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ABSTRACT 

Investigations into the distribution and ecosystem functions of fruiting amoebae revealed 

that local-scale environmental conditions can largely explain broad biogeographical patterns in 

species assemblage, the way in which amoeboid predators shape bacterial communities and how 

this top-down influence may affect global biogeochemical processes in a changing climate. The 

distribution and assemblage of protosteloid amoebae on the islands of New Zealand and Hawaii 

did not yield any expected patterns of island biogeography, and conformed to other global 

regions studied. The strongest predictor of species richness in a given region was sampling effort 

and these species do not appear to have any extant barriers to global dispersal. It is proposed that 

morphological adaptations such as tiny resilient spores contribute to their ability to disperse 

widely. In addition, the role of soil amoebae in stimulating the mineralization of soil nutrients 

was examined using a series of microcosm experiments. It was confirmed that amoeboid 

predators are causative for large increases in carbon and nitrogen mineralization but that the 

magnitude of this effect depends on complex interactions between climate and edaphic variables. 

In particular, land management practices such as no-till agriculture determine the nature of 

predator responses to climate change with regard to biogeochemical cycling. Subsequently, soil 

amoebae were shown to have a strong influence on the composition of bacterial communities. 

This influence was also dependent on climate factors. The predation-induced changes to bacterial 

taxa was different when incubation temperatures were increased, suggesting that even if protists 

are considered in models of nutrient dynamics, the parameters describing their influence on 

decomposer communities will depend on environmental factors. Future work should focus on 

testing hypotheses concerning the importance of morphology and anthropogenic vectors to 

amoebal dispersal and on further quantifying the interaction between a changing environment 

and predator-mediated control of bacterial communities for a wider range of predator taxa.  
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CHAPTER 1 

 

INTRODUCTION 

Introduction to mycetozoan ecology 

Mycetozoans exist only in the periphery of most biologists’ awareness, and those to 

whom the term has any familiarity will likely reflect only on the famous model organisms 

Dictyostelium discoideum and Physarum polycephalum. Yet to one who has gotten to know these 

organisms just a little bit, Mycetozoans represent a sublimely diverse group which are important 

and ubiquitous members of the microbial community in many habitats. They are categorized into 

three main groups: two monophyletic sister groups known as Myxomycetes and Dictyostelids, 

and a paraphyletic assemblage known as protosteloid amoebae (Shadwick et al., 2009).  First 

described in the mid-1800s, consensus on their phylogenetic affiliation has varied considerably 

(Baldauf and Doolittle, 1997), but now places these main groups unambiguously within the 

eukaryotic supergroup of Amoebozoa.  

Mycetozoans’ life cycle details vary considerably between taxa, but in general are 

characterized by an amoeboid or flagellated trophic stage followed by a dispersal stage in which 

spores are born on or inside a fruiting body. Some of these fruiting bodies can by very 

conspicuous (even beautiful) and often superficially resemble fungal morphologies, a fact that 

contributed greatly to the initial confusion surrounding their classification (Olive, 1975). 

Mycetozoans can, in theory, be isolated from any habitat where decaying plant material is 

present (Rollins, 2008). They have been found in melting snowbanks (Ronikier and Ronikier, 

2009), in freshwater ponds (Lindley et al., 2007), and on the bark of trees (Schnittler, 2001). 

They occur in tropical, temperate, grassland and desert habitats, on remote islands, in dense 

urban centers and, of course, in soils where they often represent a full 25% of all protists in the 

community (Geisen et al., 2015; Urich et al., 2008). 
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Despite their ubiquity, abundance, and environmental diversity, the detailed study of their 

distributional and functional ecologies is still a young discipline. This is true to varying degrees 

between the three groups. Dictyostelid ecology has perhaps received the most attention, spurred 

by early work by Cavender and Raper (1965) and which has now accumulated into a large body 

of literature examining the genetic ecology of dictyostelid populations (eg. Fortunato et al., 

2003; Cavender, 2013; Landolt et al., 2014). Work regarding the functional ecology of this 

group, however, has largely been limited to one species, the model organism Dictyostelium 

discoideum (Montagnes et al., 2012). The ecology of myxomycetes has received less attention, 

though major efforts during the past two decades (eg. Liu et al., 2015; Stephenson et al., 2011; 

Stephenson and Feest, 2012; Stephenson, 2011) have begun to form a sharpening image of the 

distribution of this charismatic group. Lastly, and described most recently (Olive, 1967), the 

paraphyletic assemblage of protosteloid amoebae has received the least attention, likely due to 

their relatively inconspicuous fruiting bodies and lack of a current “model” member. Still, 

species in this diminutive group have been found in virtually every location and habitat where 

myxomycetes and dictyostelids have been observed (though they are less common in soils) and 

recent efforts have shown them to be globally ubiquitous (Chapter 2).  

The greatest scarcity of information with all three of these groups concerns the 

environmental factors that influence their distributions (particularly at scales relevant to 

microbes) and the functional roles that they play in the systems where they are found. It has been 

shown that, at a broad-scale, precipitation patterns (Rollins et al., 2010; Ogata et al., 1996), 

latitude (Zahn et al., 2014; Stephenson et al., 2000; Perrigo et al., 2012), and elevation (Landolt 

et al., 2006; Rojas et al., 2012) influence mycetozoan abundance, and that some taxa seem to 

show limited occurrence consistent with Foissner’s “moderate endemism” hypothesis 
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(Stephenson et al., 2007). It is yet to be accounted for, though, what specific mechanisms are the 

driving factors behind these patterns or whether they account for any effective functional 

differences in the overall makeup of the mycetozoan community.  

Mycetozoans are largely bacterivorous predators and as such abundant members of the 

predatory protist community they undoubtedly play a significant role in shaping bacterial 

communities on a global scale. The specifics of these interactions with bacterial decomposers 

and the extent to which this interaction influences large-scale biogeochemical processes remains 

elusive. Thus, the focus of this dissertation is two-fold: 1) To increase our understanding of the 

global distribution of the least-studied mycetozoans (the protosteloid amoebae) and the broad 

factors that influence their local diversity and abundance, and 2) To investigate, mechanistically, 

the roles that mycetozoan predators play in shaping soil bacterial communities and the 

biogeochemical processes associated with soils. 

Microbial distributions 

There are two major competing hypotheses regarding the global distributions of 

microbes. The first is known as the Baas-Becking hypothesis: “Everything is everywhere but the 

environment selects,” (EiE) (Baas-Becking, 1934; Finlay, 2002) and insists that the small size of 

microbes lends them to worldwide dispersal. It is suggested that the reason a given microbe does 

not occur in a given location is not due to lack of dispersal but to lack of a suitable habitat. The 

main alternative hypothesis is known as the “moderate endemism model” (ME) (Foissner, 2006) 

which claims that, for perhaps a full third of extant protist taxa, historical or morphological 

limitations act as barriers to dispersal, generating endemic groups. 

For the EiE model to be accurate some necessary conditions must be met by the taxa in 

question: 1) High dispersal rates, 2) Small size, 3) Availability of appropriate dispersal vectors, 

4) Morphological adaptations for resilience and dispersal such as spores or cysts, and 5) 
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Sufficient time to have achieved ubiquitous dispersal. It seems clear that many protist taxa fail to 

meet some or all of these criteria (those lacking spores or cysts, for example), and in fact, the 

literature shows that some protists do appear to exhibit endemism or patchy distributions (Smith 

and Wilkinson, 2007; Kooistra et al., 2008). The key to this hypothesis, however, is more likely 

to be found in the second clause of the slogan, “…but the environment selects.” 

Proponents of the ME model often cite evidence from macro-organisms as evidence that 

small size and dispersal vectors do not equate ubiquitous dispersal. Ferns are a favorite example, 

as many fern species have very patchy distributions though they disperse via large numbers of 

tiny resilient spores and have been extant for hundreds of millions of years. Thus they seem to 

fulfill the requirements of the EiE model yet exhibit clear biogeographical patterns (Foissner, 

2006). Of course, crucial to this example is the assertion by Foissner and other proponents of ME 

that suitable habitats exists for these widely dispersed propagules (Foissner, 2007). This claim is 

then extrapolated to protists and becomes something akin to: “Here is a suitable habitat for 

protist X, yet protist X does not occur here, therefore there must be a barrier to its dispersal.” In 

light of how little we know about what actually constitutes a suitable habitat for any given 

species, this claim seems absurd and has been experimentally debunked, at least in the favorite 

fern example (Frahm, 2007).  

This illustrative argument against the ME model is not intended to refute the hypothesis. 

Both models (ME and EiE) may turn out to be correct, just not for the same species (Caron, 

2009). It is clear that some protist species do exhibit endemism or patchy distributions but it is 

still entirely plausible that the main reason for this observation is that “the environment selects.” 

Perhaps it just selects in ways we currently do not understand. We know so little about so many 

protist taxa that we simply cannot assume what constitutes a “suitable habitat.” This can be seen 
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as a problem of scale, particularly is some of the extremely complex environments where protists 

are abundant, such as soil.  

Introduction to soil habitats, communities, and biogeochemistry 

Soils are some of the most complex environments on earth with the most diverse biota 

(Tringe et al., 2005) and most versatile biochemistry (White, 1995). They are extremely 

heterogeneous at scales from continents to micrometers, making quantitative extrapolations 

difficult, and most of our current knowledge about the microbes living in them comes only from 

environmental DNA. Soil complexity is difficult to overstate and an adequate treatise is beyond 

the scope of this work (for thorough reviews see Paul, 2006; Tan, 1998; Marshall et al., 1996) 

but it is crucial that we work to understand it because three-fourths of Earth’s terrestrial carbon 

(Whitman et al., 1998) and a substantial portion of Earth’s labile nitrogen (Söderlund and 

Svensson, 1976) are tied up in soils.  

The fluxes of carbon and nitrogen into and out of soils are controlled largely by biotic 

processes such as microbial decomposition, but microbial processes are highly dependent on 

abiotic factors. These factors, such as water availability, temperature, cation exchange capacity, 

and physical structure are in turn, highly interdependent and thus present a difficult challenge to 

untangle. Still, accurate predictions of biogeochemical cycling in a changing global climate 

hinge on understanding the myriad interactions between the abiotic environment and the diverse 

biotic components of soils. 

One important type of relationship that has received comparatively little attention is the 

interaction between the soil organisms themselves (Wardle, 2006). Until fairly recently soil 

systems have been treated as a “black box” where large-scale abiotic inputs and geochemical 

outputs were measured without regard to the mechanisms behind the observed trends (Tiedje et 
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al., 1999). For example, it has been noted that a linear increase in soil temperature leads to 

exponential increases in total respiration (Lloyd and Taylor, 1994).  

This black box approach was taken out of necessity since an estimated 99% of microbial 

taxa are not amenable to traditional culture-based study (Pham and Kim, 2012) and though it has 

been useful in generating rough predictions, improvements in environmental molecular methods 

such as high-throughput nucleic acid sequencing are now enabling more detailed mechanistic 

research into the biotic processes at work (Whiteley et al., 2006). Incorporating measures of 

microbial community structure and biochemical potential has already proven useful as it has led 

to improved predictive power in nutrient flux modeling efforts (Ali et al., 2015). With growing 

concern over global climate change, accurate modeling of the fate of soil carbon and nitrogen is 

becoming more important, but this goal cannot be realized if mechanistic data about the 

organisms responsible for these processes are lacking. Examples of such data include quantifying 

the influences of temperature, precipitation variation, and management strategies on soil bacteria, 

fungi and protists, and the way in which these groups interact with each other under predicted 

climate scenarios. 

Fortunately, there is a substantial body of work investigating the direct influences of 

environmental parameters on soil microbes, though most of these efforts have focused on 

bacterial and fungal members of the community (eg. Williams et al., 1972; Hayden et al., 2012; 

Cregger et al., 2012; Evans and Wallenstein, 2014; Zogg et al., 1997). Considerably less effort 

has been made to quantify the same effects on protists, though many research groups are 

currently attempting to eliminate this gap in our knowledge (eg. Tsyganov et al., 2013; Stefan et 

al., 2014; Domonell et al., 2013). Additionally, there has been a small but steady interest in 

dissecting the relationships between bacterial and protistan taxa and in measuring the emergent 
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biogeochemical changes that result from these species interactions. It has been shown, for 

example, that bacterivorous protists significantly change bacterial community compositions 

(Rønn et al., 2002), increase rates of organic carbon and nitrogen decomposition (Kuikman et 

al., 1990), and stimulate plant growth (Bonkowski, 2004), but surprisingly little is known about 

the environmental factors that influence these interactions (Rosenberg et al., 2009) or of the 

identity of bacterial groups that are affected by protist grazing (Murase et al., 2006). 

Driving questions behind this research  

The motivations behind this dissertation work were driven by the aforementioned gaps in 

knowledge concerning the distributional and ecological function of protists. Working to fill those 

gaps in such an abundant and widely distributed group as myectozoans is necessary in order to 

better predict global-scale biogeochemical processes. The questions that drove this research 

were: 

1. Do mycetozoan taxa exhibit biogeographical patterns despite traits that lend 

themselves to widespread dispersal, and if so, what factors might explain these 

patterns? 

2. What specific taxonomic and functional changes do mycetozoans exert on soil 

bacterial communities? 

3. How will climate change affect the influence of mycetozoan predators on carbon and 

nitrogen cycling in soils? 

4. Do these community- or functional-level changes to bacterial communities explain 

any or all of the changes to nutrient dynamics? 
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CHAPTER 2 

 

ECOLOGICAL DISTRIBUTION OF PROTOSTELOID AMOEBAE IN NEW ZEALAND 

Abstract 

During the period of March 2004 to December 2007, samples of aerial litter (dead but 

still attached plant parts) and ground litter (dead plant material on the ground) were collected 

from 81 study sites representing a wide range of latitudes (34°S to 50°S) and a variety of 

different types of habitats throughout New Zealand (including Stewart Island and the Auckland 

Islands). The objective was to survey the assemblages of protosteloid amoebae present in this 

region of the world. Twenty-nine described species of protosteloid amoebae were recorded by 

making morphological identifications of protosteloid amoebae fruiting bodies on cultured 

substrates. Of the species observed, Protostelium mycophaga was by far the most abundant and 

was found in more than half of all samples. Most species were found in fewer than 10% of the 

samples collected. Seven abundant or common species were found to display significantly 

increased likelihood for detection in aerial litter or ground litter microhabitats. There was some 

evidence of a general correlation between environmental factors - annual precipitation, elevation, 

and distance from the equator (latitude) - and the abundance and richness of protosteloid 

amoebae. An increase in each of these three factors correlated with a decrease in both abundance 

and richness. This study provides a thorough survey of the protosteloid amoebae present in New 

Zealand and adds to a growing body of evidence which suggests several correlations between 

their broad distributional patterns and environmental factors. 

Introduction 

The term “protosteloid amoebae” refers to a paraphyletic assemblage of unicellular 

eukaryotes within the supergroup Amoebozoa that exhibit spore dispersal via sporocarpic fruiting 

(Figure 2.1). For most of their life cycle, protosteloid amoebae exist as single amoeboid cells that 
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may or may not possess flagella (Shadwick et al., 2009). These organisms are thought to be 

important consumers of bacteria and other microorganisms (Adl & Gupta, 2006). Although 

global inventories carried out thus far suggest that protosteloid amoebae occur in every type of 

terrestrial system (Ndiritu et al., 2009), very little is known about their ecology. The results 

obtained from previous studies (Moore et al., 2000; Spiegel & Stephenson, 2000; Stephenson et 

al., 2004) have provided some evidence that ecosystems located at higher latitudes support fewer 

species and show a decline in species abundance. Because of its location, size, and isolation, 

New Zealand provided an excellent opportunity to investigate these patterns. 
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Figure 2.1. Fruiting bodies of protosteloid amoebae in situ. A cluster of sporocarps of the 

protosteloid amoeba Tychsporium acutostipes fruiting on a leaf. This image was 

taken at a total magnification of 100X. The scale bar is 100 µm. For high quality 

images of all species discussed in this paper, see Spiegel et al. (2007) online.
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New Zealand is the most isolated land mass of its size in the world (Cavender et al., 

2002) and represents a unique collection of ecosystems with highly endemic flora (Fleet, 1986). 

Protosteloid amoebae have been known from New Zealand (Olive & Stoianovitch, 1969), and is 

the location from which the type specimen of Schizoplasmodium cavostelioides was originally 

isolated (Olive, 1967). The primary focus of the present study was to exhaustively sample as 

much of this range as possible in order to characterize the ecological distribution of the 

protosteloid amoebae present.  

Materials and Methods 

During the period of March 2004 to December 2007, three separate collecting trips were 

made to 81 sites on the North Island (113,729 km2), South Island (151,215 km2) and the 

Auckland Islands (625 km2) (Figure 2.2 and Table 2.1). Samples were obtained from Stewart 

Island (1,746 km2) in 2006, but yielded no observations of protosteloid amoebae. Collectively, 

the study sites sampled represent a well-characterized and diverse array of habitats encompassing 

a variety of elevations (extending from 0 m to 1636 m), every major vegetation type found in 

New Zealand, and a rather wide range of latitudes, from 34.44° S to 50.85° S. A total of 247 

samples of aerial litter and 234 samples of ground litter were taken collected from 81 different 

study sites. These samples were placed in small paper bags, air dried, and transported to the 

laboratory for processing. In order to achieve a broad coverage of many different types of dead 

plant material (substrates), sampling efforts did not include systematic replications of substrate 

types or habitats, but multiple samples from many habitats were collected. Ecosystem types 

ranged from beaches and open roadsides to tree fern forests and alpine tundra (see Table 2.1). 



 

17 

 

Figure 2.2. Map of sampling locations. Sample site markers are scaled to represent the mean 

number of protosteloid amoebae fruiting bodies encountered for each line of 

substrate observed from that site. N = species richness observed at each major 

latitudinal range
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Table 2.1. Study site locations and information 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

Tairoa Head Albatross 

Colony (263) 

45°46'30.1000"S, 

170°43'41.4998"E 

67 Grassland 3/2004 218 10 

       

West of Dunback (264) 45°19'13.3000"S, 

170°34'34.2001"E 

130 Grassland 3/2004 306 13 

       

West of Morrisons (265) 45°13'16.1000"S, 

170°25'24.3001"E 

561 Scrub 3/2004 192 11 

       

Boundry Creek Rest Area 

(266) 

44°21'13.5000"S, 

169°10'07.7002"E 

277 Mixed Dry Forest 3/2004 194 7 

       

Blue Pools (267) 44°09'00.8640"S, 

169°16'00.6100"E 

277 Beech 3/2004 160 1 

       

Haast Pass (268) 45°06'00.4380"S, 

169°21'00.2830"E 

716 Beech 3/2004 188 1 

       

South of Haast (269) 44°03'21.1000"S, 

168°42'35.3999"E 

716 Rainforest 3/2004 320 7 

       

Jacksons Head (270) 43°57'52.6000"S, 

168°36'19.4000"E 

1 Podocarp/Beech 3/2004 320 11 

       

Road to Hokitika (271) 42°59'00.0790"S, 

170°40'00.7961"E 

30 Rainforest 3/2004 162 5 

       

Port Elizabeth (272) 42°22'00.5920"S, 

171°14'00.3862"E 

0 Beach 3/2004 156 18 
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Table 2.1. (Cont.) 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

Punakaiki (273) 42°06'00.9560"S, 

171°19'00.7741"E 

0 Beach/Nileau 3/2004 336 9 

       

Temple Basin Trail (274) 42°54'44.1000"S, 

171°33'32.1001"E 

876 Scrub 3/2004 160 7 

       

The Chasin Trail (276) 42°55'09.3000"S, 

171°33'30.4999"E 

842 Beech 3/2004 162 1 

       

U of Canterbury (277) 43°02'09.0000"S, 

171°45'25.9999"E 

561 Grassland 3/2004 168 6 

       

Eastern Beech (278) 43°17'28.8000"S, 

171°55'01.2000"E 

493 Beech 3/2004 158 8 

       

Sharplin Falls (279) 43°37'41.2000"S, 

171°25'04.5998"E 

463 Beech 3/2004 154 8 

       

Peel Forest (280) 43°53'34.7000"S, 

171°15'42.0001"E 

289 Podocarp/Beech 3/2004 443 12 

       

Te Anau (281) 45°26'38.0000"S, 

167°41'03.0998"E 

218 Beech 3/2004 229 3 

       

Mirror Lake (282) 45°01'44.2000"S, 

168°00'46.8000"E 

350 Beech/Wetland 3/2004 239 2 

       

Lake Gunn (283) 44°53'26.4000"S, 

168°05'06.7999"E 

485 Beech 3/2004 164 1 
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Table 2.1. (Cont.) 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

Red Tussock Conservation 

Area (284) 

45°33'38.0000"S, 

168°02'07.4000"E 

480 Native Grassland 3/2004 162 6 

       

Taputaputa Bay (302) 34°26'13.7400"S, 

172°42'48.4200"E 

5 Teatree 5/2005 40 10 

       

Pine Block Road (303) 34°44'57.7800"S, 

173°01'05.8800"E 

70 Pine 5/2005 52 12 

       

Ahipara Gum Lands (305) 35°11'40.6800"S, 

173°08'06.5400"E 

178 Teatree 5/2005 40 9 

       

Herekino Forest Tracks 

(306) 

35°12'35.5200"S, 

173°11'27.2400"E 

154 Teatree 5/2005 40 10 

       

Mangamuka Forest (304) 35°11'24.2400"S, 

173°27'18.7801"E 

379 Broadleaf 5/2005 30 10 

 

 

      

Puketi Forest (307) 35°16'32.6400"S, 

173°41'09.9600"E 

16 Podocarp 5/2005 40 13 

Harrison Scenic Reserve 

(308) 

35°18'37.2600"S, 

174°06'24.7799"E 

79 Forest (Coastal) 5/2005 40 9 

       

Trounson Kauri Park (309) 35°43'13.5000"S, 

173°39'00.1199"E 

234 Podocarp 5/2005 40 1 

       

Mill Bay (310) 36°59'30.7800"S, 

174°36'11.2201"E 

17 Rainforest 5/2005 44 5 
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Table 2.1. (Cont.) 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

Aratoro Scenic Reserve 

(359) 

38°30'14.7420"S, 

175°15'10.8000"E 

129 Podocarp 12/2005 40 7 

       

TongariroNP1 (360) 39°14'16.8540"S, 

175°33'26.5680"E 

1636 Scrub 12/2005 20 1 

       

TongariroNP2 (361) 39°12'08.9820"S, 

175°32'25.8720"E 

1134 Beech 12/2005 40 6 

       

DesertRoad (362) 39°18'59.4180"S, 

175°43'49.7280"E 

1015 Grassland 12/2005 40 2 

       

TongariroNP3 (363) 39°10'10.6140"S, 

175°31'26.5440"E 

930 Flax/Scrub 12/2005 40 1 

       

AraokiGorge (364) 38°40'16.8240"S, 

174°41'40.1028"E 

8 Tree Fern/Podocarp 12/2005 40 14 

       

GorgePulloff (365) 38°53'45.9240"S, 

174°35'56.4360"E 

214 Tree Fern 12/2005 40 11 

       

EgmontNp1 (366) 39°16'45.1560"S, 

174°05'05.9280"E 

1199 Scrub 12/2005 40 1 

       

EgmontNP2 (367) 39°14'20.6880"S, 

174°06'46.1160"E 

941 Podocarp/Broadleaved 12/2005 40 2 

       

EgmontNP3 (368) 39°18'28.4760"S, 

174°05'50.2800"E 

1159 scrub 12/2005 40 1 
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Table 2.1. (Cont.) 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

Wanganui1 (369) 39°49'08.7600"S, 

174°50'22.2360"E 

120 Mixed Broadleaf 12/2005 60 13 

       

Wanganui2 (370) 39°45'54.2160"S, 

175°10'15.1680"E 

24 Beech 12/2005 40 10 

       

Manawata (371) 40°20'22.5600"S, 

175°49'05.3760"E 

76 Broadleaf 12/2005 40 9 

       

Waihini (372) 40°59'46.1760"S, 

175°23'22.8120"E 

166 Podocarp/Broadleaved 12/2005 40 3 

       

Rimutaka (373) 41°20'56.3280"S, 

174°56'15.9000"E 

70 Podocarp/Broadleaved 12/2005 40 6 

       

Titahi (374) 41°05'58.8840"S, 

174°50'06.5760"E 

0 Scrub (Coastal) 12/2005 40 9 

       

QEPark (375) 40°58'19.5600"S, 

174°57'36.5400"E 

0 Scrub (Coastal) 12/2005 40 15 

       

Otaki (376) 40°51'14.2920"S, 

175°14'06.6480"E 

128 Secondary Growth 12/2005 40 11 

       

Mahia (377) 39°04'18.0480"S, 

177°48'39.4920"E 

34 Scrub 12/2005 40 10 

       

Bush (378) 38°52'34.1040"S, 

177°51'20.4480"E 

543 Secondary Growth 12/2005 40 14 
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Table 2.1. (Cont.) 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

Okita (379) 38°39'53.5320"S, 

178°10'49.4040"E 

37 Mixed Broadleaf 12/2005 40 10 

       

TeUruwera1 (380) 38°47'56.6880"S, 

177°07'22.9440"E 

607 Beech/Fern 12/2005 40 8 

       

TeUruwera2 (381) 38°47'02.3280"S, 

177°08'04.0200"E 

609 Scrub 12/2005 40 14 

TeUruwera3 (382) 38°43'43.8240"S, 

177°05'11.0760"E 

653 Beech/Podocarp 12/2005 40 11 

       

TeUruwera4 (383) 38°39'51.3000"S, 

177°02'13.3440"E 

661 Beech 12/2005 40 6 

       

HukaFalls (384) 38°38'57.3720"S, 

176°05'20.6160"E 

580 Broadleaf 12/2005 40 10 

       

LakeTaupo (385) 38°44'41.7840"S, 

176°04'07.5000"E 

367 Grassland 12/2005 40 7 

       

HinaKapu (386) 38°02'14.6400"S, 

176°33'00.0000"E 

350 Podocarp 12/2005 40 9 

       

BayPlenty (387) 37°52'15.2400"S, 

176°42'32.0400"E 

2 Dunes 12/2005 40 4 

       

Hiwy25 (388) 37°18'16.9920"S, 

175°53'29.7600"E 

65 broadleaf 12/2005 40 9 
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Table 2.1. (Cont.) 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

TwinKauri (389) 36°58'44.6520"S, 

175°50'30.9120"E 

117 Tree Fern/Kauri 12/2005 40 10 

       

Maungataururu (390) 36°44'54.7440"S, 

175°32'15.2520"E 

370 Tree Fern/Nikau 12/2005 40 12 

       

SquareKauri (391) 36°59'23.0640"S, 

175°34'19.3080"E 

306 Kauri/Broadleaved 12/2005 40 9 

       

Hihi (392) 37°06'43.5600"S, 

175°38'02.2920"E 

59 Nikau/Broadleaved 12/2005 40 11 

       

AUK06-1 (422) 50°50'20.6412"S, 

165°55'15.2400"E 

9 Forest (Coastal) 3/2006 4 2 

       

AUK06-2 (423) 50°50'20.6412"S, 

165°55'15.2400"E 

9 Forest (Coastal) 3/2006 4 2 

       

AUK06-4 (425) 50°51'11.0412"S, 

165°55'12.9000"E 

324 Forest (Coastal) 3/2006 4 1 

       

AUK06-9 (430) 50°48'58.6188"S, 

166°12'02.5200"E 

20 Forest (Coastal) 3/2006 4 2 

       

AUK06-16 (437) 50°32'43.8612"S, 

166°12'45.7812"E 

11 Forest (Coastal) 3/2006 4 1 

       

AUK06-17 (438) 50°29'34.3788"S, 

166°16'51.9600"E 

35 Scrub (Coastal) 3/2006 4 3 
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Table 2.1. (Cont.) 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

AUK06-19 (440) 50°31'51.4812"S, 

166°18'05.1588"E 

6 Scrub (Coastal) 3/2006 4 1 

       

AUK06-20 (441) 50°31'51.4812"S, 

166°18'05.1588"E 

6 Scrub (Coastal) 3/2006 4 1 

       

Charming Creek (1188) 41°44'24.0000"S, 

171°35'42.0000"E 

3 Forest (Native) 5/2006 24 1 

       

Truman Track (1187) 42°00'38.8800"S, 

171°20'09.6000"E 

0 Scrub (Coastal) 5/2006 20 2 

       

Knight's Bush (1281) 45°54'44.1000"S, 

169°29'42.5004"E 

152 Beech/Broadleaved 5/2007 20 8 

       

Route 6 Nelson (1282) 41°09'47.4984"S, 

173°32'55.3992"E 

84 Scrub 5/2007 20 1 

       

Kowhai Point (1284) 41°42'44.2008"S, 

173°06'46.2996"E 

420 Scrub 5/2007 20 5 

       

Lewis Pass (1286) 42°22'26.4000"S, 

172°23'46.7988"E 

914 Beech 5/2007 16 1 

       

Route 63 (1287) 42°01'52.1004"S, 

172°14'35.8008"E 

479 Beech 5/2007 16 3 

       

Kahurangi (1288) 41°41'07.5984"S, 

172°26'37.1004"E 

259 Beech/Broadleaved 5/2007 16 4 
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Table 2.1. (Cont.) 

Site Latitude/longitude 

Elev. 

(m) Habitat 

Month/year 

collected 

Lines 

plated 

Site 

richness 
       

Pigeon Saddle (1289) 40°49'57.2988"S, 

172°58'08.5008"E 

244 Tree 

Fern/Broadleaved 

5/2007 32 6 

       

Note. Table of study sites. Habitat types are generalizations. No significant correlations between habitat type and abundance were 

found, either generally or by species. At some sites dead vegetation suitable as a substrate was very limited and at others it was highly 

abundant. Thus, the number of lines plated at each site varies from 4 to 443.
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In the laboratory, within 3 months of collection, samples were cut into small pieces, 

wetted with sterile water, and plated in lines on minimal nutrient agar (0.002 g malt extract, 

0.002 g yeast extract, 0.75 g K2HPO4, 15.0 g Difco Bacto Agar, 1.0 L deionized [DI] H2O) as 

described by Spiegel et al. (2004), yielding 6,533 lines of substrate that were examined in 1,175 

plates. Lines of substrate consisted of approximately 2cm x 0.5cm wetted strips of dead plant 

matter gently pressed to the surface of the agar (see Figure 2.3). Daily observations were made 

for a minimum of seven days using bright-field microscopy with the 10X objective lens on a 

Zeiss Axioskop 2 microscope. Species were identified based on sporocarp morphology according 

to Olive (1967, 1970) and Spiegel et al. (2010). Observations of amoeboid and prespore stages 

were carried out to corroborate sporocarp identifications when necessary. This method provides a 

quick way to assess presence/absence of these amoebae since sporocarps are easy to detect and 

morphologically distinct from each other. 

Species observations were recorded as presence or absence for each plated line of 

substrate and this resolution was used for comparisons between sites. Since sites were surveyed 

with varying numbers of lines of substrate, abundance and richness data were scaled by dividing 

by the total number of lines from a specific sample to represent abundance and richness per line 

of substrate observed. Precipitation data were extracted from the New Zealand National Climate 

Database (http://cliflo.niwa.co.nz/) and consisted of absolute precipitation amounts from the 

nearest weather station in the year samples were taken. A sample-based rarefaction curve (Figure 

2.4) was generated using Ecosim 7 (Gotelli & Entsminger, 2009). Since data were not normally 

distributed, the individual effects of latitude, elevation, and precipitation gradients, and 

microhabitat (aerial vs. ground litter) on scaled species richness and abundance were tested with 
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the Kruskal-Wallis test, and R2 values for linear correlations were calculated using the Pearson 

correlation statistic in Minitab® Statistical Software version 16. 
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Figure 2.3. Primary isolation plate for protosteloid amoebae. A primary isolation plate with 8 

lines of substrate arranged in a circle. Each line of substrate is labeled and 

observations of protosteloid amoebae are labeled according to which line they 

occurred on.
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Figure 2.4. Rarefaction curve of species richness and sampling effort. Sampling effort appears 

sufficient to uncover the diversity of protosteloid amoebae. An increase in random 

sub-sampling from 200 to 300 collections only yielded an additional 2 species. 
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Results 

Twenty-nine species of protosteloid amoebae, including the minuscule myxomycete 

Echinostelium bisporum, were recovered in the present study. The sample-based rarefaction 

curve (Figure 2.4) reached a clear asymptote at this species richness. While not traditionally 

grouped together with the now defunct “Protostelids” (Shadwick et al., 2009), the small fruiting 

bodies of E. bisporum display a protosteloid growth form and are commonly encountered using 

the current methods, so it has been included in this study. Species were grouped into abundance 

categories consistent with similar studies (Aguilar et al., 2011; Ndiritu et al., 2009) such that 

species recovered from: >10% of samples = abundant; 5-10% = common; 1-5% = occasional; 

<1% = rare. Seven species were found to be abundant across all study site locations while ten 

were considered commonly occurring (Table 2.2). Protostelium mycophaga was by far the most 

commonly encountered species, accounting for twenty-five percent of all fruiting body 

observations. Eighty out of eighty-one sites were positive for fruiting bodies of protosteloid 

amoebae (99%). The only site that did not yield any observations of protosteloid amoebae, 

located on Stewart Island, was left out of subsequent analyses. 
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Table 2.2. Observed species 

Species name Abbreviation 

Total 

encounters 

Frequency 

per sample Category 

Aerial 

encounters 

Ground 

encounters 
       

Protostelium mycophagaa** Pm 598 2.06 A 398 200 

       

Schizoplasmodiopsis 

pseudoendosporab* 

Sps 323 1.20 A 119 204 

       

Nematostelium gracilea* Ng 239 1.05 A 83 156 

       

Soliformovum irregularisc Si 213 1.14 A 130 83 

       

Schizoplasmodiopsis vulgarea*** Sv 197 0.95 A 40 157 

       

Protostelium nocturnumc*** Pn 182 0.98 A 136 46 

       

Schizoplasmodiopsis amoeboidead Sa 174 1.06 A 92 82 

       

Protostelium arachisporumb Pa 73 0.33 C 43 30 

       

Protostelium pyriformisa Ppyr 57 0.41 C 27 30 

       

Schizoplasmodium cavostelioidesa Sc 51 0.28 C 38 13 

       

Tychosporium acutostipese Ta 49 0.42 C 29 20 

       

Cavostelium apophysatumb Ca 43 0.25 C 15 28 

       

Nematostelium ovatuma No 41 0.31 C 14 27 

       

Protostelium mycophagaa var. little*** lilPm 34 0.25 C 33 1 
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Table 2.2. (Cont.) 

Species name Abbreviation 

Total 

encounters 

Frequency 

per sample Category 

Aerial 

encounters 

Ground 

encounters 
       

Endostelium zonatumf Ez 31 0.19 C 17 14 

       

Echinosteliopsis oligosporag Eo 28 0.20 C 14 14 

       

Soliformovum expulsumc* Se 27 0.30 C 21 6 

       

Echinostelium bisporumd Eb 16 0.16 O 7 9 

       

Protosteliopsis fimicolaa Pf 12 0.12 O 7 5 

       

Microglomus paxillusa Mp 9 0.07 O 1 8 

       

Clastostelium recurvatuma Cr 8 0.09 O 3 5 

       

Protostelium mycophagaa var. repeater Pmrep 7 0.05 O 7 0 

       

Schizoplasmodiopsis micropunctataa Sm 5 0.05 O 5 0 

       

Protostelium okumukumuh Po 5 0.05 O 1 4 

       

Schizoplasmodiopsis reticulataa Sr 4 0.01 R 2 2 

       

Ceratiomyxa hemisphaericaa Ch 2 0.01 R 0 2 

       

Protosporangium articulatuma Partic 1 0.01 R 1 0 

       

Protosporangium bisporuma Pbisp 1 0.01 R 1 0 

       

Schizoplasmodium obovatuma So 1 0.01 R 0 1 
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Note. Total observed species from all sites. A: abundant, C: common, O: occasional, R: rare. 

a Olive and Stoianovich 

b Olive, 

c Spiegel 

d Olive and Whitney 

e Spiegel, Moore, and Feldman 

f Olive, Bennet, and Deasey 

g Reinhardt and Olive 

h Spiegel, Shadwick, and Hemmes 

*P < 0.05, **P < 0.01, ***P < 0.001; All tests: significant difference between aerial and ground litter abundance, Kruskal-Wallis test; 

Superscript numbers refer to naming authorities. 
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The number of samples varied at each site due to local conditions, such as a lack of 

suitable standing plant material, but of the 481 total samples, 299 of them yielded identifiable 

fruiting bodies of protosteloid amoebae (62%). These numbers are consistent with previous 

studies (Aguilar et al., 2011; Ndiritu et al., 2009; Stephensonet al., 1999). While no studies have 

previously examined the protosteloid amoebae of New Zealand, the methods we used for 

collection and observation in the previous surveys were very similar. 

Microhabitat (aerial vs. ground litter) did not have a significant influence on either the 

abundance or species richness of fruiting amoebae as a whole (P=0.888, Kruskal-Wallis; 

P=0.746; Kruskal-Wallis, respectively), but several species displayed a significantly increased 

likelihood of being observed in a specific microhabitat. Of these, Protostelium mycophaga, 

Protostelium nocturnum, Protostelium mycophaga var. little, and Soliformovum expulsum were 

significantly more likely to be found on aerial litter, while Schizoplasmodiopsis 

pseudoendospora, Nematostelium gracile, and Schizoplasmodiopsis vulgare were more likely to 

be found on ground litter (Table 2.2). Microhabitat also made no difference to the significance of 

correlations between broader environmental factors (i.e. latitude, elevation, and annual 

precipitation) and community richness or abundance. Ecosystem type did not have any 

significant effect on richness or abundance, with most species displaying a cosmopolitan 

distribution among the different ecosystems. Species occurring in only one ecosystem type were 

uncommon or rare, thus it could not be determined whether these patterns were significant. 

The most important factors related to protosteloid amoeba richness and abundance were 

elevation, precipitation and latitude (distance from the equator) (Table 2.3). Increases in all three 

factors led to perceived declines in protosteloid amoebae community measures though R2 values 

for linear correlations were weak (Figure 2.5). The most abundant and diverse communities were 
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typically found in drier, more northerly locations close to sea level (See Figure 2.2 and Table 

2.1). 
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Table 2.3. Statistical test values 

Model Test statistic (H) P-value 
   

Abundance × Distance from equator 341.38 <.0005 

Abundance × Elevation 264.68 <.0005 

Abundance × Precipitation 275.23 <.0005 

Richness × Distance from equator 298.86 <.0005 

Richness × Elevation 248.29 <.0005 

Richness × Precipitation 259.39 <.0005 
   

Note. Kruskal-Wallis test statistics and P-values for the influence of environmental factors on 

protosteloid abundance and richness. Model = Response × Factor. Abundance refers to scaled 

abundance per line of substrate. Richness refers to scaled richness per line of substrate. Test 

statistics are corrected for ties. All models showed significant effects of environmental gradients 

on scaled abundance and richness. 
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Figure 2.5. Species encounters along environmental gradients. (A–C): The scaled abundance 

(abundance per line of substrate observed) of protosteloid amoebae (all species). (D–

F): The scaled species richness (richness per line of substrate observed). X-axis 

factors: Gradients of distance from equator (km, A and D), elevation (m above sea 

level, B and E), and annual rainfall (mm, C and F). R squared values for the linear 

regression are given in each panel.
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Discussion 

The main focus of this study was to provide a comprehensive survey of the protosteloid 

amoebae of New Zealand and to investigate the distribution of these species along gradients of 

precipitation, elevation, and latitude. A sample-based rarefaction curve (Figure 2.4 suggests that 

sampling effort was sufficient to recover the bulk of the known and described species richness 

present. Broadly, we were able demonstrate that the abundance and richness of protosteloid 

amoebae in New Zealand were correlated with latitude, elevation, and precipitation (Table 2.3). 

However, ecosystem type did not appear to influence these relationships. Moore et al. (2000) 

initially suggested that latitude may play a role in the presence/absence of protosteloid amoebae 

when only 6 species were recovered from 80 samples in the arctic tundra. Shadwick et al. (2009) 

had results more consistent with the present study, recovering 26 species from 205 samples in 

Great Smoky Mountains National Park, TN. In the current study microhabitat was a significant 

predictor of presence/absence for several species (Table 2.2), but the extent of this effect was far 

less than was reported by Aguilar et al. (2011) in which only 3 out of 18 species recovered from 

100 samples did not display significant differences in presence/absence between microhabitats.  

The sampling method varied somewhat between collecting trips. The first and last 

samples collected (sampling years 2004 and 2007, Table 2.1) were physically separated by 

substrate type (i.e. a separate bag for each species of litter collected), whereas the other samples 

were pooled together (i.e. all aerial litter in one bag and all ground litter in another bag). This 

change was made for convenience, since many study sites had limited amounts of litter present 

and it was difficult to find substrate species that yielded both aerial and ground litter of the same 

species in the same general area. Cursory analysis of the two sampling methods suggested that 

species observations were not affected by initial pooling of samples and thus sampling methods 

were treated as equal for all subsequent analyses. Briefly, data from the 2004 and 2007 samples 



 

40 

were artificially pooled within sites and randomly resampled to resemble what physically 

occurred in pooled sample collections. These resampled data were not significantly different 

from a random selection of the original unpooled data (P=0.420, Kruskal-Wallis test). The 

sampling protocol did not allow for further rigorous testing of this assumption, and this is beyond 

the scope of the present study. Additionally, the number of plated lines of substrate per study 

location varied from 4 to 443 as shown in Table 2.1. For most sites (68%), at least forty lines of 

substrate were plated for observation.  

These heavily observed sites may display a bias toward an increase in the observations of 

rare species when compared with sampling locations such as the Auckland Island sites, in which 

only four lines of substrate were observed. Of the five rare species identified, two (Ceratiomyxa 

hemisphaerica and Protosporangium bisporum) were only found at the sample location from 

which 443 lines were plated (Peel Forest) and none were found at any locations from which less 

than 32 lines were plated. These rare species account for only nine distinct observations, and 

excluding them from further analyses had no impact on the significance of results, so they have 

been left in. 

The effectiveness of various levels of observational effort for the detection of protosteloid 

amoebae was quantified by Aguilar et al. (2011) and it was found that four lines of substrate per 

sample was enough to detect 80% of species present, while eight lines per sample was able to 

yield 90% of the species present. Substantial increases in observational effort yielded only one or 

two additional rare species. In the present study, site richness was not significantly correlated 

with the number of plated lines per study location (R2=0.033; P=0.103, Kruskal-Wallis test). 

Interestingly, six of the nine observations of rare species occurred at sites in which forty lines of 

substrate were plated, further suggesting that sampling efforts greater than that did little to 
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increase the effectiveness of ecological surveys for rare species of protosteloid amoebae. It is 

apparent that comparisons between abundant, common, and occasional species may be safely 

made using the current study’s sampling and observation protocol. 

This study took place over several years and samples were collected during different 

seasons. Though there is little evidence for true seasonality in protosteloid amoeba 

presence/absence (Spiegel, unpublished data) this must be considered when drawing conclusions 

from the present study. Moore and Spiegel (2000) showed that protosteloid amoebae spore 

dispersal was dramatically reduced in winter using artificial substrates, but on native in situ 

substrates, dormant stages of these amoebae persist throughout the year. Protosteloid amoebae 

are very tolerant of adverse conditions (drying out, etc.) and have been recovered from dried 

substrate at least as long as 12 years after collection (Zahn, unpublished data) so it is likely that 

seasonal changes in the in situ activity of the amoebae are not reflected in the current sampling 

protocol, which inherently encourages encysted or dormant amoebae to reactivate and fruit. 

Further, in the present study, North Island sites were sampled primarily in the early austral fall 

and South Island sites were sampled primarily in the late austral spring. Corresponding seasons 

in temperate North America are excellent times to sample for protosteloid amoebae. Still, 

seasonal changes to substrate quality, type, and abundance are likely to have an impact on the 

amoebae present and may affect our results.  
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CHAPTER 3 

 

PROTOSTELOID AMOEBAE AS A FLAGSHIP GROUP FOR INVESTIGATING THE 

GLOBAL DISTRIBUTION OF NAKED AMOEBAE 

Abstract 

Protosteloid amoebae offer an excellent "flagship" group for investigating biogeography 

and dispersal within the naked amoebae. The historically isolated islands of Hawaii were 

extensively sampled over a period of eight years (the most intensive survey of protosteloid 

amoebae yet reported) but did not show any evidence of classical island biogeographical 

patterns. Here we present results from this survey and previously unreported global distributions 

to suggest that protosteloid amoebae do not have any extant barriers to dispersal. Their global 

occurrences are briefly discussed within the context of competing models of microbial 

distribution. 

Body 

The ongoing debate over the global distribution of microbes features two main 

paradigms: “everything is everywhere” (EiE), referring to cosmopolitan distributions of 

microbes selected only by local environmental variables (Fenchel and Finlay, 2004) and 

“moderate endemism” (ME), with the contrasting claim that many microbial species display 

patchy distributions even within suitable environments (Foissner, 2006). Much effort has been 

devoted to testing these models and it seems clear that some protist species do appear to have 

limited geographic ranges (Foissner and Hawksworth, 2009) though it remains unclear as to 

which factors (species age, availability of dispersal vectors, adaptations for dispersal, or 

availability of local habitats) are lacking in suitability to facilitate EiE distributions for these 

species. The use of “flagship” species that exhibit “conspicuous size, morphology, and/or 

colour” has been proposed as an effective way to test the EiE model in specific cases such as 
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testate amoebae (Foissner, 2006), but little attention has been given to distributions of non-testate 

(naked) amoebae, largely due to the difficulty associated with their accurate identification. 

Protosteloid amoebae, formerly known as protostelids, are a paraphyletic assemblage of 

non-testate amoebae scattered widely across the Amoebozoa supergroup and are characterized 

by a shared ability to form distinctive fruiting bodies consisting of one or a few spores on an 

acellular stalk (Lora L. Shadwick et al., 2009). They fit the qualifications of a “flagship” group 

since the fruiting bodies are conspicuous (from 10 to >100 µm), morphologically distinctive 

(Spiegel et al., 2007), and have varied microhabitat requirements (Aguilar et al., 2011). 

Additionally, nearly one third of the 31 described morphospecies exhibit ballistosporous 

dispersal and the most common species, Protostelium mycophaga, is known to readily and 

successfully disperse via airborne spores (Tesmer et al., 2005) in spite of claims by Foissner 

(2006) that adaptations for air dispersal were unknown in protists. Here, we present results from 

the most intensive local survey of protosteloid amoebae within the context of previously 

unreported global distributions (see the Appendix to this chapter) to suggest that no distributional 

barriers currently exist within this morphological grouping of non-testate amoebae.  

Selected for their unique geologic isolation, the Hawaiian Islands were repeatedly 

sampled for protosteloid amoebae, over a period of 8 years, in order to look for classical patterns 

of island biogeography such as limited richness, endemism, and radiation. Sampling and 

observation methods were comparable to methods described in Zahn et al. (2014) but, briefly, 

they consisted of plating out collections of dead plant material from different microhabitats at 

each site onto weak nutrient agar dishes and microscopically observing fruiting bodies after 3-7 

days of incubation. Basic site information collected included elevation, mean annual rainfall, and 

dominant vegetation. 
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When compared to other global observations, Hawaii showed no expected signs of island 

biogeographical patterns, emerging instead as the richest region yet studied. The six observed 

islands contained every described species with generally above-average abundance, and there 

was no correlation between island size and species richness (Figure 3.1). Several undescribed 

species were observed, but these have been recorded either previously or subsequently from 

other regions (data not shown). Sites dominated by alien (recently introduced) vegetation had 

greater richness (ANOVA, P<0.001) and relative abundance (ANOVA, P=0.032) of protosteloid 

amoebae than those dominated by native vegetation. This observation is consistent with the ME 

model prediction that human influences can be expected to play a key role in microbial 

distributions and it cannot be ruled out that protosteloid amoebae have been recently introduced 

to Hawaii, possibly transported with human-introduced vegetation. 
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Figure 3.1. Map of study sites within the Hawaiian Islands. Site locations colored by mean 

species richness per line of substrate observed at the site.
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The species assemblage in Hawaii was remarkably similar to the majority of regions 

surveyed globally (Table 3.1). It appears that the relative abundance classes (see Ndiritu et al., 

2009) of morphological species remain nearly the same regardless of geographic region, but site-

specific microhabitat and environmental variables have a significant influence on species 

compositions in Hawaii and around the globe (Zahn et al., 2014; Aguilar et al., 2011; Ndiritu et 

al., 2009; John D. L. Shadwick et al., 2009). The strongest predictor of regional richness was 

sampling effort (Univariate linear regression on box-cox transformed data; r2=0.528, P<0.0005) 

which seems to imply that regions with low observed richness simply need to be more 

intensively studied. It is obvious however, that similar sampling effort can yield very dissimilar 

richness from different regions (eg. Central United States vs. Patagonia, Table 3.1). 
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Table 3.1. Global protosteloid amoeba richness and species distributions 

Global region 

Sample 
Protostelium 

mycophaga 

Schizoplasmodiopsis 

pseudoendospora 

Schizoplasmodiop

sis amoeboidea 

Soliformovum 

irregularis Effort Richness 
       

Hawaii 11658 31 0.216 0.150 0.088 0.084 

New Zealand 6251 27 0.176 0.065 0.046 0.064 

Carribean 1908 24 0.496 0.339 0.240 0.151 

Central USA 3387 27 0.422 0.103 0.059 0.164 

Eastern Africa 2128 23 0.599 0.174 0.184 0.135 

Kazakstan/Russia 468 26 0.114 0.195 0.059 0.131 

Australia 1140 24 0.242 0.068 0.068 0.059 

Northern Thailand 264 20 0.353 0.108 0.037 0.167 

Western USA 920 21 0.255 0.119 0.197 0.110 

Ukraine 204 18 0.424 0.068 0.136 0.295 

NE Canada 260 16 0.578 0.029 0.025 0.211 

China/Mongolia 1314 18 0.113 0.245 0.491 0.005 

Ascension Island 200 14   0.029  

Northern Africa 120 13 0.171 0.198 0.028 0.036 

Oman 344 12 0.071 0.136 0.087 0.016 

Patagonia 4086 13 0.064 0.045 0.012 0.023 

Bermuda 64 10 0.396 0.042 0.021  

Southern Mexico 428 10 0.213 0.238 0.038 0.080 

France 64 7 0.056 0.250   

Germany 119 7 0.295  0.045 0.152 

U.K./Norway 122 7 0.282  0.050 0.075 

Antarctica 264 1     

Total 35713 31     
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Table 3.1. (Cont.) 

Global region 

Sample 
Nematostelium 

gracile 

Schizoplasmodiopsis 

vulgare 

Cavostelium 

apophysatum 

Echinostelium 

bisporum Effort Richness 
       

Hawaii 11658 31 0.089 0.027 0.051 0.016 

New Zealand 6251 27 0.052 0.044 0.011 0.005 

Carribean 1908 24 0.336 0.026 0.221 0.081 

Central USA 3387 27 0.050 0.045 0.016 0.009 

Eastern Africa 2128 23 0.081 0.009 0.040 0.141 

Kazakstan/Russia 468 26 0.051 0.010 0.294 0.129 

Australia 1140 24 0.038 0.021 0.023 0.013 

Northern Thailand 264 20 0.105 0.005 0.039 0.017 

Western USA 920 21 0.023 0.044 0.122 0.057 

Ukraine 204 18 0.076 0.083  0.068 

NE Canada 260 16 0.010 0.049   

China/Mongolia 1314 18 0.077 0.028 0.094 0.033 

Ascension Island 200 14  0.066   

Northern Africa 120 13 0.036 0.036 0.083 0.143 

Oman 344 12 0.136 0.011 0.016 0.005 

Patagonia 4086 13 0.034 0.078 0.002  

Bermuda 64 10 0.208    

Southern Mexico 428 10 0.076 0.312   

France 64 7   0.028 0.028 

Germany 119 7 0.009 0.091   

U.K./Norway 122 7 0.000 0.052   

Antarctica 264 1  0.521   

Total 35713 31     
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Table 3.1. (Cont.) 

Global region 

Sample 
Echinosteliopsis 

oligospora 

Protostelium 

arachisporum 

Tychosporium 

acutostipes 

Endostelium 

zonatum 

Protostelium 

nocturnum Effort Richness 
        

Hawaii 11658 31 0.036 0.048 0.015 0.024 0.031 

New Zealand 6251 27 0.009 0.014 0.014 0.004 0.047 

Carribean 1908 24 0.103 0.190 0.004 0.143 0.086 

Central USA 3387 27 0.044  0.033 0.029 0.026 

Eastern Africa 2128 23 0.081 0.027 0.029 0.076 0.030 

Kazakstan/Russia 468 26 0.121 0.024 0.161 0.007 0.068 

Australia 1140 24 0.013 0.024 0.005 0.018 0.022 

Northern 

Thailand 

264 20 0.191 0.069 0.005 0.034 0.074 

Western USA 920 21 0.021   0.037 0.021 

Ukraine 204 18 0.061 0.015 0.159 0.015 0.038 

NE Canada 260 16 0.054 0.025 0.098 0.010 0.020 

China/Mongolia 1314 18  0.059 0.012 0.003 0.008 

Ascension Island 200 14  0.015 0.022  0.228 

Northern Africa 120 13    0.036 0.036 

Oman 344 12  0.005    

Patagonia 4086 13  0.002 0.004  0.002 

Bermuda 64 10 0.104   0.042 0.021 

Southern Mexico 428 10 0.010    0.020 

France 64 7   0.083 0.028 0.000 

Germany 119 7   0.009 0.000 0.009 

U.K./Norway 122 7   0.038   

Antarctica 264 1      

Total 35713 31      
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Table 3.1. (Cont.) 

Global region 

Sample 
Nematostelium 

ovatum 

Schizoplasmodium 

cavostelioides 

Protostelium 

pyriformis 

Soliformovum 

expulsum 

Ceratiomyxella 

tahitiensis Effort Richness 
        

Hawaii 11658 31 0.037 0.024 0.022 0.036 0.002 

New Zealand 6251 27 0.007 0.010 0.018 0.009  

Carribean 1908 24 0.070 0.013 0.035 0.051  

Central USA 3387 27 0.019 0.057 0.015 0.019  

Eastern Africa 2128 23 0.019 0.016 0.015 0.051  

Kazakstan/Russia 468 26 0.030  0.025 0.004 0.120 

Australia 1140 24 0.039 0.009 0.040 0.012 0.000 

Northern 

Thailand 

264 20 0.039 0.108 0.005 0.010 0.002 

Western USA 920 21 0.011 0.011 0.002  0.025 

Ukraine 204 18 0.015 0.008 0.008 0.023  

NE Canada 260 16 0.005 0.025 0.029 0.005  

China/Mongolia 1314 18 0.014 0.003  0.002  

Ascension Island 200 14 0.015  0.044  0.044 

Northern Africa 120 13 0.028  0.028   

Oman 344 12 0.071 0.005  0.011  

Patagonia 4086 13   0.004   

Bermuda 64 10 0.063 0.042 0.021 0.000  

Southern Mexico 428 10 0.000 0.000 0.010   

France 64 7 0.000 0.000 0.000  0.083 

Germany 119 7 0.000 0.000 0.000   

U.K./Norway 122 7 0.029   0.013  

Antarctica 264 1      

Total 35713 31      
        

  



 

 

5
5
 

Table 3.1. (Cont.) 

Global region 

Sample 
Protosporangium 

articulatum 

Microglomus 

paxillus 

Clastostelium 

recurvatum 

Schizoplasmodium 

seychellarum 

Protostelium 

okumukumu Effort Richness 
        

Hawaii 11658 31 0.010 0.014 0.007 0.001 0.007 

New Zealand 6251 27 0.000 0.004 0.002 0.002 0.000 

Carribean 1908 24  0.011 0.029 0.004 0.028 

Central USA 3387 27 0.005 0.001 0.001  0.000 

Eastern Africa 2128 23 0.013 0.007 0.008   

Kazakstan/Russi

a 

468 26 0.034   0.026 0.050 

Australia 1140 24 0.015 0.000 0.003 0.000 0.003 

Northern 

Thailand 

264 20  0.010 0.000 0.034 0.000 

Western USA 920 21 0.045  0.007   

Ukraine 204 18 0.044 0.008    

NE Canada 260 16      

China/Mongolia 1314 18 0.008     

Ascension Island 200 14  0.029 0.022 0.088  

Northern Africa 120 13  0.028    

Oman 344 12  0.000 0.000 0.000 0.000 

Patagonia 4086 13 0.000     

Bermuda 64 10      

Southern Mexico 428 10 0.002     

France 64 7      

Germany 119 7      

U.K./Norway 122 7      

Antarctica 264 1      

Total 35713 31      
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Table 3.1. (Cont.) 

Global region 

Sample Protosporangiu

m bisporum 

Protosporangium 

conicum 

Ceratiomyxa 

hemisphaerica 

Endostelium 

amerosporum 
Effort Richness 

       

Hawaii 11658 31 0.004 0.000 0.001 0.004 

New Zealand 6251 27 0.000  0.001  

Carribean 1908 24 0.001   0.006 

Central USA 3387 27 0.006 0.001 0.001 0.001 

Eastern Africa 2128 23 0.004 0.001   

Kazakstan/Russia 468 26 0.003 0.009 0.180  

Australia 1140 24 0.001 0.004 0.000 0.001 

Northern 

Thailand 

264 20 0.000  0.000 0.000 

Western USA 920 21  0.008  0.018 

Ukraine 204 18     

NE Canada 260 16   0.010  

China/Mongolia 1314 18 0.005 0.002   

Ascension Island 200 14   0.066  

Northern Africa 120 13     

Oman 344 12 0.000  0.000 0.000 

Patagonia 4086 13     

Bermuda 64 10     

Southern Mexico 428 10     

France 64 7     

Germany 119 7     

U.K./Norway 122 7     

Antarctica 264 1     

Total 35713 31     
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Table 3.1. (Cont.) 

Global region 

Sample 
Protosporangium 

fragile 

Schizoplasmodiopsis 

micropunctata 

Schizoplasmodiopsis 

reticulata 

Schizoplasmodium 

obovatum Effort Richness 
       

Hawaii 11658 31 0.002 0.001 0.002 0.000 

New Zealand 6251 27  0.001 0.001 0.001 

Carribean 1908 24    0.001 

Central USA 3387 27 0.002 0.004 0.002  

Eastern Africa 2128 23 0.001    

Kazakstan/Russia 468 26 0.002  0.082 0.031 

Australia 1140 24 0.001 0.000 0.000 0.000 

Northern 

Thailand 

264 20  0.000 0.000 0.000 

Western USA 920 21 0.012 0.011   

Ukraine 204 18     

NE Canada 260 16     

China/Mongolia 1314 18     

Ascension Island 200 14   0.015 0.022 

Northern Africa 120 13     

Oman 344 12  0.000 0.000 0.000 

Patagonia 4086 13  0.002   

Bermuda 64 10     

Southern Mexico 428 10     

France 64 7     

Germany 119 7     

U.K./Norway 122 7     

Antarctica 264 1     

Total 35713 31     
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Note. Table of relative species abundances for each observed global region (proportion of observed lines on which each species was 

seen at least once). Sampling effort refers to the number of observed lines of substrate from that region. Missing values indicate 

absence of that species in a given region.  
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Since so little is known about the detailed ecological requirements of most microbes, the 

variables that constitute a suitable habitat are best not assumed. In fact, it is probable that a large 

portion of the factors that shape microbial diversity occur at scales that have not yet been 

addressed (Vos et al., 2013). Fruiting amoebae have been extant for 1-1.5 billion years (Eme et 

al., 2014), have adaptations (cysts and spores) that facilitate dispersal, and are likely capable of 

exploiting anthropogenic vectors. Thus, it cannot be ruled out that environmental factors and the 

availability of suitable local microhabitat are the main drivers of regional differences in 

protosteloid richness as opposed to dispersal barriers. Testing this hypothesis is currently 

impossible since it would require extensive knowledge of species-specific microhabitat 

requirements, including biotic and abiotic factors, at scales for which there is currently a paucity 

of data. It would be theoretically possible, however, to test hypotheses regarding the importance 

of anthropogenic vectors for dispersal of this group. 

The results from global distributions and this intensive survey of Hawaii make it clear 

that, even with flagship species, increased sampling effort may alter our previous assumptions of 

microbial distributions. The protosteloid amoebae are a useful system for testing hypotheses 

regarding the biogeography of non-testate amoebae, but it must be remembered that these 

findings cannot be carelessly applied to all non-testate amoebae since the traits that define this 

group also lend themselves to environmental resilience (Aguilar and Lado, 2012) and widespread 

dispersal. Genetic data generated thus far seem to agree with this implication. Preliminary data 

from one species, Protosteium mycophaga, has not yielded any geographic patterns in genetic 

haplotypes (Shadwick, JD and Spiegel FW, unpublished). With this in mind, future research 

should be directed toward investigating the importance of the various factors that might explain 
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the universal distributions of these species (i.e. anthropogenic vectors, spore viability, and air 

dispersal). 
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Appendix: Species Distribution Maps 

Distribution maps for each species of described protosteloid amoeba are presented below. Dots indicate the presence of protosteloid 

amoeba in a given location. 
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CHAPTER 4 

 

THE EFFECTS OF AMOEBOID PREDATORS ON CARBON AND NITROGEN 

DYNAMICS DEPEND ON TEMPERATURE AND SOIL STRUCTURE INTERACTIONS 

Abstract 

Little is known about the role of protozoan predators in regulating soil carbon and 

nitrogen cycling and, in particular, how these organisms interact with physical and chemical 

factors to influence a soil community’s responses to increased temperature. Using microcosms of 

simplified bacterial communities, we investigated the net and interactive effects of amoebal 

predation, soil aggregate structure, agricultural management, and temperature on carbon (C) and 

nitrogen (N) dynamics. Amoebal predation significantly increased C and N mineralization in all 

treatments and the magnitude of this effect was significantly influenced by management 

practices, aggregate structure and temperature. Our findings further confirm the importance of 

protozoan predation to nutrient dynamics and highlight the importance of further study of these 

interactions in more natural systems. 

Body 

Soils cover most of the Earth’s terrestrial surface and have an indispensable function in 

carbon (C) and nutrient cycling. A key component of soils is the assemblage of organisms 

present, members of which are responsible for carrying out many small scale processes that 

underlie important biogeochemical functions (Urich et al., 2008).  Protozoan predation on 

bacteria has been shown to be an important factor affecting soil nutrient turnover rates (Coleman 

et al., 1977; Frey, et al., 1985; Stout, 1980), but the effect of physical and environmental factors 

on this relationship is poorly understood. This experiment examined the interactive influences of 

soil physical structure, tillage practices, and warming temperatures on the role that bacterial 
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predators play in respiration, N-mineralization, and respiratory Q10 using one of the most 

abundant groups of bacterial predators in the soil (Ekelund and Rønn, 1994), the amoebae. 

Two well-characterized adjacent allophanic Andisols (Table 4.1) were selected from 

experimental fields in Tsukuba, Japan (36.024045° N, 140.111558° E) with a mean annual air 

temperature of 13.7 °C and rainfall of 1300 mm yr-1. One soil received annual tilling (till) and the 

other received no tilling, but an addition of green manure each year (no-till). More site and soil 

characteristics have been described elsewhere (Wagai et al., 2013). Each soil was sieved on site 

to retain aggregates between 4mm and 8mm and then air dried. Plant detritus was manually 

removed and half of the no-till aggregates were finely crushed by motor and pestle. The three 

soil treatments (Till [T], Intact no-till [NT], Crushed no-till [NTC]) (Figure 4.1) were then 

sterilized using ≥36 kGy of gamma radiation. Simple bacterial communities for re-inoculation 

were obtained by culturing Escherichia coli (ATCC #47076) and Klebsiella pneumoniae (ATCC 

#13882) on weak malt-yeast agar (Shadwick et al., 2009), which were then centrifugally washed 

(10,000 RCF for 10 minutes) three times in Page’s Amoeba Saline (PAS) (Page, 1988). These 

strains were previously shown in a pilot study to grow effectively in both soils and at both 

temperatures through observation of respiration. Amoeboid predators were obtained by culturing 

Dictyostelium discoideum (strain V12, NBRP, www.nbrp.jp), Acanthamoeba polyphaga (ATCC 

#50372 – originally isolated from Japan) and Endostelium zonatum (cultured from the no-till soil 

in situ; identified morphologically using Spiegel et al., (2007); axenized from spores onto heat-

killed E. coli) on weak malt-yeast agar with the same bacterial inoculum E. coli strain (ATCC 

#47076) as a food source. D. discoideum and A. polyphaga were originally obtained as axenic 

cultures and thus did not pose a risk of unwanted bacterial contamination, however, the culture 

of E. zonatum was obtained from the local soil. It is difficult to remove all concomitant bacteria 



 

95 

from natural amoeba isolates and though no bacterial endosymbionts are known from 

Endostelium it is theoretically possible that some contaminants were not removed during 

axenization. No bacterial growth was observed near axenized Endostelium isolates prior to 

culture with E. coli and, barring any undetected contamination, each microcosm treatment 

received an equivalent inoculum of only the two desired species of bacteria. Cultured amoebae 

were centrifugally washed (at 500 RCF for 10 minutes) three times in PAS to remove as many E. 

coli cells as possible and all resultant cells in suspension were quantified visually using a 

hemocytometer. At the conclusion of incubations cultures of soil suspensions were evaluated by 

bacterial colony morphology on soil agar and only K. pneumonia and E. coli were observed. 

The experiment was factorially designed to interactively investigate temperature, soil 

type, and predation, such that there were 5 replicate microcosms for each combination of factor 

levels, and 3 replicates of sterile and unsterilized (natural soil community) controls for each 

treatment. For each experimental unit, 3g of each sterilized soil was carefully mixed with 12g of 

fully-combusted sand inside 50 mL septum-sealed microcosm jars under aseptic conditions. 

Bacterial inoculum (to equal 2.0 x 107 mixed cells ∙ g-1 dry soil) was added to all jars except 

natural community and sterile controls, which received equivalent amounts of sterile PAS, and 

all jars were incubated in the dark at 15°C for four days to allow bacteria to colonize the 

substrate (Altenburger et al., 2010). At the end of this initial incubation, soils were brought to 

60% water holding capacity using either live amoebal inoculum (to equal 2.9 x 105 cells g-1 dry 

soil) or an equivalent amount of autoclaved amoebal inoculum. Initial CO2 readings were 

immediately made using a Li-Cor 7000 Infrared Gas Analyzer (Li-Cor, Lincoln, Nebraska, 

USA). Half of the jars were then moved to incubate in the dark at 25°C. Subsequent headspace 

gas measurements were made at 2- or 3-day intervals for 24 days.  
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Table 4.1. Soil characteristics 

Soil (0-5cm) %C %N C:N pH 
     

Till 5.20 0.42 12.40 6.16 

No-till 14.20 0.99 14.30 6.10 
     

Note. Total C and N content, C to N ratio, and pH of each soil. Soils were sampled in May 2013 

from long-term experimental plots in the experimental agricultural field at the National Institute 

for Agro-Environmental Science, Ibaraki, Japan. The no-till plot has been under no-till 

management for 28 years, including annual addition of green manure at roughly 7 ton C ha-1. The 

till plot has been under conventional tillage practice. 
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Figure 4.1. SEM of Aggregate surfaces. Scanning electron micrographs of the aggregate 

surfaces of both soils. A=No-till soil at 500X magnification; B=No-till at 1200X; 

C=Till soil at 500X; D=Till at 1200X.
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The presence of amoebae significantly increased the amount of cumulative C respired in 

all treatments (Figure 4.2) (P≤0.01; General linear model ANOVA). These results are consistent 

with others’ (Clarholm, 1981; Frey et al., 2001; Murase et al., 2006; Rønn et al., 2012) and offer 

further support for the applicability of the “microbial loop” concept to nutrient mineralization in 

soil systems (Adl and Gupta, 2006). This increase in respiration was interactive with 

management practice, temperature, and soil structure (P=0.023; Figure 4.3). At the higher 

temperature, an effect of aggregate structure became apparent, with predation contributing to a 

greater increase in respiration in crushed soil than in intact aggregates (P<0.0005; General linear 

model ANOVA). This suggests that the efficiency of amoebal predation is influenced by an 

interaction between temperature and soil physical structure, and implies that the distribution of 

habitable pore space may be limiting to predators (eg. Griffiths and Young, 1994; Rutherford and 

Juma, 1992).  

The influence of amoebal predators on respiratory Q10 was inconsistent between two soil 

types in artificial communities (Figure 4.4). All three natural community treatments, however, 

showed a consistent Q10 of around 2, the value most commonly used as a constant in ecosystem 

models (Chen and Tian, 2005), illustrating a potential danger of extrapolating inferences from 

artificial communities to complex natural systems.   
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Figure 4.2. Cumulative respiration throughout incubations. Cumulative respiration (µg CO2-C ∙ 

g dry soil-1) for each treatment group (sterile controls not included), with soil 

treatments separated into three main panels: A=Intact no-till soil, B=Crushed no-till 

soil, C=Intact till soil; Temperature treatments as sub-panels: 1=15°C, 2=25°C; 

Community inoculum treatments: A (square symbols)=artificial community + 

predators (amoebae), B (diamond symbols)=artificial community with no predators 

(bacteria only), N (triangle symbols)=natural community controls. Error bars denote 

95% confidence intervals for the mean. Note y-axis scale in panel C. 
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Figure 4.3. Proportion of respiration attributable to predation. The proportionate increase in 

respiration due to the introduction of predators (the difference between the two 

predator treatments divided by the maximum respiration at each sample period) for 

each soil (circle=intact no-till aggregates, triangle=crushed no-till aggregates, 

square=till aggregates) and temperature (panel A=15°C, panel B=25°C). The 

proportion of respiration attributable to predation was higher in no-till soils than 

tilled soil and was influenced by crushing, but only at the higher temperature. Error 

bars represent propagated 95% confidence intervals about the mean of cumulative 

respiration.
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Figure 4.4. Temperature coefficient (Q10) of treatments. The respiration Q10 for each treatment 

group. NT=Intact no-till soil, NTC=Crushed no-till soil, T=Intact till soil; 

A=artificial community + predators (amoebae), B=artificial community with no 

predators (bacteria only), N=natural soil community. Error bars represent propagated 

95% confidence intervals for the mean.
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Net nitrogen transformations displayed a similar discrepancy between natural and 

artificial communities. After incubation, both simplified communities showed a net loss of NO3-

N (this was expected due to the absence of any nitrifying taxa) while the natural controls showed 

significant gains, except for in tilled soils. Natural controls showed a substantial net decrease in 

NH4-N while both simplified communities displayed a net increase. In artificial communities, the 

presence of predators resulted in significantly higher net ammonification of N (P<0.0005, One-

way ANOVA). These results are consistent with previous work (Frey et al., 1985; Weekers et al., 

1993; Woods et al., 1982) which demonstrated the ability of amoebae to stimulate N 

mineralization by stimulating the turnover of bacterial biomass. Our study further showed that 

the magnitude of this effect depends on soil structure and temperature. The disaggregation effect 

on predation-induced mineralization in the no-till soils was greater under the warmer condition 

for both C (Figure 4.3) and N mineralization (Figure 4.5), suggesting the coupling of C and N 

mineralization. 
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Figure 4.5. Net nitrification and ammonification. The net change (µg N ∙ g dry soil-1) in NO3 and 

NH4 for each treatment after incubation. NT=Intact no-till soil, NTC=Crushed no-till 

soil, T=Intact till soil; A=artificial community + predators (amoebae), B=artificial 

community with no predators (bacteria only), N=natural soil community; 

Temperature in °C.
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When studying complex systems such as soil, a trade-off exists between the ability to 

control factors and the applicability of results to real world situations. This discrepancy was 

apparent in the Q10 values of the current study, but the ability to precisely control climate and 

community variables allowed us to detect an interaction between temperature, soil structure, and 

the effect of predator-prey interactions on C and N mineralization. Ours and other studies 

(Anderson, 2012; Wilkinson, 2008) highlight the need to obtain and incorporate these 

community-structure data into models of nutrient cycling, but care should be given to the 

environmental factors such as soil structure and temperature that influence species interactions. 

The microcosm methods presented here (and within the referenced literature) provide a useful 

system for mechanistically investigating the factors responsible for changes in C and N cycling 

dynamics. Further work should focus on testing the interactions between soil structure, 

temperature, and predation with more complex, natural community assemblages. Incorporating 

similar microcosm methods with high-throughput sequencing would bring a deeper 

understanding of the ways in which protist predators interact with environmental parameters to 

influence complex and uncultured bacterial communities. 
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CHAPTER 5 

 

TOP-DOWN CONTROL OF SOIL BACTERIAL COMMUNITIES BY 

AMOEBAL PREDATION IS INFLUENCED BY TEMPERATURE 

Abstract 

The interactive roles of protist predation and increasing temperature in shaping bacterial 

communities and soil respiration were investigated using a combined microcosm and high-

throughput sequencing approach. Protist predators were successfully filtered from soil 

suspensions and sterile soils were re-inoculated with and without amoeboid predators. 

Microcosms were incubated at 15°C and 20°C for 30 days and community composition was 

determined both before and after incubation by the sequencing of 16S SSU rDNA amplicons. 

Cumulative respiration was also observed. Soils containing amoebae had significantly higher 

respiration and significantly altered bacterial communities. The effect of predation on bacterial 

taxa was dependent on temperature. Efforts to model the effects of climate change on bacterial 

communities should not overlook the protist components of those communities. 

Introduction and Background 

Understanding the local processes that govern global patterns in carbon (C) cycling is a 

central goal in biogeochemistry. Beneath our feet, three fourths of the earth's terrestrial C 

(Whitman, 1998) is tied up in a dynamic web of microbial interactions as part of complex 

ecosystems called soils. Soils play a critical role in the regulation of the global carbon budget 

and predicting the fate of this carbon in a warming climate has become a major objective of 

recent research efforts. 

The immense complexity of soil communities (Bailly et al., 2007) and extreme difficulty 

of obtaining unequivocal data from field studies has historically encouraged the use of 

biogeochemical models that treat soil ecosystem processes as a "black box," with relatively little 
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attention paid to community or organism level dynamics (Kennedy and Smith, 1995). More 

recently, efforts have been made to escape from this black box approach and mechanistically 

investigate microbe-mediated processes in relation to the members present in the community. 

Working to understand the interactions of these individuals is helping to shine a light into the 

black box of soil systems and illuminate some of the fundamental processes occurring there.  

  One of the most important processes occurring in soils is the C cycle. Soil organic C is 

the largest reservoir of C in the so-called “fast C cycle” on earth (Ciais et al., 2014) and soils are 

the ultimate destination of the vast majority of photosynthetically-fixed C in terrestrial 

ecosystems (Rodriguez-Murillo 2001). Eventually, this fixed C (organic matter) is decomposed 

by soil biota (mainly bacteria and fungi) and returned to the atmosphere as CO2 (a greenhouse 

gas) but decomposition rates are controlled by a variety of factors including microbial activity 

and climate (Trumbore, 1997). As global climate change has become a pressing reality, there has 

been much concern over the fate of soil C under warming conditions. It has been established that 

any increase in temperature leads to exponentially greater rates of CO2 losses from soil to the 

atmosphere (Fang and Moncrieff, 2001) and there is much debate over whether soils may enter a 

positive feedback loop and become a net source of greenhouse gasses globally (Kirschbaum, 

1995; Zhou, et al., 2009) leading to strengthened global warming scenarios (Davidson, et al., 

2000). A comparison among global C cycle models revealed a severe discrepancy in terms of 

future warming effects on soil C decomposition rates (Friedlingstein et al., 2006), suggesting a 

strong need to better understand the decomposition process, its temperature sensitivity, and the 

factors that influence decomposer community structure.  

  Despite active research in the past two decades (Yuste et al., 2007; Fang & Moncrieff, 

2001; Monson et al., 2006; Schlesinger & Andrews, 2000; Trumbore, 1997) the factors 
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controlling temperature sensitivity of soil C decomposition (often expressed as Q10 – 

proportional increase in CO2 released by soil heterotrophic microbes for a 10°C increase in 

temperature) remain poorly understood (Conant et al., 2011; Davidson, et al., 2006). While soil 

C quality, soil temperature/moisture, and carbon input rates have been shown to affect Q10, how 

soil fauna and their predation on bacteria and fungi affects overall soil C decomposition Q10 is 

understudied. Specifically, while the direct roles of certain bacterial and fungal groups have been 

given considerable attention (Yiqi and Zhou, 2010), far fewer studies (e.g. Adl & Gupta, 2006; 

Fitter et al., 2005; Roger Anderson, 2008; Stout, 1980) have addressed the influence of protists 

within these models. 

Among the protist predators in soils, amoebae are typically the most abundant 

bacterivores globally (Anderson, 2010; Clarholm, 1981; Urich et al., 2008) and commonly range 

in number from 104 (Clarholm, 1981) to 105 (Ekelund and Rønn, 1994) cells per gram of soil. 

Their specialized motility and feeding modes give them access to the majority of bacteria in soil, 

in contrast to other groups which are more restricted by pore size limitations (Elliott et al., 1980) 

or decreased soil water potential (Young and Ritz, 2000). When active, amoebae can act as a 

major selective influence on bacterial communities (Rønn et al., 2002) and are, perhaps, a major 

underlying mechanism of the stimulation of nitrogen and C mineralization as suggested by 

Bonkowski (2004). 

There has been a fair amount of research on the net effects of protist predation in soil 

systems. For example, amoebal predation has been correlated to increased ammonification in 

field studies (Weekers, et al., 1993) and has been shown to be causative for this effect in 

microcosm experiments (Rutherford and Juma, 1992). Additionally, microcosm studies have 

shown that amoebae strongly increase C mineralization rates (Clarholm, 1981) and that this 
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effect is interactive with temperature (Zahn, et al., Unpublished – In review) which may have 

implications for climate change modeling. The possible specific mechanisms for these effects 

(eg. selective grazing, sloppy feeding, etc.) and their interactions with environmental conditions 

have received considerably less attention. 

Microcosms are a useful method for addressing mechanistic questions about complex 

processes, but they come with major tradeoffs in their applicability to real-world systems since it 

is not possible to accurately replicate field conditions in the lab. These controlled systems often 

rely on grossly simplified communities and/or artificial “soils,” which limit their applicability to 

field predictions. One major hurdle to investigating the role of protist predation on natural 

bacterial populations has been in obtaining undefined natural populations of bacteria sans 

protists. Frey et al. (1985) developed a simple filtration method that progressively size-excluded 

eukaryotic predators from soil suspensions to examine the effect of protist morphotypes on 

nutrient dynamics and bacterial abundance. Here we adapt this filtration method and apply high-

throughput sequencing to observe the effects of common soil amoebae on “natural” bacterial 

communities and soil respiration under warming conditions in a structurally-intact soil. 

This study focused on testing three main hypotheses: 1) Amoebal predation would 

increase cumulative respiration over the course of the incubation; 2) Predation would exert a 

significant top-down control on bacterial community composition; and 3) This predator-induced 

effect on bacteria would interact with temperature. Additionally, this study sought to generate 

hypotheses regarding the mechanisms for expected increases to respiration. The prediction that 

predation would enhance soil respiration has been widely supported in the literature but this 

aspect was included for confirmation and to provide additional proof-of-concept for the filtration 

method of obtaining predator-free bacterial communities. Linking this community manipulation 
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method with high-throughput sequencing of the bacterial 16S marker gene enables an 

investigation into which bacterial taxa are differentially influenced by predation without the 

known limitations of culture-based observations and may provide some insight into the 

mechanisms responsible for the observed increases in C and N mineralization associated with 

protist predation. 

Methods 

Soil selection and preparation 

The soil used in this study was from the O-horizon (0-10cm) of a riparian forest site in 

Northwestern Arkansas (35.994654, -94.131481; Table 5.1). The soil was sieved on site and 2-

4mm aggregates were brought back to the lab for processing. Aggregates were oven-dried at 

85°C, extraneous organic material was manually removed and then aggregates were subjected to 

three rounds of autoclaving (60 min, 121 °C, 15 PSI). Between each autoclave treatment, soils 

were brought to 50% water holding capacity (WHC) with sterile water and allowed to incubate 

for three days at 20°C. After the second round of autoclaving, 5g equivalent dry weight of 

autoclaved soil was added to 48 sterilized 125ml septa-sealed microcosm jars (company) and 

allowed to incubate for five days. Jars containing this soil were then autoclaved again and oven 

dried at 100°C for three days. 
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Table 5.1. Soil chemical properties 

Property Value 
  

Total exchange capacity (meq/100 g) 23.20 

pH 6.30 

Organic Matter (%) 6.61 

NO3-N (ppm) 2.20 

NH4-N (ppm) 31.00 

Carbon (%) 4.32 

Nitrogen (%) 0.28 

C/N Ratio 15.43 

  

Anions  

Sa (ppm) 29.00 

Pa (ppm) 29.00 

  

Exchangeable cations  

Caa (ppm) 3463.00 

Mga (ppm) 219.00 

Ka (mg/kg) 139.00 

Na (mg/kg) 20.00 

  

Base saturation   

Cab (%) 74.63 

Mgb (%) 7.87 

Kb (%) 1.54 

Nab (%) 0.37 

Other basesb (%) 5.10 

Hb (%) 10.50 

  

Extractable minors  

Ba (mg/kg) 0.83 

Fea (mg/kg) 124.00 

Mna (mg/kg) 331.00 

Cua (mg/kg) 2.66 

Znb (mg/kg) 4.49 

Ala (mg/kg) 542.00 
  

a Mehlich III extractable elements  

b Percent of a given element found in the soil’s total exchange capacity. Soil was analyzed after 

autoclave treatments.
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Microbial inoculum preparation 

Bacterial inoculum was obtained by shaking 50g of unsterilized soil in sterile water for 6 

hours. This suspension was allowed to settle for 24 hours and then the supernatant was filtered 

through 10µm nuclepore filter membranes (Whatman, Piscataway, NJ) to remove extraneous 

organic matter and larger particles. This inoculum was used for the “natural community” control. 

Frey et al. (1985) noted that filtration through 3µm pores effectively reduced protist numbers to 

undetectable levels for up to 80 days of incubation but, in order to more confidently remove 

predators, we subjected portions of our “natural community” filtrate to further filtration through 

1.5µm nuclepore membranes. This 1.5µm filtrate was observed microscopically and subjected to 

PCR amplifications with the F-566 and R-1200 primer pair from Hadziavik et al. (2014) to 

ensure that no significant contamination with eukaryotic predators was present and then used as a 

“predator-free” bacterial inoculum. This filtered inoculum represented, as closely as possible, a 

natural undefined bacterial community sans protist predators.  

Amoebae were isolated from the unsterilized soil aggregates using a modified version of 

Cavender’s method (Cavender and Raper, 1965), axenized over several generations on dead E. 

coli cells and then cultured on weak malt yeast agar (Shadwick et al., 2009) with live E. coli as a 

food source. Three distinct isolates of dictyostelid amoebae, identified morphologically and 

phylogenetically via sanger sequencing of the 18S rDNA marker (Table 5.2), were used. Once 

there was sufficient growth to obtain enough cells for inoculation into microcosms, amoebae 

were centrifugally washed three times with sterile Page’s amoeba saline (Page, 1988) to remove 

E. coli cells, quantified using a hemocytometer, and mixed together. E. coli cells remaining after 

washing were also quantified so that equivalent amounts could be added to microcosms 

receiving no live amoebae. Half of the pooled amoebal inoculum was autoclaved and then mixed 
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with equivalent amounts of live E. coli, for use as secondary inoculum in the predator-free 

treatments. 

Experimental design and incubation 

Under aseptic conditions, each sterilized microcosm (N=28) was brought to 40% WHC 

with 1.5µm filtrate, except the natural controls (N=18) which were inoculated with an equivalent 

amount of 10µm filtrate and sterile controls (N=2) which were inoculated with autoclaved 1.5µm 

filtrate (T=Day -4). All microcosms were sealed and incubated (half at 15°C, and half at 20°C) 

for four days to allow bacteria to colonize the soil (Altenburger et al., 2010). Temperatures were 

chosen to reflect the current and predicted 100-year mean annual temperatures for the region 

(Barros et al., 2014). 

After this initial incubation, four replicates of each group (N=4) were pooled and 

destructively sampled for nucleic acids to obtain a snapshot of the initial bacterial communities 

for 10µm and 1.5µm treatments at each temperature (referred to hereafter as the initial 

communities). For the remaining jars, half of the “predator-free” units (N=10) were brought to 

50% WHC with inoculum containing viable amoebae and the other half (N=10) along with 

natural controls (N=10) were given autoclaved amoebae. Each jar was immediately sealed after 

inoculation and kept in the dark at its respective temperature except for brief headspace gas 

sampling. 
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Table 5.2.  Amoebal predators 

Species name 

Inoculum concentration 

(cells ∙ g soil-1) 

Relative starting 

abundance 

DDBJ Accession 

No. (18S) 
    

Dictyostelium 

purpureum 

45866 0.47 LC056032 

Dictyostelium 

aureostipes 

29498 0.31 LC056033 

Dictyostelium 

mucoroides 

21495 0.22 LC056034 

    

Note. Quantification of amoebal cells in inoculum along with DDBJ accession numbers; Number 

of cells quantified microscopically using a hemocytometer; Relative abundance indicates the 

proportion of each species in the final mixed inoculum. Equal amounts of inoculum was added to 

each jar, but the inoculum added to natural controls and predator-free treatments was autoclaved; 

No viable amoebae were found in autoclaved inoculum
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Headspace gas analyses 

Immediately after sealing (T=0), 5ml of headspace gas was removed and injected into a 

helium-purged vacuum vial using a gastight syringe. Subsequent samples were taken on days 4, 

9, 14, and 30. The syringe was sterilized with ethanol between treatment groups. Vials 

containing headspace samples (N=160) were analyzed on a GasBench II gas chromatograph 

(ThermoScientific). CO2 concentrations were converted to µg CO2-C ∙ g dry soil-1 using ideal gas 

law. Q10 values for cumulative respiration were calculated from final headspace readings 

according to Lloyd and Taylor (1994) and 95% confidence intervals were calculated by error 

propagation. 

DNA extraction and amplicon generation 

DNA was destructively extracted from soil just after the initial incubation (T=0 days) and 

just after the final headspace measurement (T=30 days) using the same protocol. Each of the four 

replicates in the initial extractions and each of the five replicates in the final extraction were 

pooled together, homogenized, and then a dry weight equivalent of 4.85g of soil was subsampled 

for extraction using the PowerMax Soil DNA Isolation Kit (MoBio, USA), and eluted into 5ml 

of 10mM TRIS. Due to low concentrations, DNA from each group was then concentrated via 

ethanol precipitation, eluted into 100µl of deionized water, and quantified using a PicoGreen® 

assay on a NanoDrop 3300 Fluorospectrometer (Thermoscientific). 

Genomic DNA was used to generate amplicons of the third hypervariable region (V3) of 

the 16S rDNA gene via PCR using the HotStar HiFidelity Polymerase Kit (Qiagen, USA) with 

1µg of DNA template, and primers 338F* and 533R* (Ong et al., 2013). Reaction conditions 

were as follows: initial denaturing step at 94°C for 5 min, 30 cycles of denaturing at 94°C for 30 

sec, primer annealing at 59° for 30 sec and extension at 72° for 45 sec, followed by a final 
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extension step at 72°C for 5 min. Amplicons from three separate reactions were pooled for each 

sample. 

Library preparation and sequencing 

Pooled amplicons from each sample were purified with the Wizard® SV Gel and PCR 

Cleanup System (Promega, Madison, WI) and quantified using a PicoGreen® assay as before. 

Libraries were prepared using the NEBNext® Fast DNA Library Prep Kit (New England 

BioLabs, Inc.). Each sample library was barcoded and randomly assigned to one of two 

sequencing chips on the IonTorrent PGM platform (Life Technologies, Grand Island, NY). 

Samples for each chip were mixed in equimolar concentrations and sequencing templates were 

prepared on the IonTorrent OneTouch 2™ system. Sequencing runs were carried out on Ion 

314™ V2 chips and, subsequently, identical runs were carried out on Ion 316™ V2 chips (4 

chips total). Both runs were concatenated by sample before downstream processing. 

Taxonomic structure 

Raw sequences were uploaded into the Metagenome Rapid Annotation using Subsystem 

Technology (MG-RAST v3.5) bioinformatics server (Meyer et al., 2008), where they are also 

publicly available (Table 5.3) for initial analyses. Reads were filtered based on length and 

quality, with a minimum size of 120bp and minimum quality score of 15 (Blankenberg et al., 

2010). All reads with ambiguous bases were removed. All analyses within MG-RAST were 

conducted using the following parameter settings: the Greengenes 13_5 (McDonald et al., 2012) 

annotation source, maximum e-value = 1.0−20, minimum identity cutoff = 97%, minimum 

alignment length cutoff  = 50 bp. Quality-screened sequences were also exported for taxonomic 

assignment and downstream analyses within QIIME (Caporaso et al., 2010) for comparison. To 

ensure conservative estimates of taxonomic and functional diversity, singleton OTUs were 

removed prior to all downstream analyses. Within QIIME, OTUs were picked using the 
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Table 5.3. MG-RAST project IDs and stats 

MG-RAST 

ID 

Metagenome 

name bp count 

Raw sequence 

count 

Post QC 

sequence 

count 

MG-RAST 

GG species 

MG-RAST 

M5RNA 

species 

QIIME GG 

species 
        

4636404.3 15_nat3 64,181,395 355,303 220,272  204 359 774 

4636405.3 15_no_pred3 68,018,167 373,167 259,104  206 360 645 

4636406.3 15_plus_pred3 85,227,814 480,203 395,433  249 440 829 

4636407.3 20_nat3 148,137,858 865,283 712,390  271 449 928 

4636408.3 20_no_pred3 84,699,698 468,364 390,240  250 421 744 

4636409.3 20_plus_pred3 110,046,641 600,559 409,636  275 453 837 

4636410.3 init_15_filt3 72,980,164 401,246 348,459  198 350 643 

4636411.3 init_15_unfilt3 123,526,461 678,879 563,412  261 437 786 

4636412.3 init_20_filt3 63,034,159 348,307 261,162  206 370 604 

4636413.3 init_20_unfilt3 58,018,295 318,885 210,781  213 369 719 

Total  877,870,652 4,890,196 3,770,889  539 1021 2101 
        

Note. Species richness and Phylogenetic Distance measures represent the mean values from 10 iterations of rarefied data at depth of 

131533 reads.
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UCLUST algorithm (Edgar, 2010) and assigned to the GreenGenes 13_8 taxonomy at 97% 

similarity with a maximum e-value of 1.0-20.  

Statistical comparisons of taxonomic structure were performed on assigned taxa within 

STAMP (Parks et al., 2014) using Fisher’s exact test and p-values were false discovery rate 

adjusted for multiple comparisons (Storey, 2002). 

Functional predictions 

Picked OTUs assigned to taxonomy via the Greengenes 13_8 database were normalized 

by copy number and used to predict metagenomes using the PICRUSt tool (Langille et al., 2013). 

Predicted metegenomes were categorized by function to the KEGG hierarchy within PICRUSt 

and analyzed using STAMP. All between-sample comparisons in STAMP used Fisher’s exact 

test (Rivals et al., 2007) and p-values were false discovery rate adjusted for multiple comparisons 

(Storey, 2002). 

Results 

Sequencing stats and completeness 

Sequencing produced a total of 4,890,196 raw reads. After filtering for quality and 

removing singletons 3,770,889 high quality observations of the V3 16S ribosomal RNA gene 

region remained. These observations resulted in varying numbers of database hits depending on 

the analysis pipeline used. Within MG-RAST there were 2,070,499 hits against the Greengenes 

database and 2,436,577 hits against the M5RNA database. Within QIIME there were 3,078,244 

hits against the Greengenes database. This variation in OTU assignment efficiency also resulted 

in different taxonomic richness (Table 5.3). All further analyses were carried out using the 

QIIME assignments since they have been shown to be more accurate than MG-RAST for 16S 

amplicon data (D’Argenio et al., 2014). 
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Overall sequencing thoroughness was examined for each sample via species-level 

rarefactions within QIIME (Figure 5.1). Nine families contained nearly 62% of all observed 

OTUs. The most dominant taxa in each sample were consistently Pseudomonadaceae, 

Flavobacteriaceae, Caulobacteraceae, and Paenibacillaceae. 

Effects of filtration 

Filtration was highly effective at removing protist predators. No protist cells were 

microscopically observed in the 1.5µm filtrate, and no 18S rRNA bands were detected in PCR 

observations. Serially-diluted filtrate plated on nutrient agar showed bacterial colony growth but 

no fungal or protist observations were noted. This culture-based assessment is limited in its 

usefulness, but in conjunction with direct visual inspection of the filtrate and 18S amplification, 

suggests that protist predators were at least effectively reduced to undetectable levels in the 

“predator-free” inoculum, an outcome consistent with others who have applied similar filtration 

methods to remove protists (Rosenberg et al., 2009; Sauret et al., 2015). Protists were noted by 

all observation methods in the 10µm “natural community” filtrate. 

Filtration had a strong impact on bacterial community composition (Figure 5.2). Notably 

(difference of ≥3%; P<0.005), reducing filter pore size from 10µm to 1.5µm increased the 

relative abundance of Flavobacteriaceae and Bacillaceae and decreased the relative abundance of 

Sphingobacteriaceae at both temperatures. Filtration also decreased the relative abundance of 

Pseudomonadaceae, but only in the 20°C treatment. 
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Figure 5.1. Species-level rarefactions for each sample. Rarefactions were performed from a 

minimum of 10 sequences to 187900 sequences (the median number of sequences 

observed across all samples, as per the default parameters in QIIME for the 

alpha_rarefaction.py script). 
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Figure 5.2. Effect of filtration on bacterial taxa. Extended error bar plot showing all significant 

differences (Fisher’s exact test; Storey’s FDR correction; p<0.05) between family-

level taxa with an effect size of at least 2% difference in normalized abundance. 
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Cumulative respiration 

As predicted, cumulative respiration was significantly greater in treatments containing 

protist predators. Warming significantly increased respiration in all community treatments 

(Figure 5.3), but this effect was interactive with the presence of predation, with predator 

treatments and natural controls responding more strongly to warming than predator-free 

treatments (General Linear Model ANOVA; P<0.005). The treatments with added amoebae did 

not differ significantly from natural controls.  

Q10 values were not significantly different between community treatments (One-way 

ANOVA; P=0.821; Figure 5.4). All Q10 values were within range of 2.0, the most commonly 

used value of for models of soil respiration (Chen and Tian, 2005) and are consistent with values 

reached from previous microcosm work using simplified bacterial communities (Zahn et al., 

Unpublished). 

Taxonomic changes in the communities 

Samples at both temperatures grouped together well by treatment in the PCoA analysis, 

with marked differences between communities before and after incubation (Figure 5.5). This 

temporal effect had the largest magnitude, followed by filtration, and then predation. 

Temperature had a relatively small effect on communities. 

There were no direct significant effects of warming on relative abundance of bacterial 

taxa. This has been seen before in another study where it took 20 years for soil communities to 

noticeably respond to warming (DeAngelis et al., 2015), though temperature did show an 

interaction with both temporal change and predation on several key taxa. 
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Figure 5.3. Cumulative respiration graphs at both temperatures. Error bars represent 95% C.I. 

for the mean; Circles represent mean values for predator treatments, Inverted 

triangles represent predator-free treatments, Squares represent natural controls. 
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Figure 5.4. Respiratory Q10. The proportionate increase in cumulative respiration for each 

community treatment due to a 10°C increase in temperature. Error bars represent the 

propagated 95% C.I. for the mean. 
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Figure 5.5. PCoA projection. Two-dimensional projection of metagenomic samples using PCoA 

of the weighted UniFrac distance matrices of their bacterial communities. Closed 

circles denote communities before incubation for each temperature and filtration 

treatment (Initial communities, Time=day 0; Fil.=1.5µm filtration, Unf.=10µm 

filtration); Open squares denote natural community controls after incubation 

(Time=day 30; Filtration=10µm) at each temperature; Open triangles denote 

predator-free treatments (Time=Day 30; Filtration=1.5µm; + dead amoebae) for each 

temperature; Closed diamonds denote predator treatments (Time=Day 30; 

Filtration=1.5µm; + live amoebae) for each temperature. 
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Incubation for 30 days resulted in remarkably similar community changes at both 

temperatures, with significant (Fisher’s exact test, Storey’s FDR; p<0.05) increases in the 

relative abundance of Symbiobacteriaceae, Sphingobacteriaceae, and Caulobacteraceae, and 

decreases in Bacillaceae, Paenibacillaceae, and Flavobacteriaceae. At 20°C, however, the 30-day 

incubation also led to a significant decrease in Pseudomonadaceae that was not observed at 15°C 

(Figure 5.6).  

The presence of amoebal predation also had a significant (Fisher’s exact test; Storey’s 

FDR; p<0.05) influence on several key taxa (Figure 5.7). Predation resulted in a significant 

increase in the relative abundance of Flavobacteriaceae, Sphingobacteriaceae, Caulobacteraceae, 

Oxalobacteraceae, and Cryomorphaceae regardless of temperature, but additional taxa 

(Sphingomonadaceae, and Paenibacillaceae) were increased in the 15°C treatment. One taxon, 

Symbiobacteriaceae was differentially affected by predation, with a significant increase in 

relative abundance at 15°C but a decrease at 20°C. Predation also reduced the abundance of 

Pseudomonadaceae at 15°C and consistently led to a decrease in the relative abundance of 

Flavobacteriaceae at both temperatures. 

Functional structure of the communities (potential and partial) 

There were several significant changes to the predicted functional potential of the 

communities, but effect sizes were uniformly small. No treatment effect led to any greater than a 

0.45% change in the relative abundance of any KEGG orthologs. The greatest significant change 

(Fisher’s exact test; p<0.05) was an increase in genes involved with cell motility in soils 

amended with amoebal predators, though the magnitude of increase was higher at 15°C (0.45%) 

than at 20°C (0.28%). 
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Figure 5.6.  Effect of 30-day incubation on bacterial taxa. Extended error bar plot showing all 

significant differences (Fisher’s exact test; Storey’s FDR correction; p<0.05) 

between family-level taxa with an effect size of at least 2% difference in normalized 

abundance. 



 

130 

 

Figure 5.7.  Effect of predation on bacterial taxa. Extended error bar plot showing all significant 

differences (Fisher’s exact test; Storey’s FDR correction; p<0.05) between family-

level taxa with an effect size of at least 2% difference in normalized abundance.  
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Discussion 

The influence of protist predation on microbial mineralization of soil C and N has been 

well documented, but the mechanisms behind these observations are still somewhat uncertain. 

Two likely scenarios are “sloppy feeding” and selective grazing of protists. Sloppy feeding refers 

to differential C:N composition between predators and prey leading to inefficient incorporation 

of bacterial prey into predator biomass. This “extra” prey C or N biomass, along with protists’ 

digestive wastes, is readily bioavailable and can stimulate the growth of bacterial decomposers. 

This mechanism is also intrinsically linked with predator-mediated top-down control of bacterial 

populations. Protist predators have been linked to morphological (Corno and Jürgens, 2006) and 

taxonomic (Hahn and Höfle, 2001) shifts in bacterial community composition.  

These taxonomic shifts due to selective feeding depend on the taxonomic identity of the 

predators and the complex environmental factors that influence them (Bell et al., 2010). Here, we 

have shown this effect in a soil system with common amoebal predators and shown that 

increasing temperature led to differential outcomes in grazing on several dominant members of 

the bacterial community.  

The dictyosteloid amoebae in this system exhibited a strong selective force against 

members of the Flavobacteriaceae family, particularly the genus Flavobacterium. We cannot 

determine if this is the result of amoebae directly grazing on Flavobacterium, but it is consistent 

with others who have shown Flavobacterium to be readily consumed by a variety of protists in 

aquatic systems (Jürgens et al., 1999; Sherr and Sherr, 2002). It differs from at least one study 

though, where Flavobacterium was hardly consumed at all by nanoflagellate protists (Massana et 

al., 2009), but this discrepancy reinforces the idea that different protist taxa will exert varying 

selective pressures on bacterial communities. 
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The predation pressure on Pseudomonadaceae, particularly the genus Pseudomonas, was 

less easily explained. At 20°C, there was no detectable influence of predators, but at 15°C 

predation resulted in a significant reduction in relative abundance (Fisher’s exact test; p<0.05; 

effect size=7.1%). Pseudomonas is a known food source for amoebae (Jousset et al., 2010) and it 

seems likely that it was used as prey by dictyosteloid amoebae in this study regardless of 

temperature, but it is possible that Pseudomonas was simply better able to recover from gazing 

pressure at the warmer temperature, which is closer to its ideal growth conditions. 

It was clear, in any case, that temperature had a much smaller effect of bacterial 

community structure than any other variable tested. This was an interesting result, but not 

without precedent since various studies have pointed out the relatively large temperature 

variations (Chin et al., 1999; Zogg et al., 1997) or long time scales (DeAngelis et al., 2015) 

needed to detect taxonomic-level changes in soil microbial communities. This does not preclude 

the notion that relatively small and short-term environmental changes may profoundly affect the 

biochemical expression (metatranscriptome) of bacterial populations (Gilbert et al., 2010). 

The use of shotgun metagenomic profiling when trying to infer community function 

carries the same limitations as predictive metagenomic profiling from 16S amplicons (as with 

PICRUSt). That is, DNA-based methods can only ascertain the potential biogeochemical 

function of a community. To obtain actual expression profiles RNA-based methods are needed, 

but these are so far seldom used due to the difficulty of extracting suitable amounts of mRNA 

from soil environments (Wang et al., 2012).  

Conclusion 

The methods presented here are an effective way of investigating the interactive roles of 

environmental parameters and protist predation in shaping bacterial communities and 

biogeochemical processes. We have shown that amoebal grazing effects are temperature 
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dependent and have given additional support to the hypothesis that soil bacterial communities are 

strongly influenced by top-down controls. Predators can shape the taxonomic structure of these 

communities which can, in turn, affect broader biogeochemical processes such as respiration. If 

we are to make accurate predictions about the fate of soil carbon in a changing climate, the 

protist component of the community should not be overlooked. 
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CHAPTER 6 

 

CONCLUSION 

The findings of these studies increase our knowledge of the large-scale ecological 

distribution of protosteloid amoebae and the local-scale functional services of amoeboid 

predators. The first two studies have shown that although broad ecological variables influence 

the abundance and diversity of protosteloid amoebae, no biogeographical patterns seem to exist. 

The second two studies, focusing on the functional ecology of soil amoebae, have demonstrated 

that amoebal predation plays a large role in regulating both bacterial communities and the 

emergent biogeochemical cycles driven by these bacteria. 

Distribution of protosteloid amoebae 

Our knowledge of the distribution of mycetozoans has increased exponentially over the 

past few decades, with the majority of this effort being dedicated to dictyostelids and 

myxomycetes. Less is known about the paraphyletic group known as the protosteloid amoebae. 

This group provides an excellent system for investigating the biogeography of non-testate 

(naked) amoebae as they conform to the standards of a “flagship” group set out by Foissner 

(2006). They are morphologically conspicuous, span a wide breadth of the Amoebozoan 

phylogeny, and are partially defined by their ability to disperse via tiny propagules. Recently a 

concerted effort has been made to uncover the global distribution of these organisms. The most 

intensive regional survey was carried out on the islands of Hawaii, and was undertaken 

specifically to look for signs of conventional island biogeography such as endemism, low 

diversity, and adaptive radiation. None of these signs were found. 

 In comparing the intensive survey of Hawaii to the second most intensively surveyed 

region, New Zealand, we have seen that no endemism appears to be present at either location, the 

overall extant community is surprisingly similar, and that landscape-scale variables such as 
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moisture and elevation have comparable effects on the community assemblage. Further 

comparisons between all global regions indicate that the most important predictor of whether a 

given species will be found in a given area is sampling effort. It seems that rare species are rare 

and common species are common in most cases, regardless of location. 

Microhabitat variation was a more important determining factor on a species-by-species 

level. It is clear that different species of protosteloid amoebae have different habitat 

requirements, but these relationships between microhabitat and species presence are still unclear. 

Part of this issue is that we still have not been able to accurately define, in detail, what a habitat 

consists of, especially for organisms at this size scale.  

For example, it was shown repeatedly that certain species seem to have “preferences” for 

habitats that consist of plant litter that remains aerial (not in contact with the ground), while 

others seem to “prefer” that the same substrate be in contact with the ground. This observation is 

clear and repeatable but it has a couple of issues. The first issue is that it is a probabilistic 

“preference;” the amoebae in question will almost certainly be found in grounded and aerial 

instances of the same substrate type in a given location. The second issue is the corollary that we 

do not currently have any robust explanation regarding what causative factors are significantly 

different between these two microhabitat habitat types. This example serves to illustrate the need 

for more detailed and painstaking investigations into the biotic and abiotic conditions that 

constitute “suitable” microhabitats for these organisms. 

The notion that microhabitat is the main mechanism selecting the assemblage of 

protosteloid amoebae fits in with the biogeographic model known as “everything is everywhere, 

but the environment selects.” This seems to be the case for this group of amoebae, but it is 

possible that the very features which make them a useful flagship group also lend themselves to 
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widespread dispersal. They have morphological adaptations for dispersal (including many with 

airborne spores), can utilize dispersal vectors such as anthropogenic movements, and have had 

sufficient geological time to disperse more or less uniformly. The variation we see in their local 

assemblages is perfectly consistent with micro-scale habitat variation and the limits of our 

observational methods to readily detect less-common members. 

At this point it seems prudent to thoroughly test these assumptions. In particular, it will 

be necessary to test whether anthropogenic vectors appear to be responsible for (or at least 

capable of) the widespread dispersal of protosteloid amoebae. Evidence from Hawaii suggests 

that the introduction of non-native plants may be a driving factor in the high abundance and 

diversity of species found there. This suggestion could and should be tested, possibly by 

extending the same intensity of observation effort further up into the Northwest Hawaiian 

Islands. 

Functional ecology of soil amoebae 

A large body of research exists that points to the significant role that protist predators 

play in driving bacterial community composition and biogeochemical processes. The studies 

included in this dissertation confirm this conclusion and expound upon the ways by which 

changing environmental factors influence predator prey interactions in the soil microbiome. 

Using simplified soil microcosms, it was demonstrated that increasing temperature 

interacted with the physical and chemical structure of soil to shape the influence of amoeboid 

predators on total carbon (C) and nitrogen (N) mineralization. Briefly, soil structure mattered, 

but only in the warmer temperature. In all cases, predation by amoebae increased the rate of C 

and N mineralization, but the magnitude of this effect was determined by a combination of 

temperature and soil aggregate structure. These findings have important implications for efforts 

to predict the fate of soil nutrients in a changing climate. 
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Models of processes mediated by soil biota should not neglect the protist component of 

microbial communities or the extent to which predator-prey interactions are linked to 

environmental conditions. Differing land management strategies, especially, were shown to 

affect this trophic interaction, with conventional farming practices exhibiting less amoebal 

control over biogeochemical cycling than soils under a no-till regime. Thus, the importance of 

protists in large-scale climate change predictive efforts depends on the soil conditions under 

consideration. 

These results were expanded to investigate whether the same processes can be observed 

in more natural, undefined communities. Protists were successfully removed from soil 

communities while still retaining a complex representative assemblage of the bacterial members 

and these communities were analyzed via high-throughput sequencing to reveal specific 

influences of soil dictyostelids. It was observed that the addition of amoebae to these complex 

systems resulted in the same pattern of increased soil respiration and that amoebae exerted a 

strong top-down control of bacterial community structure. More interestingly, the specific 

changes to bacterial communities were dependent on temperature. 

Again we see that incorporating protists into predictions about soils in a changing climate 

is essential, and yet a one-size-fits-all approach is likely to be unsuccessful. Amoebal predators 

(likely each protist taxon will behave differently) have different impacts on bacterial prey at 

different temperatures. This method of DNA-based surveys paired with microcosms is useful for 

addressing similar questions, but is limited in that it is never possible to fully replicate the 

complex conditions and interactions found in the field. Furthermore, this method is incapable of 

detecting functional transcriptomic changes which may have a profound influence on 

biogeochemical processes. Further work should attempt to incorporate measurements of the 
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metatranscriptome as well as testing other predator taxa to see if any broadly applicable 

principles can be resolved. 
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