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ABSTRACT 

DYNAMICS AND INTERACTIONS OF MEMBRANE PROTEINS 
Azamat Galiakhmetov, B.Sc., M.Sc. 

Marquette University, 2018 

Membrane proteins are members of the class of proteins that perform their 
functions while being associated with a lipid bilayer. In the cell, they serve as 
transporters, receptors, anchors and enzymes. The domain organisation of these 
proteins suggests importance of lipid membrane and protein-lipid interactions for 
protein function. The requirement of a membrane mimic and the level of its 
resemblance to a native one for protein investigation makes the studies of membrane 
proteins a challenging project. 

My research work is focusing on the biophysical and biochemical studies of 
membrane proteins. This dissertation outlines two separate projects, each with their 
own challenges. 

Ras proteins are members of a superfamily of small GTPases that act as 
molecular switches that are involved in signal transduction pathways responsible for 
cell division and proliferation and, as one might guess, protein malfunction can lead 
to cancer. Recently, there have been a number of studies that suggest Ras protein 
dimerization on lipid membranes through protein-protein interactions between G-
domains. On the basis of the results obtained from solution NMR and fluorescence 
polarization anisotropy studies, we concluded that the G-domain of the Ras protein by 
itself is not prone to dimerization. The result of this work was later confirmed by 
publications from other groups that performed studies in the presence of the lipid 
bilayer.  

NADPH-cytochrome P450 oxidoreductase (POR) is an integral membrane 
protein involved in an electron transport pathway transferring electrons from NADPH 
to cytochrome P450. The goal of this project was the development of methodology to 
obtain structural data on a high-molecular weight protein associated with lipid 
nanodiscs in the presence of paramagnetic cofactors. The goal was achieved by 
application of lipid nanodisc technology, 13C-methyl extrinsic labeling coupled with 
Methyl-TROSY NMR technique that resulted in signals that showed differential 
sensitivity towards the redox state of the protein cofactors and conformational 
transitions of the protein. Moreover, results were obtained on a 600MHz instrument 
under protonated conditions.   

Membrane proteins are challenging systems to research due to diverse 
interactions they experience on the membrane surface. In this dissertation I 
successfully utilized two approaches investigating this interactions: in my first 
project, I separately studied protein-protein interaction underlying the dimerization 
hypothesis, while in my second project I suggested the approach to explore 
conformational details and diverse interactions in a lipoprotein complex. 
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I.	
  INTRODUCTION	
  

Lipid	
  Membranes	
  

Biological	
  membrane	
  

The possibility of emergence of life started with the appearance of membranes – a 

semi-permeable boundary that separates processes that take place within a cell from 

the surrounding environment. Nature implemented this vital boundary in the form of a 

lipid bilayer empowered with molecular trafficking ability, capable of sensing 

changes in the environment and delivering this information inside a cell.  

The major structural elements of biological membranes are lipids. Depending on the 

membrane’s role and location in the cell, lipid moiety and composition can be 

different. In the literature, lipids constituting a bilayer are generally depicted as 

having a hydrophilic “head” and hydrophobic “tail”, as it is shown in Figure 1 below 

[1]. 

There are three common lipid components of a membrane: 

1. Phospholipids 

Phospholipids are major components of animal biological membranes [1]. 

Phospholipid backbones can be divided into two structural elements. Fatty 

acid acyl chains determine interactions inside a lipid bilayer which are 

responsible for physical properties of a membrane like fluidity or elasticity.  

Fluidity is closely related to a lipid melting point: the higher is the melting 

temperature, the less fluid is the lipid. The presence of unsaturated carbons in 

the chain leads to a decrease in the melting point of a lipid. This is due to the 



 

 

2 

fact that double bonds introduce kinks in hydrophobic tails, which lead to a 

weaker van der Waals interaction between them.  

Another structural element is a head group, which determines the lipid surface 

interactions of the membrane, creating nonpolar and polar domains.  

Major phospholipids examples are:  phosphatidylserine (PS) and 

phosphatidylinositol (PI) with the negatively charged head groups; neutral 

zwitterions like phosphatidylethanolamine (PE) or phosphatidylcholine(PC). 

Another important representative of this class is sphingomyelin. This 

phospholipid can be found in greater concentration in nerve cells. It also is a 

crucial element of specific lipid membrane organizations like lipid rafts or 

caveolae.  

2. Glycolipids  

Glycolipids sometimes are thought as a subclass of the phospholipids, since 

their main structural elements are the same; the main difference is a 

modification of head groups by carbohydrates. Due to that fact, the function 

they perform on the membrane are more distinct — they are usually found on 

an outer leaflet of a cellular membrane, where they act as recognition sites for 

other molecules. 

3. Sterols 

Sterols play important roles in an organism, serving as hormones, signaling 

molecules and bile acids. Cholesterol is the most investigated and abundant 

representative of this class. Due to its structural features, cholesterol promotes 

more compact packing of phospholipids in a lipid bilayer and because of that 

it plays the vital role of a regulator of membrane fluidity influencing 

membrane protein behavior. 
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Figure 1. The list of the main lipid classes 

Depending on type of the lipid membrane and organism of origin, composition of the 

lipid bilayer can be diverse. In mammalian cell, framework is made of 

phosphatidylcholines, while sphingomyelin, cholesterol, phosphatidylserine fluctuates 

in 10-30% range and phosphatidylinositol, phosphatidylethanolamine moiety are 

presented by 5-20% [2]. 
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Lipid	
  bilayer	
  organization	
  

Membrane lipids are amphipathic molecules. This molecular property establishes a 

requirement to insulate long hydrophobic “tails” from water while exposing 

hydrophilic “head” to a water moiety to be involved into its hydrogen-bonding 

network.  This requirement creates a driving force, known as the hydrophobic effect.  

Lipid bilayers are capable of creating a number of structures, depending on 

lipid/water ratio and external conditions. 

 
 

 
Figure 2. Common biological membrane models. Individual lipids are represented in a 

cartoon representation where hydrophilic head groups are shown as a white spheres 
while hydrophobic tails are shown as yellow wave lines [3]. 

 
 

In an aqueous environment, when the lipid portion is small, lipids spontaneously form 

aggregates called micelles, where hydrophobic tails create the core of a micelle with 

hydrophilic heads interacting with surrounding water. 

If one would increase lipid to water ratio, the lipid moiety in solution will be enough 

to create a bilayer. This process is driven by the critical micelle concentration which, 

in turn, depends on packing energies of hydrophobic tails, elastic bending of a 

monolayer, hydration and electrostatic potential.  The critical micelle concentration 
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(CMC) varies from 10-8-10-10 M for membrane lipids. For example, CMC for one of 

the most common lipids found in biological membranes, 1,2-dihexadecanoyl-sn-

glycero-3-phosphocholine (DPPC), is equal to 0.46nM [4].  Even a small distortion of 

a system, such as a physical agitation, can lead to aggregates with an onion-like 

structure called liposomes in general, and in case of multiple bilayers − multilamelar 

vesicles (MLV). The application of physical techniques to MLV’s, such as sonication 

or extrusion, can rupture this multi-layered structure to yield, depending on specific 

characteristic of a treatment, either large unilamelar vesicles (LUV) or small 

unilamelar vesicles (SUV). 

Lipid	
  bilayer	
  domains	
  
 
 

A model describing biological membrane behavior — the fluid mosaic model was 

proposed in 1972 by Singer and Nicoloson [5]. In this model, the lipid bilayer is 

represented as a two-dimensional liquid where proteins and lipids diffuse freely.   

Moreover, cellular membranes are asymmetrical bilayers; first of all, inner and outer 

leaflets differ in membrane proteins that are associated with the bilayer. Another 

reason for an asymmetry is a difference in a lipid composition; ratio between 

constituents of inner and outer leaflets varies. Some lipids can be found mostly on the 

outer leaflet of a bilayer, but are very scarce on the inner leaflet. 

A later model was reviewed and complemented [6] with the ideas of lipid rafts and 

caveolae due to an emergence of facts [7] that demonstrated that the cellular 

membrane is not homogeneous: there are microdomains of different composition 

which laterally diffuse in a bilayer.  
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Figure 3. Lipid rafts (red “islands”) were observed using atomic force microscopy by 

detecting the increased thickness of the Lo domains. Spikes correspond to proteins 
associated with lipid rafts. Reprinted from [8] 

 
 

Caveolae (Latin for “little caves”) are small, flask-shaped invaginations of the bilayer 

that are one of the forms of lipid rafts. These were first observed in the 1950s [9]. The 

primary role of caveolae is endocytosis (the process of engulfing extracellular 

molecules to transport them into the cell). Caveolae formation and maintenance are 

the main tasks of the protein caveolin. Caveolin has a high binding affinity to lipid 

rafts. Another feature is a proclivity to oligomerization. Oligomerization of caveolin 

on the raft, together with higher rigidity due to high cholesterol concentration, is the 

driving force which leads to bilayer invagination followed by formation of the 

vesicles. Hereby, caveolin makes the membrane inflect and collapse around a lipid 

raft, encapsulating vital molecules inside a vesicle. 

Lipid rafts are microdomains on biological membrane that are more ordered and 

tightly packed than the surrounding bilayer, though still retaining fluidity. These 

microdomains float freely in the membrane bilayer, serving as centers of aggregation, 

influencing overall membrane fluidity and controlling membrane protein trafficking 

and signaling.  The size of lipid rafts varies from 10-200 nm [10]. In the literature, 
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domains of high fluidity are called liquid disorder (Ld) , while the ones which are less 

fluid called  liquid order (Lo) . 

 
 

 
Figure 4. Schematic cartoon representation of a lipid raft on model bilayer.1 

The reason behind such characteristic organization is enrichment of the domains in 

cholesterol and unsaturated lipids, specifically sphingomyelin. In fact, cholesterol 

concentration in lipid rafts is 2-3 fold greater compared to the non-raft bilayer[11].   

 
 

Being enriched in saturated lipids these domains are thicker compared to a 

surrounding membrane, which was demonstrated by atomic force microscopy (AFM) 

spikes which represent protein associated with the membrane (see Figure 3) [12]. It is 

energetically favored for a membrane to create such binary system, nearly linear long 

saturated chains prefer to interact with each other to create Lo phase, while 

unsaturated acyl chain due to kinks of unsaturated carbons prefer to be in Ld phase. 

The role of cholesterol in a lipid raft is to ensure better packing between lipid acyl 

chains since the interaction of head groups amends packing.  

It should be noted that sphingomyelin, which is essential for lipid rafts organization, 

is also one of the examples of leaflet asymmetry: its concentration in outer leaflet is 

                                                
1 Reprinted from http://www.microscopy-analysis.com 
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significantly greater than in the inner one [13]. But it has been reported that some 

intracellular membrane proteins demonstrate differentiation between raft and non-raft 

domains on the inner leaflet [14]. Reasons for that are the rigidity of lipid raft overall 

structure and a high local concentration of long-chain saturated lipids in a domain of 

outer leaflet; weak interactions between hydrophobic tails relay raft-like behavior to 

the inner leaflet of a cellular domain [15]. 

Membrane	
  proteins.	
  	
  
 
 
This class of proteins carries out their function on biological membranes. It has been 

reported that up to 30% of all genes encode membrane proteins [16]. One way to 

categorize such a big class is on the basis of the functions they perform in the cell: 

 

 

 
Figure 5. Major classes of membrane proteins depicted on the model of the lipid 

bilayer.2 
 
 

• Membrane receptors – play communication role whether it is between the cell 

and the external environment or within the cell between intracellular 

organelles. Example: receptor tyrosine kinases, which binds growth factors on 
                                                
2 Reprinted from 
http://www.nature.com/scitable/content/ne0000/ne0000/ne0000/ne0000/14706234/U3CP1-
4_MemProteinFunction_ksm.jpg 
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the extracellular side and relay the information to the intracellular side of the 

membrane. 

• Transport proteins – perform transport of essential molecules and ions. 

Example: potassium channel, which selectively and rapidly transports K+ ions.  

• Cell adhesion molecules – play the role of anchors, for example for a specific 

cell-cell interaction. Example: bacterial outer membrane protein OmpX which 

recognizes and specifically binds to host mammalian cell. 

• Membrane enzymes – perform catalytic functions that may be coupled with 

specific interaction. Examples: Ras proteins, which relay signal for cell 

division/proliferation to downstream messengers. 

Another way to classify membrane proteins is by the type of their interaction with a 

lipid bilayer: 

• Integral membrane proteins are embedded in the lipid bilayer.  

• Peripheral membrane proteins are flexibly attached to a bilayer with lipid 

anchor or through specific interactions with a membrane. 

Two conclusions can be drawn from the information above. 

1. Membrane proteins are involved in many processes vital for a cell. In fact, 

50% of modern drugs targets are membrane proteins [17]. 

2. To understand their function, they have to be studied in the presence of 

cellular membrane model. This creates a challenge − due to high complexity, 

dynamics and the size of investigated systems; research of membrane proteins 

is a demanding and elaborate task. 

My research attention is concentrated on two examples, Ras subfamily of small 

GTPases and NADP-Cytochrome P450 oxidoreductase.  
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Ras	
  Subfamily	
  
 
 
Members of Ras subfamily are peripheral membrane proteins of small GTPases, 

involved in processes responsible for cell growth, differentiation and proliferation. 

Consequently, this subfamily of membrane protein is considered to be proto-

oncogenes. In fact, mutations in Ras proteins were observed in 20-25% cases of all 

human cancers [18].  

The Ras subfamily is comprised of three members: 

• H-Ras (Harvey RAt Sarcoma) – has 3 lipid anchors, consisting of 1 farnesyl 

and 2 palmytoyl 

• N-Ras (Neuroblastoma) – has 2 lipid anchors, consisting of 1 farnesyl and 1 

palmytoyl 

• K-Ras (Kirsten) (has 2 splice variants that differ in anchor region that interacts 

with lipid bilayer surface) 

o K-Ras4A – has 2 lipid anchors consisting of 1 farnesyl and 1 

palmytoyl  

o K-Ras4B – has only a farnesyl lipid anchor but has 6 sequential lysines 

that create an additional mode of interaction with positively charged 

lipid head-groups. 

All three Ras isoforms contain a conserved G-domain (guanine-nucleotide binding 

domain) and a C-terminal HVR (HyperVariable Region). The C-terminal HVR is the 

region protein where the main difference between isoforms is located and which 

determines their unique behavior on the membrane. Despite interacting with similar 

effectors, each isoform demonstrates distinct signal features [19]. 
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Figure 6. Ras protein G-domain structure. Five G motifs are depicted as 

G1(limegreen), G2(yellow), G3(red), G4(light pink), G5(blue). Mg2+ ion shown as a 
green sphere while GTP nucleotide is depicted as stick model of wheat color. 

 
 

Ras G-domain carries 5 G motifs which are essential for nucleotide binding, allosteric 

interactions and guanosine triphosphate (GTP) hydrolysis: 

• G1 – P-loop, GxxxGKS/T binds β-phosphate of the nucleotide (GDP/GTP) 

• G2 – Switch I, includes Threonine-35 that binds terminal γ-phosphate group of 

GTP and Mg2+ ion in nucleotide binding pocket. 

• G3 – Switch II, includes Glutamine-61, which activates water for nucleophilic 

attack on the γ-phosphate group of GTP for hydrolysis. 

• G4 – LVGNKxDL motif provides specific guanine nucleotide interaction. 

• G5 – sAk motif, A- Alanine-146, essential to Guanine nucleotide binding, 

where s and k are Serine-145 and Lysine-147, respectively. 
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After ribosomal synthesis, a protein may require additional modification, necessary 

for proper operation or activation. These processes include cleavage of a specific 

sequencer or phosphorylation, glycosylation, methylation, acetylation, lipidation and 

proteolysis. [20].  

In the case of Ras, after being synthesized as cytosolic precursors, proteins undergo 

post-translation modification on C-terminal CaaX motif (where C- stands for 

Cysteine, a- any aliphatic aminoacid, X – can be Serine/Methionine): 

• Palmitoylation, addition of palmitic acid, 16 carbon saturated acid attached via 

thioester bond to a cysteine. 

• Isoprenylation, addition of farnesyl, 14 carbon unsaturated group attached via 

thioether bond to a cysteine. 

 

 

 
Figure 7. Lipid anchors introduced in Ras during post-translational modifications. 

 
 

CaaX motif is recognized by farnesyl transferase, an enzyme that attaches a farnesyl 

group on a cysteine of the Caax motif [21]. After this step, Ras associates with the 

endoplasmic reticulum (ER), where aaX is cleaved, and is followed by methylation of 

the C-terminal farnesylated cysteine by methyltransferase[22].  

In the next step H- and N-Ras are palmitoylated by Ras palmitoyltransferase on ER 

and targeted by sequence following terminal cysteine to cellular membrane through 
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Golgi. In the case of K-Ras, its association with a membrane proceeds through an 

unknown pathway [23]. 

Ras proteins serve as a molecular switch in a signal transduction pathway from a 

receptor tyrosine kinase activated by a signal molecule to downstream secondary 

messengers. Representatives of this family are involved in mitogen-activated protein 

kinase (MAPK) signal transduction cascade also called RAS-RAF-MEK-ERK 

cascade according to the proteins involved in it. The GDP-bound state of a protein is 

considered to be an “OFF” state of the molecule. In this state, the signal is not 

transmitted. For the protein to get activated it needs to be loaded with GTP. GEF – 

Guanine nucleotide Exchange Factor is the protein that promotes GDP dissociation. 

After GDP is released in the cytosol, due to a greater GTP concentration and a high 

GTP affinity of the G-domain, the protein gets loaded with GTP and undergoes a 

conformational change. 

 
 

 
Figure 8. Overlapped crystal structures of Ras G-domain in “ON” and “OFF” states. 

GTP-bound “ON” state is represented by yellow Switch I and red Switch 
conformations. While GDP-bound “OFF” state is depicted with orange Switch I and 

pink Switch II conformations. GTP nucleotide (from ON state) is shown on the figure 
to demonstrate nucleotide orientation in Ras nucleotide binding pocket. 
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As a GTPase, Ras proteins possess an intrinsic activity to hydrolyze GTP, but this 

process is slow; the reaction is catalyzed by GAP  – GTPase-Activating Protein 

leading to the reaction rate enhancement of 4-5 orders of magnitude compared to 

intrinsic hydrolysis by Ras [24]. 

From Ras signaling cycle depicted below 

Figure 9) one can suggest two possible ways how mutation can distort Ras 

performance: either by abolishing/enhancing its function as a GTPase or by 

diminishing/reinforcing its interaction with GAP.  
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Figure 9. Ras proteins signaling scheme. Abbreviations on the figure: GTP(GDP) – 
guanosine triphosphate (diiphosphate); GEF – guanine nucleotide exchange factor; 

GAP – GTPase activator protein: Pi – inorganic phosphate group 
 

 

Localization	
  on	
  a	
  plasma	
  membrane	
  

 
 
The presence of saturated palmitoyl group as a lipid anchors two in H- and one in N-

Ras isoforms allows their association with the Lo (liquid ordered) domains of a lipid 

rafts, while the presence of highly unsaturated farnesyl chain requires interaction with 

Ld (liquid disordered) domain [25]. In addition to this, K-Ras has a polybasic lysine 

sequence in a anchor region which creates different mode of interaction. All this 

suggests different localization of the signaling proteins on the plasma membrane. 

Latest [14] quantitative electron microscopy studies demonstrate that 50% of GDP-

loaded H-Ras is localized on lipid rafts, while none was found in case of GTP-loaded 

state. K-Ras on the other hand, predominantly was observed on liquid disorder moiety 

in both nucleotide bound states. Recent studies of N-Ras showed that regardless to 

GDP/GTP state, protein remained associated with a boundary between lipid rafts and 

liquid disordered domains [26].  
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In the light of these findings, it was proposed that H-Ras exists in a dynamic 

nucleotide-dependent equilibrium between raft and non-raft domains. This model is in 

agreement with reports, which observed that GDP-loaded H-Ras has a higher lateral 

mobility in cholesterol-depleted cells [27]. Due to smaller concentration of cholesterol 

total concentration of lipid rafts in a bilayer is smaller, which leads to a greater lateral 

movement of H-Ras after GTP hydrolysis.  

 
 

 
Figure 10. Model representation of nucleotide-dependent localization of K-Ras and 

H-Ras isoforms on a lipid membrane. Reprinted from [28]. 

Moreover, it was also observed that K- and H-Ras in GTP-loaded state occupy 

distinct non-raft micro-domains. Authors suspected that the main reason for that is an 

interaction between protein polybasic anchor moiety with the domain of a distinct 

(acidic) lipid composition. 

Dimerization	
  of	
  Ras	
  

 
 

Despite the fact that, so far, Ras proteins in solution and on the lipid bilayer [29] were 

observed as a monomers, it has recently been reported [30] that Ras proteins form 

dimers in the presence of a lipid bilayer. It should be noted that several members 

across the Ras GTPase subfamilies are known to dimerize [31, 32]. This phenomenon 
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is specifically interesting since activation of Raf, one of the Ras effectors, requires 

Raf dimerization [33] and it was proposed that Ras may dimerize to activate Raf.  

Dimerization can affect protein behavior on the membrane including interactions with 

other downstream effectors that do not require dimerization, interactions with the lipid 

bilayer and mobility on the membrane surface which was demonstrated to be crucial 

for Ras isoforms during their cycle.  

 In 2012 Gaudenhapt et al. reported on dimerization of N-Ras on POPC (1-Palmitoyl-

2-oleoylphosphatidylcholine) membranes using Fourier transform infrared 

spectroscopy (FTIR) and Forster resonance energy transfer (FRET) [34]. Originally 

obtained FTIR data implied on perpendicular orientation to the membrane of N-Ras 

α-helices, which was in contradiction with Molecular Mechanics (MM) simulations 

that in turn suggested parallel orientation to the membrane. After that, authors 

analyzed 71 Ras protein crystal structures and in 51 of them they observed Ras similar 

packing of G-domains. The more detailed investigation of crystal structures allowed 

to suggest residues that are involved in protein-protein interaction (Figure 9). In the 

light of this data, it was proposed to include a dimerization model in MM simulation. 

New results obtained were in agreement with experimental data.  
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Figure 11. Proposed salt bridges (dotted line) supporting dimer formation where green 
amino acid residues come from one RAS molecule and blue from the other molecule 

in a crystal structure. Reprinted from [30]. 
 
 

To verify Ras dimerization, independent FRET studies using Mant-GDP (2'-(or-3')-O-

(N-Methylanthraniloyl) Guanosine 5'-Diphosphate) and TNP-GDP (2'-(or-3')-O-

Trinitrophenyl Guanosine 5’-Diphosphate) as donor-acceptor pair were carried out, 

according to the results which demonstrated decreased Mant-GDP fluorescence 

lifetime due to FRET from 5.5 ns to 4.9 ns. Taking into consideration that not all Ras 

dimers had formed donor-acceptor pairs, the actual FRET efficiency was calculated to 

be 28%, which corresponds to FRET distance 46 ±6 Å. This value can only be 

explained in case of oligomerization of the proteins, which was suggested by MM 

simulations. To exclude FRET due to overcrowding of the proteins on the membrane 

surface, loading on the membrane models was calculated to be 8%. Interestingly, N-

Ras in solution at 10µM concentration demonstrated only 3.5% FRET efficiency thus 

excluding dimerization in a solution at physiological conditions. 
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Lin et al. applied fluorescence spectroscopy, single-molecule-tracking and step-

photobleaching to investigate H-Ras molecules tethered to a lipid membrane with 

non-native lipid anchor [35]. This was done to analyze intrinsic ability of a G-domain 

to form dimers and exclude a lipid anchor clustering effect. Additionally, another 

doubly lipidated protein construct was used to check whether this process is affected 

by a number of anchors. Authors emphasize that this is a membrane-induced process 

since H-Ras did not form dimers in a solution at comparable concentrations. 

H-Ras lateral diffusion on a lipid bilayer was monitored by single-molecule tracking 

(SMT) technique applying Einstein diffusion equation in cylindrical coordinates to the 

fluorescently labeled protein after step-wise of photobleaching [35]. Using SMT, two 

groups of species with different lateral mobilities were determined. Noticeably one 

group had a significantly slower lateral mobility while requiring two steps of 

photobleaching. Dimer moiety in experiments was estimated to be 10-20% depending 

on the technique applied at protein surface density 50-100 molecules/µm2.  

In addition, Muratcioglu et al. reported dimerization of K-Ras4B in GTP-bound state, 

but not GDP-bound state, on the lipid bilayer [36]. Interestingly, two populations of 

dimer interfaces were observed, one named “β-sheet dimer” was highly populated 

with the dimer interface involving effector-binding regions [37] and Switch I region, 

while the other was named “α-helical”. During dynamic light scattering experiment of 

the GDP-loaded Ras, G-domain showed presence of a species with a mass 18 kDa, 

but GTP-γ-S(slowly hydrolysable GTP analog) demonstrated presence of globular 

species with the size which corresponds to 41kDa.  

Additionally, authors performed NMR studies and analyzed dilution induced chemical 

shift perturbation for active-like and inactive full-length proteins that demonstrated 

highly dynamic association involving several sites. It was proposed that dimer 
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formation provides a mechanism for Raf kinase dimerization and as a consequence 

control over its signaling, since one of the dimer interfaces can play an inhibitory role 

while its counterpart is promoting dimerization of Raf. 

In a summary, details of how Ras isoforms functions on the membrane surface, 

selectively interacting with diverse downstream effectors remains unknown. And how 

dimerization can impact protein behavior needs to be clarified, since it will affect not 

only interaction with downstream effectors but also protein lateral mobility on the 

lipid bilayer during activation/inactivation cycle. 

NADPH-­‐cytochrome	
  P450	
  oxidoreductase	
  
 
 
NADPH-Cytochrome P450 oxidoreductase (CPR/CYPOR/POR) is a 78kDa integral 

membrane protein involved in electron transduction pathway from NADPH to 

Cytochrome P450, where 2 electrons from NADPH are being transferred to 1 electron 

acceptor heme of cytochrome P450. Cytochrome P450 is involved in drug and 

hormone metabolism. For example, liver Cyt P450 metabolizes 75% of drugs [38]. As 

a member of diflavin oxidoreductase family, it contains one molecule each of flavin 

adenine nucleotide (FAD) and flavin mononucleotide (FMN).  

 POR molecule has 3 domains: 

• FMN-Domain 

• Membrane-Binding Domain (MBD) 

• FAD-domain (which can itself be divided) 

The FAD and FMN domains are connected by a so called “hinge-loop”, it has been 

suggested that hinge and connecting domain are responsible for relative domain 

movements, which are thought to be controlling electron transfer [39].  
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Domain	
  structure	
  

 
 

 
Figure 12. A. POR domain structure modeled on the base of the 1AMO crystal 

structure of the cytosolic portion of POR while Membrane-binding domain was added 
in PYMOL and model according to results reported by Huang [40]. FAD, FMN and 

Membrane-binding domain are depicted in a cartoon representation colored slate blue, 
pale green and maroon, respectively. Cofactors are represented as colored sticks in red 

(FAD), blue (FMN), orange (NADP+ only ADP moiety is visible). B. Enlarged 
portion of the crystal structure that demonstrates relative positioning of the cofactors 

within the protein. Cofactors are shown as sticks with carbon, nitrogen, oxygen, 
phosphorous atoms are colored green, red, blue, orange, respectively.  

 
 

MB	
  domain	
  

 
 
POR is bound to endoplasmic reticulum by N-termini 56 amino acids (from here on 

the residue numbers will be given for rat POR, unless mentioned otherwise) of 

Membrane-binding Domain. Ramamoorthy et al. investigated rat POR MBD using 31P 

solid-state NMR and determined that residues 22-44 form a helical secondary 

Membrane-binding
         domain

FMN domain 

FAD domain

A B

FMN

FADADP
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structure crossing the bilayer with a tilt of 13° from the bilayer normal [40].  

While presence on the membrane is required for interaction with cytochrome P450, it 

has been shown that both soluble, obtained after cleavage by trypsin at Lysine-56 

position, and membrane-bound POR are capable of electron transfer to other electron 

acceptors (Cytochrome b5, Heme oxygenase etc.) [41]. The ability of a POR to 

interact with Cytochrome c (non-physiological electron acceptor) is actively applied 

in its activity studies [42].  

It’s generally thought that MBD is not involved in catalytic activity and its purpose is 

to localize POR on the membrane surface, though evidence exists that it might be 

involved in recognition by specific cytochromes [43]. It was demonstrated by Sligar 

et al. [44] that presence of the membrane and membrane composition can influence 

reduction potentials of the cofactors. 

FAD	
  domain	
  

 
 

FAD domain is comprised of residues 267-678. Nucleotide is tightly bound to the 

FAD domain (Kd < 1nM) [45]. FAD binding is assisted by Arg454, which stabilizes 

the pyrophosphate negative charge and Tyr456, positioned close to the isoalloxazine 

ring with its hydroxyl group forming a hydrogen bond with the hydroxyl group at the 

4’ position in ribose [46]. Mutation of Ser457, Asp675, and Cys630 to aliphatic amino 

acids leads to a 1000-fold decrease in catalytic activity — these residues orient the 

NADP nicotinamide moiety for optimal hydride ion transfer.  

Mutagenesis studies and crystal structure analysis of human POR [47] revealed that 

Trp676 substitution reduces catalytic efficiency due to protein inability to release 

oxidized nicotinamide from binding pocket. In addition to this, crystallographic 
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analysis of rat POR Trp677Gly mutant [48] revealed that the NADP nicotinamide 

group takes position optimal for hydride transfer to FAD, where the Trp677 indole 

ring is positioned in a wild-type protein. It was proposed that Trp677 moves away 

from FAD isoalloxazine ring to facilitate hydride transfer and after that moves back to 

promote NADP release. 

In 2011 Xia et al. [49] analyzed POR mutant where one of salt bridges between FAD 

and FMN domains was substituted to disulfide bond. Crystal structure revealed 

change of the position of 631GDAR634 loop as well as absence of a NADP in the 

binding pocket. Due to a strong binding of NADP 2’-phosphate group authors 

proposed that this loop movement, named Asp-loop, maybe involved in the process of 

NADP+ release. 

FMN domain 

 
 
The FMN-domain is composed of residues 67 to 231. The FMN domain plays a 

central role in the electron transfer process, recognizing FAD domain to accept 

electrons from reduced nucleotide to transfer them later to an acceptor. Thus, its 

surface is capable of interaction with multiple diverse partners meaning that residues 

affect its electron transfer activity towards one electron acceptor yet can have no 

effect for another acceptor. 

FMN binding is ensured by two tyrosine residues at positions 140 and 178. These two 

residues are positioned in re- and si-face respectively of the isoalloxazine ring of 

FMN, thus playing a vital role in the cofactor binding, for instance, mutation 

Tyr178Asp results in 300-fold decrease in nucleotide binding [50]. Unlike FAD, 

FMN-nucleotide is loosely bound with Kd ~ 10-8 M and can be removed by salt 

treatment [51]. 



 

 

24 

The FMN domain surface proximal to nucleotide binding site of a POR is negatively 

charged and interacts with the positively charged surface region close to heme of 

cytochrome P450. Hamdane et al [42] proposed a model of POR-P450 2B4 complex, 

where the surface of interaction mentioned represents 58% of total contact area 

between two molecules; authors stated that not only electrostatic but also a 

hydrophobic interaction is necessary for the interaction. In this complex, heme and 

FMN nucleotide are positioned perpendicular to each other while the distance 

between them is 12 Å. This distance is too long for efficient electron transfer, but 

Phe429 and Glu439 of cytochrome were found between FMN nucleotide and heme 

cofactors, allowing authors to assume that they are promoting electron transfer 

playing the role of “wire”. 

 
 

 
Figure 13. Model of complex formation between POR Δ TGEE and Cytochrome 
P450. Red color on POR surface represents negatively charged residues; blue– 

positively charged ones on cytochrome P450 on the left and right panels. Panel on the 
bottom shows relative orientation of two cofactors (heme and FMN) and residues 

located between them. Central panel demonstrates relative orientation of the proteins 
in a proposed model where pink is cytochrome P450, while yellow and green 

corresponds to FMN and FAD domains of POR, respectively.  Reprinted from [41]. 
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The same mode of electron transfer was earlier proposed by Sevrioukova [52] for 

cytochrome P450-BM3, flavocytochrome from Bacillus megaterium, which contains 

both heme and FMN nucleotide in one unit and acts as homodimer, where reductase 

of one of the domains reduces heme of another. In this protein crystal structure 

orientation of cofactors is very similar to that of the complex created by Hamdane et 

al. while the distance between them is even greater ~18Å. 

Residues involved in interaction depend on binding partners providing selectivity, 

such that 213EED215 mutation leads to a significant decrease in level of interaction of 

cytochrome c, while unaffecting interaction with P450 [53]. At the same time, another 

group [54] demonstrated that replacement of 115EE116 is essential for POR-P450P2B1 

complex formation. 

Electron	
  transfer	
  

 
 

First, a hydride ion from NADPH is transferred to FAD then electrons, one by one are 

transferred to FMN. This key ability of engaging in both 1- (semiquinone) and 2-

electron (hydroquinone) reduction as well as flavins localization in two separate 

domains provides means to control electron transfer between donor – NADPH and 

acceptor. It should be noted that the fully reduced form of a POR can be obtained 

under specific conditions [55] but was never observed in vitro. Table 1 provides mean 

values for the reduction potentials. Data was obtained for solubilized POR of different 

organism (human [56], rat [44]). The following demonstrates that the driving force of 

electron transfer is FMNOX/SQ reduction potential.  
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Table 1. Reduction potentials for POR electron transduction. 

Compound ~E0, mV 

NADP/NADPH -320 

FAD OX/SQ -310 

FAD SQ/HQ -380 

FMN OX/SQ -90 

FMN SQ/HQ -270 

 
 

Depending on number of electrons carried by flavins in POR, they can be in the 

oxidized (ox) state, one-electron reduced semiquinone(sq) state or the two-electron 

reduced hydroquinone (hq) states.   Neutral semiquinones have a broad absorbance 

with maxima at 585-600, which imparts to their blue color in pH range 6.5—8.5 while 

oxidized nucleotides have absorption maxima at 450 and 380 nm.  This spectral 

feature was useful in characterization of POR oxidation state during experiments. 

Under aerobic conditions, the semiquinone state of nucleotides differs in stability: 

FAD is rapidly oxidized in air while the FMN semiquinone is stable. Moreover, FMN 

semiquinone has additional absorption maxima of lower intensity at 630nm. This 

characteristic behavior enables discrimination between FAMH and FADH and 

analysis of 1 electron transfer from FAD to FMN [51]. 
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Figure 14. Redox states of the flavins isoalloxazine ring and corresponding redox 

reactions. Colors corresponds the visible emission spectrum maxima of corresponding 
species. Reprinted from [41]. 

 
 

As  Figure 15 below illustrates, 2 electrons from NADPH are transferred to a FAD in 

a form of hydride-ion, after that electrons one by one are transferred from FAD to 

FMN, since FMN semiquinone is stable, electron transfer to one-electron-acceptor 

cytochrome P450 occurs from hydroquinone FMN, after that another moiety of 

NADPH binds POR to reduce FAD nucleotide to produce 3 electron reduced state and 

cycle repeats. It is thought that fully oxidized protein does not exist in the functional 

cycle of POR. 
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Figure 15. A. Prime redox reaction during one POR cycle. B. Redox cycling of flavin 

cofactors within POR in vivo.  
 
 

In a crystal structure obtained for wild-type POR, enzyme was found in a closed 

conformation, where two flavins moiety are ~ 4Å apart and oriented approximately 

with 150° angle to each other, which leads to overlap between π-π systems of 

cofactors [48]. Such orientation should provide very fast electron transfer. But there 

are two matters that need to be considered: 

1.  Electron transfer measured during the experiment [57] using stop-flow 

experiments with NADPH and non-native reducing agent (dithionite) and 

tracking the change in absorbance of specific bands mentioned previously 

obtained electron transfer rate of ~50 s-1  

2. Moreover, closed conformation observed does not allow further electron 

transfer from reduced FMN hydroquinone to 1-electron acceptors heme of a 

cytochrome. 

A

B

A
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The fact that two cofactors are in separate domains serves as mechanism for electron 

transfer control; mutagenesis results obtained on unstructured hinge loop serve as a 

proof to this statement.  

In 2002 Gutierrez et al. published a paper where they measured rate of electron 

transfer by analyzing change in absorbance along the titration [57]. Interestingly, rate 

of the electron transfer was 55±2 s-1 when NADPH was used as a reducing agent. In 

the case where the chemical reducing agent, dithionite, was used, the rate obtained 

was 11± 0.5 s-1. It was proposed that presence of NADP moiety in binding pocket is 

crucial for efficient performance of POR. It was proposed that POR performance 

involves a conformational gating mechanism, which was demonstrated by carrying 

out a titration in solution of a different viscosity varying glycerol concentration, it was 

observed that higher viscosity leads to decrease of electron transfer [57]. 

Hamdane et al. created a mutant lacking 236TGEE239 fragment in a so-called “hinge 

loop”, residues of CD which link FAD and FMN domains together. Using activity 

assays, it was discovered that the mutant is unable to transfer electrons from FAD to 

FMN nucleotides; crystallographic structure analysis of the mutant demonstrated that 

mutant POR is represented in form where distance between FMN and FAD cofactors 

is 30-60Å, this conformation is actively discussed in literature as “open 

conformation”. Interestingly increase of the loop length by addition of four Ala leads 

to increased rate of electron transfer [42]. However biological activity studies with 

chemically reduced FMN nucleotide demonstrated ability of POR mutant to reduce 

heme of cytochrome P450 B24. 

As a conclusion, authors proposed a mechanism for FAD domain movement along 

with electron transfer (see Figure 16). 
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Figure 16. Proposed mechanism of a POR electron transfer on ER membrane. 

1. Oxidized POR exists on the membrane in the open conformation. 
2. NADPH nucleotide binding leads to a conformational change in a protein and 

results the formation of the closed state, similar to that observed in a wild-
type crystal structure. Electron transfer to FMN nucleotide take place 

3. Reduction of FMN nucleotide leads to conformational changes and protein 
adopts to open conformation with simultaneous release of NADP+ from a 
binding site, suggesting that large-scale changes are coupled with the Trp677 
and Asp632 residue movements. 

4. One of a cytochrome (depicted as a red balls) located in close proximity 
interacts with the reduced FMN and forms a complex which promotes 
electron transfer to heme. 

 
 

Xia et al. [49] created a mutant with an engineered disulfide bond between FMN and 

FAD domains, where salt bridge residues Asp147-Arg514 of wild-type POR were 

mutated to cysteines, creating an artificial closed conformation of a POR(147C-

514C). Residues were selected to be deep enough in a new structure to ensure that 

disulfide bridge won’t be accidentally reduced. 

Using spectroscopic analysis of the characteristic absorptions bands specific for the 

FMN and FAD nucleotides in different redox states during titrations, rates of electron 

transfer were measured.  

It is noteworthy that rate of inter-flavin electron transfer (ET) for the bridged structure 

was ~ 40 times slower compared to the wild type (1.7 s-1). While ET to acceptors 

(P450 2B4 and cytochrome c) decreased by more than 90%.  Comparison of crystal 
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structures of the mutant to that of a wild-type POR revealed that relative position of 

FMN and FAD nucleotide is shifted at 20° angle in a bridged structure, which leads 

less π-π systems overlap. Authors also performed disulfide bond reduction and carried 

out the same activity assays to demonstrate that the effect is reversible, where they 

observed recovery of activity. The table below demonstrates rates obtained using 1 

molar and 10 molar equivalents of NADPH at 30°C, using change in absorbance at 

452 nm for flavin reduction and 585nm for semiquionone state; change in absorbance 

were fitted using multi-exponential functions.  

 

 
Table 2. Rates of ET obtained from redox titration. 

Construct 
585nm 452 nm 

k1, s-1 k2, s-1 k1, s-1 k2, s-1 k3, s-1 

1 molar equivalent NADPH 

Wild-type POR 79 (62%) 6.2 (38%) 75 (79%) 6.1 (21%)  

147C-514C 1.7 (39%) 0.2 (61%) 64 (25%) 12 (43%) 0.8 (32%) 

10 molar equivalent NADPH 

Wild-type POR 91  76 (73%) 9.1 (27%)  

147C-514C 52  52 (43%) 2.5(17%) 0.7 (40%) 

 

 
Moreover, analysis of the crystal structure of the mutant (3JOW) demonstrated that 

147C-514C POR lacks presence of a NADP+ in a binding site despite presence in 

excess in crystallization process. This observation shows that the mutant has a lower 

affinity to NADP+ compared to a wild-type structure. 
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Another effect that was observed was a presence of second exponential obtained from 

the fitting procedure. Originally authors associated it with a hydride transfer from 

NADPH to FAD nucleotide, but additional experiment carried out in deuterated 

conditions revealed fallacy of this statement, since no isotopic effect was observed 

[49]. As a result, authors assigned this process to Asp-loop movement since 

comparison of the crystal structures with reduced (which had NADP+ in the binding 

site) and intact 147C-514C bridge showed significant displacement of this moiety. 

Through in the last decade multiple papers were published in attempt to reveal the 

process of POR electron transfer, the exact mechanism of electron transfer to 

cytochrome specifying residues movements along the process and POR ability to 

differentiate between diverse cytochromes was yet to be explored. 

As it has been demonstrated on the examples of Ras and POR, membrane proteins are 

challenging systems to study. One of the reasons is that they perform their function on 

the surface of the lipid bilayer, which requires one to consider diverse interactions 

protein experience that might affect their behavior.  

In my project I demonstrate two approaches to investigate the complexity of 

membrane proteins. In the case of Ras protein dimerization, studies have been carried 

out on the lipid bilayer models mimicking native environment of the protein and 

possible interactions that it experience. But it has been pointed out that protein-protein 

interaction alone is the driving force of dimerization. Therefore, we plan to investigate 

protein-protein interaction separately on the model lacking lipid bilayer mimic to 

assess G-domain propensity to form dimers.  

In the second part of the project, we plan to create an approach that will allow to 

investigate the most complex system with all possible interactions considered. 
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Number of studies has been performed on cytosolic portion of POR but successful 

studies of full-length protein, moreover in its reduced state are few in number. So the 

goal is to design an approach, which will make possible interrogation of 

conformational details and diverse interactions in a POR-nanodisc lipoprotein 

complex during its redox cycle. 
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II.	
  METHODOLOGY	
  
 
 

Nanodisc	
  
 
 

Membrane proteins exist on a phase separation boundary, which makes them a 

challenging object to study, since lipids need to be included in the studies as well. 

Another thing to consider is an absence of a lipid bilayer leads to a significant 

decrease in protein stability. Furthermore, protein in a soluble state is more 

convenient to work with.  

Originally detergents were utilized in protein solubilizations creating mixed micelles 

but application of detergents has a number of disadvantages. They can negatively 

affect protein stability, influence the results of assays, and interact with a substrates or 

buffer components. Moreover some membrane proteins require specific lipid 

composition or lipid domains to be active, and this cannot be achieved with detergent 

micelles [58]. 

Another membrane mimicking model that is widely used is the liposome. One of the 

greatest advantages of a liposome is that their lipid composition can be varied 

depending on the requirements of the experiment. One of the disadvantages of this 

model is an introduction of curvature into a lipid bilayer in the case of small 

liposomes that doesn’t mimic native conditions in the cell. Another problem is that, 

due to size of liposomes, they cannot be used in certain techniques, such as NMR. 

Stability of the liposomes also poses a problem during the membrane protein studies.    

More than a decade ago Sligar’s group came up with a new membrane model called 

lipid nanodisc [59]. Lipid nanodisc is soluble complex of a lipid bilayer surrounded 
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by two molecules of a matrix scaffold protein obtained from apolipoprotein A1. Flat 

lipid bilayer serves as a perfect cell membrane model, while double-helix belt of MSP 

makes it soluble. The size of the lipid nanodisc can be varied depending on the length 

of amino acid sequence of MSP resulting in a range of diameters of the nanodisc. A 

series of nanodiscs were created with varying size, though it should be mentioned that 

the smaller nanodiscs are less stable compared to original obtained from MSP1D1 

with a nanodisc size of 9.8 nm [60]. 

 
 

 
Figure 17. Structure of a lipid nanodisc. Two helix belts colored cyan and blue 
represents MSP protein that encapsulates lipid bilayer shown as white surface. 

Reprinted from [61]. 
 
 

One of the advantages of lipid nanodiscs is the ability to incorporate proteins in a 

monomeric state, thus providing data that reflects actual protein behavior, which is 

important for biochemical characterizations of the protein. For example, human 

cytochrome P450 3A4 on a nanodisc demonstrated higher cooperativity in 

testosterone binding compared to the data obtained using a detergent for 

solubilizations. Though at low protein concentrations, liposomes can also provide data 

characterizing monomer species but to obtain data of acceptable quality higher 

concentration needs to be used, this might create a problem in liposome studies. In the 
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case of a nanodisc, presence of only one protein unit per nanodisc surface can be 

ensured. 

Moreover, active protein-protein complex can be created on the surface of the 

nanodisc as it was demonstrated by Denisov et al. with cytochrome P450 3A4 and 

NADPH cytochrome oxidoreductase [62]. The functional state of the complex was 

proven by measuring rates of testosterone hydroxylation in the presence and absence 

of NADPH. Unfortunately, the authors observed that 95% of the NADPH was 

consumed through non-productive pathways [63]. Despite that, the authors were able 

to determine that reaction rate increased by 40% in case of nanodisc with 30% 1-

palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) and 70% 1-palmitoyl-2-

oleoyl-sn-glycero-3-phosphocholine (POPC) lipid composition. 

Nanodisc was also applied to study protein-lipid interactions of phosphatidylinositol 

(PI) binding proteins and lipid bilayer surface [64]. Using lipid composition of 1.25% 

PI, 98.75% 1,2-dioleoyl-sn-glycero-3-phosphotidylcholine (DOPC), dissociation 

constant for protein lipid complex was determined to be Kd ~ 30nM, which shows 

tighter binding compared to the one obtained previously with application of lipid 

micelles.  

In a review[58] Bayburt et al. provided a number of examples of the successful 

application of lipid nanodiscs to study membrane proteins such as G-protein coupled 

receptors, cytochrome c, bacterial chemoreceptor, and receptors tyrosine kinases. 

Finally, lipid nanodisc can be applied to study membrane proteins using solution 

NMR. This was demonstrated by Hagn et al. in his study of bacterial outer-membrane 

protein OmpX on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) nanodisc 

[60]. The authors evaluated the quality of the 1H15N-TROSY (transverse relaxation 
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optimized spectroscopy) NMR spectra obtained from highly deuterated samples (both 

proteins and lipids) as a function of diameter of the lipid nanodisc (Figure 18).  

 
 

 
Figure 18. A. Model of OmpX protein (red) incorporated into nanodisc with the 

number of DMPC lipids (carbon, hydrogen and oxygen atoms colored green, white 
and red, respectively) per bilayer surrounding the protein. MSP is omitted for clarity. 

B. 1H15N-TROSY spectra obtained for OmpX in nanodisc. Red dots correspond to 
signals from residues. Dotted square demonstrates region of tryptophan peaks. 

Reprinted from [60]. 
 
 

Nanodisc created with MSP1D1 ΔH4H5 that lacks two helices in a protein sequence 

can accommodate only 10 DMPC molecules serving as not very good lipid bilayer 

model. Also, 1H-15N cross-peaks of tryptophans were missing from the TROSY 

spectra of the protein; this was associated to the interaction of those residues with 

MSP, which lead to enhanced relaxation rates.  In contrast, nanodisc obtained with 
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MSP1D1 ΔH5 provided a better quality of spectra due to a reduced size and, as 

consequence, faster rotational correlation time. It was concluded that deuteration of 

the lipid has a positive impact on NMR spectra quality, especially for the experiments 

with a side-chain coherence transfer. Hagn et al. confirmed the possibility of 

application of lipid nanodisc in NMR spectroscopy by providing first NMR structure 

solved of the membrane protein associated with the lipid nanodisc [60]. 

Solution	
  Nuclear	
  Magnetic	
  Resonance.	
  	
  
 
 
Solution Nuclear Magnetic Resonance (NMR) spectroscopy has been one of the main 

techniques to study protein structure and dynamics for years due its ability to provide 

high resolution conformational information at conditions which resemble 

physiological ones.  However classical solution NMR techniques can only be applied 

to the proteins with molecular weights up to 50kDa, which creates a challenge 

investigating membrane protein systems that require presence of lipid bilayer mimic. 

So, the question is, is there a NMR technique that will be suitable to study high-

molecular weight systems while maintaining all unique strength of NMR 

spectroscopy?  

The reason behind the inability to apply normal NMR techniques such as hetero 

nuclear single quantum coherence to a system with mass greater that 50kDa is a slow 

rotational diffusion of large protein molecules which gives rise to two processes that 

have a negative effect on the spectral quality: 

• Chemical shift anisotropy.  

This effect arises due to anisotropy of electronic environment around each 

nucleus; in small protein due to high level of rotational freedom, the effect is 

averaged leaving single isotropic chemical shift value, but tumbling of a larger 



 

 

39 

molecule takes greater time which leads to different orientations of individual 

molecules with respect to external magnetic field. This effect leads to signal 

broadening due to a presence of a distribution of nucleus with different 

orientation to external magnetic field. It should be noted that this effect 

depends on the strength of the applied magnetic field.  

• Dipolar coupling. 

Another effect that arises due to a slow rotational correlation time of the large 

proteins. It results from a presence of several nuclear spins in a close 

proximity to each other. Each of the nuclei has its own local magnetic field 

which either has additive or deductive effect to the strength of the external 

magnetic field applied to a neighboring nucleus. For the small molecules, due 

to a fast rotational freedom, total magnetic field that acts on a given nucleus is 

averaged. This effect is independent to an external magnetic field strength. 

Pervushin in the paper [65] from 1997 presented a technique designed in a fashion 

that relaxation from chemical shift anisotropy at high magnetic field strength is 

canceled by the effect from dipolar coupling. Transverse relaxation optimized 

spectroscopy (TROSY) is capable to overcome the size-limiting problem of classical 

NMR techniques and it originally was applied to 15N - 1H spin pair to probe a protein 

backbone.  

Methyl-­‐TROSY	
  

 
 
In 2003 Tugarinov et al. developed Methyl-TROSY technique [66, 67]. In this 

method, signal is obtained from labile methyl groups in the slow-tumbling protein. 

The principle of signal amplification is different from a classic TROSY approach that 

relies on the effect of inter-cancelation between chemical shift anisotropy and dipolar 
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coupling effects. Pulse sequence applied in Methyl-TROSY technique is the one used 

in heteronuclear multiple quantum coherence (HMQC) method, but due to the protein 

size, slow rotational correlation time and rapidly rotating methyl groups dipolar 

interactions from protons 2 and 3 in the methyl group are additive in case of outliners 

and they cancel out for the inner line. This effect is depicted on the multiple quantum 

coherence during HMQC obtained for sodium acetate and isoleucine-148 of malate 

synthatase G protein (80kDa protein) [68].   

 

 

 
Figure 19. The effect Methyl-TROSY technique on a example of 13C multiplet (red 

and blue counters) from methyl groups in 1H-13C double quantum correlation map in 
isoleucine (top) within the synthatase G protein and acetate methyl (bottom) in a 
solution. 1D proton dimension slices (black line) are overlapped with the two-

dimensional spectra. Reprinted from [68]. 
 
 

In case of the methyl group from sodium acetate, triplet with relative intensities of the 

lines 1:2:1 is observed because of 1H–13C dipolar interactions in the absence of 

differential relaxation rates due to isotropic effect brought by fast rotational freedom 

of the small molecule. However, due to a local field effect for the methyl group of 

isoleucine-148 that is attached to macromolecule, relaxation rates for each line are 

different, because dipolar fields effect are additive for outliners (blue on the Figure 

19, both spins of neighboring protons are up or down) and they cancel each other for 

inner line (red on the Figure 19) This effect underlies in Methyl-TROSY technique. 
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And Heteronuclear Multiple Quantum Coherence (HMQC) pulse sequence allows 

separating slowly relaxing methyl coherence from the fast ones. It should be noted 

that high levels of deuteration are critical for high TROSY effect. So, a special 

labeling technique that uses deuterated amino acid precursors carrying only one 

protonated 13C methyl group are added to deuterated bacteria growth media prior to 

induction.   

 
 

 
Figure 20. Location of the renounces from methyl-groups of valine, leucine and 

isoleucine in 1H-13C HMQC for non-uniformly labeled protein with 13C, D-labeled 
precursors that were added during protein expression into the expression media. 

Reprinted from [68]. 
 
 

Figure 20 demonstrates the results obtained from Methyl-TROSY experiment with 

malate synthatase G using isoleucine, leucine and valine methyl groups to probe 

protein dynamics. In the study [68], α-ketoisovaleric acid was used as a precursor for 
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valine and leucine, while α-ketoisobutyric acid was utilized to label isoleucines. 

Signals were then assigned using set of 13Caliphatic–1Hmethyl and 13CO–1Hmethy TOCSY 

and original data from backbone assignment. To increase sensitivity of the 

assignment, a novel “out-and-back” approach was used in this work, where 

magnetization originating from methyl groups is being transferred to carbonyl carbons 

of the same residue and then back to the methyl from it is being detected. 

 
 

 
Figure 21. “Out-and-back” approach for a methyl groups assignment. 

A. The flow of magnetization in the residues, initiating from methyl going to carboxyl 
carbon and back. B. Strips from 13Caliphatic–1Hmethyl and 13CO–1Hmethy TOCSY are 

demonstrated for selected residues of malate synthatase G to show effectiveness of 
“out-and-back” approach. Reprinted from [68]. 

 
 

This approach allowed to assign 95% of isoleucine, 91% of leucine and 99% of valine 

methyl groups of the protein.  Thus, authors demonstrated that Methyl-TROSY can 

indeed be applied to investigate protein dynamics and interactions for the high 

molecular weight systems which remained elusive for classical NMR techniques.  

One of the examples of such systems is a complex formed between heat-shock protein 

ClpB, a major protein disaggregase in mitochondria of all eukaryotic cells, and DnaK 

chaperone. This bichaperone system assembly is required to recover proteins from 
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aggregates but, due to its size and dynamism of the interaction, structural features of 

this complex remained unknown. In 2013 Rosenzweig et al. [69] applied Methyl-

TROSY to study interactions between 580kDa ClpB hexamer and 70kDa DnaK 

chaperone. In addition to valine, leucine and isoleucine, 13CH3 methyl ε-groups of a 

methionine were used provide additional labels in the protein. Chemical shift 

perturbation analysis of NMR titration data with alternately 13CH3 labeled ClpB 

hexamer and DnaK chaperone resulted in determination of the binding interface for 

both molecules. Moreover, the data was used to obtain the complex binding constant 

(Kd=25±3µM). Such low affinity value demonstrates the effectiveness of Methyl-

TROSY technique in studying weak interactions between high-molecular weight 

systems.  

Elimination of unneeded and misfolded proteins is one of the essential processes that 

are carried out in the living cells. The 20S CP archaeal proteasome is a barrel-like 

shaped protein which is responsible for selective degradation of damaged proteins. It 

consists of four heptameric units, α7β7β7α7, where α-subunit is responsible for 

interaction with effectors and provides a gate for substrate entry, while β-subunits 

create a central chamber that performs selective proteolysis. To determine dynamics 

and structural details of the 20S CP proteasome gate regulation, Religa et al. applied 

[70] Methyl-TROSY technique. The sample comprised of 13CH3-methionine-labeled 

deuterated α-subunits and deuterated, unlabeled β-subunits of 20S CP proteosome 

was analyzed. Cross-peaks were assigned by creating single methionine-to-alanine 

mutations in 20S CP proteosome and comparing HMQC spectra of the mutant with 

the one obtained from the wild-type protein. Then, on the basis of the data obtained, 

the authors suggested that 20S CP proteasome exists in 3 states: major state (A) and 
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two minor states (B and C). Figure below demonstrates 1H-13C HMQC region of 

methionine residue introduced before N-termini methionine of wild-type sequence. 

 
 

 
Figure 22. Methionine region of 1H-13C HMQC spectrum of wild-type 20S CP 
proteasome demonstrates peaks obtained from intrinsic (M1) and introduced by 

mutation (M-1) methionine residues of CP proteosome. Presence of several peaks 
from the same residue indicates equilibrium between several conformations. 

Reprinted from [70]. 
 
 

These states were later attributed to “in” and “out” state the N-termini residues of α-

subunits. Additional analysis of HMQC spectra revealed that two out of seven N-

termini of α-subunits exist in the “in” conformation, while five of them are in the 

“out” conformation, which demonstrates distinct conformations of the N-termini of 

each individual α-subunit, despite having the same protein sequence. 

Finally, in 2011 Religa et al. published a paper where they demonstrated application 

of 13C-methylsulfonylsulfanylmethane (13C-MMTS) extrinsic labeling technique on α7 

ring of 20S CP archaeal proteasome [71]. 13C-MMTS reacts with the exposed 

cysteines residues on the protein surface creating S-methylthiocysteine (MTC), 

methionine-like residues carrying 13CH3 label.  
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Figure 23. Labeling reaction with application of MMTS. 

 
 

Using this labeling technique authors demonstrated that MTC-labels can be 

successfully used to probe conformation and dynamics of N-termini gating residues of 

20S CP proteosome. As it was mentioned in the previous study they probed 

proteosome N-termini structure using artificially introduced methionine carrying 

13CH3 group at the beginning of the sequence. Religa et al. decided to check whether 

they will be able to obtain similar data by introducing MTC label at the same position 

while having other methionine labels untouched.  Results of 1H-13C HMQC spectra 

comparison showed that that except for MTC label, peaks originating from other 

labels are superimposed, which indicates that label did not perturb chemical 

environment. Moreover, the pattern and population of the “in” and “out” states of the 

20S CP proteosome N-termini were within 1% difference based on peaks obtained 

from 13C-methionine and 13C-MTC labels. 

Thus, Methyl-TROSY with application of MMTS extrinsic labeling technique is 

sensitive instrument that can be used to probe protein dynamics of complex systems. 

Paramagnetic	
  Relaxation	
  Enhancement	
  

 
 

Effect of paramagnetism originates from unpaired electrons whose magnetic moment 

is three orders larger than that of protons; this phenomenon has found an application 

in nuclear magnetic resonance spectroscopy, remarkably this effect is evident at great 
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distances. Employment of paramagnetic labels at 2D NMR spectroscopy enables 

measurements of small paramagnetic effects on remote nuclear spins (spin-spin 

relaxation), effect appears as an increase of a peak line width due to increased 

transverse relaxation rates Г2 characterizing exponential signal decay. The effect from 

paramagnetic labels is measured by difference of transverse relaxation time at 

paramagnetic and diamagnetic conditions 

Taking into account that total spin magnetization vector M of a spin in a presence of 

external magnetic field can be represented having two components: Mz (parallel to a 

external magnetic field which is conventionally oriented along the z-axis) and Mxy; 

change of the transverse magnetization with time can be described with the following 

equation: 

𝑀!"(𝑡) = 𝑀!"(0)𝑒
!! !! 

, where Mxy(0) – is initial magnetization in transverse plane; t – time and T2 – 

transverse relaxation time (1/ Г2). It should be emphasized that effect does not occur 

due to a change of orientation of a vector of magnetization, but because of dephasing. 

Paramagnetic Relaxation Enhancement (PRE) was first observed by Solomon and 

Bloembergen in their work from 1950s [72]. In last decade PRE became increasingly 

popular method that provide long-range distances restraints which can be used to 

compliment NOE restraints., especially in  studies of membrane proteins[73, 74]. PRE 

allows probing distance from 10 to 28 Å depending on the paramagnetic group used. 

Two main mechanisms contribute to PRE: Solomon mechanism [72] and Curie spin 

mechanism [75]. Curie mechanism is predominant in cases when rotational diffusion 

(associated with nuclear relaxation) of the molecule is much slower compared to 

electron relaxation rates.  
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In Curie mechanism spins can be described by isotropic magnetic susceptibility χiso. 

Curie spin relaxation mechanism at high magnetic fields for slowly tumbling 

macromolecules can be represented by equation [76]: 

Г! =   
𝛾!𝐵!!𝜒!"#𝜏!
20𝜋!𝑟!  

, where B0 – external magnetic field strength; r is a distance between paramagnetic 

center and nuclear spin; γ is the nuclear gyromagnetic ratio; τc – molecular correlation 

time due to rotational freedom. For systems with rapidly relaxing electronic spins at 

high magnetic fields, transverse relaxation is predominantly due to Curie mechanism. 

Solomon relaxation mechanism considers relaxation driven by limited electronic spin 

state lifetime and is the mechanism of relaxation for slowly tumbling molecules with 

a long electron spin states lifetimes. In 2000, Wagner et al proposed modified 

equation for biomolecular NMR for species relaxing predominantly by Solomon 

relaxation mechanism [77].  

𝑟 =   
𝐾
Г!

4𝜏! +   
3𝜏!

1+ 𝜔!!𝜏!!

!
!
 

, where Г2 – transverse relaxation rate (determined by measuring signal broadening, 

specifically width of the peak at half-height); τc – molecular correlation time due to 

rotational freedom; ω- Larmour frequency of a nuclear spin (index H- stands for the 

proton in this case) at correspondence with the strength of external magnetic field; K 

is calculated as 

𝐾 =
1
15 𝑆(𝑆 + 1)𝛾

!𝑔!𝛽! 

, where γ is the nuclear gyromagnetic ratio, g is the electronic g factor, and β is the 

Bohr magneton. For calculating distances, the approximation was made that τc was 

equal to the global correlation time of the protein.  
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Recently, application of the Gd3+ labels became particularly popular; this can be 

explained by a nature of this paramagnetic label. Effect from the single paramagnetic 

center can be described using magnetic susceptibility tensor at three principle axis χx, 

χy, χz. If magnetic moment of paramagnetic center is different at three principles axis 

magnetic tensor χ is anisotropic it gives a rise to number of additional effects that 

needs to be considered such as pseudo-contacts shifts. Gd3+ ion has an isotropic 

magnetic tensor χ.  Another positive trait of this ion is that its unpaired electron spins 

relax relatively slowly on the order of 10-8s [78] given facts determines predominantly 

Solomon relaxation mechanism for Gd3+ ions, which are insensitive to cross-

correlation between chemical shift anisotropy and dipolar shift anisotropy, which in 

turn facilitates data interpretation. 

Liu and colleagues [79] applied residue specific PRE derived distance restraints 

together with chemical shift perturbation data to determine yeast Arf1 (Rho family 

GTPase-activating protein involved in the control of F-actin dynamics at the Golgi) 

interaction surface with Fapp1-PH on the membrane model of DOPC micelles using 

molecular docking software (HADDOCK).  

Another example of application of nitroxide-spin labels was demonstrated by 

Rosenzweig et al. to determine binding interface between ClpB-DnaK complex [69]. 

The distances were measured between nitroxide-spin labels attached to ClpB and 

13C1H3 methyl groups of methionine, leucine, isoleucine, and valine from DnaK 

(Figure 24).  

The distance restraints obtained were used by molecular docking software 

(HADDOCK) to obtain structural model of the complex. Interestingly, the binding 

interface of DnaK determined from molecular docking, also being targeted by DnaK 
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cochaperon GrpE, and additional experiments revealed that ClpB and GrpE compete 

for DnaK binding. 

 
 

 
Figure 24. PRE distance measurements obtained from spin-labels for ClpB-DnaK 

complex. 
Position of the labels: ClpB-479 (green); ClpB-502 (slate blue); DnaK-288 (red). 

Orange lines correspond to distances restraints obtained. Reprinted from [69]. 
 
 

It was demonstrated by Ikura’s group [80] that solution NMR with application of 

paramagnetic labels might be applied to study proteins attached to nanodisc. Sample 

of Rheb protein, one of the member of Ras GTPases superfamily, was created 

attached to a 1,2-Dioleoyl-sn-glycero-3-phosphotidylcholine (DOPC) lipid nanodisc 

to study it’s dynamics on the lipid bilayer by solution NMR. Using distance restraints 

obtained from membrane carrying gadolinium salt of 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-diethylenetriaminepentaacetic acid (18:0 PE-DTPA (Gd)) 

paramagnetic label information on preferred orientation on the lipid surface was 

extracted depending on the nucleotide state of the protein.  
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Authors represented the PRE data obtained from 1H – 15N Rheb detected for each 

residues of GDP- (red) and GTP- (black) loaded states of Rheb as a ratio of resonance 

intensities obtained in paramagnetic (I*) and diamagnetic (I0) conditions. Distance 

restraints obtained from this data were used in molecular docking software 

(HADDOCK) to evaluate conformation changes of a protein on lipid bilayer. 

As final result, authors proposed a model of Rheb protein interaction with the lipid 

bilayer, where membrane acts as regulator, in Rheb with mTORC1 (Rheb effector). In 

addition to this it was suggested that membrane effect is correlated with GTPase cycle 

of a protein. 

Fluorescence	
  
 
 
Fluorescence techniques have proved to be a popular method in biochemistry. 

Presence of intrinsic fluorophore, such as tyrosine or tryptophan, in amino acid 

sequence of a protein, allows for the analysis of a protein in a native state. Though, in 

most cases, introduction of extrinsic fluorescent labels is required, and a great number 

of fluorophores are available in the field. The main advantage of the method is its 

great sensitivity; therefore, the amount of protein used in an experiment is small 

compared to other techniques. Currently, a number of techniques exist that are applied 

to study protein dynamics; fluorescence anisotropy is one of them. 

Protein attached to a lipid bilayer can behave differently: it can be freely rotating or it 

can actually lie on the surface. Of course, the position of the protein will change its 

rotational correlation time. To address this property, we can label the protein with 

fluorophore and detect changes that the protein undergoes by detecting changes of 

fluorescence. One of such indicators is fluorescence anisotropy. 
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  Fluorescence	
  anisotropy	
  principles	
  

 
 

Fluorescence anisotropy measurements utilize the principle that a fluorophore 

preferably absorbs a photon, which has its electric vector aligned parallel to a 

transition moment of the fluorophore. Moreover, the photon emitted by a fluorophore 

will be polarized as well. But before emission from a fluorophore can occur it will 

take some time. During this time, the fluorophore will rearrange itself in solution due 

to its rotational freedom. This process will result in a fact that polarization of the 

emitted light will be changed by a displacement of the molecule in solution, so that 

the transition moment of the resulting emission that will no longer be parallel to the 

original polarization of the absorbed photon [81].  

 
 

Figure 25. Schematic representation of the principle of polarization anisotropy 
measurements. Blue arrow represents polarized light either absorbed or emitted by a 

fluorophore. Yellow double arrow represents electric vector of polarized excitation of 
the fluorophore (magenta) within the protein (slate blue cartoon) and its evolution 

during the time. Lower panel demonstrates change of anisotropy as a function of time. 
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Polarization anisotropy – noted as r, is a measure of ratio between polarized light to 

overall intensity and calculated as follows  

𝑟 =   
𝐼!! − 𝐺𝐼!"
𝐼!! + 2𝐺𝐼!"

 

,where  IVV and IVH are corresponding intensities of vertically and horizontally 

polarized emissions obtained from the sample excited with vertically polarized light 

[81]. While G-factor is the instrument sensitivity factor to differently polarized light, 

and is calculated as follows, 

𝐺 =
𝐼!"
𝐼!!

 

Polarization anisotropy is not a constant value; it decays with time. There are two 

reasons for that: first, intensity decays with the time due to a fluorescence lifetime of a 

fluorophore, second, due to a rotational freedom of the molecule. 

Anisotropy decay follows exponential rules and can be fitted using exponential 

equation. Equation below is given for the species with several rotational correlation 

times θ, gi – is weighted factor of each individual rotational correlation time and r0 - is 

zero-time (initial) anisotropy [81]. Generally, number of rotational-correlation times 

determined during an experiment cannot exceed 3. 

𝑟 𝑡 = 𝑟!   𝑔!

!

!!!

exp  (− 𝑡 𝜃) 

This data can be used to calculate rotational correlation time of the molecule using 

Stokes–Einstein–Sutherland equation (below) to assess protein mobility and 

dynamics. 

𝜃 =   
𝑘!𝑇
6𝜋𝜂𝑅 
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,where η is viscosity of the media, R – hydrodynamic radius of a protein, kB – 

Boltzmann’s constant and T is an absolute temperature in Kelvin [81].  

It should be mentioned that fluorescence anisotropy measurements are depended on 

fluorescence lifetime τ – time molecule spends in an excited state before returning to 

a ground state level. The life-time of fluorescence should be comparable to rotational 

correlation time. 

Application	
  of	
  polarization	
  anisotropy	
  measurements	
  

 
 

Since peripheral membrane proteins are flexibly attached to a lipid bilayer surface, 

polarization anisotropy measurement is perfect tool to evaluate protein dynamics in 

proximity of a membrane. 

To assess G-domain mobility on the membrane surface, semi-synthetic K-Ras4B and 

N-Ras GTPases rotational freedom of the molecules were studied as a function of 

lipid bilayer composition [82]. LUV and GUV were used as membrane models. 

Rotational correlation time of the samples was measured using chemically attached 

N-hydroxisuccinimide-modified BODIPY fluorophore (excitation λ = 473nm; 

emission λ = 505nm) to the lysine on the G-domain surface.  
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Figure 26. Rotational correlation times of semi-synthetic K-Ras. Reprinted from [82]. 

 
 

Semi-synthetic K-Ras4B was unaffected by the attachment of a lipid anchor in a bulk 

solution which was monitored by very small increase of rotational correlation time 

which is in within experimental error. Surprisingly, in the presence of uncharged lipid 

bilayer, rotational freedom of the G-domain did not decrease a lot compared to the 

free molecule in the solution. While in case of K-Ras4B attached to a charged raft-

like lipid bilayer, G-domain significant increase of rotational correlation time was 

observed. This observation can be explained by the fact that K-Ras4B anchor region 

has six lysine residues, which create a significant positive charge in this part of the 

molecule. Negatively charged lipid rafts introduced in the last experiment created an 

additional mode interaction between protein and a lipid head groups leading to a 

better protein association with a lipid bilayer. 

Interestingly, in the case of semi-synthetic N-Ras, which has two lipid anchors, a high 

level of association was observed already in the case of fluid membrane, which was 

monitored by 2-fold increase in rotational correlation time. No significant changes 

were seen in case of lipid rafts model. Slow rotational correlation time of a semi-
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synthetic full-length N-Ras in a bulk solution was due to presence of two lipid 

anchors, which were driven together by hydrophobic effect. In K-Ras case this was 

not observed because of the repulsion of positively charged anchor regions of HVR. 

 
 

 

.   

Figure 27. Rotational correlation times of semi-synthetic N-Ras in GDP (a) and GTP 
(b) bound states. Reprinted from [82]. 

 
 

Results presented in the paper demonstrate that polarization anisotropy measurements 

can be successfully applied to evaluate degree of association of peripheral membrane 

protein and lipid bilayer. 
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III.	
  RESULTS	
  AND	
  DISCUSSION.	
  
 
 

Membrane proteins play a vital role in a cell, serving as receptors, transporters and 

enzymes of high efficiency due to a high local concentration provided by a membrane 

coupling. The term itself points out the importance of the lipid bilayer for these 

biomolecules functions. At the same time, existence on the phase separation boundary 

makes them a complex system to study. Functions of membrane proteins depend on 

diverse interactions they experience on a membrane (Figure 28): 

• Interaction with the lipid bilayer and correlation with its composition; 

• Interaction with the small molecules present in the cytosol (signaling molecules, 

cofactors etc.); 

• Dependence on the buffer properties such as pH, ionic strength etc.; 

• Interaction with other proteins (downstream effectors, electron-transfer partners 

etc.); 

 
 

 
Figure 28. Interactions experienced by a membrane protein on a lipid bilayer. 
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Aforementioned facts create a challenge in an investigation of membrane proteins. 

The general approach that’s going to be applied in our research is to address each 

interaction pattern separately to unambiguously determine the level of influence from 

each of them. 

Two alternative research projects are outlined below. In the case of investigating 

propensity of Ras molecules to dimerization we plan to investigate protein-protein 

interactions separately. This will be done to determine whether it is a driving force of 

protein dimerization as it was suggested or presence of the lipid bilayer is required. 

For the part of the project that interrogates POR conformation changes during its 

redox cycle, we plan to develop a technique that will allow as to investigate complex 

lipoprotein system of POR associated with lipid nanodisc as a whole while altering 

different interactions in the system to determine their role in protein functions.  

Project	
  1.	
  Ras	
  protein-­‐protein	
  interaction.	
  
 
 

H-­‐Ras	
  stability	
  at	
  a	
  different	
  pH	
  conditions.	
  
 
 
In our study, we investigated Ras proteins in a solution and before we do that we need 

to determine what pH conditions to consider. Fluorescence anisotropy studies may 

require long acquisition time, which means stability of the sample is one of the major 

requirements of the experiment. More so, we also need to confirm that introduction of 

Mant-GDP fluorophore will not affect protein stability.  To establish condition when 

the protein is the most stable, we explored H-Ras stability under different buffer 

conditions. To evaluate Ras G-domain stability we carried out fluorescence 

anisotropy thermal shift assay experiments involving buffers in pH 6-8 range. Since 

HVR is unstructured in a Ras protein, stability of the G-domain alone was studied. H-

Ras C118S 1-166 protein was used as G-domain model. Buffer composition used in 
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the studies is shown in the table below. Sodium azide was used as biocide to preserve 

protein samples. Buffer 2 corresponds to the native cytosolic conditions. 

 
 

Table 3. Buffer composition used in thermal shift assay. 

Buffer 1 Buffer2 Buffer 3 

MES pH=6.0 20mM 

NaCl 150mM 

DTT 1mM 

NaN3 1.5mM 

MgCl2 1mM 

HEPES pH=7.2 20mM 

NaCl 150mM 

DTT 1mM 

NaN3 1.5mM 

MgCl2 1mM 

TRIS pH=8.0 20mM 

NaCl 150mM 

DTT 1mM 

NaN3 1.5mM 

MgCl2 1mM 

 
 

In the thermal shift assay, stability of the protein is determined by melting 

temperature or denaturation midpoint Tm – temperature at which concentration of 

unfolded protein is equal to a folded one. Since Ras proteins are GTPases we applied 

MANT-GDP (excitation wavelength 360nm; emission wavelength 440nm) 

fluorescence label to monitor protein unfolding by anisotropy decay.  Bound MANT-

GDP will have rotation correlation time of the Ras protein in folded state. But then, as 

the protein unfolds, the fluorescent label is freed which leads to an increased 

rotational freedom and, as consequence, a decreased anisotropy value.  
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Figure 29. Schematic representation of the experiment design to evaluate G-domain 

stability. 
 
 

H-Ras was subjected to nucleotide exchange from GDP to Mant-GDP [83]. Ras 

concentration after nucleotide exchange protocol was 10µM. To make sure that 

sample did not have any residual free Mant-GDP, the sample underwent size-

exclusion chromatography using NAP5 column packed with G25 resin. Originally 

prepared sample was diluted 10-fold in the appropriate buffers. To demonstrate 

sample integrity, 2D fluorescence spectra was taken. On the Figure Figure 30 below 

simultaneous presence of two peaks corresponding to intrinsic Tyrosines (excitation 

280nm/ emission 320nm) and Mant fluorescence (excitation 360nm/ emission 440nm) 

serves a proof of successful labeling.  
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Figure 30. 2D spectra of a MANT-labeled H-Ras C118S -166 sample at pH 7.2 buffer 
 
 

Temperature-dependent anisotropy profiles were recorded to obtain melting 

temperature Tm. As we expected the greatest stability was observed in the second 

buffer, which corresponds to cytosolic conditions of Ras. Data analysis resulted that 

change of the pH has destabilizing effect on G-domain; noticeably increase of the pH 

has less severe effect on H-Ras stability than increase of buffer acidity.  

 
 

Table 4. Denaturation midpoints obtained for the H-Ras C118S 1-166 at pH 6.0-8.0 

Buffer pH 

value 

pH 6.0 pH 7.2 pH 8.0  

Denaturation 

midpoint(Tm) 

46.6 C 50.2 C 49.5 C 
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Figure 31. A. Normalized anisotropy MANT-labeled H-Ras C118S 1-166 sample at 

pH 7.2 buffer of the sample. Blue lines demonstrate linear regions selected for fitting. 
B. Denaturation curve of MANT-labeled H-Ras C118S 1-166 sample at pH 7.2 buffer 

of the sample. Red line represents fitted curve. 
 
 

Propensity	
  of	
  G-­‐Domain	
  to	
  form	
  dimers.	
  
 
 
Ras and its homologs function strictly as monomers in contrast to the mechanism of 

GADs (GTPases Activated by Dimerization) [84, 85]. In solution, dimerization of the 

Ras G domain (lacking C-terminal tail and lipidation) has never been reported; yet, in 

the past decade, several papers have been published that were discussing the ability of 

Ras molecules to form dimers through formation of salt bridges between two G-

domains [34] [35]. It was stated that this fact may play a significant role in Ras-

MAPK signal transduction pathway where one of the Ras downstream effectors Raf-1 

can be activated by Ras dimerization [30].  

The earliest proposal that Ras functions at the membrane in an oligomeric form came 

from observations of radiation inactivation (target size analysis) [86] . In the later 

cross-linking study by Inouye and others, Ras dimers were proposed to form on 
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liposomes and facilitate activation of Ras effector Raf-1 [30]. 

In both reports [34] [35], the membrane is thought to play a passive role of diffusional 

restraint—preventing translational diffusion in the direction normal to the membrane 

plane and increasing local concentration of the G domains. If this hypothesis is 

correct, one should be able to stimulate formation of Ras dimers by merely 

sequestering G domains close enough in space to remove the entropic penalty of 

translational diffusion of individual Ras molecules on the membrane.  

Ability of Ras to form dimers on membrane surface would result in a different 

interpretation of the data on Ras mobility and functions on the lipid bilayer. In the 

following experiment, we evaluated the ability of the G-domain to form dimers 

utilizing fluorescence time-domain measurements. Since the presence of dimers will 

result in slower rotational freedom due to a doubled molecular mass of the species, we 

applied fluorescence anisotropy decay measurements to determine rotational 

correlation times.  

To increase G-domain ability to form dimers, it was decided to use bis-maleimido 

linkers of a flexible length to increase local concentration. 1,8-bismaleimido-

diethyleneglycol (BM(PEG)2) (length 1.5nm) and 1,8-bismaleimido-

undecoethyleneglycol (BM(PEG)11) (length 5nm) were applied in this study to create 

an irreversible linkage between two Ras molecules carrying C-terminal cysteines. For 

clarity, in a further discussion conjugates will be referred to as Ras-11-Ras and Ras-2-

Ras obtained in reaction of H-Ras C118S 1-181 with BM(PEG)11 and BM(PEG)2, 

respectively.  
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Figure 32. Protein models utilized in the study of Ras dimerization. Ras181, the 
cytosolic portion of the full-length H-Ras1-181; Ras-2- Ras and Ras-11-Ras, the 

inverted-tandem conjugates of two Ras181 molecules. The drawing is based on PDB 
ID 5P21 (residues 1-166; "crystallographic dimer") and 1Q21 (residues 1-171; no 
dimers). To create the full-length model of the "crystallographic dimer", two 1Q21 

structures were aligned to the dimeric structure from 5P21. The unstructured C-
terminal peptides, residues 172-181, were added to 1Q21 in Pymol and modeled in 

conformations to show that there are no steric restrictions to form the dimeric 
structure with either 1.5 or 5 nm linkages between C-terminal cysteines. The 

BM(PEG)n linkers are schematically shown with dashed lines. 
 
 

To create high local concentration of the G domain, we tethered two Ras 1-181 

proteins through their Cys181 side chains using the bis-maleimido crosslinkers 

BM(PEG)2 and BM(PEG)11 (producing "Ras-2-Ras" and "Ras-11-Ras" constructs, 

respectively). The resulting inverted-tandem conjugates restrict a pair of G domains in 

the close proximity of each other connected by a flexible unstructured chain 

comprising the residues 173-181 of two Ras181 molecules and the crosslinker. The C-

termini of the two G domains in the "crystallographic dimer" are oriented in a V-

shaped fashion towards one side of the dimer. The Ras-Ras conjugates with both 1.5 

nm and 5 nm linker lengths allow for the "crystallographic" dimer conformation as 

well as other possible interaction modes. The linkage of cysteine side chains with bis-

maleimide cross-linkers is irreversible[87].  

 24 

ClustalW(47). The residues involved in salt bridges at the crystallographic dimer interface are 
boxed. 
 
 

 
 

 
Figure S2. (A) Protein models utilized in this study: Ras166, the isolated G domain of H-Ras, 
residues 1-166; Ras181, the cytosolic portion of the full-length H-Ras, residues 1-181; Ras-2-
Ras and Ras-11-Ras, the inverted-tandem conjugates of two Ras181 molecules. The drawing is 
based on PDB ID 5P21 (residues 1-166; "crystallographic dimer") and 1Q21 (residues 1-171; no 
dimers; extended helix 5). To create the full-length model of the "crystallographic dimer", two 
1Q21 structures were aligned to the dimeric structure from 5P21. The unstructured C-terminal 
peptides, residues 172-181, were added to 1Q21 in Pymol and modeled in conformations to show 
that there are no steric restrictions to form the dimeric structure with either 1.5 or 5 nm linkages 
between C-terminal cysteines. The BM(PEG) linkers are schematically shown with dashed lines. 
Drawing is approximately to scale. (B) The size-exclusion chromatography profile of the 
conjugation reaction mixture utilizing BM(PEG)2. The conjugate and monomer peaks are labeled 
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Figure 33.  Demonstration of cross-linking of two Ras molecules using BM(PEG)2. 

 
 

Cross-linked conjugates were purified by size exclusion chromatography using 

Ultragel Aca54 XK16/40 column to assure sample purity see Figure 34. 

 
 

 
Figure 34. Purity of the samples analyzed with SDS-PAGE. 

Lane 1, PageRuler Prestained Protein Ladder; lane 2, first preparation H-Ras C118S 
1-181;  

lane 3, second preparation H-Ras C118S 1-181; lane 4, Ras-2-Ras sample; lane 5, 
Ras-11-Ras sample. 

 
 

Relative protein concentration determined by Bradford assay was 16µM for H-Ras 

C118S 1-181; 12µM for Ras-2-Ras and 18µM for Ras-11-Ras. Low protein 
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concentration was used in this study to assure presence of monomer species for H-Ras 

C118S 1-181 proteins for correct data comparison. 

 Each construct was tested under three temperatures (20°C, 25°C and 37°C) and in a 

three buffers of different ionic strengths. Ionic strength was changed by varying NaCl 

concentration from 0-300 mM. Since increased ionic strength has a destabilizing 

effect on the salt bridges we planned to see change of the rotational correlation times 

throughout the experiment in case.  

As fluorescent label, we utilized Mant-GDP (excitation wavelength = 360nm; 

emission wavelength = 440nm) fluorophore that performs two tasks: small Mant 

group eliminates the possibility of fluorophore-driven self-association and 

additionally serves as GDP mimic. GDP mimic was utilized because dimerization was 

observed in GDP state in the original paper [34] by Guldenhaupt et al. Fluorescence 

anisotropy decay data was fitted using AniFit software (shared by Søren Preus; 

www.fluortools.com). We investigated only GDP-bound state of the protein since, in 

previous studies, dimerization was reported for GDP state of the protein [34]. 

 
 

  
Figure 35. H-Ras rotational correlation time dependence on ionic strength of the 

buffer and temperature. Black bar represent expected θ of the Ras dimer. Black arrow 
demonstrates expected trend from increasing buffer ionic strength. Red series are 
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represent Ras-2-Ras data; Blue – Ras-11-Ras; Black corresponds to H-Ras C118S 1-
181; 

 
 

We noted that G-domain rotational freedom was practically unaffected by conjugation 

demonstrating that two G-domains tumble independently in a solution from each 

other [29]. We were expecting 2-2.7 -fold increase of rotation correlation time if the 

dimer species were present in the samples. 

One would expect the rotational correlation time of the G domain in Ras conjugates to 

be greatest at the low salt concentration (due to enhanced stability of G domain 

dimers) and to gradually reduce with increasing ionic strength (due to a gradual shift 

of populations towards dissociated independently-tumbling G domains in Ras 

conjugates). But the results demonstrate that there is no decrease of rotational 

correlation time due to destabilization effect of the increasing ionic strength of the 

buffer on salt-bridges that provide the basis for dimer formation.  

Generally expected trend is depicted as black arrow. We attribute small increase in θ 

at 20°C to an increased size of the solvation shell of the protein at higher salt 

concentrations.  

In conclusion, based on our results we propose that G-domain alone is unable to form 

dimers through protein-protein interactions at physiological conditions independently 

of ionic strength. Thus, in our future experiments, where we will investigate protein 

tethered to a lipid bilayer, we do not need to worry that spatial proximity at the 

membrane surface may induce dimer formation. So, all changes in rotational freedom 

observed in future experiments will be due to presence of the lipid bilayer or protein 

lipid anchor region.  

Recent publication by Groves et al. [88] demonstrated that Ras protein does not 

dimerize regardless of the nucleotide bound state, presence of the lipid bilayer and its 
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composition. These results demonstrates that in the future experiments interrogating 

Ras protein-protein, protein-lipid interactions and overall function on the surface of 

the lipid bilayer we can analyze data assuming it acts as a monomer on the membrane. 

Project	
  2.	
  POR	
  dynamic	
  interaction	
  with	
  lipid	
  bilayer.	
  
 
 

NADPH-cytochrome P450 reductase 
 
 
POR plays a key role in mediating electron transfer to diverse cytochromes P450, 

known to be involved in vital processes in the organism such as drug, toxins and 

hormone metabolisms. It is noteworthy that, in humans, single POR provides 

electrons to forty-eight microsomal cytochrome P450[41] .  Consequently, alteration 

of POR activity in living cells can lead to severe disease, identified as a POR 

Deficiency Syndrome. The disease symptoms are similar to Antley-Bixler Syndrome 

(ABS) which include: skeletal structure malformations (mainly affecting head), fusion 

of adjacent bones, bowing thigh bones, joints permanently flexed or extended, etc. 

But unlike ABS POR Deficiency Syndrome, it also involves symptoms related to 

steroid hormone metabolism, such as ambiguous genitalia. Due to the fact that ABS is 

related to mutations in Fibroblast growth factor receptor 2, thus a cause of the disease 

is different while symptoms are alike. In the literature, POR deficiency can be 

indicated as a specific case of ABS or another syndrome.  

The electron transfer model of POR (Fig.1) based on the X-ray diffraction studies of 

the cytosolic region [41]  (using a construct lacking 56 N-terminal residues —“Δ56 

POR” in the following text) requires conformational exchange between two states of a 

molecule: a “closed” conformation which allows ET from NADPH to flavins and an 

open conformation to transfer electrons from FMN to cytochrome P450 and other ET 
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partners.  Structural details of this process though are yet to be revealed. It should be 

noted that mammalian POR can only perform its function while being attached to the 

lipid bilayer which requires presence of a lipid bilayer mimic in an experiment, 

increasing the size of the system. The fact that the cytosolic portion of POR can 

interact with the non-native ET partner cytochrome c implies that presence of a lipid 

bilayer is not simply a local concentration effect. Liu and coworkers recently reported 

that activity of POR and coupling in POR-P450 complex in nanodiscs are enhanced 

when nanodiscs are made with the natural lipid preparations extracted from 

endoplasmic reticulum (ER) compared to the synthetic lipid mixtures mimicking ER 

composition[89]. This finding indicates that POR makes specific protein-lipid 

interactions modulating enzymatic activity of POR.  

Moreover, a number of clinical studies reported on mutations that disrupt interaction 

with the specific isoform of cytochrome P450 while not affecting the others [90, 91]. 

The reason for how POR differentiates between different P450 has been elusive and 

we suggest that protein-lipid interaction between POR and lipid bilayer can be one of 

the factors. 

Another challenge arises from the presence of an unpaired electron during ET cycle 

which leads to paramagnetic relaxation of signals which renders conventional 

techniques incapable to sense structural details. 

Vincent et al. extensively characterized the conformational state of the isolated 

cytosolic portion of the protein, Δ56 POR, in its oxidized state but did not report any 

measurements on the reduced samples [92]. Interactions of a similar soluble construct 

Δ66 POR with heme oxygenase was also documented by NMR in the oxidized state 

[93] as well as interaction of the isolated FMN-binding domain with the cytochrome c  
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[94] and cytochrome P450 17A1 [95]. 

The goal of our research was to determine structural factors of POR protein-lipid 

interactions and dynamics on membrane. The work was done in collaboration with 

Dr. Jung-Ja Kim (Medical college of Wisconsin, Milwaukee, Wisconsin). In our 

research we utilized rat POR, a well-studied homolog of human POR. A BLAST [96] 

sequence alignment reveals 84% gene sequence identity between human and rat POR. 

 
 

 
Figure 36. Schematic representation of conformational exchange experienced by POR 

during electron transfer cycle 
 
 

To address those challenges, we utilized Methyl-TROSY technique in combination 

with extrinsic small-molecule-isotopic-labeling with S-methyl methanethiosulfonate 

(MMTS). Labels were attached to surface-exposed cysteines introduced by site-

directed mutagenesis. Attachment of the label results in a methione-like side chain – 

methylthiocysteine (MTC). All native cysteines were first mutated to alanines and 

threonines (created by Dr. J Kim laboratory) to avoid non-specific labeling.   
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Figure 37. POR labeling scheme with MMTS 

 
 

Mutation of the native cysteines does not alter the flavin content of the protein, as 

tested by a flavin content assay. This assay relies on the fact that fluorescence 

quantum yield of FAD is 9-times lower than that of FMN. FMN has low KD ~ 10-8M 

(unlike FAD with KD<10-9M) and it can be released from POR under high ionic 

strength condition. By comparing fluorescence before and after the addition of 

phosphodiesterase that converts FAD to FMN ( Table 5), one can quantify flavin 

content.  

 
 
Table 5. Flavin content of cys-less ∆56 POR, ∆56 POR carrying cysteines and labeled 
protein. 

 

Percentage cofactor 
content of a protein, % 

 
∆56 POR cysteine-less 95±3 
∆56 POR Q157C Q517C 96±4 
∆56 POR MTC-157,517 92±3 

 
 

On the other hand, activity of the protein towards reduction of cytochrome c is 

impaired by mutation. Specifically, deletion of cysteine in the position 630 results in a 

~50-fold decrease in activity compared to the wild type protein.  However, 

introduction of additional cysteines (those investigated in our research) and their 

labeling with MMTS does not further affect protein activity. 
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Table 6. Activities of cys-less ∆56 POR, ∆56 POR carrying cysteines and labeled 
protein. 

 

Specific protein activity, 
mol cyt c reduced/ 

min×mol POR 

Percentage of WT protein 
activity, % 

 
∆56 POR cysteine-less 78 ±2 2.65 
∆56 POR Q157C Q517C 75 ±4 2.50 
∆56 POR MTC-157,517 77 ±3 2.56 

 
 
To test whether MTC labels will be sensitive to different redox states of the protein, 

we selected five strategically chosen locations on cytosolic portion of POR lacking 

transmembrane region (∆56 POR). Figure 38 shows localization of the five mutations 

E127C, Q157C, N271C, S308C, and Q517C (after the labeling producing MTC-127, 

MTC-271, MTC-308, MTC-157 and MTC-517 respectively) introduced in cytosolic 

portion of POR based on what kind of redox/structural information they can probe in 

full-length protein attached to lipid bilayer. The MTC127 occurs at the membrane-

facing region of the FMN domain and is relatively distant from the FMN cofactor, 

while MTC-157 is farther from the membrane and closer to the FMN, therefore 

sensitive to the redox state. The MTC-517 will be sensitive to the redox state of both 

flavins as well as the domain closing. It is also located near a putative interface of the 

POR-P450 complex. The MTC-308 and MTC-271 are localized far from the cofactors 

and are unlikely to be significantly affected by the enzyme redox status, open/closing 

transition or binding of the P450. In the full-length protein, however, the MTC-308 

and MTC-271 may experience a dramatic change in the distance to the membrane 

upon closing transition, thus becoming possible reporters of the conformational 

changes in POR, providing two probes 2 Å away from each other. The membrane 

distance for MTC-127 is expected to be relatively invariable in the open and closed 

POR conformations because of its location on FMN domain that is interacting with 

cytochromes P450.  
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Protein redox state can be monitored by the changes in absorbance spectra. Figure 39 

demonstrates absorbance spectra recorded immediately after NMR spectra 

acquisition. Oxidized POR flavins (red trace) are characterized by absorption bands at 

380 and 450 nm while protein reduction with NADPH leads to a decrease in 

absorbance at those wavelengths and gives rise to a new broad absorption band at 

550-650nm (blue trace). Comparison of our absorbance spectra from NADPH-

reduced samples with the one in the work of Rwere et al [97] here they report on 

dithionite-reduced POR (infeasible in our research due to the nature of the labeling 

process) suggests that both FAD and FMN are in the semiquinone state. This di-

semiquinone state was stably maintained in our samples for, at least, 4 h needed for a 

typical NMR experiment. The UV–Visible absorption spectra were recorded after 

every NMR measurement to verify the sample redox state.  
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Figure 38.	
  Localization of the methyl probes shown on a model of the membrane-
bound open (left) and closed (right) conformations of POR (based on Δ56 POR 
crystal structures 3SE9 and 1AMO). Cartoon model of FAD-binding domain is 
colored light grey; FMN-binding domain—black; FAD, FMN, and NADP are shown 
as spheres in wheat, pale violet, and pale green, respectively. The lipid bilayer is 
schematically shown as a gray rectangle. The cytosolic unstructured portions of the 
N-terminal peptide (residues 1–56 absent from the crystal structures) are depicted as a 
dotted line. A purple rectangle stands for a transmembrane region of the N-terminal 
peptide containing a tilted helix [based on the solid-state NMR data. The γ-atoms of 
residues 127, 157, 271, 308, and 517 are shown as colored spheres. The particular 
orientations of the cytosolic portion of POR relative to the membrane surface was 
never structurally resolved, and only chosen in this model to emphasize differential 
membrane proximity of the labeled sites.  
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Figure 39. UV–Visible absorbance spectra of the POR flavins. A. Representative 
spectra of Q157C/Q517C Δ56 POR labeled with 13C-MMTS oxidized with 
ferricyanide, red trace, and reduced with excess NADPH, blue-trace. Reduced trace 
(blue) is distorted in the wavelength range shorter than 400 nm due to incomplete 
compensation of the NADPH absorbance in the reduced sample by a reference 
NADPH solution. B. The time evolution of absorbance in a typical NMR sample 
reduced with NADPH. The sample was prepared the same way as if making a POR 
sample for NMR, but it was sealed in the optical cell instead of a Shigemi tube to 
allow for the repeated absorbance measurements.  

 
 

Protein	
  expression,	
  purification	
  and	
  characterization	
  results	
  
 
 
Expression and purification of the cytosolic portion of POR (Δ56 POR) were set up in 

our lab. To obtain purified protein, cell lysate centrifuged and its supernatant was 

passed through Ni-affinity column followed by 2’,5’-ADP Sepharose column. 

Purified protein yield was ~50mg from 1L of expression culture which is sufficient 

for 3 NMR samples with 300µM concentration of each. 
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Figure 40 Analysis of Δ56 POR expression level and its purification quality by SDS-
PAGE. A. PageRulerTM Unstained Protein Ladder (ThermoFisher, 26614) (lane 1). 
Cell lysate of induced (lane 2) and non-induced (lane 3) expression culture; lysate SN 
after ultracentrifugation of induced (lane 4) and non-induced (lane 5) expression 
culture. His60 NiSuperflow column flow-through (lanes 6,7), wash (8) and elution 
from the column (lanes 9-11). B. PageRulerTM Unstained Protein Ladder 
(ThermoFisher, 26614) (lane 1). 2’,5’-ADP Sepharose 4B column injection (lane 2); 
flow-through (lanes 3-5) and elution from the column (lanes 6,7). 
 
 
Protein concentration was determined using specific absorption at 450nm due to the 

presence of flavin cofactors as well as Bradford assay based on protein staining by 

Coomassie reagent. As it was mentioned before, activity assay and flavin content 

assay was performed for each sample. Protein molecular weight can only be estimated 

on the base of the SDS-PAGE. To confirm the integrity of the protein and its 

molecular weight, we additionally utilized MALDI-TOF mass spectrometry targeting 

proteins with molecular weight greater than 30kDa which was set up in our lab. 

Figure 41 demonstrates greater sensitivity of the technique utilizing complex α-

CHCA/DHB matrix compared to standard sinapinic acid for 72kDa Δ56 POR which 

allowed us to confirm that purified protein has expected molecular weight.   
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Figure 41. Comparison of MADI-TOF mass-spectra POR Δ56 Q157C Q517C 
obtained using SA and α-CHCA/DHB matrices. Black trace corresponds to the data 
obtained using SA matrix; blue – data from application α-CHCA/DHB matrix. 
 
 

Differential	
  redox	
  sensitivity	
  of	
  MTC-­‐labels	
  
 
 
Purified Δ56 POR mutants had their thiols modified with 13C-MMTS and acquired 

1H-13C HMQC spectra. Single cysteines mutants in case of E127C, Q157C, S308C, 

Q517C and double-mutant for Q157C/N271C were used to do resonance assignment.      

Figure 42 shows that these sites are spectrally resolved and their surface localization 

attenuated paramagnetic relaxation—MTC signals are detected even in the reduced 

POR. Each mutant spectrum contained two peaks: the specific resonance (labeled in 

71 
 

 

Figure 43. Comparison of MADI-TOF mass-spectra CYPOR Δ56 Cysless Q157C 
Q517C obtained using SA and α-CHCA/DHB matrices. 

Black trace corresponds to the data obtained using SA matrix; blue – data from application α-
CHCA/DHB matrix. 

Final point is that this technique indeed proved to be very useful for proteins with 

mass exceeding 50kDa. We plan to apply it in our future experiments to monitor the 

labeling with extrinsic labels, evaluation of the level of isotope incorporation and 

general characterization. 

It also was mentioned by the authors that by varying composition of the matrix one 

can achieve better resolution by sacrificing intensity of the peaks, but this matter 

remained unexplored in this experiment. 

 

Experimental(Plan(

To determine structural features of CYPOR conformation and dynamics on a lipid 

bilayer we plan to utilize extrinsic MMTS-labeling of perdeuterated protein on the 

surface of a lipid nanodisc. Next step of our research involves determination of the 

effect of clinically observed A287P mutation on CYPOR-cytochrome P450 

interaction. 
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the figure) and the broad peak seen in the center of the spectral region (later in the text 

referred to as middle peak).  

 
 

 

Figure 42. Overlay of 1H-13C HMQC spectra of the five single-cysteine mutants of 
Δ56 POR in the oxidized (A) and reduced (B) states. Contour levels were adjusted to 
account for the differences in NMR sample concentration.  

 
 
Despite the presence of the middle peak, the specific resonance assignments are 

unambiguous, and the signals are well resolved to allow the use of multiple-cysteine 

mutants to significantly cut costs and experimental time. Differential sensitivity of 

resonances was in agreement with the experimental design. Probes positioned at 

residues 127, 271 and 308 are too far from the redox centers (flavin cofactors) neither 

they are located at conformational hotspots showing no sensitivity towards protein 

reduction.   Specific signals from MTC-157 and MTC-517 (presented separately on   

Figure 44) demonstrate sensitivity towards protein reduction, specifically MTC-517 

that resides in the cleft between POR domains (with 20Å to cofactors) is significantly 
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affected by this process, resulting in strong paramagnetic line broadening (decrease of 

peak intensity). Both MTC-157 and MTC-517 experience chemical shift perturbation 

which may either be the result of a change in the chemical environment suggesting 

conformational changes or may be due to paramagnetic pseudocontact shift effect 

from semiquinone flavin cofactors due to anisotropy of semiquinone magnetic 

susceptibility tensors. Since MTC-157 is positioned on the surface of FMN domain 

and far away from interaction interface with FAD domain, therefore it is not expected 

to undergo any conformational changes, the effect must originate purely from a 

pseudocontact shift. MTC-517 on the other hand is harder to interpret since it is 

positioned between FAD and FMN domains hence will be affected by opening and 

closing of POR. But since magnetic susceptibility tensors of FAD and FMN in a 

context of POR are yet to be known, it is impossible to make a clear explanation of 

the phenomenon observed.  

It is hypothesized in the literature [98] that indole ring of Trp677 located between 

flavin moiety of FAD and nicotinamide moiety of NADPH acts as a lid controlling 

hydride transfer. In the existing structures obtained by X-ray crystallography, 

nicotinamide ring of NADP is located outside binding pocket and requires 

displacement of Trp677 indole ring that may trigger allosteric process within POR. 

Therefore NADP+ titration was performed on a sample with the probes in the position 

157 and 517 demonstrated to be sensitive towards protein reduction and possibly 

conformational changes without a change of redox state. Unfortunately, Figure 43 

demonstrated lack of any effect on the two labels towards NADP+ addition. It should 

be noted though, that one of the reasons might be that labels are located on the surface 

are insensitive to conformational changes within the protein.  
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Figure 43. 1H-13C HMQC spectra from Δ56 POR MTC-157,517 incubated with 1.5- 
(red), 3- (blue), and 5-fold (green) excess of NADP+.  

 
 

 

Figure 44. Effect of protein reduction. 1H-13C HMQC spectra at 600 MHz of the 
Q157C/Q517C Δ56 POR in the oxidized (red) and reduced (blue) forms. 

 
 

Differential	
  conformational	
  constraint	
  sensitivity.	
  
 
 
To gain an additional insight into the opening-closing transition in POR, we employed 

a conformationally restrained Δ56 POR construct where the loop connecting FAD- 

and FMN-binding domains was shortened by removal of the four-residue sequence 

TGEE at the positions 236–239. In our research, we referred to the construct as 

“ΔTGEE” in contrast to “full loop” mutant which maintained all amino acids of POR 

cytosolic portion. This modification made cytosolic portion of POR to adopt an 

“open” conformation observed in a structure derived by X-ray crystallography (Figure 

12.B). It has been hypothesized in the original work that this structure corresponds to 
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POR conformation when it interacts with cytochrome P450 to perform electron 

transfer. Despite the fact the structure obtained by X-ray crystallography does not 

allow inter-flavin electron transfer, this construct is susceptible to reduction, moreover 

as it can be seen from the absorbance spectra obtain from the samples subjected to the 

same reduction protocol as a “full loop” constructs, both flavins adopt semiquinone 

state similar to the full loop counterpart (Figure 45 C and D). Small differences in the 

reduced spectrum are due to incomplete consideration of NADPH presence in the 

background (𝜆abs=340nm).    

Figure 45 demonstrates the effect of loop deletion on the chemical shifts of the two 

most sensitive residues, MTC157 and MTC517, in the oxidized Δ56 POR. Position of 

the MTC-157 is far away from conformational center and it overlays perfectly with 

the resonance from “full loop” construct unlike the resonance of MTC-517. Since the 

distance from MTC517 to the loop deletion site is around 45Å, perturbation of MTC-

517 can only occur due to a transition between “open” and “closed” states. Since, it is 

not straightforward to convert the chemical shift change into the amplitude of a 

structural rearrangement, we will restrict ourselves to a statement that the oxidized 

ΔTGEE Δ56 POR conformation in solution is distinct from the conformation of 

oxidized full-loop Δ56 POR.  

POR reduction produces an interesting effect on signals from the probes MTC-157 

and MTC-517 in case of ΔTGEE construct demonstrating an emergence of signal 

splitting for both probes which is in case of MTC-517 is unresolved. In both cases one 

resonance remains close to the original position of oxidized ΔTGEE Δ56 POR while a 

new resonance rises at the position near the one from the reduced full loop Δ56 POR. 

Since presence of two signals from each label cannot be resulted by difference in the 

level of reduction (reduction level is the same according to absorbance spectra), this 
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phenomenon must arise from slow exchange conformational equilibrium between two 

distinct magnetically and chemically non-equivalent open and closed states.  

 
 

  
Figure 45. Effect of the loop deletion (236TGEE239) on chemical shifts of 
Q157C/Q517C Δ56 POR in the oxidized (A) and reduced (B) states. Absorbance 
spectra of the oxidized (C) and reduced (D) NMR samples (recorded immediately 
after acquisition).  

 
 
The four amino acids deletion in the hinge region is expected to destabilize the inter-

domain motion since ΔTGEE construct adopts open conformation in a crystal 

structure while being capable to FMN reduction. This results a slow frequency 

conformational fluctuation motion between open and closed states of ΔTGEE 

construct. The peak separation of MTC517 signals is approximately 0.4 ppm in 13C 

dimension (corresponding to Δω = 377 s− 1), and for MTC157 — 0.025 ppm in 1H 

dimension (Δω = 94 s−1). To observe the two conformer signals with this separation 

requires the exchange rate constant, kex, to be much smaller than 100 s−1 (kex << Δω).  

It is remarkable that the new resonances of the ΔTGEE POR in the reduced state have 

chemical shifts similar to the ones of the reduced full-loop POR. This implies that 
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because the distance from MTC517 to the loop deletion site 
is around 45 Å. Since, it is not straightforward to convert the 
chemical shift change into the amplitude of a structural rear-
rangement, we will restrict ourselves to a statement that the 
oxidized ΔTGEE Δ56 POR conformation in solution is dis-
tinct from the conformation of oxidized full-loop Δ56 POR.

Examination of the reduced form of ΔTGEE Δ56 POR 
(Fig. 7b, blue contours) reveals that peaks of MTC157 and 
MTC517 are each split in two (MTC517—unresolved). 
One resonance remains close to the position of oxidized 
ΔTGEE (as in panel a, blue contours) while a new reso-
nance is observed at the position near the chemical shift of 
a reduced full-loop POR (red contours). The observed split-
ting of the MTC157 and MTC517 resonances must result 
from a population inhomogeneity and slow exchange kinet-
ics between the two states. Two forms of POR giving rise to 
these peaks may due to (1) incomplete reduction of flavins or 
(2) a slow-exchange closed-open conformational equilibrium 
in the ΔTGEE POR (or both). Similar flavin (460 nm) and 
semiquinone (580 nm) absorbance in Fig. 7d indicates that 
the ΔTGEE POR is reduced similarly to the full-loop POR, 
which makes the first explanation less likely.

Based on X-ray diffraction analysis, the four-residue dele-
tion from the hinge region was expected to destabilize the 
closed state by not allowing it to form native interdomain 
non-covalent bonds (POR “cannot properly close”) (Ham-
dane et al. 2009). Fewer interdomain bonds in the closed 
state would imply the weaker force constant for the opening-
closing transition, which must result in the slower frequency 

of conformational fluctuations. The peak separation of 
MTC517 signals is approximately 0.4 ppm in 15N dimen-
sion (corresponding to Δω = 150 s− 1), and for MTC157—
0.025 ppm in 1H dimension (Δω = 94 s− 1). To observe the 
two conformer signals with this separation requires the 
exchange rate constant,  kex, to be much smaller than 100 s− 1 
 (kex << Δω) (Kaplan and Fraenkel 1980; Palmer 2004; Kay 
2005).

It is remarkable that the new resonances of the ΔTGEE 
POR have chemical shifts similar to the ones of the reduced 
full-loop POR (Fig. 7b). This implies that both proteins 
adopt similar conformations in the NADP(H)-saturated 
reduced state, despite they were in distinct oxidized confor-
mations. Yet, we must emphasize qualitative nature of our 
argument: at this time, the measured chemical shift perturba-
tions cannot be converted into structural restraints because 
the magnetic susceptibility tensors of FAD and FMN semi-
quinones (in the context of POR) are not known.

Full-length POR in lipid nanodiscs

NMR studies of membrane proteins integrated in the lipid 
bilayers are very challenging due the presence of the lipid 
environment. Full-length cytochrome P450 proteins and a 
small reductase, cyt b5, were studied in the lipid membranes 
by solid state NMR spectroscopy (Durr et al. 2007; Yama-
moto et al. 2013). The N-terminal transmembrane peptide of 
POR was reported by Huang et al. to form a transmembrane 
helix crossing the bilayer with a tilt of 13° from the bilayer 

Fig. 7  Effect of the loop deletion (236-TGEE-239) on chemical shifts of Q157C/Q517C Δ56 POR in the oxidized (a) and reduced (b) states. 
Absorbance spectra of the oxidized (c) and reduced (d) NMR samples (recorded immediately after acquisition)
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both proteins adopt similar conformations in the NADPH-saturated reduced state, 

despite they were in distinct oxidized conformations. Moreover, the fact that full-loop 

POR demonstrates only single resonance while ΔTGEE POR two resonance under 

reduced conditions suggests that loop deletion is affecting the structure of the protein 

in reduced state. If protein reduction resulted in a conformational change to an open 

state for full-loop construct, we would have observed only single resonance for 

ΔTGEE version of the protein, since loop deletion makes open conformation a more 

favorable one. Hence, the loop deletion leads to a slower exchange between reduced 

conformational state compared to the closed full-loop POR, suggesting that protein 

assumes closed conformation in the reduced state. Though it still might be different 

than that of the oxidized Δ56 POR crystal structure, due changes that might occur in 

the domain interaction interface.  

Nevertheless, we cannot state that chemical shift perturbation of the signals observed 

has only paramagnetic nature since redox status of the flavins can affect structure of 

the protein without assuming an open conformation. 

Non-­‐specific	
  resonance	
  from	
  MMTS-­‐labeling	
  
 
 
As our next goal, we decided to perform detailed investigation of the non-specific 

resonance observed in our sample. It should be note that the peak has complex 

structure and represents a cluster of a smaller peaks with similar chemical shifts. 

We also observed that the proportion of spectral intensity observed as the middle peak 

widely varies among different mutants and different preparations of the same mutant 

(see Table 7). 

Table 7. Evaluation of intensity of the middle peak in different Δ56 POR 
preparations. Ratio of intensities of specific signals and the middle peak in 1H -13C 
HMQC was measured and a magnitude of the middle peak was expressed a as a 
percentage of the specific peak intensity.  
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Labeling 
Site  

Redox 
State  

Specific signal, 
S/N  

 Middle peak, 
S/N  

Middle/Specific, 
%  

MTC-127  
Oxidized  409   24  6%  
Air*  219   17  8%  
Reduced  356   30  8%  

MTC-157  

Oxidized  120   60  50%  
Air*  243   44  18%  
Air**  43   8  19%  
Reduced  98   40  41%  

MTC-308   
Oxidized  406   10  2%  
Air*  508   15  3%  
Reduced  263  9  3%  

 MTC-517  

Oxidized  102  60  59%  
Air*  330  44  13%  
Air**  51  8  16%  
Reduced  13   40  308%  

 
 

The original proposal for the source of the non-specific resonance peak was non-

specific labeling with MMTS. To test this hypothesis, we expressed and purified 

cysteine-less Δ56 POR construct and subjected to the same labeling protocol as we 

did for the other samples. Figure 46 demonstrates absence of any signals in the region 

interest confirming that MMTS labeling is highly specific for cysteines and the label 

is not retained non-specifically by the protein or flavins. Therefore, we conclude that 

the “middle peak” must originate from a reaction with the same cysteine that gives 

rise to the specific resonance. 

 
 

 
Figure 46. 1H-13C HMQC spectra from Δ56 POR cysteine-less construct incubated 
with 13C-MMTS. Contour level was lowered to the noise floor to demonstrate the 
absence of signals. 
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Similarity of the chemical shifts of the middle peaks in case of all mutants that are 

located in the different positions across the protein suggested similarity in the 

structural environment. One explanation for this fact would be hydrolytic degradation 

or unfolding followed by non-specific aggregation of POR. To test this hypothesis, we 

performed size-exclusion chromatography (SEC) on Superose6 Increase 10/300 GL 

(GE Healthcare) of the NMR sample to separate Δ56 POR MTC-157,517 sample 

from possible degradation products or large unfolded aggregates. Elution peak 

maxima was taken and sample 1H-13C HMQC spectra was recorded immediately after 

the SEC without additional concentration step to exclude concentration effect on 

protein degradation. Lower counter level of the sample after SEC is explained by 

dilution effect of the column. Results obtained revealed no significant change in 

relative intensities of all three peaks (Figure 47). 

 
 

 
Figure 47. “Middle peak” species are not removed by SEC. A 1H-13C HMQC spectra 
obtained from Δ56 POR MTC-157,517 before (red) and after (blue) SEC. B Relative 
intensity of the middle peak as a percentage of MTC-517 and MTC-157 intensities 
before (red) and after (blue) the size-exclusion chromatography.  

 
 
This result indicates that non-specific resonance signal originates from a monomeric 

fully folded Δ56 POR molecule where all MTC labels experience similar magnetic 

environment. One of such cases will be when MTC side chain adopts conformation 

where it is extended into a solvent, while the specific peaks correspond to side chains 
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interacting with the protein surface.  On the other hand, magnetic environment of such 

conformation should be similar to the methylthiocysteine (MTC) in a solution. 

Cysteine was dissolved in water and labeled with MMTS followed by 1H-13C HMQC 

NMR experiment. Since sample dialysis was impossible, byproducts of cysteine 

labeling were observed on the spectra. However, results obtained from the 2mM MTC 

in solution demonstrated that chemical shift of the MTC signal (MTC – 2.24ppm 

22.44ppm) is different from that of the middle peak thus providing evidence against 

our hypothesis. 

Our original assumption was based on the fact that the middle peak is neither product 

of non-specific labeling nor signal originating from degraded/aggregated protein. We 

observe both specific resonance and middle peak while signal separation for MTC-

157 and non-specific resonance is approximately 0.25 ppm in 1H dimension 

(corresponding to Δω = 942 s−1) which signifies that interconversion, if it exists, has 

to be in slow exchange kinetic regime. To determine whether specific resonance and 

middle peak come from the same species we decided to carry out ZZ-exchange 

experiment, also known as exchange spectroscopy (EXSY). The main idea of this 

experiment is to allow sample to undergo conformational exchange while carrying 

magnetization. At the start of experiment magnetization is being transferred on 

separate conformation S and P but instead of recording spectra right away, long 

evolution time is applied to allow some of the conformation S to turn into P and vice 

versa and only then FID acquisition occurs. This process creates cross-peaks on the 

spectra between two resonances in a slow exchange regime (Figure 48 A).  



 

 

86 

 
Figure 48. A. Expected cross-peaks in a ZZ-exchange experiment for two 
conformations S and P that are in a slow exchange regime. B. Exchange spectroscopy 
to ZZ-exchange NMR experiment demonstrates absence of cross-peaks for specific 
resonance of MTC-157 and “middle peak”. Dashed line intersections specify 
positions of the expected cross-peaks. 
 
 
Figure 48.B clearly demonstrates the absence of cross-peaks between non-specific 

resonance and MTC-157 indicating no conformational exchange between the source 

of those two signals. Thus, results of the ZZ-exchange experiment suggest sample 

heterogeneity which cannot be removed with size-exclusion chromatography.  

Thus, to sum up our observations, presence of the middle peak in different mutants 

suggests similar magnetic and hence chemical environment for the labeled cysteines. 

Moreover, non-specific resonance was insensitive towards protein reduction and 

conformation constraints suggesting that origin of those species is a misfolded, 

inactive, monomeric Δ56 POR molecule. 

Since misfolded protein cannot be removed by SEC and cannot be detected by SDS-

PAGE gel, MALDI-TOF spectrometry, absorbance spectroscopy, we concentrated 

our efforts on modification of protein purification protocol to provide homogenous 

and active Δ56 POR. Figure 49 shows the result of modified protein purification 

protocol that relies on higher hydrophobicity of the misfolded protein providing 

homogenous NMR samples. 
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Figure 49. Removal of the middle peak species from the sample Δ56 POR. Overlay of 
1H-13C HMQC spectra of the Δ56 POR MTC-517 in the oxidized states purified using 
standard (black) and modified (red) protocol. 
 
 

After visually comparing homogeneous Δ56 POR NMR samples with heterogeneous 

one, we observed lower stability of the heterogeneous sample (sample was prone 

aggregation after 3 hours within the NMR tube), due to this fact we weren’t able to 

isolate misfolded species. Another interesting observation was that heterogeneous 

sample is prone to auto-reduction within 2 days in the absence of oxidizing agents. 

It has to be noted that flavin content assay demonstrated complete cofactor loading for 

the samples where total protein concentration was controlled by Bradford assay. So, 

we can hypothesize that presence of cofactors serves as a stabilizing core for 

misfolded Δ56 POR molecule preventing it from aggregation. 

 
 

Table 8. Activities of ∆56 POR with and without misfolded species 

 

Specific protein activity, 
mol cyt c reduced/ 

min×mol POR 

Percentage of WT protein 
activity, % 

 

∆56 POR MTC-157,517  78 ±2 2.65 

∆56 POR MTC-157,517 
with 46% of misfolded 

species present 
45 ±3 1.50 
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Results of the cytochrome c activity assay demonstrated that misfolded protein is 

indeed inactive as it was suspected. Percentage of misfolded species was calculated 

from the volume of the middle peak relative to the sum of peak volume of middle 

peak and specific resonance. But since in our approach we utilized modified protein, 

loss in activity was associated with modification introduced in the protein 

complicating the problem detection. However, NMR techniques are capable to 

investigate those species separately since they provide their own signals; on the other 

hand, misfolded protein cannot be detected by any other analytical techniques such as 

small-angle X-ray scattering, DEER spectroscopy or fluorescence and as a result 

providing data that can be easily misinterpreted. 

However, we shouldn’t disregard the data obtained in our experiment from misfolded 

species as an error in sample preparation. Despite the fact the protein in our 

experiment was overexpressed and then purified from E. coli, presence of the 

misfolded POR stabilized by flavin cofactors in our experiments may have 

physiological importance not only for POR but other cofactor-containing proteins in 

vivo. One of such examples would be amyloidosis where amyloid fibrils are building 

up in the tissues due to protein misfolding. Several studies have shown that soluble 

misfolded oligomers are more toxic than final fiber aggregation [99]. And presence of 

the some of small molecules in a cytosol (non-native cofactors) can serve as 

stabilizing cores for such species. 

Matrix	
  Scaffold	
  Protein	
  expression	
  and	
  purification	
  
 
 
It has been successfully demonstrated that MMTS-labeling coupled with Methyl-

TROSY technique can be utilized to probe reduction of Δ56 POR and effect of 

introduction of conformational restraints. To extend this approach onto full-length 
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protein we first need to consider the lipid membrane mimic that was utilized in our 

study. A number of existing lipid mimetic systems were introduced in Chapter 2 and 

the one which provides a lipid bilayer surface without introduction of detergents and 

allows application of NMR technique to study lipid-protein dynamics is a lipid 

nanodisc. Nanodiscs are soluble discoidal structures mimicking the flat surface of the 

cellular membranes where the area of the lipid bilayer is surrounded by a matrix 

scaffold protein. The size of a lipid nanodiscs can vary, depending on MSP protein 

construct selected. For our preliminary research, we selected MSP1D1 protein which, 

upon assembly, provides nanodisc with 10nm disc diameter and 8nm diameter of a 

lipid bilayer surface. This area is sufficient to incorporate a full-length POR molecule. 

Nanodisc application provides an additional control to reproduce a system where one 

POR molecule is attached to one nanodisc, defining solution composition and 

preventing generation of one nanodisc with multiple POR molecules which may 

affect protein-interaction. 

Expression and purification of His-tagged MSP1D1 was performed in our lab with 

protein yield of ~30mg from 1L of expression culture which is sufficient for 6 NMR 

samples with 300µM concentration of empty nanodiscs. After purification, the protein 

sample was characterized by absorbance spectroscopy, SDS-PAGE, Bradford assay 

and MALDI-TOF spectrometry. 
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Figure 50. SDS-PAGE gel demonstrating molecular weight and purity (>95%) of the 
purified MSP1D1 protein sample (lane 2) after all purification steps and His-tag 
cleavage against PageRulerTM Unstained Protein Ladder (ThermoFisher, 26614)(lane 
1). 
 
 

Empty	
  DOPC/DOPG	
  lipid	
  nanodisc	
  	
  
 
 
Empty nanodisc assembly was carried out as described in Chapter 4. It has been 

reported that lipid composition can affect reduction potential of the protein. It was 

reported earlier that the redox potential of POR is modulated by a lipid composition of 

the bilayer [44, 100].  

Lipid composition was selected to be 15% DOPG and 85% DOPC which mimics the 

surface charge of the endoplasmic reticulum in rat liver [101] (15% - negatively 

charged lipids, 73% - uncharged lipids). After nanodisc assembly, sample was 

injected into gel-filtration column Superose 6 Increase to provide homogenous 

mixture of 10-nm nanodiscs. This step also served to provide a gel-filtration profile of 

a nanodisc system and ensure that its elution volume corresponds to hydrodynamic 

volume of the species (~160 kDa). To demonstrate that nanodiscs are not 

nonspecifically labeled by MMTS, we subjected empty nanodisc sample to the same 
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labeling protocol as for Δ56 POR. Figure 51 proves specificity of MMTS label; major 

peaks on the full spectra are originating from lipids within nanodisc. 

 
 

 
Figure 51. 13C-MMTS does not bind to nanodiscs. 1H - 13C HMQC spectra obtained 

from a nanodisc sample incubated with MMTS in the absence of POR. (Top) Full 
spectral range showing signals of the nanodisc lipids and the matrix scaffold protein. 

(Bottom) Enlarged spectral region where MTC signals are typically observed. 
Contour level was lowered to the noise floor. 

 
 

Another advantage of the application of lipid nanodiscs is ability to utilize it in 

MALDI-TOF mass spectrometry. MALDI-TOF is very demanding to a sample 

preparation and does not tolerate the presence of detergents. Detergents are required 

to be present during full-length membrane protein purification to solubilize 

membrane-binding portion of membrane proteins. By assembling sample onto a lipid 

nanodisc and subjecting it to MALDI-TOF spectrometery allows us to determine 

protein molecular weight even for a membrane proteins.  

Full-­‐length	
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The expression and purification of the His-tagged full-length POR mutants which was 

more complex and demanding than that of a cytosolic POR was set up in our lab. His-

tag was engineered to be non-cleavable to be later utilized during protein-nanodisc 

complex purification. Cleavage of the His-tag will require absence of protease 

inhibitors in the solution which makes a sample venerable towards cleavage if 

cytosolic portion of the protein from the nanodisc complex.   Protein expression levels 

are high but amount of the extractable protein is smaller compared to the cytosolic 

portion. In addition, purification scheme is more complex and time-consuming since 

it requires significant dilution during purification to solubilize full-length POR. 

Moreover, protein is unstable, requires presence of detergent and extremely 

susceptible to proteolysis. Purified protein yield was ~5mg from 1L of expression 

culture, 2 L of expression culture are sufficient for 1 NMR samples with 100µM 

concentration of each (protein alone without considering losses during nanodisc 

complex assemble). 

It should be noted that due to a nature of purification from misfolded protein, which 

relies on its hydrophobicity, it cannot be applied for a full-length protein because of 

the presence of hydrophobic membrane-binding domain of the protein that requires 

presence of detergents rendering established purification protocol incapable of getting 

rid of misfolded protein. 

Purified protein was subjected to the same characterization techniques which were 

applied to cytosolic POR. Similar results were observed for full-length protein: 

complete flavin loading, reduction activity by NADPH, recording of the absorbance 

spectra and cytochrome c activity assay (results obtained for FL POR Q157C Q517C 

were 65±3 mol cyt c reduced/ min×mol POR). 
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Figure 52. Analysis of full-length POR expression level and its purification by SDS-
PAGE. A PageRulerTM Unstained Protein Ladder (ThermoFisher, 26614) (lane 1,10). 
Cell lysate of non-induced (lane 2) and induced (lane 3) expression culture; lysate SN 

after first centrifugation of non-induced (lane 4) and induced (lane 5) expression 
culture. After first centrifugation induced lysate SN was subjected to 

ultracentrifugation resulting SN (lane 6) and pellet (lane 7). Pellet was solubilized, 
incubated with detergent and ultracentrifuged again providing SN (lane 8) loaded into 
the His60 NiSuperflow column. His60 NiSuperflow column flow-through (lanes 9); 
wash (11,12) and elution from the column (lanes 13-15). B PageRulerTM Unstained 
Protein Ladder (ThermoFisher, 26614) (lane 1). 2’,5’-ADP Sepharose 4B column 

injection (lane 2); flow-through (lanes 3,4) and elution from the column (lanes 5-8). 
 
 

Nanodisc	
  assembly	
  
 
 
NMR studies of membrane proteins integrated in the lipid bilayers are very 

challenging due the presence of the lipid environment. Solution NMR studies of 

membrane proteins were made possible utilizing soluble lipid bilayer mimics such as 

bicelles and, in particular, lipid nanodiscs. But, the FL POR, due to its large molecular 

weight and more so paramagnetic nature of electron transfer process, remained 

recalcitrant to NMR analysis either in the solution and solid states. 

We incorporated full-length POR Q157C Q517C into a 10-nm nanodisc following 

established protocol reported in Materials and Methods (Chapter 4). Dual mutant FL 

POR Q157C Q517C was selected as a primary sample due to those probes’ sensitivity 

towards the protein reduction. FL POR labeling was performed after its insertion into 

nanodisc as it was done for soluble cytosolic POR. 

BA 1    2    3   4    5   6   7    8   9  10 11 12 13  14 15 1       2       3       4       5      6       7       8   
kDa kDa

200
120
  85
  70
  50
  40

  30

  10

200
120
  85
  70
  50
  40

  30
  25   25



 

 

94 

Figure 53 shows1H-13C HMQC spectra obtained from 0.1mM oxidized (A, red) and 

reduced (B,blue) full-length POR incorporated into a nanodisc acquired at 600MHz 

instrument under protonated conditions. Remarkably, chemical shift perturbation 

observed from MTC-157 and MTC-517 probes in case of the protein-nanodisc 

complex was similar to that of a soluble cytosolic domain of the protein alone. This 

observation is in agreement with distance of the labels location to a lipid bilayer 

surface and their position on potential cytochrome P450 interaction surface. Signal 

linewidth broadening effect is shown on Figure 54 correlates with the increase in 

rotational correlation time of the protein-nanodisc complex compared to the soluble 

cytosolic portion while considering the relative flexible nature of the anchoring of 

POR on a lipid bilayer.  

A peak in the lower right corner is a product of the full-length POR degradation (as 

judged by increasing intensity with the age of this sample). 

 
 

 
Figure 53. Protonated POR-nanodisc methyl-TROSY (1H-13C HMQC) spectra. A The 
air-oxidized full-length Q157C/Q517C POR in a lipid nanodisc (red) overlaid with 
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1 3

normal (2014). Solution NMR studies of membrane proteins 
were made possible utilizing soluble lipid bilayer mimics 
such as bicelles (Whiles et al. 2002; Prosser et al. 2006; 
Poget and Girvin 2007; Raschle et al. 2010) and, in par-
ticular, lipid nanodiscs (Nasr et al. 2017; Hagn et al. 2013). 
A complex of the cytochrome P450 2B4 with cyt b5 in the 
peptide-based lipid nanodiscs was successfully assembled by 
Ramamoorthy’s laboratory for solution NMR measurements 
(Zhang et al. 2016). Yet, the full-length POR, due to its large 
molecular weight, remained recalcitrant to NMR analysis 
either in the solution and solid states.

To create a sample of the full-length membrane-bound 
POR for solution NMR experiments, we incorporated the 
full-length Q157C/Q517C POR construct in the 10-nm 
lipid nanodiscs following the established protocols (Das 
and Sligar 2009). Figure 8 demonstrates the MTC spectral 
regions of 0.1 mM oxidized (panel a) and reduced (panel b) 
POR-nanodisc samples obtained at 600 MHz overlaid with 
the corresponding Δ56 spectrum (cf. Fig. 6). Similarity of 
chemical shifts of the MTC157 and MTC517 in soluble and 
membrane-bound forms indicates that their magnetic envi-
ronments were not significantly perturbed—in agreement 

with their distant location from the N-terminal transmem-
brane domain. Linewidths are roughly doubled in the POR-
nanodisc spectrum relative to Δ56 construct reflecting 
slow tumbling of the POR-nanodisc complex (Supporting 
Tables 2 and 3). However, the total mass of the complex 
(240 kDa) is a factor of 3.4 greater than that of the Δ56 POR 
(70 kDa). The relatively smaller increase in the line width 
may be explained by a flexible attachment of the cytosolic 
POR domain to its transmembrane region, which provides 
additional local mobility.

It was reported earlier that the redox potential of POR is 
modulated by a lipid composition of the bilayer (Das and 
Sligar 2009) [see also a review by Barnaba et al. (2017)]. 
In our experiments, MTC157 and MTC517 signals were 
sensitive to reduction with NADPH in both the Δ56 POR 
and the POR-nanodisc samples (Fig. 8). Therefore, using 
methyl-TROSY detection, one could monitor the redox reac-
tion in POR and, possibly, even measure the redox potentials 
of individual flavins by following the MTC signals from 
FAD- and FMN-binding domains in a titration of POR with 
NADPH. Liu and coworkers recently reported that activity 
of POR and coupling in POR-P450 complex in nanodiscs 
are enhanced when nanodiscs are made with the natural 
lipid preparations extracted from endoplasmic reticulum 
(ER) compared to the synthetic lipid mixtures mimicking 
ER composition (Liu et al. 2017). This finding indicates that 
POR makes specific protein-lipid interactions modulating 
enzymatic activity of POR. Our methyl-TROSY approach 
may be directly applied for detection of such lipid-interac-
tion sites in the full-length POR incorporated in a nanodisc 
by itself or in a complex with the cytochrome P450.

Finally, we need to emphasize that in our experiments, 
the POR protein, the nanodisc lipids, and the matrix scaf-
fold protein were all fully protonated, yet we observe a suf-
ficient signal despite the 240 kDa molecular weight of a 
POR-nanodisc assembly. In a separate nanodisc preparation, 
we confirmed that hydrophilic MMTS does not bind to the 
nanodiscs in the absence of POR (Supporting Fig. 3). These 
observations indicate that the full-length POR in lipid nano-
discs is fully amenable for investigation of its conforma-
tional transitions and the redox cycle by the solution methyl-
TROSY NMR experiments.

Summary

In this report, we demonstrated that the methyl-TROSY 
detection in combination with the extrinsic methyl labeling 
of the POR surface residues enables solution NMR analysis 
of the membrane-bound full-length POR without a need for 
(expensive) perdeuteration. Surface localization of methyl 
labels achieves a dual sensitivity gain by (1) having extrinsic 
methyl groups sufficiently removed from unpaired electrons 

Fig. 8  Protonated POR-nanodisc methyl-TROSY (1H-13C HMQC) 
spectra. a The air-oxidized full-length Q157C/Q517C POR in a lipid 
nanodisc (red) overlaid with the Δ56 POR (green). b The same sam-
ples reduced with the excess NADPH under anaerobic conditions: the 
full-length POR-nanodisc (blue); the Δ56 POR (black). A peak in the 
lower right corner is a product of the full-length POR degradation (as 
judged by increasing intensity with the age of this sample). Spectra 
were recorded at room temperature on a 600 MHz spectrometer with 
a cryogenic probe
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the Δ56 POR (green). B The same sam- ples reduced with the excess NADPH under 
anaerobic conditions: the full-length POR-nanodisc (blue); the Δ56 POR (black).  

 
 

 

 

Figure 54. Effect of linewidth broadening of the MTC-labels due to increase of 
hydrodynamic volume of the complex.  
 
 

Future	
  research	
  
 
 
In conclusion, we utilized 600 MHz instrument and obtained signals from 

extrinsically labeled 240 kDa lipid-protein complex in the presence of paramagnetic 

centers under protonated conditions. Signals demonstrated to be differentially 

sensitive to protein reduction and revealed behavior similar to cytosolic domain of 

POR.  Application of Methyl-TROSY detection, one could monitor the redox reaction 

in POR and, possibly, even measure the redox potentials of individual flavins by 

following the MTC signals from FAD- and FMN-binding domains in a titration of 

POR with NADPH while varying lipid composition of the bilayer.  

Another future prospect is to obtain distance restraints from the labels to a membrane 

surface is to apply PRE measurement by incorporating lipid carrying Gd3+ ion into 

bilayer of a nanodisc. Using this approach, one can investigate protein-lipid dynamics 

of POR attached to nanodisc as a function of lipid composition and redox state of the 
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protein cofactors. Moreover, utilizing the fact that lipids within nanodisc are dynamic 

equilibrium with each other [102]; we can titrate the sample with Gd3+ -labeled 

nanodisc achieving gradual increase in paramagnetic label concentration on the 

surface bilayer providing us with the set of distance restraints that will be used to 

calculate POR dynamics on the lipid bilayer surface depending on state of the protein, 

conformational restraints and lipid bilayer composition.  And finally, one can 

introduce cytochrome P450 into the model and investigate protein structure and 

dynamics depending on the P450 isoform and parameters investigated previously for 

the POR alone. But it should be noted that the presence of native paramagnetic 

centers in both POR (semiquinone) and P450 (heme) cases might make data 

interpretation challenging. 
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IV. MATERIALS AND METHODS 
 
 

DNA	
  sequencing	
  	
  
 
 

To ensure that gene nucleotide sequence is correct, DNA sequencing was performed 

by Functional Biosciences Inc., Madison, WI. 

H-­‐RAS	
  expression	
  and	
  purification	
  
 
 

Ampicillin resistant pET43.1b plasmid containing H-Ras C118S 1-166 and H-Ras 

C118S 1-181 genes were transformed into E.coli BL21 (DE3) strains. H-Ras C118S 

1-181 protein was expressed in a MJ minimal medium with uniform 15N-labeling to 

enable both fluorescence and NMR measurements on the protein originating from the 

same preparation. At the same time H-Ras C118S 1-166 was expressed in Luria Broth 

media at 37°C for ~ 8hours at 0.1mg/ml Ampicillin concentration (same conditions 

for the minimal media). In both cases protein overexpression was induced by addition 

of isopropyl β-D-1-thiogalactopyranoside (IPTG) (OMEGA Biotek) to 1mM final 

concentration. Cells were allowed to grow for three hours, after that the cell culture 

was span at 500rpm for 15min to obtain cell pellet that was later resuspended in 

20mM TRIS pH8.0 buffer for cell lysis. Resuspended cell mixture was subjected to 

lysis by sonication on Branson Sonifier 450. Pellet, obtained after cell lysate was 

centrifuged at 5000rpm for 15min, underwent solubilizations in 6M urea, 20mM 

TRISpH8.0, 10mM MgCl2 solution for 3 hours, followed by protein refolding in the 

buffer containing 20mM TRIS pH8.0, 5mM MgCl2, 0.3mM GDP, 1mM DTT. 

Solution containing refolded protein was centrifuged for 15min at 16,000rpm. 
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Supernatant obtained was dialyzed against 20x volume of 20mM TRIS pH8.0, 5mM 

MgCl2, 50mM NaCl, 1.5mM NaN3, 1mM DTT buffer and injected into XK16/40 ion-

exchange column packed with Q HyperCel resin ( Pall Life Sciences) preliminary 

equilibrated with the dialysis buffer. H-Ras protein was eluted at 290mM NaCl 

concentration.  

Purified samples were concentrated with Amicon Ulra-15 centrifugal filter 

concentrator (Milipore) and were characterized with SDS-PAGE, Bradford assay, 

UV-vis spectroscopy and MALDI-TOF spectrometry.  

Preparation	
  of	
  conjugated	
  constructs	
  
 
 
Purified 15N-labeled H-Ras C118S 1-181 protein sample was incubated with 5mM 

dithiothreitol (DTT) (VWR Life Science AMRESCO) over-night. DTT was removed 

from the protein sample by passing through XK16/40 size-exclusion column packed 

with Ultrogel Aca54 (Sigma Aldrich) equilibrated with the 20mM HEPES pH 7.2, 

1mM MgCl2, and 150mM NaCl buffer. H-Ras C118S 1-181 protein sample was 

eluted with the maxima at ~36 ml.  Half of the elution peak maxima was used in the 

reaction with bismaleimido cross-linkers BM(PEG)2/BM(PEG)11 (Thermo Fisher 

Scientific/ Conju-Probe, respectively) in a 3:1 ratio (protein : BM(PEG)n) to obtain 

Ras-11-Ras and Ras-2-Ras conjugates. Another half of the elution maximum was 

used as representative monomeric protein. Reaction was carried overnight at 4°C 

under nitrogen atmosphere and stopped by addition of 2mM DTT. To ensure stability 

of the potion of H-Ras C118S 1-181 that was not involved in cross-linking reaction, 

DTT was added to 1mM final concentration. After that samples were concentrated 

with Milipore  



 

 

99 

The conjugated constructs, Ras181-BM(PEG)2-Ras181 ("Ras-2-Ras") and Ras181-  

BM(PEG)11-Ras181 ("Ras-11-Ras"), were isolated from the reaction mixtures using 

the Ultrogel Aca54 size-exclusion column. Samples were characterized by MALDI-

TOF mass-spectrometry to demonstrated that sample indeed corresponds to 

conjugated constructs: 15N-labeled Ras-2-Ras conjugate had a mass of 41,700 ± 30 

Da, which is consistent with the theoretical value of 41,668 Da; 15N-labeled Ras-11-

Ras conjugate exhibited molecular mass of 42,229 ± 40 Da with the theoretical value 

of 42,205 Da. Results of SDS-PAGE were in agreement with MALDI-TOF mass 

spectroscopy, taking into consideration an anomalous electrophoretic mobility of the 

Ras monomer due to its acidic pI of 5.0 . Unfortunately, the yield of Ras-11-Ras was 

significantly smaller compared to the final yield of 3 mg for the Ras-2-Ras conjugate. 

Protein concentrations were determined using Bradford assay.   

MANT-­‐GDP	
  exchange	
  
 
 
Protein samples were concentrated to ~10-30µM (Ras monomer units). GDP 

nucleotide associated with the protein was replaced by (2'-(or-3')-O-(N-

methylanthraniloyl) guanosine 5'-diphosphate (Mant-GDP) (Life Technologies) using 

ethylenediaminetetraacetic acid (EDTA) to assist the nucleotide exchange. Nucleotide 

exchange was initiated by addition of EDTA to 6mM, Mant-GDP to 0.8mM and DTT 

to 10mM concentrations in the final reaction. Reaction mixtures were incubated for 

30-60 minutes at room temperature and separated by Nap-5 Columns (Manufacturer: 

GE Healthcare Life Sciences) packed with G-25 size-exclusion resin. Bradford assay 

was used to determine final protein concentration to be 0.34 mg/ml (16µM) for 

Ras181, 0.26 mg/ml (12µM monomers) for Ras-2-Ras, and 0.11 mg/ml (5 µM 

monomers) and 0.40 mg/ml (18 µM) for two separate preparations of Ras-11-Ras.  
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Ionic strength of the buffer solution was change by addition of the equivalents of 5M 

NaCl stock solution (ionic strength effect on pH was found to be negligible). 

The same procedure was applied for G-domain stability evaluation experiment to give 

Mant-GDP H-Ras C118S 1-166 concentration of 1.3 mg/ml (68µM). Equivalents of 

Mant-GDP labeled H-Ras C118S 1-166 were added to the series of buffers with a 

different pH in 1:10 (proteinsolution:buffer) ratio to 100µL of total volume: 

• 20mM 2-(N-Morpholino)ethanesulfonic acid hydrate (MES) pH 6.0, 150mM 

NaCl, 1mM MgCl2, 1.5mM NaN3, 1mM DTT  

• 20mM 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) pH 7.2, 

150mM NaCl, 1mM MgCl2, 1.5mM NaN3, 1mM DTT 

• 20mM 2-amino-2-(hydroxymethyl)-1,3-propanediol (TRIS) pH 8.0, 150mM 

NaCl, 1mM MgCl2, 1.5mM NaN3, 1mM DTT 

POR	
  expression	
  and	
  purification	
  
 
 

∆56	
  POR  
 
 

Kanamycin resistant pET28.a plasmid containing POR genes carrying His-Tag was 

transformed into E.coli C41 (DE3) strains. Cell culture was allowed to grow in Luria 

Broth media at 37°C for 3 hours. Then protein overexpression was induced by 

addition of IPTG and riboflavin-5’-phosphate sodium salt (Bio-Rad) to 0.5 mM and 

0.05 µM final concentration, respectively. The cell mixture was grown in the dark for 

20 hours at room temperature and pelleted at 5000 g for 10 min. The cell pellet was 

resuspended in PBS buffer pH 7.4 (1 mM KH2PO4, 10 mM Na2HPO4, 137 mM 

NaCl, and 2.7 mM KCl) and sonicated on ice using Branson Sonifier 450. Supernatant 

obtained after cell lysate was centrifuged at 5000 g for 15 min and passed through 
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5mL His60 Ni Superflow resin (Clontech Lab) equilibrated with PBS buffer pH 7.4. 

Protein was eluted with 0.5 M imidazole in PBS buffer pH 7.4. Eluate was dialyzed vs 

PBS pH 7.4 with addition of 2 mM TCEP and passed through 2’,5’-ADP Sepharose 

4B (GE Healthcare Life Science) gravity column equilibrated with PBS buffer pH 7.4 

(2mM DTT was used instead of TCEP). Protein was eluted using with PBS pH 7.4 

buffer containing 20mM 2’(3’)-AMP (Santa Cruz Biotechnology).  

Purified sample was characterized with SDS-PAGE, UV-vis spectroscopy, 

cytochrome c assay, flavin quantification assay, Bradford assay and MALDI-TOF 

spectrometry. 

Full-­‐length	
  POR	
  
 
 
Ampillicin resistant pOR263 plasmid containing full-length POR genes and carrying 

His-Tag was transformed into E.coli C41 (DE3) cells. Cell culture was grown on 

Terrific Broth media at 37°C for 3 hours. Protein overexpression was induced by 

addition of IPTG to 0.5 mM final concentration and cell mixture was grown in the 

dark for 20 hours at 18°C. Cell culture was centrifuged at 5000 g and the cell pellet 

that was resuspended in 25 mM phosphate buffer pH 7.7, 100 mM NaCl, 10% 

glycerol with addition of one tablet of EDTA-free Complete Roche protease inhibitor 

(1836170) (using one tablet per each 1000 ml). Cells were lysed in the presence of 30 

µg/ml lysozyme at 4°C for an hour followed by sonication on ice. The cell lysate was 

centrifuged at 5000g for 15min and obtained supernatant was centrifuged at 30,000 g 

for one hour. Pellet from second centrifugation was resuspended in 25 mM phosphate 

buffer pH 7.7, 100 mM NaCl, 0.3% Triton X-100, 10% glycerol, 2 mM TCEP, 1 mM 

PMSF with addition of the protease inhibitor and incubated overnight at 4°C to allow 

for detergent extraction of POR. Further purification was carried out according to the 
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procedure described above for Δ56 version of a protein. After the final step, to replace 

Triton X-100 in the POR sample with sodium cholate (necessary for nanodisc 

assembly), the final eluate was passed through Ni Superflow column, which was 

washed with 25mM sodium cholate (Alfa Aesar) and eluted with 0.5 M imidazole and 

25mM sodium cholate.  

Preparation	
  of	
  reduced	
  and	
  oxidized	
  POR  
 
 
Sample oxidation and reduction was carried out by adding 4-fold molar excess of 

K3[Fe(CN)6] or NADPH, respectively. The concentrations of NADPH and 

K3[Fe(CN)6] solutions were determined by specific absorption at ε  (340 nm) = 6,220 

M-1 cm-1 and ε (420 nm) = 1,040 M-1 cm1 , respectively[103, 104]. Preparation of 

reduced NMR samples was performed anaerobically in a glovebag (Glas-Col) filled 

with nitrogen gas.  

POR-­‐nanodisc	
  preparation	
  
 
 
Nanodisc assembly was performed according to the established protocols (see 

http://sligarlab.life.uiuc.edu/nanodisc/protocols.html). Briefly, a dry lipid mixture 

containing 15% 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and 85% of 1,2- 

dioleoyl-sn-glycero-3-phosphocholine was dissolved in 100 mM sodium cholate, 100 

mM phosphate, 50 mM NaCl pH 7.4 solution. The solution was sonicated and 

combined with aliquots of concentrated matrix scaffold protein MSP1D1 and His-

tagged full-length Q157C/Q517C POR. Molar excess of MSP1D1 over POR (8:1) 

was used to ensure that most POR-nanodisc complexes will have one POR molecule 

per nanodisc. A buffer aliquot was added to adjust the cholate concentration to 20 

mM in the final assembly mixture. To trigger nanodisc assembly, the detergent was 
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removed by dialysis in the presence of Amberlite XAD-2 beads (Sigma-Aldrich) 

added to the solvent outside of the dialysis bag (2 g of damp beads per each milliliter 

of assembly reaction mixture). To remove empty nanodiscs (without POR), the 

dialyzate was passed through  

His60 Ni-Superflow resin. The POR-nanodisc complexes were eluted with 0.5 M 

imidazole and centrifuged 5 min at 15,000 g. The nanodisc preparation was passed 

through the Superose 6 Increase 10/300 column. The peak fractions corresponding to 

the molecular weight near 240 kDa were collected and concentrated.  

POR	
  flavin	
  cofactor	
  quantification	
  assay	
  
 
 
POR flavin cofactor quantification assay was performed as described in [101]. 

Specifically, 300µL of 5µM POR sample were incubated in AccuBlock digital dry 

bath (Labnet Inc) at 100 °C for 10 minutes. To ensure flavin stability Eppendorf tube 

was wrapped with aluminum foil. After that sample was centrifuged at 15000g for 

10min at 4°C and supernatant was taken. UV-vis spectrum of the sample was 

recorded before and after denaturation and centrifugation steps. 100µL of the flavin 

cofactor solution were loaded into FCA3 cuvette (StarnaCel Inc) and sample 

fluorescence was recorded (slit size 2nm; λex=450nm; λem=480-610nm). This was 

followed by addition of 3µL phosphodiesterase 1 (PDE) from Crotalus adamanteus 

venom (Millipore-SIGMA) with unit concentration of 2mU/µL and incubation in dark 

for 15 minutes and another step of fluorescence spectra acquisition. Fluorescence 

intensity at 525nm before (F0) and after incubation (Ffin) with PDE was recorded and 

equation below was used to calculate FMN to FAD ratio(r). 
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𝑟 =
10×

𝐹!"#
𝐹!

− 10

10−
𝐹!"#
𝐹!

   

Procedure was repeated at least 3 times for each protein sample and average value 

was calculated. 

POR	
  cytochrome	
  c	
  activity	
  assay	
  
 
 
POR cytochrome c activity assay was performed as described in [105] . Specifically, 

mixture containing 80µL of 0.5mM cytochrome c from horse heart (Crescent 

Chemical Co. inc), 10µL of 10µM POR sample and 900µL of 0.3M K2HPO4 (pH 7.7) 

was prepared. The mixture was used as an absorbance baseline at 550nm. After that 

10µL of 10µM freshly prepared NADPH solution was added to the mixture and 

mixed thoroughly followed by recording of the reaction mixture absorbance at 550nm 

as a function of the time for 3min. Change in absorbance at 550nm (ΔA550) was 

calculated for the first minute of acquisition and equation bellow was used to 

calculate specific activity of POR sample. 

𝑆 =
𝛥𝐴!!"

0.021  𝑎𝑢 𝑛𝑚𝑜𝑙  𝑐𝑦𝑡  𝑐×  0.1  
 

Relative protein activity was calculated on as a percentage of a specific activity of the 

wild-type POR activity (3000 nmol of cyt c reduced per min per nmol of POR [106] ). 

After Procedure was repeated at least 3 times for each protein sample and average 

value was calculated 

Bradford	
  assay	
  
 
 
Bradford assay was performed using kit Pierce™ Coomassie Plus (Bradford) Assay 

Kit (ThermoFisher). In the Eppendorf tube 4µL of the protein sample was mixed with 
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200µL of Coomassie reagent after that mixture was vortexed for 15 seconds and 

incubated on the bench for 10min. After that absorbance at 595nm wavelength was 

recorded on . Protein concentration was calculated using calibration curve that was 

built based on Bovine serum albumin solutions standard concentrations.  Procedure 

was repeated at least 3 times for each protein sample and average value was 

calculated. 

MSP	
  protein	
  expression	
  and	
  purification	
  
 
 

Protein expression and purification protocol was performed as described in [63]. 

Specifically, kanamycin resistant pET28.a plasmid containing MSP1D1 or 

MSP1E3D1 genes carrying His-Tag with TEV-cleavage site was transformed into 

E.coli BL21(DE3) strains. Cell culture was allowed to grow in Luria Broth media at 

37°C for 3 hours. Then protein overexpression was induced by addition of IPTG to 1 

mM final concentration. The cell mixture was grown for 3-4 hours at 37°C and 

pelleted at 5000 g for 15 min. The cell pellet was resuspended in 20mM TRIS pH 8.0, 

1mM PMSF, 0.5mM TCEP, 1% Triton X100 buffer for cell lysis and sonicated on ice 

using Branson Sonifier 450. Supernatant obtained after cell lysate was centrifuged at 

15000 g for 1 hour and passed through 5mL His60 Ni Superflow resin (Clontech Lab) 

equilibrated with lysis buffer pH 8.0. Column was washed with 50mL of Wash Buffer 

1, pH 8.0 (20 mM TRIS, 0.5mM TCEP, 500mM NaCl, 1% Triton) followed by 50mL 

of Wash Buffer 2, pH 8.0 (20 mM TRIS, 0.5mM TCEP, 500mM NaCl, 50mM 

Sodium Cholate) and 50mL of Wash Buffer 3, pH 8.0 (20 mM TRIS pH 8.0, 0.5mM 

TCEP, 500mM NaCl, 50mM imidazole). Protein was eluted with elution buffer 

containing 0.5 M imidazole, TRIS pH 8.0, 500mM NaCl. Eluate was dialyzed vs 20 

mM TRIS pH 8.0, 200mM NaCl and injected into XK16/40 column packed with 
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Aca54 gel-filtration resin (Pall Life Sciences) preliminary equilibrated with the 

dialysis buffer and eluted using dialysis buffer at expected elution volume 

corresponding to MSP protein hydrodynamic radius.  Eluate was concentrated with 

Amicon Ulra-15 centrifugal filter concentrator (Milipore) and incubated in a presence 

of TEV protease for 16 hours at 4°C.  After that sample was passed through the His60 

Ni Superflow resin (Clontech Lab) equilibrated with 20 mM TRIS pH 8.0, 200mM 

NaCl solution and column flow-through containing MSP protein lacking His-tag was 

collected. Purified protein samples were concentrated with Amicon Ulra-15 

centrifugal filter concentrator (Milipore) and were characterized with SDS-PAGE, 

Bradford assay, UV-vis spectroscopy and MALDI-TOF spectrometry.  

MALDI-­‐TOF	
  mass-­‐spectrometry	
  
 
 
MALDI-TOF mass spectra were recorded on a Voyager-DE ProBioSpectrometryTM 

workstation PerSeptive Biosystems with sinapinic acid (SA) (Fluka) as matrix for the 

proteins with molecular weight less than 30kDa.  

To obtain MALDI-TOF mass spectra for proteins with molecular weight >40kDa, 1:1 

mixture of dihydroxybenzoic acid (DHB) (TCI) α-Cyano-4-hydroxycinnamic acid (α-

CHCA) (Fluka) was prepared. Before matrix-protein mixture was applied, MALDI-

TOF plate was preliminary covered with the thin layer of saturated α-CHCA matrix 

solution to increase signal to noise ratio. 

Polyacrylamide	
  gel	
  electrophoresis	
  
 
 

SDS-PAGE was performed by using phastgel gradient 8-25 gels (GE Healthcare Life 

Sciences) on PhastSystem for Automated Electrophoresis(Pharmacia) or Mini-

PROTEAN Electrophoresis cell (Biorad) powered PowerEase500 (Invitrogen Life 
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Technologies) with a prepared 10% and 15% SDS-PAGE gels (AA Hoefer Inc) . Gels 

were stained by Coomassie Brilliant Blue stain (Thermo Scientific).  

Fast	
  Protein	
  Liquid	
  chromatography	
  (FPLC)	
  
 
 
FPLC purifications were performed on a High Pressure/ Fast Protein Liquid 

Chromatography station (Shimadzu): CBM-20A(Controller), LC-20AT (Pump), 

DGU-20A5(Degasser), FCV-12AH(Valve), SPD-M20A(Detector), FRC-

10A(Fraction collector). 

Fluorescence	
  measurements	
  
 
 

Fluorescence	
  polarization	
  anisotropy	
  
 
 

General	
  parameters	
  
 
 
Fluorescence 2D spectra acquisition and polarization anisotropy measurements were 

performed in a QuantaMaster™ 400 Research Fluorometer (PTI) equipped with 

PicoMaster 1 TCSPC and Peltier-based Turret 400 for a temperature control. Samples 

were loaded into 3mm microcells (StarnaCells Inc). For polarization anisotropy 

MANT-GDP fluorophore was excited using 365nm LED, while the emission was 

detected at 440 nm with 24nm slit widths. The polarized fluorescence decays were 

recorded with the Glan-Thompson polarizers and the emission slits at 24 nm with 

TCSPC counting rate kept below 2%. To measure a G-factor at 440 nm steady-state 

Xenon lamp excitation was used, while the instrument response functions (IRF) were 

recorded from a investigated protein solution.  
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Fluorescence	
  2D	
  spectra	
  
 
 
2D fluorescence spectra were obtained by acquiring series of fluorescence emission 

scans in 5nm step for 250nm to 700nm range. Scans were set up in the way that the 

first emission scan 250-700nm was acquired for 700nm excitation wavelength; next 

emission was recorded for 260-695nm range for 695nm excitation wavelength and so 

on. The slits width for both excitation and emission was set to 5nm. 

Raw traces obtained from the series of emission scans were converted to 2D 

fluorescence spectra with Fluorescence2D software[107]. 

Details	
  of	
  the	
  experiment	
  on	
  G-­‐domain	
  propensity	
  to	
  form	
  dimers	
  
 
 
Experiments were repeated multiple times with 30-60 min for one acquisition time per 

position of emission polarizer. The runs were averaged during data processing. 

Polarization anisotropy decays were collected for 3 three temperatures (20, 25, and 

37oC) and three NaCl concentrations and three (0, 150, and 300 mM). 

To analyze anisotropy decays, AniFit software (kindly shared by Søren Preus; 

available from www.fluortools.com) was used to apply a global fitting of differently 

polarized components of emission to anisotropy decay laws. Scattering of the light 

was included in fitting procedure by addition of a adjustable coefficient. Fitting 

procedure involved single and double-exponential anisotropy decay laws, although 

there was no significant difference observed for slow rotational correlation time 

between those two fitting procedures. 

Details	
  of	
  G-­‐domain	
  stability	
  investigation	
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Polarization anisotropy decay traces were acquired for temperature range from 20°C to 

100°C. To do that the temperature ramp was applied as 1°C/min. Experiment was 

repeated twice for each buffer conditions. 

Anisotropy decay data was analyzed by matlab script ptiFitMeltCurve.m  (written by 

Dr. E. Kovrigin) to provide normalized denaturation curves that were fitted to van’t 

Hoff’s equation to result denaturation midpoints values.  

NMR	
  spectroscopy	
  
 
 
2D 15N-1H Heteronuclear Single-Quantum Correlation (HSQC) and 13C-1H 

Heteronuclear Multiple-Quantum Correlation (HMQC) NMR spectra will be recorded 

on 600 MHz Varian VNMR-S spectrometer with the Crio Probe installed. To allow 

NMR spectrometer locking 10%D2O will be added to the protein samples and loaded 

into a Shigemi tubes. Spectra will be processed with NMRPipe [108]  and 

Sparky[109] software. 15N-1H HSQC signal assignments for H-Ras G-domain will be 

performed by overlaying with a wild-type H-Ras, residues 1-166, GDP-loaded spectra 

assigned previously. 13C-1H HMQC MTC-labels signal assignment will be performed 

by overlaying “cys-less” POR variant with single-cysteine mutants. 

13CH3-­‐	
  MMTS-­‐labeling	
  
 
 
Purified protein sample was incubated with 5mM dithiothreitol (DTT) (VWR Life 

Science AMRESCO) overnight in phosphate-buffered saline (PBS, 1 mM KH2PO4, 

10mM Na2HPO4, 137mM NaCl, and 2.7mM KCl, pH 7.4) and dialyzed using Slide-A-

Lyzer Dialysis Cassettes, 10000 MCWO, 0.5-3 mL (Thermo Scientific) against 

degassed 50 mM potassium phosphate, pH 7.5, 1 mM EDTA at 4°C. Then sample 

was concentrated with Vivaspin®2 Centrifugal Concentrator 10000 MCWO, 0.4-2mL 
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(GE Healthcare Life) to 300µL volume. After that 100mM 13CH3- MMTS (Thermo 

Scientific) DMSO stock solution (stored at -20°C) was added in 50% molar excess to 

a protein solution and incubated overnight at 4°C. Reaction was stopped by dialysis 

against PBS using Slide-A-Lyzer Dialysis Cassettes, 5000 MCWO, 0.1-0.5mL.  It is 

important to remove any agent capable of reducing disulfide bond, such as DTT, from 

buffers.  
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V.	
  SUMMARY	
  
 
 
Increasing number of attention is being paid to macromolecular systems such 

membrane proteins. Membrane proteins experience numerous interactions on the 

membrane surface that play a vital role in determining the behavior. Therefore, 

investigating these interactions is very important but challenging process; our 

approach allows to address challenges of those systems.  

Systems containing peripheral membrane proteins that demonstrate high level of 

mobility cannot be studied by X-ray spectroscopy. The most common way to study 

macromolecular systems like that by means of solid state NMR for now still remains 

state of the art technique. 

In my dissertation we demonstrated how one can investigate those interaction 

separately (Ras dimerization hypothesis) or in a complex system (conformational 

changes in NADPH-cytochrome P450 oxidoreductase during its redox cycle) by 

means of solution NMR and fluorescence studies.  

In the first project, we investigated the hypothesis of Ras dimerization on the 

membrane surface due to protein--protein interaction. First of all, we researched the 

buffer conditions we planed to perform our further experiments in and also confirmed 

that fluorescence labeling will not affect stability of the protein. After that, we utilized 

polarization anisotropy to evaluate the propensity of Ras G-domain to form dimer by 

cross-linking two Ras molecules and measuring it rotational correlation times. The 

conclusion that was drawn was that G-domain does not drive dimerization of Ras 

protein as it has been hypothesized and all observations in the literature were either 

due to presence of the membrane or experimental setup. 
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In our second project we proposed a technique that can be used to reveal structural 

details of a membrane protein interactions and conformational changes it undergoes 

during its cycle.  

As the object of our study we selected NADPH-cytochrome P450 oxidoreductase 

(POR) that is involved in electron transport chain and transfers electrons to 

cytochrome P450 and other oxygenazes. We demonstrated that extrinsic labels 

introduced on the surface of the protein were differentially sensitive towards protein 

reduction and conformational changes on the soluble version of the protein. After that 

we utilized extrinsic labeling technique in combination with Methyl-TROSY NMR 

spectroscopy on the full-length protein imbedded on the lipid nanodisc and observed 

detectable signals. Moreover, signals demonstrated similar behavior as in a soluble 

construct. Thus, we have shown that our approach can be further applied to 

investigate protein-protein and protein-lipid interactions on a challenging protein-lipid 

complexes even in the presence of unpaired electrons.  

One of the greatest advantages is that our approach doesn’t require sample deuteration 

this significantly decreases the cost. Moreover, in our case signals were obtained on 

600MHz instrument that can be considered a standard system in any institution that 

has projects investigating biomolecular systems while generally higher field 

instrument such 800 or 900 MHz are typically used in a most of researches. 
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APPENDIX	
  

Protein	
  sequences	
  

H-­‐Ras	
  C118S	
  1-­‐166	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MTEYKLVVVG AGGVGKSALT IQLIQNHFVD EYDPTIEDSY RKQVVIDGET CLLDILDTAG  
 
        70         80         90        100        110        120  
QEEYSAMRDQ YMRTGEGFLC VFAINNTKSF EDIHQYREQI KRVKDSDDVP MVLVGNKSDL  
 
       130        140        150        160  
AARTVESRQA QDLARSYGIP YIETSAKTRQ GVEDAFYTLV REIRQH  

H-­‐Ras	
  C118S	
  1-­‐181	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MTEYKLVVVG AGGVGKSALT IQLIQNHFVD EYDPTIEDSY RKQVVIDGET CLLDILDTAG  
 
        70         80         90        100        110        120  
QEEYSAMRDQ YMRTGEGFLC VFAINNTKSF EDIHQYREQI KRVKDSDDVP MVLVGNKSDL  
 
       130        140        150        160        170        180  
AARTVESRQA QDLARSYGIP YIETSAKTRQ GVEDAFYTLV REIRQHKLRK LNPPDESGPG  
 
C 

His-­‐tagged	
  MSP1D1	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGHHHHHHHD YDIPTTENLY FQGSTFSKLR EQLGPVTQEF WDNLEKETEG LRQEMSKDLE  
 
        70         80         90        100        110        120  
EVKAKVQPYL DDFQKKWQEE MELYRQKVEP LRAELQEGAR QKLHELQEKL SPLGEEMRDR  
 
       130        140        150        160        170        180  
ARAHVDALRT HLAPYSDELR QRLAARLEAL KENGGARLAE YHAKATEHLS TLSEKAKPAL  
 
       190        200        210  
EDLRQGLLPV LESFKVSFLS ALEEYTKKLN TQ  

His-­‐tagged	
  MSP1E3D1	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGHHHHHHHD YDIPTTENLY FQGSTFSKLR EQLGPVTQEF WDNLEKETEG LRQEMSKDLE  
 
        70         80         90        100        110        120  
EVKAKVQPYL DDFQKKWQEE MELYRQKVEP LRAELQEGAR QKLHELQEKL SPLGEEMRDR  
 
       130        140        150        160        170        180  
ARAHVDALRT HLAPYLDDFQ KKWQEEMELY RQKVEPLRAE LQEGARQKLH ELQEKLSPLG  
 
       190        200        210        220        230        240  
EEMRDRARAH VDALRTHLAP YSDELRQRLA ARLEALKENG GARLAEYHAK ATEHLSTLSE  
 
       250        260        270  
KAKPALEDLR QGLLPVLESF KVSFLSALEE YTKKLNTQ  
 
 

His-­‐tagged	
  POR	
  56-­‐678	
  cysless	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MIQTTAPPVK ESSFVEKMKK TGRNIIVFYG SQTGTAEEFA  
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        70         80         90        100        110        120  
NRLSKDAHRY GMRGMSADPE EYDLADLSSL PEIDKSLVVF AMATYGEGDP TDNAQDFYDW  
 
       130        140        150        160        170        180  
LQETDVDLTG VKFAVFGLGN KTYEHFNAMG KYVDQRLEQL GAQRIFELGL GDDDGNLEED  
 
       190        200        210        220        230        240  
FITWREQFWP AVAEFFGVEA TGEESSIRQY ELVVHEDMDV AKVYTGEMGR LKSYENQKPP  
 
       250        260        270        280        290        300  
FDAKNPFLAA VTANRKLNQG TERHLMHLEL DISDSKIRYE SGDHVAVYPA NDSALVNQIG  
 
       310        320        330        340        350        360  
EILGADLDVI MSLNNLDEES NKKHPFPTPT TYRTALTYYL DITNPPRTNV LYELAQYASE  
 
       370        380        390        400        410        420  
PSEQEHLHKM ASSSGEGKEL YLSWVVEARR HILAILQDYP SLRPPIDHLL ELLPRLQARY  
 
       430        440        450        460        470        480  
YSIASSSKVH PNSVHITAVA VEYEAKSGRV NKGVATSWLR AKEPAGENGG RALVPMFVRK  
 
       490        500        510        520        530        540  
SQFRLPFKST TPVIMVGPGT GIAPFMGFIQ ERAWLREQGK EVGETLLYYG ARRSDEDYLY  
 
       550        560        570        580        590        600  
REELARFHKD GALTQLNVAF SREQAHKVYV QHLLKRDREH LWKLIHEGGA HIYVAGDARN  
 
       610        620        630        640  
MAKDVQNTFY DIVAEFGPME HTQAVDYVKK LMTKGRYSLD VWS  

His-­‐tagged	
  POR	
  56-­‐678	
  cysless	
  E127C	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MIQTTAPPVK ESSFVEKMKK TGRNIIVFYG SQTGTAEEFA  
 
        70         80         90        100        110        120  
NRLSKDAHRY GMRGMSADPE EYDLADLSSL PCIDKSLVVF AMATYGEGDP TDNAQDFYDW  
 
       130        140        150        160        170        180  
LQETDVDLTG VKFAVFGLGN KTYEHFNAMG KYVDQRLEQL GAQRIFELGL GDDDGNLEED  
 
       190        200        210        220        230        240  
FITWREQFWP AVAEFFGVEA TGEESSIRQY ELVVHEDMDV AKVYTGEMGR LKSYENQKPP  
 
       250        260        270        280        290        300  
FDAKNPFLAA VTANRKLNQG TERHLMHLEL DISDSKIRYE SGDHVAVYPA NDSALVNQIG  
 
       310        320        330        340        350        360  
EILGADLDVI MSLNNLDEES NKKHPFPTPT TYRTALTYYL DITNPPRTNV LYELAQYASE  
 
       370        380        390        400        410        420  
PSEQEHLHKM ASSSGEGKEL YLSWVVEARR HILAILQDYP SLRPPIDHLL ELLPRLQARY  
 
       430        440        450        460        470        480  
YSIASSSKVH PNSVHITAVA VEYEAKSGRV NKGVATSWLR AKEPAGENGG RALVPMFVRK  
 
       490        500        510        520        530        540  
SQFRLPFKST TPVIMVGPGT GIAPFMGFIQ ERAWLREQGK EVGETLLYYG ARRSDEDYLY  
 
       550        560        570        580        590        600  
REELARFHKD GALTQLNVAF SREQAHKVYV QHLLKRDREH LWKLIHEGGA HIYVAGDARN  
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       610        620        630        640  
MAKDVQNTFY DIVAEFGPME HTQAVDYVKK LMTKGRYSLD VWS  

His-­‐tagged	
  POR	
  56-­‐678	
  cysless	
  Q157C	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MIQTTAPPVK ESSFVEKMKK TGRNIIVFYG SQTGTAEEFA  
 
        70         80         90        100        110        120  
NRLSKDAHRY GMRGMSADPE EYDLADLSSL PEIDKSLVVF AMATYGEGDP TDNAQDFYDW  
 
       130        140        150        160        170        180  
LCETDVDLTG VKFAVFGLGN KTYEHFNAMG KYVDQRLEQL GAQRIFELGL GDDDGNLEED  
 
       190        200        210        220        230        240  
FITWREQFWP AVAEFFGVEA TGEESSIRQY ELVVHEDMDV AKVYTGEMGR LKSYENQKPP  
 
       250        260        270        280        290        300  
FDAKNPFLAA VTANRKLNQG TERHLMHLEL DISDSKIRYE SGDHVAVYPA NDSALVNQIG  
 
       310        320        330        340        350        360  
EILGADLDVI MSLNNLDEES NKKHPFPTPT TYRTALTYYL DITNPPRTNV LYELAQYASE  
 
       370        380        390        400        410        420  
PSEQEHLHKM ASSSGEGKEL YLSWVVEARR HILAILQDYP SLRPPIDHLL ELLPRLQARY  
 
       430        440        450        460        470        480  
YSIASSSKVH PNSVHITAVA VEYEAKSGRV NKGVATSWLR AKEPAGENGG RALVPMFVRK  
 
       490        500        510        520        530        540  
SQFRLPFKST TPVIMVGPGT GIAPFMGFIQ ERAWLREQGK EVGETLLYYG ARRSDEDYLY  
 
       550        560        570        580        590        600  
REELARFHKD GALTQLNVAF SREQAHKVYV QHLLKRDREH LWKLIHEGGA HIYVAGDARN  
 
       610        620        630        640  
MAKDVQNTFY DIVAEFGPME HTQAVDYVKK LMTKGRYSLD VWS  

His-­‐tagged	
  POR	
  56-­‐678	
  cysless	
  Q157C	
  N271C	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MIQTTAPPVK ESSFVEKMKK TGRNIIVFYG SQTGTAEEFA  
 
        70         80         90        100        110        120  
NRLSKDAHRY GMRGMSADPE EYDLADLSSL PEIDKSLVVF AMATYGEGDP TDNAQDFYDW  
 
       130        140        150        160        170        180  
LCETDVDLTG VKFAVFGLGN KTYEHFNAMG KYVDQRLEQL GAQRIFELGL GDDDGNLEED  
 
       190        200        210        220        230        240  
FITWREQFWP AVAEFFGVEA TGEESSIRQY ELVVHEDMDV AKVYTGEMGR LKSYCNQKPP  
 
       250        260        270        280        290        300  
FDAKNPFLAA VTANRKLNQG TERHLMHLEL DISDSKIRYE SGDHVAVYPA NDSALVNQIG  
 
       310        320        330        340        350        360  
EILGADLDVI MSLNNLDEES NKKHPFPTPT TYRTALTYYL DITNPPRTNV LYELAQYASE  
 
       370        380        390        400        410        420  
PSEQEHLHKM ASSSGEGKEL YLSWVVEARR HILAILQDYP SLRPPIDHLL ELLPRLQARY  
 
       430        440        450        460        470        480  
YSIASSSKVH PNSVHITAVA VEYEAKSGRV NKGVATSWLR AKEPAGENGG RALVPMFVRK  
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       490        500        510        520        530        540  
SQFRLPFKST TPVIMVGPGT GIAPFMGFIQ ERAWLREQGK EVGETLLYYG ARRSDEDYLY  
 
       550        560        570        580        590        600  
REELARFHKD GALTQLNVAF SREQAHKVYV QHLLKRDREH LWKLIHEGGA HIYVAGDARN  
 
       610        620        630        640  
MAKDVQNTFY DIVAEFGPME HTQAVDYVKK LMTKGRYSLD VWS  

His-­‐tagged	
  POR	
  56-­‐678	
  cysless	
  S308C	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MIQTTAPPVK ESSFVEKMKK TGRNIIVFYG SQTGTAEEFA  
 
        70         80         90        100        110        120  
NRLSKDAHRY GMRGMSADPE EYDLADLSSL PEIDKSLVVF AMATYGEGDP TDNAQDFYDW  
 
       130        140        150        160        170        180  
LQETDVDLTG VKFAVFGLGN KTYEHFNAMG KYVDQRLEQL GAQRIFELGL GDDDGNLEED  
 
       190        200        210        220        230        240  
FITWREQFWP AVAEFFGVEA TGEESSIRQY ELVVHEDMDV AKVYTGEMGR LKSYENQKPP  
 
       250        260        270        280        290        300  
FDAKNPFLAA VTANRKLNQG TERHLMHLEL DICDSKIRYE SGDHVAVYPA NDSALVNQIG  
 
       310        320        330        340        350        360  
EILGADLDVI MSLNNLDEES NKKHPFPTPT TYRTALTYYL DITNPPRTNV LYELAQYASE  
 
       370        380        390        400        410        420  
PSEQEHLHKM ASSSGEGKEL YLSWVVEARR HILAILQDYP SLRPPIDHLL ELLPRLQARY  
 
       430        440        450        460        470        480  
YSIASSSKVH PNSVHITAVA VEYEAKSGRV NKGVATSWLR AKEPAGENGG RALVPMFVRK  
 
       490        500        510        520        530        540  
SQFRLPFKST TPVIMVGPGT GIAPFMGFIQ ERAWLREQGK EVGETLLYYG ARRSDEDYLY  
 
       550        560        570        580        590        600  
REELARFHKD GALTQLNVAF SREQAHKVYV QHLLKRDREH LWKLIHEGGA HIYVAGDARN  
 
       610        620        630        640  
MAKDVQNTFY DIVAEFGPME HTQAVDYVKK LMTKGRYSLD VWS  

His-­‐tagged	
  POR	
  56-­‐678	
  cysless	
  Q517C	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MIQTTAPPVK ESSFVEKMKK TGRNIIVFYG SQTGTAEEFA  
 
        70         80         90        100        110        120  
NRLSKDAHRY GMRGMSADPE EYDLADLSSL PEIDKSLVVF AMATYGEGDP TDNAQDFYDW  
 
       130        140        150        160        170        180  
LQETDVDLTG VKFAVFGLGN KTYEHFNAMG KYVDQRLEQL GAQRIFELGL GDDDGNLEED  
 
       190        200        210        220        230        240  
FITWREQFWP AVAEFFGVEA TGEESSIRQY ELVVHEDMDV AKVYTGEMGR LKSYENQKPP  
 
       250        260        270        280        290        300  
FDAKNPFLAA VTANRKLNQG TERHLMHLEL DISDSKIRYE SGDHVAVYPA NDSALVNQIG  
 
       310        320        330        340        350        360  
EILGADLDVI MSLNNLDEES NKKHPFPTPT TYRTALTYYL DITNPPRTNV LYELAQYASE  
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       370        380        390        400        410        420  
PSEQEHLHKM ASSSGEGKEL YLSWVVEARR HILAILQDYP SLRPPIDHLL ELLPRLQARY  
 
       430        440        450        460        470        480  
YSIASSSKVH PNSVHITAVA VEYEAKSGRV NKGVATSWLR AKEPAGENGG RALVPMFVRK  
 
       490        500        510        520        530        540  
SCFRLPFKST TPVIMVGPGT GIAPFMGFIQ ERAWLREQGK EVGETLLYYG ARRSDEDYLY  
 
       550        560        570        580        590        600  
REELARFHKD GALTQLNVAF SREQAHKVYV QHLLKRDREH LWKLIHEGGA HIYVAGDARN  
 
       610        620        630        640  
MAKDVQNTFY DIVAEFGPME HTQAVDYVKK LMTKGRYSLD VWS  

His-­‐tagged	
  POR	
  56-­‐678	
  cysless	
  Q157C	
  Q517C	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MIQTTAPPVK ESSFVEKMKK TGRNIIVFYG SQTGTAEEFA  
 
        70         80         90        100        110        120  
NRLSKDAHRY GMRGMSADPE EYDLADLSSL PEIDKSLVVF AMATYGEGDP TDNAQDFYDW  
 
       130        140        150        160        170        180  
LCETDVDLTG VKFAVFGLGN KTYEHFNAMG KYVDQRLEQL GAQRIFELGL GDDDGNLEED  
 
       190        200        210        220        230        240  
FITWREQFWP AVAEFFGVEA TGEESSIRQY ELVVHEDMDV AKVYTGEMGR LKSYENQKPP  
 
       250        260        270        280        290        300  
FDAKNPFLAA VTANRKLNQG TERHLMHLEL DISDSKIRYE SGDHVAVYPA NDSALVNQIG  
 
       310        320        330        340        350        360  
EILGADLDVI MSLNNLDEES NKKHPFPTPT TYRTALTYYL DITNPPRTNV LYELAQYASE  
 
       370        380        390        400        410        420  
PSEQEHLHKM ASSSGEGKEL YLSWVVEARR HILAILQDYP SLRPPIDHLL ELLPRLQARY  
 
       430        440        450        460        470        480  
YSIASSSKVH PNSVHITAVA VEYEAKSGRV NKGVATSWLR AKEPAGENGG RALVPMFVRK  
 
       490        500        510        520        530        540  
SCFRLPFKST TPVIMVGPGT GIAPFMGFIQ ERAWLREQGK EVGETLLYYG ARRSDEDYLY  
 
       550        560        570        580        590        600  
REELARFHKD GALTQLNVAF SREQAHKVYV QHLLKRDREH LWKLIHEGGA HIYVAGDARN  
 
       610        620        630        640  
MAKDVQNTFY DIVAEFGPME HTQAVDYVKK LMTKGRYSLD VWS  

His-­‐tagged	
  POR	
  56-­‐678	
  cysless	
  Q157C	
  Q517C	
  Δ236TGEE239	
  amino	
  acid	
  
sequence	
  
        10         20         30         40         50         60  
MGSSHHHHHH SSGLVPRGSH MIQTTAPPVK ESSFVEKMKK TGRNIIVFYG SQTGTAEEFA  
 
        70         80         90        100        110        120  
NRLSKDAHRY GMRGMSADPE EYDLADLSSL PEIDKSLVVF AMATYGEGDP TDNAQDFYDW  
 
       130        140        150        160        170        180  
LCETDVDLTG VKFAVFGLGN KTYEHFNAMG KYVDQRLEQL GAQRIFELGL GDDDGNLEED  
 
       190        200        210        220        230        240  
FITWREQFWP AVAEFFGVEA SSIRQYELVV HEDMDVAKVY TGEMGRLKSY ENQKPPFDAK  
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       250        260        270        280        290        300  
NPFLAAVTAN RKLNQGTERH LMHLELDISD SKIRYESGDH VAVYPANDSA LVNQIGEILG  
 
       310        320        330        340        350        360  
ADLDVIMSLN NLDEESNKKH PFPTPTTYRT ALTYYLDITN PPRTNVLYEL AQYASEPSEQ  
 
       370        380        390        400        410        420  
EHLHKMASSS GEGKELYLSW VVEARRHILA ILQDYPSLRP PIDHLLELLP RLQARYYSIA  
 
       430        440        450        460        470        480  
SSSKVHPNSV HITAVAVEYE AKSGRVNKGV ATSWLRAKEP AGENGGRALV PMFVRKSCFR  
 
       490        500        510        520        530        540  
LPFKSTTPVI MVGPGTGIAP FMGFIQERAW LREQGKEVGE TLLYYGARRS DEDYLYREEL  
 
       550        560        570        580        590        600  
ARFHKDGALT QLNVAFSREQ AHKVYVQHLL KRDREHLWKL IHEGGAHIYV AGDARNMAKD  
 
       610        620        630  
VQNTFYDIVA EFGPMEHTQA VDYVKKLMTK GRYSLDVWS  

His-­‐tagged	
  full-­‐length	
  POR	
  cysless	
  Q157C	
  Q517C	
  amino	
  acid	
  sequence	
  
        10         20         30         40         50         60  
MKKTAIAIAV ALAGFATVAQ AHHHHHHGDS HEDTSATMPE AVAEEVSLFS TTDMVLFSLI  
 
        70         80         90        100        110        120  
VGVLTYWFIF RKKKEEIPEF SKIQTTAPPV KESSFVEKMK KTGRNIIVFY GSQTGTAEEF  
 
       130        140        150        160        170        180  
ANRLSKDAHR YGMRGMSADP EEYDLADLSS LPEIDKSLVV FAMATYGEGD PTDNAQDFYD  
 
       190        200        210        220        230        240  
WLCETDVDLT GVKFAVFGLG NKTYEHFNAM GKYVDQRLEQ LGAQRIFELG LGDDDGNLEE  
 
       250        260        270        280        290        300  
DFITWREQFW PAVAEFFGVE ATGEESSIRQ YELVVHEDMD VAKVYTGEMG RLKSYENQKP  
 
       310        320        330        340        350        360  
PFDAKNPFLA AVTANRKLNQ GTERHLMHLE LDISDSKIRY ESGDHVAVYP ANDSALVNQI  
 
       370        380        390        400        410        420  
GEILGADLDV IMSLNNLDEE SNKKHPFPTP TTYRTALTYY LDITNPPRTN VLYELAQYAS  
 
       430        440        450        460        470        480  
EPSEQEHLHK MASSSGEGKE LYLSWVVEAR RHILAILQDY PSLRPPIDHL LELLPRLQAR  
 
       490        500        510        520        530        540  
YYSIASSSKV HPNSVHITAV AVEYEAKSGR VNKGVATSWL RAKEPAGENG GRALVPMFVR  
 
       550        560        570        580        590        600  
KSCFRLPFKS TTPVIMVGPG TGIAPFMGFI QERAWLREQG KEVGETLLYY GARRSDEDYL  
 
       610        620        630        640        650        660  
YREELARFHK DGALTQLNVA FSREQAHKVY VQHLLKRDRE HLWKLIHEGG AHIYVAGDAR  
 
       670        680        690        700  
NMAKDVQNTF YDIVAEFGPM EHTQAVDYVK KLMTKGRYSL DVWS 
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MALDI-­‐TOF	
  protein	
  mass	
  spectra	
  

 
Figure 55. MALDI-TOF mass spectra H-Ras 1-166 (Mwtheoretical=18837 Da) 

 
Figure 56. MALDI-TOF mass spectra H-Ras 1-181 (Mwtheoretical=20678 Da) 
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Figure 57. MALDI-TOF mass spectra His-tagged POR 56-678 cysless 
(Mwtheoretical=72764 Da) 

Figure 58. MALDI-TOF mass spectra His-tagged POR 56-678 Δ236TGEE239 cysless 
Q157C Q517C (Mwtheoretical=72297Da) 
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Figure 59. MALDI-TOF mass spectra of His-tagged full-length POR cysless Q157C 
Q517C incorporated into a DOPC nanodisc acquired after NMR experiment. 
(Mwtheoretical=79511 Da) 

 
Figure 60. Analysis of MSP1D1 expression level and its purification by SDS-PAGE. 
PageRulerTM Unstained Protein Ladder (ThermoFisher, 26614) (lane 1,14). Purified 

TEV protease (lane 2). Cell lysate of non-induced (lane 3) and induced (lane 4) 
expression culture; lysate SN after centrifugation of induced (lane 5) expression 

culture that loaded into the His60 NiSuperflow column. His60 NiSuperflow column 
flow-through (lanes 6,7); wash (8,9) and elution from the column (lanes 10-13). 
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