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ABSTRACT OF DISSERTATION 
 
 
 

GENERATION OF MULTICOMPONENT POLYMER BLEND MICROPARTICLES USING 
DROPLET EVAPORATION TECHNIQUE AND MODELING EVAPORATION OF BINARY 

DROPLET CONTAINING NON-VOLATILE SOLUTE 
 

Recently, considerable attention has been focused on the generation of nano- and 
micrometer scale multicomponent polymer particles with specifically tailored 
mechanical, electrical and optical properties. As only a few polymer-polymer pairs are 
miscible, the set of multicomponent polymer systems achievable by conventional 
methods, such as melt blending, is severely limited in property ranges. Therefore, 
researchers have been evaluating synthesis methods that can arbitrarily blend immiscible 
solvent pairs, thus expanding the range of properties that are practical. The generation of 
blended microparticles by evaporating a co-solvent from aerosol droplets containing two 
dissolved immiscible polymers in solution seems likely to exhibit a high degree of phase 
uniformity. A second important advantage of this technique is the formation of nano- and 
microscale particulates with very low impurities, which are not attainable through 
conventional solution techniques. When the timescale of solvent evaporation is lower 
than that of polymer diffusion and self-organization, phase separation is inhibited within 
the atto- to femto-liter volume of the droplet, and homogeneous blends of immiscible 
polymers can be produced. We have studied multicomponent polymer particles generated 
from highly monodisperse micrordroplets that were produced using a Vibrating Orifice 
Aerosol Generator (VOAG). The particles are characterized for both external and internal 
morphology along with homogeneity of the blends. Ultra-thin slices of polymer particles 
were characterized by a Scanning Electron Microscope (SEM), and the degree of 
uniformity was examined using an Electron Dispersive X-ray Analysis (EDAX). To 
further establish the homogeneity of the polymer blend microparticles, differential 
scanning calorimeter was used to measure the glass transition temperature of the 
microparticles obtained. These results have its significance in the field of particulate 
encapsulation. Also, better control of the phase morphologies can be obtained by simply 
changing the solvent/solvents in the dilute solutions.  

Evaporation and drying of a binary droplet containing a solute and a solvent is a 
complicated phenomenon. Most of the present models do not consider convection in the 
droplet phase. In this dissertation work, a model is developed that incorporates 
convection inside the droplet. The results obtained are compared to the size obtained 

 
 



from experimental results. The same model when used with an aqueous solution droplet 
predicted concentration profiles that are comparable to results obtained when convection 
was not taken into account. These results have significance for more rigorous modeling 
of binary and  multicomponent droplet drying.  
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CHAPTER 1 

1. INTRODUCTION 
 
Droplet drying techniques have been widely used for the production of food and dairy 

products using spray drying in one form or the other. The end products in such processes 

are particulate powders. Droplet drying methods offers several advantages over other 

bulk methods and size reduction methods. They offer continuous productions, high 

throughputs, very large surface areas and hence high drying rates. They are easy to 

handle and transport and are space efficient in terms of packaging and storage. Spray 

drying is one of the most widely used methods for the production of particulate powders. 

Spray drying involves atomizing the liquid solution feed into fine droplets. These 

droplets are made to come in contact with a dry gas, usually air (or N2 to prevent 

oxidation in some cases), at a certain temperature, either co-currently or counter-currently 

in a drying column. The droplets are dried to form particles and are usually collected at 

the bottom by using cyclones and additional filters. Particles of different morphologies 

are obtained from such processes depending upon the operating conditions and nature of 

the feed. Particle morphology mainly dictates the various properties of the powder 

obtained. This is pictorially shown in figure 1.1 where the desired particle/powder 

characteristics are a function of morphology in one way or the other. For example, the 

strength and hardness of the particles obtained depends on the particle size, its density 

and also on the degree of porosity present in the particles. Differences in strength can be 

observed for hollow and solid particles.  Depending on the structure of the particle 

formed, either skin forming, crystalline or agglomerates, may determine the strength of 
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the particles. A sodium chloride solution droplet would dry to form a particle with 

crystallites in the outer shell whereas a skim milk droplet would form an impermeable 

thin skin. Volatile content in the particles are important when applied to food and 

perfume industry. The degree of retention depends again on the thickness of the crust and 

how well the vapors are trapped inside the particles.  

 The morphology or structure of the particles depends mainly on the process 

variables such as feed concentration, drying temperature, method of atomization, etc. 

Low feed concentrations and slow evaporation rates results in solid particles whereas 

rapid evaporation rates may yield hollow particles. Some particles require after treatment 

methods such as making pellets or grinding the particles to further reduce their sizes. 

These operations also alter the morphologies of the resultant particles formed.
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Figure 1.1: Dependence of particle properties on morphology and process variables 
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Various particles morphologies can result during spray drying depending on the 

process variables and nature of the materials at hand. Most of the particles produced via 

spray drying are hollow due to the high temperatures and drying rates. The hollow nature 

of the particles makes them ideal for encapsulation applications. Also, depending on the 

porosity of the particles, they can be used for timed release in drug-delivery, reactions 

involving catalyst particles, encapsulation of aroma, etc. An area where such a production 

may play a major role in controlling the morphologies and properties of the 

microparticles is polymer blends. Not enough research is available in the field of polymer 

blends in microparticle form and most of the research involved concentrates on thin 

films. Several advantages of the polymer blends in microparticle forms have been 

identified and this has prompted us to study polymer blend microparticles.  

Many theoretical models have been developed over the years from simple 

characteristic drying curve models that uses semi-empirical expressions derived from 

experiments to highly complex models involving transport phenomena equations in 

single droplets extrapolated to the whole of the drying column in a computational fluid 

dynamic models. These models describe the particle formation mechanisms by 

considering the drying behavior of single solution/slurry/colloidal droplet and correlating 

these with the operating variables. 

The purpose of this thesis is two-fold. The first part of the thesis deals in using the 

droplet drying technique to produce homogeneous polymer blend microparticles.  

Chapter 2 starts with a brief introduction of the thermodynamic aspects of polymer 

blends along with some background on preparation and characterization of polymer 
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blends. Some background on preparation of microparticles is also discussed along with 

their characterization.  

Chapter 3 discusses the experimental set-up used for the preparation of the 

polymer blend microparticles in detail. The polymer blend systems chosen are also 

presented. In Chapter 4, the particle morphologies obtained, effect of various operating 

parameters such as initial concentration, orifice size, and temperature on morphology and 

homogeneity of the blends is discussed in the results and discussion section. Several 

conclusions are drawn based on the results obtained and also future work related to the 

production of polymer blend microparticles and better characterization techniques to 

understand the phase separation in polymer blends is also discussed.  

Chapter 5 deals with the modeling of single polymer solution droplet consisting of 

a highly volatile solvent. A brief literature review on the previous single droplet drying 

models have been discussed. Most of the theoretical research in modeling single droplet 

drying is based on the diffusion equation that represents the concentration inside the 

droplet. Evaporation of a highly volatile solvent introduces a convective velocity inside 

the droplet and the droplet density varies along with the concentration inside the droplet. 

First, the drying of the droplet is modeled until the onset of skin formation. The results 

obtained when the convection is not taken under consideration for the same solution 

droplet is also compared to show that the surface concentration is under-predicted in the 

latter case. Conclusions and further relaxation of modeling assumptions for better 

prediction of the drying behavior is also discussed. 
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CHAPTER 2 

2. BACKGROUND 
 
2.1 Introduction 

Polymer blends may be defined as physical mixtures of two or more polymeric 

systems. Traditionally, the interest in polymer blends arose due to the economic 

advantages of blending a cheaper polymer with an expensive one. Blending also results in 

altering the properties of the polymers and yielding a blend that has properties of both the 

polymers. In most cases there is an inherent phase separation when mixing two polymers. 

Most of the polymers are immiscible in each other, i.e., they phase separate when mixed 

together. This phase separation is usually seen as domains of the polymer rich phases 

otherwise known as the morphology of phases. The morphology of these separated 

phases governs the properties of the blend. Recent advances in polymer science and its 

application in various other fields such as drug delivery, electro-optical devices, solar 

cells, membrane sciences, etc. have propelled the research in polymer blends. An 

excellent review on the application and advantages of polymer blends is given by Favis 

(1991). Most of his work reviews the synthesis of polymer blend using melt processing. 

He discusses the factors that affect the interfacial adhesion and morphology of the 

polymer blends during blending.  Ajji and Utracki (1996) discuss the effect of poor 

adhesion between the two polymer phases by reviewing the theoretical models, and how 

compatibilizers (mainly copolymers) can be used to lower the interface thickness. 

Increased application of polymer blends in other fields paved way for understanding the 

polymer blend phase separation using experiments and simulation.  
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Theoretically, if one can have a highly supersaturated solution of the polymer 

blends such that the composition of both the polymers lie in the region where the blend 

exists as a single phase then a uniform blend can be achieved. Phase separation is a 

relative term. Ideally, a homogeneous blend will be obtained when there is no separation 

at molecular level. This is not always possible in polymers as molecular weight plays a 

major role in determining the size of the chains in the confined space. However, the need 

to test the above hypothesis forms the basis of this dissertation. Several methods such as 

freeze-drying and spin casting have been employed to obtain homogeneous polymer 

blends with little or no success. All these non-equilibrium processes involve achievement 

of supersaturation of the components in the blend so that the mobility of the polymers is 

highly reduced. This supersaturation may also be achieved by droplet evaporation 

technique if the time scale of solvent evaporation is comparatively less than the time 

scale of phase separation. If such a state can be achieved then the mobility of the 

polymers will reduce considerably and the diffusion process will be inhibited, thus 

inhibiting phase separation in the blend. This will lead to a uniform mixing of the chains 

of the two polymer components. A simple pictorial representation is shown below in 

figure 2.1. Initially the droplet contains a completely homogeneous solution containing 

two polymers dissolved in common solvent. As the solvent evaporates, the droplet 

shrinks in size. If the evaporation of the solvent is very slow, then the polymers have 

enough time to diffuse and separate out to form a core-shell microparticle as shown in 

figure. A moderately slow evaporation might yield a structure that has domains of each 

polymer. Rapid evaporation might produce particles that inhibit the diffusion process and 
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the polymer chains remain uniformly distributed yielding well-mixed polymer blend 

microparticles. 

 

 

Figure 2.1: Schematic representation of formation of polymer blend microparticles 

from dilute polymer solutions. 

In the present work, polymer blend microparticles have been prepared using the 

microdroplet evaporation technique. The droplets are generated using a modified 

vibration orifice aerosol generator that produces a uniform monodispersed linear array of 

microdroplets. The blend microparticles obtained are characterized for their morphology 

and homogeneity using electron microscopy (SEM, TEM) techniques and Differential 

scanning calorimeter (DSC). DSC was used to obtain the glass transition temperature of 

the blends. The internal morphology of the blends was investigated either by using ultra-

microtomed slices or by confocal microscopy when one of the polymer components had 

fluorescence.  
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Section 2.2 discusses the thermodynamic viewpoint of the theory of phase 

separation in polymer blends. The two commonly explained phenomena of phase 

separation namely; nucleation and growth and spinodal decomposition are explained 

briefly. Also, different methods of controlling or inhibiting the phase separation in bulk 

systems is presented along with the introduction of mechanism of phase separation from 

a ternary system wherein a solvent is evaporated from the homogeneous blend solution to 

form polymer blend thin films. Section 2.3 discusses the various methods for preparation 

of polymer blends including solvent induced preparation techniques like spin casting into 

thin films.  

Section 2.4 starts with a review of the general applications of microparticles with 

the focus shifting towards polymer blend microparticles and their applications. In this 

chapter, various aerosol based methods used for the production of microparticles and 

microspheres have been discussed along with the numerous characterization techniques 

employed to study the morphologies of such materials.  
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2.2 Phase separation/miscibility in polymer blends 

This chapter briefly reviews and discusses the theory of miscibility and phase 

separation in polymer blend mixtures. The criteria for two polymers to be homogenously 

mixed, or in other words, be in a single phase, is that the Gibbs free energy of mixing 

(∆𝐺𝐺𝑚𝑚) is negative, i.e., 

  

∆𝐺𝐺𝑚𝑚 =  ∆𝐻𝐻𝑚𝑚 −  𝑇𝑇∆𝑆𝑆𝑚𝑚  < 0                                          (2.1) 

 

where ∆𝐻𝐻𝑚𝑚 &  ∆𝑆𝑆𝑚𝑚 are the changes in enthalpy and entropy of mixing respectively and 𝑇𝑇 

is the absolute temperature. Equation 2.1 suggests that for two or more components 

(either polymer-polymer, or, polymer–solvent or all the three) to exist as a single phase 

either the change in enthalpy should be very small or the entropy of mixing and/or 

temperature needs to be very high. The contribution towards the enthalpy function comes 

from the interaction between the different components in the blend solution. The entropy 

from mixing is always positive but for polymers it is usually small when compared to the 

enthalpy term and hence most of the polymers tend to phase separate. Different phase 

diagrams are possible based on the nature of the polymers, their intra and inter-polymer 

interactions. Different possible phase diagrams are shown in Fig 2.2. Typically, it is a 

plot of temperature vs. composition of one of the components in a binary mixture. 
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Figure 2.2: Phase diagrams of different polymer blend systems as a function of 

Temperature (T) and compostition (φ). (a) LCST above a UCST, (b) LCST below a 

UCST, (c) LCST, (d) UCST and (e) a blend having higher solubility at an 

intermediate temperature range  (adapted from (Qian, Mumby et al. 1991)) 

Figure 2.2 clearly show the existence of regions where the blend exists as a homogeneous 

single phase and otherwise. According to Figure 2.2, some polymer mixtures exhibit 

Upper Critical Solution Temperature (UCST) as shown in Figure 2.2 (d), some exhibit 

Lower Critical Solution Temperature (LCST) as in Figure 2.2 (c) and some mixtures tend 

to exist in single phase at a moderate temperature range (Figure 2.2 (e)). This 

representation gives an idea of the regions in which one can operate to yield a 

homogeneous or phase separated polymer blends.   
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Figure 2.3: A typical phase diagram for a polymer blend showing different regions 

of stability. 

A general schematic representation of the different regions of a phase diagram is shown 

in figure 2.3. Kinetics of phase separation mainly proceeds in a direction governed by the 

phase diagram. The solid curve is called the “binodal” or the “co-existence” curve and 

the dotted lines represent the “spinodal”. This leads to a more important criterion for 

phase separation given by inequality 2.2.  

 

        𝜕𝜕
2𝐺𝐺𝑚𝑚
𝜕𝜕∅2

>  0                                                          2.2 
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The critical point, which is either an LCST or a UCST, is given by inequality 2.2 when 

the RHS equals zero. The region in between the binodal and spinodal is the “metastable” 

region and the one enclosed by the spinodal is the “unstable” region.  

Rate processes associated with phase separation are an important aspect in 

studying polymer blends as this gives an idea of the mechanism of phase separation due 

concentration fluctuations. These two regions and the energy fluctuations due to an 

infinitesimal change in composition are the primary reasons in defining which 

mechanism contributes towards phase separation and the final morphology of phase 

separated domains. The mechanisms that occur in both the metastable and unstable 

regions are strikingly different. In the metastable region, the infinitesimal fluctuations in 

composition wear out easily and hence a large fluctuation in composition is required for 

the phases to form. This large fluctuation is called a nucleus and the morphology 

obtained is more structured and defined. This is called Nucleation and Growth (NG). In 

the unstable region however, the mixture is unstable to even very small fluctuations. 

Since there is no thermodynamic barrier to phase growth, the phase separation occurs 

more spontaneously. Also, the growth of the fluctuations occurs in a direction opposite to 

the concentration gradient created by small composition fluctuations. The growth of the 

phase depends upon the diffusion distance and hence the decomposition or phase 

separation occurs in finer length scales. Sections 2.2.1 and 2.2.2 will very briefly discuss 

the nucleation and growth and spinodal decomposition in polymer blends.  
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2.2.1 Nucleation and Growth 

 
When a system of a homogenous solution of two polymer blends is cooled from a 

high temperature equilibrium state to non-equilibrium one below the phase transition 

region, the system will eventually evolve into a new equilibrium state. Ordered phases of 

both the polymers will be formed during the process. During this process, local ordered 

domains of the ordered phases tend to grow if the sizes of these ordered phases are 

greater than the critical nucleus size. Continuous growth of these nuclei and ordered 

interfaces results in structures similar to that shown in figure 2.4 (a). Most of the 

nucleation and growth phenomena yield spherical domains but under certain conditions 

the nucleation and growth process can be controlled to yield several other morphologies 

such as lamellar or cylindrical. In the nucleation and growth, the process is usually very 

slow. This results in a more uniform and structured phase separated domains.  Figure 2.4 

(a) clearly demarcates the phase-separated domains of PVC and PS blend films prepared 

in our lab. PS forms the continuous phase and PVC forms the discrete circular domains. 

(The films were prepared by dissolving a 2wt% PS-PVC (equal weight ratios) in THF 

and pouring the dissolved solution in a petri dish. The solution was dried for more than 3 

days at room temperature and further dried under vacuum for 48 hrs. The dried films 

were observed under SEM.) 
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2.2.2 Spinodal Decomposition 

 
In contrast to nucleation and growth phenomena, when a single-phase system of 

polymer blend is forced to jump into the spinodal region, phase separation is more 

spontaneous and random microstructures are formed. A pictorial representation of 

polymer blend morphology from such a process is shown in figure 2.4 (b). Figure 2.4 (b) 

is just a representation, as we did not make any films that resulted in spinodal 

decomposition. Since the morphology obtained from a spinodal decomposition process is 

a highly interconnected network of polymer chains, the properties of polymer blends are 

superior in many cases when compared to the blends obtained from nucleation and 

growth processes. Spin casting and freeze drying of polymer blend solutions into thin 

films takes advantage of the spinodal decomposition process.  

 

 

Figure 2.4: Visual representation of different phase separation processes in polymer 

blends (a) SEM images of PVC-PS film showing Nucleation and Growth                 

(b) Spinodal Decomposition forming co-continuous phases.  
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2.3 Methods for preparing polymer blends 

Polymer blends are generally prepared either from the molten state or by compatibilizing 

one or both the polymers to increase the interaction between each phase or by introducing 

a solvent to prepare thin films via spin casting.  

 

2.3.1 Melt Processing  

Conventionally, polymer blends were prepared from melts. It is the most 

economical process and offers high degree of mixing. The polymers are heated above 

their melting points until both the polymers are in molten liquid state and then quenched 

to yield a solidified polymer blend. Most of the times the quenching is carried out in 

combination with an extrusion process. Usually, the polymers are raised above their 

melting points and then passed through an extruder for obtaining fibrous end products 

with lateral phase separations (Scott and Macosko (1991), Chapleau and Favis (1995)). 

The basic idea behind these processes was to induce mixing and breaking up of the phase 

separated domains into smaller sizes.  

 

2.3.2 Compatabilization 

Most of the polymer pairs are immiscible in each other and the interfacial tension 

between the two phases plays a major role during phase separation. The reduction of the 

interfacial tension either by altering the surface properties of one or both of the polymers 

or, by adding a third component (co-polymer) is called compatibilization in polymer 

literature. The resulting blend is sometimes referred to as “polymer alloys”. An excellent 

review on polymer alloys is given by Utracki (Utracki 2002). Compatabilization is either 
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induced using physical mixing of a third component or by chemically bonding the third 

component to increase the mutual interactions between the polymers to be blended. For 

example, Li and Hu (2000) have compared compatablized and uncompatabilized blends 

of polypropylene and polyamide 6 made using melt mixing. Si et. al. (2006) have used 

organoclays to compatibilize polymer blends of PS/PMMA and PC/SAN. Cao et. al. 

(2011) studied the compatibilization of immiscible blends of polyamide (PA) and 

polyphenylene oxide (PPO) using grapheme oxide sheets. Vast literature is available for 

these processes but they are not the scope of the present work and hence are not discussed 

here.  

2.3.3 Solvent induced 

As discussed earlier, most polymer blends are immiscible over a wide range of 

temperature and composition that is of practical importance. Even though the starting 

polymer blend mixture is homogeneous in its molten state, when it is cooled to 

temperatures of operable range, due to the slow diffusion process, the phase separation is 

more pronounced and the phase morphologies are more or less segregated with domain of 

one polymer-rich phase in the other. Improving the melt mixing and the rate of quenching 

can reduce the domain sizes but not to a large extent. Also, the properties of the blend 

obtained are not continuous throughout. High molecular weight polymers tend to be 

immiscible because of very low enthalpic and entropic contributions when blended 

together. Using a solvent to dissolve the polymers increases the entropic contributions 

and hence a homogeneous mixture of the polymers and the solvent is formed. Removal of 

the solvent from this solution aids in precipitation and/or phase separation in the polymer 

blends. If the solvent is removed rapidly enough to prevent phase separation then one can 
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ideally achieve a homogeneous blend. The process by which the solvent is removed 

governs the final morphology of the blends obtained. The blends obtained are in a non-

equilibrium state and are kinetically frozen in time. Freeze-drying, supercritical fluid 

precipitation and spin coating are processes that use solvent evaporation as the basis for 

preparing homogenous blends. Most of these methods are coupled with spin casting of 

polymer blends. The following section will briefly review the literature on the various 

preparation methods along with their shortcomings.  

Another solvent evaporation technique and the most widely used among all of the 

above is spin casting from a homogeneous solution onto a substrate. Thin and ultra thin 

films of polymers and polymer blends are generated using this technique. Here, a 

homogeneous solution of the polymers in a solvent is added to a rotating substrate. 

Simultaneous centrifugal force due to rotation and solvent evaporation yields a thin film. 

The morphology of the films obtained depends on the nature of the solvent, interactions 

between the polymer and solvent and polymers and the nature of the substrate. Many 

investigators have tried to use spin coating as a means of creating kinetically frozen 

particles for various applications. The spin casting process is a diffusion process and is 

relatively slow due to the dimensional constraints posted by the substrate during solvent 

evaporation.  Over the past decade, preparation and characterization of such films have 

been the subject interest of many researchers in the field of polymer blends. Due to the 

ease of operation, most of the solvent induced phase separation has extensively been 

studied in thin films. Many researchers have tried to probe and understand the mechanism 

of phase separation in polymer blends using solvent evaporation. Earlier research 

involved polymers mixed in a common solvent and then dried in atmosphere. Later, Spin 
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coating process has been used extensively to get thin and ultra thin films of polymer 

blends for various applications. The films produced were much thinner than the bulk 

evaporation produced films. Also, the interactions between component chains (due to 

confinement effects) are much pronounced due to the reduction in dimension of the films. 

With the advent of various characterization techniques such as SEM, TEM, light 

scattering and AFM, several researchers have probed the kinetics of polymer blend thin 

films. The following paragraphs will briefly discuss the efforts of various researchers in 

the field. Dalnoki-Veress et. al. (1996) studied the phase separation of PS/PI by 

dissolving the polymers in a common solvent toluene. The solution was quenched at 

room temperature by rapid evaporation of the solvent. They prepared three different 

surfaces and found out that the affinity of the polymeric phases to the substrate and free 

surface has a significant influence on the final morphology of the polymer blends along 

with the solvent used. Areas of the polystyrene rich domains were used to measure the 

extent of phase separation. It was concluded that the wetting properties of polystyrene 

was the major factor in large differences in domain sizes in different substrates.  

In another similar kind of work, Walheim et. al. (1997) also studied the effect of 

spin cast films of PS/PMMA from toluene, MEK and THF as solvents. Effects of three 

different solvents and substrate surfaces on the phase morphologies were studied using 

the topographies obtained by atomic force Microscopy (AFM). Lateral phase separation 

was observed with PMMA phase rich near the surface as PMMA gets depleted of solvent 

more rapidly than PS. They showed that this was due to the affinity of toluene and THF 

towards PS. They also concluded that if the solvent is a better solvent for the polymer 

with lower surface tension then the surface exhibit sharp well-defined edges. The reverse 
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was observed when MEK was used. Spin cast films of PVC/PS were prepared by Fang et. 

al. (2000) and their morphologies were studied using DSC and Electron microprobe 

analysis. They compared their results to the blends prepared by melt processing. They 

also concluded that the phase-separated domains follow sea-island like structures when 

nucleation and growth mechanism was followed.  

Mokarian-Tabari et. al. (2010) prepared polymer blend films of PS/PMMA using 

spin casting from toluene solution. They quantified the evaporation rate by relating it to 

change in film thickness. They showed that when evaporation rate is higher the structure 

starts to develop into a co-continuous phase and very quickly reaches a fixed pattern. 

Since the evaporation was fast, higher concentration gradients existed in the phases and 

hence marangoni instabilities were present during formation of the phases which result in 

laterally phase separated structures. At slower evaporation rates, there are no such 

instabilities observed and also layered structures are formed and followed NG mechanism 

of phase separation.  

Zhang and Taekoda (2012) have fabricated ultra thin films of PS/PMMA and then 

selective leaching of one of the polymers was used to get a nanoporous structure. They 

used a sacrificial PVA film on substrate which can be removed so that the films can be 

freestanding (i.e. the films can be removed from the substrate and transferred to any other 

surface). This also aided in the study of the bottom surface which otherwise adhered to 

the substrate. Cross-sectional views of the films showed that decreasing the thickness of 

the films can significantly increase the pore areas. 

Newby and Composto (2000) studied thin film polymer blends of PMMA and 

SAN prepared by evaporation of Methyl isobutyl ketone (MIBK) for the effect of the 
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lateral confinement of the substrate by tracking the dynamics of phase separation. They 

divided the phase separation into early, intermediate and late stages where the wetting 

layer thickness increases along the center of the film, slows down and then approaches a 

constant value. A similar research was also done by Wang and Composto (2000) who 

studied the phase separation kinetics by inducing phase separation at the critical point. 

They selectively removed one of the components and used AFM to study the layered 

structures. Jukes et. al. (2005) have studied the phase separation in  thin films of 

semiconducting polymer blends of PS/PMMA by spin-coating.  

Several researchers have recently used confocal microscopy coupled with Raman 

spectroscopy and AFM to study the phase morphology of ultra thin films (Schmidt-

Hansberg et. al, 2005, Campoy-Quiles et. al., 2008, Yeo et. al., 2009, Li et. al., 2004). All 

these studies were for applications involving opto-electronic membranes and one of the 

polymer components exhibited photoluminescence.  

2.4 Preparation and Characterization of Microparticles 

 Microparticles find wide range of applications in the field of microelectronics, 

catalysis, drug delivery, polymer coatings and membrane sciences. Production of these 

microparticles and tuning of their size and morphology play an important role in these 

applications. Microparticles vary widely in quality, sphericity, uniformity of particle and 

particle size distribution. Spherical microparticles are often referred to as microspheres. 

Preparation of these microspheres includes emulsification methods, sol-gel methods, 

spray drying/droplet evaporation, or a combination of these. Morphology and structure of 

the microparticles play an important role in determining the properties for various 

applications. Hence, the effective characterization of these particles is equally important 
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as their production. This section briefly describes the methods used to produce 

microparticles along with different characterization techniques used to study such 

particles. The emulsification and sol-gel methods are bulk methods. These methods yield 

a broad distribution of particle sizes and are time-consuming as the physical and chemical 

processes associated with such processes are quite slow. Other downstream processing 

such as removal of solvent, washing of impurities, filtration of residues, etc. are always 

associated with such processes. Aerosol based processes such as electro-spraying and 

spray drying are favorable when compared to the above processes. The next section will 

discuss the micro-droplet based processes for microparticle production and also discuss 

the various characterization studies used to study their external and internal morphology.  

 

2.4.1 Microdroplet based techniques 

Solvent evaporation from micron and sub-micron droplets offer several 

advantages over the methods discussed above to prepare polymers blends and other 

microparticles from homogeneous solutions. High surface-to-volume ratios enhance 

evaporation in microdroplets and proper choice of solvents can lead to better control of 

the morphology obtained via such a process. Also, since the process of evaporation in 

these droplets proceed radially, different particle morphologies can be obtained by 

controlling the radial profiles of the components. Other pre-treatment and post treatment 

processes can be avoided and particles can be produced with ease by a single step of 

manufacturing. The method can be scaled-up for bulk production of microparticles and 

microspheres with minimum difficulty. 
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Conventional bulk processes used to produce microparticles are sol-gel methods 

and emulsion techniques. These techniques have been studied by many researchers and 

are not the scope of this dissertation. The major disadvantages of these bulk processes are 

(a) scale-up and bulk production, (b) very large particle size distribution and (c) costly. 

Basic steps involved in aerosol based processes are the break-up of the liquid 

solution into small droplets and carrying out the necessary processes, such as drying, 

reactions, precipitation, crystallization, etc., within these droplets to obtain the desired 

particle sizes and morphologies. Atomization of the liquid solution can be achieved by 

several different techniques but can be classified as gas atomization, ultrasonic and 

electrical. Gas atomization involves very high shear force, using a high velocity gas, to 

breakup liquid into small droplets. The droplets obtained from such a process are highly 

polydisperse.  

Ultrasonic atomization involves breaking up of the liquid jet using ultrasonic 

vibration of the nozzle or orifice through which the liquid is ejecting out. In ultrasonic 

atomization, low velocities result in less mechanical stress on the materials and hence less 

prone to deactivation when comes to bioactive materials, spray coatings and drug 

delivery (Barba et. al. 2012, Friend et. al. 2008, Friedas et. al. 2004). Ultrasonic 

atomization usually is preferred for low-viscosity solutions and low-temperature 

applications. When used for prolonged periods, the temperature of the system increases 

considerably and the temperature sensitive materials cannot be used in conjunction with 

such methods (Biskos et. al. 2008). 

Another process associated with microdroplets is electrospraying. Electrospraying 

operates on the principle of applying high voltage to a nozzle or an orifice, through which 
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the liquid passes, and in the process highly fine charged droplets are formed. Bock et.al. 

2011, Liu et. al. 2008, have produced polymer particles using electrospraying/ 

electrospinning techniques for different solution concentrations. Hollow microspheres of 

polymethylsilsequioxane (PMSQ) has been prepared by electrospraying the precursor 

solution into a core-shell droplet (Chang et. al 2010). Subsequent evaporation of the core 

(a volatile solvent) yields a hollow microsphere. The internal morphology was obtained 

by sectioning the microspheres and observing them under an SEM. 

Droplets formed by atomization of the liquid solution subsequently are dried, 

along with chemical reactions (such as polymerization, degradation, etc.), if necessary, to 

yield the required products of certain morphology. Various methods are incorporated and 

these can be classified as spray drying, spray pyrolysis, spray freeze-drying and 

supercritical fluid extraction. All these processes involve solvent evaporation or 

extraction of the solvent by different processes. 

Spray drying uses an atomizing nozzle to produce microdroplets by introducing a 

high velocity, high temperature, air stream along with the solution that need to be 

atomized for particle production. Spray drying has been extensively used in the food 

industry for the production of milk powders (J Kim et. al. (2009), Sharma et. al. (2012)), 

concentrated fruit juice powders (Abadio et. al. 2004, Chegini and Gobidian 2007,  

Solval et. al. 2012) and proteins. It is also used in pharmaceutical industries for the 

preparation of amorphous drugs and their encapsulations for controlled release. Yang et. 

al. 2010 produced spray-dried encapsulated hematoporphyrin by polymeric micelles. The 

prepared films were dissolved in ethanol and then spray dried to get particles of size 

2.3mm. The distribution of the drug was studied using fluorescence imaging. Desai and 
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Park (2005) have prepared chitosan microspheres that encapsulates acetaminophen. The 

surface morphology was studied by varying the cross-linking in chitosan. Particles of 

about 5mm size were formed but with large agglomerates. Sun et. al. 2009 produced 

hollow hydroxyapatite microparticles with a mean particle size of 5 mm. A large 

distribution in particle size is obtained in the process, as the droplet break-up is not 

uniform. Several researchers have attempted to use different nozzle/atomizer designs to 

improve the particle size distributions from spray dryers (Okuyama and Lenggoro 2003). 

An excellent review on spray drying in pharmaceutical engineering is given by Vehring 

(2007). He has also given the effect of spray drying conditions that govern final particle 

morphologies.  

Spray pyrolysis is another process wherein microdroplets undergo chemical 

changes at high temperatures. Pingali et. al. (2005) prepared silver nanoparticles from 

aqueous silver nitrate solution by spray pyrolysis. The solution was atomized into 

droplets using an ultrasonic atomizer and a large particle size distribution was obtained. 

Effect of solution concentration on the final particle sizes was studied and it was shown 

that the particle sizes increased with increase in solute concentration. A linear fit was also 

obtained for mean particle size and concentration with a regression co-efficient of 0.95.  

Hollow microspheres of TiO2 were prepared by Dwivedi and Dutta (2012) using 

ultrasonic spray pyrolysis. Very fine particles were formed but most of them were 

sticking to each other and formed agglomerates. The fractured particles were looked 

under SEM for confirmation of hollow microspheres.  

All the above-mentioned atomization methods produce large particle size 

distributions. Agglomerates are formed in most cases as the spraying cannot be controlled 
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or made uniform in these cases. Economically, the energy required for bulk productions 

are quite high and the temperatures involved sometimes are not suitable for most of the 

materials involved. These shortcomings can be avoided with the use of a highly 

monodispersed droplet generator, such as a vibrating orifice aerosol generator, in which 

the size of the droplets can be controlled precisely. The following section 2.4.1.1 briefly 

discusses the research work on production of particles using a vibrating orifice aerosol 

generator.  

2.4.1.1 Microparticles prepared using Vibrating Orifice Aerosol Generator 

Vibrating orifice aerosol generator (VOAG) uses a periodic disturbance to break-

up the liquid solution jet emerging out of an orifice. High number concentration of 

particles obtained from a VOAG makes it an ideal method for bulk production of 

microparticles. Wide range of particles can be formed from either homogeneous or 

colloid precursor solutions. Bergland and Liu (1973) have showed that the aerosol 

droplets generated using a VOAG can be highly uniform in size with standard deviations 

of about 1%. Since a VOAG can produce uniform monodispersed droplets of aerosols, 

they were mainly used for aerosol sampling and measurement. A conventional Berglund-

Liu VOAG has been the most widely used droplet generator to study different processes 

associated with these droplets. Bergland et. al. (1974) have studied the response of 

several optical particle counters using VOAG. Recently, however, studies have been 

conducted using Vibrating orifice Aerosol generator for determining the evaporation rates 

of highly volatile substances. Devarakonda and Ray (1998) have extensively studied the 

evaporation of ethanol droplets produced by VOAG using laser light scattering 

techniques. Since a VOAG produces monodispersed droplets with very small size, it has 
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been looked at as a micro-reactor to produce ordered structures. A wide range of 

microparticle morphologies have also been observed that are produced using a VOAG. 

Liu (1976) observed that crystalline NaCl when crystallized from solution either formed 

polycrystalline particles or crystallized into hollow particles whereas amorphous 

compounds resulted in a solid spherical particle. With a controlled evaporation rate of the 

solvent from the evaporating droplet, porous particle morphology can also be obtained as 

observed by Auvermann (1979). He obtained porous potassium chlorate particles 

produced by VOAG. Leong (1981) has worked on studying different particle 

morphologies. He examined the effect of evaporation rate; solute composition and 

solubility on the final particle shape obtained from crystallization of suspended droplets 

produced using a VOAG. Esen and Schweiger (1996) have produced spherical polymer 

particles by photopolymerization of monomer SOMOS dissolved in a volatile solvent, 

ether. Esen et. al. (1997) further continued the work on the same lines to produce a 

layered structure consisting of glycerol encapsulated in a polymer matrix. They showed 

that manipulating the parameters of a VOAG can precisely control the thickness of the 

polymer layer. Gao et. al (2007) have also produced polymer microspheres using a 

VOAG. Researchers have also made attempts to produce structured porous catalyst 

particles using a VOAG as shown by Rama Rao et. al. (2002). They produced 

mesoporous silica by evaporating ethanol from the precursor solution droplets of TEOS, 

HCL and water and allowing the precursor solution to react at high temperatures. Rathod 

et. al. (2003) has also used VOAG to produce highly monodispersed mesoporous silica 

particles of 10 mm with a pore size of 2 nm and a specific surface area of 900 m2/gm. 

Monodispersed Uranium oxide microparticles were produced by Erdmann et. al. (2000). 
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The particles obtained were spherical and dense. They used secondary ion mass 

spectroscopy to calculate the isotopic composition of U235/U238.   

In the present study, a vibrating orifice aerosol generator has been used to produce 

monodispersed polymer blend microparticles. The vibration frequency and liquid flow 

rate was optimized to get uniform particles.  

2.4.2 Characterization of Microparticles 

 Microparticles produced by various methods are characterized for their internal 

and external morphologies using several techniques. Choice of the characterization 

techniques depends upon the nature and size of particles formed. Scanning electron 

microscopy and transmission electron microscopy are most widely used direct techniques 

for the visual observation of particle size and shape. External morphology of 

microparticles using SEM and TEM is quite common nowadays. Walton (2002) has 

shown different morphologies of ferrite particles and tungsten chloride, yogurt powders 

and the agglomerates formed and skimmed milk hollow particles produced by industrial 

spray dryers using SEM. The particle size is either measured manually or by using image 

analysis software and an average value is obtained as shown by Liu et. al. (2008) who 

prepared chitosan particles by spray drying.  

 The internal morphologies of particles can be visually observed by either 

fracturing the microparticles and viewing them in an SEM or by using ultramicrotomy. 

Fracture in a particle can be achieved by cryo-milling, polishing, etc. (Li Yan et. al. 

2005). The particles are introduced to ultra low temperatures (usually in liquid Nitrogen) 

and broken down by some kind of milling operation. The fractured particles thus obtained 

are observed under an electron microscope to observe the internal morphology of the 
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microparticles. Ultramicrotomy is a process in which the microparticles are embedded in 

a matrix and using a diamond knife ultra thin slices (about 60 nm) are obtained which are 

further analyzed by microscopy techniques. Ehtazazi et. al. (1999) have prepared 

microspheres of poly (D-L, lactide) using a double emulsion method. The internal 

morphology of the pores inside the microparticles was characterized by sectioning the 

microspheres under low temperatures. The sectioned samples had a thickness of 20 mm. 

The size of the actual microspheres formed was about 40 mm and the microspheres 

formed were quite rigid for sectioning to be done easily.  

In-situ sectioning of microparticles can also be done using focused ion beams. A 

highly coherent and focused ion beam cuts through the particle when inside the electron 

microscope chamber. This allows direct observation of the microparticle cross-sections. 

Moghadam et. al. (2006) have used the technique to observe the internal structure of poly 

(lactic acid) (PLA) loaded with naltrexone. Sequential and controlled depth analysis of a 

single microparticle can be performed using such a technique (Kamino et. al. 2004, Steer 

et. al. 2002). 

In case of fluorescent samples, the confocal microscopy is an effective non-

destructive tool for studying the distribution of the fluorescent component in the 

microparticles. Confocal microscope scans the microparticle along its depth and yields 

images across its cross-sections, at each depth, showing the distribution of the 

components. Ming Na et. al. (2012) have produced drug loaded polymer microspheres. In 

the case of polymer blend thin films, especially in the case of photo-luminescent 

materials, confocal microscopy has been extensively used. Zammarano et. al. (2011) 

detected fluorescein labeled cellulose using a laser confocal microscope. Distribution of 
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components can also be obtained by using an Energy Dispersive X-Ray Spectrum (EDS) 

on the ultramicrotomed samples. This approach is mainly used in the study of polymer 

nanocomposites and surface modified polymers. 

If the samples are a mixture of polymers, then a more important aspect of the 

study is the homogeneity of the samples. An important property that is used universally is 

the glass transition temperature. When both the polymers are amorphous, a single glasss 

transition temperature (Tg) suggests that the polymers are miscible in each other whereas 

two distinct Tg’s represent a phase separation in the blends. (Fang 2000). In a polymer 

blend with one amorphous and one crystalline component the glass transition can be used 

to determine the degree of crystallinity of that blend (Xuan and Yang 1985, Agarwal et. 

al. 2010).  

2.4.3 Polymer Blend Microparticles 

Majority of the current research in polymer blends is restricted to thin and ultra 

thin films but recently polymer microparticles find wide range of applications in the field 

of drug delivery, opto-electronic devices, polymer nano-composites, fuel cells, optical 

sensors, membrane sciences, etc. Having a co-polymer or a polymer blend as an 

encapsulation offers several advantages over a single polymer as one can control the 

release kinetics of the drug by varying the composition of each polymer in the blend. For 

example, polymer electrolyte membrane is sometimes doped with a hydrophobic material 

(such as PTFE) to inhibit water crossover in fuel cells. An excellent review on the subject 

is given by Siepmann et. al. (2008) wherein they discuss the advantages of having a 

polymer blend as drug coatings. Also, as the size decreases, the swelling characteristics 

increase and hence the solubility of the drug increases during its release. Sullad et. al. 

30 
 



 

(2010) have used a blend of biodegradable polymers PVA and hydroxypropyl cellulose to 

encapsulate the drug theophylline using a water-in-oil (w/o) emulsion method to cross-

link both polymers. The swelling characteristics and release efficiency was studied.  

Reddy et. al. (2013) has encapsulated an anti-cancer drug 5-fluoroucil using chitosan and 

hydroxypropylmethyl cellulose. Diferential Scanning Calorimeter (DSC) was used to 

corroborate the uniform distribution of the drug in the polymer blend microspheres. 

Alhan and Basit (2011) have also showed the influence of polymer blend distribution and 

interaction on the release characteristic of the drug prednisolone. They encapsulated the 

drug with Euragrit S and Euragrit RS/RL or ethylcellulose and extended the drug release 

characteristics in acidic environment. Most of the work in encapsulation of drugs is 

related to cross-linking the two polymers via an emulsion polymerization technique.  

Recently, polymer blend microspheres have also been studied in the field of fuel cells, 

wherein the microspheres are embedded onto a polymer electrolyte membrane for 

controlling the diffusion and electronic properties of the membrane. These can have 

direct impact on the efficiency of the fuel cells. Wang et. al. (2011) has showed that 

adding polymeric microcapsule fillers onto a membrane matrix can enhance water 

retention of membranes. In a similar study, Guo et.al. (2012) showed that by embedding a 

hydrophilic hollow polymer microparticles (0.5 wt% loading) onto a Nafion membrane 

one could increase the proton exchange across the membrane and yield a increase in 

power density of about 106% at nominal operating conditions when compared to pure 

Nafion membranes.  

Another exciting field in which polymer blend microspheres might play an 

important role are the organic opto-electronic devices such as solar cells and organic-
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LED’s. Main focus is on the bilayer heterojunctions that need to have excellent electron-

hole mobility. With various configurations of the conjugated polymers, one can achieve 

different electronic properties depending on the nature of the polymers and solvents used. 

Kietzke et. al. (2007) have used a miniemulsion process wherein they have produced 

nanoparticle polymer blends from bulk aqueous solutions. They showed that the 

nanoparticles obtained from the process had bi-phasic morphology. They also used the 

same approach to produce P3HT and PPV blend particles and the same result was seen. 

Schmidt-Hansberg et. al. (2011) has probed the structure formation in fullerene-polymer 

solvent cast blend films for application in organic solar cells.  

Most of the research advances in polymer blend systems uses bulk solution 

techniques. There are several disadvantages to these bulk methods such as scaling-up and 

bulk production, large distribution in particle sizes, etc. Particle formation from solution 

droplets offers quite a lot of advantages when compared to bulk methods. Micron sized 

droplets have large surface-to-volume ratio when compared to bulk methods. There is no 

substrate interaction as in the case of thin films. Nature of the solvent, composition and 

initial size of the droplets along with the confinement effects play a major role in 

determining the morphology and in turn the final properties of the particles obtained.  

Polymer blend microparticles have been produced using techniques such as supercritical 

fluid extraction and spray-freeze drying.   

In freeze drying, a homogeneous solution of two or more polymers dissolved in a 

common solvent is cooled rapidly to obtain a frozen solvent matrix containing the 

polymers. Once the solvent is frozen (solid), direct sublimation of the solvent from the 

solid to gas phase leads to solid polymer blends. Several researchers have worked on 
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producing polymer blends from freeze-dried solutions. Allan and Young (1980) have 

prepared polymer blends of poly (methyl methacrylate) (PMMA) and poly (vinyl 

alcohol) (PVA) freeze-dried from naphthalene solutions and studied the blend using 

differential scanning calorimeter (DSC). They showed a single glass transition 

temperature for their first heating scans and subsequent heating scans resulted in two 

separate glass transition peaks. Also, at a high heating rate i.e. 40 0C/min, they observed 

pronounced maxima and minima in the glass transition zone. They concluded that these 

features of the DSC data could be used to study the effects of preparation history of the 

blend. Risbud et. al. (2000) produced pH sensitive chitosan-polyvinyl pyrrolidone (PVP) 

hydrogels for controlled drug delivery. The process formed large moieties and the pore 

diameters were about 39.20 ± 2.66 mm. This in turn resulted in highly swollen hydrogels 

when used in acidic environment. 

Freeze drying incorporates lowering the temperature to freeze the solutions 

whereas when high pressures are used to compress and liquefy a gas to dissolve the 

solutes and the gas is expanded, the process is called supercritical fluid extraction (SCF). 

An excellent review on particle formation using supercritical fluids is given by Tom and 

Debenedetti (1991). They have discussed in detail the theory, operation and working of 

such equipment along with the applications of such systems in the field of ceramics, 

microencapsulation in drug delivery and thin films. Shine (1994) has prepared polymer 

blends using the supercritical extraction of solvents from the homogeneous polymer 

blend solution of poly (methylmethacrylate) and poly (ethylmethacrylate) in 

chlorodifluoromethane. The method is used to make bulk scaffolds, thin films and 

particles from sprays. Several studies have been conducted to produce polymer blends in 
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supercritical fluids (Domingo et. al., 2003, Chang et. al., 2004) and to study the effects of 

supercritical gases like CO2 
on polymers or polymer blends (Walker et. al., 1999, 

Watkins et. al., 1999, Zhou et. al., 2003). The energy involved for compression is 

sufficiently large and the pre-treatment processes involved are quite cumbersome.   

Recently, Barnes et.al. (1999) showed that two immiscible polymers can be 

dissolved in a common solvent and a single homogenous polymer blend microparticle 

can be obtained. They used an on-demand droplet generator to yield a single suspended 

drop and showed that the refractive indices of the single polymer blend microparticle is 

an average of that of the pure components. They studied the fraunhauffer diffractions 

from the particles and calculated the refractive indices of the particles. They found that 

the refractive index of a single blend particle obtained was equal to the mass average of 

the respective components in the blend and this, concluded that the particles are 

homogeneously mixed. The limitations to their study are (1) bulk production of particles-

they only studied a single particle and (2) the droplet/ particle obtained was always 

spherical as the charge on the droplets was quite high which held the particle together. 

Also, there was no experimental evidence of homogeneity or phase separation in the 

blends. 

In the present work, a more practical approach for production of polymer blend 

microparticles has been proposed. The microparticles of the homogeneous polymer blend 

solution was generated using a VOAG and the obtained microparticles were studied for 

their internal and external morphologies using electron microscopy techniques. The glass 

transition temperature for the blend was also obtained using differential scanning 

calorimetry.   
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CHAPTER 3 

3. EXPERIMENTAL  
 

This chapter presents a detailed description of the experimental set-up used in the 

present work to produce polymer blend microparticles from dilute polymer blend 

solutions.  

 

3.1 Experimental set-up 

The schematic representation of the experimental set-up used for the production 

of polymer blend microparticles in this study is shown in figure 3.1 below. The 

experimental set-up can be divided into two parts, namely, 

1) droplet generation system-VOAG along with liquid feed supply and electronics 

2) drying column with particle collection  

 

 The liquid from the reservoir is pressure fed through an orifice placed inside a 

piezoelectric crystal (PZT) cup to form a liquid jet. The jet is broken down into highly 

monodisperse droplets by applying a periodic disturbance to the PZT. These droplets are 

passed through a drying column, maintained at a certain temperature, where subsequent 

evaporation of the solvent and drying of the droplet result in microparticles of the 

polymer blends which are then collected at the bottom of the drying column using a 

particle collector. Each of these parts are discussed in detail in the following sections 

below. 
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Figure 3.1:Schematic representation of the experimental set-up used to generate 

multicomponent polymer blend microparticles 
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3.1.1 Droplet generation system 

The droplet generation system used in the present work consists of a modified 

vibrating orifice aerosol generator (VOAG) along with the liquid feed supply system. 

Droplets generated by a VOAG are highly monodispersed. The working of a VOAG is 

based on the principle that when a cylindrical jet is forced to become unstable under the 

influence of axi-symmetrical periodic disturbances, then the jet breaks down into small 

droplets. The number of droplets produced in unit time is equal to the frequency of the 

periodic disturbance, f. The same principle is used in our studies for generating linear 

stream of droplets.  

The first VOAG used capillary tubes as nozzles and these nozzles were vibrated 

to break the liquid into chain of droplets. Different droplet sizes were produced by 

varying the size of the capillary tubes. Over the years, the design of a VOAG has been 

considerably modified. The recently and most widely used one is the Bergland and Liu 

(1973) VOAG. Over the years, the principle behind generation of the droplets remains 

the same but the design has considerably been improved to produce highly 

monodispersed droplets. They incorporated stainless steel pinholes instead of capillary 

tubes. The initial droplet size was varied by varying the size of the pinholes. Figure 3.2 

shows a simple cross-sectional representation of the droplet generator head.  
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Figure 3.2: Cross-sectional view of the droplet generator head (VOAG) 

 

The liquid solution is forced through the liquid line and the liquid collects in the cavity 

made between the orifice plate (i.e. the pin hole) and the teflon o-ring. The air gap is 

removed by purging the liquid through the drain and then liquid is allowed to flow 

through the pinhole as a cylindrical jet. A periodic frequency is applied to the orifice 

plate, which breaks the liquid jet into droplets. The size of the droplets generated through 

such a system can be calculated from equation 3.1 given below, 

    𝑎𝑎 =  � 3𝑄𝑄
4𝜋𝜋𝜋𝜋

�
1 3⁄

                                                      (3.1) 
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where,  a is the size of the droplet, f is the frequency of vibration of the orifice plate and 

Q is the liquid flow rate through the orifice plate. Equation 3.1 demonstrates that a highly 

monodispersed stream of droplets can be generated by maintaining a constant flow rate, 

Q and constant frequency of vibration, f. Stabilization of the flow rate and frequency of 

vibration resulted in several important modifications to the VOAG. The liquid feed 

system and the periodic disturbances applied to the PZT will now be discussed in detail.  

Liquid feed system 

The conventional VOAG used by Berglund and Liu uses a syringe pump to force 

the liquid through the orifice. The syringe pump has good long-range stability but has 

instantaneous fluctuations (few mm ranges) that are inherent due to its operational 

characteristics. Mitchell et. al. (1987) developed a pneumatic liquid pump to minimize 

the fluctuations. Leong (1986) modified the liquid feed system by replacing the liquid 

syringe pump with a gas pressurized liquid flow system. The syringe pump was replaced 

by a liquid reservoir, which was connected to the gas ballast tank. The gas pressure in the 

tank was used to control the flow rate of the liquid. The volume of the ballast gas tank 

was very large when compared to that of the liquid reservoir and hence the pressure in the 

ballast tank controlled the flow rate of the liquid through the orifice. Leong used different 

solutions with different concentrations and showed that the flow rate remained constant 

with a deviation of 0.3% to 3 %. He also reported that the partial clogging of the orifice 

can result in change in flow rate and diameter of the liquid jet and may play a role in the 

loss of monodispersity of the generated droplets.  

In the present study similar modifications incorporated by Devarakonda (1998) 

has been used. The liquid flow system consists of a gas ballast tank that is connected to 
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the top of a stainless steel liquid reservoir  (130 ml) using a 1/4” teflon tubing. The 

sample solution is pre-filtered using a syringe filter to remove the large impurities and is 

stored in this reservoir. The ballast tank is filled with nitrogen from storage upto the 

desired pressure and then isolated. From ideal gas law, pressure is directly proportional to 

temperature of the gas in the ballast tank and even a small change in pressure can affect 

the change in temperature of the gas, i.e. 

 

∆𝑃𝑃
𝑃𝑃

 ~ ∆𝑇𝑇
𝑇𝑇

                                                          (3.2)        

 

Also, according to Bernoulli’s theorem, the effect of pressure can be related to the change 

in the flow rate and in turn to the droplet size (equation 3.1) as given by equation 3.3.  

 

∆𝑃𝑃
2𝑃𝑃

 ~ ∆𝑄𝑄
𝑄𝑄

~ �∆𝑎𝑎
𝑎𝑎
�
3

                                               (3.3) 

 

From equation 3.3 it is apparent that the fluctuations in flow rate will affect the 

monodispersity of the droplets. To avoid such variations in size, the ballast tank is well 

insulated from the ambient atmosphere using fiberglass insulation pads. A pressure gauge 

is attached to the tank for monitoring the pressure.  

The liquid is pressurized from the top and is allowed to flow through a 0.45mm 

filter (FHLP 02500) to remove large dust particles from the solution and then through a 

0.2mm filter (FGLP 02500) to remove the finer particles of dust or other contaminants. 

Two more 0.45 mm filters (FHLP 01300) are used very close to the orifice to assure 

complete removal of contaminants. The liquid collects in the cavity between the o-ring 
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and the orifice plate in the piezoelectric ceramic crystal (PZT) cup (shown in figure 3.2) 

and once the air bubbles are flushed out, a liquid jet issues from the orifice. The flow rate, 

Q, can be controlled by adjusting the pressure of the gas inside the ballast tank.  

 

Frequency of vibration 

Once the liquid jet emerges out of the orifice, a periodic disturbance is applied to the 

orifice to break up the liquid jet. As discussed above, this is another important criterion 

for generation of monodispersed droplets. This is accomplished by using a frequency 

synthesizer HP 3335 A. The instantaneous fluctuations from the synthesizer are about 0.1 

Hz. The signal from the synthesizer is a sinusoidal wave with very low amplitude. In a 

sine wave the amplitude rises and drops gradually to and from the peak amplitude over a 

period of several hundred nanoseconds. This means that the PZT receives the highest 

amplitude only for a very short duration. To avoid this, the signal is passed through an in-

house converter where the sine wave is converted to a square wave. The signal from the 

square wave is more sudden as the time taken by square wave to reach its highest 

amplitude is only a few nanoseconds when compared to a sine wave. The signal is then 

amplified using a linear amplifier (Piezo Systems Inc. Linear Amplifier Model-EPA 104) 

and sent to the PZT. The top and bottom ends of the PZT are glued to two stainless steel 

plates and the circuit is designed such that a square wave of constant voltage (15V) is 

applied to the top plate whereas the bottom plate is grounded. Particles ranging from few 

microns to about 100 microns can be produced using the modified VOAG using various 

combinations of orifice diameters and frequencies but there is only a certain operational 

window for producing monodispersed droplets while doing so. The theoretical frequency 
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range in which monodispersed droplets can be produced is given by Schneider and 

Hendricks (1964) as presented below in equation 3.4. Berglund and Liu further 

demonstrated this operational window with respect to the voltage applied to the 

piezoelectric ceramic crystal and the ratio of the disturbance wavelength to the liquid jet 

diameter (𝝀𝝀/Dj). Even though equation 3.4 predicts the operational range to quite an 

extent but the true operational range (or optimum frequency) depends on factors like the 

nature of the solution (density, viscosity, etc.), actual frequency of vibration of the 

orifice, etc.  

 

𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗
7𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗

< 𝑓𝑓 < 𝑣𝑣𝑗𝑗𝑗𝑗𝑗𝑗
3.5𝐷𝐷𝑗𝑗𝑗𝑗𝑗𝑗

         (3.4) 

 

where, vjet and Djet are the liquid velocity and the diameter of the jet, respectively. An  

He-Ne laser beam was used to illuminate the linear droplet stream. The light scattering 

from the droplets directly opposite the laser beam was observed on a screen. The 

monodispersity of the droplets generated was confirmed by observing the 2D diffraction 

lines. When the droplets generated are not stable the diffraction lines would fluctuate and 

when the droplets are stable and monodispersed the diffraction lines are very bright, 

distinct and without fluctuations. Figure 3.3 shows the difference in diffraction lines 

obtained when a highly monodispersed droplet is generated from a polymer blend 

solution and otherwise. Another method that was used to detect stable monodispersed 

droplet generation is the jet deflection method. In this method, a gas is passed 

perpendicular to the falling droplet stream with very low flow rate (say 500-700 ml/min). 

If the jet deflects uniformly without forming any secondary jets then it can be concluded 
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that the droplet stream is monodispersed. The secondary jets arise due to the presence of 

satellite drops (drops having different sizes than the primary droplets) that are generated 

due to fluctuations in the system. The monodispersed droplets produced are quite close to 

each other and since the droplets fall under gravity, farther away from the generator these 

droplets combine and coalesce to form larger drops. To avoid this, nitrogen gas is used to 

disperse these droplets as soon as they are produced. This is achieved by incorporating a 

dispersion cap. The cross-sectional view of the droplet generator head with the dispersion 

cap is already shown in figure 3.2. The dispersion N2 flow rate was optimized for 

segregation of produced monodispersed droplets. If the dispersion flow rate is too high, 

then either the droplet residence time in the evaporation chamber is reduced resulting in 

incomplete drying or the droplets can break-up into smaller satellite droplets that might 

not settle and if the flow rate is too low then the droplets are not uniformly dispersed and 

droplet coalescence occurs yielding polydispersed droplets. The N2 gas flow was adjusted 

to lie in the range of 1000-2000 ml/min for optimum dispersion of the droplets. Once the 

droplets are generated and dispersed they are passed through the drying column for 

evaporation and drying of the microdroplets to obtain polymer blend microparticles. 
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Figure 3.3: Image of the diffraction lines from a linear stream of droplets generated 

using VOAG with 15mm orifice. (a) highly monodispersed droplets generated at a 

frequency of 100kHz (b) droplets generated at a lower frequency (40 kHz) with 

fluctuating diffraction lines. Flow rate was kept constant. 
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3.1.2 Drying column 

In the present work two drying columns are used. Except for particles generated 

for DSC study, all the other experiments were carried out using the drying column shown 

in Figure 3.1. The drying column consists of two cylindrical sections, top section was 

made of plexi-glass that supports the VOAG and the bottom section was a quartz tube 

10” in diameter and 4 ft. in height. The quartz tube was equipped with heating tapes to 

raise the temperature to facilitate fast drying conditions. Heating tapes are controlled by 

using variable transformers. A thermocouple was suspended inside the column to obtain 

the drying gas temperature. Also, to facilitate uniform drying conditions and to prevent 

saturation of the solvent vapor in the column, a counter-current flow of N2 gas was 

established by passing the gas through the bottom of the cylindrical quartz tube. This gas 

will be referred to as the dilution gas from now onwards. A controlled temperature 

bath/circulator (Thermo NesLab RTE 7) was used to preheat the gas, if required. Two 

rotameters, (Omega) Model 1447-S and 1467-G were used to adjust and maintain the 

flow rate of the dispersion and dilution gas, respectively. Since the diameter of the tube is 

very large, hence laminar flow prevails inside the drying column. The terminal settling 

velocity can be determined using stokes equation given in equation 2.7. 

 

𝑣𝑣𝑠𝑠 =  2
9

 �𝜌𝜌𝑑𝑑− 𝜌𝜌𝑔𝑔�
𝜇𝜇

 𝑔𝑔𝑅𝑅2                                                (3.5) 

 

where, 𝑣𝑣𝑠𝑠 is the terminal settling velocity of the droplet, 𝜌𝜌𝑑𝑑 and 𝜌𝜌𝑔𝑔 are the densities of the 

droplet and the gas respectively, 𝜇𝜇  is the viscosity of the gas, 𝑔𝑔 , the gravitational 

acceleration and 𝑅𝑅  is the radius of the droplet/particle falling under gravity. An 
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approximate residence time of the droplets can be obtained by using the height of the 

column and the velocity of the droplets. As the droplets fall to the bottom, the solvent 

evaporates and the solid particles are collected at the bottom of the cylindrical column 

using an aluminum foil. Certain problems were encountered during the drying process. At 

room temperatures, the droplets did not achieve complete evaporation and the particles 

were sticking to the aluminum foil. When the temperature was raised, negligible amount 

of particles were collected on the aluminum foil and instead the particles either deposited 

on the walls or moved upwards and settled on the dispersion cap. Once the temperatures 

were decreased, the particles started to settle at bottom again. Such a behavior of the 

particles could be due to the thermal gradients inside the cylindrical column. Most of the 

experiments were conducted using this drying column. Only a few milligrams of 

microparticles were collected using this process.  

Even though characterization techniques such as SEM, TEM and confocal 

microscopy required very few particles but for obtaining the glass transition temperature 

using DSC method atleast 7-10 mg of sample is required. To increase the collection of 

these particles, a new drying column was built with a cyclone separator at the bottom for 

increasing the collection of particles. Figure 3.4 shows the schematics of the new drying 

column along with its salient design features. The idea behind construction of the new 

drying column was to introduce N2 gas radially and from the top so that the 

droplets/particles are pushed and carried to the bottom of the drying column and are then 

separated by a cyclone separator.  
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Figure 3.4: Schematic representation of the new drying column with cyclone 

separator at the bottom 
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The new drying column has a plastic tank (15 gallon) with a cylindrical section at 

the top and a conical section at bottom. The cylindrical portion houses the VOAG at the 

top and the conical section is connected to a 4 ft. glass tube, 2.25” diameter, via a 

stainless steel cajun style fitting designed and fabricated in-house. The glass tube is 

heated using three heating tapes wound round it. The heating tapes are connected to 

respective variable transformers for controlling the temperature inside the drying column. 

A thermocouple was suspended from the top to the center of the glass tube using a 

connecting wire. At the bottom, a cyclone separator is connected to the glass tube to 

collect the particles. The N2 gas flows co-currently from the two ¼” diameter ports on the 

top of the cylindrical tank. To prevent the droplets from striking the surface of the tank, 

gas was also passed radially through eight equal sized 1/8” ports that extend to 4” inside 

the tank. Even though this prevented the impact of particles on the cylindrical surface but 

due to the charge on the droplets produced by VOAG it was observed that the droplets 

started to settle on the conical section of the tank as shown in figure 3.5. To prevent this 

from happening, an anti-static liquid (Sprayon SP 610) was sprayed all over the inside 

walls of the tank.  
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Figure 3.5: Photograph of the inside surface of the conical section of drying column 

showing polymer blend particles settled on its surface. 

Once the droplets are generated using the VOAG and checked for its monodispersity, it 

was placed on top of the tank and sealed off. Both the dispersion gas and the dryer gas 

were switched on and passed through the chamber. The particle/droplet-laden gas passed 

through the glass tube and then through the cyclone separator where the particles settle 

down into the particle collector, which was a 1.5 ml centrifuge vial, and the gas escaped 

from the top.  
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3.2 Chemicals used 

Polystyrene (Mw 280,000) and poly(vinyl chloride) (Mw 180,000) was bought 

from Sigma Aldrich, USA. Poly (vinyl carbazole) (Mw 90000) was purchased from 

Scientific Polymer Products. The solvents, Tetrahydrofuran (THF) (99.9%), Ethanol (200 

proof) and Dichloromethane (99.9%) were purchased from Sigma Aldrich.   

 

3.3 Production of multicomponent polymer blend microparticles 

 In the present study, binary polymer blend microparticles are prepared using 

microdroplet evaporation method. Binary combinations of polystyrene (PS), poly (vinyl 

chloride) (PVC), poly (methyl methacrylate) (PMMA) and poly (vinyl carbazole) (PVK) 

were used for generation of each of the polymer blends. All the binary polymer pairs are 

immiscible in each other under normal conditions. PVK was chosen in the present study 

so that the natural fluorescence of PVK can be used to study the distribution of PVK 

inside the blend microparticles.  

For a particular experimental run, two polymers were chosen and co-dissolved in 

a solvent. The criterion for the choice of the solvent was that the vapor pressure of the 

solvent is sufficiently high that the evaporation proceeds rapidly. Tetrahydrofuran has 

been used in our studies as it dissolves all the polymers and also has a very high vapor 

pressure. Different dilute concentrations of the polymer blend solutions were prepared. 

Dilute solutions offer several advantages: 

a) both the components in the solution are completely and uniformly mixed in  

    the solvent. 

b) break-up of the liquid jet into droplets is achieved easily (low viscosity of solution). 
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The solutions prepared were checked for optical clarity, pre-filtered to avoid any 

impurities and stored in airtight glass bottles so that the solvent vapors cannot escape into 

the atmosphere.  

Characterization of the particles was divided into two parts. The first one was the 

external particle morphology, i.e., the shape and size of the particles formed. Particle 

internal morphology and phase separation was either done by ultramicrotoming the 

particles and studying them under a transmission electron microscope or by using a 

confocal microscope to check the distribution of polymers inside the microparticles using 

fluorescence of one of the polymers. Differential scanning calorimeter was used to check 

the glass transition temperature of the polymer blend microparticles. 
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CHAPTER 4 

4. RESULTS AND DISCUSSION 
 
The results of this study are divided into two parts. The first part deals with the 

microparticle morphologies obtained by the droplet evaporation technique. This involves 

studying the effects of process variables such as initial concentration, orifice size and 

chamber temperature on the morphology of different polymer and polymer blend 

microparticles prepared. The effect of dispersion flow was also studied. In the second 

part, homogeneity of the blends is discussed by either performing an Energy Dispersive 

X-ray Analysis (EDAX) on an ultra thin section of a sample or by using the conventional 

DSC or by using confocal microscopy. The particles obtained, in general, are irregular 

and non-spherical. The average diameters of the particles were obtained by simply 

averaging the length of major and minor axis of 10 microparticles from an SEM 

micrograph. The scales on the micrographs were used as a reference to calculate the 

lengths. 

 

4.1 Morphology of polymer/polymer blend microparticles 

4.1.1 Effect of initial polymer(s) concentration 

Three different concentration (1, 2 and 3 wt%) solutions of different immiscible 

polymer/polymer mixtures were prepared to study the effect of initial polymer 

concentration on the morphology of the microparticles obtained. Each experiment 

involved careful and proper control of the frequency of the vibrating orifice as well as the 

flow rate to yield a stream of monodisperse droplets. The chamber temperature was 

measured by means of a thermocouple and the chamber was maintained at about 40 0C. 
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The conditions and the polymer and polymer blend microparticles generated using a 

vibrating orifice aerosol generator are given in Table 2.1. Concentration of polymer 

solutions higher than 3wt% were tried but monodispersity was not achieved. This can be 

due to the fact that the break-up of the jet not only depends on the frequency and the flow 

rate but also on the viscosity and surface tension of the solution. Orifice sizes of 10, 15, 

20 and 25mm were used for obtaining different initial sizes. It was observed that no 

droplets were collected on the aluminum foil collector at the bottom with a 10mm orifice. 

Several experiments were repeated to ensure that this is not due to any experimental 

artifacts. With this observation, further use of a 10mm orifice was avoided. Also, with a 

20mm and 25mm orifice, the frequency range for generating droplets was very narrow and 

the droplets did not dry completely as they impinged on the aluminum foil at the bottom. 

Stable droplets were generated using 15mm orifices without any glitches and hence all the 

other experiments were conducted using orifices of these sizes.  
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Table 4-1:Experimental conditions used for generation of polymer/polymer blend 

microparticles 

Polymer/ 

Polymer 

blend system 

Solvent used  Conc 

(wt%) 

Chamber  

Temp. (0C)  

Orifice 

(mm) 

PS THF 2 40 15 

PS/PVC THF 2 40 15 

PS/PVC THF 3 40 15 

PS/PMMA DCM 2 40 15 

PS/PVC THF-Ethanol 2 40 15  

PS/PVK THF 2 40 15 

 

Pure PS microdroplets generated using a 10mm orifice and 1wt% concentration had high 

monodispersity but no particles were collected at the bottom of the chamber. Very small 

droplets tend to evaporate faster and the precipitation starts within a few milliseconds.  

Visual observation of the walls of the chamber revealed that most of the particles 

settled on the walls and careful observation of the dilution N2 gas outlet using a laser 

revealed that the particles were also escaping from the top. The former observation can 

be a result of a thermophoretic force developed during the heating of the chamber walls. 

The chamber walls are at a higher temperature than the center of the chamber. This can 

cause the droplets/particles to move to higher temperature zones. The effect of 

thermophoresis was confirmed when the droplet were allowed to dry in ambient 

atmosphere without supplying any heat.  Immediately, the droplet reached the bottom of 
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the aluminum foil but as expected did not dry completely. Also, droplets from 1wt% 

solution have ultra low densities and hence, the velocity of the dilution N2 would be 

enough to carry the particles along with it. From these observations, the production of 

microparticles was limited to 2wt% and 3wt% concentration solutions. Figure 4.1 shows 

the scanning electron micrographs of microparticles (equal ratio of both polymers) of 

polystyrene-polyvinyl chloride blend microparticles produced with 2wt% and 3wt% total 

polymers’ concentrated solution in THF. In general, there is folding and crippling of the 

microparticles formed by evaporation of polymer blend solution droplets of PVC and PS 

as shown in the figure. An explanation for the formation of such particles is that when the 

solution droplet is formed, THF, being highly volatile, starts to evaporate 

instantaneously. As the THF evaporates, the droplet shrinks and the polymer crust starts 

to form at the surface. Rapid drying of the droplet results in this crust being a thin skin or 

shell due to the low concentrations of the solids in solution droplet. Further loss of 

solvent reduces the volume of the droplet while the surface maintains a constant area. 

Eventually the shell collapses due to the density difference and implodes. This results in 

surface hollows and indentations. Several researchers have observed such morphology in 

spray-dried particles (Vehring et.al. 2008, Wang et.al. 2009). The indentations on the 

particles are marked and shown in figure 4.1 (a). Even though the microparticles of 

polymer blends of a 2 and 3wt% look similar in structure, there are some important 

dissimilarities. Microparticles of polymer blends formed from a 2wt% polymer solution 

were more crippled and collapsed than the microparticles produced from a 3wt% 

solution. 
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Figure 4.1:SEM micrographs of polymer blend microparticles of PS-PVC produced 

using (a) 2wt% and (b) & (c) 3wt% polymer concentration in THF 

 

This was due to the fact that as the concentration increased the crust formed would be 

slightly thicker and rigid and would be able to prevent the walls from collapsing. Even 

though folding of the microparticles is observed in a 3wt% solution as shown in figure 

4.1 (c), the surface was much close to spherical. The average size of 2wt% microparticles 

formed was calculated to be about 14.58mm and that from a 3wt% solution was 16.74mm. 

Theoretically, after complete evaporation of the solvent from a solution droplet, if the 

particle obtained is a non-porous, spherical solid then the final particle size depends on 

the initial solids concentration as given in equation 4.1. 
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𝐷𝐷𝑝𝑝 =  𝐷𝐷0(𝐶𝐶)1 3⁄                                                   (4.1) 

 

where, 𝐷𝐷𝑝𝑝 is the final particle diameter, 𝐷𝐷0 the initial droplet diameter and 𝐶𝐶 is the initial 

concentration of the solution droplet. The initial droplet diameter from our experiments is 

about 40 mm and the initial concentration of the solution droplet is 2wt%. The final 

particle size calculated from equation 4.1 is about 10mm. But as mentioned earlier the 

average particle sizes obtained from SEM images are 14.58 mm. This is significantly 

larger than the theoretical particle sizes for a solid (not hollow), spherical, non-porous 

microparticles obtained. Hence it can be concluded that the particles obtained are hollow. 

Also, no apparent pores were observed on the surface of the particles. The average 

particle sizes of blend microparticles obtained from 2wt% solution droplets are slightly 

smaller than that obtained from 3wt% solution droplets. The ratio of the average particle 

sizes obtained from a 2wt% and 3wt% solutions was 0.871. The ratio of the theoretical 

particle sizes (for these two concentrations) for spherical, solid non-porous particles was 

calculated to be 0.874. This further confirmed that the microparticles generated from 

lower concentration solution droplets have smaller sizes when compared with the 

droplets generated from higher concentration solutions. The polymer concentration at the 

surface reaches the skin forming concentration at an earlier time due to higher initial 

concentration.  

4.1.2 Effect of Evaporation rate 

Evaporation rate of the solution microdroplets plays a major role in deciding the final 

morphology of the microparticles formed. Evaporation rates can be controlled either by 

changing the temperature, or by using solvents with various volatilities. As discussed in 
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section 4.1.1, for the drying column used in the present work, the drying of particles and 

their settling was related to temperature. To collect enough particles for analysis it was 

necessary to maintain the temperature at around 40 0C. Lowering the temperature resulted 

in incomplete evaporation and wet particles were obtained at the bottom. The particles 

were confirmed to be wet based on the fact that these particles stuck to the aluminum foil 

and cannot be separated. Due to the limitations imposed by the temperature, the more 

convenient parameter to control was the solvent. To study the morphology of 

microparticles under different evaporating conditions, solvents of various volatilities 

were considered. Most important criteria for the choice of the solvents were (i) high 

volatility and (ii) dissolves both the polymers. Most of the solvents used to dissolve two 

immiscible polymers usually have low volatilities. Hence, to study the effect of 

evaporation rate, a single polymer blend system was almost impossible to consider. Two 

polymer blend systems were chosen namely, (i) PS-PVC and (ii) PS-PMMA. 

Dichloromethane (DCM) dissolves both PS and PMMA. Also, DCM has a higher 

volatility than THF and hence higher evaporation rates can be achieved. It has to be noted 

here that PS and PVC do not have a common solvent with volatility lower than THF but 

fast enough to obtain completely dried particles. To achieve this, a solution of THF and 

Ethanol was used to dissolve the polymer blend system. This was used to achieve two 

purposes. The first purpose was to study the effect of evaporation rate on the surface 

morphology and shape of the microparticles obtained. Secondly, both PS and PVC do not 

dissolve in ethanol. The effect of ethanol on phase separation is discussed in section 

4.2.1.  
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Figure 4.2: Effect of higher evaporation rate on particle morphology; Particles of 

PS-PMMA obtained from a 2wt% polymer solution in DCM using a 15 mm orifice 

(a) collapsed particles with large surface indentations. (b) surface perforations on 

the particles due to rapid evaporation of DCM. 
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Table 4-2: Vapor pressures of solvents used in the preparation of different polymer 

microparticles. 

Solvent Vapor pressure (mm Hg) @ 40 0C 

Tetrahydrofuran (THF) 402 

Dichloromethane (DCM) 750 

Acetone 350 

Ethanol (EtOH) 140 

 

Hence, slow evaporation rate and immiscibility could lead to phase separation in the 

polymer blend system. The third system was a single polymer, PS, dissolved in acetone. 

The vapor pressures of all the three solvents are given in Table 4-2. Evaporation rate of 

the solvents are directly related to their vapor pressures and table 4-2 clearly shows that 

the solvent with the highest volatility is DCM. Figure 4.2 shows the scanning electron 

micrographs of microparticles of PS-PMMA generated from a 2wt% solution of 

polymers in DCM using a 15mm orifice. Equal ratio of both the polymers was used. The 

microparticles obtained had significant indentations as in the case of 2wt% PS-PVC-THF 

microparticles produced under the same experimental conditions but there were striking 

differences their external morphology. Figure 4.3 compares the SEM micrographs of both 

these microparticles. The microparticles prepared using DCM were highly porous. The 

pore diameters were in the range of 200-500 nm in size. Also, the shapes were far from 

spherical and had deflated balloon-like structures. This can be directly attributed to the 

very high volatility of DCM. As the DCM evaporated from the droplets rapidly, the skin 

forms at the surface almost immediately. Once the skin forms, the remaining DCM forces 
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itself out of the skin, which results in the formation of pores on the surface of the 

microparticles. Even though THF is highly volatile, when compared to DCM, its vapor 

pressure is about half that of DCM and hence there is sufficient time for the THF to 

escape slowly through the skin formed. The formation of pores can also be related to the 

softness or strength of the skin, which is a function of the nature of the polymers 

considered.  

 

 

Figure 4.3: Comparison between microparticles of polymer blends produced using 

two different systems; (a) 2wt% PS-PMMA from DCM solution showing pores and 

(b) 2wt% PS-PVC in THF solution; both the microparticles were produced under 

same experimental conditions- 15 mm orifice, 1000 ml/min dispersion N2 and 40 0C. 

Figure 4.4 shows the SEM images of microparticles of PS in acetone. The PS 

concentration in acetone was 2wt%. Microdroplets of this solution were also generated 

using a 15mm. It was interesting to observe that the microparticles obtained from an 

acetone solution had some indentations but the surface was usually smooth and spherical 

as shown in figure 4.4 (a) and (c). The particle diameters obtained were also much 

smaller when compared to the case of 2wt% PS-PVC in THF as previously shown in 
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figure 4.1 (a). The average diameters obtained are about 10mm for the PS-Acetone 

microparticles. This can also be due to the fact that polystyrene is the only polymer 

interacting in this case whereas PVC might play a role during the evaporation of THF 

from the blend system. Also, acetone is a better solvent for PS than THF and hence the 

affinity and wettability of the polystyrene is more in the case of acetone than in THF. 

 

 

 

Figure 4.4: PS microparticles prepared using 2wt% polystyrene in acetone with 

dispersion flow (a) & (c) 1000 ml/min and (b) 1500 ml/min. 
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The micrographs in 4.4 (c) show that there are some particles which are not spherical. 

This we believe was due to the temperature difference inside the chamber. Near the walls 

the temperature was higher than at the center due to the large diameter of the chamber. 

This would have caused the drying of particles near the walls much faster than the 

particles at the center of the chamber. Some microparticles had golf-ball like features as 

shown in fig 4.4 (b). This was due to the dispersion N2 that is introduced near the orifice 

and through a 1mm hole in the dispersion cap. The dispersion flow around the droplets 

for particles in figure 4.4 (a) and (c) was about 1000 ml/min (20m/s) whereas particles 

were formed using a higher dispersion flow of 1500 ml/min (30m/s). This high velocity 

around the droplet does not disrupt the shape of the droplets as such but the tangential 

force exerted on the surface of the droplets result in such wave-like profiles. These 

features were usually absent when low flow rates were used (figure (4.4(c)). Flow rates 

lower than 1000 ml/min resulted in incomplete drying of the droplets and wet particles 

were formed on the aluminum foil at the bottom of the chamber. Also, the dilute 

concentrations aid in formation of such morphologies. Since higher concentrations could 

not be studied, we cannot conclude the effect of concentration on such surface features 

but higher concentrations yield smoother surfaces as the force exerted on the surface of 

the droplet is balanced by the dense, thick skin formed.  

 Polystyrene and PVC do not dissolve in any other common solvent that has a 

lower volatility than THF but high enough for the droplets to completely dry and form 

microparticles. Ethanol dissolves in THF and hence a polymer blend system of 2wt% PS-

PVC was prepared, with equal concentrations of both the polymers, in a THF-Ethanol 

solution. First a solution of polymers was prepared in THF and then ethanol was slowly 

63 
 



 

added to attain a homogenous solution. If the ethanol amount exceeded the limiting value 

slightly then the solution became turbid indicating the onset of phase separation. The 

limiting value was found to be 30% (by volume) in a THF-ethanol solution. A 75/25 

volume ratio of THF/Ethanol was used to avoid near phase separation conditions and at 

the same time enough ethanol to study the effect of mixing such a non-solvent. Figure 4.5 

shows the scanning electron micrographs of the polymer blend microparticles of PS-PVC 

prepared using a mixture of THF and ethanol. 

 
 

 

Figure 4.5: PS-PVC microparticles produced from a 2wt% polymer blend solution 

of PS- PVC in THF/Ethanol (75/25) 
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In figure 4.5 (a), one can clearly see that the polymer blend microparticles are more 

spherical and the average size of the particles is about 12.5mm. The sphericity directly 

depends on the drying time for ethanol (moderately slow) for solvent mixture when 

compared to particles obtained only with THF. Once the THF evaporates completely, the 

droplet/particle now consists of very fine chains of polymers dispersed in ethanol. Since 

ethanol is not a solvent for both the polymers, phase separation occurs and with 

evaporation of ethanol the phase separation becomes more pronounced. But due to the 

slow evaporation and increase in concentration of the polymers inside the droplet, there is 

a more uniform precipitation of the polymers and hence a thick-skinned spherical 

microparticle is formed as shown in figure 4.5 (b). Even though the particles have thick 

skins, most of the particles obtained are brittle (figure 4.5 (a) and (b)). One can clearly 

observe the flakes falling off of the surface of the blend microparticles shown in figure 

4.5 (b). This is because of the very brittle nature of PVC in the blend. Very few 

microparticles had smooth spherical surfaces as shown in figure 4.5 (c). Even though the 

formation of such smooth surfaces cannot be explained with certainty, it is possible that a 

core-shell structure might have formed due to slow drying of some of the particles in the 

chamber. A large distribution in particle size was obtained with some of the particles 

almost double the size of the average particle diameters obtained. This may be due to the 

coalescence of the droplets near the mouth of the orifice. Another reason might be that 

the actual frequency of vibration may be lower from the input frequency due to the 

presence of particulate impurities on the surface of the orifice. Sometimes, a thin polymer 

film forms on the surface of the orifice and this can also result in lowering the frequency 

of vibration. 
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Figure 4.6: Highly monodispersed PS-PVC microparticles prepared from 2wt% 

polymer blend solution of PS-PVC in THF and Ethanol after rigorous cleaning of 

the orifice (f= 50 kHz, Q=0.146 ml/min) at different magnifications (a) 200x (b) 500x 

and (c) 4000x with surface irregularities  

 

Rigorous cleaning of the orifice was done by flushing out the polymer solution from the 

drain several times to ensure that the orifice is not partially clogged and then the same 

polymer blend solution was used to generate the microparticles under the same operating 

conditions. A highly monodispersed microparticles of PS-PVC blend system was 

obtained as shown in figure 4.6. Figure 4.6 (a), (b) and (c) represent the same 
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microdroplets under different magnifications. The particles were still brittle with surface 

roughness and also no smooth surfaced particles were observed. This can be really 

important when tailored microparticles of two different polymers are to be prepared. 

Judicious combination of solvents can yield different morphologies ranging form core-

shell to completely mixed particles.  

 

4.2 Homogeneous Polymer Blend Microparticles 

Section 4.1 dealt with the external morphology of the polymer blend microparticles 

prepared using the droplet evaporation technique. This section deals with studying 

internal distribution and also the thermal characteristics of the polymer blend 

microparticles prepared. Sectional images of the microparticles were observed under an 

SEM or a TEM and the thermal characterization of the blend system was done using a 

Differential Scanning Calorimeter (DSC). In all the studies, either pure polymer 

microparticles of PVC or PS or their blends, prepared by dissolving the polymer(s) in 

THF, were considered. Also, to use confocal microscopy as an effective tool for imaging 

the distribution of polymers in the blend, a self-fluorescing polymer, poly (vinyl 

carbazole) was used as one of the polymers in the blend system. 
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4.2.1 Internal morphology of polymer blend microparticles  

The internal morphology of polymer blend microparticles was studied by mainly two 

techniques. The first was by using the micrographs obtained using TEM or SEM 

microscopes. This was done by dispersing the microparticles in a Spurr’s resin in a beem 

capsule and then polymerizing the resin at 50 0C (and kept under vacuum for 48 hrs.) so 

that the resin hardens and particles are now embedded into the resin matrix. It should be 

noted here that the curing temperature of the resin must be lower than the glass transition 

temperature of either of the polymers. Ultra thin slices of this matrix were cut using a 

Reichert-Jung Ultracut E microtome. The thickness of the slices obtained was about 60 

nm. The slices were mounted on copper grids and placed under an SEM or a TEM 

microscope for further study. First, internal morphology of a pure PVC microparticle 

sample was investigated by ultra-microtoming very thin slices of the microparticles. 

Figure 4.7 shows the micrograph of the ultra-microtomed slices of PVC. Due to a 

difference in contrast, PVC represents the darker areas in the image and the resin covers 

the bright white background. The first and the foremost observation is that the particles 

formed, as discussed in section 4.1 and thereafter, are hollow with a very thin skin of 

about 0.5mm. Secondly, the resin has diffused into the hollow core of the particles. 

Around the edges there are a few regions where the resin connects the core without any 

polymer film that separates them. These regions signify the presence of some very minute 

pore channels (not visible under an SEM though) on the surface of the microparticles but 

they are not distributed uniformly.  
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Figure 4.7: TEM micrograph of ultra-thin slice of pure PVC microparticles 

prepared from a 2wt% PVC-THF solution (15mm orifice with f=60 kHz, 

Q=0.1454ml/min). Dark regions represent PVC and the white region is the 

embedding resin used for ultramicrotoming the sample. 

Although a good understanding of the internal morphology of the microparticles can be 

directly obtained from such a visual observation, to quantify the distribution an Energy 

dispersive X-ray analysis (EDAX) was performed on the films. It should be noted here 

that the elemental difference between PS and PVC is only the presence of chlorine. PVC 

contains about 55% of chlorine hence an equal ratio of PS-PVC blend would contain 

about 20% of chlorine. This prompted us to do an EDAX analysis on the microparticles 
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for the mapping of chlorine in the samples. Since ethanol is a non-solvent for both the 

polymers and since the evaporation is slow, we believed that during drying and formation 

of microparticles both the polymers will phase separate. TEM micrograph of an ultra thin 

slice of these particles is shown in figure 4.8 (a). An important observation from this 

micrograph was the internal structural morphology of these blend microparticles.  

 

 

 

Figure 4.8: (a) TEM micrograph of a single ultra-microtomed slice of PS-PVC 

microparticle (length scale-0.5mm, mag-11000) (b) EDAX spectrum of the 3 points 

on the slice; microparticles are prepared from 2wt% polymer blend solution of PS 

and PVC in THF/EtOH. 
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Figure 4.8 (a) clearly shows domains of different contrast. Also, the contrast of the resin 

was different from the other contrasting domains observed inside the slice. This was a 

really good confirmation of phase separation in the polymer blend microparticles. Once 

the EDAX analysis was done at different cross-sections on the slice (points 1, 2 and 3) as 

shown in the figure 4.8 (b), there was absolutely no chlorine found in these slices. One 

reason could be the fact that the voltage used for the analysis in the TEM was about 

100keV. As mentioned earlier, the thickness of the slice was about 60 nm. To get a 

higher count, one has to increase the voltages. The maximum voltages that can be 

achieved on this particular TEM were only 100 kV. Since the power was low another 

TEM was used with higher voltages in the range of 150-200kV but the thin slices burned 

when exposed to such voltages. Also, the TEM detector was not powerful enough for 

detection of traces of elemental chlorine. Even though SEM has a lower operating voltage 

than TEM, the EDAX was rated to be much more powerful on the SEM S-3200. This 

prompted the use of SEM instead of a TEM for further studies. Also, since chlorine was 

not observed in the spectrum observed from the slices, SEM-EDAX was first performed 

on the whole particles. All the particles showed consistent chlorine peaks in the X-ray 

spectrum. EDAX spectrum of one such particle is shown in figure 4.9. Several points 

were taken on the particle to check for chlorine. Each point corresponds to a 3x3mm2 

area. The Chlorine counts for all the points except for point 4 (outside the particle) were 

almost 600 ± 100. Points 1, 6 and 7 showed amounts of chlorine slightly above average. 

These points and most of the corners do not have flat surfaces and are at an angle. This 

imparts a different hitting zone for the X-rays. 
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Figure 4.9: EDAX spectrum of a single PS-PVC microparticle prepared from 2wt% 

polymers in THF solution showing equal distribution of chlorine throughout the 

microparticle. 

Hence, the curved surfaces of the particles can add to some error in the counts shown by 

the spectrum. Since the points (areas) are distributed throughout the particle surface, one 

can conclude that PVC is uniformly distributed on the surface. Once the chlorine was 

detected on the surface, the next step was to find chlorine on the slices. The biggest 

disadvantage of analyzing an ultra thin sample on an SEM-EDAX is the fact that there is 

a certain penetration depth of the X-rays. The X-rays can easily penetrate through the 

sample and the reading can comprise mostly of the carbon substrate on which the films 
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rest. Also, due to the presence of the copper grids and the delicate nature of the films, the 

contact and charging effect cannot be neglected. 

 To study the internal morphology of the polymer blend microparticles and 

whether there is any phase separation in the blends, two samples of PS-PVC 

microparticles were prepared under the same conditions, one only with THF and another 

one with THF-Ethanol mixture.  Figure 4.10 shows the SEM micrographs of ultra thin 

samples of microparticles of PS-PVC prepared using both the solvents.  

 

 

Figure 4.10: SEM micrographs of ultra thin slices of polymer blend microparticles 

of (a) 2wt% PS-PVC prepared in THF, (b) 3wt% PS-PVC prepared in THF, (c) 

&(d) 2wt% PS-PVC prepared using a 75/25 mixture of THF and ethanol. 
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Figure 4.10 compares the SEM micrographs of samples prepared using two different 

evaporation rates and for two different initial polymer concentrations (f = 50 kHz, Q = 

0.15ml/min, Temp. = 40 0C and dispersion N2 = 1000 ml/min). Figure 4.10 (a) shows the 

interpenetrating network of the polymer blend along with the pores created by the 

evaporation of THF. When the microparticles are dispersed in the liquid resin, before 

polymerization, the resin diffuses through the pores into the hollow regions of the 

microparticles and solidifies once the polymerization is completed. The cut slices show 

the same contrast as that of the resin material inside these regions as shown in the 

micrograph. To compare the effect of concentration a similar slice from a 3wt% 

polymers’ concentration was used, the micrograph of which is shown in figure 4.10 (b). 

The interpenetrating network still existed but there are regions where one can distinguish 

the resin film clearly than the elliptical regions. The result can be interpreted in two ways. 

If the elliptical portion in the figure is the resin that has diffused through the pores then 

there is a chance that the solidified resin might have fallen off the film while cutting. The 

separations between the interpenetrating network and the ellipses can be seen clearly in 

the figure. There is a slight possibility that the polymer blend has phase separated and the 

elliptical structures are the domains of one of the polymers and the other polymer forms 

interpenetrating network. Figure 4.10 (c) and (d) are the micrographs obtained from the 

slices of microparticles of PVC-PS prepared by using a THF-ethanol solvent mixture. 

The thickness of the interpenetrating layers are more pronounced and smooth (figure 4.10 

(c)) and if noticed carefully, at higher magnification, (figure 4.10 (d)) it is observed that 

there is phase separation of the polymers and a structure similar to nucleation and growth 

phenomena of phase separation can be observed.  
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Even though the TEM micrographs show a clear distinction in phases when a THF-

ethanol solution was used, quantification of phase separation was an issue. The slices of 

the polymer blends were subjected to EDAX analysis and except in one such slice (as 

shown in figure 4.11), no slices showed the presence of chlorine. Even the slices that 

showed contrasting phases (figure 4.10 (d)) did not give any chlorine counts. This can 

only be attributed to the fact that the polymers’ content in the slices is extremely low. The 

chlorine content throughout the sample might be significantly lower to excite 

significantly enough photons to be detected by the EDAX detector. EDAX analysis of the 

slice shown in figure 4.11 did show enough chlorine counts to conclude that chlorine, and 

hence, PVC is uniformly distributed in the polymer blend microparticle. Figure 4.11 (a) 

shows the slice on which the analysis was performed. The image of the slice was not 

clear due to the high voltage used and also due to the very high magnification. At low 

voltages (~3 kV), the images were much clearer as shown in previous micrographs in 

figure 4.10. The chlorine counts from the 3 chosen points were about 100. The counts 

were not enough to map the distribution of chlorine in the slice but the equal number of 

counts suggests that the distribution of chlorine might be uniform. Since, only one such 

slice was obtained wherein chlorine was detected, using this result alone we cannot 

conclude the uniform distribution of PVC and PS.  
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Figure 4.11: SEM-EDAX analysis of ultra thin slice of PS-PVC microparticle 

prepared from a 2wt% polymers’ solution in THF showing the distribution of 

chlorine (PVC) in the slice. 
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4.2.1.1 Confocal Microscopy of polymer blend microparticles 

Laser confocal microscopy involves visual sectioning of samples in any sectional plane 

and then obtaining information from the scattered light. A very powerful tool used in 

conjunction with such a process is fluorescence. While sectioning the samples, if 

fluorescent materials are present, then even with very little amounts of sample, 

fluorescence can be detected. For the present purposes, either one of the polymers can be 

functionalized with a material that can fluoresce. This method was very expensive and 

time consuming. To avoid such a process, and to check if the process yielded similar 

particle morphology, poly (vinyl carbazole) (PVK) was used instead of PVC to form PS-

PVK microparticles. PVK is a self-fluorescing polymer whose fluorescence wavelength 

is somewhere around 350-370 nm in the ultra-violet range. The microparticles were 

prepared exactly in the similar fashion as that of PS-PVC blends. Before studying the 

blends under a confocal microscope, the particle morphology and the internal sectional 

morphology of the particles were observed under SEM. Figure 4.12 and 4.13 show the 

surface morphology and the internal morphology of the slices respectively.  
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Figure 4.12: SEM micrographs of hollow PS-PVK microparticles prepared using a 

2wt% polymers solution in THF (a) uniformly shaped (b) magnified one such 

microparticle showing the smooth surface and the hollow center. 

 

 

 

Figure 4.13: Ultra microtomed slices of PS-PVK microparticles shown in figure 4.12 

(a) and (b) show two different slices both showing a similar hollow morphology. 
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Figure 4.12 shows that the particles of PS-PVK blend are much smoother. No wave-like 

features are formed on the surface of the particles. This was due to the rigidity of the 

PVK-PS skin formed during the evaporation and drying process. The thin sections of the 

blend microparticles in Figure 4.13 show that the particles are quite hollow. Also, there 

are no specific domains in the shell region. This also suggests that there is no phase 

separation in the microparticles.  

To check for the fluorescence of PVK, a polymer blend film of PVK-PS was 

prepared by pouring a 10ml polymer blend solution, 2wt% PS-PVK (equal ratios) in 

THF, in a petri dish and evaporating the solvent at room temperature for about 3 days. 

The film was then peeled off and dried under vacuum for 48 hrs. before studying it under 

the confocal microscope. Bright field image of the film and also an overlay of the 

fluorescence image showed (figure 4.14 (a)) phase separation in the blend film with PS as 

the continuous phase and PVK as the dispersed phase. The dispersed and continuous 

phase formation mainly depends on the wettability of the solvent with the polymer and 

the substrate affinity of the polymers. PVK fluoresces and radiates a blue color as shown 

in figure 4.14 (b). This property was used to check for fluorescence in the polymer blend 

microparticles. Microparticles were directly transferred to a microscope glass slide and 

kept in the environmental chamber of a confocal microscope. A 350 nm wavelength laser 

illuminated the microparticles and visual sections, each section of about 500 nm 

thickness, were cut horizontally and the images were recorded.  
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Figure 4.14: Confocal microscope images of polymer blend film of PVK-PS 

prepared using THF as solvent by evaporating a 10 ml solution in a petridish. 

 

 

Figure 4.15: Optical cross-sectional fluorescence image of two sections of PS-PVK 

polymer blend microparticles from confocal microscope. (a) 2mm depth from top  

(b) magnified portion of the same cross-section. 
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Figure 4.15 (a) and (b) show that the outer skin of the microparticles fluoresces and the 

center regions of the microparticles have no fluorescence. This can be either due to a 

formation of a core-shell microparticle with PS core or if the particles are hollow. It has 

already been shown that the particles are hollow as shown in figure 4.13. Since 

polystyrene has to be present in the skin along with PVK and there does not seem to be a 

distinction in fluorescence in the skin, this further corroborates the fact that the 

microparticles formed are homogeneous polymer blend microparticles.  

4.2.2 Differential Scanning Calorimetry (DSC) 

A common method used as a proof of miscibility in polymer blends is through 

measurement of the glass transition temperature, Tg, of the blend. A miscible polymer 

blend is expected to exhibit a single glass transition temperature whereas an immiscible 

blend exhibits more than one glass transition temperature. Two equations that are 

commonly used when a single Tg is observed are the Fox equation and Woods equation 

given as follows, 

 

1
𝑇𝑇𝑔𝑔

=  𝑤𝑤1
𝑇𝑇𝑔𝑔1

+  𝑤𝑤2
𝑇𝑇𝑔𝑔2

                                                     (4.2) 

𝑇𝑇𝑔𝑔 = 𝑤𝑤1𝑇𝑇𝑔𝑔1 + 𝑤𝑤2𝑇𝑇𝑔𝑔2                                               (4.3) 

 

where, 𝑇𝑇𝑔𝑔 is the expected glass transition temperature of the miscible blend, 𝑇𝑇𝑔𝑔1 and 𝑇𝑇𝑔𝑔2 

are the glass transition temperature of the pure polymers and  𝑤𝑤1 and 𝑤𝑤2 are the weight 

fractions of the respective polymers in the blend.  
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In a typical DSC experiment, the difference in the heat required for maintaining or 

increasing the temperature of the sample and the reference is recorded as a function of 

temperature. Both the reference and the sample are maintained at nearly the same 

temperature. The temperatures of the samples are usually increased linearly with time. A 

typical DSC curve shows the variation of the net heat flux (exothermic or endothermic) 

with temperature.  

In the present work, microparticles of pure polymers and a polymer blend of PS 

and PVC, with equal wt% of both the polymers have been prepared. All the blend 

microparticles prepared had a 2wt% of the total polymer concentration in THF. A sample 

of 7-10 mg of the sample was loaded on the aluminum pan and sealed off using an 

aluminum lid. The aluminum pan was placed into the DSC equipment for further study. 

Heating rate plays a major role in determination of the glass transition temperature. Low 

heating rates can lead to thermal relaxations in the polymer blend that may lead to 

inaccurate determination of the transformations involved. There is also a possibility that 

the polymer blends might phase separate during the slow heating process. Here, a heating 

rate of 20 0C/min was used to determine the glass transition temperature. The system was 

equilibrated at 25 0C for 5 min and then the heating ramp was started. Figure 4.16 shows 

the DSC curve for a pure polystyrene microparticles prepared 2wt% PS-THF solution 

using the droplet evaporation technique. The Tg of as-bought PS was 100 0C. The glass 

transition temperature measured using the DSC curve yielded a value of 89 0C. In very 

dilute solutions, polymer chains are expanded and elongated. During rapid evaporation 

and drying of the solvent from the solution droplets, these chains immobilize almost 

instantaneously. The polymer microparticles prepared by such a process is in a highly 
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non-equilibrium state. Since, the polymer is already in an elongated state, the amount of 

energy required by the polymer to go from a solid to a glassy state lowers and hence the 

glass transition temperature is lower than that of the as-bought sample.  

 

Figure 4.16: DSC curve of polystyrene microparticles prepared from a 2wt% PS 

solution in THF. Heating rate of 20 0C/min was used (first heating cycle). 

Next, thermal analysis of 2wt% polymer blend microparticles of PS and PVC, with equal 

percentages of both the polymers, was done to measure the glass transition temperature. 

Since the polymers are in a highly non-equilibrium states, once the first DSC scan is 

finished, the polymers tend to relax and move from the non-equilibrium state to the more 

preferred conformation. This is a major limitation of a DSC while studying the phase 

separation or miscibility of polymer blend microparticles. Nevertheless, the DSC analysis 

was performed on the blend microparticles with 20 0C/min heating rate and the DSC plot 

obtained from the first heating scan is shown below in figure 4.17 (a). The DSC curve 
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exhibits a single transformation, which confirms the homogeneity of the blended 

microparticles. As discussed above, in case of just one polymer, the chains just elongate 

but in case of polymer blends, in dilute solutions, the elongated chains of one polymer are 

completely mixed with the elongated chains of the other polymer. Once the evaporation 

proceeds, the elongated chains do not shrink but instead entangle themselves and the 

mobility of both the polymers are now interdependent with each other due to the 

entanglement effect. Once the blended microparticles are heated and cooled several 

times, both the polymers undergo conformational changes relating to their chain length 

and an equilibrium state of phase separation is achieved. This is clearly shown in the 

fourth heating scan for the same polymer blend sample in figure 4.17 (b).  
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Figure 4.17: DSC curve of PS-PVC blend microparticles prepared using the droplet 

evaporation technique (a) first heating scan (b) fourth heating scan.  
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4.3 Conclusions 

Polymer blend microparticles of different initial concentrations were successfully 

prepared in our laboratory using microdroplet evaporation technique. The method 

involves preparation of dilute polymer solutions in a highly volatile solvent, atomization 

of the solution (using a VOAG) into micro-sized droplets and finally drying of the 

microdroplets in a drying chamber to obtain polymer blend microparticles. Operating 

parameters such as initial concentration, temperature and orifice size were varied to 

optimize the operating parameters for the successful generation of the microparticles 

based on the morphology of the microparticles obtained.  

 The microparticles were characterized for their shape and size using SEM. It was 

shown that the size of the microparticles obtained was dependent on the initial 

concentration of the microdroplets.  Higher temperatures were not studied due to the 

several problems associated with the chamber. A new chamber was built to prevent such 

problems but future studies would be required to optimize the new drying chamber for 

different operating conditions. We believe that the collection efficiencies can be 

increased substantially by incorporating such a chamber. Also, the dispersion air used to 

prevent coalescence of the droplets affect the patterns (golf-like) formed on surface of the 

particles.  

 The effect of solvent evaporation rate on the morphology of the polymer/polymer 

blend microparticles was demonstrated by using solvents such as THF, DCM and acetone 

to produce PS-PVC, PS-PMMA and PS microparticles respectively. Particles were either 

spherical or close to spherical for a lower volatile solvent, in this case acetone. Also, very 

high volatility solvent, when used, perforated the skin formed. Usually, with high 
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evaporating rates it was observed that the particles formed were crippled and internally 

collapsed due to their ultra low densities. To show the effect of low evaporation rates, a 

solvent mixture of ethanol and THF was used for the preparation of PS-PVC 

microparticles. The morphologies obtained with ethanol were highly monodisperse and 

spherical.   

To show the distribution of each polymer in the blend, several ultra microtomed 

sections were studied under an SEM and TEM microscope. The sectional films did not 

show any contrast between phases for a 2wt% polymer blend microparticle whereas it 

showed a slight contrast when a 3wt% microparticle was studied. The sectional films also 

showed interpenetrating networks of the phases with a highly porous structure. This can 

be due to phase separation of the polymers. TEM micrographs of microparticle slices 

prepared by using mixture of a solvent and a non-solvent (ethanol) revealed spinodal 

decomposition-like formation of phases.  

EDAX spectrum of different polymeric phases in the blend was also tried to 

quantify the distribution of phases. Equal distribution of chlorine was found out in the 

PS-PVC blend microparticles but when a slice was studied for the same, no chlorine was 

detected by the instrument. This was attributed to the trace amount of chlorine in the 

ultra-thin sections.  

 Confocal fluorescence microscopy coupled with fluorescence was used to 

differentiate the polymer phases when one of the phases was self-fluorescing. In this 

case, PS-PVK blends were used. The PS-PVK blends showed uniform blue fluorescence 

in the skin regions of the blend microparticles. This coupled with the fact that the 
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particles obtained were hollow forced us to conclude that the polymer blend 

microparticles formed are indeed homogeneous.  

 Differential scanning calorimetry is the most commonly used technique to 

measure glass transition temperature and a single glass transition temperature usually 

means miscible blends. DSC plots of pure polymer microparticles revealed that the glass 

transition temperature was lower when microparticles are formed by the droplet 

evaporation technique. A single glass transition temperature was obtained for the blend 

microparticles of PS-PVC from the first heating scan. Subsequent heating and cooling 

cycles resulted in phase separation in the blend as the curve started to broaden and two 

distinguished curves can be clearly observed at the end of the fourth heating scan. This 

represents existence of two separate phases.   

 Even though the methods used above have been simple yet effective to prove the 

homogeneity of the polymer blend microparticles, ideally, phase separation in polymer 

blends should be defined based on the length scales of phase separation. Sophisticated 

techniques such as 2-D solid state Nuclear Magnetic Resonance (NMR) can reveal more 

details about the homogeneity of the blend with respect to appropriate length scales. 

Fluorescence spectroscopy can further be used by covalently attaching fluorescent 

materials to one of the polymers. This is rather expensive and time-consuming method 

but might yield insightful information about the distribution of polymers in the blend. 
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CHAPTER 5 

5. MODELING EVAPORATION OF A SOLUTION DROPLET WITH 
CONVECTION  

 
5.1 Introduction 

Evaporation and drying of microdroplet solutions to form microparticles find 

wide range of application in the field of pharmaceutical technology, food industries, 

ceramics production and production of many other polymeric microspheres of specialty 

chemicals. The techniques used to manufacture these products include spray drying, 

spray freeze-drying, spray pyrolysis, and fluidized bed drying. In these methods, solution 

droplets of precursor solutions are generated and subsequent drying of the solution 

droplets result in formation of particles. Different morphologies of particles are obtained 

based on the nature of the solute and solvent, their mutual solubility limit, the initial size 

of the droplet, the initial concentration, extent of supersaturation, drying gas temperature, 

solvent volatility, etc. To predict or understand these processes, it is important to 

understand the drying of a single solution droplet. Liquid solutions are atomized by 

various means to form droplets. Once the droplets are formed, they are introduced into a 

stream of dry gas. The evaporation and evolution of droplet/particles can be understood 

by following the temperature versus time and solvent content versus time plots shown in 

figure 5.1 (a) and 5.1 (b) respectively. Solvent evaporation takes place at the droplet 

surface. Initially, there is an unsteady steep increase or decrease in temperature (points A 

or A’ to B). This is due to the fact that the net heat gained or lost by the drop depends on 

extent of solvent evaporation or sensible heat gained by the drop from surrounding air 

respectively. After this, the droplet temperature remains constant till it reaches point C. 
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During this period the evaporation rate is also constant and is called the constant rate 

period. This is depicted in figure 5.1 as the region between points B and C. The 

evaporation process also increases the concentration of the solute at the surface. When 

this concentration reaches a critical value a very thin layer of the solute is formed on the 

surface. This layer is either called a crust or skin depending on the nature of the layer 

formed. This layer can either be impermeable or permeable. Permeable shells usually 

form a solid crust due to crystallization and nucleation & growth whereas usually an 

impermeable shell results in direct precipitation and skin formation. Once a crust is 

formed, the droplet consists of an inner solution droplet core and an outer shell that is 

made up of the solute. The evaporation rate changes because of the resistance to mass 

transfer from the shell. The thickness of the crust increases due to further loss of solvent 

and when all the solvent is evaporated or, in case of water, when the particle reaches its 

equilibrium moisture content, the evaporation stops (point D). Once this condition is 

reached, the droplet (now referred to as a particle) just gains heat and then reaches the 

surrounding gas temperature (points E-F). The process can either result in a solid or 

hollow microparticle formation. Sometimes during hollow microparticle formation, there 

is a possibility of vapor of the gas being trapped inside the shell. If the shell is rigid 

enough, the gas cannot escape the shell and hence with increase in temperature, there is a 

pressure build-up inside the shell. This may cause rupturing or breaking up of the shell in 

some cases. In other cases, crippled, shriveled or donut shaped particles are formed when 

there is no vapor inside and the skin is soft enough for negative pressure drop inside the 

shell. The various morphologies that can result during the process of drying is shown in 

figure 5.2 below. Figure 5.2 shows the effect that evaporation rate and concentration of 

90 
 



 

the solute in the solution droplet has on the final morphology of the microparticles 

obtained. A rapid evaporation takes less time to form a skin and if the concentration is 

dilute enough then vapor may get trapped inside the particles. These particles collapse 

and form shriveled particles once the remaining solvent vapors evaporate. A thin skin is 

formed from such a process and the particles obtained are comparatively larger. The 

results obtained and discussed in section 4.1.1 further corroborate the effect of rapid 

evaporation and dilute concentrations on final particle morphologies. 
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Figure 5.1: Different stages of evolution of (a) droplet temperature and (b) droplet 

solvent content as the drying proceeds  
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Figure 5.2: Effect of evaporation rate and solution concentrations on the evolution 

and final morphology of microparticles obtained 

 

Numerous theoretical models have been developed to study different stages of droplet 

evaporation and drying. These can be broadly divided into either semi-empirical models, 

based on actual measurements of temperature and moisture content of the droplet, or, 

transport phenomena models, based on diffusion and evaporation inside the droplets, and 

models based on reactions engineering approach. These models can also be further 

classified based on whether the solute is dissolved in the solvent or if they are 

suspension/ colloids (slurry droplet) in the solvent medium. Chen and Li (2005) give a 
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brief classification where they classify the models as (i) transport phenomena approach, 

(ii) characteristic drying curve approach and (iii) reaction engineering approach. 

Section 5.2 discusses the available literature in the subject relating to theoretical 

models developed and used to understand the physics of drying of binary microdroplets 

containing solids. The objective of the present work is stated in section 5.3. 

Section 5.4 gives a detailed description of the model developed and used in the 

present work along with the solution methodology in section 5.5. Section 5.6 lists the 

various model parameters and their respective values used to solve and predict the 

variables in the present model. Section 5.7 presents the predicted results obtained by 

solving the model and discusses the effect of several key parameters such as initial 

polymer concentration, initial droplet size and ambient temperature on the time to skin 

formation and concentration profile inside the droplet at this time.  

Section 5.8 concludes the chapter along with some future suggestions for the 

proposed model. 

  

94 
 



 

5.2 Previous models 

One of the first theoretical considerations for evaporation and drying of droplets 

containing a non-volatile solute was given by Charlesworth and Marshall (Charlesworth 

and Marshall 1960). A simple diffusion model, as in the case of pure droplets was 

developed but the droplet size was assumed to be constant to avoid the moving boundary 

complication. Further assumption was made that the evaporation rate of the droplet was 

same as that of the pure water droplet of same size and using the d2-law an expression for 

the constant rate drying of the droplet obtained. Using the equations developed, an 

analytical expression was obtained for the concentration profile inside the droplet with 

time. They also performed experimental investigations on droplets of aqueous 

ammonium sulfate, ammonium chloride, sodium chloride, potassium nitrate, lithium 

hypochlorite, sucrose, dispersion blue dye, fresh whole milk and polyvinyl acetate 

dispersion in water. One of the major limitations of the model was obviously the 

consideration of a constant size that can lead to erroneous predictions of the 

concentration profiles. Also, the temperature variation inside the droplet was not 

considered even though the initial size of the droplets was quite large to start with. Also, 

although, a time-dependent analytical expression was obtained, but the initial unsteady 

behavior of the drying droplets was not taken into account.  

A simplified transport phenomena model was developed by Nesic and Vodnik 

(1991) for the drying of solution droplets. Their model assumed five stages of drying 

namely, initial heating and evaporation, quasi-equilibrium evaporation, crust formation 

and growth, boiling and porous particle drying. They assumed that the same laws govern 

all these five stages and hence a single set of equations can be used to predict the 
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behavior in each stage. A formulation for evaporation rate based on the resistance offered 

by both the gas boundary layer and the through the crust was assumed. A similar equation 

was developed for the energy balance and a diffusion equation was used to define the 

concentration profile of water inside the droplet. An expression for shell thickness was 

developed by conserving the solids inside the droplet. The diffusion coefficient in the 

shell was determined as a function of the local moisture concentration. Experimental 

studies were performed on droplets of sodium sulphate, colloidal silica and skimmed 

milk and the data agreed well with the model predictions. There were some minor 

discrepancies in the temperatures predicted though. They concluded from experiments 

that the sodium sulphate solution formed the most rigid crust and skimmed milk formed 

the most porous one. This reflected in their values of the crust diffusion coefficient.  

Jayanthi et. al. (1993) developed unsteady state model of evaporation of water by 

spray pyrolysis. The model consisted of a diffusion equation representing the 

concentration profile inside the droplet and since the droplet temperature was assumed to 

be uniform, the temperature variation with time was given by the heat balance equation. 

They modeled the evaporation stage of a droplet, at different drying gas temperatures, till 

the on-set of precipitation of solids on the droplet surface. The concentration difference 

was used as a reference to understand the formation of either solid or hollow 

microparticles. To explain this, a model system of Zirconium hydroxychloride (ZHC) and 

water (experimentally studied by them for spray thermolysis) was used. The initial 

droplet temperature was kept constant at 500C for all the simulations. The effect of initial 

solute concentration (varied between 0.5 to 5.7 mol/L) and the drying gas temperatures 

(300C -1500C) was shown and compared to their experimental results. They showed that 
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the equilibrium and critical supersaturation values of the solute was one of the major 

contributors towards a volume precipitation and solids formation. They concluded that 

high initial concentrations and low gas temperatures generally results in solid particles 

but there was some discrepancy at low initial solids concentrations when compared to 

their experimental results. They attributed this to the fact that the effect of temperature on 

the critical and equilibrium saturation was not taken into account in their model. Their 

model did predict the qualitative behavior of droplet evaporation when crystalline salts 

are taken into account but no simulations were performed for skin forming substances. 

Also, initial and final diameters were >1mm so Knudsen diffusion was not taken into 

account.  

Farid (2003) proposed a mathematical model for drying of solution droplets based 

on a temperature profile inside the droplets. He showed that the Biot number does not 

decrease proportionately with the droplet size and that the temperature is not uniform. A 

single equation was given for the crust-wet core region for the temperature distribution. 

The model predicted the temperature distribution and compared well with the 

experiments of Nesic and Vodnik (1991) but during the second stage, the evaporation rate 

does not depend on the resistance offered by the crust, which should not be the case. 

Also, average properties of the solution inside the core and shell were used for 

calculations and also the void fraction of the crust was not taken into account in the 

droplet mass balance equation. This also might add to some discrepancy in the 

representing the physics of the solution.  

Brenn et. al. (2001) used a one dimensional diffusion equation to represent the 

variation of mass fraction of the liquid component inside the droplet. It was assumed that 
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the temperature inside the droplet was uniform. The initial unsteady behavior of the 

droplet evaporation was neglected and it was assumed that the evaporation followed d2-

law. Also, non-dimensionless equations yielded a characteristic morphological parameter 

G that is inversely proportional to the Sherwood number. A threshold value for this 

parameter was obtained as 3.3. This value was reached by comparing various 

experimental observations from literature and from their own experiments from an 

acoustic levitator and a commercial spray dryer. They concluded that when G was less 

than the threshold value a hollow particle would form whereas a value greater than the 

threshold resulted in solid particles.  

Brenn (2004) extended the above model in the other two dimensions as well for 

determining the concentration profile inside the droplet. The temperature of the droplet 

was assumed not to change with space inside the droplet. The model only accounted for 

the drying and evaporation of the droplet until the onset of precipitation. The droplet 

evaporation rate was assumed to follow the d2-law and an analytical solution was 

formulated using the method of separation of variables. A model system of sodium 

chloride in water was used to simulate the model.  

Sloth et. al. 2006 developed a diffusion model for predicting the concentration 

profile inside a drying droplet that forms dense, solid particles. The temperature inside 

the droplet was also modeled using he heat diffusion equation but with mass averaged 

values of the heat capacity and thermal conductivity. The change in Sherwood number 

was related to the changing radius of the drop. Two different compounds, maltodextrix 

DE15 and trehalose in water were taken as model systems for predicting the 

concentration and temperature inside the drying droplet. The same solution drops were 
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studied in an ultrasonic levitator to obtain experimental values of droplet size. The 

comparison between the experimental and model predicted values of size reduction 

corresponded well with the experimental data but the temperature and water content 

profiles were not compared to any experimental data. It was shown that the water mass 

fraction reached a value close to zero at the onset of skin formation. This suggests a 

formation of dry skin instead of a wet skin at the surface as shown in cases involving 

salts and other crystalline solids. Also, since the ambient temperatures taken are low, no 

predictive results were shown for high evaporation rates.  

Recently, Eslamian et. al. (2006) have extended the model developed by Jayanthi 

et. al.(1993) for droplets smaller than 1mm in diameter to account for the Knudsen 

diffusion. The model was also corrected for droplet evaporation under reduced pressures.  

An expression for the evaporation rate of the droplet was derived from the kinetic theory 

to account for the Knudsen diffusion in very small sizes. The initial droplet sizes were 

0.5, 0.05 and 5 mm under drying gas temperatures of 100, 200 and 3000C. The model was 

used to show three zones of droplet drying, an initial rapid heat-up or cool down zone, a 

constant drying zone and a ramp-up zone due to increase in solute concentration. The 

experimental results compared well with the model and the values obtained were further 

regressed to obtain two semi-empirical correlations for final particle size and thickness of 

the crust formed respectively. They were shown to depend upon the temperature, pressure 

and initial solution concentration. It was also shown that the particle size and thickness 

are weak functions of pressure when the initial droplet size is in the range of 1 to 10 mm. 

They also found by their experimental investigations that the final particle size is slightly 

smaller than the model predicted. Thus, they further extended their model (Eslamian et. 
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al. 2009) to account for this discrepancy by introducing an “induction period” just after 

the onset of precipitation. An expression was given for the induction time based on the 

activation energy of the process. This was one of the limitations, as the values of 

activation energy must be calculated experimentally for each process. They assumed that 

during this period the droplet continued to shrink and the outer solid layer thickens. The 

solid layer is assumed to be a combination of the solution (solute+solvent inside the 

layer) and the solid itself. Once a rigid crust was formed, the shrinkage stopped and the 

constant diameter period was assumed during which the remaining solvent evaporated 

from the droplet. The shell thickens further as the remaining solute precipitates at its 

inner wall. Assuming that there is no void volume, they ended up getting a 

straightforward expression for the final thickness of the shell in terms of inside and 

outside diameter of the particle. An overall energy and material balance across the length 

of the reactor was coupled with the droplet evaporation model for predicting the 

temperature and size across the reactor length. Their experimental results generally 

agreed well with their predicted results except in the case of highly crystalline materials 

such as sodium chloride. Also, they did not mention how amorphous skin forming 

materials would behave during evaporation and shell formation.  

Shabde et. al. (2006) have proposed a spray drying model to produce hollow 

polymer microparticles. They used a simple unsteady diffusion equation for 

concentration profile and temperature inside the droplet but they assumed that the droplet 

surface reaches the boiling point of the solvent. This might not be true in cases, as even at 

high drying gas temperatures, the surface temperature does not reach the boiling point. 

They used a gradient weighted finite element method to solve the system of equations. 
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Since there were no comparisons made with the experimental results, they studied the 

effect of changes in heat and mass transfer rates on the polymer concentration profiles 

inside the droplet and also predicted the time at which the crust/skin forms. Also, it was 

shown that the skin formation occurred when the surface concentration of the solute 

reached close to zero as discussed by several other researchers. They also showed that the 

time taken to skin formation increases when the ambient gas temperature increases.  

An effective diffusion model was developed for skin forming substances such as 

maltodextrin DE5 (Werner et. al. 2008). The radius of the droplet does not cease at the 

onset of the skin formation but the droplet continues to shrink until a critical temperature 

differene (T-Tg) is reached, where Tg is the glass transition temperature of the substance. 

The model was developed to simulate and understand the formation of dense skin porous 

particles and collapsed particles. 

Most of the experimental research in the area of spray drying has water as a 

solvent and the solute that crystallizes and follows the nucleation and growth principles. 

Next few paragraphs will review the models based on such assumptions.  

Mezhericher et. al. (2007), in their model, introduced the concept of a wet particle 

in the second drying stage (i.e. after the onset of precipitation). They assumed that the 

liquid core is surrounded by a porous crust. They also assumed that the diameter of wet 

particle did not change once the crust is formed. Hence, the model was called a receding 

interface model. During this stage, they assumed that the temperature of the crust and the 

wet core are significantly different and hence defined separate energy balance equations 

for each. Knudsen diffusion was assumed to be negligible. Their model assumed that the 

crust is made up of cylindrical pores through which the solvent would escape and this 
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was related to the porosity of the crust formed. They further extended their model to 

breaking of particles during drying (Mezhericher et. al. 2009). Thermal and mechanical 

stresses inside and around the sphere was calculated. From this model, they concluded 

that mechanical stresses play an important role during initial formation of the crust but 

when the crust is fully formed, the thermal stresses are predominant and play a major role 

in the break-up of the particles. It was also found out that the total tangential stress on the 

crust of silica particle was about five times greater than the radial components. No 

experimental validation of the model was shown during their analysis. Also, the initial 

diameter of the silica colloidal particles was very large and to achieve faster drying, very 

high temperatures were assumed. This can largely affect the stress on the crust formed.  

A new droplet drying framework was proposed by Seydel et. al. (2004) for the 

solids formation at spray drying. They assumed that a porous, permeable shell is formed 

at the surface of the droplet and this porous shell consists of many single particles. The 

evaporation rate was modeled based on the resistance offered by both the gas phase and 

the shell, similar to Nesic and Vodnik. A population balance approach was used to model 

the concentration and temperature profiles inside the droplet. An extra term for the phase 

transformation of the solution to small particles was introduced in the equations. Extra 

equations for the population growth of solid particles and the porosity of the shell were 

developed. They studied the results based on the particle number density. No 

concentration or temperature profiles were reported. Their discussions on formation of 

solid or hollow particles were purely based on the small particles’ formation in the shell.  

A more detailed description of the above model was given in Seydel et. al. (2006). 

Sodium chloride solution was assumed to be the model system for studying the simulated 
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results. Even though a permeable shell was assumed, it was shown that the outer droplet 

radius was constant once the precipitation and crystallization started. The temperature 

predictions agreed well with the usual drying temperature curves. Since the model is 

based on population balances, the skin formation of shells cannot be explained using this 

model.  

Handscomb and Kraft (2010) used a similar population balance approach similar 

to that of Seydel et. al. They modeled the droplet evaporation as consisting of a 

continuous phase and a discrete solids phase. Once the surface shell was formed, the 

model was divided into different sub-model cases namely, thickening shell model, dry-

shell sub-model, wet-shell sub-model and slow boiling sub-model. Usage of the 

appropriate sub-model was determined by calculating the pressure drop across the surface 

of the droplet at the onset of precipitation. The strength of the surface was determined by 

calculating the buckling pressure. The results of the model were compared to 

experimental results obtained by Nesic and Vodnik for drying of colloidal silica droplets 

until the onset of precipitation. They concluded that the size of the suspended colloidal 

particles influences the drying modes and hence the final morphology of the dried solids. 

Colloidal particles with sizes >1mm bypass the wet shell regime and form solid particles 

wheres particles with sizes in the range 50-1000 nm go through the wet drying stage and 

form hollow particles.  
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Some researchers used artificial introduction of bubbles inside the spray droplets 

(aeration) to obtain foam-like particles and to enhance drying rate without the loss of 

solvents. Drying of these particles was modeled using an assumption of bubbles inside 

the droplets. Few of the models are discussed here. Frey and King (1986) developed the 

model for formation of foam particles. The model was developed for constant rate drying 

period and assumed that the foamed droplet contains very small internal bubbles. They 

concluded that the drying rates did increase due to the introduction of the bubles inside 

the droplets. Hecht and King (2000) developed two models for predicting the particle 

morphology and retention of the volatile component, in their case, water. The first model 

is a set of simple ordinary differential equations for predicting the droplet temperature 

and evaporation rate. The rate of change of temperature was not taken into account. An 

expression is obtained for change in temperature versus rate of change of solvent with 

time. This was compared to the experimental data and a correction factor for heat transfer 

is introduced. The second model assumed a bubble inside the droplet that changes its size 

depending on the temperature and water activity. Taking a ternary system of 

SF6/sucrose/water, they tried to show the effect of selective diffusivity on the evaporation 

rate and stated that if the liquid inside the drops is well mixed without the bursting of the 

bubbles then the drying rate can be enhanced substantially without additional loss of the 

volatile component.  
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5.3 Objective 

All the theoretical models discussed above are primarily based on the definition of 

transport equations inside and outside an evaporating droplet. Even though these models 

closely resemble the process at hand but their formulations are highly complex and result 

in computational difficulties more so after the formation of the crust/skin.  

The major limitations of these models are two fold. The first limitation comes 

from the fact that most of the models are validated against experimental results involving 

aqueous solution droplets. Most of the aqueous solution droplets have a certain 

characteristic critical saturation concentration at which the precipitation begins. But, in 

case of polymers and other skin forming materials, this is not always true. Secondly, the 

evaporation rates associated with all the above models are either slow or temperature 

dependent. Invariably, the temperature at the surface of the droplet is raised to the solvent 

boiling temperatures and once this temperature is reached it is assumed that the 

temperature remains constant till the onset of skin formation. In case of low glass 

transition polymers, high temperatures degradation of the polymers may occur. Also, the 

rate of evaporation is very high in case of high volatile solvents and hence the surface 

temperature never reaches the boiling point of the solvent. Instead there is an initial cool 

down zone. This has not been dealt with in the above models. Also, at such high 

evaporation rates there is an inherent convection inside the droplet that needs to be 

considered which is not dealt with in most of the previous models discussed.  

In the present work, a solution droplet evaporation model for rapid drying of a 

skin forming polymer solution (in a highly volatile solvent such as THF) is developed 

with and without convection. The model was compared with the size obtained using 
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experimental results obtained in chapter 4. Also, the onset of skin formation is discussed 

qualitatively by showing how the variation in the operating parameters such as ambient 

temperature, initial solute concentration and initial droplet size affect the formation of the 

skin.  
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5.4 Model Description 

Consider a droplet of initial radius a0 containing a dissolved solute (B) in a highly volatile 

solvent (A). The droplet is evaporating in a gas (air) phase (C). The gas phase is assumed 

to be very large when compared to the size of the droplet and the amount of solvent vapor 

in the gas phase is negligible. Following assumptions were made during the formulation 

of the model: 

(i) the droplet size is small enough that the temperature inside the droplet is uniform and  

      is only a function of time. 

(ii) the droplet is spherically symmetric at all times. In most cases this assumption is valid  

throughout the lifetime of the droplet. In some cases where the resulting density of 

the particle is very low, the particle loses its sphericity depending on the nature of the 

skin formed. 

(iii) Kelvin effect on the equilibrium vapor pressure is negligible as the initial and final  

       droplet sizes are greater than 1mm.  

(iv) Ideal solution behavior is assumed with no change in volume.  

(v) We also assume that the diffusivity of the solvent in the polymer is independent of the     

      temperature and composition of the polymer. 

 

With the above assumptions, the following partial differential equations that govern the 

evaporation of solvent from the solution droplet is presented as follows. 
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Species balance of solvent, 

 

𝜕𝜕𝜌𝜌𝐴𝐴
𝜕𝜕𝜕𝜕

=  1
𝑟𝑟2

 𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2𝜌𝜌𝐷𝐷𝐴𝐴𝐴𝐴

𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝑟𝑟
� −  1

𝑟𝑟2
 𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2𝑣𝑣𝑟𝑟𝜌𝜌𝐴𝐴)                     (5.1) 

where, 𝜌𝜌𝐴𝐴 is the mass concentration of the solute in the droplet,  𝐷𝐷𝐴𝐴𝐴𝐴 is the solute-solvent 

binary diffusion co-efficient that is assumed to be independent of concentration of the 

solute, 𝑣𝑣𝑟𝑟 is the convective velocity inside the solution droplet and 𝑤𝑤𝐴𝐴 is the mass 

fraction of the solute inside the droplet. 

Since the density of the solution is also changing with time due to the convection inside 

the droplet, the overall continuity equation is given by,  

 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

=  − 1
𝑟𝑟2

 𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2𝜌𝜌𝑣𝑣𝑟𝑟)                                         (5.2) 

 

The boundary and initial condition pertaining to the above system of partial differential 

equations are presented below. 

At the center of the droplet, there is no accumulation and hence the total flux is equal to 

zero, i.e., at r = 0, 

𝜌𝜌𝐷𝐷𝐴𝐴𝐴𝐴
𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝑟𝑟

−  𝜌𝜌𝐴𝐴𝑣𝑣𝑟𝑟 = 0                                               (5.3) 

At the surface, r=a(t),  

𝜌𝜌𝐴𝐴
𝑑𝑑𝑎𝑎
𝑑𝑑𝜕𝜕

+  𝜌𝜌𝐷𝐷𝐴𝐴𝐴𝐴
𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝑟𝑟

−  𝜌𝜌𝐴𝐴𝑣𝑣𝑟𝑟 = 𝑑𝑑𝑚𝑚
𝑑𝑑𝜕𝜕

                                        (5.4) 

𝜌𝜌 𝑑𝑑𝑎𝑎
𝑑𝑑𝜕𝜕
−  𝜌𝜌𝑣𝑣𝑟𝑟 =  1

4𝜋𝜋𝑎𝑎2
 𝑑𝑑𝑚𝑚
𝑑𝑑𝜕𝜕

                                                (5.5) 
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The initial conditions for the above formulation are  

At t = 0,  

𝑎𝑎(0) =  𝑎𝑎0 

𝑤𝑤𝐴𝐴(𝑟𝑟, 0) =  𝑤𝑤𝐴𝐴0                                                  (5.6) 

𝜌𝜌(𝑟𝑟, 0) =  𝜌𝜌0 

 

where, 𝑎𝑎0, 𝑤𝑤𝐴𝐴0 and 𝜌𝜌0 are the initial radius of the droplet, initial mass fraction of the 

solute and the initial density of the solution. 

The evaporation rate (change in mass of the droplet) and the change in temperature of the 

droplet can be obtained by a mass and energy balance at the droplet-air interface. Change 

in mass of the droplet is due to the evaporation of the solvent from the droplet surface 

due to convection. It is given by, 

 

𝑑𝑑𝑚𝑚
𝑑𝑑𝜕𝜕

=  −2𝜋𝜋𝑎𝑎𝑁𝑁𝑠𝑠ℎ𝐷𝐷𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴(𝐶𝐶𝐴𝐴𝑠𝑠 −  𝐶𝐶𝐴𝐴∞)                                  (5.7) 

 

where 𝐶𝐶𝐴𝐴∞ is the concentration of the solvent far away from the droplet. It depends on the 

solvent concentration in the gas phase. 𝐶𝐶𝐴𝐴𝑠𝑠  is the surface concentration of the solvent 

which is given by the vapor pressure of the solvent at the interface. 

 

𝐶𝐶𝐴𝐴𝑠𝑠 = 𝑃𝑃𝑠𝑠𝑠𝑠𝑗𝑗(𝑇𝑇𝑑𝑑)
𝑅𝑅𝑇𝑇𝑑𝑑

                                                          (5.8) 

where 𝑅𝑅 is the universal gas constant and 𝑇𝑇𝑑𝑑 is the droplet temperature. The presence of 

solute lowers the vapor pressure of the solvent and in case of polymer solutions Raoults 
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law is not applicable. According to Flory-Huggins theory, the lowering of vapor pressure 

of the solvent in a polymer-solvent solution is given by equation 3.9. 

 

𝑃𝑃(𝑇𝑇𝑑𝑑) =  𝑃𝑃𝑠𝑠𝑎𝑎𝜕𝜕(𝑇𝑇𝑑𝑑) exp [ln(𝜑𝜑) + (1 − 𝜑𝜑) + 𝜒𝜒(1 − 𝜑𝜑)2]                    (5.9) 

 

where, 𝜑𝜑 is the volume fraction of the solvent and 𝜒𝜒 is the polymer-solvent interaction 

parameter. It should be noted here that the interaction parameter is assumed to be a 

constant in the present study as THF is a very good solvent for polystyrene. For poor 

solvents, the interaction parameter is a function of polymer concentration. In the present 

work, a value of 𝜒𝜒 = 0.41 is chosen from the work of Emerson et. al. (2013). 

When the droplet evaporates, loss of solvent results in a loss of latent heat due to 

which the droplet temperature reduces. At the same time the droplet gains temperature 

from the surrounding gas temperature. Thus, the energy balance is given by,  

 

𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝
𝑑𝑑𝑇𝑇𝑑𝑑
𝑑𝑑𝜕𝜕

= 2𝜋𝜋𝑎𝑎𝑘𝑘𝑔𝑔𝑁𝑁𝑁𝑁𝑁𝑁(𝑇𝑇∞ −  𝑇𝑇𝑑𝑑) −  ∆𝐻𝐻𝑣𝑣𝑎𝑎𝑝𝑝
𝑑𝑑𝑚𝑚
𝑑𝑑𝜕𝜕

                       (5.10) 

 

where 𝐶𝐶𝑝𝑝𝑝𝑝is the specific heat capacity of the solution, 𝑘𝑘𝑔𝑔is the thermal conductivity of the 

gas phase and ∆𝐻𝐻𝑣𝑣𝑎𝑎𝑝𝑝 is the heat of vaporization of the droplet.  
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Equations (5.1-5.10), cannot be solved as such because of the extra variable 𝑣𝑣𝑟𝑟. We know 

that 𝜌𝜌𝐴𝐴  and 𝜌𝜌𝐴𝐴  are functions of 𝑤𝑤𝐴𝐴  and using this equation (5.1) and (5.2) can be re-

written as  

𝑑𝑑𝜌𝜌𝐴𝐴
𝑑𝑑𝑤𝑤𝐴𝐴

𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝜕𝜕

=  
1
𝑟𝑟2

 
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2𝜌𝜌𝐷𝐷𝐴𝐴𝐴𝐴

𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝑟𝑟

� −  
1
𝑟𝑟2

 
𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2𝑣𝑣𝑟𝑟𝜌𝜌𝐴𝐴) 

𝑑𝑑𝜌𝜌
𝑑𝑑𝑤𝑤𝐴𝐴

𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝜕𝜕

=  −
𝜌𝜌
𝑟𝑟2

 
𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2𝑣𝑣𝑟𝑟) −  𝑣𝑣𝑟𝑟
𝑑𝑑𝜌𝜌
𝑑𝑑𝑤𝑤𝐴𝐴

𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝑟𝑟

 

Now using the relation, 𝑤𝑤𝐴𝐴 =  𝜌𝜌𝐴𝐴
𝜌𝜌

, we get, 

𝜌𝜌
𝑑𝑑𝜌𝜌𝐴𝐴
𝑑𝑑𝑤𝑤𝐴𝐴

− 𝜌𝜌𝐴𝐴
𝑑𝑑𝜌𝜌
𝑑𝑑𝑤𝑤𝐴𝐴

=  𝜌𝜌2 

Using this equation and equating the above equations we get,  

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2𝑣𝑣𝑟𝑟) =  −  
1
𝜌𝜌2

𝑑𝑑𝜌𝜌
𝑑𝑑𝑤𝑤𝐴𝐴

 
𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2𝜌𝜌𝐷𝐷𝐴𝐴𝐴𝐴

𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝑟𝑟

� 

Now to solve the obtained velocity expression, an expression for the overall density of 

the droplet is required. If an ideal mixing is assumed then one can write the overall 

density, 𝜌𝜌, in terms of the pure component densities and the mass fraction of A, i.e. 

𝜌𝜌 =  
𝜌𝜌𝐴𝐴���

1 − (1 − 𝜌𝜌𝐴𝐴��� 𝜌𝜌𝐴𝐴���)𝑤𝑤𝐴𝐴⁄  

where 𝜌𝜌𝐴𝐴��� and 𝜌𝜌𝐴𝐴��� are pure component densities of solute and solvent respectively. 

This expression is used to obtain 𝑑𝑑𝜌𝜌
𝑑𝑑𝑤𝑤𝐴𝐴

 and then substituting in equation (), we get, 

𝑟𝑟2𝑣𝑣𝑟𝑟 =  −𝑟𝑟2
𝐷𝐷𝐴𝐴𝐴𝐴
𝜌𝜌

𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝑟𝑟

+ 𝑓𝑓(𝜕𝜕) 

where 𝑓𝑓(𝜕𝜕)is a function of integration. At the center of the droplet, the velocity and 

density have finite values and therefore, 𝑓𝑓(𝜕𝜕) must be equal to zero. Therefore, 

𝑣𝑣𝑟𝑟 =  −𝐷𝐷𝐴𝐴𝐴𝐴
𝜌𝜌

𝜕𝜕𝑤𝑤𝐴𝐴
𝜕𝜕𝑟𝑟

                                                    (5.11) 
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This is the required expression for velocity in terms of the mass fraction. Substituting this 

expression in equation (5.2) we get,  

 

𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

=  𝐷𝐷𝐴𝐴𝐴𝐴
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2 𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

)                                               (5.12) 

 

Equation (5.12) describes the variation of density of the solution droplet with time and 

radius. To solve the above partial differential equation a new set of boundary conditions 

is required. Using the relationship 𝑑𝑑𝜌𝜌
𝑑𝑑𝑤𝑤𝐴𝐴

 obtained above in equation (5.3) we get, 

at r = 0, 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

= 0                                                               (5.13) 

To obtain an expression for boundary condition at surface, multiplying both sides of 

equation (5.12) by 4𝜋𝜋𝑟𝑟2and integrating w.r.t. 𝑟𝑟, we get, 

∫ 𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟𝑎𝑎(𝜕𝜕)
0 = (4𝜋𝜋𝑟𝑟2𝐷𝐷𝐴𝐴𝐴𝐴

𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

)𝑟𝑟=𝑎𝑎                                (5.14) 

Also, applying Leibnitz rule to LHS of equation (5.14) and keeping in mind the fact that 

the rate of change of droplet mass is only equal to the rate of change of mass of the 

solvent, 

𝑑𝑑𝑚𝑚
𝑑𝑑𝜕𝜕

= 𝑑𝑑𝑚𝑚𝐴𝐴
𝑑𝑑𝜕𝜕

= ∫ 𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟𝑎𝑎(𝜕𝜕)
0 =  𝜕𝜕

𝜕𝜕𝜕𝜕 ∫ 𝜌𝜌4𝜋𝜋𝑟𝑟2𝑑𝑑𝑟𝑟 −  𝜌𝜌4𝜋𝜋𝑟𝑟2 𝑑𝑑𝑎𝑎
𝑑𝑑𝜕𝜕

𝑎𝑎(𝜕𝜕)
0                (5.15) 

Also,  

∆𝑚𝑚 = 𝑚𝑚0 −𝑚𝑚 =  
4
3
𝜋𝜋𝑎𝑎03𝜌𝜌0 −

4
3
𝜋𝜋𝑎𝑎3𝜌𝜌  

∆𝑉𝑉 =  
∆𝑚𝑚
𝜌𝜌𝐴𝐴���

=
4
3
𝜋𝜋𝑎𝑎03 −

4
3
𝜋𝜋𝑎𝑎3 

𝑚𝑚 =
4
3
𝜋𝜋𝑎𝑎03𝜌𝜌0 −  

4
3
𝜋𝜋𝑎𝑎03𝜌𝜌𝐴𝐴��� +

4
3
𝜋𝜋𝑎𝑎3𝜌𝜌𝐴𝐴��� 
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𝑑𝑑𝑚𝑚𝐴𝐴

𝑑𝑑𝜕𝜕
= 4𝜋𝜋𝑎𝑎2𝜌𝜌𝐴𝐴���

𝑑𝑑𝑎𝑎
𝑑𝑑𝜕𝜕

 

Substituting this in equation (5.15) and using equation (5.14), we get the boundary 

condition  

𝐷𝐷𝐴𝐴𝐴𝐴
𝜕𝜕𝜌𝜌
𝜕𝜕𝑟𝑟

= (𝜌𝜌𝐴𝐴��� − 𝜌𝜌) 𝑑𝑑𝑎𝑎
𝑑𝑑𝜕𝜕

                                              (5.16) 

 

Equation (5.12) along with the initial and boundary conditions given by equations (5.13) 

and (5.16), along with equations that defines the rate of change of size and temperature 

with time (equations 5.7 and 5.10 respectively) describe the system under consideration. 

The system of equations in its present form has a moving boundary at r = a(t). The 

equations can be transformed to fix the boundary using the following dimensionless 

variables, 

𝑌𝑌 =
𝑟𝑟
𝑎𝑎0

(𝜌𝜌 − 𝜌𝜌𝐴𝐴���)
𝜌𝜌𝐴𝐴���

, 𝑇𝑇� =
(𝑇𝑇𝑑𝑑 − 𝑇𝑇∞)

𝑇𝑇∞
 

𝑧𝑧 =
𝑟𝑟

𝑎𝑎(𝜕𝜕)
, 𝜏𝜏 =

𝐷𝐷𝐴𝐴𝐴𝐴𝜕𝜕
𝑎𝑎02

 , 𝐴𝐴 =
𝑎𝑎
𝑎𝑎0

 

Using these variables, equations (5.12) is transformed as, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1
𝐴𝐴2
�𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑧𝑧2

+ 𝑧𝑧𝐴𝐴 𝑑𝑑𝐴𝐴
𝑑𝑑𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧
�                                           (5.17) 

along with the dimensionless initial and boundary conditions, 

𝑌𝑌(𝑧𝑧, 0) = �
𝜌𝜌0 − 𝜌𝜌𝐴𝐴���
𝜌𝜌𝐴𝐴���

� 𝑧𝑧 

𝑌𝑌(0, 𝜏𝜏) = 0                                                        (5.18) 

𝜕𝜕𝑌𝑌
𝜕𝜕𝑧𝑧

= 𝑌𝑌(1, 𝜏𝜏)(1− 𝐴𝐴
𝑑𝑑𝐴𝐴
𝑑𝑑𝜕𝜕

) 

and equations (5.7) and (5.10) are transformed as  
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𝐴𝐴 𝑑𝑑𝐴𝐴
𝑑𝑑𝜕𝜕

= −𝑁𝑁𝑆𝑆ℎ𝐷𝐷𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴𝑃𝑃𝐴𝐴
0(𝑇𝑇∞)

2𝐷𝐷𝐴𝐴𝐴𝐴𝜌𝜌0𝑅𝑅𝑇𝑇∞
�𝛾𝛾𝐴𝐴𝑠𝑠𝑥𝑥𝐴𝐴𝑠𝑠

(1+𝑇𝑇�
exp �∆𝐻𝐻𝑣𝑣𝑠𝑠𝑣𝑣

𝑅𝑅𝑇𝑇∞
� 𝑇𝑇�

1+𝑇𝑇�
�� − 𝑆𝑆𝐴𝐴𝑔𝑔�              (5.19) 

where 𝑆𝑆𝐴𝐴𝑔𝑔 = 𝑃𝑃𝐴𝐴∞ 𝑃𝑃𝐴𝐴0(𝑇𝑇∞⁄ ) 

𝛼𝛼 �𝜌𝜌0−𝜌𝜌𝐴𝐴����
𝜌𝜌𝐴𝐴����𝐴𝐴

+ 𝐴𝐴2� 𝑑𝑑𝑇𝑇
�

𝑑𝑑𝜕𝜕
= 𝐴𝐴 𝑑𝑑𝐴𝐴

𝑑𝑑𝜕𝜕
−  𝛽𝛽𝑇𝑇�                                     (5.20) 

where 𝛼𝛼 = 𝐴𝐴𝑃𝑃𝑇𝑇∞
3∆𝐻𝐻𝑣𝑣𝑠𝑠𝑣𝑣

 and 𝛽𝛽 = 𝑘𝑘𝑔𝑔𝑁𝑁𝑁𝑁𝑁𝑁𝑇𝑇∞
2𝜌𝜌0∆𝐻𝐻𝑣𝑣𝑠𝑠𝑣𝑣𝐷𝐷𝐴𝐴𝐴𝐴

 

 

5.5 Solution Methodology 

The coupled system of partial differential equations (pde’s) and ordinary differential 

equations (ode’s) is numerically solved using finite difference method of lines.  Here, the 

space derivatives in the pde’s are replaced by approximate algebraic expressions, i.e. 

finite differences. The spacial derivatives are now implicit and are independent of the 

spacial variable. This turns the pde’s into a system of ode’s that approximate the original 

pde’s with only one independent variable, time. Hence, the resulting systems of equations 

are a system of initial value ode problems. Careful approximation of the ode’s is 

necessary to approach the solution of the problem.  

Discretization  

This step involves dividing the spacial domain into very small grids of size, nz. It follows 

that the number of grid points including the boundaries 0 and 1 will be equal to nz+1. 

Now, a central difference formula is used for discretization of the first and second 

derivative of Y w.r.t. z given by, 

𝜕𝜕2𝑌𝑌
𝜕𝜕𝑧𝑧2

=
𝑌𝑌𝑗𝑗−1 − 2𝑌𝑌𝑗𝑗 + 𝑌𝑌𝑗𝑗+1

(∆𝑧𝑧)2
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𝜕𝜕𝑌𝑌
𝜕𝜕𝑧𝑧

=
𝑌𝑌𝑗𝑗+1 − 𝑌𝑌𝑗𝑗−1

2∆𝑧𝑧
 

Using the above difference formulas in equation (3.17) yields, 

𝑑𝑑𝜕𝜕𝑖𝑖
𝑑𝑑𝜕𝜕

= 1
𝐴𝐴𝑖𝑖
2 �

𝜕𝜕𝑗𝑗−1−2𝜕𝜕𝑗𝑗+𝜕𝜕𝑗𝑗+1
(∆𝑧𝑧)2

+ 𝑧𝑧𝑖𝑖𝐴𝐴𝑖𝑖
𝑑𝑑𝐴𝐴
𝑑𝑑𝜕𝜕
�𝜕𝜕𝑗𝑗+1−𝜕𝜕𝑗𝑗−1

2∆𝑧𝑧
��                                 (5.21) 

where, 𝑖𝑖  is the index representing the time and 𝑗𝑗  is the spacial index designated to a 

particular grid point. Equation (5.21) represents a system of nz+1 equations with nz+1 

variables that represent the values of Y at each grid point. It should be noted here that 

when j=1, Y1=0, therefore, we need to solve the system of equations from j=2 to nz+1 

only. Also, using the boundary condition at z=1 (nz+1 grid point), we get the value of an 

arbitrary Ynz+2 and substitute it back in equation (5.21) at j=nz+1.Equation (5.21) along 

with equations (5.19) and (5.20) was then integrated using the stiff integration ode 

function ode15s in Matlab to solve for the concentration profile, temperature and size 

with time. Number of grids were chosen to be about nz = 121 for predicting the 

concentration profiles. A time step of 1e-4 s was chosen to integrate the ode’s.  
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5.6 Model Parameters 

The model description in section 5.4 contains many physical and chemical parameters. 

For effective prediction of the droplet drying kinetics, appropriate definitions and 

relations has to be given. Most of the parameters are dependent on either temperature or 

composition of the droplet or both.  The properties of THF and PS and the gas phase 

properties are iterated in Table 5.1 below. It should be noted here that the diffusion co-

efficient of the polymer in solvent is actually a strong function of composition but due to 

lack of experimental values in the literature for our system and the fact that dilute 

polymer concentration is used, the value is assumed constant. Under stagnant gas 

conditions, the Sherwood and Nusselt number values are equal to 2, however, when the 

droplet is falling, the evaporation rate is significantly enhanced and the Sherwood 

number is calculated from the correlation given by equation 5.22 below. 

 

 𝑆𝑆ℎ = 2 + 0.6𝑅𝑅𝑅𝑅1/2𝑆𝑆𝑆𝑆1/3                                          (5.22) 

 

where Re and Sc are the Reynolds and Schmidt number respectively. 

Devarakonda and Ray (2003) have discussed the effect of inter particle interactions when 

droplets are generated using a vibrating orifice aerosol generator and also gave a formula 

for an effectiveness factor that is based on the inter-particle distance and droplet 

diameter. In the present model, this could not be incorporated as the experimental values 

of inter-particle distance for the system under consideration was not available.  
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Table 5-1:Properties of solvent, solute and air used for predicting the evaporation of 

binary solution droplets 

Density of pure solvent (THF), 𝜌𝜌𝐴𝐴��� (kg/m3) 889.2  

Density of polystyrene (PS), 𝜌𝜌𝐴𝐴��� (kg/m3) 1050  

Mol. wt. of THF, Ma (kg/mol) 0.0721  

Initial mass fraction of THF, wA0 0.98, 0.93 or 0.88  

Initial droplet temperature, Td0 (K) 298  

Diffusion coefficient of PS-THF, DAB (m2/s) 
 

5.6e-10  

Diffusion coefficient of Air-THF, DAC (m2/s) 0.0936e-4  
 

Heat of vaporization, ∆𝐻𝐻𝑣𝑣𝑎𝑎𝑝𝑝 (J/kg) 443000  

Vapor pressure of THF at 313 K (mm Hg) 350  

Specific heat capacity of THF, CpL (J/kg-K) 1970 

Thermal conductivity of air, kg (W/m-K) 0.0271 
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5.7 Results and Discussion 

The mathematical model predicts the concentration profile inside the droplet at any time, 

t. Two model systems are chosen to show the effect of solvent on the convection of the 

evaporating solution droplet. First, a very high evaporating solvent (THF) and solute 

(polystyrene) in solution is chosen as the model system. The values of the parameters 

used in simulating the above mathematical model were close to the experimental 

conditions used for preparing polymer microparticles. Effect of initial droplet size, initial 

solute concentration and gas phase temperature along with the effect of convection has 

been studied. The model predicts the change in temperature with time along with the 

radius of the droplet.  

5.7.1 Model Validation 

The model was validated by comparing the results of Jayanthi et. al. (1993) for an 

inorganic aqueous solution. In their model, an aqueous evaporating droplet is considered 

with no convection present inside the droplets. The equilibrium saturation (solubility 

limit) and critical supersaturation (concentration at which the solute crystallizes) is well 

defined for inorganic solutes in water. The model developed in this work predicts the 

evaporation of an aqueous solution microdroplet even when convection is taken into 

account and compares very closely to result obtained by Jayanthi et. al. Figure (5.3) 

shows the plot of concentration profile inside the droplet at two different time instances. 

Crust forms at the surface of the droplet at about 0.05s when the surface concentration 

reaches the critical supersaturation of the solute. The concentration profiles obtained are 

not steep enough as in the case of rapid evaporating droplets. The difference in 

concentration between the center and the surface of the droplet at the onset of 
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precipitation is about 0.12. Even at such small time scales, the concentration difference is 

not steep and hence volume precipitation prevails in such conditions and a solid particle 

is formed at the end of the drying process.  

 

 
Figure 5.3: Comparison of predicted concentration profile with the data obtained by 

Jayanthi et.al. at different time instances for a 10 mm droplet. 0.05s denote the time 

at which the skin/crust forms at the surface of the drop. 
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5.7.2 Model Results 

When a binary solution droplet evaporates rapidly such as in the case of very dilute        

(2 wt%) PS-THF solution, the surface/size of the droplet recedes rapidly due to the high 

vapor pressure of the solvent. This in turn gives rise to convection inside the droplet and 

hence the concentration profile is steeper than the case when no convection is assumed 

while modeling the system under consideration. The concentration values predicted are 

much lower than that predicted when no convection is assumed. A typical plot of change 

in temperature with time for an evaporating droplet of PS-THF solution is shown in 

Figure 5.4. 

 
 

 
Figure 5.4: A typical plot of evolution of droplet temperature 
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The droplet temperature decreases from the initial temperature to a steady state 

value of about 273.86 K. The net droplet temperature decreases as a result of expense of 

the latent heat to the surrounding gas due to evaporation. Once the steady state is reached, 

even though the size of the droplet reduces the square of the radius of the droplet remains 

constant during the constant drying period. This can be shown from the plot of square of 

radius with time in figure 5.5. 
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Figure 5.5: A typical plot of square of the radius with time obtained from model 
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Due to the unsteady evaporation of the droplet there is an initial steep decrease in the rate 

but after about 2.5ms the evaporation of the droplet reaches a steady state. The quasi 

steady-state evaporation of the droplet which when compared to the d2-law yields the 

value of the evaporation rate constant. The solute concentration profile inside the droplet 

plays a major role in determining the morphology of the particles obtained. The 

concentration profile inside the droplet is shown in figure 5.6 below.  Initially it is 

assumed that the solution is well mixed, i.e. the concentration of the solute is uniform 

inside the droplet (wB=0.02). Once the evaporation starts, the surface concentration 

increases rapidly but the concentration near the center of the droplet remains at a much 

lower temperature.  It is this difference that plays a major role in determining the 

morphology of the particles. At about 63 ms, the concentration of the solute at the surface 

reaches close to unity, which results in the formation of a very thin skin of the polymer. 

Also, the final particle size obtained from the vibrating orifice aerosol generator for a 

polymer blend microparticle was similar to the droplet size obtained at the onset of 

precipitation, i.e. when the concentration reaches 1. The value of the particle diameters 

predicted from the model is about 14mm and that from the VOAG is about 15 mm. From 

this we can conclude that the skin formed from dilute polymer solution results in a soft 

impermeable shell of polymer that undergoes no/very little size reduction. 
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Figure 5.6: Plot of mass fraction of polymer vs size at different time instances 

showing the steep concentration gradient near the surface 

Once the skin is formed, the temperature of the droplet starts to climb due to the increase 

in the heat of precipitation. Due to the large difference in the solute concentration at 
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surface of the thin film formed and the wettability of the solvent and the polymer, the size 

of the polymer either becomes a constant and all the remaining solvent evaporates or the 
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values predicted is that the density of the solution at the surface of skin formation is about 

the same as that of the polymer. If we follow that there is no size change after the 

formation of the skin, then, once all the solvent evaporates, the final density of the 

particle as a whole is given by ratio of mass of the particle to its volume. Since, the mass 

of the polymer is equal to the mass of the particle (polymer does not leave the drop) and 

the volume of the particle can be calculated from the size, we get an overall particle 

density of approximately 400 kg/m3. This is very much lower than the actual polymer 

density (1050kg/m3). Hence this shows that low particle densities are achieved when very 

dilute polymer solutions are rapidly evaporated using droplet evaporation. One can 

control the properties of the polymer particles obtained by tuning the initial parameters, 

for various applications, such as aerosol delivery of drugs, by controlling the density of 

the prepared polymer microparticles. Several researchers have produced low-density 

pharmaceutical particles with similar density values. For example, Lucas et. al. (1999) 

have produced spray dried leucine particles with a density of 400 kg/m3. They used a 

lower initial concentration of about 1wt%. In the next sections we will study the effect of 

initial solute concentration, initial size and gas phase temperature on initial skin 

 formation. 
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5.7.3 Effect of droplet conditions and ambient temperature 

The initial conditions of the droplet such as size, concentration of the solute and the 

operating ambient temperature affect the final particle size or the rate at which the skin 

forms at the droplet surface. The initial droplet size affects the surface to volume ratio of 

the droplet and hence the evaporation rate. The coming sections will discuss the 

variations of these initial and operating conditions on the final particle size obtained and 

also on the concentration profile inside the droplet at the onset of skin formation. 

 

5.7.3.1 Effect of initial droplet radius 

The effect of initial droplet size was studied by varying the initial droplet size from       

20 mm to 10 mm. It can be clearly seen from the evaporation rate plot in Figure 5.7 that 

the time required for the surface concentration to reach close to unity reduces by 

approximately 4 times. This is due to the fact that the surface area per unit volume is 

about 4 times as that of a 20mm drop. In other words, if a smaller drop of polymer 

solution is used then the skin forms much quicker (about 16ms). When dealing with 

polymer blend solutions this can be highly advantageous as the diffusion process of phase 

separation is much slower that these time scales. The final particle size obtained from a 

10 mm droplet was about half when compared to the initial droplet radius of 20 mm. This 

implies that the initial size of the droplet significantly affects the onset of skin formation 

during evaporation and can also affect the thickness of the film formed, as the 

concentration gradient can be much steeper. This effect can also be seen from the plot of 

change in temperature with time (Figure (5.8)). The sudden increase in the temperature of 

the 10mm is attributed to the heat of precipitation.  
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Figure 5.7: Effect of change in initial droplet size of PS-THF solution with initial 

droplet temperature 25 0C and gas phase temperature of 40 0C. 
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Figure 5.8: Plot of droplet temperature with time for droplets with initial 

radius 10 and 20 mm. Td0=25 0C and T∞=40 0C. 
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Figure 5.9: Concentration profile inside the droplet at onset of skin formation for 

different initial droplet sizes (T∞=400C). 
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Figure 5.10: Variation of final particle size with initial droplet size. (T∞ = 40 0C,   

wB0 = 2wt% and Td0 = 25 0C). 

It was expected that the concentration profile at the onset of skin formation would be 

much steeper for smaller droplets as the evaporation rates are significantly higher for 

small droplets as shown in figure 5.7. Keeping this in mind, concentration profiles at the 

onset of skin formation starting with different initial concentration of the polymer were 

plotted as shown in figure 5.9. Interestingly, the concentration profile inside the droplet at 

the onset of skin formation was independent of the initial droplet size. This can be 
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verified by the fact that the concentration profiles depend directly on the rate of diffusion 

and evaporation. Even though they are different but their relative change is similar due to 

their dependence on the square of the radius. Therefore, if everything else is constant then 

change in radius should not affect the concentration profile inside the droplet. Even 

though the concentration profiles were nearly identical, the final particle size obtained 

increased with increasing initial size of the droplets as shown in figure 5.10. Also, with 

higher concentrations, the skin formed would be much thicker and hence, the drying 

characteristics would be quite different once the skins are formed which will have a 

significant effect on the final particle morphology obtained.  

5.7.3.2 Effect of initial polymer concentration 

This section attempts to study the effect of initial polymer concentration on the size of 

final particle size. To do the same, two different polymer concentrations 7wt% (+5%) and 

12wt% (+10%) were used to predict the behavior of the evaporating solution droplet till 

the point of skin formation. For an initial polymer concentration of 0.07 (wt%), the time 

taken for the polymer skin to form is lower. It is even lower for an initial polymer 

concentration of 0.12. The plot of polymer surface concentration with time is shown in 

figure 5.11. The size obtained at the onset of skin formation was also higher when a 

higher initial polymer concentration was used as shown in figure 5.12. Also, the 

difference between the surface concentration and the center of the drop was estimated to 

be 0.84 even for a drop with initial polymer concentration 12wt% showing that even at 

slightly higher concentrations hollow microparticles are obtained.  
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Figure 5.11: Plot of polymer surface concentration with time for different initial 

polymer concentrations of 2wt%, 7wt% (+5%) and 12wt%   (+10%){Td0=25 0C & 

T∞ = 40 0C}. 
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Figure 5.12: Variation of final particle size and the time taken to skin formation 

with initial polymer concentration at the onset of skin formation. 

5.7.3.3 Effect of ambient gas temperature 

The effect of gas phase temperature on the concentration profile inside the droplet plays a 

major role in determining the nature of the final particle morphology. With the increase 

in gas phase temperature the vapor pressure of the solvent at the surface of the droplet 

increases and hence the evaporation rate is higher than at lower temperatures. The 

concentration profile inside the droplet at the onset of skin formation with different 

ambient temperatures is shown below in figure 5.13. 
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Figure 5.13: Effect of ambient gas temperature on polymer concentration profile 

inside the droplet at the time of skin formation. 

The concentration gradient inside the droplet at a higher temperature is slightly steep. The 

skin forms even faster in such cases. At an ambient temperature of 40 0C (experimental 

conditions), the time to skin formation is 63.1ms whereas when the temperature is raised 

to 70 0C the time reduced to 41ms.  Even though we do not have experimental results to 

back up the hypothesis but we believe that the faster the time it takes to skin formation, if 

the initial concentration of polymer is same, then the skin formed will be thinner. Also, 

the sizes obtained at the onset of skin formation are slightly higher at higher temperatures 

as shown in figure 5.14. This is again due to the fact that the skin forms much faster due 

to higher evaporation rates. The change in final particle diameter predicted from the 

model is from 12.8mm to 13.7mm, which is only about 6.5% when compared to a 
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significant change in size (from 12 to 24 mm) when the initial concentration of the solute 

was varied.   

  
5.8 Conclusions 

 The model developed in the present work predicts the heat and mass transfer in a 

dilute polymer solution droplet with the effect of convection. The model (keeping 

convection terms intact) was validated for the case of no convection. Effect of various 

parameters such as initial droplet size, ambient temperature and initial polymer mass 

fraction on the final particle morphology was discussed qualitatively. The steep 

concentration gradients achieved during the evaporation and drying of a highly volatile 

solvent was predicted.  

 For a given initial concentration and size of the droplet, a steep polymer 

concentration gradient exists near the surface of the drop and a large difference in 

concentration between the center and surface is obtained. The skin forms when the 

polymer concentration at the surface reaches close to 1. This results in a hollow 

microparticle formation. Also, the sizes compared well with the experimental sizes 

obtained in Chapter 4 using a vibrating orifice aerosol generator. With the increase in 

initial concentration, the times at which the skin forms decreases and the difference in the 

concentrations between the center and the surface decrease only slightly. The final 

particle size, however, increases significantly with the increase in the initial 

concentration. Experimental investigations in Chapter 4 involved dilute polymer blend 

solutions rather than a single polymer in solvent. It was discussed that the time scales of 

evaporation will play a major role in inhibiting the phase separation in such systems. 

From the model for a single polymer in solution, the time scale of evaporation was 
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predicted to be about 63ms. Even for a polymer blend system, at such high evaporation 

rates, the polymer-polymer mobility would be substantially reduced and the time scales 

of evaporations might as well be close to a single polymer solution.   

 Increase in ambient temperature results in increased evaporation rates and larger 

particle sizes are obtained. Also, the concentration gradients are much more in the case of 

higher temperatures that lead to faster skin formation. One has to keep in mind that if the 

temperature of the surroundings is higher than the boiling point of the solvent, then once 

the skin forms, the vapors may be trapped inside the thin skin and depending on the 

nature of the skin (porous, hard, etc.), eventually lead to the rupturing of the skin. Also, at 

temperatures above the boiling point of the solvent, voids may form inside the droplet 

and the obtained microparticles may have voids instead of strictly hollow microparticles. 

 The initial radius of the microdroplet was also varied to predict the effect of 

surface evaporation. The evaporation of the microdroplet increased significantly by 4 

times when the initial droplet size was reduced from 20mm to 10mm. Also, the final 

particle sizes obtained were significantly lower. It is interesting to note that the 

concentration profile of the polymer inside the droplet was similar for different initial 

sized droplets. All these predictions can be used to better control the morphology of the 

final particles obtained form experiments.  

Even though the model predicts the final particle size obtained from evaporation 

of a highly volatile solvent from a dilute polymer solution, the assumption of constant 

solvent-polymer diffusion coefficient is not a practical one. As the solvent evaporates, the 

concentration at the surface increases. Hence, the diffusion of the solvent through to the 

surface is reduced by about 10 times. This can significantly reduce the evaporation rates 
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and the time to skin formation. A suitable relationship for the diffusion co-efficient as a 

function of polymer concentration should be incorporated in the model for understanding 

the onset of skin formation and final particle morphologies. Also, once the skin is formed 

there is a significant resistance offered to diffusion of the solvent through the skin to the 

external surface. This resistance increases as the skin thickens. Also, if one can track the 

pressure inside the droplet once the skin forms and the stresses exerted on the skin, a 

better understanding of the formation of different morphologies can be achieved. Above 

all, for polymer blend systems, the microscopic interactions between the two polymers 

and the solvents also need to be taken into account. All these points need to be considered 

and a rigorous model should be developed for better predicting the morphology of the 

microparticles formed from such processes. 
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APPENDIX: CHARGE LIMITS ON DROPLETS WITH DISPERSED POLYMER 
ADDITIVE 
 
 
A1.1 Introduction 
 

Charged droplets are encountered in many atmospheric phenomena and industrial 

applications such as spray painting, electrospray ionization, ink-jet printing and 

nanoparticle production. All these processes involve evaporation of charged droplets and 

their explosions. 

When a charged droplet evaporates, the surface charge density increases and the 

electrostatic repulsive force increases. When the charge on the droplet reaches a certain 

value, the repulsive forces overcome the surface tension forces in the drop and the drop 

becomes unstable. The drop then explodes to form a stable parent drop and other satellite 

droplets. The criterion of instability of droplet explosion is given by Lord Rayleigh as, 

 

𝑞𝑞𝑅𝑅 = 8𝜋𝜋 �𝜀𝜀0𝛾𝛾𝑎𝑎3                                                  (A1.1) 

 

where, 𝑞𝑞𝑅𝑅, is the charge on the droplet, 𝜀𝜀0 is the permittivity of free space, 𝛾𝛾 is the 

surface tension of the drop and 𝑎𝑎 is the radius of the droplet.  

Several researchers have since tried to validate the theoretical Rayleigh limit 

using experiments. In particular, Electrodynamic Balance coupled with light scattering 

apparatus have been extensively used to study charge and mass losses during droplet 

break-ups. Typically, a single charged droplet is suspended in an electric field depending 

on the charge-to-mass ratio of the drop. Size of the drop is estimated by measuring the 

light scattering intensity with time and comparing with Mie Theory and the charge on the 
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droplet at the instance of droplet break-up is determined which can then be compared to 

the theoretical charge obtained from equation A1.1.  

 Charge limits on pure droplets have been extensively studied. Richardson et. al. 

(1989) studied dielectric droplets and reported that the charge losses are about 10-20% at 

fission. Also, for conductive droplets, negligible mass loss (<0.1%) and significantly 

higher charge losses up to about 50%. This result was qualitatively in agreement to the 

experimental results of Li et. al. (2005) who studied droplets of various pure liquids 

having different electrical conductivity. They showed that even though the Rayleigh 

charge limit is closely satisfied (+4%) for all the droplets studied but the charge losses 

from a higher conductivity material is higher than low conductivity material along with 

lower charge losses.  Taflin et. al. (1988) measured charges at droplet explosion for water 

droplets containing SDS. They showed that the charge loss at explosion was 17.7% 

whereas the mass loss from droplet was 3.9%. Taflin et. al. (1989) studied heptadecane 

and dodecanol droplet fissions in radioactively contaminated gaseous medium. They 

reported that in an ionized gaseous medium the charge losses were much higher (70-

80%) when compared to the non-ionized case (10-20%). They concluded that all the 

droplets exploded below the Rayleigh limit (at about 80%).  Davis and Bridges (1994) 

studied charge limits on droplets of 1-dodecanol and aqueous solution droplets containing 

sodium dodecyl sulphate (SDS). They found that both 1-dodecanol and water droplets 

exploded 90% of Rayleigh limit. SDS reduces the surface tension of water and the 

electrostatic charge required to overcome the surface tension barrier reduces, therefore 

reducing the charge limits on such droplets.  
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Duft et. al. (2002) studied ethylene glycol droplets suspended in a quadrupole trap. They 

used a technique independent of droplet size and charge measurement and found that the 

charge instabilities and fission occur above 95% of Rayleigh limit. For the same droplets, 

the charge limits calculated from the size and charge measurements yielded a value of 

70% of Rayleigh limit. They attributed this disparity in results to the lowering of surface 

tension due to droplet shrinkage and surface contaminants.  

Charge limits on droplets containing either dissolved salts or colloids have also been 

recently studied. Most of the previous studies involved determination of charge limits 

lower than the theoretical Rayleigh limit. But recently few researchers have used ionic 

solutes such sodium and lithium chloride and other ionic surfactants to understand the 

mechanism of charge droplet breakup and the effect of thermal conductivity on such 

phenomena. Smith et. al (2002) studied various compounds containing NaCl explode at a 

higher value than the postulated Rayleigh limit.  Li and Ray (2005) have shown that for 

DEG and TEG droplets containing LiCl explode significantly higher than the Rayleigh 

limit. They also measured the charge limits on droplets containing suspended polystyrene 

nanoparticles in these glycols and concluded that the presence of such particles again 

raises the charge limit upto 3 times higher than Rayleigh limt and also the size of the 

nanoparticles and their concentration effect the charge at which droplets explode.  To 

understand the role of ions and to characterize the progeny droplets produced during the 

columbic fission, Hunter and Ray (2009). They concluded that presence of ions at the 

surface does not affect the charge limit of the drops but increase in ion concentrations 

increases the charge losses.  
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In the present study, the work of Li and Ray (2005) is extended to predict charge limits 

on droplets containing a colloidal suspension of a polymer solute. The following sections 

briefly describe the theory and experimental methods used to predict the charge limits of 

droplets.  

 Section A1.2 describes the electrodynamic balance required to suspend the 

droplet along with the diffusion chamber and light scattering set-up for controlling the 

ambient conditions of the drop and acquiring the light scattering data from the drop 

respectively.  

In Section A1.3 the method for analysis of the acquired light scattering data along 

with the voltage versus time data during our experiments have been presented by taking 

an example of a pure DEG droplet.  

The charge on the droplets of DEG doped with PEG are obtained in section A1.4 

along with the comparison of these values with the Rayleigh limit of pure DEG droplet. 

Section A1.5 concludes the work briefly.  
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A1.2 Experimental 
 
In the present work, an electrodynamic balance (EDB) is used to study the effect of more 

than one component on the stability and explosion of charged droplets. The 

electrodynamic balance incorporated in the present study is the same used by Tu (2001) 

and Hunter (2010). The most salient features of the balance are discussed here. The top 

view of the experimental set-up along with the electrical and optical components are 

shown in figure A1.1. The electrodynamic balance used in the present study for 

suspension of charged droplets consists of three major parts namely, (i) the charged 

droplet generation, (ii) droplet levitation or Electrodynamic Balance (EDB), (iii) the 

cloud chamber and the optical system. Each one is discussed briefly in the next sections. 

The EDB is housed inside the cloud chamber.  
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Figure A1.0.1: Schematic top view representation of the Electrodynamic balance 

and the diffusion cloud chamber along with electrical and optical components. 

Figure 4.11 (a) shows the slice on which the analysis was performed. The image of the 

slice was not clear due to the high voltage used and also due to the very high 

magnification. At low voltages (~3 kV), the images were much clearer as shown in 

previous micrographs in figure 4.10. The chlorine counts from the 3 chosen points were 

about 100. The counts were not enough to map the distribution of chlorine in the slice but 

the equal number of counts suggests that the distribution of chlorine might be uniform. 

Since, only one such slice was obtained wherein chlorine was detected, using this result 

alone we cannot conclude the uniform distribution of PVC and PS.  
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A1.2.1 Charged droplet generation 
 
A stainless steel hypodermic needle with a flat tip is filled with the liquid under study. A 

couple of drops of the liquid is enough to generate and suspend a single charged droplet. 

The needle is connected to a high voltage DC power supply (HP 6525A) and the 

electrical circuit is designed such that a negative voltage is supplied to the needle. Also, 

the voltage supplied is regulated to provide a pulsed voltage only when triggered. The 

needle is mounted on top of the diffusion cloud chamber along the central axis and when 

given a high voltage pulse, the liquid at the tip of the needle spray into highly charged 

droplets. These droplets pass through the top plate and enter the EDB. The 

electrodynamic balance is discussed in section A1.2.2. The EDB captures a single droplet 

with a suitable charge-to-mass ratio. Once a stable droplet is suspended, the needle holder 

is removed and the opening is closed by mounting a photomultiplier tube (PMT) on top 

of the cloud chamber for collecting the light scattering from the droplet. 

 
A1.2.2. Electrodynamic Balance 
  
In the present study, a four-ring electrodynamic balance is used for suspending a charged 

droplet. A schematic representation is shown in figure A1.2. The center-to-center 

distance between the four rings is equally spaced, 3/16” apart. All the four rings are 

symmetrically aligned and the geometrical center of the aligned rings is called the null 

point. If the rings are aligned precisely then the charged droplet is suspended exactly at 

the null-point of the EDB. The rings are supported on two mica blocks. An ac potential of 

about 1200 V and frequency 200-500 Hz is imposed on the central electrodes using a 

circuit consisting of a signal generator (Dynascan 3010 function generator), an audio 

amplifier (Realistic SA-150) and a high voltage ac transformer. The top and bottom 
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electrodes impart a dc voltage, which is controlled appropriately to set the droplet exactly 

at the null point.  

 

 

 

Figure A1.0.2: Schematic of the Electrodynamic Balance (EDB) consisting of 4 rings 

with central rings connected to a high voltage a/c signal and the top and bottom 

electrodes with +ve and –ve dc potentials respectively. 
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A1.2.3. Diffusion Cloud Chamber and Optical System 
 

The chamber used in the study consists of a central stainless steel plate that supports the 

EDB at the center. Two similar hollow stainless steel plates are used on top and bottom 

of the central plate and a coolant (water) is circulated through the hollow plates for 

maintaining the temperature inside the central plate. The temperature of the chamber is 

maintained within ± 10C. The lower and the middle plate are fixed and the upper plate is 

detachable allowing cleaning and other activities prior to the start of experiments. As 

shown in figure A1.1, the middle cylindrical section consists of several port-holes for 

measurement of temperature, humidity and light scattering spectrum. The temperature 

and humidity of the chamber are measured using a traceable hygrometer (ThermoFisher 

11-661-7B) with its probe placed about 2 inches from the center of the droplet. The 

humidity in the chamber was controlled by passing dry nitrogen gas from one of the port-

holes. The flow of the nitrogen gas was controlled using an MKS (1259B-01000SV) flow 

controller.  

Optical system and Data Aquisition 

Once the droplet is suspended, a 20mW He-Ne laser (vertically polarized) illuminates the 

droplet. The droplet scatters light from the laser and the scattering is detected by PMT’s 

along the two perpendicular planes. The scattering light along the horizontal plane 

corresponds to transverse electric (TE) mode and one along the vertical plane 

corresponds to transverse magnetic (TM) mode. The illuminated droplet is observed 

through a 15x optical microscope.  

The low voltage output signals from the PMT’s are amplified and the data is saved onto a 

PC using a data acquisition card from Measurement Computing (PCI-DAS1602/16). A 
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visual basic program is used as a user interface for passing proper parameters for data 

collection. The parameters used for data acquisition are the rate at which data need to be 

collected (Rate), number of sampling points (Counts).  

 
A1.2.4 Experimental Procedure 
 
The diffusion cloud chamber is cleaned thoroughly and then sealed and isolated from the 

ambient atmosphere. Prior to closing the chamber, all the rings are coated with a black 

conductive ink (Ted Pella, Colloidal Graphite) and the supports are coated with a non-

conductive liquid insulation tape to eliminate unnecessary scattering. Circulation of the 

coolant is started along with the passage of the dry gas through the chamber (500 ml/min 

to 1000 ml/min) and sufficient time is allowed for achieving the required chamber 

conditions. For all the experiments, the chamber was operated under atmospheric 

pressure, and a constant temperature of 25.3 0C with 0% relative humidity (RH). The 

temperature and RH were monitored continuously using a Thermo Fisher Traceable 

temperature/ humidity/dew point probe (11661-B). The droplet was illuminated using a 

He-Ne laser. The hypodermic needle filled with couple of drops of the liquid under study 

is placed on top of the chamber and the high voltage impulse is triggered. A mist of 

microdroplets with different mass to charge ratios is generated into the EDB. Several 

droplets with suitable mass to charge ratio are trapped inside the EDB. With proper 

adjustment of the frequency and voltage of the ac field, a single droplet is trapped at the 

center of the EDB. The position of the droplet is adjusted using the dc voltage across the 

top and bottom ring electrodes to bring the droplet to the null point of the balance. When 

a charged droplet is balanced at the null point of an electrodynamic balance, under no 

other external force other than gravity, the gravitational force acting on the droplet is 
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balanced by the electrostatic force from the dc voltage across the electrodes. By 

balancing both these forces, we get  

 
𝑚𝑚𝑔𝑔 =  −𝐶𝐶0𝑞𝑞𝑉𝑉𝑑𝑑𝑑𝑑/2𝑧𝑧0                                                         (A1.2) 

 

where, m is the mass of the droplet, q, the charge on the droplet, 𝑉𝑉𝑑𝑑𝑑𝑑is the dc voltage 

measured across the top and bottom electrodes and 2𝑧𝑧0 is the distance between the top 

and bottom dc electrodes. C0 is the geometrical constant of the electrodynamic balance. 

For the electrodynamic balance under study, C0 was determined using the marginal 

stability analysis procedure as explained by Davis (1985). The marginal stability curve is 

a plot of field strength parameter, 𝜂𝜂 = 8𝑔𝑔𝑉𝑉𝑎𝑎𝑑𝑑 (4𝜋𝜋2𝐶𝐶0𝑧𝑧0𝑉𝑉𝑑𝑑𝑑𝑑𝑓𝑓2)⁄  and drag parameter, 

𝛿𝛿 = 9𝜇𝜇/(4𝜋𝜋𝑎𝑎2𝜌𝜌𝑓𝑓) where f is he frequency of the ac signal, Vac the high voltage a.c. 

applied to the central rings of the EDB, 𝜇𝜇  and 𝜌𝜌 are the viscosity and density of the 

droplet under consideration. During an experiment, keeping all other parameters in the 

above expressions for field strength and drag parameter constant, the signal frequency is 

varied such that the droplet just elongates. This point is called the marginal stability point 

for the droplet at a particular size. Corresponding size and dc voltages are recorded and 

the several of such readings are repeated during the course of the evaporation experiment. 

The data is fitted to the marginal stability curve given by Davis (1985) from which C0 is 

evaluated. For the particular electrodynamic balance under study C0 was found to be 0.43. 

Once a stable droplet is bought to its null point, the light scattering data is 

acquired at time, t=0. Simultaneously, as the droplet evaporates, it loses mass and hence 

the dc voltages are lowered to bring the droplet back to the null point. Both the time and 

corresponding voltages are recorded, as they are required for calculating the charge limits 
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on the droplets under consideration. Even though low flow rates of dry gas is used, it 

should be noted here that, to avoid any drag in the calculations, the flow of the gas is 

switched off before setting the null point of the drop and taking the voltage reading. At a 

certain moment during the experiment, the voltage suddenly increases to a higher value 

and then reduces again periodically as before. This point indicates a droplet explosion 

and there is a discontinuity in the droplet light scattering spectrum. When the 

experimental spectrum is matched to the theoretical spectrum obtained from Mie theory, 

the exact size and time of the break-up can be obtained.   
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A1.3 Data Analysis 
 
A1.3.1 Evaporation and Light scattering from a single homogeneous droplet 
 
As soon as the droplet is formed it begins to evaporate. Evaporation rate of the drop 

varies depending on the vapor pressure of the drop, which in turn depends on its surface 

temperature. For a single component, spherical, isolated microdroplet evaporating under 

a steady state, the size of the drop varies with time as, 

 

𝑎𝑎2 = 𝑎𝑎02 −  2𝐷𝐷𝐴𝐴𝑔𝑔𝑀𝑀𝐴𝐴𝑃𝑃𝐴𝐴
0(𝑇𝑇𝑑𝑑𝑠𝑠)

𝜌𝜌𝐴𝐴𝑅𝑅𝑇𝑇𝑑𝑑𝑠𝑠
�1 −  𝑃𝑃𝐴𝐴∞(𝑇𝑇∞)

𝑃𝑃𝐴𝐴
0(𝑇𝑇𝑑𝑑𝑠𝑠)

� 𝜕𝜕                                  (A1.3) 

 

where, a is radius of the droplet at any time t, a0 is the initial radius at the start of the 

experiment (t=0), MA is the molar mass of the component,  𝜌𝜌  is the density of the 

component, 𝑃𝑃𝐴𝐴0, is the saturation vapor pressure of the drop at its surface temperature  𝑇𝑇𝑑𝑑𝑠𝑠  

and 𝑃𝑃𝐴𝐴∞is the partial pressure of the component in the gas phase at gas phase temperature 

𝑇𝑇∞. From equation A1.3 it can be concluded that, under quasi-steady state assumptions, 

the square of the droplet radius varies linearly with time. This variation of size with time 

is referred commonly as the d2-law. A dimensionless size, called the size parameter, is 

usually used to normalize the size obtained in evaporating droplets and is defined by 

𝑥𝑥 = 2𝜋𝜋𝑎𝑎/𝜆𝜆, where, 𝑎𝑎 is the radius of the spherical droplet and 𝜆𝜆 is the wavelength of 

incident monochromatic laser beam. Equation 4.3 can be re-written as,  

𝑥𝑥2 = 𝑥𝑥02 −  𝛼𝛼𝜕𝜕                                               (A1.4) 

where 𝛼𝛼 is a constant given by 𝛼𝛼 =  8𝜋𝜋
2𝑀𝑀𝐴𝐴𝑃𝑃𝐴𝐴

0(𝑇𝑇𝑑𝑑𝑠𝑠)
𝜌𝜌𝐴𝐴𝑅𝑅𝑇𝑇𝑑𝑑𝑠𝑠𝜆𝜆2

�1 −  𝑃𝑃𝐴𝐴∞(𝑇𝑇∞)
𝑃𝑃𝐴𝐴
0(𝑇𝑇𝑑𝑑𝑠𝑠)

�.  
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According to Lorenz-Mie theory, when a highly polarized beam (vertically 

polarized in the present case) of light having a fixed wavelength, λ, illuminates a 

homogeneous spherical droplet or particle, the intensity of scattered light in the 

horizontal plane (TE) and vertical plane TM are given by,  

 

 

𝐼𝐼1 =  𝐼𝐼𝑖𝑖𝜆𝜆2

4𝜋𝜋2𝑟𝑟2
�∑ 2𝑛𝑛+1

𝑛𝑛(𝑛𝑛+1)
∞
𝑛𝑛=1  �𝑎𝑎𝑛𝑛

𝑃𝑃𝑛𝑛1𝑑𝑑𝑐𝑐𝑠𝑠𝑐𝑐
𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐

+ 𝑏𝑏𝑛𝑛
𝑑𝑑
𝑑𝑑𝑐𝑐
𝑃𝑃𝑛𝑛1𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 ��

2
       (A1.5) 

𝐼𝐼2 =  𝐼𝐼𝑖𝑖𝜆𝜆2

4𝜋𝜋2𝑟𝑟2
�∑ 2𝑛𝑛+1

𝑛𝑛(𝑛𝑛+1)
∞
𝑛𝑛=1  �𝑏𝑏𝑛𝑛

𝑃𝑃𝑛𝑛1𝑑𝑑𝑐𝑐𝑠𝑠𝑐𝑐
𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐

+ 𝑎𝑎𝑛𝑛
𝑑𝑑
𝑑𝑑𝑐𝑐
𝑃𝑃𝑛𝑛1𝑆𝑆𝑐𝑐𝑐𝑐𝑐𝑐 ��

2
       (A1.6) 

 

where, 𝑐𝑐 is the angle between the incident beam and scattering direction and 𝑎𝑎𝑛𝑛and 𝑏𝑏𝑛𝑛 

are the scattering coefficients for the TE and TM mode respectively. For a homogeneous 

sphere, the scattering coefficients depend only on the refractive index, m and size 

parameter, x and are given by,  

𝑎𝑎𝑛𝑛 =  𝐴𝐴𝑛𝑛(𝑥𝑥,𝑚𝑚)
𝐴𝐴𝑛𝑛(𝑥𝑥,𝑚𝑚)+𝑖𝑖 𝐴𝐴𝑛𝑛(𝑥𝑥,𝑚𝑚)

                                  (A1.7) 

 

 𝑏𝑏𝑛𝑛 =  𝐴𝐴𝑛𝑛(𝑥𝑥,𝑚𝑚)
𝐴𝐴𝑛𝑛(𝑥𝑥,𝑚𝑚)+𝑖𝑖 𝐷𝐷𝑛𝑛(𝑥𝑥,𝑚𝑚)

                                  (A1.8) 

 

where 𝐴𝐴𝑛𝑛 , 𝐵𝐵𝑛𝑛, 𝐶𝐶𝑛𝑛  and 𝐷𝐷𝑛𝑛  are related to the Ricatti-Bessel function of first and second 

kinds. For a fixed scattering angle, the scattering intensity spectrum shows sharp peaks. 

These sharp peaks are called morphology dependent resonances (MDR). In figure A1.4 

(b) a plot of intensity versus size parameter for a given refractive index (pure DEG drop) 
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and scattering angle is generated using Mie theory. In this particular spectrum only peaks 

are observed between the time intervals shown in the figure but the resonances can either 

occur as peaks or troughs. We will refer to both peaks and trough as peaks in the rest of 

thesis. These resonances occur when the incident light is totally, internally reflected 

within the sphere. From a theoretical standpoint, these resonances occur when the 

imaginary terms in the coefficients of 𝑎𝑎𝑛𝑛and 𝑏𝑏𝑛𝑛equals zero. Tu (2000) has shown that for 

a given refractive index and scattering angle the shape of the intensity spectrum is unique 

and that each resonance peak repeats itself every Δ𝑥𝑥 distance where Δ𝑥𝑥 is approximately 

a function of refractive index, m and is given by, 

 

Δ𝑥𝑥 = 𝜕𝜕𝑎𝑎𝑛𝑛−1�√𝑚𝑚2−1�
√𝑚𝑚2−1

                                       (A1.9) 

A1.3.2 Analysis of Droplet Break-up 
 
As the drop evaporates, the voltage required for bringing the drop back to the null point 

reduces. This voltage and the corresponding times are recorded during evaporation of a 

single drop. The rate at which the voltages are recorded depends upon the rate of 

evaporation of the drop.  

Once the light scattering data and the voltage versus time readings are recorded, the next 

step is to analyze the data for size and charge on the droplets. The TE mode light 

scattering data and the 𝑉𝑉𝑑𝑑𝑑𝑑
2
3�  versus time data from a typical experimental run of an 

evaporating pure single diethylene glycol (DEG) droplet are shown in Figure A1.3 below. 

From the 𝑉𝑉𝑑𝑑𝑑𝑑
2
3�  vs time data in figure A1.3, three discontinuities are observed. Each 

discontinuity marks an explosion of the droplet somewhere in between those 

discontinuous time intervals. When droplet break-up occurs at a certain size, there is a 
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charge loss associated with the droplet. At a particular size, the charge on the droplet is 

inversely proportional to the voltage and hence due to charge loss during explosion the 

voltage required to balance the droplet increases steeply. 
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Figure A1.3: Balancing DC voltage and observed TE mode light scattering 

intensity as a function of time for a pure DEG droplet at 25.3 0C 

 

153 
 



 

It should be noted here that care must be taken to track both the voltage and 

intensity w.r.t. the same real time. Once the experimental spectrum is obtained, using Mie 

theory for light scattering, the theoretical scattering spectrum is generated for a given 

refractive index (for a pure DEG drop, refractive index, m= 1.443 at 25.3 0C) by varying 

the scattering angles. For each scattering angle the theoretical spectrum is compared with 

the experimental spectrum until a perfect match is obtained for a particular scattering 

angle. This is shown in figure A1.4 (b). It can be observed clearly that the two spectrums 

are identical with the theoretical spectrum having more pronounced peaks than the 

experimental spectrum. It should be noted that in figure A1.4 (b) theoretical intensity is 

plotted versus decreasing square of the size parameter, x (𝑥𝑥 = 2𝜋𝜋𝑎𝑎/𝜆𝜆), instead of the size 

parameter itself due to the fact that the square of the radius decreases linearly with time. 
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Figure A1.4: Visual matching and comparison of the experimental and theoretical 

spectrum for a pure DEG droplet for a given refractive index and scattering angle. 

(x is the size parameter) 
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Once the visual matching of the spectrum is done, occurrence times of resonance peaks 

of the same order are tabulated and numbered from 1 to N. Mass of the droplet is related 

to the radius and radius can be written in terms of the size parameter, x, and therefore, 

equation A1.2 can be re-written as equation A1.10. 

 

𝑉𝑉𝑑𝑑𝑑𝑑 = � 𝜌𝜌𝑔𝑔𝑧𝑧𝜆𝜆
3

3𝜋𝜋2𝑞𝑞𝐴𝐴0
� 𝑥𝑥3                                       (A1.10)           

 
If, during evaporation of the droplet, there is no charge loss, then equation A1.10 can be 

written as, 

 
𝑥𝑥 = 𝑘𝑘 𝑉𝑉𝑑𝑑𝑑𝑑

1/3                                                    (A1.11) 
 

where 𝑘𝑘 =  �3𝜋𝜋
2𝑞𝑞𝐴𝐴0

𝜌𝜌𝑔𝑔𝑧𝑧0𝜆𝜆3
�
1 3⁄

 
 
Similarly, equation 4.3 can be re-written as, 
 

� 3𝐴𝐴0𝑞𝑞
8𝜋𝜋𝜌𝜌𝑔𝑔𝑧𝑧0

�
2
3� 𝑉𝑉𝑑𝑑𝑑𝑑

2
3� =  𝑎𝑎02 −  �2𝐷𝐷𝐴𝐴𝑔𝑔𝑀𝑀𝐴𝐴𝑃𝑃𝐴𝐴

0 (𝑇𝑇𝑑𝑑𝑐𝑐)

𝜌𝜌𝐴𝐴
�1 −  

𝑃𝑃𝐴𝐴∞(𝑇𝑇∞)

𝑃𝑃𝐴𝐴
0 (𝑇𝑇𝑑𝑑𝑐𝑐)

�� 𝜕𝜕            (A1.12) 

 
or,  

𝑉𝑉𝑑𝑑𝑑𝑑
2
3� = 𝑉𝑉𝑑𝑑𝑑𝑑,0

2
3� −  𝛽𝛽𝜕𝜕                                                (A1.13) 

where 𝑉𝑉𝑑𝑑𝑑𝑑  is the dc voltage applied across the top and bottom electrodes and 𝛽𝛽  is a 

constant if the charge on the droplet remains constant during the time period between 

break-ups. As mentioned earlier, at time t=0, recording of the light scattering spectrum is 

started and it is in reference to this time that the voltage versus time data for the droplet 
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Figure A1.5: 𝑽𝑽𝒅𝒅𝒅𝒅

𝟐𝟐
𝟑𝟑�  Vs time plot of a pure DEG droplet at 25.3 0C and different 

discontinuities representing multiple droplet break-ups. 

 

during evaporation are also noted. The voltage versus time data shown in figure A1.3 is 

fitted to the above equation 4.13 to obtain 𝑉𝑉𝑑𝑑𝑑𝑑
2
3�  as a linear function of time as shown in 

figure A1.5.  
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Now, using equation A1.11, assuming that the charge remains constant prior to an 

explosion, each distinct resonance peak with a unique size parameter can be related to the 

voltage as,  

𝑥𝑥𝑖𝑖 = 𝑘𝑘 𝑉𝑉𝑑𝑑𝑑𝑑,𝑖𝑖
1/3 ,      for i = 1 to N                              (A1.14) 

 
Also, since resonance peaks with same order occur at a Δ𝑥𝑥 distance,  
 

𝑥𝑥𝑖𝑖 = 𝑥𝑥1 − (𝑖𝑖 − 1)Δ𝑥𝑥                                        (A1.15) 
 
Substituting equation 4.13 in equation 4.12 and subtracting from 𝑥𝑥1, yields,  
 

(𝑖𝑖 − 1)Δ𝑥𝑥 = 𝑘𝑘 �𝑉𝑉𝑑𝑑𝑑𝑑,1
1/3 − 𝑉𝑉𝑑𝑑𝑑𝑑,𝑖𝑖

1/3�                                    (A1.16) 
 

The plot of (𝑖𝑖 − 1) Vs (𝑉𝑉𝑑𝑑𝑑𝑑,1
1/3 − 𝑉𝑉𝑑𝑑𝑑𝑑,𝑖𝑖

1/3) yields a straight line with the slope given by 

Δ𝑥𝑥/𝑘𝑘. An example plot is shown in figure A1.6. Since, Δ𝑥𝑥, for a given refractive index, 

can be calculated from equation 4.9, therefore, 𝑘𝑘 is estimated. In this way 𝑘𝑘 is estimated 

for each plot of 𝑉𝑉𝑑𝑑𝑑𝑑
2
3�  versus time after each break-up of the same droplet. The peaks 

obtained from the experimental spectrum prior to the first break-up and sample 

calculation steps described above are tabulated in Table A1.1 below. 
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Table A1.1: Resonance peaks from experimental light scattering spectrum prior to 

first droplet break-up corresponding to the data obtained for a pure DEG droplet at 

25.3 0C and respective calculations to determine k. (Δ𝑥𝑥 = 0.773954) 

i i-1 
resonance peak 

times (s) Vdc
2/3 Vdc1/3 ΔVdc1/3 Δx/k k 

1 0 8.9857 4.2154 2.0531 0.0000 0.00954 81.1273 

3 2 26.1571 4.1364 2.0338 0.0193 
  

5 4 43.3429 4.0573 2.0143 0.0389 
  

9 8 76.3571 3.9055 1.9762 0.0769 
  

11 10 92.1857 3.8326 1.9577 0.0954 
  

13 12 108.0143 3.7598 1.9390 0.1141 
  

15 14 124.4286 3.6843 1.9195 0.1337 
  

17 16 140.6429 3.6097 1.8999 0.1532 
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Figure A1.6: Plot of ΔVdc1/3 Vs time along with the linear fitted line for a pure DEG 

drop prior to its first break-up. 

 
From the expression for k, it is clear that the charge on the droplet is directly proportional 

to k. Therefore, fractional charge loss due to explosion of the droplet can be written as  

𝑓𝑓𝑞𝑞 = 1 − ( 𝑘𝑘𝑠𝑠𝑎𝑎𝑗𝑗𝑗𝑗𝑎𝑎
𝑘𝑘𝑏𝑏𝑗𝑗𝑎𝑎𝑏𝑏𝑎𝑎𝑗𝑗

)3                                                 (A1.17) 

where 𝑘𝑘𝑏𝑏𝑏𝑏𝜋𝜋𝑐𝑐𝑟𝑟𝑏𝑏 and 𝑘𝑘𝑎𝑎𝜋𝜋𝜕𝜕𝑏𝑏𝑟𝑟are the values of k prior to and after an explosion. Using this 

expression, for a charged DEG droplet evaporating under 0% RH and 25.3 0C yields a 

charge loss of about 36% after the first droplet break-up and about 31% after the second 

droplet break-up. This is in agreement to the values of 37% + 2% obtained by Li et. al. 

(2005) for a pure DEG droplet evaporating under similar conditions.   
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A1.3.3 Determination of charge limits on droplets at break-up 
 
Theoretically, for the Rayleigh limit to be valid, the apparent charge on the droplet at 

explosion must be equal to Rayleigh charge limit given by equation A1.1. Therefore, at 

droplet explosion, using equation A1.1, A.10 and the relationship between k and q, we 

get,  

(𝑥𝑥𝑏𝑏−)3 2� = 𝑆𝑆𝑉𝑉𝑑𝑑𝑑𝑑,𝑏𝑏
−                                            (A1.18) 

with  

𝑆𝑆 =  6𝐴𝐴0
𝜌𝜌𝑔𝑔𝑧𝑧0

�2𝜋𝜋3𝜖𝜖0𝛾𝛾
𝜆𝜆3

                                          (A1.19) 

In equation A1.18, 𝑥𝑥𝑏𝑏−and 𝑉𝑉𝑑𝑑𝑑𝑑,𝑏𝑏
−  are the values of the corresponding size parameter and 

voltage just prior to the break-up of the droplet. It should be noted here that c is a 

function of surface tension and for a droplet that is free of contaminants should yield a 

constant value for every explosion it undergoes.  

Now, Using equations A1.13 and A1.11, the size parameter is calculated for 

corresponding peak occurrence times and the square of the size parameter is plotted 

against time. This data is fitted to equation A1.4 and the slope of the equation is equal to 

the co-efficient of evaporation (size parameter squared/s) as shown in the figure A1.7 

below. The regressed equation gives a value of 30.276 for the evaporation rate whereas 

that obtained by Tu (2000) was around 37 for a pure DEG droplet evaporating under 

same conditions.   
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Figure A1.7: Plot of square of the size parameter with time prior to first droplet 

break-up of a pure DEG droplet. 

 
 
Evaporation rate of the droplet can be determined much precisely by using an alignment 

procedure described in detail by Tu (2000). From the experimental light scattering 

spectra in figure A1.4 (a), occurrences of resonance peaks are tabulated. These resonance 

peaks are compared with the theoretical resonances generated. The set of theoretical 

resonances with the least alignment error is chosen as the optimum data set for a given 

refractive index. The size parameters corresponding to peak times and the constant α in 

equation A1.4 are obtained. It is to be noted here that the alignment procedure used here 

relates the square of the size parameter to a second order polynomial w.r.t. time even 

though in equation A1.4, x2 is linear in time. This is because of the fact that minute 
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variations in the gas phase and slight impurities in the droplet leads to an error in the 

order of t2. The resonance peaks along with the aligned theoretical size parameter values 

and their functional relationship is given in Table A1.2 for a pure DEG droplet with 

refractive index of 1.443 evaporating at a temperature of 25.3 0C. 

 

Table A1.3: Resonances observed from an experimental run of pure DEG droplet 

correlated with theoretical results. 

observed 
times 

size 
parameter 

peak 
width 

mode no order no mode time 
error 

176.76336 149.14034 0.02377 156 10 2 0.18159 
199.3906 147.60067 0.02992 154 10 2 0.03176 
221.85163 146.05974 0.0373 152 10 2 -0.1329 
244.14647 144.48818 0.00458 154 9 2 0.10518 
265.96644 142.95821 0.00614 152 9 2 0.02063 
287.62021 141.42679 0.00817 150 9 2 -0.07702 
308.96531 139.89389 0.01078 148 9 2 -0.04631 
330.29855 138.3595 0.01409 146 9 2 -0.18523 
351.31125 136.82361 0.01825 144 9 2 -0.18648 
372.16962 135.28623 0.02341 142 9 2 -0.21787 
393.50286 133.67577 0.00219 144 8 2 0.04503 
412.77044 132.20713 0.03739 138 9 2 0.27391 
433.78314 130.62422 0.00414 140 8 2 0.06244 
453.67991 129.09619 0.00563 138 8 2 0.03607 
512.06436 124.50252 0.01341 132 8 2 0.13809 
531.32007 122.968 0.01758 130 8 2 -0.00082 
550.25524 121.43183 0.02282 128 8 2 -0.01094 
569.02422 119.89403 0.02931 126 8 2 -0.04845 
587.47266 118.35466 0.03724 124 8 2 0.03879 
605.9211 116.8138 0.0468 122 8 2 -0.07236 
624.36954 115.23149 0.00502 124 7 2 0.08385 
642.01071 113.70419 0.00688 122 7 2 0.1824 
659.66376 112.17513 0.00933 120 7 2 0.07427 
677.1506 110.64425 0.01253 118 7 2 -0.06349 
694.47124 109.11152 0.01667 116 7 2 -0.23212 
refractive index, m = 1.443 
regression relation,  𝑥𝑥2 = 25863.9 − 20.5867𝜕𝜕 + 6.92065 ∗ 10−4𝜕𝜕2 
std error in time (s) = 0.1268 
  

163 
 



 

A1.4 Results and Discussions 
 
In the present work, we have studied pure droplets of DEG and droplets of DEG doped 

with polyethylene glycol (PEG, 10000). PEG was dissolved in couple of drops of water 

before mixing with DEG so that the solution droplet is homogeneous. As soon as a drop 

is generated, water evaporates in a few milliseconds and PEG would precipitate out. The 

weight fraction of PEG in DEG was 0.86%.  The resulting colloidal solution droplet was 

allowed to evaporate under 0% RH and 25.3 0C. The resonances observed and the 

correlated theoretical results for one such doped DEG droplet is shown in Table A1.4. 

The evaporation rates obtained in Table A1.3 for a pure DEG droplet and in Table A1.4 

for a DEG droplet contaminated with PEG were similar. This shows that the evaporation 

rate of the droplet is not affected by low concentrations of the polymer.  Charge limits on 

several droplets of DEG and DEG doped with PEG were calculated according to the 

analysis of section A1.3.3 above.  
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Table A1.4: Observed resonance peaks and correlated theoretical data for a DEG 

drop contaminated with trace amounts of PEG  

 
observed 

times 
x,size 

parameter 
peak 
width 

mode no order no mode time 
error 

36.62 156.05212 0.00755 165 10 2 0.04333 
57.92 154.51857 0.00989 163 10 2 0.09384 
79.2 152.98364 0.01285 161 10 2 -0.14299 
99.84 151.44735 0.01654 159 10 2 -0.04266 
120.18 149.90968 0.02112 157 10 2 0.05897 
140.5 148.37067 0.0267 155 10 2 -0.11433 
160.18 146.83037 0.03345 153 10 2 0.06078 
179.84 145.28883 0.04149 151 10 2 -0.03276 
199.52 143.72338 0.00531 153 9 2 -0.14992 
218.24 142.19268 0.00709 151 9 2 -0.03645 
236.62 140.66053 0.00939 149 9 2 0.14696 
272.76 137.59175 0.01605 145 9 2 0.33705 
290.82 136.05511 0.02069 143 9 2 0.04978 
308.88 134.43775 0.00186 145 8 2 0.39939 
326.62 132.91343 0.00258 143 8 2 -0.26505 
375.98 128.33159 0.00654 137 8 2 0.12762 
392.42 126.80119 0.00878 135 8 2 -0.21005 
408.56 125.26915 0.01167 133 8 2 -0.48436 
424.04 123.73547 0.01538 131 8 2 -0.333 
439.52 122.20013 0.02006 129 8 2 -0.41395 
454.68 120.66314 0.02589 127 8 2 -0.40542 
483.06 117.58441 0.0418 123 8 2 0.8654 
498.56 115.99449 0.00428 125 7 2 0.3001 
512.74 114.46806 0.00589 123 7 2 0.21969 
526.62 112.93989 0.00802 121 7 2 0.22344 
540.48 111.40992 0.01083 119 7 2 0.03322 
560.48 109.11152 0.01667 116 7 2 0.14032 
573.72 107.57694 0.02193 114 7 2 0.04205 

refractive index, m = 1.443 
regression relation,  𝑥𝑥2 = 25164 − 22.0348𝜕𝜕 − 2.88117 ∗ 10−3𝜕𝜕2 
std error in time (s) = 0.269 
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(a) 

(b) 

 

Figure A1.8: Charge limits Vs size parameter plots for different droplets of (a) DEG 

and (b) DEG contaminated with PEG during evaporation. 

A plot of size parameter versus the charge limit values (𝑥𝑥𝑏𝑏−)3 2� /𝑉𝑉𝑑𝑑𝑑𝑑 is plotted for couple 

of droplets of DEG and DEG and PEG in figure A1.8. Theoretical Rayleigh limit for 

DEG droplets were calculated to be 308.43. This is shown as doted lines in the plots. 

General trend of such a plot shows that as the droplet evaporates (reduction in size 

parameter) the charge on the droplet increases and then once a certain charge is attained, 

it explodes. Once the droplet explodes, it again starts to evaporate and the process is 

repeated. For pure DEG droplets, each explosion occurs at the same limit and satisfies the 

Rayleigh instability. For DEG droplets doped with PEG, the charge limits predicted were 
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higher than that of the Rayleigh limit for a pure DEG drop. Also, it was expected that the 

charge limit would increase significantly as the droplet evaporated and the concentration 

of the contaminant increased. In our results, even though a general higher trend of charge 

limit was observed, for one drop the charge limit remained unchanged and for the other it 

increased slightly when compared to the first explosion. Due to lack of statistical data, the 

actual amount of increase in charge limits cannot be concluded.  

 

A1.5 Conclusions  
 
Charge limits on droplets of DEG and DEG doped with PEG during their explosions 

were studied by suspending a single droplet in an electrodynamic balance. The sizes of 

the droplets at different time instances are obtained from experimental light scattering 

spectrum using a rigorous alignment procedure. It was found that DEG droplets doped 

with a polymer can hold higher charge and explode at higher values than their theoretical 

Rayleigh limit.  

 Statistically significant data set needs to be obtained for estimation of the charge 

limit values. Also, different polymers with varying molecular weight can be studied for 

better understanding of such systems.  
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