to the initial solution 

(A). Middle: Spectrum C = Spectrum measured after addition of 0.95 equiv. of the 

reductant Fe(Cp*)2 to the B solution. The gray dotted line is the spectrum of 0.42 mM 

[Fe(Cp*)2]BF4. Bottom: Spectrum C (adjusted) = Spectrum C minus the contributions from 

the [Fe(Cp*)2]
+ features. The adjusted spectrum is nearly identical to spectrum A, 

indicating full regeneration of 5. 
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Table 3.2. Selected bond distances (Å) and bond angles (deg) for 4 and 5 obtained from 

X-ray diffraction (XRD) experiments, along with values computed by density functional 

theory (DFT) for models 51 and 52. 
Bond distances 4 (XRD) 5-maj (XRD)a 5-min (XRD)a 51 (DFT) 52 (DFT) 

Fe1-N1 2.101(1) 2.108(2) 2.108(2) 2.057 2.129 

Fe1-N3 2.127(1) 2.087(2) 2.087(2) 2.278 2.136 

Fe1-N5 2.223(1) 2.216(2) 2.216(2) 2.043 2.299 

Fe1-O1 1.931(1) 2.095(2) 2.13(1) 1.887 2.130 

Fe1-N7 2.214(1) 1.982(2) 2.00(2) 1.887 2.029 

O1-C1 1.345(2) 1.285(3) 1.284(14) 1.322 1.276 

N7-C2 1.451(2) 1.328(4) 1.326(16) 1.359 1.335 

C1-C2 1.398(2) 1.469(5) 1.473(18) 1.418 1.461 

C2-C3 1.388(2) 1.413(4) 1.432(16) 1.404 1.420 

C3-C4 1.388(2) 1.363(4) 1.356(16) 1.386 1.372 

C4-C5 1.403(2) 1.427(4) 1.433(16) 1.408 1.427 

C5-C6 1.394(2) 1.375(4) 1.396(14) 1.390 1.372 

C1-C6 1.420(2) 1.440(4) 1.444(14) 1.405 1.432 

Bond angles 4 (XRD) 5-maj (XRD)a 5-min (XRD)a 51 (DFT) 52 (DFT) 

N1-Fe1-N3 92.82(5) 93.44(7) 93.44(7) 89.8 94.6 

N1-Fe1-N5 83.309(5) 82.76(7) 82.76(7) 87.2 83.3 

N3-Fe1-N5 86.11(5) 89.80(7) 89.80(7) 89.6 86.1 

O1-Fe1-N3 136.61(5) 94.16(7) 93.9(3) 91.6 97.2 

O1-Fe1-N5 129.47(5) 95.62(7) 90.4(3) 97.4 97.6 

N7-Fe1-N1 105.94(4) 173.93(8) 170.0(3) 173.0 176.2 

N7-Fe1-N3 92.60(5) 138.99(9) 136.0(4) 163.5 138.5 

N7-Fe1-N5 88.68(5) 127.37(9) 132.8(4) 106.4 126.8 

N7-Fe1-N7 173.20(5) 99.36(8) 101.1(4) 95.8 98.6 

O1-Fe1-N7 80.76(4) 79.52(8) 78.2(5) 83.2 78.5 

Τ-value 0.61 0.58 0.57 0.16 0.63 
a In the crystal structures of 5•2CH2Cl2, the tBuISQ ligand is disordered in a 7:1 ratio. The 

metric parameters provided in Table 3.1 refer to the high-occupancy (major) species. Here 

we also provide parameters for the low-occupancy (minor) species. 
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Table 3.3. Selected bond distances (Å) and bond angles (deg) for [6]+ obtained from X-ray 

diffraction (XRD) experiments, along with values computed by density functional theory 

(DFT). 
Bond distances [61]+ (XRD)a [62]+ (XRD)a [6DFT]+ (DFT) 

Fe1-N1 2.084(6) 2.058(7) 2.078 

Fe1-N3 2.037(7) 2.039(6) 2.077 

Fe1-N5 2.132(7) 2.135(6) 2.137 

Fe1-O1 2.088(6) 2.076(6) 2.078 

Fe1-N7 2.009(8) 2.025(7) 2.047 

O1-C1 1.277(11) 1.250(11) 1.256 

N7-C2 1.358(11) 1.308(11) 1.311 

C1-C2 1.474(11) 1.472(13) 1.482 

C2-C3 1.400(12) 1.446(12) 1.425 

C3-C4 1.377(13) 1.313(16) 1.364 

C4-C5 1.417(13) 1.449(18) 1.451 

C5-C6 1.363(13) 1.386(15) 1.361 

C1-C6 1.429(11) 1.449(12) 1.442 

Bond angles [61]+ (XRD)a [62]+ (XRD)a [6DFT]+ (DFT) 

N1-Fe1-N3 94.5(3) 93.9(3) 95.4 

N1-Fe1-N5 84.6(3) 84.7(3) 88.5 

N3-Fe1-N5 92.4(3) 91.6(2) 90.3 

O1-Fe1-N3 86.6(2) 95.4(3) 93.3 

O1-Fe1-N5 93.8(3) 96.2(2) 93.3 

N7-Fe1-N1 169.6(3) 172.2(2) 175.9 

N7-Fe1-N3 144.6(3) 149.3(3) 137.3 

N7-Fe1-N5 117.6(3) 149.3(3) 126.0 

N7-Fe1-N7 106.9(3) 99.0(3) 100.0 

O1-Fe1-N7 77.4(3) 76.9(3) 76.2 

Τ-value 0.42 0.38 0.64 
a The crystal structure of [6]SbF6•0.5DCE contains two symmetrically-independent units, 

here labeled [61]+ and [62]+. 

 

X-ray quality crystals of [6]SbF6 were prepared by vapor diffusion of pentane into 

a concentrated dichloroethane solution. The resulting structure (Figure 3.8) contains two 

symmetrically independent Fe units, each featuring a distorted square-pyramidal 

geometry (τ = 0.42 and 0.38). Despite the difference in charge, complexes [6]+ and 5 

have identical atomic compositions. Yet the average Fe−NTp bond distance shortens from 

2.132 to 2.081 Å upon conversion of 5 to [6]+, suggesting an increase in Fe-based charge. 

While the structural parameters of the bidentate O,N-donor ligand of [6]+ are consistent 
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with a tBuISQ-radical, it was not possible to rule out a neutral iminobenzoquinonate 

ligand (tBuIBQ) due to sizable uncertainties in the bond distances. 

We therefore turned to DFT calculations to further explore the electronic structure 

of [6]+. The resulting geometryoptimized model, [6DFT]+, exhibits good agreement with 

the crystallographic data, although the DFT structure is more distorted toward the 

trigonal-bipyramidal limit (τ = 0.64; Table 3.3).  The computed Fe-ligand bond distances 

nicely match the experimental values (rms deviation = 0.022 Å), indicating that the 

calculation converges to the correct S = 2 electronic configuration. Comparison of [6DFT]+ 

and 52 reveals more pronounced “quinoid” character in the O,N-donor ligand of the 

former. Using the experimentally derived correlations of bond distances and ligand 

oxidation states recently published by Brown, the O,N-donor ligand of [6DFT]+ has an 

oxidation state of −0.35(5) (i.e., partway between ISQ1− and IBQ0).136 Moreover, the 

highest-occupied spin-down MO (β-HOMO) of [6]+ contains roughly equal Fe and ligand 

character (47 and 42%, respectively), and the β-LUMO is evenly delocalized over the 

two units (Figure 3.9). Thus, the DFT results suggest that the electronic structure of [6]+ 

lies between the Fe3+-tBuISQ  and Fe2+-tBuIBQ limits. Detailed spectroscopic studies of 

[6]+ will be discussed in the next chapter. 
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Figure 3.8. Thermal ellipsoid plot (50% probability) of [6]SbF6•0.5DCE. Counteranions, 

noncoordinating solvent molecules, and most hydrogen atoms have been omitted for 

clarity.  Only one of the two independent [6]+ units is shown. 

 

 
Figure 3.9. Isosurface plots of selected MOs computed for [6]+ by DFT. 
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3.C. Conclusions 

 Complexes synthesized in this chapter model the enzyme active site structure of 

APDOs and are the first to do so.  Complex 4 can be converted to a novel complex upon 

reaction with 1 equivalent of phenoxyl radical (6).  While the structure of 6 can be 

described as a having an iminobenzosemiquinonate radical ligand, this is not definitive 

due to large uncertainties in the crystal structure bond distances.  Further studies 

described in the following chapter will provide more evidence for the electronic structure 

of 5 and [6]SbF6. 

Complexes 4−6 replicate key structural and electronic aspects of the proposed o-

aminophenol dioxygenase mechanism. In particular, the conversion of 4→5 mimics the 

transformation of the enzyme−substrate complex (A) into a ferrous−ISQ species (B) via 

coupled proton and electron transfers. Our results therefore provide a synthetic precedent 

for the existence of Fe2+-ISQ intermediates in enzymatic catalysis. Of course, complex 5 

is an imperfect model of intermediate B, since it lacks the coordinated superoxo ligand. 

 

3.D.  Experimental 

All reagents and solvents were purchased from commercial sources and used as 

received unless otherwise noted. Acetonitrile and dichloromethane were purified and 

dried using a Vacuum Atmospheres solvent purification system. The compounds 

K(Ph2Tp),137 tBuAPH2,
138 and TTBP•139 were prepared according to literature procedures. 

The synthesis and handling of airsensitive materials was carried out under an inert 

atmosphere using a Vacuum Atmospheres Omni-Lab glovebox equipped with a freezer 
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set to -30 °C. Elemental analyses were performed at Midwest Microlab, LLC in 

Indianapolis, IN. Infrared (IR) spectra of solid samples were measured with a Thermo 

Scientific Nicolet iS5 FTIR spectrometer equipped with the iD3 attenuated total 

reflectance accessory. UV-vis spectra were obtained with an Agilent 8453 diode array 

spectrometer. Magnetic susceptibility measurements were carried out using the Evans 

NMR method.  

EPR experiments were performed using a Bruker ELEXSYS E600 equipped with 

an ER4415DM cavity resonating at 9.63 GHz., an Oxford Instruments ITC503 

temperature controller and ESR-900 He flow cryostat.  The spectrum shown in Figure 3.6 

was obtained under the following conditions: [5] = 2.3 mM in CH2Cl2; frequency = 9.63 

GHz.; power = 10.0 mW; modulation = 1 G; temperature = 20 K.  The program 

EasySpin140 was used to simulate the experimental spectra. 

Density functional theory (DFT) calculations of complexes 5 and [6]+ were 

performed using the ORCA 2.7 software package developed by Dr. F. Neese.141 In each 

case, the corresponding X-ray structure provided the starting point for geometry 

optimizations. In the computational models, the 5-Ph groups of the Ph2Tp ligand were 

replaced by -CH3 groups, and the tBu moieties at the 4- and 6-positions of the tBuISQ 

ligand were also replaced with methyl groups. All calculations employed Becke’s three-

parameter hybrid functional for exchange along with the Lee-Yang-Parr correlation 

functional (B3LYP).142,143 All atoms were equipped with Ahlrichs’ valence triple-ζ basis 

set (TZV), in conjunction with the TZV/J auxiliary basis set.144,145 Polarization functions 

were also included on all atoms. Finally, the gOpenMol program developed by 

Laaksonen146 was used to generate isosurface plots of molecular orbitals. 
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[Fe2+(Ph2Tp)(tBuAPH)] (4). (Ph2Tp)Fe2+(OBz) was prepared following a published 

procedure. (Ph2Tp)Fe2+(OBz) (723 mg, 0.85 mmol) and 4,6-di-t-butyl-aminophenol (190 

mg, 0.86 mmol) were dissolved in 12 mL of CH2Cl2. Following addition of 0.13 mL of 

NEt3 (0.95mmol), the resulting solution was stirred for 16 hours. The solution was 

filtered and the solvent removed under vacuum to give a light yellow solid. The product 

was then dissolved in 5 mL of CH2Cl2, layered with excess MeCN, and placed overnight 

in a -30 °C freezer. The resulting crystals were dried to provide complex 4 in 71% yield 

(569 mg). X-ray quality crystals were obtained by vapor diffusion of MeCN into a 

concentrated 1,2-dichloroethane (DCE) solution of 4. Elemental analysis calcd for 

C59H56FeBN7O: C, 74.93; H, 5.97; N, 10.37%; found: C, 74.20; H, 5.86; N, 10.04%. The 

disagreement in the %C-value is due to the presence of small amounts of solvent 

impurities. UV-vis [λmax, nm (ε, M-1 cm-1) in CH2Cl2]: 371 (1620). IR (neat, cm-1, 

selected bands): 3332 (NH2), 3284 (NH2), 2613 (BH). 

[Fe2+ (Ph2Tp)(tBuISQ)] (5). Complex 4 (301 mg, 0.32 mmol) and TTBP• (84 

mg,0.32 mmol) were dissolved in 10 mL of CH2Cl2, and the resulting dark green solution 

was stirred for 45 min. The solvent was reduced to 5 mL and layered with excess 

CH3CN. Thin green needles developed after standing overnight at -30 °C. The solvent 

was decanted and the product collected and dried to give a green powder (121 mg, 40% 

yield). Elemental analysis calcd. for C59H55FeBN7O: C, 75.01; H, 5.87; N 10.38%; found: 

C, 74.77; H, 6.01; N 10.01%. UV-vis [λmax, nm (ε, M-1 cm-1) in CH2Cl2]: 335 (6950), 715 

(750). IR (neat,  cm-1, selected bands): 3334 (NH), 2614 (BH). 

[Fe3+(Ph2Tp)(tBuISQ)]SbF6 ([6]SbF6). Two distinct methods were used to 

generate complex [3a]SbF6. Method A: Complex 1a (284 mg, 0.30 mmol) and two 
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equivalents of AgSbF6 (212 mg, 0.62 mmol) were mixed in 10 mL of CH2Cl2 and stirred 

for one hour. The solution was filtered through Celite twice and the solvent removed 

under vacuum. The resulting solid was washed with diethyl ether (2 x 15 mL) and dried 

to give 218 mg of dark green powder (62% yield).  

Method B: Complex 5 (116 mg, 0.12 mmol) and one equivalent of AgSbF6 (42 

mg, 0.12 mmol) were mixed in 6 mL of CH2Cl2 and stirred for one hour. The resulting 

dark green solution was filtered twice through Celite and vacuumed to dryness to yield a 

dark green solid (75 mg, 52% yield). X-ray quality crystals of [6]SbF6 were obtained by 

vapor diffusion of pentane into a concentrated 1,2-dichloroethane solution. UV-vis [λmax, 

nm (ε, M-1 cm-1) in CH2Cl2]: 430 (5320), 767 (4670). IR (neat, cm-1, selected bands): 

3266 (NH), 2646 (BH).  

The sample of [6]SbF6 sent for elemental analysis was prepared using Method B. 

The results indicate that [6]SbF6 was only generated in 84% yield, due to incomplete 

oxidation of the starting material 5. Elemental analysis calcd for C59H55FeBF6N7OSb: C, 

60.03; H, 4.70; N, 8.31; F, 9.66%. Calculated values assuming 84% conversion of 5 to 

[6]SbF6: C, 62.00; H, 4.85; N, 8.58; F, 8.38%. Found: C, 61.93; H, 5.25; N, 8.18; F, 

8.17%. 

 X-ray diffraction (XRD) data were collected at 100 K with an Oxford Diffraction 

SuperNova Kappa-diffractometer (Agilent Technologies) equipped with dual microfocus 

Cu/Mo X-ray sources, X-ray mirror optics, Atlas CCD dectector, and low-temperature 

Cryojet device.  Crystallographic data for particular compounds are shown in Table 3.4.  

The data were processed with CrysAlis Pro program package (Agilent Technologies, 

2011) typically using a numerical Gaussian absorption correction (based on the real shape 
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of the crystal), followed by an empirical multi-scan correction using SCALE3 

ABSPACK routine.  The structures were solved using SHELXS program and refined 

with SHELXL program147 within Olex2 crystallographic package.148  B- and C-bonded 

hydrogen atoms were positioned geometrically and refined using appropriate geometric 

restrictions on the corresponding bond lengths and bond angles within a riding/rotating 

model (torsion angles of methyl hydrogens were optimized to better fit the residual 

electron density). 

 The structure of complex 4 contains additional MeCN and DCE (1,2-

dichloroethane) solvent molecules; the latter is positioned on a crystallographic inversion 

center.  The hydrogen atoms of the –NH2 group were localized ina difference Fourier 

synthesis and refined isotropically. 

For complex 4 the structure contains a non-stoichiometric amount of heavily 

disordered solvent (CH2Cl2) molecules.  In addition, the tBuISQ ligand is partially (13%) 

disordered over an internal (non-crystallographic mirror plane formed by the tripodal 

Ph2TP supporting ligand.  The NH hydrogen atom of the minor component of the disorder 

was localized objectively in a difference Fourier synthesis and then refined isotropically.  

The corresponding –NH hydrogen of the minor component was treated geometrically. 

 Complex [6]SbF6 has a crystal structure that represents a regular twin (with a 

48:52 component ratio) grown with a 180° rotation around reciprocal x axis.  It was 

treated using HKLF 5 refinement option (Sheldrick, 2008).  The structure contains two 

symmetrically-independent complex ionic units along with one equivalent of DCE 

solvent.  Because of the twinning, Fourier maps were substantially compromised and 

objective localization of the H atom of –NH group was not feasible.   
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Its presence was established by FTIR spectroscopy.  Therefore, this H atom was 

positioned geometrically and refined using a riding model with appropriate geometric 

restraints. 
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Table 3.4. Summary of X-ray Crystallographic Data Collection and Structure 

Refinementa 
 4•MeCN•0.5DCE 5•2CH2Cl2 c [6]SbF6•0.5DCE 

empirical formula C62H61BClFeN8O C61H59BCl4FeN7O C60H57BClF6FeN7OSb 

formula weight 1036.30 1114.64 1229.99 

crystal system monoclinic monoclinic monoclinic 

space group P21/n P21/c P21/c 

a, Å 10.0304(2) 14.9365(6) 39.237(1) 

b, Å 32.0673(6) 9.9321(5) 13.8346(4) 

c, Å 17.1467(3) 37.6317(14) 20.7143(5) 

α, deg 90 90 90 

β, deg 97.680(2) 92.617(4) 97.218(3) 

, deg 90 90 90 

V, Å3 5465.76(19) 5576.9(4) 11155.2(5) 

Z 4 4 8 

Dcalc, g/cm3 1.259 1.253 1.465 

, Å 0.7107 1.5418 1.5418 

µ, mm-1 0.374 3.583 6.936 

-range, deg 7 to 59 7 to 148 7 to 148 

reflections collected   60411 30976 27278 

independent reflections 13966 

[Rint = 0.0377] 

11016 

[Rint = 0.0467] 

27278 

[Rint = 0.0] 

data/restraints/parameters 13966/0/682 11016/100/882 27278/0/1418 

GOF (on F2) 1.035 1.029 1.026 

R1/wR2 (I>2σ(I))b 0.413 / 0.0989 0.0512 / 0.1279 0.0831 / 0.2089 

R1/wR2 (all data) 0.0519 / 0.1068 0.0643 / 0.1382 0.1115/0.2331 

a DCE = 1,2-dichloroethane b R1 = ∑║F0│-│Fc║ / ∑│F0│; wR2 = [∑w(F0
2 – Fc

2)2 / 

∑w(F0
2)2]1/2 c The solvate molecules in 5•2CH2Cl2 are only partially populated. 
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Chapter 4 

 

 

 
Spectroscopic and Computational Studies of Fe Complexes 

with o-Aminophenolate and Iminobenzosemiquinone Ligands 
 

 

 

Abstract: The complexes reported in chapter 3 are examined with various spectroscopic 

methods, including UV-vis absorption, magnetic circular dichroism (MCD), electron 

paramagnetic resonance (EPR), and Mӧssbauer spectroscopies.  In addition, an analogous 

series of complexes featuring the Ph2TIP supporting ligand are synthesized and 

characterized.  The spectroscopic data are interpreted with the help of density functional 

theory (DFT) calculations, resulting in detailed electronic structure descriptions. 

 

Portions of this chapter have appeared in the paper: Bittner, M. M.; Kraus, D.; Lindeman, 

S. V.; Popescu, C. V.; Fiedler, A. T. Chem. Eur. J. 2013, 9686-9698. 

 

All DFT calculations and resonance Raman experiments were performed by Dr. Adam 

Fiedler. 

 

Mӧssbauer experiments were conducted by Codrina V. Popescu of Ursinus College. 
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4.A.  Introduction 

A critical step in the microbial degradation of numerous aromatic compounds 

involves oxidative ring scission by a mononuclear nonheme Fe dioxygenase.90,91  Ring-

cleaving dioxygenases have been shown to oxidize and impressive array of substrates, 

including catechols, protocatechuates,31,149 o-aminophenols,10,11 hydroquinones,7-

9,94,96,150,151 and salicylates.58,101,102  The general catalytic strategy employed by these 

dioxygenase differs substantially from the “textbook” O2-activation mechanism 

exemplified by the cytochrome P450s,152 methane monooxygenase,28 and α-

ketoglutarate-dependent dioxygenases.29  In this set of enzymes, O2 is used to generate an 

iron(IV)-oxo (ferryl) intermediate that performs the demanding hydroxylation of an 

aliphatic substrate.  By contrast, extensive experimental and computational studies have 

revealed that the ring-cleaving dioxygenase mechanism does not involve high-valent Fe 

intermediates, as illustrated for the extradiol catechol dioxygenases (ECDOs) and o-

aminophenol dioxygenases (APDOs) in Figure 4.123,31,32,47  In both cases, the bidentate 

substrate coordinates to the Fe2+ center as a monoanionic ligand.  Displacement of the 

bound H2O molecules facilitates formation of an Fe/O2 adduct capable of reacting 

directly with the bound substrate.  The resulting peroxy-bridged intermediate undergoes a 

Criegee rearrangement to generate a lactone, which is hydrolyzed by the Fe─OH unit to 

provide the ring-opened product.  Several of these intermediates were observed 

crystallographically in different subunits of the enzyme homoprotocatechuate 2,3-

dioxygenase (HPCD).18 

 Despite significant progress in elucidating the catalytic cycles of ring-cleaving 

dioxygenases, the electronic structure of the critical Fe/O2/substrate intermediate in 
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Figure 4.1 remains disputed (as described in Chapter 1).  The development of suitable 

synthetic models can help resolve the ambiguous electronic structures of enzymatic 

intermediates.  In the last chapter, we described the synthesis and X-ray structure of a 

five-coordinate Fe(II)-aminophenolate complex (4) (Figure 4.2).  This complex was used 

to generate 5 – the first synthetic example of an Fe2+ center coordinated to a biologically 

relevant (imino)semiquinonate ligand (ISQ). The supporting ligand is hydrotris(3,5-di-

phenylpyrazol-1-yl)borate (Ph2Tp), which adequately models the facial coordination 

geometry and monoanionic charge of the 2-His-1-carboxylate coordination motif of most 

ring-cleaving dioxygenases.19,153  A combination of crystallographic, spectroscopic 

(absorption, EPR), and computational methods were used to confirm the existence of the 

tBuISQ ligand in 5.  The overall spin of 3/2 arises from antiferromagnetic (AF) coupling 

between the high-spin Fe3+ center (S = 5/2) and ISQ radical.  Using similar techniques, 

we also examined the complex [6]SbF6 that arises from one-electron oxidation of 5.  The 

X-ray structural data for [6]+ are consistent with the presence of an Fe3+─tBuIBQ character 

(where tBuIBQ is the neutral iminobenzoquinone with tert-butyl substituents at the 4- and 

6-positions. 
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Figure 4.1.  Proposed catalytic cycle of ECDO and APDO. 

 

In this chapter, we seek to develop detailed electronic-structure descriptions of 5 

and [6]+ using an assortment of spectroscopic methods, including UV/Vis/NIR 

absorption, Mӧssbauer, magnetic circular dichroism (MCD), and resonance Raman (rR) 

spectroscopy.  In addition, we have prepared a parallel series of complexes ([1b]+, [2b]+, 

and [3b]2+) containing the facial N3-donor ligand tris(4,5-di-phenyl-1-methylimidazol-2-

yl)phosphine (Ph2TIP; Figure 4.2).  X-ray structures of complexes [1b]BPh4 and 

[3b](OTf)2 are presented to complement those already shown for 1a, 2a, and [3a]SbF6.  

By employing this neutral supporting ligand, we are able to evaluate the role of the 

coordination environment in modulating the oxidation states of the Fe center and ISQ 

ligand.  In all cases, the spectroscopic data were analyzed with the aid of DFT 

calculations.  By elucidating the spectroscopic signatures of these synthetic complexes, 
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we anticipate that our results will assist in the interpretation of comparable data from the 

biological systems, thereby allowing researchers to determine whether Fe─(I)SQ species 

are viable intermediates in the catalytic cycles of ring-cleaving dioxygenases. 

 

 

Figure 4.2.  Complexes prepared and examined in this chapter.  

 

4.B. Synthesis of Complexes [7b]+-[9b]2+ and 10a 

The synthesis and X-ray structure of [Fe2+(Ph2Tp)(tBuAPH)] (4a) was reported in 

the previous chapter.  The analogous complex [7b]+ based on the neutral Ph2TIP ligand 

was generated by mixing [Fe2+(Ph2TIP)(OTf)2]
154 and 2-amino-4,6-di-tert-butylphenol 

(tBuAPH2) with one equivalent of triethylamine in CH2Cl2; recrystallization from 

toluene/pentane provided [7b]OTf as a yellow solid.  Following counteranion metathesis 

with NaBPh4, X-ray quality crystals of [7b]BPh4 were obtained by layering a 
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concentrated 1,2-dichloroethane (DCE) solution with MeOH.  The resulting structure 

(Figure 4.3) contains two symmetrically independent [7b]+ units with nearly identical 

geometries.  Relevant structural parameters for 4a, [7b]BPh4, and 10a are provided in 

Table 4.1.  Similar to 4a, complex [7b]+ features a five-coordinate monoiron(II) center in 

a distorted trigonal-bipyramidal coordination environment ( = 0.60155).  The amino and 

phenolate donors of the bidentate tBuAPH ligand are found in axial and equatorial 

positions, respectively (Figure 4.1).  The average Fe-NTIP bond distance of 2.19 Å in 

[7b]+ is ~0.04 Å longer than the average Fe-NTp distance in 4a, reflecting the weaker 

donating ability of neutral Ph2TIP relative to anionic Ph2Tp.   In both 4a and [7b]+, the Fe-

N/O bond lengths are indicative of high-spin Fe(II) centers, consistent with the presence 

of paramagnetically-shifted peaks in their corresponding 1H NMR spectra (Figure 4.4). 
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Figure 4.3. Thermal ellipsoid plot of [7b]BPh4 and 10a. Counteranions, noncoordinating 

solvent molecules, and most hydrogen atoms have been omitted for clarity.   
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Figure 4.4.  1H NMR spectra of 4a (top) and [7b]OTf (bottom) in CD2Cl2.  Note that peak 

intensities for the outer portions of the spectra were enlarged (x 2) for the sake of clarity. 
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Table 4.1. Selected bond lengths (Å) and angles (deg) for complexes 4a, [7b]BPh4, and 

10a 
 4a•MeCN•0.5DCE 7b[BPh4] •1.5DCE 10a•4CH2Cl2 

Fe1-N1 2.101(1) 2.175(2) 2.121(2) 

Fe1-N3 2.127(1) 2.175(2) 2.158(2) 

Fe1-N5 2.223(1) 2.222(2) 2.236(2) 

Fe1-O1 1.931(1) 1.929(2) 1.920(2) 

Fe1-N7 2.214(1) 2.229(2) 2.335(2) 

    

N1-Fe1-N3 92.82(5) 92.50(7) 100.11(9) 

N1-Fe1-N5 83.30(5) 85.88(7) 80.90(9) 

N3-Fe1-N5 86.11(5) 84.43(6) 81.79(9) 

O1-Fe1-N1 136.61(5) 134.21(7) 131.71(9) 

O1-Fe1-N3 129.47(5) 130.73(7) 127.63(9) 

O1-Fe1-N5 105.94(4) 109.45(6) 109.69(9) 

O1-Fe1-N7 80.76(4) 80.24(6) 78.07(8) 

N1 -Fe-N7 92.60(5) 88.33(7) 100.11(9) 

N3 -Fe-N7 88.68(5) 87.90(7) 98.07(9) 

N5 -Fe-N7 173.20(5) 170.17(7) 170.40(9) 

τ-value  0.61 0.60 0.65 

The Ph2Tp-based complex 10a contains the DMAPH ligand – the N,N-

dimethylated version of tBuAPH. 

 

 

Figure 4.5. UV-vis spectra of complexes 4a-[6a]+, [7b]+-[9b]+, and 10a. 
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This complex is intended serve as a “control”, since methylation of the –NH2 

group hinders conversion to the ISQ state.  The overall structure of 10a, as revealed by 

X-ray crystallography (Figure 4.3), is quite similar to 4a.  The most prominent difference 

is the 0.12 Å elongation of the Fe1-N7 bond in 10a relative to 4a (Table 4.1), presumably 

due to steric repulsion between the -NMe2 group and 3-Ph substituents of the Ph2Tp 

ligand.  Additionally, the plane of the DMAPH ligand is bent away from the O1-Fe-N7 

chelate ring by 26o, whereas the two planes are nearly colinear in 4a and [7b]+. 

Treatment of [7b]OTf with TTBP• in CH2Cl2 produces a light green chromophore 

[8b]+ with an absorption spectrum similar to the one collected for 5a (Figure 4.5). In 

addition, the EPR spectra of [8b]+ and 5a are nearly identical; both exhibit a sharp peak 

at g ≈ 6.5 and broad derivative feature centered at g ˂ 1.8 (Figure 4.6).  Such spectra are 

characteristic of S = 3/2 systems with large, negative D values and moderate rhombicities 

(E/D = 0.24 and 0.18 for 5a and [8b]+, respectively). Unfortunately, despite repeated 

attempts, it was not possible to obtain X-ray quality crystals of [8b]+.  However, the 

strong resemblance between the spectroscopic features of 5a and [8b]+ suggests similar 

Fe2+ISQ electronic configurations─an assumption verified by analysis with Mӧssbauer 

spectroscopy (vide infra). 
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Figure 4.6.  X-band EPR spectra of 5a (top) and [8b]OTf collected at 20 and 10 K, 

respectively.  The experimental spectra (solid lines) were simulated (dashed line) assuming 

a S = 3/2 ground state.  Simulation parameters for 5a: D = -10 cm-1; E/D = 0.24; g = 2.36, 

2.30, 2.17.  Simulation parameters for [8b]OTf:  D = -12 cm-1; E/D = 0.18; g = 2.45, 2.35, 

2.01.  The program EasySpin4 was used to simulate the experimental spectra (S. Stoll and 

A. Schweiger, Journal of Magnetic Resonance, 2006, 178, 42-55). 

 

Oxidation of 4a and [7b]OTf with two equivalents of AgX (X = SbF6 or OTf) in 

CH2Cl2 gives rise to complexes [6a]SbF6 and [9b](OTf)2, respectively, that each display a 

distinctive absorption band near 780 nm (12800 cm-1; Figure 4.5).  The magnetic 

moments of these complexes are near 5.0 µB, typical for S = 2 paramagnets, and the EPR 

spectrum of [9b]2+ exhibits a 4S signal at g = 8.7 (Figure 4.7). 
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Figure 4.7.  X-band EPR spectra of [9b](OTf)2 collected at 10 K in perpendicular mode 

(black) and parallel mode (red). 

 

 The structural data for [6a]SbF6 reported in the previous chapter suffers from 

large uncertainties in bond lengths (3σ ≈ 0.035 Å in C─distances), which hindered 

evaluation of the ligand oxidation state based on geometric parameters.  As noted in the 

introduction, DFT calculations suggested an electronic structure intermediate between 

Fe3+─tBuISQ and Fe2+─tBuIBQ. 
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Figure 4.8.  Thermal ellipsoid plot (50% probability) derived from the X-ray structure of 

[9b](OTf)2●1.5 CH2Cl2.  Non-coordinating solvent molecules, counteranions and most 

hydrogen atoms have been omitted for clarity.  Key metric parameters are provided in 

Table 4.2. 

 

Table 4.2.  Selected bond lengths [Å] from the X-ray structures of [6a]SbF6●0.5 DCE and 

[9b](OTf)2●1.5 CH2Cl2. 
 [6a]SbF6 [9b](OTf)2  [6a]SbF6 [9b](OTf)2 

Fe1-N1 2.071(7) 2.077(3) O1-C1 1.264(11) 1.287(5) 

Fe1-N3 2.038(7) 2.089(4) N7-C2 1.333(11) 1.314(6) 

Fe1-N5 2.134(6) 2.093(4) C1-C2 1.473(12) 1.483(6) 

Fe1-O1 2.082(6) 2.037(3) C2-C3 1.423(12) 1.429(6) 

Fe1-N7 2.017(8) 2.013(4) C3-C4 1.345(15) 1.340(7) 

 

Crystals of [9b](OTf)2 were obtained by layering a CH2Cl2 solution with pentane; 

the resulting X-ray structure is shown in Figure 4.8, and relevant metric parameters for 

[6a]SbF6 and [9b](OTf)2 are compared in Table 4.2.  The -values for the [9b](OTf)2 

bond distances are significantly smaller than those in the [6a]SbF6 structure.  Like [6a]+, 

complex [9b]2+ features a distorted trigonal-bipyramidal coordination geometry ( = 
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0.57) with O1 occupying an axial position.  The O1-C1, N7-C2, and C-C bond distances 

of the O,N-donor ligand are fully consistent with ligand-based oxidation.  Recently, 

Brown developed a helpful procedure for assessing the oxidation state of o-

aminophenolate ligands based on their metric parameters.136  Using this method, the 

ligands in [6a]+ and [9b]2+ have estimated charges of ─0.54(8) and ─0.48(10), 

approximately halfway between the ISQ─ and IBQ0 limits (Table 4.3).  Further insights 

into the Fe and ligand oxidation state of [6a]+ and [9b]2+ are provided by spectroscopic 

and computational studies described below. 
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Table 4.3.  Experimental and DFT-computed properties of selected complexes. 

   4a [7b]+ 5a [8b]+ [6a]+[a] [9b]2+[a] 

metric parameters Fe-NTp/TIP ave [Å] exptl 2.150 2.191 2.137  2.081 2.086 

  DFT 2.215 2.240 2.188 2.233 2.077 2.122 

 O1─C1 [Å] exptl 1.345 1.340 1.285  1.264 1.287 

  DFT 1.330 1.338 1.276 1.277 1.278 1.273 

 N7─C2 [Å] exptl 1.451 1.455 1.328  1.336 1.314 

  DFT 1.454 1.460 1.335 1.337 1.329 1.326 

 ligand charge exptl - - ─0.69  ─0.54 ─0.48 

  DFT - - ─0.72 ─0.73 ─0.62 ─0.54 

         

Mulliken spins Fe DFT +3.78 +3.76 +3.77 +3.76 +3.94 +3.93 

 O,N─ligand DFT +0.14 +0.18 ─0.86 ─0.82 ─0.30 ─0.15 

         

Mӧssbauer δ [mms-1] exptl 1.06 1.06/1.14 0.97 0.95/0.99 0.73 0.64 

  DFT 0.96 0.95 0.86 0.91 0.57 0.62 

 ΔEQ [mms-1] exptl 2.52 2.08/2.93 3.5 1.95[b]/2.5 2.33 1.94 

  DFT 2.00 1.86 2.93 2.09 0.71 1.34 

[a] DFT calculation employed the BP functional.  [b] Average ΔEQ value for the dominant species in the [8b]+ MB 
spectrum. 
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4.C. Electrochemistry of Complexes 4a-[6a]+ 

Our original intent in performing chemical oxidations of 4a and [7b]OTf was to 

generate the corresponding ferric complexes [Fe3+(Ph2Tp)(tBuAPH)]+ (4aox) and 

[Fe3+(Ph2TIP)(tBuAPH)]2+ (7box).   However, treatment of 4a and [7b]OTf with a single 

equivalent of one-electron oxidants (such as acetylferrocenium, [N(C6H4Br-4)3]
+, or Ag+) 

instead produced 0.5 equivalent of [6a]+ and [9b]2+, respectively.  Indeed, titrations of 4a 

and [7b]OTf with acetylferrocenium revealed a linear increase in the intensity of the 

[6a]+/[9b]2+ absorption features up to two equivalents of oxidant, indicating that the 

Fe(II) precursors exclusively undergo two-electron oxidations.  This situation generally 

occurs when the product of the initial one-electron transfer undergoes a chemical change 

to yield a species that is more reducing than the starting complex.   

To better understand this phenomenon, cyclic voltammetric studies of the Ph2Tp series 

were conducted in CH2Cl2 with 100 mM [NBu4]PF6 as the supporting electrolyte. All 

redox potentials are referenced to the ferrocenium/ferrocene couple (Fc+/Fc).  As shown 

in Figure 4.9, 4a undergoes an irreversible oxidation at -15 mV, followed by a cathodic 

wave at -490 mV with half the current intensity of the anodic wave. 
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Figure 4.9.  CV diagram of complexes 4a, 5a, and 10a.  All potentials have been 

referenced to the ferrocene/ferrocenium couple. 

 

 

Figure 4.10.  Diagram of the redox reactions/disproportionation of complexes 4a-6a. 

 

We therefore concluded that the oxidation at -15 mV corresponds to the two-electron 

process 4a  [6a]+ + H+, while the subsequent reduction corresponds to one-electron 

reduction of [6a]+ to 5a.   This conclusion was confirmed by the CV of 5a (Figure 4.9), 

which shows a quasi-reversible [6a]+/5a couple with E1/2 = -380 mV (ΔE = 140 mV).  

Thus, 5a is indeed more reducing than 4a, accounting for the behavior described above. 
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Figure 4.10 summarizes the electrochemical properties of these complexes.  One-electron 

oxidation of 4a presumably yields the ferric complex 4aox, although this transient species 

is never observed. 

Instead, 4aox quickly sheds a proton to the surrounding medium to give 5a, since the 

change in Fe oxidation state dramatically lowers the pKa of the coordinated –NH2 donor.  

The fact that E1/2(4aox/4a) > E1/2([6a]+/5a) ensures that 5a is not stable in this 

environment; instead, it disproportionates to give 0.5 equivalent each of 4a and [6a]+ 

(Figure 4.10).  Thus, the only way to convert 4a into 5a is to employ an H-atom 

abstracting agent like TTBP• that is not an effective one-electron oxidant. Our results also 

indicate that deprotonation of the O,N-ligand dramatically lowers its redox potential, thus 

favoring ligand-based over metal-based oxidation.  

The electrochemical behavior of 10a is straightforward since the DMAPH ligand 

cannot easily participate in proton or electron transfers.  This complex displays a quasi-

reversible redox event with E1/2 = -15 mV (ΔE = 130 mV) that corresponds to the 

Fe3+/Fe2+ couple (Figure 4.9).  The 10a potential can serve as an approximate value for 

the irreversible 4aox/4a couple.  The free tBuAPH2 and DMAPH ligands are irreversibly 

oxidized at more positive potentials of +280 and +450 mV, respectively, in CH2Cl2 

(Figure 4.11). 
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Figure 4.11.  Cyclic voltammograms of ligands tBuAPH2 and DMAPH in CH2Cl2 with 100 

mM (NBu4)PF6 as the supporting electrolyte.  The scan rate was 100 mV/s. 

 

4.D. Geometric and Electronic Structures of DFT-Optimized Models   

Since the spectroscopic data presented below are frequently interpreted with the 

assistance of DFT calculations, it is necessary to first describe the molecular and 

electronic structures of our computational models. We employed truncated versions of 

the complexes in which the tert-butyl groups of the O,N-donor were replaced with methyl 

groups and the phenyl substituents at the 5-positions of the pyrazole (Ph2Tp) and 

imidazole (Ph2TIP) rings were removed.  Unless otherwise noted, all calculations 

employed the B3LYP functional.  The most stable geometry-optimized structure of 5a 

was obtained using the broken symmetry (BS) methodology and an overall spin of 3/2; 

this model provided metric parameters in excellent agreement with the crystallographic 

data (Table 4.4). 
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Table 4.4. Selected Bond Distances (Å) and Angles (deg) for Complexes 5a and [8b]+ 

Obtained by XRD and DFT. 

Bond distances 5a (XRD) 5a (DFT) [8b]+ (DFT) 

Fe1-N1 2.108(2) 2.129 2.176 

Fe1-N3 2.087(2) 2.136 2.188 

Fe1-N5 2.216(2) 2.299 2.335 

Fe1-O1 2.095(2) 2.130 2.121 

Fe1-N7 1.982(2) 2.029 2.003 

O1-C1 1.285(3) 1.276 1.277 

N7-C2 1.328(4) 1.335 1.337 

C1-C2 1.469(5) 1.461 1.460 

C2-C3 1.413(4) 1.420 1.417 

C3-C4 1.363(4) 1.372 1.372 

C4-C5 1.427(4) 1.427 1.430 

C5-C6 1.375(4) 1.372 1.370 

C1-C6 1.440(4) 1.432 1.432 

Bond angles 5a (XRD) 5a (DFT) [8b]+ (DFT) 

N1-Fe1-N3 93.44(7) 94.6 95.1 

N1-Fe1-N5 82.76(7) 83.3 83.9 

N3-Fe1-N5 89.80(7) 86.1 86.2 

O1-Fe1-N1 94.16(7) 97.2 95.2 

O1-Fe1-N3 95.62(7) 97.6 93.8 

O1-Fe1-N5 173.93(8) 176.2 179.1 

N7-Fe1-N1 138.99(9) 138.5 136.5 

N7-Fe1-N3 127.37(9) 126.8 128.0 

N7-Fe1-N5 99.36(8) 98.6 102.2 

O1-Fe1-N7 79.52(8) 78.5 78.6 

τ-value 0.58 0.63 0.71 

 

The Mulliken spin populations, listed in Figure 4.3, support the view that the 

electronic structure of 5a should be described as a high-spin Fe2+ center (3.77 α spins) 

AF-couple to an ISQ-based π-radical (0.86 β spins).  The exchange coupling constant (J) 

has a computed value of ─223 cm-1, based on the Yamaguchi approach (H = 

─2JSA●SB).156  The AF coupling is mediated by a nonorthogonal pair of singly occupied 
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molecular orbitals (SOMOs) with opposite spins, shown in the qualitative MO diagram in 

Figure 4.12.  The relevant magnetic orbitals for 5a are the α-Fe(dxy)- and β-ISQ(π*)-based 

MOs that display 33% spatial overlap, indicative of a ligand-based radical with rather 

weak interactions with the Fe2+ center. The structure and bonding scheme of [8b]+, also 

computed with the BS approach, are nearly identical to the corresponding 5a model 

(Table 4.3 and 4.4), consistent with the spectral similarities between 5a and [8b]+ (vide 

supra). 

 

 

Figure 4.12. Qualitative molecular orbital diagrams for 5a (left) and [6a]+ (right) 

obtained from broken-symmetry DFT calculations.  Isosurface plots for important MOs 

are provided, along with the overlap (s) between corresponding magnetic orbitals. 
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While the optimized [6a]+ geometry obtained with the B3LYP functional agrees 

reasonably well with the crystallographic data, Fe─N/O and intraligand bond lengths in 

the DFT structure of [9b]2+ deviate significantly from the experimental values (Table 

4.5).  Better agreement was obtained with the BP functional for both [6a]+ and [9b]2+, 

and therefore, our analysis of these complexes has employed the BP-derived structures. 
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Table 4.5.  Experimental and computed bond distances (Å) and bond angles (deg) for complexes [6a]+ and [3b]2+ Obtained by 

XRD and DFT. 

Bond distances [6a]+ (XRD) [6a]+ (B3LYP) [6a]+ (BP) [9b]2+ (XRD) [9b]2+ (B3LYP) [9b]2+ (BP) 

Fe1-N1 2.071(7) 2.078 2.050 2.077(3) 2.124 2.095 

Fe1-N3 2.038(7) 2.077 2.043 2.089(4) 2.135 2.091 

Fe1-N5 2.134(6) 2.137 2.138 2.093(4) 2.193 2.180 

Fe1-O1 2.082(6) 2.078 2.064 2.037(3) 2.180 2.057 

Fe1-N7 2.017(8) 2.047 1.999 2.013(4) 2.088 2.001 

O1-C1 1.264(11) 1.256 1.278 1.287(5) 1.235 1.273 

N7-C2 1.333(11) 1.311 1.329 1.314(6) 1.295 1.326 

C1-C2 1.473(12) 1.482 1.473 1.483(6) 1.514 1.483 

C2-C3 1.423(12) 1.425 1.422 1.429(6) 1.428 1.420 

C3-C4 1.345(15) 1.364 1.378 1.340(7) 1.358 1.378 

C4-C5 1.433(16) 1.451 1.444 1.448(7) 1.465 1.451 

C5-C6 1.375(14) 1.361 1.376 1.370(7) 1.353 1.374 

C1-C6 1.439(12) 1.442 1.437 1.427(7) 1.454 1.440 

RMS dev (all)  0.018 
 

0.014  0.060 0.028 

RMD dev (ligand)  0.014 0.013  0.027 0.016 

Bond angles [3a]+ (XRD) [3a]+ (B3LYP) [3a]+ (BP) [3b]2+ (XRD) [3b]2+ (B3LYP) [3b]2+ (BP) 

N1-Fe1-N3 94.5(3) 95.4 96.9 98.9(1) 95.3 98.5 

N1-Fe1-N5 84.6(3) 88.5 88.3 85.5(1) 89.1 89.2 

N3-Fe1-N5 92.4(3) 90.3 91.0 93.3(2) 90.7 91.4 

O1-Fe1-N1 86.6(2) 93.3 93.6 91.8(1) 92.2 92.0 

O1-Fe1-N3 93.8(3) 93.3 93.4 92.3(1) 92.0 91.8 

O1-Fe1-N5 169.6(3) 175.9 175.0 174.1(1) 177.0 176.3 

N7-Fe1-N1 144.6(3) 137.3 136.3 140.2(2) 135.7 134.4 

N7-Fe1-N3 117.6(3) 126.0 126.0 119.5(2) 126.7 125.8 

N7-Fe1-N5 106.9(3) 100.0 98.1 101.3(2) 102.4 99.1 

O1-Fe1-N7 77.4(3) 76.2 77.4 77.6(2) 74.8 77.6 

τ-value 0.42 0.64 0.65 0.57 0.69 0.70 
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 For each complex, DFT calculations converge to the same S = 2 state irrespective 

of whether the BS approach is employed.  The Mulliken spin populations appear to favor 

an Fe2+─tBuIBQ description, as the Fe center carries approximately four unpaired spins 

and the ligand-based spin density is reduced relative to 5a/[8b]+ (Table 4.3).  The β-

HOMO of [6a]+ contains significant amounts of both Fe (39%) and O,N-ligand (53%) 

character (Figure 4.12), indicative of intermediate Fe2+/3+ and IBQ/ISQ oxidation states 

(the corresponding values for [9b]2+ are 53 and 37%).  In addition, the spatial overlap 

between the pair of magnetic orbitals involved in the spin-coupling interaction is about 

80%, which reflects a high degree of spin pairing (as opposed to the “diradical” situation 

of 5a).  However, these computational results should be viewed with caution, since the 

experimental metric parameters for [6a]+/[9b]2+ are not consistent with a pure IBQ 

description, as evident in the ligand charges shown in Table 4.3.  Spectroscopic studies 

are therefore required to properly evaluate the electronic structures of [6a]+ and [9b]2+. 

 Finally, we generated DFT models of the hypothetical Ga3+ complexes, 

[Ga3+(Ph2Tp)(ISQ)]+ (Ga-ISQ) and [Ga3+(Ph2Tp)(IBQ)]2+ (Ga-IBQ).  The Ga3+ ion has 

been employed in previous computational studies as a closed-shell analog of Fe3+ due to 

similarities in charge and ionic radius.70  Since Ga3+ is not redox active, the Ga-ISQ and 

Ga-IBQ models allow us to assess the electronic and spectroscopic properties of “pure” 

ISQ and IBQ ligands without complications from the paramagnetic Fe center. 

 

 

 



84 
 

4.E. Mӧssbauer Spectroscopy 

 Mӧssbauer (MB) spectroscopy has proven capable of providing definitive 

assessments of Fe oxidation states in complexes with non-innocent ligands (Figure 4.13). 

displays low-temperature (6 K) MB spectra collected in an applied field of 0.04 T for 

polycrystalline samples of 4a, 5a, and [6a]SbF6; the corresponding spectra of the Ph2TIP-

based “b series” are provided in Figure 4.14.  MB parameters are summarized in Tables 

4.3 and 4.5.  Complex 4a displays a single doublet with an isomer shift (δ) of 1.06 mms-1 

and quadrupole splitting (ΔEQ) of 2.52 mm-1, consistent with the presence of a 

conventional high-spin Fe2+ center. 

 

 

Figure 4.13.  Mӧssbauer spectra of complexes 4a, 5a, and [6a]SbF6 recorded at 6 K in 

an applied field of 0.04 T.  The parameters indicated represent the principal species 

discussed in the text.  The spectrum of sample 5a contains a contribution from 4a, 

amounting to 30% of the total Fe in the sample (inner doublet, indicated by the bracket).  

The spectrum of [6a]+ shown in this figure was obtained by subtracting 20% of 

impurities from the raw data. 
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Figure 4.14.  Mӧssbauer spectra of complexes [7b]OTf, [8b]OTf, and [9b](OTf)2, 

recorded at 6 K, in an applied field of 0.04 T.  The solid lines are least-square fits with 

parameters in Table 4.6. 
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Table 4.6.  Experimental Mӧssbauer Parameters 

 Isomer Shift Quadrupole Splitting FWHM 

Complex δ (mm/s)a ΔEQ (mm/s) mm/s 

4a 1.06 2.52 0.26 

    

5a 0.97 3.50 0.35, 0.6 

    

 0.73 (80%) 2.33 0.4 

[6a]SbF6 0.55 (15%) 0.75 0.4 

 0.10 (5%) 1.0 0.28, 0.35 

    

[7b]OTf 1.06 (70%) 2.08 0.29 

 1.14 (30%) 2.93  

    

 0.95 (26%) 2.08  

[8b]OTf 0.95 (44%) 1.68 0.33 

 0.99 (30%) 2.5  

    

 0.64 1.94  

[9b](OTf)2 1.27 3.20 0.35 

 1.00 3.44  

aIsomer shifts are quoted at 6 K. with respect to iron metal spectra at room temperature. 

 

In contrast, the MB spectrum of [7b]OTf features two doublets in a roughly 2:1 

ratio; the parameters for both species are typical of high-spin Fe2+ complexes: δ = 1.06 

and 1.14 mms-1 and ΔEQ  = 2.08 and 2.93 mms-1 for the major and minor components, 

respectively.  The two observed species likely correspond to conformational isomers of 

[7b]+ that lie at different points along the continuum between square-pyramidal and 

trigonal-bipyramidal geometries.  In support of this conclusion, the X-ray structure of 
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[7b]+ (vide supra) features two independent complexes in the unit cell with distinct τ 

values of 0.60 and 0.55. 

 The MB spectrum of 5a exhibits a broad doublet with a large quadrupole splitting 

(δ = 0.97, ΔEQ = 3.5 mms-1), although the presence of starting material (ca. 30% of Fe) is 

also evident (Figure 4.13).  Significantly, the modest decrease of 0.09 mms-1 in isomer 

shift upon conversion of 4a to 5a provides unequivocal evidence that the oxidation is 

ligand based, in support of the Fe2+─ISQ formulation for 5a.  Likewise, the MB spectrum 

required three doublets with δ values of (0.97 ± 0.02) mms-1 and ΔEQ values between 1.7-

2.5 mms-1 (Table 4.6).  Given the nearly identical isomer shifts, these three species likely 

correspond to conformational isomers of [8b]+, similar to the situation discussed above 

for [7b]+.  The heterogeneity observed in the [8b]+ spectrum is related to the inability to 

prepare suitable crystals of this complex, which necessitated the use of powder samples 

lacking the intrinsic order of crystalline material.  The broadness of the doublets for both 

5a and [8b]+ is likely due to spin-spin relaxation effects. 

 MB spectra of [6a]+ and [9b]2+ each display a single doublet centered at δ = 0.73 

and 0.64 mms-1, respectively, with quadrupole splittings of about 2.0 mms-1  (Figure 4.14 

and Table 4.6; the [9b]2+ spectrum also contains features arising from ferrous impurities).  

The lower δ values suggest that one-electron oxidation of 5a → [6a]+ (or [8b]+ → [9b]2+) 

involves significant removal of electron density from the Fe ions.  However, the observed 

isomer shifts are larger than one would expect for high-spin Fe3+ centers, which typically 

display values between 0.4 and 0.6 mms-1.157  A survey of high-spin [Fe3+-(ISQ)n] 

complexes (n = 1, 2, or 3) prepared by Wieghardt and co-workers found δ values ranging 

from 0.44 to 0.54 mms-1.78,80-82  The MB data are therefore consistent with our DFT 
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results that suggest partial IBQ character for the O,N-ligands in [6a]+/[9b]2+.  It is also 

important to note that the a- and b-series of complexes yield very similar MB parameters, 

suggesting that the supporting ligand (Ph2Tp(1─) vs Ph2TIP) has little effect on the Fe/LO,N 

unit. 

 As show in Table 4.3, the isomer shifts derived from DFT calculations are quite 

consistent with the experimental data, although DFT generally underestimates δ values 

by about 0.05-0.15 mms-1.  In particular, DFT nicely reproduces the magnitude of 

changes (Δδ) across the 4→5→6 (or 7→8→9) series.  The overall agreement is less 

satisfactory for quadrupole splittings, but it is well-known that DFT has more difficulty 

computing accurate ΔEQ values.158-160  The general agreement between calculated and 

experimental MB parameters indicates that our computational models faithfully represent 

the electronic structures of these “redox-ambiguous” complexes. 

 

4.F. Electronic Absorption and MCD Spectroscopy  

The UV/vis/NIR spectra of 5a and [8b]+ displayed in Figure 4.5 are characterized by 

a broad absorption manifold (ε ~ 1.0 mM-1cm-1) centered around 750 nm (13,300 cm-1).  

In this region, the 5a/[8b]+ spectra closely resemble those reported for other ISQ-

containing complexes with various metal ions (Co3+, Ni2+, and Cu2+),89,131 as well as the 

spectrum measured by Carter et al. for a “free” ISQ radical.161  These spectral similarities 

suggest that the transitions observed for 5a and [8b]+ are primarily ligand based. This 

conclusion is supported by literature precedents162,163 and our time-dependent DFT (TD-

DFT) calculations.  The dominant contributor to the 750 nm feature is an intraligand 

transition in which the acceptor orbital is the SOMO of the tBuISQ radical.  TD-DFT 
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calculations predict this transition to appear at 16,100 and 15,200 cm-1 for 5a and [8b]+, 

respectively.  In general, the TD-DFT methodology nicely replicates the energies and 

intensities of the experimental absorption features, as shown in Figure 4.15 for 5a 

(electron density difference maps – EDDMs, for key transitions are provided in Figure 

4.16). 

 

 

Figure 4.15.  Experimental (dashed line) and TD-DFT computed (solid line) absorption 

spectra for 5a (top) and [6a]+ (bottom).  The arrows point to features in the computed 

spectra arising from the indicated type of electronic transition. 
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Figure 4.16.  Top: Experimental (dashed line) and TD-DFT computed (solid line) 

absorption spectra for 5a.  Bottom:  Electron density difference maps (EDDMs) for 

computed transitions.  Blue and grey regions indicate gain and loss of electron density, 

respectively. 

 

These calculations indicate that another component of the absorption manifold 

involves excitation to the tBuISQ SOMO from an molecular orbital with mixed 

tBuISQ/Fe(II) character; the computed energy for this transition is 15,000 cm-1 for 5a.  

The weak near-infrared (NIR) bands evident for both complexes likely arise from Fe(II) 

d-d transitions, while features at higher energies (> 20,000 cm-1) are attributed by TD-
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DFT to tBuISQFe(II) charge transfer (CT).  These latter bands are relatively weak due to 

poor overlap between the tBuISQ SOMO and half-occupied Fe(II) orbitals (Figure 4.16). 

 

Table 4.7. Comparison of Computed (TD-DFT) and Experimental Energies for Selected 

Electronic Transitions of Complexes 5a and [6a]SbF6. 

Complex Transition Transition energy (cm-1) 

 assignment TD-DFT experimental 

5a Fe(II) d-d 8000 6500 

  14100  

    

 intraligand 15000 13200 

  16100 15200 

    

 ISQ→Fe(II) CT 20700 21400 

    

[6a]SbF6 LO,N→Fe CT 7600 6050 

    

 Fe/LO,N π→π* 14600 13050 

    

 intraligand 19000 ~20000 

 

Analysis of the [6a]/[9b]2+ spectra is more complex due to the large extent of 

mixing between Fe and ligand orbitals.  For both complexes, the β-HOMO – containing 

approximately equal parts metal and ligand character (vide supra) – arises from a π-

bonding interaction between the parent Fe 3d and LO,N  orbitals (Figure 4.17).  TD-DFT 

calculations, which again faithfully reproduce key features of the experimental spectrum 

(Figure 4.18 and Table 4.7), indicate that the intense absorption feature at about 13000 

cm-1 involves electron transfer from the β-HOMO to its unoccupied π-antibonding 

counterpart; therefore, this excitation is best described as a π→ π* transition centered on 

the O1─Fe1─N7 unit.  The broad band evident in the NIR region (ε ≈ 1.0 mM-1 cm-1) is 

then attributed to β-HOMO→Fe 3d transitions where the acceptor orbitals lack 
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significant LO,N character.  Given the mixed nature of the β-HOMO, this low-energy 

feature possesses both Fe d-d and LMCT character, as revealed in the EDDMs in Figure 

4.17.   

 

 

 

Figure 4.17.  Top: Experimental (dashed line) and TD-DFT computed (solid line) 

absorption spectra for [6a]+.  Bottom: Electron density difference maps (EDDMs) for 

computed transitions.  Blue and grey regions indicate gain and loss of electron density, 

respectively. 
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Interestingly, the intraligand transition that is prominent at about 13300 cm-1 in the 

5a/[8b]+ spectra is calculated to appear at 18900 cm-1 for [6a]+, although this transition 

now contains some LCMT character.  The blueshift reflects the partial IBQ character of 

the O,N-coordinated ligands, since previous reports have demonstrated that the lowest-

energy IBQ based transition in metal complexes occurs near 20800 cm-1.89,131  This 

intraligand transition is largely obscured in the [6a]+ spectrum by intense NTp→Fe CT 

transitions.  However, because the Ph2TIP-based MOs are greatly stabilized relative to 

their Ph2TIP counterparts (on account of the difference in charge), the NTIP→Fe CT 

transitions are therefore evident in the 20000-25000 cm-1 region of the [9b]2+ spectrum 

with intensities of about 1.5 mM-1 cm-1. 

The electronic transitions of [9b](OTf)2 were further probed through the collection of 

solid-state MCD spectra at low temperatures (4-30 K).  All bands in the visible region 

exhibit temperature-dependent intensities characteristic of C-term behavior (Figure 4.18, 

top), as expected for a paramagnetic S = 2 species.  Based on our analysis of the 

absorption spectrum, the most intense MCD feature at 12500 cm-1 corresponds to the 

Fe/LO,N π→π* transition, while the bands centered around 20000 cm-1 are ascribed 

primarily to intraligand transitions.  Since MCD c-term intensity requires spin-orbit 

coupling between states, features that involve metal d-orbitals, such as ligand-field (d-d) 

and CT transitions, are relatively more intense in MCD than absorption spectra (C/D 

ratio).164  Thus, the comparative weakness of the higher-energy features in the [9b]2+ 

MCD spectrum is further confirmation of the ligand-based nature of these transitions. 
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Figure 4.18.  Top: Variable-temperature solid-state MCD spectra of [9b](OTf)2.  Spectra 

were measured at a magnetic field of 7 T and at temperatures of 4, 8, 15 and 30 K.  

Bottom: VTVH-MCD data collected at 790 nm for [9b](OTf)2.  Data were obtained at the 

indicated temperatures with magnetic fields (H) ranging from 0 to 7 T.  The best fit (ʘ) 

was obtained with the following spin Hamiltonian parameters:  S = 2, D = -5 cm-1, E/D = 

0.20, giso = 2.0. 

 

 Variable-temperature variable-field MCD (VTVH-MCD) data were collected at 

790 nm (12660 cm-1) for [9b]2+.  In these experiments, the MCD intensity was monitored 

at five temperatures (2, 4, 8, 15, and 30 K) as the magnetic field (H) was varied from 0 to 

7 T; by convention, the resulting magnetization curves are plotted against βH/2kT (Figure 

4.18, bottom).  As demonstrated by Solomon and Neese, quantitative analysis of the 

VTVH-MCD curves provides valuable information regarding spin-Hamiltonian 

parameters and transition polarizations.165,166  The VTVH-MCD method is particularly 

powerful for non-Kramers systems, such as [9b]2+, that are often inaccessible by EPR 
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spectroscopy.  The magnetization curves obtained at 790 nm saturate rapidly with field 

and exhibit very little “nesting” (i.e., spread between curves obtained at different 

temperatures).  Such behavior is characteristic of S =2 systems with negative zero-field 

splitting (ZFS).167,168  Indeed, the best fit of the 790 nm data was obtained with D = ─5.0 

cm-1 and E/D = 0.20 (Figure 4.18), although a broad range of negative D values (˂ 4 cm-

1) with moderate rhombicities (0.1 ˂ E/D ˂ 0.25) provided acceptable fits.  Our analysis 

indicates that the corresponding transition is polarized in the xz direction, which requires 

the O,N-donor ligand to lie in the xz plane of the D tensor (Figure 4.18). 

 

4.G. Resonance Raman Spectroscopy 

 Vibrational spectroscopy has proven valuable in the characterization of metal-

bound phenoxyl and semiquinone radicals.86,169-171  In the case of dioxolenecomplexes, 

the C─O stretching frequency is a sensitive indicator of ligand oxidation state, ranging 

from 1400-1500 cm-1 for semiquinones and 1620-1640 cm-1 for benzoquinones.172  By 

contrast, the vibrational features of iminobenzo(semi)quinones have not been examined 

in detail.  We therefore collected resonance Raman (rR) spectra on frozen samples of 

[6a]SbF6 in CD2Cl2 (Figure 4.19).  The experiments utilized 488 nm laser excitation, in 

resonance with the intraligand transitions that appear in this region (vide supra).  To aid 

in peak assignments, we prepared a sample of [6a]+ in which the O,N-ligand was labeled 

with the 15N isotope; the difference spectrum revealed several peaks that are sensitive to 

15N substitution (Figure 4.19).  Interpretation of the rR data was further aided by DFT 

frequency calculations employing the BP functional. 
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Figure 4.19.  Resonance Raman spectra obtained with 488.0 nm excitation (45 mW) of 

frozen CD2Cl2 solutions of (top) natural abundance [6a]SbF6 with incorporation of 15N 

isotope in the LO,N ligand.  The difference spectrum is shown on the bottom.  Frequencies 

(in cm-1) are provided for selected peaks, with the corresponding 14N→15N shifts shown 

in parenthesis.  Peaks marked with an asterisk (*) arise from the frozen solvent, while the 

peak marked with a triangle arises from condensed liquid O2. 

 

 Based on literature precedents involving metal-semiquinone complexes,170,171 the 

two isotopically sensitive peaks at 520 and 577 cm-1 in the [6a]+ spectrum are attributed 

to motions of the five-membered chelate ring formed by the Fe center and O,N-ligand.  In 

support of this assignment, DFT predicts two modes at 532 and 588 cm-1 (with 15N 

isotope shifts of 7 and 4 cm-1, respectively) with large degrees of chelate stretching 

character.  The mode at 520 cm-1 (calculated at 532 cm-1) is best described as a chelate 
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breathing mode, whereas the chelate vibrations in the higher-energy mode are strongly 

mixed with intraligand C─C bond movements.  Graphical depictions of these normal 

modes, along with further information concerning the computed vibrational spectrum, are 

provided in Figure 4.20. 

 

 

Figure 4.20.  Normal modes, experimental and DFT-calculated frequencies, and 

computed isotope shifts for 15N- and 18O-labeled ligand. 
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Figure 4.21. Resonance Raman spectra obtained with 488.0 nm excitation (45 mW) of 

frozen CD2Cl2 solutions of 4a (red) and [6a]SbF6 (black).  Frequencies (in cm-1) are 

provided for selected peaks. 
 

The [6a]+ spectrum exhibits numerous peaks in the 1000-1650 cm-1 region.  These 

features are not present in the rR spectrum of 4a (Figure 4.21); we therefore conclude that 

they arise from the oxidized O,N-ligand (an exception is the 1609 cm-1 peak, which 

appears in both spectra).  Studies of analogous semiquinone complexes170,171 found that 

the most intense peaks in this region correspond to modes that couple O─C stretching 

and C─C ring motions.  Indeed, DFT predicts two ν(O─C)-based modes for [6a]+ at 1342 

and 1404 cm-1 that are slightly sensitive to 15N substitution (calculated shifts of ≈ 1 cm-1).  

These modes likely corresponding to the prominent peaks at 1308 and 1383 cm-1 in the 

experimental spectrum.  Modes with significant ν(N─C) character have computed 

frequencies of 1319, 1384, and 1495 cm-1, with 15N isotope shifts of about 1-3 cm-1 in 

each case.  The two lower-energy modes nicely match the experimental peaks at 1279 

and 1373 cm-1, while the higher-energy mode is not observed. 
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 Vibrational frequency calculations were also performed for the Ga-ISQ and Ga-

IBQ possess O,N-ligands with unambiguous oxidation states (vide supra).  DFT predicts 

two ν(O─C) modes at 1319 and 1424 cm-1 for Ga-ISQ, while the corresponding modes 

for Ga-IBQ possess much higher frequencies of 1540 and 1584 cm-1.  Since the putative 

ν(O─C) modes of [6a]+ have experimental energies of 1308 and 1383 cm-1, the rR data 

appear to support an ISQ assignment for the ligand oxidation state. 

 

4.H.  Discussion 

 The results strongly support our earlier conclusion─made on the basis of XRD 

and EPR data─that 2a contains a high-spin Fe2+ center antiferromagnetically coupled to 

an tBuISQ ligand radical (overall spin of 3/2).  Specifically, the presence of a ferrous ion 

in 5a was verified by MB spectroscopy (δ = 0.97), and the unique absorption features 

were shown to arise from tBuISQ ligand-based transitions.  Although we were not able to 

obtain a crystal structure of [8b]+, similarities between the spectral properties of 5a and 

[8b]+ indicate that the complexes share identical electronic configurations.  Analysis of 

the more-oxidized [6a]+ and [9b]2+ species is less straightforward, since a preponderance 

of the data indicate that actual electronic structures lie between the Fe3+─ISQ and 

Fe2+─IBQ limits.  For instance, the O,N-ligand in the [9b]2+ crystal structure exhibits a 

more pronounced quinoid distortion than expected for a typical ISQ ligand, and the 

isomer shifts measure for [6a]+ and [9b]2+ (δave ≈ 0.68) are considerable outside the range 

expected for high-spin ferric ions.  However, the ν(O─C) frequencies observed by rR 

spectroscopy are more consistent with an ISQ oxidation state. 
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 The unprecedented example of an Fe2+ center bound to an ISQ radical in 

complexes 5a and [8b]+ is made possible by the combination of high-spin states and 

trigonal-bipyramidal 5C geometries, which result in Fe centers with enhanced electron 

affinities.  Concerning the role of spin state, our DFT calculations indicate that isomers of 

5a with intermediate- or low-spin centers converge to the alternate 

Fe3+─amidophenolate(2─) configuration.  The importance of coordination number is 

highlighted by comparison to the six-coordinate (6C) [(LN4)Fe3+(ISQ)]2+ complexes 

prepared by Wieghardt (where LN4 = cis-cyclam or tren).81,82  These complexes undergo 

only ligand-based reductions to give the corresponding Fe3+ species with closed-shell 

amidophenolate(2─) ligands, even when the Fe center is high-spin.  To the best of our 

knowledge, Wieghardt and coworkers have not explored the reduction of their five-

coordinate [Fe3+(ISQ)2X] complexes (X=Cl, Br, I, N3). However, the square pyramidal, 

trianionic coordination environment likely lowers the potential of the Fe3+ center, 

favoring ligand-based reduction.  These insights have implications for the Fe/O2/substrate 

intermediate in the catalytic cycle of APDOs.  Like 5a/[8b]+, this species contains a high-

spin center, yet it also has a 6C geometry due to the presence of the O2 ligand.  Thus, 

extrapolation from the synthetic models would seem to favor the closed-shell electronic 

structure of intermediate 1 in Figure 4.1.  However, unlike Wieghardt’s [LN4)Fe3+(ISQ)]2+ 

models, the sixth ligand in the enzymatic intermediate (i.e., superoxide) is redox active 

and electron withdrawing, and therefore capable of facilitating electron transfer from the 

substrate ligand to the Fe center 

 Finally, it is worthwhile to consider why complexes like 5a/[8b]+ are viable, 

whereas the corresponding Fe2+─SQ complexes have not been reported despite extensive 
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efforts in modeling catechol dioxygenases.  Indeed, a catecholate analogue of 5a has 

already been reported and crystallographically characterized by Moro-oka, namely, 

[Fe3+(tBuiPrTp)(DBC)] (where DBC = dianion of 3,5-di-tert-butylcatechol).107  Like 5a, 

[Fe3+(tBuiPrTp)(DBC)] contains a trigonal bipyramidal Fe/Tp unit bound to a bidentate 

“substrate” ligand; however, the catecholate lacks quinoid distortion (C─O bond lengths 

of 1.35 and 1.38 Å), and the collective metric and spectroscopic data demand an 

Fe3+─catecholate description.  The divergent electronic structures of 5a and 

[Fe3+(tBuiPrTp)(DBC)] point to the intrinsic difference in redox potentials between 

catecholate and amidophenolate dianions.  This difference may have mechanistic 

implications for APDOs and ECDOs.   

 

4.I.  Conclusions 

 A variety of spectroscopic and computational methods have been employed to 

evaluate the electronic structures of mononuclear Fe complexes bound to redox-active 

ligands derived from 2-amino-4,6-di-tert-butylphenol (tBuAPH2).  Our studies included 

the Ph2Tp-supported complexes 5a and [6a]SbF6, as well as a parallel “b-series” of 

complexes prepared with the neutral Ph2TIP  supporting ligand (Figure 4.2).  Utilizing 

spectroscopic and DFT methods we have provided definitive evidence that complexes 

5a/[8b]+ can best be described as a ferrous center bound to an ISQ radical.  The higher 

oxidized complexes [6a]+/[9b]+ while not as clear suggest that the oxidation state lies 

between an ferric-ISQ and a ferrous-IBQ. 

 It is assumed the ECDOs and APDOs share a common catalytic mechanism; 

however, our synthetic experience indicates that a species like intermediate II in Figure 
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4.1 is more feasible for APDOs than ECDOs.  Thus, the two catalytic cycles may differ at 

this point, with the ECDOs adopting an intermediate I structure (as proposed by Ye and 

Neese46) and the APDOs adopting an intermediate II structure with considerable radical 

character on the substrate, exemplifying the mechanistic sophistication of the enzymes 

catalytic mechanism. 

 

4.J.  Experimental 

 All reagents and solvents were purchased from commercial sources and used as 

received, unless otherwise noted.  Acetonitrile, dichloromethane, and tetrahydrofuran 

were purified and dried using a Vacuum Atmospheres solvent purification system.  The 

synthesis and handling of air-sensitive materials were performed under inert atmosphere 

using a Vacuum Atmospheres Omni-Lab glovebox.  The ligands K(Ph2Tp),137 Ph2TIP,173 

and tBuAPH2
138 were prepared according to literature procedures.  15N-labeled tBuAPH2 

was prepared using 15NH4OH purchased from Cambridge Isotopes.  Elemental analyses 

were performed at Midwest Microlab, LLC in Indianapolis, IN. 

 Samples of [8b]OTf for spectroscopic studies were prepared by treating [7b]OTf 

with one equivalent of TTBP●139 in CH2Cl2.  After stirring for two hours, the green 

solution was filtered and the solvent removed under vacuum.  The resulting powder 

exhibited the following peaks in the IR spectrum: 3342 [ν(N─H)], 3054, 1439, 1259, 

1222 cm-1. 

 UV/Vis absorption spectra were obtained with an Agilent 8453 diode array 

spectrometer; NIR absorption spectra were measured using an Agilent Cary 5000 

spectrophotometer.  Fourier-transform infrared (FTIR) spectra of solid samples were 
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measured with a Thermo Scientific Nicolet iS5 FTIR spectrometer equipped with the iD3 

attenuated total reflectance accessory.  EPR experiments were performed using a Bruker 

ELEXSYS E600 equipped with an ER4415DM cavity resonating at 9.63 GHz., an 

Oxford Instruments ITC503 temperature controller, and an ESR-900 He flow cryostat.  

MCD spectra were obtained using a Jasco J-715 spectropolarimeter in conjunction with 

an Oxford Instruments SM-4000 8T magnetocryostat.  Solid-state samples of [6a]SbF6 

were prepared as uniform mulls in fluorolube.  All MCD spectra were obtained by 

subtracting the -7 T spectrum from the + 7 T spectrum to eliminate potential artifacts.  

Resonance Raman spectra were measured using 488.0 nm excitation from a Spectra 

Physics Ar+ laser (model 202505), with 45 mW at the sample point in a 180° 

backscattering geometry.  The sample was placed in a transparent quartz Dewar cell filled 

with liquid nitrogen and spun at 800 rpm.  Spectra were collected with the Spec-10 

system (Princeton Instruments) installed on the 1269 spectrograph (SPEX Industries) 

equipped with a standard 1200 grove/inch grating at 80 mm slit width.  Spectra were 

calibrated with fenchone and indene standards.  Low-field (0.04 T) variable temperature 

(5-200 K) Mӧssbauer spectra were recorded on a closed-cycle refrigerator spectrometer, 

model CCR4K, equipped with a 0.04 T permanent magnet, maintaining temperatures 

between 5 and 300 K.  Mӧssbauer spectra were analyzed using the software WMOSS 

(Thomas Kent, See Co., Edina, Minnesota).  The samples were polycrystalline powders, 

suspended in nujol, placed in Delrin 1.00 mL cups and frozen in liquid nitrogen.  The 

isomer shifts are quoted at 6 K with respect to iron metal spectra recorded at 298 K. 

 Cyclic voltammetric (CV) measurements were conducted in the glovebox with an 

epsilon EC potentiostat (iBAS) at a scan rate of 100 mVs-1 with 100 mM (NBu4)PF6 A 
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three-electrode cell containing a Ag/AgCl reference electrode, a platinum auxiliary 

electrode, and a glassy carbon working electrode was employed.  Under these conditions, 

the ferrocene/ferrocenium (Fc+/0) couple has an E1/2 value of +0.52 V in CH2Cl2. 

 X-ray diffraction (XRD) data were collected with an Oxford Diffraction 

SuperNova kappa-diffractometer (Agilent Technologies) equipped with dual microfocus 

Cu/Mo X-ray sources, X-ray mirror optics, Atlas CCD detector, and low-temperature 

Cryojet device.  The data were processed with CrysAlis Pro program package (Agilent 

Technologies, 2011) typically using a numerical Gaussian absorption correction (based 

on the real shape of the crystal), followed by an empirical multi-scan correction using 

SCALE3 ABSPACK routine.  The structures were solved using SHELXS program and 

refined with SHELXL program147 within Olex2 crystallographic package.148  B- and C- 

bonded hydrogen atoms were positioned geometrically and refined using appropriate 

geometric restrictions on the corresponding bond lengths and bond angles within a 

riding/rotating model (torsion angles of methyl hydrogens were optimized to better fit the 

residual electron density). 

 DFT calculations were performed using the ORCA 2.8 software package 

developed by Dr. F. Neese.174  Geometry optimizations employed either the Beck-Perdew 

(BP86) functional175 or Becke’s three-parameter hybrid functional (B3LYP).142  Ahlrichs’ 

valence triple-ζ basis set (TZV), in conjunction with the TZV/J auxiliary basis set,144,145 

were used for all calculations.  Time-dependent DFT (TD-DFT) calculations176-178 

computed absorption energies and intensities within the Tamm-Dancoff 

approximation.179  In each case, at least 60 excited states were calculated.  Vibrational 

frequency calculations were performed with a truncated [6a]+ model with hydrogen 
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atoms at the 3- and 5-positions of the Tp ligand.  Calculation of the harmonic force fields 

proved that the optimized structure is a local minima on the approach described in 

Rӧmelt et al.180; in these calculation, the size of the integration grid for Fe, O, and N 

atoms was increased.  The gOpenMol program146 developed by Laaksonen was used to 

generate isosurface plots of molecular orbitals. 

Ph2TIPFe2+( tBuAPH)OTf ([7b]OTf):  [Ph2TIPFe2+(CH3CN)3]OTf (1.1194 g, 

0.927 mMol) and 4,6-di-t-butyl-aminophenol (205.1 mg, 0.927 mMol) were mixed in 10 

mL of CH2Cl2.  NEt3 (142 µL, 1.02 mMol) was added and the reaction allowed to stir 

over night.  The next morning the reaction was filtered and the solvent removed under 

vacuum.  The brown solid was taken up in mL toluene and the product precipitated with 

excess pentane.  The yellow solid was collected and was further washed with pentane.  

The product was collected and dried to yield a bright yellow powder. % Yield 921.4mg, 

86% UV-vis [λmax, nm (ε, M-1 cm-1) in CH2Cl2]: 399 (1163).  IR (neat, cm-1): 3348, 3059, 

2949, 2901, 2861, 1064, 1462, 1442, 1273, 1255, 1152, 1030. 

Ph2TIPFe2+( tBuAPH)BPh4 ([7b]BPh4): 
Ph2TIPFe2+( tBuAPH)OTf (125.3 mg, 0.108 

mMol) in 4 mL MeOH was combined with NaBPh4 (37.6 mg, 0.110 mMol) in 3 mL 

MeOH.  Stirred for 15 minutes.  The solid was collected as a yellow paste and dried 

under vacuum.  Crystals suitable for x-ray analysis were obtained by a 1,2-dichloroethane 

and MeOH layering.  % Yield: 83.1 mg, 58%. Elemental Analysis cald for 

C86H81BFeN7OP: C, 77.88; H, 6.16; N, 7.39%; found: C, 76.70; H, 6.13; N, 7.13%.  UV-

vis [λmax, nm (ε, M-1 cm-1) in CH2Cl2]: 815 (8.598).  IR (neat, cm-1): 3340, 3050, 2948, 

2863, 1578, 1478, 1443, 1379, 1305, 1264, 1142, 1074, 1023. 
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Ph2TIPFe3+(tBuISQ)OTf2 ([9b]OTf2): 
Ph2TIPFe2+( tBuAPH)OTf (184.1 mg, 0.159 

mMol) and AgOTf (83 mg, .323 mMol) were stirred in 6 mL THF for 1 hour to give a 

dark green solution.  The solution was filtered through celite and the THF removed under 

vacuum.  The remaining dark green solid was taken up in 1,2-dichloroethane and layered 

with hexanes.  After several days dark green crystals formed.  X-ray analysis confirmed 

the correct structure.  [λmax, nm (ε, M-1 cm-1) in CH2Cl2]: 798 (2506).  IR (neat, cm-1): 

3270, 3058, 2959, 1603, 1578, 1469, 1445, 1364, 1257, 1221, 1147, 1073, 1026. 

Ph2TPFe2+(DMAPH) (10a): 2-(N,N-Dimethylamino)-4,6-di-tert-butylphenol was 

prepared according to the previously published procedure.181  The aminophenol (174.8 

mg, 0.701 mMol) was taken up in 5 mL of CH3CN while KTpPh2 (496.8 mg, 0.701 

mMol) and Fe(OTf)2 (248.2 mg, 0.701 mMol) were taken up in 5 mL of CH2Cl2 and 

CH3CN respectively.  The aminophenol and KTpPh2 solutions were mixed and NEt3 (108 

µL, 0.774 mMol) was added.  The Fe(OTf)2 solution was then added and the resulting 

brown solution stirred overnight.  The solvents were removed under vacuum the next day 

and the solid taken up in 6 mL of CH2Cl2 and filtered.  The solution was stored in a 

freezer at -30C for several days to yield bright yellow crystals.  % Yield: 160 mg, 24%.  

Elemental Analysis cald for C61H60BFeN7O: C, 75.23; H, 6.21; N, 10.07%; found: C, 

74.97; H, 6.18; N, 10.07%. UV-vis [λmax, nm (ε, M-1 cm-1) in CH2Cl2]: 365 (1955). IR 

(neat, cm-1): 3056, 2948, 2855, 2637, 1545, 1462, 1412, 1356, 1302, 1264, 1246, 1167, 

1060, 1028, 1007. 
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Table 4.8. Summary of X-ray Crystallographic Data Collection and Structure Refinement 
 [7b]BPh4•1.5DCE [9b](OTf)2•CH2Cl2 [10a]•4CH2Cl2 

empirical formula C89H87BCl3FeN7O

P 

C65H62Cl2F6FeN7O7P

S2 

C65H68BCl8FeN7O 

formula weight 1474.68 1389.08 1313.56 

crystal system triclinic monoclinic monoclinic 

space group Pī P21/c P21/c 

a, Å 17.32204(4) 20.0160(13) 17.1045(5) 

b, Å 20.6267(4) 15.3008(11) 14.4938(5) 

c, Å 22.0768(4) 22.2057(18) 26.5165(8) 

α, deg 81.955(2) 90 90 

β, deg 78.343(2) 94.320(8) 100.482(3) 

, deg 87.958(2) 90 90 

V, Å3 7649.0(3) 6781.4(9) 6464.0(3) 

Z 4 4 4 

Dcalc, g/cm3 1.281 1.355 1.317 

, Å 1.5418 0.7107 0.7107 

µ, mm-1 0.376 4.010 4.987 

-range, deg 7 to 59 7 to 148 7 to 146 

reflections collected 101066 35453 41153 

independent reflections 37578 

[Rint = 0.0357] 

13347 

[Rint = 0.0787] 

12682 

[Rint = 0.0356] 

data/restraints/paramet

ers 

37578/0/1889 13347/0/887 12682/30/793 

GOF (on F2) 1.035 1.033 1.013 

R1/wR2 (I>2σ(I)) 0.0552/0.1469 0.0723/0.1786 0.0606/0.1488 

R1/wR2 (all data) 0.0708/0.1608 0.1153/0.2105 0.0764/0.1588 
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Chapter 5 

 

 

 
Dioxygen Reactivity of Biomimetic Fe(II) Complexes with 

Noninnocent Catecholate, o-Aminophenolate, and o-

Phenylenediamine Ligands 

 

 

 

Abstract: In this chapter we describe the O2 reactivity of a series of high-spin mononuclear 

Fe(II) complexes each containing the facially coordinating tris(4,5-diphenyl-1-

methylimidazol-2-yl)phosphine (Ph2TIP) ligand and one of the following bidentate, redox-

active ligands: 4-tert-butylcatecholate (tBuCatH─), 4,6-di-tert-butyl-2-aminophenolate 

(tBu2APH─), or 4-tert-butyl-1,2-phenylenediamine (tBuPDA). Each complex is oxidized in 

the presence of O2, and the geometric and electronic structures of the resulting complexes 

were examined with spectroscopic (absorption, EPR, Mӧssbauer, resonance Raman) and 

density functional theory (DFT) methods.  
 

Parts of the following chapter have appeared in the following paper Bittner, M. M.; 

Lindeman, S. V.; Popescu, C. V.; Fiedler, A. T. Inorg. Chem. 2014. 

 

All DFT calculations and rR experiments were performed by Dr. Adam Fiedler. 

Mӧssbauer experiments were conducted by Codrina V. Popescu of Ursinus College. 
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5.A. Introduction 

Catechols and their nitrogen-containing analogs (o-aminophenols and o-

phenylenediamines; see Figure 5.1) are well established members of the “o-phenylene 

family” of redox noninnocent ligands.36-38,88,136,182-194  One-electron oxidation of these 

bidentate ligands provides the corresponding (di)(imino)semiquinonate radicals, and two-

electron oxidation yields the closed-shell (di)(imino)benzoquinones.  Complexes that 

combine the noninnocent ligands in Figure 5.1 with redox-active metal center(s) often 

possess ambiguous electronic structures, since multiple assignments of ligand and metal 

oxidation states are possible.  Thus, careful examination with a variety of experimental 

and computational methods is usually required to obtain accurate electronic-structure 

descriptions.85-87,89,159 

 

 

Figure 5.1 Redox active o-Phenylene ligands and their varying electron configurations.  
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 While the role of o-phenylene ligands in electron-transfer series has been studied 

extensively, their ability to facilitate proton-coupled electron transfers (PCETs) in 

transition-metal complexes has received less attention.  As shown in Figure 5.1, the free 

compounds are able to donate a total of two protons (2H+) and two electrons (2e-) in 

various combinations.  Coordination to a redox-active metal center is expected to perturb 

the chemical and electronic properties of these ligands, resulting in complexes with rich 

and unpredictable PCET landscapes.  Such complexes may find applications in chemical 

processes that require multiple proton and electron transfers, including energy-related 

reactions like water oxidation, hydrogen production, and nitrogen fixation.195-200  For 

instance, an iron complex with o-phenylenediamine ligands was recently shown to 

undergo photochemical H2-evolution via PCET steps.201  Similarly, Heyduk et al. have 

found that zirconium(IV) complexes with noninnocent bis(2-phenolato)amide ligands 

react with O2 to yield [Zr4+
2(µ-OH)2] species-a process that requires donation of 1H+ and 

2e- from each ligand.202 

 Our interest in noninnocent ligands stems from efforts to prepare synthetic 

mimics of mononuclear nonheme iron dioxygenases.  These enzymes carry out the 

oxidative ring cleavage of aromatic substrates (catechols, aminophenols, and 

hydroquinones), and the catalytic cycles are thought to involve formation of a ferrous-

(substrate radical) intermediate.5,23,43,203  Earlier in this manuscript, we reported the 

synthesis of two mononuclear Fe(II) complexes (4 and [7]OTf) that model the substrate-

bound form of aminophenol dioxygenases.173,204  The high-spin ferrous centers of 4 and 

[7]+ are bound to the 2-amino-4,6-di-tert-butylphenolate (tBu2APH) “substrate,” and the 

enzymatic coordination environment is replicated using a facially coordinating N3 



111 
 

supporting ligand: hydrotris(3,5-diphenylpyroazol-1-yl)borate (Ph2TP) in the case of 4 and 

tris(4,5-diphenyl-1-methylimidazol-2-yl)phosphine (Ph2TIP) in [7]OTf (see Figure 5.2).   

 

 

Figure 5.2 Complexes discussed in this chapter. 

 

These complexes were shown to engage in ligand-based H-atom transfer (HAT) 

reactions to yield novel species containing an Fe(II) center coordinated to an 

iminobenzosemiquinonate (tBu2ISQ) radical, thus providing synthetic precedents for the 

putative Fe(II)/ISQ intermediate of the enzyme.  The Fe(II)/ISQ complexes can be further 

oxidized by one electron, although it has proven difficult to determine whether this 

process is ligand- or iron-based.  Detailed crystallographic, spectroscopic, and 

computational analyses suggest that the fully oxidized species have intermediate 
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electronic configurations between the Fe3+tBu2ISQ and Fe2+-tBu2IBQ limits,205 where 

tBu2IBQ is iminobenzoquinone with tert-butyl substituents at the 4- and 6- positions. 

 In this chapter, we expanded upon our previous studies by preparing monoiron(II) 

Ph2TIP-based complexes with ligands derived from catechol and o-phenylenediamine.  

Like the o-aminophenolate studies described earlier, we began with the synthesis and X-

ray structural characterization of mononuclear, high-spin Fe(II) complexes, each 

containing a bidentate ligand capable of both proton and electron transfer.  The 

catecholate complex [11]OTf was prepared using 4-tert-butylcatechol (tBuCatH2) and the 

Ph2TIP supporting ligand (Figure 5.2).  The o-phenylenediamine complex [12](OTf)2 has 

the overall formulation of [Fe(Ph2TIP)(tBuPDA)(OTf)2, where tBuPDA is 4-tert-butyl-1,2-

phenylenediamine.  Each of the three Fe(II) complexes ([7]+, [11]+, and [12]2+) is air-

sensitive, and the products of the O2 reactions have been characterized with spectroscopic 

(ultraviolet-visible (UV-vis) absorption, electron paramagnetic resonance (EPR), 

Mӧssbauer, resonance Raman) and computational (density functional theory (DFT)) 

methods.  These studies revealed that the identity of the ligand controls whether the O2-

driven oxidation is an Fe- or ligand based process (or a combination of both).  In 

addition, O2 reaction rates vary by greater than 5 orders of magnitude across the series, 

despite the fact that the overall structures of the Fe(II) complexes are quite similar.  Thus, 

this unique series of complexes has provided a valuable framework for exploring the 

relationship between ligand-based PCET chemistry and the O2 reactivity of Fe 

complexes.  Implications for ring-cleaving dioxygenases are also discussed. 
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5.B. Synthesis, Solid State Structures, and Spectroscopic Features 

 Reactions of [Fe(Ph2TIP)(MeCN)3](OTf)2 with tBuCatH2 or tBuPDA in THF 

generated the Ph2TIP-based complexes [11]OTf and [12](OTf)2, respectively; the 

synthesis of [11]+ also required 1 equiv. of NEt3.  Yellow crystals of [11]OTf were grown 

by layering a 1,2-dichloroethane (DCE) solution with hexane.  Recrystallization of 

[12](OTf)2 by slow diffusion of Et2O into a DCE solution provided colorless and 

analytically pure material that was used in subsequent reactivity and spectroscopic 

studies.  Crystals for X-ray diffraction (XRD) analysis were obtained by either (i) slow 

diffusion of Et2O into a concentrated MeCN solution of [12](OTf)2 or (ii) pentane 

layering of a DCE solution, we were able to grow well-diffracting crystals with an overall 

composition of [12](OTf)(BPh4).  As shown in Figure 5.3, the X-ray structure of [11]OTf 

features a five-coordinate (5C) Fe(II) complex with bidentate monoanionic catecholate 

and facially coordinating Ph2TIP ligands.  The [3]OTf unit cell contains two 

symmetrically independent complexes, and metric parameters for both are provided in 

Table 5.1  The Fe(II) coordination geometry is trigonal-bypyramidal for one cation (τ = 

0.70)155  and distorted square-pyramidal (τ = 0.24) for the other.   
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Figure 5.3.  Thermal ellipsoid plot (50% probability) derived from the X-ray structure of 

[11]OTf•2DCE.  Counteranions, noncoordinating solvent molecules, and most hydrogen 

atoms have been omitted for clarity. 

 

The crystallographic data provide solid evidence that the catecholate ligand is 

monoanionic.  First, there is a significant difference in the lengths of the O1-C49 and O2-

C50 bonds (1.39 and 1.33 Å, respectively).  Second, the tBuCatH ligand binds 

asymmetrically with Fe1-O1 bond distances that are ~0.30 Å longer than the 

corresponding Fe1─O2 distance of 2.23 ± 0.01 Å, while the anionic donor exhibits a 

shorter Fe1─O2 distance of 1.92 ± 0.01 Å (Table 5.1).  Such bond distances are generally 

similar to those observed in the four previously reported Fe(II) complexes with 

monoanionic catecholate ligands.206-209  The triflate counteranion forms a hydrogen bond 

with the hydroxyl group of the tBuCatH ligand, consistent with the O1…O3(OTf) distance 

of ~2.67 Å.  The average Fe─N bond distance is 2.150 Å, similar to the corresponding 

distances measured for the tBu2APH-based complex ([7]+) and indicative of a high-spin, 

pentacoordinate Fe(II) complex.173  Consistent with this fact, the 1H NMR spectrum 

displays paramagnetically shifted peaks ranging from 65 to -30 ppm (Figure 5.4).   
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Figure 5.4.  1H NMR spectra of [11]OTf (top) and [12](OTf)2 (bottom) in CD2Cl2. Peak 

intensities in the insets were enlarged (× 20) for the sake of clarity. 
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Figure 5.5.  Thermal ellipsoid plots (50% probability) derived from 

[12](OTf)(BPh4)•DCE•C5H12 (top) and [12(MeCN)](OTf)•MeCN•Et2O (bottom).  

Counteranions, noncoordinating solvent molecules, and most hydrogen atoms have been 

omitted for clarity.  The phenyl rings of the Ph2TIP ligands have also been removed to 

provide a clearer view of the first coordination sphere. 
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Table 5.1.  Selected Bond Distances (Å) and Bond Angles (deg) for [11]+, [12]2+, and [13]+ Measured with X-ray Diffraction. 
 [11]OTf•2DCEa [12](OTf)(BPh4) •DCE•C5H12 [12(MeCN)](OTf)•MeCN•Et2O [13](OTf)•1.5CH2Cl2b 

 (A) (B)    

Fe1-N1 2.118(3) 2.121(3) 2.089(4) 2.174(2) 2.124(2) 

Fe1-N3 2.124(3) 2.155(3) 2.115(3) 2.162(2) 2.120(2) 

Fe1-N5 2.192(3) 2.192(3) 2.181(3) 2.227(2) 2.142(2) 

Fe1-O1/N7 2.226(3) 2.241(3) 2.224(3) 2.237(2) 2.229(2) 

Fe1-O2/N8 1.922(3) 1.938(3) 2.131(4) 2.246(2) 1.919(2) 

Fe1-N9    2.214(2)  

O1/N7-C49 1.390(5) 1.395(5) 1.445(5) 1.444(2) 1.390(3) 

O2/N8-C50 1.323(5) 1.327(5) 1.458(5) 1.454(2) 1.336(3) 

N1-Fe1-N3 93.5(1) 94.2(1) 95.3(1) 86.07(6) 94.03(7) 

N1-Fe1-N5 91.3(1) 91.9(1) 84.5(1) 91.74(6) 89.20(7) 

N3-Fe1-N5 85.4(1) 85.9(1) 91.1(1) 88.90(6) 85.81(7) 

N1-Fe1-O1/N7 90.5(1) 102.3(1) 94.7(1) 167.47(6) 90.75(6) 

N3-Fe1-O1/N7 90.7(1) 89.6(1) 96.9(1) 99.93(6) 90.21(6) 

N5-Fe1-O1/N7 175.7(1) 165.4(1) 172.0(1) 89.59(6) 176.01(6) 

N1-Fe1-O2/N8 130.7(1) 114.5(1) 145.3(1) 93.45(6) 124.35(7) 

N3-Fe1-O2/N8 133.8(1) 1503(1) 119.2(1) 172.48(6) 139.32(7) 

N5-Fe1-O2/N8 103.7(1) 100.0(1) 92.2(1) 96.87(6) 105.70(7) 

O1/N7-Fe1-O2/N8 77.9(1) 77.4(1) 77.8(1) 75.38(6) 77.58(6) 

τ-valuec 0.70 0.24 0.45  0.61 

aThe [11]OTf•2DCE structure contains two symmetry-independent complexes per unit cell.  Parameters are provided for both structures.  bThe 

[13]OTf•1.5CH2Cl2 structure contains two symmetry-independent complexes per unit cell.  Since the structures are nearly identical, parameters 

are only provided for one complex.  cSee reference 39 for definition of the τ value. 
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The two X-ray structures of complex [12]2+ shown in Figure 5.5 reflect the 

different conditions under which the crystals were generated (vide supra).  Crystals 

grown in a DCE/pentane mixture contain a 5C dicationic Fe complex associated with one 

OTf and one BPh4 counteranion, in addition to DCE and pentane solvent molecules 

(Table 5.1). The coordination environment of the Fe(II) center is intermediate between 

square-planer and trigonal-bipyramidal (τ = 0.45; Table 5.1).  In contrast, the structure 

arising from crystals grown in MeCN/Et2O features a six-coordinate (6C) Fe(II) center 

bound to a solvent-derived MeCN ligand in addition to Ph2TIP and tBuPDA (Figure 5.5).   

 

 

Figure 5.6.  Thermal ellipsoid plot (50% probability) derived from the X-ray structure of 

[13]OTf•1.5CH2Cl2. Counteranions, noncoordinating solvent molecules, and hydrogen 

atoms have been omitted for clarity. 
 

The increase in coordination number lengthens the average Fe-NTIP bond distance 

from 2.13 Å in [12]2+ to 2.19 Å in [12(MeCN)]2+.  The tBuPDA ligand binds 

symmetrically in the 6C structure (Fe-NPDA distance of 2.24(1) Å), while the Fe1-N7/N8 



119 
 

distances differ by 0.093 Å in the 5C structure.  The observed Fe-N bond lengths indicate 

that the Fe(II) centers are high-spin in both structures.  This conclusion is supported by 

the corresponding 1H NMR spectrum (Figure 5.4) and the measured magnetic moment of 

5.48 µB in CH2Cl2.  The neutral charge of the tBuPDA ligands is confirmed by the 

presence of N-C bond lengths of 1.45(1) Å, typical of aryl amines (anilide anions, in 

contrast, exhibit N-C bond distances of ~1.39 Å).  In both structures, the tBuPDA ring tilts 

out of the plane formed by the N7-Fe1-N8 chelate by ~23°, and each triflate is hydrogen-

bonded to an amino group of tBuPDA.   

 As described below, the noninnocent nature of the o-phenylene ligands play an 

important role in the reactions of the corresponding Fe(II) complexes with O2.  To 

highlight this phenomenon, we prepared a “control” Ph2TIP-based Fe(II) complex with a 

completely innocent ligand (i.e., one incapable of transferring either protons or 

electrons).  For this purpose we selected 2-methoxy-5-methylphenolate (Me2MP); this 

ligand is structurally similar to tBuCatH, yet the second O-donor is methylated instead of 

protonated.  Complex [Fe2+(Ph2TIP)( Me2MP)]OTf, was prepared in a manner similar to 

[11]OTf, and light green crystals were obtained by layering a CH2Cl2 solution with 

hexanes.  The resulting structure reveals a 5C, high-spin Fe(II) center bound to Ph2TIP 

and Me2MP in a distorted trigonal-bypyramidal geometry Figure 5.6.  Importantly, the Fe-

O/N bond distances measured for [13]+ are very similar to those found for [11]+ Table 

5.1; like tBuCat, the Me2MP ligand binds in an asymmetric manner, with Fe-O distances of 

1.92 and 2.23 Å.  Thus, the overall structure of [13]+ closely resembles those in the o-

phenylene series.  However, methylation of the –OH donor eliminates the possibility of 
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ligand-based electron transfer (ET) and proton transfer (PT), and this change causes the 

O2 reactivities of [11]+ and [13]+ to diverge in dramatic fashion  (vide infra).  

 Voltammetric studies of the Fe(II) complexes were conducted in CH2Cl2 at scan 

rate of 100 mV/s with 0.1 M (NBu4)PF6 as the supporting electrolyte; redox potentials 

were referenced to ferrocenium/ferrocene (Fc+/0).  The CV of the catecholate complex 

[11]+ displays an irreversible anodic wave at +740 mV (Figure 5.7) and a quasi-reversible 

couple with E1/2 = -30 mV (peak-to-peak separation, ΔE, of 120 mV).  Complex [13]+ 

exhibits a quasi-reversible event at nearly the same potential (-10 mV, ΔE = 145 mV), 

consistent with the structural similarity between [11]+ and [13]+ noted above.  In our 

previous electrochemical studies of high-spin 5C Fe(II) complexes with Tp or TIP 

ligands, the Fe2+/Fe3+ couple generally appears within 300 mV of the Fc+/0 

reference.126,173,205,210  Thus, it is reasonable to assign the first oxidations of [3]+ and [5]2+ 

to the Fe2+/Fe3+ couple. 
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Figure 5.7.  Cyclic voltammograms for [11]OTf (top, black), [13]OTf (middle, red) and 

[12](OTf)2 (bottom, grey) collected in CH2Cl2 with 0.1 M (NBu4)PF6 as the supporting 

electrolyte and scan rate of 100 mV/s.  The corresponding square-wave voltammogram 

(dashed line) is also shown for [12](OTf)2.  In all cases the voltammogram was initiated by 

the anodic sweep. 

 

 By comparison, the cyclic voltammogram of the phenylenediamine complex 

[12](OTf)2 is less well-defined, but two events are clearly evident at +70 and 560 mV in 

the corresponding square-wave voltammogram (dashed line in Figure 5.7).  We attribute 

the low-potential peak to the Fe2+/Fe3+ couple, which appears ~100 mV higher than the 

corresponding potentials for [11]+ and [13]+.  This anodic shift is likely due to the neutral 

charge of tBuPDA compared to the monoanionic tBuCatH and Me2MP ligands.  The high-

potential redox events for [11]+ and [12]2+ arise from oxidation of the catecholate or 

phenylenediamine ligand, respectively.  This assignment is consistent with a previous 
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study by Lever et al., which found that the PDA ligand is oxidized at +500 mV (vs 

saturated calomel electrode) when bound to a Ru(II) center.211  Both redox events are 

irreversible for [12]2+; indeed, the electrochemical behavior of [12]2+ resembles that 

reported previously for the o-aminophenolate complex 4, which likewise exhibits an 

irreversible anodic wave near 0 mV, likely due to an ET-PT process.205 For reasons that 

are not clear to us, complex [7]OTf failed to exhibit well-defined electrochemical 

features; however, on the basis or prior results,126 the Fe2+/Fe3+ potential of [7]OTf is 

likely ~150 mV more positive than the corresponding potential of 4. 

 

5.C. Reaction With Dioxygen 

 Pale yellow solutions of [11]OTf in CH2Cl2 undergo rapid color change upon 

exposure to air, yielding the blue-green chromophore 11ox.  The corresponding electronic 

absorption spectrum, shown in Figure 5.8, consists of two broad bands at 700 and 905 nm 

with ε-values of ~1100 M-1 cm-1.  These spectral features are characteristic of ferric-

catecholate(2-) complexes and arise from tBuCat → Fe(III) ligand-to-metal charge transfer 

(LMCT) transitions.206,208,209  The EPR pectrum of 11ox displays two S = 5/2 signals with 

E/D values of 0.14 and 0.25 (Figure 5.9), consistent with the presence of a high-spin 

Fe(III) center.  In addition, the Mössbauer (MB) spectrum of 11ox reveals two quadrupole 

doublets with isomer shifts (δ) near 0.5 mm/s, typical of high-spin ferric ions (Table 5.2 

and Figure 5.10).  The doublets have different splittings (ΔEQ) of 0.82 and 1.24 mm/s.  

The heterogeneity in E/D and ΔEQ values likely arises from different orientations of the 

tBuCat ligand in the oxidized complex, similar to the situation observed in the solid state 
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for [11]OTf.  Collectively, the spectroscopic data indicate that 11ox has the formula of 

[Fe3+(Ph2TIP)(tBuCat)OTf. 

 

 

Figure 5.8.  Time-resolved absorption spectra for the reaction of [11]OTf (top), [7]OTf 

(middle), and [12](OTf)2 (bottom) with O2; spectra were collected at intervals of 1, 20, 

and 14400 s, respectively.  Each reaction was performed at room-temperature in O2-

saturated CH2Cl2 ([O2] = 5.8 mM).  The path length of the cuvette was 1.0 cm. 
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Figure 5.9.  (a) Experimental X-band EPR spectrum of 11ox in CH2Cl2 collected at 10 K. 

(b) Simulated spectrum generated with the program EasySpin4. Adequate simulation 

required the presence of two S = 5/2 signals in a 2:1 ratio. The major and minor species 

have E/D−values of 0.14 and 0.25, respectively. 

 

Table 5.2.  Experimental Mӧssbauer Parameters 

complex isomer shift (δ) mm/s quadrupole splitting (ΔEQ) mm/s reference 
4 1.06 2.52 32 
    

[7]OTf 1.06 (70%)/1.14(30%) 2.08/2.93 32 
7ox 0.64 1.94 32 

    
[11]OTf 1.08 2.05 this work 
11ox 0.53/0.50 0.82/1.24 this work 

    
[12](OTf)2 1.04 (75%)/1.05 (25%) 3.13/2.53 this work 

12ox 1.03 (40%)/1.18 (35%)a 1.98/3.24 this work 
aThe remaining intensity (25%) arises from the starting material, [12](OTf)2. 
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Figure 5.10.  Mössbauer spectra of complexes 11 and 11ox recorded at 5 K and 77 K, 

respectively, in an applied field of 0.04 T. The solid lines represent spectral simulations 

of the most important species in the spectra. The resulting parameters are provided in 

Table 5.2. The lowest figure is a superposition of the 11 and 11ox spectra showing the 

clear conversion of the Fe(II) complex into a species with an Fe(III) center. 

 

 In the presence of air, the distinctive absorption bands of 11ox exhibit first-order 

decay with a half-life (t1/2) of 6300 s, eventually yielding a nearly featureless spectrum.  

Previous studies of related complexes indicate that this decomposition corresponds to 

oxidation of the catecholate ligand via one (or more) of the pathways shown in Figure 

5.11.111,208,212   
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Figure 5.11. Possible decomposition pathways of Fe(III)-catecholates. 

 

To determine reaction products, the final mixture was analyzed after treatment 

with acid and extraction into organic solvent (MeCN/Et2O).  The extradiol cleavage 

products, 4-tert-butyl-2-pyrone and 5-tert-butyl-2-pyrone, are generated in a 40:60 ratio 

with an overall yield of ~30%, as determined by 1H NMR.  These compounds were also 

observed using GC-MS, although the isomers are indistinguishable by this technique.  

When the reaction was performed with 18O2, the ion signal arising from the extradiol 

products shifted upward by two mass units, providing conclusive evidence for 

incorporation of one O atom from O2 (Figure 5.12).  The 11ox reactivity conforms to the 

previously established pattern that iron(III)-catecholate complexes with facial, tridentate 

supporting ligands yield primarily extradiol products, while those with tetradentate 

ligands provide intradiol products.107,206,213,214 
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Figure 5.12.  GC-MS data of the solution obtained from the reaction of [11]OTf with 
16O2 (top) and 18O2 (bottom). 

 

 

 Interestingly, while [11]+ converts to 11ox in a matter of seconds upon exposure to 

O2, complex [13]+ is relatively stable in the presence of air.  As shown in Figure 5.13, the 

1H NMR spectrum of [13]+ in CD2Cl2 features paramagnetically shifted peaks at 58 and -

10 ppm that arise from the Me2MP ligand.  These peaks display only modest decreases in 

intensity (relative to an internal standard) after exposure to O2 for several days, indicating 

that the geometric and electronic structures of [13]+ remain essentially intact in aerobic 

solution.   
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Figure 5.13.  1H NMR spectra of [13]OTf in CD2Cl2. The insets display peak intensities 

at 58 and -10 ppm measured at t = 0, 16, and 88 hours. 
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Figure 5.14. Top: Absorption spectrum of [13]OTf measured in anaerobic CH2Cl2 

(dashed red line). The black spectrum (solid line) was collected after exposure of the 

same sample to O2 for 24 hrs. The grey spectrum (dashed) was obtained after treating 

[13]+ with one equivalent of [acetyl-Fc+]BF4, where acetyl-Fc+ = acetylferrocenium. The 

concentration of [13]+ was 0.40 mM in each case. Bottom: Plot of absorption intensity at 

610 nm as a function of time for the reaction of [13]OTf with O2. The reaction was 

performed in O2 saturated CH2Cl2 at room temperature ([Fe] = 0.40 mM). The solid line 

is a linear fit of the kinetic trace. The pathlength of the cuvettes was always 1.0 cm. 

 

UV-vis absorption spectra of [13]+ in O2 saturated CH2Cl2 were collected over a 

span of 24 hours (Figure 5.14).  These data revealed a gradual increase of absorption 

intensity in the 500-900 nm region, which corresponds to formation of the ferric 

complex, [Fe3+(Ph2TIP)(Me2MP)]2+ (13ox).  The absorption spectrum of 13ox was measured 

independently by treating [13]+ with 1 equiv. of an acetylferrocenium salt (Figure 5.14).  

On the basis of these results, the conversion of [13]+ → 13ox is only 20% complete after 
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24 hours.  The stark contrast in O2 reactivities between [11]+ and [13]+ is remarkable 

given that the two complexes possess very similar geometric structures and Fe3+/Fe2+ 

redox potentials. 

 As shown in Figure 5.8, reaction of the o-aminophenolate complex [7]OTf with 

O2 at room temperature generates a green chromophore (7ox) with absorption peaks at 

790 and 420 nm.  This spectrum is essentially identical to the one previously obtained by 

treating [7]OTf with 2 equiv. of a one-electron oxidant (e.g., AgOTf).205  Thus, it is 

reasonable to assume that 7ox corresponds to [Fe(Ph2TIP)(LO,N)]2+, where the electronic 

structure can be described as either Fe3+-tBu2ISQ or Fe2+-tBu2IBQ (vide supra).  These 

results indicate that O2 is capable of extracting two electrons from [7]+, whereas initial 

exposure of [11]+ to O2 involves only one-electron oxidation of the complex.  In both 

reactions, the ET process is associated with loss of a proton from the bidentate ligand.  

Similar to 11ox, complex 7ox undergoes decomposition in the presence of O2, albeit at a 

much slower rate (t1/2 ≈ 18 hours). 

 The o-phenylenediamine complex [12](OTf)2 is comparatively less reactive 

toward O2, requiring days (instead of minutes or hours) for complete oxidation.  The 

resulting complex, 12ox, displays an intense absorption band with λmax = 715 nm (ε = 

4300 M-1 cm-1) and a weaker feature at ~500 nm (Figure 5.8).  This deep-green species is 

air-stable at room temperature, allowing for crystallization from a MeCN/Et2O mixture.  

Unfortunately, extensive disorder within the crystal has prevented the collection of a 

high-resolution structure.  The crude crystallographic data indicate that 12ox carries a +2 

charge, based on the number of counteranions present.  The complex is 5C with the 

tBuPDA-derived ligand bound in a bidentate manner, although sizable uncertainties in 
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metric parameters preclude reliable evaluation of Fe or ligand oxidation states.  Solutions 

of 12ox are EPR silent with room-temperature magnetic moments of 5.14 μB indicative of 

a S = 2 paramagnet.  Since it was not possible to obtain a suitable X-ray crystal structure 

of 12ox, we employed spectroscopic and computational techniques to gain insight into its 

geometric and electronic structures, as described in the following section. 

 

5.D. Spectroscopic and Computational Studies of 4ox 

 Low-temperature (5 K) MB spectra of [12](OTf)2 collected before and after 

exposure to O2 are shown in Figure 5.14.  The parameters obtained from fitting the data 

are provided in Table 5.2.  The major component (75%) of the [12](OTf)2 spectrum is a 

quadrupole doublet with an isomer shift (δ) of 1.04 mm/s and large splitting (ΔEQ) of 3.1 

mm/s.  A minor feature (25%) is also evident with δ- and ΔEQ-values of 1.05 and 2.5 

mm/s, respectively.  Both signals are characteristic of nonheme high-spin Fe(II) centers 

with N/O coordination.  
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Figure 5.15.  Mӧssbauer spectra collected before and after exposure of [12](OTf)2 to O2 

(top and bottom spectra, respectively).  Both spectra were recorded at 5 K in an applied 

field of 0.04 T.  The solid red lines are least-squares fits to the experimental data using 

the parameters in Table 5.2.  Both spectra were fitted assuming nested doublets.  

Approximately 25% of the area in the spectrum of the O2-exposed sample (bottom) was 

ascribed to [12](OTf)2 starting material. 

 

Given the nearly identical isomer shifts, the two doublets likely correspond to 

conformational isomers of [12]2+ that adopt different geometries along the square-

pyramidal to trigonal-bipyramidal continuum; indeed, similar “τ-strain” was observed in 

our previous MB studies of [7]OTF.205  Upon exposure to O2 for 20 hours, new features 

arising from 12ox become clearly evident (Figure 5.14), although starting material 

remains.  Adequate fitting of the new signal required two equally intense doublets with δ 

= 1.03 and 1.18 mm/s and ΔEQ = 2.0 and 3.2 mm/s (Table 5.2).  As with [12](OTf)2, the 

observed heterogeneity is likely due to minor changes in coordination geometries.  

Significantly, the MB data provide conclusive proof that the conversion of [12]2+ to 12ox 
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by O2 does not involve oxidation of the Fe center, as the isomer shifts remain above 1.0 

mm/s in the final complex. 

 With the MB data in hand, it is now possible to determine the oxidation state of 

the tBuPDA-derived ligand in 12ox.  Since the overall complex has a +2 charge, the ligand 

itself must be neutral; thus, two possibilities exist: (diimino)benzosemiquinone radical or 

(diimino)benzoquinone (tBuDIBQ).  The former possibility is inconsistent with the EPR-

silent nature of 12ox and its magnetic moment of 5.14 μB.  Therefore, 12ox is best 

formulated as [Fe2+(Ph2TIP)(tBuDIBQ)]2+ - a conclusion further supported by the DFT and 

rR results described below.  Similar to [7]+, complex [12]2+ is oxidized by two electrons 

upon exposure to O2, although in the PDA system the electrons are derived exclusively 

from the ligand, and two protons are removed. 

 Table 5.2 summarizes the MB parameters reported here (and previously) for 

complexes 4-[12]2+ and their Xox counterparts.  The electronic structures of the Fe(II) 

precursors are quite similar, with isomer shifts of  δ = 1.09 ± 0.05 mm/s and ΔEQ values 

between 2.05 and 3.13 mm/s.  In contrast, there is considerable variation in the Xox 

parameters.  Isomer shifts for 11ox and 12ox are characteristic of high-spin ferric and 

ferrous ions, respectively, whereas the δ value of 7ox (0.64 mm/s) precludes an 

unambiguous assignment of oxidation state, as noted above.  Significantly, the MB 

results reveal that the redox chemistry of these complexes spans the entire gamut from 

iron-based to ligand-based oxidations. 

 Following the experimental data, the geometry optimization of 12ox assumed a 5C 

geometry, S = 2 ground state, and overall charge of +2.  Metric parameters for the 

resulting model (12ox-DFT) are provided in Figure 5.16.  The short N-C bond distances 
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of 1.29 Å and “four long/two short” pattern of C-C bonds in the N,N-ligand are well-

established characteristics of DIBQ units.184,201,215-218  Mulliken populations revealed that 

spin-density is found almost exclusively on the Fe center (3.88 α spins), while the 

bidentate ligand is largely devoid of unpaired spin.  The most relevant molecular orbital 

(MO) for evaluating the 12ox-DFT electronic configuration is the highest-occupied (HO) 

spin-down (β) MO, shown in Figure 5.15.  The character of this MO is 74% Fe and 14% 

N,N-ligand, with electron density from the Fe(II) center to the tBuDIBQ ligand, in 

agreement with the MB data presented above. 

 

 

Figure 5.16.  (a) Bond distances (in Å) of the [Fe(DIBQ)]2+ unit in the 12ox-DFT model.  

(b) Isosurface plot of the spin-down (β) HOMO of 12ox-DFT. 
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Figure 5.17.  Left: Experimental (solid line) and TD-DFT computed (dashed line) 

absorption spectra for 12ox. Right: Electron density difference maps (EDDMs) for 

computed transitions.  Blue and grey regions indicate gain and loss of electron density, 

respectively. 

 

 To aid in band assignments, the absorption spectrum of 12ox-DFT was calculated 

using TD-DFT.  As shown in Figure 5.17, the computed spectrum exhibits two bands at 

635 and 460 nm (ε = 5.4 and 2.2 M-1 cm-1, respectively) that correspond to features in the 

experimental spectrum.  The higher-energy band arises primarily from a tBuDIBQ-based 

π-π* transition, as revealed in the electron density difference map (EDDM; Figure 5.17).  

In contrast, the intense near-IR (NIR) band corresponds to an Fe(II) → tBuDIBQ MLCT 

transition localized on the N7-Fe1-N8 unit.   

The electronic structure of the tBuPDA-derived ligand in 12ox was further 

examined using resonance Raman (rR) spectroscopy.  Since the complex exhibits a pair 

of prominent absorption bands, data were collected with two wavelengths of excitation 

(λex): 647.1 nm light from a Kr+ laser was used to probe the NIR feature that arises from a 

MLCT transition, while 488.0 nm light from an Ar+ laser was selected to resonate with 

the tBuDIBQ-based π-π* transition.  The composite spectrum shown in Figure 5.18, was 
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obtained by irradiating frozen samples of 12ox in CD2Cl2.  In some samples, the bidentate 

N,N-ligand was labeled with the 15N isotope at the 2-position to aid in peak assignments. 

 

 

Figure 5.18.  Resonance Raman spectra of 12ox in frozen CD2Cl2 solutions ([Fe] = 7.8 

mM) collected with 647.1 nm (left) and 488.0 nm (right) laser excitation. The black 

(solid) spectra were obtained using natural abundance (NA) complex, while the gray 

(dashed) spectra were obtained using 15N-substituted complex (the 15N isotope was 

incorporated at the 2-position of the PDA ligand). Frequencies (in cm−1) are provided for 

select peaks in the NA spectra, and the corresponding 14N→15N shifts are shown in 

parentheses. Peaks marked with an asterisk (*) arise from frozen solvent. 

 

The low-frequency region of the 12ox spectrum features two intense peaks at 557 

and 601 cm-1 with 15N isotope shifts of 2 and 8 cm-1, respectively (Figure 5.18).  The 601 

cm-1 peak is attributed to the breathing mode of the five-membered FeN2C2 chelate ring, 

based on its intensity and sizable isotope shift.  This assignment is supported by literature 

precedents170,171,219 and DFT frequency calculations performed with the 12ox-DFT model 

(computed frequencies and normal mode compositions are provided in Figure 5.19).  The 

smaller isotope shift of the 557 cm-1 peak suggests that the corresponding normal mode 

involves substantial mixing of Fe-N stretching motions with internal C-N/C-C vibrations 
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of the bidentate ligand.  Both modes are strongly enhanced by excitation into the NIR 

band at 715 nm, consistent with its assignment as an Fe(II) → tBuDIBQ MLCT transition. 

 

 
Figure 5.19.  Normal mode compositions, experimental and DFT-calculated frequencies, 

and computed isotope shifts for the 15N-substituted ligand. 

 

Compared to the metallocycle-based features, peaks arising from ligand-based 

modes (ν ≅ 1200-1600 cm-1) are quite weak in the 12ox spectrum obtained with λex = 

647.1 nm.  However, the higher-energy peaks gain in relative intensity when λex is 

changed to 488.0 nm, providing further confirmation that the absorption manifold near 

500 nm arises from tBuDIBQ-based transitions.  Three isotopically sensitive peaks are 

apparent at 1384, 1413, and 1453 cm-1 (Figure 5.19).  Prior rR studies of metal-dioxolene 

complexes indicate that these peaks correspond to modes that couple ν(N-C) and ν(C-C) 
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motions within the bidentate N,N-ligand.170,171,219  On the basis of its large 15N isotope 

shift (8 cm-1), the experimental peak at 1384 cm-1 matches the DFT-computed mode at 

1372 cm-1, which has primarily ν(N-C) character (calculated 15N isotope shift of 7 cm-1; 

Figure 5.19).  The peaks at 1413 and 1453 cm-1 then correspond to ν(C-C) motions of the 

tBuDIBQ ring with only minor amounts of ν(N-C) character.  Similarly, Lever and co-

workers recently published the crystal structure and rR spectrum of 

[Ru3+Cl2(NH3)2(DIBQ)]+, where DIBQ is unsubstituted (diimino)benzoquinone.219  This 

complex displays three peaks between 1400 and 1500 cm-1 that the authors attribute to 

stretching modes of the DIBQ ligand.  The presence of resonance enhanced peaks at 

similar frequencies in the 12ox spectrum provides further evidence that his complex 

contains a tBuDIBQ ligand. 

 

5.E. Kinetic Analysis of O2 Reactivity 

 Kinetic studies were generally conducted in O2-saturated CH2Cl2 solutions ([O2] 

= 5.8 mM at 20 °C140,220), and rates were measured by monitoring the growth of 

absorption features associated with Xox species.  To ensure a large excess of O2, 

concentrations of the Fe(II) complexes never exceeded 1.0 mM.  For the reactions of [7]+ 

and [11]+ with O2, initial rates increased linearly with Fe and O2 concentrations, indicating 

that the reactions are first-order in both reactants (Figure 5.20 and 5.21).  Interestingly, 

while the [12]2+ + O2 reaction is also first-order in Fe concentration, the reaction rate 

displays only minor variations as [O2] increases from 0.2 to 5.4 mM (Figure 5.21).  This 

zero-order [O2] dependence indicates that O2 binding is not the rate-limiting step in the 

conversion of [12]2+ → 12ox. 
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Figure 5.20.  Plots of initial rates versus Fe concentration for the reactions of [11]OTf 

(top), [7]OTf (middle), and [12](OTf)2 (bottom) with O2. All reactions were performed at 

room temperature in O2-saturated CH2Cl2. Each data point represents one reaction. 
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Figure 5.21. Plots of initial rates versus O2 concentration for the reactions of [11]OTf (top), 

[7]OTf (middle), and [12](OTf)2 (bottom) with O2. All reactions were performed at room 

temperature in CH2Cl2. For reactions involving [7]OTf and [11]OTf, the Fe concentration 

was fixed at 0.36 mM; for [12](OTf)2, the observed initial rate was divided by the Fe 

concentration. Each data point represents one reaction. 

 

 



141 
 

As shown in Figure 5.22, the reaction of [11]OTf with O2 at ambient temperature 

proceeds via pseudo-first-order kinetics with a  rate constant (k1) of 0.67(5) s-1.  The 

formation of 7ox and 12ox under the same conditions is more complex, however, as 

indicated by the “S-shaped” kinetic traces (Figure 5.22).  This behavior suggests that 

these species are generated via multistep mechanisms involving both ET and PT-a 

common occurrence for reactions that require net hydride (7ox) or H2 transfer (12ox).221,222  

Because of this mechanistic complexity, k1 values for the reactions of O2 with [7]+ and 

[12]2+ were measured using the initial rates approach.  Interestingly, the rates of 

formation span more than 5 orders of magnitude, with k1 values of 0.67(5) (11ox), 1.3(2) 

× 10-3 (7ox), and 4(2) × 10-6 s-1 (12ox) in O2-saturated CH2Cl2 at room temperature.  We 

also measured an initial rate of 5 × 10-6 s-1 for the one-electron oxidation of [13]+ to 13ox 

(Figure 5.14).  Thus, despite similar structures, the complexes examined here differ 

dramatically in their O2 reactivities.   
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Figure 5.22. Plots of absorption intensity as a function of time for the reactions of [11]OTf 

(top), [7]OTf (middle), and [12](OTf)2 (bottom) with O2. All reactions were performed in 

O2-saturated CH2Cl2 at room temperature ([Fe] ≈ 0.50 mM). 
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 Activation parameters for the [7]OTf + O2 reaction were determined by 

measuring rates at temperatures between 22 and -30 °C.  The linear Eyring plot (Figure 

5.23) indicates an activation enthalpy (ΔH‡) of 12(2) kcalmol-1 and a large negative 

activation entropy (ΔS‡) of -22(5) kcalmol-1.  Such values are similar to parameters 

obtained for similar Fe/O2 adducts223 (Because of its fast nature, it was not possible to 

measure accurate activation parameters for the reaction of [11]+ with O2 using 

conventional methods) and are consistent with an associative reaction involving O2 

binding to the Fe center as the rate-determining step. 

 

 
 

Figure 5.23. Eyring plot for the reaction of [7]OTf with O2 in O2-saturated CH2Cl2 over a 

temperature range of 22 °C to -30 °C. Second-order rate constants (k2) were obtained by 

dividing the pseudo-first order constant by [O2] at the specified temperature. Each data 

point represents one reaction. 
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In previous sections, we demonstrated that formation of the oxidized species 7ox, 

11ox, 12ox under aerobic conditions requires both electron and proton transfers from the 

parent complexes, although the rates of O2 reaction vary by a factor of 105 across the 

series.  Thus, it is plausible that the O2 activation mechanisms involve a combination of 

electron and proton transfer from the complexes to either dioxygen or superoxide.  We 

therefore examined the reactivity of the title complexes with two well-established H-atom 

acceptors: TEMPO and 2,4,6-tri-tert-butylphenoxyl radical (TTBP).  Both reagents 

exhibit a strong propensity to react via PCET mechanisms, but TTBP is a much more 

effective H-atom abstractor than TEMPO, as indicated by the bond dissociation free 

energies (BDFE) of the resulting H-O bonds (BDFE = 77.1 and 66.5 kcal/mol, 

respectively, in MeCN).224 

 Treatment of [11]+ with either TEMPO or TTBP yields a blue-green species 

with absorption features identical to those observed for 11ox (Figure 5.24).  Given the 

formulation of 11ox as [Fe3+(Cat)(Ph2TIP)]+, this reaction is classified as “separated 

PCET” because the electron and proton originate from different units of the [11]+ 

complex, namely, the Fe(II) center and CatH ligand.  While complexes [7]+ and [12]2+ are 

inert toward TEMPO, both react rapidly with TTBP. As described in Chapter 4 TTBP 

removes a hydrogen atom from the tBu2APH ligand of [7]+ to generate the corresponding 

Fe(II)-tBu2ISQ complex.  Complex [12]2+ reacts with 2 equiv. of TTBP to provide a 

species with spectral features that are similar to those of 12ox, although not identical 

(Figure 5.25).  This chromophore is evident by UV-vis spectroscopy even when a single 

equivalent of TTBP is added; this result suggests that the species generated by removal 



145 
 

of one H-atom from [12]2+ undergoes disproportionation to yield the starting complex 

and a 12ox-like species. 

 

 

Figure 5.24. Absorption spectra obtained by treating [11]OTf with TEMPO• (solid line) 

or O2 (dashed line) in CH2Cl2 at room temperature. 
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Figure 5.25. Absorption spectra of [12](OTf)2 (solid red line) and 12ox (dashed black line) 

compared to the one obtained by treating [12](OTf)2 with two equivalents of TTBP• (solid 

black-line). All spectra were collected in CH2Cl2 at room temperature ([Fe] = 0.50 mM in 

each case). The pathlength of the cuvette was 1.0 cm. 

 

 It is noteworthy that [11]+ is the only complex in the series capable of donating a 

H-atom to TEMPO, indicating that the [11ox-H] bond is very weak (BDFE < 66 

kcal/mol).  Bordwell and Mayer have demonstrated that the BDFE of the X-H bond 

formed in a 1H+/1e- PCET reaction (i.e., X + H+ + e- → X-H) is given by the following 

equation: 

BDFE(X-H) = 1.37pKa + 23.06E° + CG,solv 

 

where CG,solv is a solvent-dependent constant.224,225  In our case, the relevant parameters 

are the E° values of the starting Fe(II) complexes and the pKa values of the one-electron 

oxidized species.  The complexes examined here exhibit greater variability in ligand 

acidities than in redox potentials.  As described above, initial redox potentials differ by 

~100 mV across the series, accounting for a modest shift of ~2.5 kcal/mol in BDFE.  In 
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contrast, the pKa values of aromatic amines are generally ~12 units higher than the 

corresponding phenols−a shift of 14 kcal/mol in BDFE.224,226,227  Thus, while the 

differences in redox potential cannot be ignored, the weaker H-atom donating ability of 

complexes [7]+ and [12]2+ compared to [3]+ is largely due to the greater acidity of the 

tBuCatH ligand relative to tBu2APH and tBuPDA. 

 These results have mechanistic implications for the O2 reactivity of the complexes 

examined here.  The strength of the [3ox−H] bond is comparable to that of perhydroxyl 

radical (HO2
), which is the product of HAT and O2 (BDFE of HO2

− ≅ 60 kcal/mol).224  

Therefore, complex [3]+ may be able to react directly with O2 via 1H+/1e− PCET without 

prior formation of a ferric-superoxo intermediate.  By contrast, complexes [7]+ and 

[12]2+ cannot participate in HAT reactions with O2 due to the greater strength of their 

N−H bonds.  For these complexes, O2 activation likely requires initial ET from Fe(II) → 

O2, followed by oxidation of the ligand via concerted (or stepwise) electron and proton 

transfers.  These mechanistic scenarios are considered further in the discussion section. 

 

5.F. Computational Studies of O2 Reactivity 

 The thermodynamics of O2 binding were examined with DFT calculations.  A 

previous study by Schenk et al. found that hybrid functionals with a reduced amount 

(~10%) of Hartree-Fock (HF) exchange are most reliable for evaluating energetics of O2  

(or NO) binding to nonheme Fe(II) centers.228  We therefore employed the PBE 

functional229 with 10% HF exchange to calculate geometries and thermodynamic 

parameters for O2, the Fe(II) precursors, and the 6C [Fe/O2] adducts.  Since exchange 

interactions between the unpaired electrons of Fe and O2 give rise to three possible spin 
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states (Stot = 1, 2, 3), it was necessary to optimize three models for each [Fe/O2] species.  

The resulting S = 2 [Fe/O2] structures are shown in Figure 5.26.  (Tables 5.3−5.5 provide 

metric parameters for each model.)  The [12/O2]
2+ adduct is dissociative on the S = 3 

surface, with calculations invariably converging to structures with very long Fe…O 

distances (>3.75 Å). 

 

 

Figure 5.26. DFT-calculated structures of the Fe/O2 adducts. Selected bond distances (Å) 

and angles are provided (see Tables 5.3−5.5 for additional metric parameters). 
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Table 5.3.  Selected Bond Distances (Å) and Angles (deg) for Complex [7]+ and the 

corresponding [Fe/O2]
+ Species (Stot = 3,2, and 1) Obtained by DFT Calculations. 

  [7]+ [7/O2]+ [7/O2]+ [7/O2]+ 

 Spin S=2 S=3 S=2 S=1 

Bond Lengths Fe1-N1(TIP) 2.148 2.158 2.181 2.187 

 Fe1-N3(TIP) 2.173 2.301 2.281 2.279 

 Fe1-N5(TIP) 2.206 2.243 2.264 2.193 

 Fe1-O(APH) 1.903 1.915 1.895 1.937 

 Fe1-N(APH) 2.282 2.254 2.260 2.262 

 Fe1-O(O2)  2.182 1.946 2.095 

 O─O  1.263 1.268 1.246 

 Fe1-N(TIP) ave 2.176 2.234 2.242 2.220 

 Fe1-L(all) ave 2.142 2.176 2.138 2.159 

      

Angles Fe─O─O  132.8 128.5 120.1 

 

 

 

 

Table 5.4.  Selected Bond Distances (Å) and Angles (deg) for Complex [11]+ and the 

corresponding [Fe/O2]
+ Species (Stot = 3,2, and 1) Obtained by DFT Calculations. 

  [11]+ [11/O2]+ [11/O2]+ [11/O2]+ 

 Spin S=2 S=3 S=2 S=1 

Bond Lengths Fe1-N1(TIP) 2.122 2.131 2.151 2.156 

 Fe1-N3(TIP) 2.138 2.214 2.223 2.177 

 Fe1-N5(TIP) 2.156 2.181 2.203 2.158 

 Fe1-O(CatH) 1.871 1.895 1.879 1.873 

 Fe1-N(CatH) 2.482 2.606 2.435 2.727 

 Fe1-O(O2)  2.133 1.960 2.126 

 O─O  1.250 1.266 1.247 

 Fe1-N(TIP) ave 2.139 2.175 2.192 2.164 

 Fe1-L(all) ave 2.154 2.193 2.142 2.203 

      

Angles Fe─O─O  139.6 125.5 121.5 

 

 



150 
 

Table 5.5.  Selected Bond Distances (Å) and Angles (deg) for Complex [12]2+ and the 

corresponding [Fe/O2]
+ Species (Stot = 2, and 1) Obtained by DFT Calculations. 

  [12]+ [12/O2]2+ [12/O2]2+ 

 Spin S=2 S=2 S=1 

Bond Lengths Fe1-N1(TIP) 2.175 2.173 2.181 

 Fe1-N3(TIP) 2.168 2.166 2.168 

 Fe1-N5(TIP) 2.126 2.209 2.155 

 Fe1-O(CatH) 2.209 2.205 2.201 

 Fe1-N(CatH) 2.212 2.205 2.201 

 Fe1-O(O2)  1.994 2.128 

 O─O  1.249 1.228 

 Fe1-N(TIP) 

ave 

2.156 2.183 2.168 

 Fe1-L(all) ave 2.178 2.159 2.172 

     

Angles Fe─O─O  126.9 122.1 

 

In all other cases, O2 coordinates in a bent conformation with Fe−O−O angles 

between 120 and 140° and Fe−O distances ranging from 1.95 to 2.18 Å.  The O2 ligand 

can adopt two possible orientations depending on whether the O−O vector is pointed 

toward (T) or away (A) from the bidentate ligand.  The two orientations are 

approximately isoenergetic with differences less than the estimated error of the 

calculations (±2 kcal/mol).  In the remainder of this chapter, only the T isomers of the 

[Fe/O2] adducts are discussed, since these models are more relevant from a mechanistic 

standpoint. 

 Table 5.6 summarizes the computed thermodynamic parameters for the eight 

Fe(II) + O2 → [Fe/O2] reactions considered here.  While the enthalpic contributions 

(ΔHgas + ΔSolv) are slightly favorable in most instances, all of the reactions are 

endergonic (ΔG = +7.0−13.0 kcal/mol) due to large and unfavorable entropic effects.  A 
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similar pattern has been observed in DFT studies of O2 binding to nonheme Fe(II) 

enzymes, where the calculated ΔG values range between +8 and 12 kcal/mol.46,230-232 To 

understand why the O2 binding reactions are decidedly “uphill”, it is instructive to 

examine the computed properties of the O−O bonds in the [Fe/O2] intermediates.  

Superoxide ligands typically exhibit O−O bond distances near 1.3 Å and ν(O−O) 

frequencies between 1050 and 1200 cm-1.233  In contrast, our DFT-generated [Fe/O2] 

models have short O−O distances of 1.25 ± 0.02 Å and ν(O−O) frequencies greater than 

1250 cm-1 (Table 5.3), indicating that there is only partial charge transfer from Fe(II) to 

the O2 ligand.  The weakness of the Fe−O2 interactions is also reflected in the low 

ν(Fe−O) frequencies, which range between 230 to 370 cm-1. 

 

Table 5.6.  Energetics of O2 Binding to Complexes [7]+, [11]+, [12]2+, and Comparison of 

O─O Bond Distances and Stretching Frequencies in the Resulting Fe/O2 Adductsa 
reactants spin (Stot) ΔHgas TΔS ΔSolvb ΔGc r(O─O)(Å) ν(O─O)(cm-1) 

[11]+ + O2 S =3 -0.5 -11.9 -0.1 +11.3 1.25 1287 

 S = 2 -0.2 -12.2 -1.1 +10.9 1.27 1260 

 S = 1 -1.6 -11.7 +0.2 +10.3 1.25 1287 

[7]+ + O2 S = 3 -2.0 -10.0 -1.1 +6.9 1.26 1254 

 S = 2 -1.4 -10.9 -1.7 +7.8 1.27 1251 

 S = 1 -2.9 -11.4 -0.2 +8.3 1.25 1303 

[12]2+ + O2 S = 2 +4.0 -11.3 -2.3 +13.0 1.25 1328 

 S = 1 -1.8 -12.2 +0.4 +10.8 1.23 1406 

aAll energies in kcal/mol.  bEnthalpies of solvation were calculated using COSMO.   
cΔG = ΔHgas + ΔSolv ─ TΔS 

 

On the basis of the DFT calculations, complex [7]+ has the greatest affinity for O2, 

followed in the series by [11]+ and [12]2+ (Table 5.6).  This trend correlates with the 

relative donor strengths of the bidentate ligands (APH− > CatH− > PDA) because 
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formation of the Fe−O2 bond requires transfer of electron density from an Fe d orbital to 

an empty O2 π
* orbital.  However, our DFT results appear to contradict the kinetic studies 

reported above, which found that [11]+ is significantly more reactive than [7]+ toward O2.  

Possible explanations for this discrepancy are provided in the following section.   

 

5.G. Discussion 

 In this chapter, we described the O2 reactivity of monoiron(II) complexes bound 

to three types of o-phenylene ligands (Figures 5.1 and 5.2).  The complexes resemble the 

substrate-bound intermediates of nonheme Fe(II) dioxygenases that catalyze the oxidative 

ring-cleavage of aromatic substrates.5,23,203  The Ph2TIP supporting ligand mimics the 

facial triad of protein ligands in the active site and the substrate ligands each coordinate 

in a bidentate manner, resulting in 5C Fe(II) complexes capable of O2 binding.  In chapter 

4, we demonstrated that one- and two-electron oxidation of the tBu2APH-based complex 

[7]OTf yields species containing (imino)benzosemiquinone ligands.  Like 

aminophenolates, catecholates and phenylenediamines can serve as redox-active ligands, 

although the ease of oxidation of the free ligands increases across the series CatH2 < 

APH2 < PDA.  We therefore synthesized and structurally characterized the homologous 

complexes [11]OTf and [12](OTf)2 to better understand the role of redox-active ligands 

in modulating the O2 reactivity of Fe complexes.  The ligands are capable of donating 

protons as well as electrons, but the acidities run counter to the redox potentials.  In other 

words, the most acidic ligand (tBuCatH2) is the hardest to oxidize, while the most reducing 

ligand (tBuPDA) is the least acidic.  This interplay between ET and PT capabilities 

influences the rates of the O2 reactions as well as the identities of the oxidized products. 
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 Despite similar overall structures, the three Fe(II) complexes in this study display 

remarkable diversity in their O2 reactivities, as summarized in Figure 5.27.  The 

differences concern both the total number of electrons transferred in the reaction (1e− or 

2e−) and the source of these electrons (iron and/or ligand).  The resulting Xox species have 

been characterized by various spectroscopic (UV−vis, EPR, MB, rR) and computational 

(DFT) methods.  These results indicate that the [11]+ → 11ox conversion is an Fe-based 

1e− process, while the [12]2+ → 12ox reaction involves 2e− oxidation of the ligand only.  

The [7]+ → 7ox reaction occupies an intermediate position, since substantial electron 

density is lost from both the Fe center and tBu2AP ligand.  This continuum in electronic 

structures is evident in the isomer shifts (δ) of the Xox species (Table 5.2), which range 

from 0.50 (11ox, Fe3+) to 0.64 (7ox, Fe2.5+) to ~1.1 (12ox, Fe2+) mm/s.  In addition, each of 

the three possible o-phenylene oxidation states (aromatic, semiquinone, benzoquinone; 

Figure 5.1) is represented in the Xox series.  Thus, the [Fe2+(Ph2TIP)(o-phenylene)] 

framework supports a wide spectrum of redox and O2 chemistry. 
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Figure 5.27.  Summary of diverse O2 reactivity displayed by our complexes. 

 

 Our kinetic analysis revealed that O2 reaction rates vary by a factor of 105 across 

the series, following the order [11]+ ˃ [7]+ ˃ [12]2+.  It is somewhat counterintuitive that 

this order is inversely related to the electron-donating abilities of the free ligands.  

Moreover, these rates fail to correlate adequately with Fe2+/3+ redox potentials, all of 

which fall within a 100 mV range near 0 mV (vs Fc+/0).  Finally, if one assumes that 

formation of the Fe/O2 adduct is the rate-determining step, then our DFT calculations of 

O2-binding affinities indicate that [7]+ should be more reactive than [11]+, even though 

the kinetic data indicate that the reverse is true. 

 We believe these conflicting results can be reconciled by considering the role of 

PT in the O2 reaction.  The fact that [11]+ undergoes HAT with TEMPO─a very weak H-

atom acceptor suggests that ET and PT processes are tightly coupled in the [11]+ + O2 
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reaction.  A likely mechanism involves concerted transfer of 1e─ and 1H+ to O2 as it 

approaches the Fe center.  In contrast, the intrinsically lower acidity of aromatic amines 

(relative to phenols) prevents PT in the initial interaction of O2 with [7]+ and [12]2+.  

Deprotonation of these ligands in the course of the O2 reaction likely requires complete 

oxidation of the Fe center to lower the pKa of the amino group(s).  Thus, these complexes 

cannot avoid the thermodynamically uphill ET from Fe(II) to O2; yet once the ferric 

complex is generated, proton loss to superoxide or bulk solvent would be feasible, as 

indicated by the CV data (vide supra).  Importantly, deprotonation destabilizes the redox-

active MOs of the ligand, making it possible for O2 to extract a second electron, thus 

generating the final 7ox and 12ox products.  Thus, we propose that the [7]+ → 7ox 

conversion proceeds via a stepwise ET─PT─ET mechanism, although PT may be 

coupled with the second ET in a HAT reaction.  This mechanism follows the one 

established by Paine et al. for the oxidation of [Fe2+(L)(tBu2APH)] to [Fe3+(L)(tBu2ISQ)]+ 

in the presence of O2 (where L is the tris(2-pyridylthio)methanido anion).234 

 The enormous contrast between the O2 reactivites of [11]+ and [13]+ provides the 

clearest evidence for the decisive role of PT in determining reaction rates of the o-

phenylene complexes.  These two complexes have nearly identical coordination 

geometries and Fe3+/2+ redox potentials; however, replacing the ─OH group of tBuCatH 

with the ─OCH3 donor of Me2MP decreases the O2 reaction rate by 5 orders of 

magnitude.  Indeed, complex [13]+ is quite stable in the presence of air, even though slow 

oxidation to the ferric analog (13ox) is observed over the course of days.  These results 

provide further confirmation that the one-electron oxidation of high-spin Fe(II) centers by 
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O2 is an unfavorable process, but the overall reaction barrier can be lowered substantially 

if the ET is coupled with PT (in either a stepwise or concerted manner). 

 The 11ox intermediate reacts further with O2 to yield products arising from 

extradiol ring cleavage.  Previous studies have proposed a mechanism that involves direct 

reaction of the [Fe3+(Cat)]+ unit with O2 to form a ferric-alkylperoxo species, followed by 

rearrangement to the corresponding lactone (Figure 5.28a).111,212  In contrast, 7ox and 12ox 

are relatively air-stable, since they lack the two reducing equivalents necessary to 

generate the critical alkylperoxo intermediate.  Interestingly, Paine and co-workers 

recently reported a 6C complex, [Fe2+(6-Me3-TPA)(tBuAPH)]+, that (unlike [7]+) reacts 

with O2 to yield the ring-cleaved product (6-Me3-TPA = tris(6-methyl-2-

pyridylmethyl)amine).235  The proposed mechanism is analogous to the one employed by 

ferric-catecholate complexes.  Paine’s system differs from the one described here in that 

the initial product of the O2 reaction is an [Fe3+(AP)]+ species, whereas our studies 

indicate that [7]+ likely converts to a [Fe2+(ISQ)] intermediate.  This difference in 

electronic structure apparently controls subsequent reactivity, with the latter species 

undergoing simple 1e─ oxidation and the former direct addition of O2. 
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Figure 5.28.  (a) Proposed mechanism for the formation of a ferric-alkylperoxo 

intermediate leading to ring-cleavage products.  (b) Condensed mechanism utilized by 

ring-cleaving dioxygenases.  
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5.H. Conclusions 

 The results presented here highlight the mechanistic sophistication of the ring-

cleaving dioxygenases.  Figure 5.28b provides a condensed version of the canonical 

enzymatic mechanism.  A recent DFT study by Christian et al. of extradiol catechol 

dioxygenases has emphasized the role of the conserved second-sphere histidine residue in 

the PT steps that occur after O2 binding.236  This residue first deprotonates the substrate 

ligand, resulting in an imidazolium group that stabilizes the superoxide ligand through H-

bonding interactions.  The proton is eventually returned to the O2 unit after formation of 

the bridging alkylperoxo intermediate (Figure 5.28b).  Thus, the enzyme carefully 

“manages” the PT events to promote O2 activation and discourage the autoxidation 

processes observed in our models.  Indeed, studies of homoprotocatechuate 2,3-

dioyxgenase (HPCD) have demonstrated that if the His200 residue is mutated to Ala, the 

enzyme generates quinone and H2O2 instead of the ring-cleaved products.44  Therefore, 

the critical difference between the ring-cleaving dioxygenases and the synthetic models 

reported here (and elsewhere) is the ability to coordinate PT with O2 activation. 

 It is noteworthy that none of the synthetic dioxygenase models prepared to date 

follow the enzymatic mechanism in proceeding through an Fe/O2 adduct.  Even for those 

complexes that carry out ligand cleavage, like [11]OTf, the first step always involves 1e─ 

oxidation to the ferric complex followed by direct reaction of the ligand with O2.  The 

enzyme not only stabilizes the [FeO2] adduct through H-bonding interactions, it also 

prevents formation of the dead-end intermediate that arises when the substrate proton is 

transferred to O2
●─ instead of H200.44,45  In this study, we have shown that PCET is an 

effective strategy for bypassing the unfavorable ET from Fe(II) to O2; however, in the 
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case of [11]OTf, the PCET reaction does not lead to formation of the Fe(II)-alkyperoxo 

intermediate (as in the enzyme) because the resulting superoxide moiety has been 

deactivated through protonation,  By coupling O2 binding with PT to a second-sphere His 

residue, the dioxygenases reap the energetic benefits of PCET while avoiding the pitfall 

that has plagued synthetic models.  Future modeling efforts should therefore be directed 

toward the generation of complexes capable of mimicking the enzyme’s exquisite control 

of PT reactions. 

 

5.I. Experimental  

 Reagents and solvents were purchased from commercial sources and were used as 

received, unless otherwise noted.  Air-sensitive materials were synthesized and handled 

under inert atmosphere using a Vacuum Atmospheres Omni-Lab glovebox.  The Ph2TIP173 

and tBuAPH2
138 ligands and the 2,4,6-tri-tert-butylphenoxyl radical139 (TTBP) were 

prepared according to literature procedures.  Synthetic procedures for complexes 

[Fe(Ph2TIP)(MeCN)3](OTf)2,
173 4,204 and [7]OTf205 were reported earlier in this 

manuscript.  

 Elemental analyses were performed at Midwest Microlab, LLC in Indianapolis, 

IN.  UV─absorption spectra were measured with an Agilent 8453 diode array 

spectrometer equipped with a cryostat from Unisuko Scientific Instruments (Osaka, 

Japan).  Fourier-transform infrared (FTIR) spectra of solid samples were obtained with a 

Thermo Scientific Nicolet iS5 FTIR spectrometer equipped with the iD3 attenuated total 

reflectance accessory.  1H and 19F NMR spectra were recorded at room temperature with 

a Varian 400 MHz spectrometer.  19F NMR spectra were referenced to the 



160 
 

benzotrifluoride peak at ─63.7 ppm.  Mass spectra were collected using an Agilent 6850 

gas chromatography─mass spectrometer (GC-MS) with a HP-5 (5% 

phenylmethylpolysiloxane) column.  Cyclic voltammetric (CV) measurements were 

conducted in the glovebox with an epsilon EC potentiostat (iBAS) at a scan rate of 100 

mV/s with 100 mM (NBu4)PF6 as the supporting electrolyte.  The three electrode cell 

contained a Ag/AgCl reference electrode, a platinum auxiliary electrode, and a glassy 

carbon working electrode.  Potentials were referenced to the ferrocene/ferrocenium 

(Fc+/0) couple, which has E1/2 values of +0.52 V in CH2Cl2 under these conditions. 

 EPR experiments were performed using a Bruker ELEXSYS E600 featuring an 

ER4415DM cavity that resonates at 9.63 GHz, an Oxford Instruments ITC503 

temperature controller, and an ESR-900 He flow cryostat.  The program EasySpin302C 

was used to simulate and fit experimental spectra.  Resonance Raman (rR) spectra were 

measured with excitation from either a Coherent I-305 Ar+ laser (488.0 nm) or I-302C 

Kr+ laser (647.1 nm) with ~50 mW of power at the sample.  The scattered light was 

collected using a 135° backscattering arrangement, dispersed by an Action Research 

triple monochromator equipped with a 1200 grooves/mm grating and detected with a 

Princeton Instruments Spec X 100BR CCD camera.  Spectra were accumulated at 77 K, 

and rR frequencies were referenced to the 983 cm-1 peak of K2SO4.
220  Low-field (0.04 T) 

variable temperature (5─200 K) Mӧssbauer spectra were recorded on a closed-cycle 

refrigerator spectrometer, model CCR4K, equipped with a 0.04 T permanent magnet, 

maintaining temperatures between 5 and 300 K.  Mӧssbauer spectra were analyzed using 

the software WMOSS (Thomas Kent, SeeCo.us, Edina, Minnesota).  The samples 

consisted of solid powders (or crystalline material) suspended in nujol, placed in Delrin 
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1.00 mL cups, and then frozen in liquid nitrogen.  The [12](OTf)2 sample was prepared 

from material crystallized from a mixture of 1,2-dichloroethane (DCE) and Et2O.  The 

air-oxidized sample 4ox was prepared by exposing a solution of [12](OTf)2 in CH2Cl2 to 

air for 20 h, followed by removal of solvent to give a dark green powder.  The isomer 

shifts are quoted at 5 K with respect to iron metal spectra recorded at 298 K. 

 X-ray diffraction (XRD) data were collected with an Oxford Diffraction 

SuperNova κ-diffractometer (Agilent Technologies) equipped with dual microfocus 

Cu/Mo X-ray sources, X-ray mirror optics, Atlas CCD detector, and low-temperature 

Cryojet device.  The data were processed with CrysAlis Pro program package (Agilent 

Technologies, 2011), followed by an empirical multiscan correction using SCALE3 

ABSPACK routine.  Structures were solved using SHELXS program and refined with 

SHELXL program.147  X-ray crystallographic parameters are provided in Table 6.4, and 

experimental details are available in the CIFs. 

[Fe(Ph2TIP)(tBuCatH)(OTf)  [11]OTf:  Equimolar amounts of 

[Fe(Ph2TIP)(MeCN)3](OTf)2 (456 mg, 0.38 mmol) and tBuCatH2 (63 mg, 0.38 mmol) were 

dissolved in tetrahydrofuran (THF) (10 mL), followed by addition of NEt3 (58 µL, 0.42 

mmol).  The dark yellow solution was stirred for 30 min, and the solvent was removed 

under vacuum.  The crude material was taken up in DCE (5 ml) and filtered.  Layering of 

this solution with hexane provided bright yellow crystals suitable for X-ray diffraction.  

Crystals were washed with hexanes and dried under vacuum (yield = 83 mg, 20%).  µeff = 

4.7 µB (Evans method).  UV-vis [λmax, nm (ε, M-1 cm-1) in CH2Cl2]: 397 (940).  IR (neat, 

cm-1): 3058 (w), 2955 (w), 1603 (w), 1505 (m), 1460 (m), 1443 (m), 1443 (m), 1369 (m), 

1241 (s), 1154 (s), 1028 (s).  1H NMR (400 MHz, CD2Cl2): δ = -27.52, -10.44, 2.22, 4.51, 
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5.98, 6.94, 9.53, 10.06, 11.47, 23.88, 29.58, 61.67, 65.98.  19F NMR (376 MHz, CD2Cl2): 

δ = -80.3 (OTf) ppm.  Elemental analysis calcd (%) for C59H52F3FeN6O5PS●2DCE: C, 

58.26; H, 4.66; N, 6.47.  Found:  C, 58.00; H, 4.98; N, 6.46. 

[Fe(Ph2TIP)(tBuPDA)(OTf)2  [12](OTf)2: Equimolar amounts of 

[Fe(Ph2TIP)(MeCN)3](OTf)2 (304 mg, 0.25 mmol) and tBuPDA (42 mg, 0.25 mmol) were 

dissolved in tetrahydrofuran (THF) (10 mL), and the reaction was stirred for 18 h.  

Removal of the solvent under vacuum yielded a white solid that was dissolved in DCE (3 

mL) and filtered.  Vapor diffusion of ET2O into this solution afforded the product as a 

colorless solid (yield = 123 mg, 39%) suitable for use in spectroscopic and kinetic 

studies.  The complex does not exhibit absorption features in the visible region.  µeff = 

5.48 µB (Evans method).  IR (neat, cm-1): 3306 (w, ν(NH)), 3254 (w, ν(NH)), 3057 (w), 

2960 (w), 1572 (w), 1443 (w), 1261 (s), 1147 (m), 1029 (w).  1H NMR (400 MHz, 

CD2Cl2): δ = -28.8 (1H), 0.62 (9H), 4.98 (6H), 7.00 (3H), 7.32 (3H), 7.68 (6H), 8.53 

(6H), 11.81 (1H), 12.89 (9H), 15.33 (6H), 19.01 (2H), 24.33 (2H), 31.36 (1H).  19F NMR 

(376 MHz, CD2Cl2): δ = -79.3 (OTf) ppm.  Elemental analysis revealed that a small 

amount of DCE solvent (0.5 equiv/Fe) remains after drying.  Elemental analysis calcd 

(%) for C60H55F6FeN8O6PS2●2DCE: C, 56.42; H, 4.42; N, 8.63; F, 8.78.  Found:  C, 

56.56; H, 4.51; N, 8.54; F, 8.32.  X-ray quality crystals were obtained by either slow 

diffusion of Et2O into a concentrated MeCN solution or pentane layering of a DCE 

solution containing 1 equiv. of NaBPh4. 

[Fe(Ph2TIP)(Me2MP)]OTf   [13]OTf.  Equimolar amounts of 

[Fe(Ph2TIP)(MeCN)3](OTf)2 (143 mg, 0.12 mmol) and 2-methoxy-5-methylphenolate 

(Me2MPH, 16.3 mg, 0.12 mmol) were dissolved in THF (10 mL), followed by addition of 
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NEt3 (20 µL, 0.15 mmol).  The mixture was stirred for 3 h, and the solvent was removed 

under vacuum.  The crude solid was taken up in CH2Cl2 (5 mL) and layered with 

hexanes.  After several days, light green crystals suitable for X-ray crystallography were 

collected (yield = 101 mg, 80%).  UV-vis [λmax, nm (ε, M-1 cm-1) in CH2Cl2]: 390 (1400), 

610 (500).  IR (neat, cm-1), 3048 (w), 1499 (w), 1444 (m), 1396 (w), 1260 (s), 1220 (s), 

1146 (s), 1073 (w), 1028 (s), 982 (m), 790 (s), 771 (s).  The crystals used for elemental 

analysis were prepared from a mixture of DCE/hexanes.  The results suggest that some 

DCE solvent (~1 equiv/Fe) remains after drying consistent with the X-ray structures that 

found 1.5 equiv. of uncoordinated CH2Cl2 in the unit cell.  Elemental analysis calcd (%) 

for C57H48F3FeN6O5PS●DCE: C, 60.47; H, 4.47; N 7.17.  Found: C 59.00; H, 4.63; N, 

7.55. 

Synthesis of tBuPDA with 15N at 2-Position.  Using a published procedure,237 

acetic anhydride (2.64 g, 22.4 mmol) was added dropwise to a solution of 4-tert-

butylaniline (3.34 g, 22.4 mmol) in CH2Cl2 (30 mL) at O°C.  A white precipitate formed 

as the mixture was stirred for 30 min.  After addition of 30 mL of hexanes, the solution 

was filtered to give 4-tert-butylacetanilide as a white solid.  Without further purification, 

680 mg (3.55 mmol) of the product was dissolved in CHCl3 (15 mL).  To this solution, 

H2SO4 (0.3 mL) and 15N-labeled HNO3 (1.0 g, 7.04 mmol, Aldrich, 98% 15N) were added 

dropwise.  The resulting dark orange solution was stirred for 1 h and was then washed 

successively with H2O, saturated NaHCO3, and brine.  After drying the organic layer with 

MgSO4 the solvent was removed to yield 4-tert-butyl-2-nitroacetanilide.  The protecting 

group was then removed by refluxing in EtOH with KOH (143 mg, 2.6 mmol).  The 

mixture was poured into ice-water, yielding a precipitate that was isolated by filtration, 
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washed with cold H2O, and dried in vacuo.  The resulting 15N-labeld 4-tert-butyl-2-

nitroaniline (300 mg, 1.54 mmol) was dissolved in MeOH (20 mL), and 5% Pd/C catalyst 

(90 mg) was added.  The mixture was stirred under H2 (46 psi) for 5 h and filtered 

through Celite, and the solvent was removed under vacuum to yield a dark purple solid 

(yield = 201 mg, 79%).  1H and 13C NMR spectra of the product were identical to those 

obtained with commercially available tBuPDA. 

 Oxygenation studies were performed by injecting anaerobic solutions of the Fe(II) 

complex into O2-saturated solutions of CH2Cl2 at the desired temperature.  Formation of 

the oxidized species was monitored using UV-vis spectroscopy.  The concentration of O2 

in CH2Cl2 solutions at various temperatures (T) was estimated using the formula: S = 

(LPO2)/TR), where L is the Ostwald coefficient (0.257 for CH2Cl2), PO2 is the partial 

pressure of O2, and R is the gas constant.223,238  The determination of PO2 accounted for 

the vapor pressure of CH2Cl2 (Psolv) as a function of T: PO2 = 1 atm ─ Psolv.  Following 

established procedures,135,206,213,234  the decomposition products of the 3ox + O2 reaction 

were isolated by removing the CH2Cl2 solvent under vacuum, taking the residue up in 

MeCN, and treating the solution with ~3 mL of HCl (2 M).  After extraction of the 

aqueous layer with Et2O, the solvent was removed to give a residue that was analyzed 

with GC-MS and/or 1H NMR spectroscopy.  The 1H data was interpreted with the aid of 

published spectra.239 

 DFT calculations were performed using the ORCA 2.9 software package 

developed by Dr. F. Neese (MPI for Chemical Energy Conversion).  Calculations 

involving 4ox employed Becke’s three-parameter hybrid functional for exchange along 

with the Lee-Yang-Parr correlations functional (B3LYP).142,143  These calculations 
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utilized Ahlrichs’ valance triple-ζ basis set (TZV) and TZV/J auxiliary basis set, in 

conjunction with a polarization functions on all atoms.144,145,240  In the geometry 

optimized model, the Ph2TIP ligand was modified by replacing the Ph-groups at the 5-

position of the imidazolyl rings with H-atom.  In addition, the tert-butyl substituent of the 

tBuPDA ligand was replaced with a Me group.  To avoid spurious transitions, time-

dependant DFT (TD-DFT) calculations used a truncated version of the optimized 12ox 

model with Me groups (instead of Ph groups) at the 4-position of the imidazolyl rings.  

TD-DFT calculations176-178 calculated absorption energies and intensities for 50 excited 

states with the Tamm-Dancoff approximation.179,241  Isosurface plots of molecular 

orbitals and electron-density difference maps (EDDMs) were prepared with Laaksonen’s 

gOpenMolprogram.146 

 Energetic parameters for the biding of O2 to the Fe(II) complexes were computed 

using the Perdew-Burke-Ernzerhof (PBE) functional229 with 10% Hartree-Fock 

exchange.  These calculations employed modified Ph2TIP ligands containing three N-

methylimidazole rings attached at the 2-position to a central P atom, and the tert-butyl 

substituents of the bidentate ligand were replaced with Me groups.  Geometry 

optimizations were performed for the Fe(II) precursors, [Fe/O2] adducts, and O2 under 

tight convergence criteria, and the resulting models were used to obtain gas-phase 

vibrational and thermodynamic data.  Solvent effects were calculated using the 

conductor-like screening model (COSMO)242  with a dielectric constant (ε) of 9.08 for 

CH2Cl2.  The “spin-flip” feature of ORCA was employed to generate [Fe/O2] wave 

functions for Stot = 2 and 1 states.
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Table 5.7. Summary of X-ray Crystallographic Data Collection and Structure Refinement 

 [11]OTf•2DCE [12](OTf)(BPh4)•DCE•C5H12
a [12(MeCN)](OTf)2•MeCN•Et2O [13](OTf)•1.5CH2Cl2 

empirical formula C63H60Cl4F3FeN6O5PS C90H91BCl2F3FeN8O3PS C68H71F6FeN10O7PS2 C58.5H51Cl3F3FeN6O5PS 

formula weight 1298.85 1590.34 1388.96 1200.28 

crystal system monoclinic monoclinic triclinic triclinic 

space group P21 P21/n Pī P 

a, Å 16.0859(2) 19.6939(4) 15.3998(3) 15.5548(2) 

b, Å 21.4779(2) 18.3202(4) 15.6626(3) 17.2278(3) 

c, Å 17.8488(2) 22.2057(4) 17.9588(3) 23.4768(4) 

α, deg 90 90 88.191(2) 97.790(1) 

β, deg 90.1428(9) 92.009(2) 64.934(2) 91.828(1) 

, deg 90 90 61.081(2) 115.875(2) 

V, Å3 6166.6(1) 8006.8(3) 3351.4(1) 5578.9(2) 

Z 4 4 2 4 

Dcalc, g/cm3 1.399 1.293 1.376 1.429 

, Å 1.5418 0.7107 0.7107 1.5418 

µ, mm-1 4.642 0.350 0.388 4.654 

-range, deg 6 to 148 6 to 58 6 to 58 6 to 147 

reflections collected 60871 77363 74982 71466 

independent reflections 23500 

[Rint = 0.0372] 

19234 

[Rint = 0.0418] 

16362 

[Rint = 0.0363] 

21895 

[Rint = 0.0345] 

data/restraints/parameters 23500/7/1532 19234/67/1058 16362/7/898 21895/129/1607 

GOF (on F2) 1.041 1.051 1.050 1.074 

R1/wR2 (I>2σ(I))b 0.0390/0.1022 0.0962/0.2182 0.0470/0.1170 0.0425/0.1169 

R1/wR2 (all data) 0.0395/0.1028 0.1280/0.2375 0.0589/0.1253 0.0478/0.1215 

aThe DCE solvate is only partially (80%) populated.  bThe ethereal solvate is only partially (78%) populated. 
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Chapter 6 

 

 

 
O2 Reactivity of Fe(II) Complexes that Mimic the Active-Site 

Structure of Acetylacetone Dioxygenase 

 

 
 

Abstract:  Two complexes that exhibit Dke1 like activity have been synthesized and 

characterized by X-ray crystallography.  Exposure of each [(Ph2TpFe2+(acacX)] (where 

acacX is the anion of dialkyl malonate) to O2 at room temperature in toluene results in the 

oxidative cleave of the substrate concomitant with degradation of the initial iron species.  

The reaction was monitored by 1H NMR and GC-MS. 
 
Parts of the following chapter have appeared in the following paper Park, H.; Bittner, M. 

M.; Baus, J. S.; Lindeman, S. V.; Fiedler, A. T. Inorg. Chem. 2012, 51, 10279-10289.  
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6.A. Introduction 

The oxidative cleavage of carbon−carbon bonds by mononuclear nonheme iron 

dioxygenases is a crucial step in the microbial degradation of many organic 

pollutants.2,3,203 Well studied examples include the intradiol and extradiol catechol 

dioxygenases,92 (homo)gentisate dioxygenases,243 and (chloro)-hydroquinone 

dioxygenases.8,96,244 In 2003, Straganz and co-workers demonstrated that a strain of 

Acinetobacter johnsonii is able to use acetylacetone ─ a toxic pollutant ─ as its sole 

source of carbon.52 The initial step of this process is performed by the enzyme 

acetylacetone dioxygenase (also known as β-diketone dioxygenase, Dke1), which uses O2 

to convert acetylacetone to acetic acid and 2-oxopropanal.52 Biochemical and 

crystallographic studies revealed that the Dke1 active site contains a monoiron(II) center 

facially ligated by three histidine (3His) residues, a deviation from the 2-His-1-

carboxylate facial triad normally employed by nonheme iron dioxygenases.49,54,245 Dke1 

is capable of oxidizing β-diketones and β-ketoesters with a variety of substituents at the 

1-, 3-, and 5-positions; in each case, the substrate coordinates to Fe as the deprotonated 

acac-type anion.53 Initial mechanistic studies suggested that O2 reacts with the bound 

acac ligand in a concerted two-electron process, resulting in a peroxidate intermediate 

without direct involvement of the Fe center.56 However, in a subsequent computational 

study, Solomon and Straganz have set forth an alternative mechanism that involves 

formation of an Fe/O2 adduct prior to substrate oxidation.230  

Dke1 has attracted the interest of synthetic inorganic chemists because of the 

presence of the unusual 3His triad in the active site, as well as the enzyme’s ability to 

catalyze aliphatic C−C bond cleavage. Interestingly, the first relevant model system was 
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reported a decade before the discovery of Dke1. In 1993, Kitajima and co-workers 

generated the complex [Fe2+(iPr2Tp)(acac)(MeCN)] (where R2Tp = hydrotris- (pyrazol-1-

yl)borate with R-groups at the 3- and 5-positions of the pyrazole rings).246 Exposure to O2 

in MeCN at room temperature eventually produced crystals of the triiron(III) complex 

[Fe3+(μ-O)(μ-OH)(μ-OAc)4(
iPr2Tp)2], where the bridging acetate ligands derive from the 

acac group of the ferrous precursor.  Thus, this synthetic model exhibits Dke1-type 

reactivity, although generation of the acetate ligands may proceed via a different 

mechanism than the one employed by the enzyme.  In 2008, Limberg and Siewer 

demonstrated that the related complex, [Fe2+(Me2Tp)(acacPhmal)] (acacPhmal = anion of 

diethyl phenylmalonate), reacts with O2 to give Dke1- type products with incorporation 

of oxygen atoms from O2.
72 The activated diethyl malonate anion was used because the 

corresponding acac complex failed to exhibit oxidative cleavage. Significantly, the 

[Fe2+(Me2Tp)(acacPhmal)] system is catalytic in the presence of excess Li(acacPhmal) and O2 

with a turnover frequency of 55 h−1. 

In our group, Dr. Heaweon Park and Jacob Baus generated three series of Dke1 

models featuring Fe(II)/acacX units (acacX = substituted -diketonates) bound to facially-

coordinating N3 supporting ligands (LN3).
247  These complexes incorporated acacX 

ligands with a range of steric and electronic properties.  Following the labeling scheme 

employed in that paper (Figure 6.1), the 1-acacX and 2-acacX complexes contain anionic 

Me2Tp and Ph2Tp donors, respectively.  The [3-acacX]OTf series utilizes the neutral tris(2-

phenylimidazoly-4-yl)phosphine (PhTIP) ligand, which was shown by spectroscopic and 

computational analysis to faithfully reproduce the 3His coordination environment of the 

Dke1 active site.  In this chapter, we describe the synthesis and O2 reactivity of three 
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additional complexes that incorporate -diester anions (i.e., acacOMe and acacPhmal in 

Figure 6.1).  These complexes were prepared in order to compare our results with those 

previously published by Siewert and Limberg.17 Thus, we seek to expand upon previous 

discoveries that have demonstrated that synthetic Fe/acacX complexes are capable of 

performing Dke1-type chemistry.   

 

 

Figure 6.1.  Naming scheme of compounds in this chapter.   

 

6.B. Synthesis, Solid State Structures, and Spectroscopic Features 

Following earlier procedures,72,126 the iron(II) complexes, 2-acacOMe (14), and 2-

acacPhmal (15) were prepared by reacting equimolar amounts of K(R2Tp), FeCl2, LDA, 

and dimethyl malonate or diethyl phenylmalonate. The resulting X-ray crystal structures 

are shown in Figure 6.1 and selected metric parameters are provided in Table 6.1. The 

Ph2Tp complexes 14 and 15 exhibit distorted 5C square-pyramidal geometries (τ =0.03 

and 0.39, respectively124) with a pyrazole ligand in the axial position. The lack of bound 

solvent shortens the Fe−NTp and Fe−Oacac distances in 14 and 15 (Table 6.1). Because of 
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steric interactions with the 3-Ph group of the axial pyrazole, the acacOMe ligand is tilted 

out of the N1−Fe1−N3 plane by ∼30°.  

Most Fe(R2Tp)(acacX) complexes are brightly colored because of the presence of 

Fe2+→acacX (C=O*) metal-to-ligand charge-transfer (MLCT) transitions in the visible 

region.126 The acacOMe and acacPhmal complexes are colorless, however, as the 

corresponding MLCT bands appear in the UV region, reflecting the electron-rich nature 

of the dialkyl malonate anions.  The 1H NMR spectra of these complexes exhibit broad, 

paramagnetically shifted peaks consistent with the presence of a high-spin Fe(II) center. 

For complex 14, resonances arising from the methyl groups of the acacOMe moieties 

appear near 8 ppm in CD2Cl2. The remaining R2Tp-derived peaks largely follow the 

patterns previously described for previously published complexes.126 

 

 

Figure 6.2. Thermal ellipsoid plots (50% probability) derived from 14 • 1.5 CH2Cl2 (A), 

and 15 • MeCN (B).  Hydrogen atoms and noncoordinating solvent molecules have been 

omitted for clarity.  Selected metric parameters are provided in Table 6.1. 
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Table 6.1. Selected Bond Distances (Å) and Bond Angles (deg) for 14 • 1.5 CH2Cl2, and 

15 • MeCN 
 14•1.5 CH2Cl2 15 • MeCNa 

Fe-O1 2.042(1) 1.982(2) 

Fe-O2 2.046(1) 2.065(2) 

Fe-N1 2.151(1) 2.214(2) 

Fe-N3 2.154(1) 2.105(2) 

Fe-N5 2.129(1) 2.076(2) 

   

Fe-Oacac (ave) 2.044 2.024 

Fe-NTp (ave) 2.144 2.132 

   

O1-Fe-O2 87.50(4) 86.34(6) 

O1-Fe-N1 92.16(4) 97.02(7) 

O1-Fe-N3 159.16(4) 147.45(7) 

O1-Fe-N5 108.31(4) 120.57(7) 

O2-Fe-N1 157.09(4) 170.87(7) 

O2-Fe-N3 88.54(4) 90.05(7) 

O2-Fe-N5 109.58(4) 95.66(7) 

N1-Fe-N3 83.68(4) 82.54(7) 

N1-Fe-N5 92.28(4) 89.95(7) 

N3-Fe-N5 92.29(4) 91.98(7) 

τ-value 0.03 0.39 

aThe unit cell of 15 • MeCN contains two symmetrically independent complexes with 

nearly identical geometries.  Only parameters for the first complex are shown. 

 

6.C. Oxygenation of Fe(II) Complexes 

Treatment of Fe(II) complexes in the 2-acacX and  series with O2 failed to 

generate the corresponding green intermediates or triiron complexes under any 

conditions. These complexes react slowly, or not at all, with O2 in both coordinating and 

noncoordinating solvents. For instance, the UV−vis absorption and 19F NMR spectra of 

2-acacF3, and 2-acacPhF3 in O2-saturated toluene solutions exhibit no significant changes 

over the course of several days at room temperature. Only the β-diester complexes 14 and 
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15 exhibit perceptible reactivity toward O2. Exposure of these complexes to O2 

eventually yields colorless crystals that were shown by XRD to consist of Fe(Ph2Tp)2 

suggesting that the acac ligands are degraded in the process.72 Monitoring the O2 reaction 

with 1H NMR spectroscopy in toluene-d8 revealed that the paramagnetically shifted peaks 

of 14 and 15 slowly disappear, concomitant with the growth of peaks arising from methyl 

2-oxoacetate and ethyl benzoylformate, respectively. The formation of ethyl 

benzoylformate was also verified by GC-MS. When the reaction with 15 was performed 

with 18O-enriched dioxygen, GC-MS analysis indicated that one O-atom of ethyl 

benzoylformate is derived from O2, proving that the observed products are due to 

dioxygenolytic cleavage of the ligand (the alkyl carbonate products that are also 

generated quickly decompose to CO2 and the corresponding alkoxide). Thus, our Ph2Tp-

based complexes are capable of performing Dke1-type chemistry on a reasonable time 

scale provided that the substrate ligand is sufficiently activated. The rates of the O2 

reactions in toluene were measured using UV−vis absorption spectroscopy. 15 decays 

relatively quickly in the presence of O2 (kO2 = 3.4 × 10−4 s−1; Figure 6.2), whereas 14 

requires more than a day for complete reaction (kO2 ∼4 × 10−5 s−1). 
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Figure 6.3. Time-dependent absorption spectra of the reaction of 15 (0.36 mM) with O2 

at room temperature in toluene. Inset: Absorption intensity at 350 nm as a function of 

time. 

 

 

Figure 6.4. Proposed mechanistic path for the oxidative cleavage of acacX ligands 

utilized by our synthetic models. 

 

Based on the work with 2-acacX and Dr. Parks previous work with acac-based 

compounds we have proposed the mechanistic framework shown in Figure 6.4 for our 

[Fe2+(Ph2Tp)(acacX)] complexes.248  Fe(II)-acacX complexes with Ph2Tp exhibit 
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dramatically diminished reactivity toward O2. Complexes with β-diketonato ligands are 

stable in oxygenated solutions at room temperature for several hours or days, regardless 

of solvent. We initially assumed that this inert behavior was due to the steric bulk of the 

phenyl substituents, which might be expected to block O2 coordination the Fe center. Yet 

this hypothesis is not consistent with the facile formation of FeNO53 adducts upon 

exposure of the 2-acacX complexes to NO, proving that formation of an Fe/O2 species is 

sterically feasible for the Ph2Tp-based complexes. However, the size of the Ph groups 

likely prevents the formation a diiron intermediate via reaction with a second Fe(II) 

complex.  The scenario illustrated in Figure 6.4 requires the reaction equilibrium of the 

first step (i.e., O2 binding) to lie far to the side of Fe(II) + O2, since the putative iron(III)-

superoxo adduct is never observed. Indeed, a number of computational studies have 

indicated that the reversible transfer of one electron from a mononuclear nonheme Fe(II) 

center to O2 is endergonic by approximately 5−10 kcal/mol.42,230,249 In Dr.Parks Me2Tp 

systems, the uphill nature of this initial step is overcome by the thermodynamicly 

favorable second step; formation of a di- [Fe3+(Me2Tp)(acacX)]+ intermediate, which 

“pulls” the entire process forward (where Me2Tp is  hydrotris(3,5-diphenylpyrazol-1-yl) 

borate(1−) ligand.  However, when this second step is hindered because of steric reasons, 

the ferrous complexes are rendered much less reactive toward O2, as observed for the 2-

acacX series. Obviously, the protein environment surrounding the Fe center in Dke1 

prevents formation of a diiron-peroxo intermediate. Instead, the enzymatic mechanism 

likely involves formation of a peroxy bridge between Fe and acac following initial 

formation of an iron(III)-superoxo species. One would therefore expect the Ph2Tp and 
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PhTIP supporting ligands, which prevent dimerization, to be ideal scaffolds for 

reproducing the catalytic activity of Dke1.  

 

6.D. Conclusions 

 We have demonstrated that complexes in the 2-acacX series with activated anions 

of dialkyl malonate are able to cleave the acac anion in a manner similar to the enzymatic 

system.  Key differences a found in the rate and mechanism of oxidative cleavage.  

Namely, our complexes react slower and through a separate mechanism than the enzyme 

catalytic mechanism.  We also showed that nonacctivated acacX complexes do not exhibit 

any activity when exposed to O2, these complexes being stable for days in air, even 

though ligands such as acacF3 are viable substrates for Dke1.  The differences between 

our complexes and Dke1 serve to highlight the importance of second-sphere residues in 

the protein environment, and some of the challenges that Dke1 must overcome. 

 

6.E. Experimental 

Unless otherwise noted, all reagents and solvents were purchased from 

commercial sources and used as received. Acetonitrile, dichloromethane, and 

tetrahydrofuran were purified and dried using a Vacuum Atmospheres solvent 

purification system. The synthesis and handling of air-sensitive materials were performed 

under inert atmosphere using a Vacuum Atmospheres Omni-Lab glovebox equipped with 

a freezer set to −30 °C.  Nitric Oxide was purified by passage through an ascarite II 

column followed by a cold trap at -78 °C to remove higher nitrogen impurities.  
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K(Ph2Tp)137 was prepared according to literature procedures. Elemental analyses were 

performed at Midwest Microlab, LLC in Indianapolis, IN. UV−vis absorption spectra 

were obtained with an Agilent 8453 diode array spectrometer equipped with a cryostat 

from Unisoku Scientific Instruments (Osaka, Japan) for low temperature experiments. 

Infrared (IR) spectra were measured in solution using a Nicolet Magna-IR 560 

spectrometer.  Mass spectra were recorded using an Agilent 6850 gas chromatography − 

mass spectrometer (GC-MS) with a HP-5 (5% phenylmethylpolysiloxane) column. 

(Ph2Tp)Fe(acacOMe) (2-acacOMe) (14): Li(acacOMe) was generated by treating 

dimethyl malonate (0.92 mmol) with LDA (1.0 mmol) in tetrahydrofuran (THF), 

followed by removal of the solvent to yield the salt as a white powder. FeCl2 (0.92 mmol) 

and K(Ph2Tp) (0.92 mmol) were then combined with Li(acacOMe) in 15 mL of 1:3 

CH2Cl2/CH3CN. The solution was stirred for 24 h, and the solvents were removed under 

vacuum. The white product was taken up in 5 mL of CH2Cl2 and filtered to remove 

insoluble salts. The resulting solution was layered with CH3CN to yield colorless crystals 

suitable for XRD studies. Anal. Calcd for C50H41BFeN6O4: C, 70.11; H, 4.82; N, 9.81. 

Found: C, 70.02; H, 4.82; N, 9.85. UV−vis [λmax, nm (ε, M−1 cm−1) in toluene]: 330 

(400). IR (KBr, cm−1): 3061, 2950, 2616 [ν(BH)], 1632 [ν(CO)], 1503, 1460, 1304. 

 (Ph2Tp)Fe(acacPhmal) (2-acacPhmal) (15): Diethyl phenylmalonate (Phmal) (0.712 

mmol) was stirred with LDA (0.790 mmol) for 30 min in 5 mL of THF. Removal of the 

solvent yielded a white salt that was dissolved in a 3:2 mixture of MeCN/CH2Cl2. 

Addition of FeCl2 (0.713 mmol) and K(Ph2Tp) (0.712 mmol) resulted in a cloudy gray 

solution that was stirred overnight. The solvents were removed under vacuum to yield a 

pale green solid that was taken up in 5 mL of CH2Cl2 and layered with CH3CN. After one 



178 
 

day, light green crystals suitable for XRD were obtained. Anal. Calcd for 

C58H49BFeN6O4: C, 72.51; H, 5.14; N, 8.75. Found: C, 72.39; H, 5.11; N, 8.74. UV−vis 

[λmax, nm (ε, M−1 cm−1) in toluene]: 350 (1806). IR (neat, cm−1): 3024, 2974, 2614 

[ν(BH)], 1615 [v(CO)], 1594, 1544, 1478, 1463, 1448, 1433, 1405, 1375, 1337, 1303. 
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Table 6.2. Summary of X-ray Crystallographic Data Collection and Structure Refinement  

 2-acacOMe•CH2Cl2 2-acacPhmal•MeCN 

empirical formula C51.5H44BCl3FeN6O4 C60H52BFeN7O4 

formula weight 983.94 1001.75 

crystal system triclinic monoclinic 

space group P1
─ P21/c 

a [Å] 12.2090(3) 38.1369(8) 

b [Å] 13.0283(4) 13.5597(3) 

c [Å] 17.0877(5) 20.5303(4) 

α [°] 95.921(3) 90 

β [°] 103.201(3) 104.121(2) 

γ [°] 117.095(3) 90 

V [Å3] 2287.5(1) 10295.9(4) 

Z 2 8 

Dcalcd. [g/cm3] 1.429 1.293 

λ [Å] 0.7107 1.5418 

μ [mm–1] 0.559 2.789 

θ range [°] 3 to 62 7 to 148 

Reflections collected 49672 72082 

Independent reflections 13415 [Rint = 0.0278] 20374 [Rint = 0.0351] 

Data/restraints/parameters 13415/24/609 20374/0/1321 

GOF (on F2) 1.031 1.040 

R1/wR2 (I > 2σ(I))a 0.0364/0.0861 0.0525/0.1393 

R1/wR2 (all data)a 0.0463/0.0925 0.0570/0.1430 

aR1 = Σ||Fo| − |Fc||/Σ|Fo|; wR2 = [Σw(Fo
2 − Fc

2)2/Σw(Fo
2)2]1/2. 
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