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Abstract

While the parasitic Amoebozoan Entamoeba histolytica has been well-studied for its role 

in human pathogenesis, the biodiversity of invertebrate-inhabiting Entamoeba has scarcely been 

investigated.  Using molecular methods, I searched for Entamoeba in the guts of cockroaches 

from four of the six Blattodean families.  Entamoeba small-subunit rRNA genes were recovered 

from all eight species of cockroaches tested, five of which represent newly discovered hosts.  

Phylogenetic analysis of over 190 sequences revealed a novel and highly diverse clade of 

cockroach-inhabiting Entamoeba, separate from the clade predominated by vertebrate-

inhabitants.  These results double the known genetic diversity of Entamoeba and suggest that 

they may be widespread among cockroaches.  While it would be premature to delineate new 

species based solely on the sequence data, work on other biologically relevant features of these 

Entamoeba variants could assist with that.
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Chapter 1: Background

1.1  Abstract

Most members of the genus Entamoeba inhabit other organisms, and at least two species 

can live in anaerobic sediments.  Vertebrate hosts include mammals, reptiles (including birds), 

fish, and amphibians.  Non-vertebrate hosts include insects, annelids, and protists.  Most species 

form cysts, which can have 8, 4, or 1 nucleus/nuclei.  This has long been-and still is-used to 

classify and identify Entamoeba.  The pathogenicity of some species, especially the human-

inhabiting Entamoeba histolytica, is what generally attracts researchers to the genus.  However, 

most Entamoeba are not known to be pathogenic, and only a portion of the diversity in the genus 

is represented in human hosts.  To understand the diversity and evolution of Entamoeba, it is 

critical to study Entamoeba in non-human hosts.  Prior to the development of molecular-based 

tools, Entamoeba were studied primarily by light microscopy, cultivation, and cross-infection 

experiments.  Molecular-based tools allowed for improved characterization of mechanisms of 

pathogenesis, genetic diversity, and evolutionary relationships.  This has begun to clarify the 

phylogeny of Entamoeba in vertebrates, but has not been applied to Entamoeba in non-

vertebrates.  Our understanding of the phylogenetic relationship between non-vertebrate 

inhabitants and vertebrate-inhabitants would be greatly improved by molecular data, which can 

provide a large number of characters for analysis.  The aim of my research was to address the 

occurrence, diversity, and phylogeny of cockroach-inhabiting Entamoeba by taking advantage of 

the sensitivity and rich character sampling afforded by molecular methods.  This chapter 

provides a context for this new information in two major ways.  First, it explains the current 
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perception of Entamoeba, with an emphasis on species delineation, thus providing a basis for 

discussing similarities and differences.  Second, it reviews cockroach biology, phylogeny, and 

the insect's relationships with microbes.  In addition to providing a description of the 

Entamoeba's environment and providing clues to the cockroach-Entamoeba relationship in real-

time, this information helps assess the likelihood of coevolution and host transfer in evolutionary 

time.  I aim to begin to fill the knowledge gap created by the lack of molecular data for 

Entamoeba in non-vertebrates.  By presenting the information that surrounds this gap, this 

chapter will highlight the importance of the new data and the context for interpreting them.

1.2  Introduction

Entamoeba is an Amoebozoan genus consisting primarily of gut-inhabiting protists.  

Commensals or parasites have been found in mammals (Losch 1875), amphibians (Kudo 1922), 

reptiles (Sanders and Cleveland 1930), fish (Noble and Noble 1966) insects (Fantham and Porter 

1911), annelids (Noller 1912 as cited by Bishop 1932), and protists  (Stabler 1933) (Table 1). 

Free-living Entamoeba have been found in sewage and polluted water (Scaglia 1983; Tshalaia 

1941).  Entamoeba's most distinctive morphological feature is its nucleus, which has a “bull's 

eye” pattern due to peripheral chromatin and a small, dense karyosome in the center.  Although 

most Entamoeba are not pathogenic, the genus is most well-known for Entamoeba histolytica, 

which can cause colitis and liver abscess in humans (Councilman and Lafleur 1891, Kruse and 

Pasquale 1894 cited by Imperato 1981).  The other confirmed pathogens are Entamoeba nuttalli 

in non-human primates (Tachibana et al. 2009) and Entamoeba invadens in reptiles (Hill and 

Neal 1954; Donaldson et al. 1975; Jacobson et al. 1983; MacNeill et al. 2002).  Entamoeba 
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moshkovskii, found in humans and salty or polluted water, may also be pathogenic, though more 

studies are needed to confirm this (Ali et al. 2003; Shimokawa et al. 2012).  Entamoeba 

gingivalis is nonpathogenic according to the CDC (2013), though it has been associated with 

periodontal disease and vaginal discharge (Linke et al. 1989; Foda and El-Malky 2012).  It is 

unclear whether it contributes to these afflictions or simply tends to cohabit with other 

pathogens.    

The life history of Entamoeba is best described for the human pathogen E. histolytica 

(Fig. 1).  Entamoeba from humans have been studied more than those from non-human 

vertebrates, and Entamoeba from non-vertebrates have been studied the least.  More knowledge 

of the latter will add greatly to our understanding of Entamoeba diversity.  Distinguishing 

pathogenic human-inhabiting strains from non-pathogenic ones has been, and continues to be, a 

major area of study and discourse (Dobell and Jepps 1917; Sargeaunt et al. 1978; Guzman-Silva 

et al. 2013).  Soon after the earliest descriptions of Entamoeba from humans (Losch 1875), 

amoebae and cysts with similar morphological features were reported from other organisms 

(Mackinnon 1914).  Characteristics common among Entamoeba included a “bull's eye” nucleus, 

rounded shape with few or no blunt pseudopodia, and ability to produce cysts (with the exception 

of E. gingivalis from humans and E. barreti from turtles) (Kofoid and Swezy 1924; Taliaferro 

and Holmes 1924).  These characteristics supported classification of these organisms to the same 

genus, while differentiating species prior to molecular studies frequently involved host, 

nuclei/cyst, shape, and size.  Pathogenicity was also used for species differentiation, but has been 

limited in applicability due to the lack of observed pathogenicity for Entamoeba in most host 

species (Brumpt 1925 as cited by Diamond and Clark 1993).
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Molecular-based studies have impacted our understanding of phylogeny, diversity, and 

species.  Polymerase chain reaction (PCR)-based methods have allowed for Entamoeba from 

environmental samples to be classified as distinct lineages, even without cultivation (Stensvold 

et al. 2011).  Species delineation among these lineages is a matter of discussion, complicated by 

the lack of a universal “species” definition.  Many scientists who have uncovered genetic 

diversity by environmental sampling over the past two decades have been cautious about naming 

new species based solely on molecular data (Clark and Diamond 1997; Stensvold et al. 2011).

The human-inhabiting E. histolytica, E. dispar, and E. moshkovskii are morphologically 

nearly identical but pathogenetically different.  Among human-inhabiting Entamoeba, 

molecular-based studies have improved the ability to distinguish between pathogenic and non-

pathogenic lineages (Clark and Diamond 1991a).  For a short period of time, there appeared to be 

a simple species distinction that reflected both molecular-based work and pathogenicity 

(Diamond and Clark 1993).  In 1997, the World Health Organization recognized E. dispar as a 

separate, nonpathogenic species and gave diagnostic recommendations based on this distinction.  

However, further analysis of E. histolytica and E. dispar has shown that there are strains of 

varying virulence within each of these species as currently defined (Ali et al. 2007; Ximenez et 

al. 2010; Jaiswal et al. 2014).  Like morphology, this too demonstrates the elusiveness of clear-

cut differences in non-molecular characters to distinguish members of the E. histolytica clade 

from those of the E. dispar one.

Molecular-based phylogenies have been helpful for testing hypotheses regarding the 

evolution of characters (Clark and Diamond 1997; Silberman et al. 1999; Stensvold et al. 2010).  

Among species of Entamoeba, these characters have included nuclei/cyst, pathogenicity, and 

4



choice of host.

While nuclei/cyst appeared to be consistent with early molecular-based phylogenies 

(Clark and Diamond 1997; Silberman et al. 1999), later studies revealed exceptions to this 

pattern (Clark et al. 2006; Stensvold et al. 2010; Stensvold et al. 2011), suggesting an additional 

gain or loss event for this character.  The distribution of pathogenicity throughout the molecular-

based phylogeny also suggests multiple gain or loss events for pathogenicity (Silberman et al. 

1999).  Host choice shows a more complex phylogenetic pattern when related to a molecular-

based phylogeny, and may suggest multiple host transfer events (Silberman et al. 1999; 

Stensvold et al. 2011).

While Entamoeba from non-vertebrates and vertebrates have been described 

morphologically, molecular data are only available for VIE.  This has led to a biased 

representation in molecular-based phylogenies and a biased perspective of Entamoeba diversity.  

Some of this diversity is reflected in the variety of non-vertebrate hosts, which includes insects: 

cockroaches (Lucas 1927; Kidder 1937; Meglitsch 1940; Hoyte 1961), bees (Fantham and Porter 

1911), Japanese beetle larvae (Kowalczyk 1938), crane fly larvae (Mackinnon 1914; Ludwig 

1946), and box elder bugs (Kay 1940); an annelid, the horse leech (Noller 1912; Bishop 1932); 

and several protists in the family Opalinidae (Stabler 1933; Chen and Stabler 1936; Stabler and 

Chen 1936).

Of the known non-vertebrate hosts, cockroaches in particular were chosen for my study 

because (1) screening multiple insect hosts in preliminary work revealed that cockroaches 

harbored the greatest genetic diversity of Entamoeba among insects tested (unpublished data, Dr. 

Jeffrey Silberman, University of Arkansas), (2) cockroach species vary greatly in habits that are 
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likely to effect microbial transmission, which may affect occurrence and phylogenetic diversity; 

for example, highly aggregative and coprophagic cockroaches may exhibit greater microbial 

transmission among conspecifics, which may increase infection rate and affect the phylogenetic 

diversity of Entamoeba in individual cockroaches, populations, and species, (3) their abundance 

and detritivory make them ecologically important, and improved knowledge of their gut 

microbiota may improve our understanding of the cockroach's ecological role, (4) some 

cockroaches are pests and may vector human-infecting Entamoeba, and more knowledge of 

possibly non-human-infecting Entamoeba in cockroaches could help distinguish between those 

using cockroaches solely for transport versus those that depend on cockroaches for survival, and 

(5) they are convenient because the high abundance and widespread distribution of some 

cockroach species (especially pests) allows for easy collection.

 Some of the reasons above appeal to the idea that improved knowledge of cockroach-

inhabiting Entamoeba will contribute to knowledge outside of protistology.  For example, 

knowing more about the activities of these Entamoeba may improve our understanding of 

cockroach biology, as the impact of gut microbiota on host health is becoming increasingly clear 

(Dillon and Dillon 2004; Pflughoeft and Versalovic 2012; Vasquez et al. 2012).  A single 

microbial species can significantly alter gut ecology.  For example, E. histolytica caused 

significant changes in intestinal microbial diversity when it infected rabbits (He et al. 2012).  

Understanding the evolution of cockroach-inhabiting Entamoeba could improve our 

understanding of insect evolution.  Molecular data from insects have recently supported the 

reclassification of termites as cockroaches (Inward et al. 2007; Roth et al. 2009).  Knowledge of 

associated microbes could support or refute hypotheses regarding cockroach phylogeny, and 
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could reveal insight into relationships between host and commensal evolution.

This study was designed to provide knowledge on the diversity, phylogeny, and 

prevalence of Entamoeba in cockroaches. Genus-specific primers were designed in our lab and 

used to amplify Entamoeba SSU rDNA from the cockroach hindgut. Members of eight 

cockroach species across four of the six cockroach families were screened, with an emphasis on 

Periplaneta americana (American cockroach).  Sequences were recovered from all eight 

cockroach species examined, five of which are newly discovered hosts.  Phylogenetic 

reconstruction was used to visualize genetic diversity, relationships among cockroach-inhabiting 

Entamoeba, and relationships of cockroach-inhabiting Entamoeba to VIE.  These data double the 

known genetic diversity of Entamoeba, suggest low (if any) genetic isolation among Entamoeba 

in P. americana, and contribute taxa to a clade of Entamoeba sister to the one predominated by 

VIE.

The rest of this chapter is organized in 5 parts- Prevalence, Diversity, Evolution, 

Cockroaches, and Taxonomy.  In addition to clarifying the current state of knowledge, the first 

three parts illuminate various methodologies and their pitfalls, the difficulty of defining species, 

and gaps in knowledge.  The fourth part centers around the host used for this study and provides 

additional focus on the gap I aim to fill.  The fifth part revisits species concept.  While this topic 

is woven throughout the first four parts, it will be important to address it again to discuss the 

combined influence of diversity and evolutionary history on species concept.
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1.3  Prevalence

Amoebiasis has been estimated to effect 50 million people worldwide (Walsh 1986).  An 

even greater number of people are estimated to have asymptomatic infections, mostly with E. 

dispar but some with E. histolytica  (Stanley 2003).

One of the challenges of analyzing prevalence data is weighing the accuracy of different 

detection methods.  Direct count and primer-specific PCR vary in sensitivity, and can yield 

different estimates of occurrence and abundance (Evangelopolous et al. 2001).  Molecular 

methods are generally regarded as being the most sensitive, largely due to amplification of 

specific DNA by PCR (Troll et al. 1997).  Use of PCR and enzyme-linked immunoabsorbent 

assay (ELISA) has improved detection and effected estimates of the relative abundance of E. 

histolytica and E. dispar  (Stanley 2003).  With high sensitivity comes the challenge of 

discerning which results are meaningful, as the DNA of organisms that are not active in that 

environment may also be picked up.

Prevalence of E. thomsoni has been found to vary among cockroach colonies.  Lucas 

(1927) found Entamoeba thomsoni in all three Blatta orientalis (oriental cockroach) colonies she 

studied.  High incidence of infection was reported for P. americana and B. orientalis, but 

specific numbers were not provided.  In contrast, Hoyte (1961) found E. thomsoni in only a low 

percentage of B. orientalis specimens.  The Entamoeba described as Endamoeba philippinensis 

by Kidder (1937) was found in approximately 10% of Panesthia javanica (additional details on 

E. philippinensis in “History of Discovery”).  In future studies, better quantification of sampling 

and occurrence would be helpful in determining Entamoeba prevalence and factors that effect it.

The increased proximity among captive animals may increase infection rate.  This effect 
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may be especially great among cockroaches, whose coprophagic behavior is ideal for fecal-oral 

transmission.  Infection rates may also increase due to greater fecal contact due to crowding.  

This hypothesis is supported by Meglitsch (1940), who found that housing wild B. orientalis 

together increased protist abundance and infection rate.  The method used to house cockroaches 

after capture could effect the perceived infection rate.  These effects should be taken into account 

when estimating prevalence rates in the wild using laboratory data.

1.4  Diversity

Taxonomically relevant differences between organisms may be genetic, biochemical, 

ecological, behavioral, or morphological.  Such differences among Entamoeba include SSU 

rDNA, pathogenicity, pathogenesis-related genes and proteins, diet, growth rate, host, 

nuclei/cyst, and social behavior.  The perceived diversity of the genus Entamoeba has increased 

over the 110 years since the genus was erected (Schaudinn 1903), and continues to increase with 

the discovery of additional sequence diversity revealed by PCR-based methods (Stensvold et al. 

2011).  Many molecular biologists have been cautious about converting groups inferred from 

SSU rDNA alone into species definitions (Clark and Diamond 1997; Stensvold et al. 2011).  

These biologists require evidence in other diagnostic characters to warrant redefining species 

boundaries.

The diversity of NVIE has been explored relatively little compared to that of VIE, and 

what is known is primarily morphological and host-based.  The differences among NVIE across 

other characters- such as those genetic, biochemical, or behavioral- are mostly unknown.

Species categorizations are ever-changing for asexual organisms, for which the biological 
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species concept is not applicable.  The criteria used for delineation are not universally agreed 

upon, and new information necessitates repeated assessment of definitions.  

1.4.1  History of Discovery

A brief history of pre-molecular research will provide a basis for understanding recent 

discoveries of diversity.  Amoebiasis, characterized by bloody, mucus-filled diarrhea, had been 

observed for centuries before the causative agent was discovered in 1875 by Fedor Lesh, and the 

causal relationship supported by Fritz Schaudinn (1903) who named it Entamoeba histolytica 

(Imperato 1981).  The causal link was further strengthened by reinfection of cats from cysts and 

feces (Darling 1913; Boeck and Drbohlav 1925; Chang 1945) and in vitro cultivation (Boeck and 

Drbohlav 1925).  Not all human-inhabiting Entamoeba are pathogenic.  Schaudinn (1903) 

differentiated the pathogenic E. histolytica from non-pathogenic Entamoeba coli, and Emile 

Brumpt differentiated E. histolytica from the non-pathogenic E. dispar (Brumpt 1925 cited by 

Pinilla et al. 2008).  Three more non-pathogenic species-Entamoeba hartmanni, Entamoeba coli, 

and Entamoeba polecki-were later found in the gut, as well as the possibly pathogenic 

Entamoeba moshkovskii, which was originally found in sewage effluent (Casagrandi and 

Barbagallo 1897 cited by Imperato 1981; Clark and Diamond 1991a; Shimokawa et al. 2012; 

Yakoob et al. 2012).  Another Entamoeba with unique habits is E. gingivalis.  It can inhabit the 

human mouth, where it is associated with periodontal disease (Smith and Barrett 1915; Linke et 

al. 1989), or colonize the genital tract where it may be associated with excessive vaginal 

discharge (Clark and Diamond 1992; Foda and El-Malky 2012).

There was disagreement in the early 1900s regarding use of the genus names 
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“Endamoeba” and “Entamoeba.”  Endamoeba blattae was described in cockroaches in 1879 

(Leidy) as a novel genus and species.  Many scientists maintained that the genus “Entamoeba” 

should never have been created, because "Endamoeba" was coined first and should therefore 

have had priority (Craig 1916).  These scientists continued to add new species to Endamoeba, as 

in Endamoeba histolytica, Endamoeba ranarum, and so on. Most of these “Endamoeba” are 

Entamoeba in modern taxonomy.  The only previously named Endamoeba that retains its generic 

name is Endamoeba blattae from cockroaches.  It is distinguished from Entamoeba thomsoni by 

its larger size and large nucleus with refractive granules, thick membrane, and lack of a central 

karyosome (Lucas 1927; Meglitsch 1940).  A few cockroach-inhabiting taxa previously placed in 

Endamoeba do not belong to the genus as currently defined.  The organism originally named 

Endamoeba philippinensis is likely Entamoeba due to the compact centralized karyosome in its 

nucleus (Kidder 1937; Neal 1967).  Kidder (1937) recognized the resemblance of the nucleus to 

that of Entamoeba coli, but placed the organism in Endamoeba due to uncertainty in the 

nomenclature at the time.

Like Entamoeba and Endamoeba, Endolimax blattae is also an amoeba that lives in 

cockroaches.  Endolimax blattae can be distinguished from Entamoeba blattae by its 2-3 branch-

like pseuodopodia, large central mass of chromatin in the nucleus, and smaller size (3 to 15 

micrometers) (Lucas 1927). 

Among non-vertebrates, Entamoeba have been reported from nine arthropods, one 

annelid, and six protists.  Reports from each host are few, and for some are limited to the original 

discovery.  Entamoeba apis is the first NVIE known, discovered in bees in 1911 (Fantham and 

Porter) with no description provided aside from its resemblance to Entamoeba coli in humans.  
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Discovered next was Entamoeba aulastomi in horse leeches (Noller 1912), Entamoeba minchini 

in tipulid larvae (Mackinnon 1914), Entamoeba belostomae in giant water bugs (Brug 1922), 

Entamoeba thomsoni in cockroaches (Lucas 1927), and Entamoeba polypodia in box elder bugs 

(Kay 1940).

Though most NVIE are from animals, Stabler and Chen (1936) reported Entamoeba 

(which they called Endamoeba) from opalinids in frog rectums (Stabler 1933; Chen and Stabler 

1936).  No Entamoeba have been reported from protists since then.  More commonly, 

Entamoeba ranarum is found extracellularly in the frog intestine.  While the proximity could 

make it appear that the Entamoeba in opalinids are the same as those in the gut lumen, this is 

unlikely because opalinids absorb nutrients rather than phagocytose them, so opalinids would not 

be expected to ingest Entamoeba from the lumen.  Also, the Entamoeba in opalinids had one 

nucleus/cyst, distinguishing them from four nuclei/cyst E. ranarum.  

1.4.2  Morphological Differences between Genera

Non-Entamoeba amoebae in humans include Iodamoeba butschlii, Endolimax nana, and 

Dientamoeba fragilis.  A few of the most apparent characteristics that distinguish them from 

Entamoeba are summarized here.  Endolimax nana, originally named Entamoeba nana, is 5-10 

micrometers across, forms spherical or oval cysts, and has an irregularly shaped mass of central 

chromatin in its nucleus (Wenyon and O'conner 1917).  Iodamoeba butschlii was provisionally 

named Entamoeba butschlii when first reported but was carefully distinguished from Entamoeba 

by Dobell (1919)(Prowazek 1912 as cited by Dobell 1919).  It forms an oval or irregular cyst and 

has a karyosome that spans half to a third of the nucleus, surrounded by smaller granules.  It also 
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has a large iodine-attracting vesicle, hence the name Iodamoeba.  The trophozoites of 

Dientamoeba fragilis generally have two nuclei, each having chromatin in a large central 

karyosome (Jepps and Dobell 1918).  They do not encyst.  Iodamoeba butschlii and E. nana are 

generally regarded as non-pathogenic (Dobell and Jepps 1917; CDC 2013).  Dientamoeba 

fragilis has been associated with symptomatic and asymptomatic infection (Jepps and Dobell 

1918; Johnson et al. 2004).

Members of Entamoeba share some features in addition to the “bullseye” nucleus.  The 

shape is generally round with 1-3 broad pseudopodia.  A few, such as E. gingivalis, are non-

encysting.  The rest form a spherical cyst that has 1, 4, or 8 nuclei at maturity, depending on 

species.

1.4.3  Cultivation

Generally, cultivation can be helpful for medical diagnosis and species characterization, 

especially when a single "species" can be cultivated by itself, or at least without other similar 

species.  The culture can be used for reinfection experiments, or to determine the conditions 

required for growth.  It can also provide a high concentration of the organism for morphological 

study.  It is helpful to look at many specimens so that various morphotypes within the "species" 

can be observed and recorded to aid in future identification of environmental samples.  

The first in vitro cultivation of Entamoeba was on blood agar with a single bacterium 

species (Musgrave and Clegg 1904 cited by Imperato 1981).  The first success with a non-host-

derived medium involved Locke egg-serum (LES) (Boeck and Drbohlav 1925) and was 

unexpected: Stool from a missionary to Africa who was dysenteric two years earlier was 

13



inoculated into LES to cultivate flagellates (Boeck and Drbohlav 1925).  Amoebae with E. 

histolytica-like nuclei were observed in the stool.  In culture, these amoebae were much more 

prevalent than flagellates after four days, and were maintained by serial culturing for eight 

months.  Two media were used for Entamoeba cultivation, each consisting of a solid phase 

overlaid with liquid.  The first, mentioned above, consisted of coagulated whole egg covered 

with Locke's solution: human serum (8:1).  A second biphasic medium was also successfully 

used by Boeck and Drbohlav (1925), similar to LES but with blood agar instead of egg.  The 

identity of the amoebae was confirmed by morphology and inoculation of four kittens, which 

resulted in amoebic colitis and dysentery, as well as hepatic abscess in one kitten.  Amoebae 

were successfully cultivated from infected kitten feces, demonstrating the presence of a 

pathogenic agent and supporting its identity as E. histolytica.  Dobell and Laidlaw (1926) further 

improved cultivation by comparing the results of various combinations of coagulated horse 

serum, coagulated egg, liquid horse serum, egg-albumin, and rice starch.  Axenic cultivation of 

E. histolytica was achieved in a biphasic medium of coagulated horse serum overlaid with 

diluted nutrient broth, chicken embryo extract, and vitamin supplement (Diamond 1961).

A few NVIE have been cultivated in vitro using a method similar to that for E. 

histolytica. Horse serum is coagulated by heating in a slanted tube and overlaid with liquid and 

rice starch.  Entamoeba aulastomi from horse leech was cultivated to high numbers in this 

medium (Bishop 1932).  E. thomsoni was cultivated from P. americana in a 1:20 dilution of 

inactivated human blood serum in .5% NaCl solution (Smith and Barret 1928).  The identity of 

this Entamoeba was supported by Taliaferro (1928) and observations of his prepared slides by 

Catherine T. Lucas, the original species descriptor (Lucas 1927).
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1.4.4  Molecular-based Study: Ribosomal DNA

The method of riboprinting was developed to quickly and easily distinguish between 

strains of Entamoeba, with the aim of exploring the diversity and phylogeny of many 

Entamoeba isolates and aiding diagnostics (Clark and Diamond 1991a,b; Clark and Diamond 

1997).  In riboprinting, PCR-amplified SSU rDNA is digested with a restriction enzyme, and the 

resulting set of fragment sizes are compared among isolates to help distinguish lineages of 

Entamoeba (Clark and Diamond 1991a).  The process is repeated with 11 enzymes for greater 

coverage of DNA, increasing the likelihood of detecting diversity.  Clark and Diamond (1991a) 

first used riboprinting to clarify the relationship of isolates described as "E. histolytica-like" and 

E. moshkovskii.  Five isolates of E. histolytica-like amoebae had identical riboprint patterns.  Of 

the eight E. moshkovskii isolates, there were five distinct patterns.  Distance matrices based on 

the riboprint data revealed that four of these patterns formed a closely related group, one of 

which was identical to riboprints of the E. histolytica-like amoebae.  The fifth riboprint, EC, was 

unique among the five riboprints, and was more similar to the riboprint of E. histolytica than to 

that of E. moshkovskii.  This strain was later described as a distinct species, E. ecuadoriensis, by 

the same authors (Clark and Diamond 1997).  The ability of riboprinting to predict diversity is 

remarkable, considering that it only samples 5-15% of the SSU rDNA amplicon (Clark 1997; 

Clark and Diamond 1997).  Additional isolates from water, humans, non-human primates, pigs, 

reptiles, and frogs were also assessed by riboprinting (Clark and Diamond 1997).  The findings 

include: high intra-species diversity among Entamoeba coli isolates; two distinct E. gingivalis 

strains, which agree with previous evidence of different isoenzyme patterns between the two 
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isolates (C. C. Cunnick, CGC, and LSP, unpublished data cited by Clark and Diamond 1997); 

seven isolates of E. invadens from turtles, a lizard, and snakes that had identical riboprints; and a 

lack of intra-specific variation among E. histolytica and E. dispar isolates.  Studies of tRNA 

associated genes have since revealed greater diversity within E. histolytica and E. dispar.  Some, 

but not all, of these studies have supported a relationship between genotype and virulence (Ali et 

al. 2007; Ximenez et al. 2010; Zermeno et al. 2013).  This shows one of the limits of the 

resolution of riboprinting for distinguishing virulent strains from non-virulent.  Though 

riboprinting can distinguish between E. histolytica and E. dispar, it may be unable to distinguish 

between virulent and avirulent strains within each of these species.

1.4.5  Molecular-based Study: Pathogenicity

Only three Entamoeba species are confirmed pathogens, so pathogenicity is not a useful 

phylogenetic character for most Entamoeba.  However, the distinction between pathogenic and 

non-pathogenic Entamoeba has been an area of great study due to its medical relevance.  If E. 

histolytica is pathogenic and E. dispar and E. moshkovskii are not, then differentiating these 

species would be important for avoiding unnecessary treatment.  If a single species contains 

pathogenic and non-pathogenic strains, as has been suggested for E. histolytica and E. dispar, 

then distinction at a more specific level (intra-species) may be required (Ali et al. 2007; Ximenez 

et al. 2010; Guzman-Silva et al. 2013; Jaiswal et al. 2014).

The first molecular-based study of Entamoeba was an isoenzyme analysis that revealed 

proteomic differences between pathogenic and non-pathogenic cultures of what were called E. 

histolytica at that time, but later divided into E. histolytica and E. dispar (Sargeaunt et al. 1978).  

16



Research has revealed gene expression in E. histolytica that differs from that in E. dispar and 

may confer virulence to the former.  Some of these genes encode amoebapores for host cell lysis 

and oxygen-reducing proteins that may aid extra-intestinal infection (Nickel et al. 1999; 

Macfarlane and Singh 2006).  Pathogenicity may even vary among strains of E. histolytica.  In a 

study of 111 isolates from individuals in Bangladesh, short tandem repeat (STR)-containing loci 

were amplified from 85 isolates (Ali et al. 2007).  These STR regions are highly polymorphic, 

potentially allowing for finer distinction of lineages.  Analysis revealed a nonrandom distribution 

of Entamoeba genotypes from symptomatic and asymptomatic hosts, suggesting a link between 

genotype and virulence (Ali et al. 2007).  Analysis of additional samples and loci also supports 

the existence of such distinctions among E. histolytica strains. Jaiswal et al. (2014) found that 

allelic variations in tRNA STRs correlated with clinical outcomes, including a difference 

between E. histolytica from dysenteric stool and liver abscesses.  If only SSU rDNA were used, 

these strains would appear identical or nearly so, hence their designation as a single species.  

Transposable genes may add further to the complex nature of pathogenicity.  The retrotransposon 

ehapt2 (E. histolytica abundant polyadenylated transcript 2) is found in E. histolytica but not in 

E. dispar (Willhoeft et al. 2002).  Occasional retrotransposition of ehapt2 may alter gene 

expression to make E. histolytica pathogenic (Willhoeft et al. 2002). This could account for the 

variable pathogenicity of E. histolytica, or for pathogenesis that arises late after infection 

(Willhoeft et al. 2002).

The commonly cited statistic that "only 1 in 10 E. histolytica cases are symptomatic" 

probably requires revision (Walsh 1986).  Clark (2000) explained that E. dispar is more common 

than E. histolytica, and that the statistic was based on microscopy and therefore missed the 
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distinction between the two species.  However, Ali et al. (2007) and Jaiswal et al. (2014) found 

correlation between genotype and symptoms from E. histolytica, suggesting that virulence may 

vary within the lineage currently defined as E. histolytica.  In another study comparing E. 

histolytica/dispar strains, hamsters were intrahepatically inoculated with one of three Entamoeba 

isolates, and liver damage was assessed. (Guzman-Silva et al. 2013).  From most virulent to 

least, the isolates were E. histolytica EGG, E. histolytica HM1:1MSS, and 03C E. dispar 

(Guzman-Silva et al. 2013). These studies suggest intra-species diversity that has implications 

for Entamoeba and its effects on its host.  It also highlights a limit of SSU rDNA regarding the 

resolution it provides for estimating diversity.

The cohabitance of some Entamoeba species may suggest secondary infection preceded 

by E. histolytica (Haque et al. 1998; Mukhopadhyay et al. 2002).  This may be especially true in 

cases where E. dispar is found in liver abscesses, as E. dispar has reduced expression of several 

genes thought to aid in extra-intestinal infection (Nickel et al. 1999; Macfarlane and Singh 

2006).  An initial infection by E. histolytica might aid subsequent infection by other Entamoeba.  

Some strains of E. dispar may be virulent even without the aid of E. histolytica.  The E. dispar 

strain ICB-ADO was isolated from a symptomatic patient and induced lesions when inoculated 

into the liver of lab animals. (Costa et al. 2006).  Five tRNA-gene linked STRs of E. dispar from 

patient livers matched those of ICB-ADO, supporting the notion that virulence is genetically 

based and varies among strains.

 To study the pathogenicity of E. moshkovskii, Shimokawa et al. (2012) injected E. 

moshkovskii Laredo and E. dispar into the caecae of mice.  They used PCR to detect E. 

moshkovskii and determine infection status.  E. dispar did not infect any mice, while E. 
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moshkovskii infected 71% (51/72) of mice.  Of the infected mice, diarrhea was observed in 39% 

and dysentery in 6%.  The same strains of mice that were resistant to E. histolytica were resistant 

to E. moshkovskii, while those more susceptible to E. histolytica were also more susceptible to E. 

moshkovskii.  This suggests similar virulence mechanisms in E. histolytica and E. moshkovskii.

Shimokawa et al. (2012) used the same detection method as for the mice to study E. 

moshkovskii and diarrhea in infants in a Bangladesh urban slum.  One thousand four hundred 

twenty-six diarrheal episodes occurred in the first 12 months after birth in 385 children.  Four 

and sixty-three hundredths percent of episodes were positive for E. histolytica, 2.95% for E. 

moshkovskii, and .35% for E. dispar.  At one and two months before diarrhea, most infants were 

negative for E. moshkovskii, demonstrating a temporal link between infection and symptoms.  

The diarrhea linked to E. moshkovskii was the same as that linked to E. histolytica in severity and 

duration.  While this appears to suggest pathogenicity for E. moshkovskii, only two of the 42 E. 

moshkovskii samples lacked other enteropathogens, so it is possible that E. moshkovskii was not 

the lone causative agent.  

Entamoeba moshkovskii appears to have broad habits and a broad habitat range.  It has 

been reported in humans and salty or polluted water (Clark and Diamond 1991a; Tshalaia 1941; 

Scaglia 1983), and may or may not be pathogenic (Ali et al. 2003).  There are at least six genetic 

variants of E. moshkovskii based on SSU rDNA (Clark and Diamond 1997).  Many of the E. 

moshkovskii reported from humans are genetically similar, suggesting that some variants may be 

more likely to be non-free-living.  For most isolates and habitats, clear relationships between 

strain and habitat remain to be demonstrated.

Similarities in the life cycle of and symptoms from E. invadens and E. histolytica lead to 
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the prediction of similarities in molecular expression too.  Study of the E. invadens genome has 

revealed multiple homologs to the gene domains in E. histolytica for lectins, for attachment; 

cysteine proteases, for breakdown of host extracellular matrix; and amoebapores, for host cell 

lysis (Wang et al. 2003).  For E. invadens, pathogenicity has been associated with host identity, 

but not with Entamoeba strain (Meerovitch 1958b).  Riboprinting of seven E. invadens isolates 

showed no variation in pattern, so intraspecific genetic diversity may be relatively low or 

relatively cryptic (Clark and Diamond 1997).  Snakes inhabited by Entamoeba generally show 

intestinal ulceration, while turtles and tortoises with Entamoeba have been both asymptomatic 

and symptomatic (Hill and Neal 1954; Jacobson 1983; MacNeill et al. 2002).  Other reptile-

inhabiting Entamoeba, such as E. barreti, E. terrapinae, and E. insolita, are not known to be 

pathogenic (Neal 1967).

1.4.6  Sex

While karyogamy has never been observed for Entamoeba, some molecular studies 

support the possibility of genetic exchange.  Sargeaunt (1985) combined clonal cultures of 

distinct and consistent isoenzyme patterns to see if they would result in amoebae with a new 

pattern.  To ensure that the initial cultures were clonal, each medium was inoculated with only a 

single amoeba.  Forty-eight hours after mixing, a third zymodeme (a group sharing the same 

isoenzyme pattern) was found in one of 152 attempts at clonal culture.  While the author 

recognizes the possibility of mutation, he considers it unlikely because a mutation in isoenzyme 

pattern had not been observed in cultures even nine years after isolation.  In a later experiment, 

cultures were mixed in a syringe and injected into rats (Sargeaunt et al. 1988).  Combinations of 
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three strains produced two hybrid patterns after 72 hours.  Blanc et al. (1989) combined different 

zymodemes in pairs and subcultured each mixture every 24, 48, or 72 h.  Three combinations 

produced single-cell clones with unique zymodemes, suggesting genetic exchange.  When some 

of these were mixed again with a parent strain, the unique zymodeme predominated, showing 

stability of the new strain.  Still, the validity of these studies is controversial.  Clark and 

Diamond (1993) were unable to observe conversions.  They also demonstrated that only a slight 

contamination event could result in data that would erroneously suggest conversion.

Ximenez et al. (2010) suggested that the high genetic diversity among E. dispar isolates 

and their ability to co-infect with E. histolytica could support the hypothesis of recombination 

between E. histolytica and E. dispar, and possibly the acquisition of virulence genes by E. dispar 

from E. histolytica.  Haplotype diversity and distribution of two STR-linked tRNA loci for 

isolates from around the world suggest recombination (Zermeno et al.  2012).  The occurrence of 

meiosis-related genes in the E. histolytica genome provides additional support for this possibility 

(Ramesh et al. 2005; Stanley 2005).

1.4.7  Social Behavior

While few studies have explicitly focused on communication between Entamoeba, one 

recent study on the topic demonstrated kin recognition among strains of E. invadens.  Espinosa 

and Paz-Y-Mino-C (2012) fluorescently labeled one strain of E. invadens red and the other 

green.  They then combined the strains in a plate and observed the mixture after 12-36 hours.  

Amoebae of the same color clustered together, suggesting that they recognized  members of their 

own strain and aggregated preferentially.  As a control, they combined red and green members of 
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the same strain.  Clustering of same colored amoebae was not observed, confirming that 

clustering in the mixed-strain experiment was due to social behavior and not rapid reproduction.

1.5  Evolution

How do these Entamoeba lineages relate to one another?  How did this diversity arise? 

Specifically, what are the patterns of gain and loss of characters over time?  These are some of 

the questions that can be addressed by reconstructing phylogeny.  Creating such a map also 

provides a basis for classifying organisms, one that is based on an objective reality of patterns 

over time. Phylogeny provides a way to articulate the relationships between extant taxa and to 

probe the gain and loss of characters in ancestors.  

1.5.2  Phylogeny of Entamoeba

1.5.2.1  Monophyly of Entamoeba

To study the relationship of Entamoeba to other eukaryotes, Silberman et al. (1999) 

amplified, sequenced, and phylogenetically analyzed SSU rDNA of Entamoeba from primates, 

reptiles, amphibians, sewage, and a pig.  A maximum-likelihood tree was constructed for these 

taxa and other eukaryotes, including the closely related Endolimax nana and Mastigamoeba 

balamuthi.  The tree supported Entamoeba as a monophyletic group with maximum bootstrap 

support.  Ptackova et al. (2013) also recovered strong bootstrap support for Entamoeba in a 

maximum-likelihood tree that included SSU rDNA of non-Archamoeba outgroups and the 

closely related genera Pelomyxa, Rhizomastix, Mastigamoeba, and Iodamoeba.  Lahr et al. 

(2011) constructed a maximum-likelihood tree of 139 amoeboid lineages using SSU rDNA and 
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actin gene, and recovered strong support for the monophyly of the three Entamoeba taxa 

included.                                                                          

1.5.2.2  Position in Amoebozoa and Archamoeba

Cavalier-Smith (1983) suggested that amitochondriate amoebae such as Entamoeba and 

Pelomyxa palustris be placed in a group called Archamoeba, the prefix “Arche” implying a 

primitive, amitochondriate state.  He was correct in that molecular-based studies support the 

group’s monophyly (Milyutina et al. 2001; Fahrni et al. 2003; Stensvold et al. 2012).  However, 

it may be less primitive than he predicted.  The group's LCA was more likely to have undergone 

secondary mitochondrial loss than to have diverged before mitochondria were acquired by the 

ancestral eukaryote.  Archamoeba lack canonical mitochondria and were once thought to be 

among the earliest branching eukaryotes, a conclusion supported by SSU rDNA analysis 

(Cavalier-Smith 1983).  However, multi-gene analysis and the discovery of mitochondrial-

derived genes and organelles later suggested a secondary loss of mitochondria and less primitive 

phylogenetic position (Tovar et al. 1999; Leon-Avila and Tovar 2004; Gill et al. 2007).

Multiple scientists recovered Archamoeba as a monophyletic group in molecular-based 

analyses.  Lahr et al. (2011) recovered the group in SSU rDNA and actin gene maximum-

likelihood trees, albeit with low support.  Silberman et al. (1999) recovered the grouping of 

Mastigamoeba with Entamoeba in maximum-likelihood and parsimony SSU rDNA trees with 

high and moderate support, respectively.  Ptackova et al. (2013) recovered Archamoeba with 

moderate support using SSU rDNA and a rich taxon sampling of non-Archamoeba and 

Entamoeba, Mastigamoeba, Pelomyxa, Endolimax, and Rhizomastix.
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Stensvold et al. (2012) recovered monophyly of Archamoeba when they analyzed rDNA 

of 16 Archamoeba and 12 other Amoebozoa.  Analyzing a broad taxon sampling of eukaryote 

SSU rDNA, Milyutina et al. (2001) recovered strong support for Archamoeba as a monophyletic 

group including Entamoeba, Endolimax, Mastigamoeba, and Pelomyxa.  Fahrni et al. (2003) 

broadly sampled SSU rDNA and actin of Amoebozoa and other eukaryotes and recovered 

Archamoeba as a monophyletic group with moderate support in Amoebozoa.

1.5.2.3  Relationships within Entamoeba  

Early molecular studies supported an Entamoeba phylogeny based on nuclei/cyst (Clark 

1997; Silberman et al. 1999) (Fig. 2).  However, later SSU rDNA studies revealed exceptions 

that refuted this hypothesis.  Clark et al. (2006) found that uninucleate-encyster E. suis branched 

with non-encyster E. gingivalis, rather than with the other uninucleate-encysters.  Later, 

Stensvold et al. (2010) found more evidence for paraphyly of uninucleated cyst-producers, in the 

form of multiple uninucleate-encysters branching within an otherwise quadrinucleate-encyster 

clade.  Molecular data can help resolve morphological gain or loss events not apparent in 

phylogenies based on parsimony of morphological characters alone.  Stensvold et al. (2011) 

analyzed a total of 91 sequences after recovering additional SSU rDNA samples from humans, 

non-human primates, and pigs (Fig. 3).  If the difference in taxon sampling is accounted for, they 

recovered a branching pattern similar to that of Silberman et al. (1999).

Molecular-based phylogenies have become a popular framework for organizing taxa.  

Unfortunately, organisms without molecular data, such as NVIE, are excluded from such 

pictures.  These organisms are also less likely to be included in non-phylogenetic frameworks, 
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such as ecological ones, simply because they are less visible to the scientific community.

1.5.2.5  Pathogenicity

Pathogenicity has not been observed for NVIE, although its absence should not be 

assumed.  NVIE have been observed far less than VIE, making discovery of pathogenesis less 

likely for them. The topic of pathogenicity has also not been specifically studied for NVIE.  Even 

among VIE, there is likely some bias in our view of the occurrence of pathogenicity.  Reports of 

pathogenesis in vertebrates are from humans or captive primates and reptiles, as these are most 

likely to capture attention and encourage investigation.  In reality, pathogenicity may occur for 

more Entamoeba and hosts than has been reported. 

1.6  Cockroaches

This section reviews cockroach systematics, habits that may affect microbial inhabitants, 

and microbes associated with the host.  These factors may have direct implications on the 

evolution and diversity of microbial inhabitants.

The phylogeny of cockroaches can be compared to that of its inhabitants to learn about 

their relationship over time.  A close match would suggest an ancestral relationship and lack of 

transfer events between hosts.  The habits of cockroaches may affect the transmission of 

microbes, which may affect the prevalence and isolation of microbial lineages.  Differences in 

host habits may affect microbial transmission between or within host species.  If isolation is 

high, the resulting divergence might increase the genetic diversity and host specificity of 

microbial inhabitants (Clopton and Gold 1996; van Hoek et al. 1998).
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Reviewing the research of non-Entamoeba microbes in the cockroach will provide some 

perspective on the biotic factors of the cockroach as a habitat, the microbe-cockroach 

relationship in recent and evolutionary time, and the thought processes involved in discerning 

such relationships.  Studies of cockroach-associated Entamoeba are reviewed here carefully, 

keeping in mind that in some cases, we do not know enough about these Entamoeba to 

distinguish between those merely vectored by the host and those actively inhabiting it.  

Improving our ability to distinguish between these will be required for interpreting Entamoeba’s 

habits in the cockroach.      

1.6.1  Phylogeny and Classification of Blattodea

Cockroaches and termites comprise the monophyletic order Blattodea (Inward et al. 

2007).  Task specialization and unequal reproductive potential in termites are among the 

characters that distinguish them from cockroaches.  Blattodea is diverse and speciose; about 

4,500 cockroach and 2,600 termite species have been described (Gibbons et al. 1994; 

Kambhampati and Eggleton 2000).  The six traditionally recognized cockroach families are: 

Blaberidae, containing many of the large tropical species; Blattidae and Blatellidae, containing 

domiciliary cockroaches; Cryptocercidae, consisting of wood-eaters; Polyphagidae, consisting of 

burrowers;  and Nocticolidae, consisting of cave-dwellers (Roth 2003 as cited by Bell et al. 

2007).  Analysis of genes and neuropeptides supports the monophyly of all families except 

Blattellidae, which is paraphyletic (Inward et al. 2007; Roth et al. 2009)(Fig. 4).  Termites 

branch among the cockroach taxa, sister to Cryptocercidae (Inward et al. 2007; Roth et al. 2009). 

Shared cellulase genes supports the grouping of Cryptocercidae and termites (Todaka et al. 
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2010).  Similarity in the gut microbiota of termites and non-wood-eating cockroaches supports 

shared ancestry (Schauer et al. 2012).  

 
1.6.2  Habits Likely to Effect Transmission of Gut Inhabitants

Greater microbial transmission is predicted to increase prevalence and decrease isolation 

of microbes.  If isolation is low, host specificity may also be low.  If transmission is restricted, 

the resulting divergence could increase genetic diversity and host specificity.  Transmission is 

expected to occur more frequently in some host groups, such as conspecifics of an aggregative 

species, and less frequently between different host species, genera, or non-cohabiting 

populations.  The following behaviors may increase microbial transmission in cockroaches: 

aggregation, parental care, allo- and auto-grooming, and coprophagy. 

Cockroaches live primarily in tropical regions, though pest species that rely on humans 

for food, moisture, and warmth are found globally in human-inhabited regions.  Most 

cockroaches are not pests, but are ecologically important detritivores in foliage, leaf litter, soil, 

and caves.  They vary in sociality, diet, reproductive mode, parental care, and association with 

other animals- all habits that may effect microbial transmission and maintenance.  Some 

cockroaches, such as Macropanesthia rhinoceros, are solitary. Others, such as Cryptocercus 

punctulatus (brown-hooded cockroach), live in family units.  Others, such as P. americana, 

aggregate with both related and unrelated conspecifics.  Some associate with other animals, 

which may provide opportunities for inter-species microbial transmission:  Pycnoscelus 

surinamensis (Surinam cockroach) follow scent trails of ants to food and temporarily inhabit 
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their nests (Deleporte et al. 2002); females of Nyctibora acaciana lay oothecae on ant-acacia so 

that the ants will protect them from parasitic wasps (Deans and Roth 2003); Nocticola 

termitophila inhabit termite nests (Silvestri 1946 as cited in Bell et al. 2007); Parcoblatta 

pennsylvanica (Pennsylvania wood cockroach) may inhabit honeybee hives (unpublished 

observation by Dr. Allen Szalanski, University of Arkansas); and Paratemnopteryx 

kookabinnensis eat bat guano (Slaney 2001).  These associations may have implications for 

Entamoeba transfer between cockroaches and other animals, especially those which are known 

hosts, such as bees (Fantham and Porter 1911).

Transmission of microbes by conspecific coprophagy has been demonstrated for some 

cockroaches, such as P. americana (Cruden and Markovetz 1984).  Oral trophallaxis has been 

observed for some cockroaches, such as the wood-eating Salganea esakii (Shimada and 

Maekawa 2011).  Microbes may also be transported by simply walking around.  Durier and 

Rivault (2000) found that the intensity of this "trampling" behavior correlated with transmission 

of a toxic bait.  It is possible that this behavior also contributes to microbial transmission.  These 

behaviors lead one to hypothesize that many of the same Entamoeba variants would be found 

across cockroaches within a single wild population.  Cockroaches kept in small cages could have 

even more homogeneity in the Entamoeba variants they harbor.

1.6.3  Vectored Entamoeba

In urban South Taiwan, 299 P. americana and 29 B. germanica from 11 primary schools 

were microscopically examined for E. histolytica/dispar.  E. histolytica/dispar cysts were found 

on the cuticle and/or in the guts of 25.4% of P. americana and in the guts of 10.3% of B. 
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germanica (Pai et al. 2003).  In India, 159 B. germanica were collected from a hospital and 120 

from a residential area five km away (Fotedar et al. 1991).  Cuticle and guts were used to 

inoculate plates and broths, which were examined microscopically with staining.  Entamoeba 

coli were detected in 1.8% of cockroaches and E. histolytica in 0.4%.  Examination of 76 P. 

americana from an Iraq hospital and residential area revealed higher infection rates than of B. 

germanica in the India study (Al-bayati et al. 2011; Fotedar et al. 1991).  Entamoeba histolytica 

cysts were found on 19.7% cockroaches and in the guts of 11.8%, and Entamoeba coli on 47.3% 

and in the guts of 26.3%.  In Ethiopia, body washes and gut contents of 6,480 cockroaches from 

four species were microscopically examined for cysts (Kinfu and Erko 2008).  Entamoeba coli 

was found on the cuticle and in the gut of B. germanica and Periplaneta brunnea, in the gut of 

P. surinamensis, and was absent in Supella longipalpa.  Entamoeba histolytica was found on the 

cuticle and in the gut of B. germanica and P. brunnea, but was absent in the other cockroach 

species.  Among 920 cockroaches (primarily P. americana) from open-air shopping markets in 

Thailand, Entamoeba histolytica/dispar cysts were found in 4.6% of cockroaches and 

Entamoeba coli in 4.0% (Chamavit et al. 2011).  

In these microscopy-based studies, it is possible that some true-inhabiting (rather than 

passively vectored) Entamoeba were misidentified as human-inhabiting Entamoeba.  Scientists 

searching for human pathogens in cockroaches may be more likely to assign cysts to human-

inhabiting species than to E. thomsoni or a new species.  Improved characterization of 

cockroach-inhabiting Entamoeba would improve our ability to distinguish them from human-

inhabiting species passively carried by the cockroach, improving our estimation of the 

cockroach’s role in vectoring human-inhabiting Entamoeba.

29



1.6.4  Non-Entamoeba Vectored Microbes

Human-infecting eukaryotes vectored by cockroaches include the amoeba Endolimax 

nana (Fotedar et al. 1991); the yeast Candida sp. (Fotedar et al. 1991); and the worms 

Enterobius vermiculis, Trichuris trichiura, Taenia spp., and Ascaris lumbricoides (Kinfu and 

Erko 2008).  Human-infecting prokaryotes include Escherichia coli, Klebsiella spp., 

Pseudomonas aeruginosa, and Staphylococcus aureus (Fotedar et al. 1991; Pechal et al. 2007).

1.7  Taxonomy

Newly discovered diversity and improved characterization of previously observed 

Entamoeba requires us to continually assess our classification system.  Entamoeba can be 

unambiguously distinguished from other genera by its “bull's eye” nucleus.  Species 

characterization, on the other hand, is a more complex subject.  It is particularly difficult for 

organisms with poorly known sexual habits, such as Entamoeba, because they cannot be 

distinguished by sexual compatibility.  Within Entamoeba, species have typically been 

characterized by morphology, pathogenicity, host, and genetics.  It is generally agreed that a 

species must have the potential to create more individuals of the same species.  Most would find 

this definition too narrow, but it is a good starting point for discussion.  In common use, species 

are more than simply a genetic lineage, in that members share phenotypically expressed 

characters or behaviors that distinguish them from other species.  Much of the subjectivity of 

species concepts lies in judging the relative importance of various characters for delineating 

species.
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1.7.1  Identification

Species characterization requires identification, because a lineage must be distinct to be 

given a unique name.  The host is sometimes used for identification if previous knowledge of 

Entamoeba in that host is available.  For example, an eight nuclei/cyst Entamoeba in a patient is 

likely to be identified as Entamoeba coli, because this is the only eight nuclei/cyst Entamoeba 

known from humans.  However, such a strategy is probably more useful for humans than for less 

studied hosts.  Stensvold et al. (2010) revealed several new VIE via molecular methods and 

microscopy, showing that there is more Entamoeba diversity in vertebrates than previously 

thought.  

Nuclei per cyst is a readily observable character that allows for some differentiation 

between lineages.  Though there are multiple lineages with the same number of nuclei per cyst, 

this can still allow for the elimination of some possibilities during identification.  In humans, for 

example, nuclei per cyst can be used to distinguish Entamoeba coli from E. histolytica, E. dispar, 

and E. moshkovskii.  The latter three species are indistinguishable by morphology, so 

pathogenicity or molecular data are required.    Pathogenicity is the main character responsible 

for their categorization as separate species.  These three species are genetically similar, though 

not identical, so molecular data also supports the split (Clark and Diamond 1991a,b).  On the 

other hand, strains of Entamoeba coli have greater genetic distance than E. histolytica and E. 

dispar, yet are defined as a single species; there are no differences other than genetics that 

consistently distinguish Entamoeba coli strains from each other (Clark and Diamond 1997; 

Stensvold et al. 2011).  Genetic differences by themselves are not enough in this case to support 

the splitting of Entamoeba coli strains into multiple species.
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In some cases, molecular data support the lumping of species, such as E. polecki and 

Entamoeba struthionis into E. polecki (Clark et al. 2006); in other cases, they support the 

splitting of a species, such as E. histolytica into E. histolytica and E. dispar (Clark and Diamond 

1991b; Diamond and Clark 1993). Additional molecular data may soon result in additional 

splitting.  For example, there may be pathogenic and non-pathogenic strains of E. histolytica, 

which some could argue are different species (Ali et al. 2007).  There is no universally agreed 

upon genetic distance at which two lineages are different species.  Even if there were, genetic 

distance by itself would be unconvincing, as a single type of evidence is usually insufficient for 

delineating species.  Similarly, if pathogenicity was found in some Entamoeba isolates and not 

others, to convincingly argue for different species one would have to prove that they are also 

genetically unique.  When lineages are delineated by ribosomal data and little else, scientists are 

often cautious about defining species.  They sometimes label lineages as “ribosomal lineages” 

instead (Stensvold et al. 2011).

1.7.2  Host

A single Entamoeba species may be restricted to a single host species or genus, or it may 

have a broader host range.  For example, E. invadens has been reported in lizards, snakes, and 

turtles (Chia et al. 2009; Hill and Neal 1954; Meerovitch 1958a; Macneill et al. 2002) E. polecki 

may be transmitted from pigs to humans (Desowitz and Barnish 1986); and E. histolytica can 

inhabit multiple primate species and experimentally cross-infect kittens (Kruse and Pasquale 

1894; Samanta and Dey 2000; Verweij et al. 2003).  "So in diagnostics the species of Entamoeba 

frequently is simply adjusted to the most common species found in the respective host" (Clark 
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and Diamond 1997 as paraphrased by Richter et al. 2008).  Entamoeba chattoni has been 

reported mostly from non-human primates, but has occasionally been found in humans too.  It is 

possible that it is transmitted to humans in situations of close and repeated contact, such as 

zookeeping (Sargeaunt et al. 1982).  Morphologically identical uninucleate-encysters from 

various mammals have been given different names, such as "E. bovis in cattle, E. ovis in sheep, 

E. suis and E. polecki in pigs, E. debliecki in pigs and goats, and E. chattoni in monkeys" 

(Verweij et al. 2001).  However, it is unclear whether these are distinct lineages or a single 

lineage capable of inhabiting multiple hosts (Verweij et al. 2001).  Molecular data reveals 

diversity within the uninucleate-encyster clade, but until uninucleate-encysters from more hosts 

are assessed molecularly, the validity of these names will remain uncertain.

1.7.3  Pathogenicity

Many “non-pathogenic E. histolytica” have now been defined as E. dispar (Diamond and 

Clark 1993).  It is often mentioned that symptoms only arise in 10% of people infected with E. 

histolytica, though the reason for such a high proportion of asymptomatic cases is mostly 

unknown (Walsh 1986).  Some of the 90% that did not show symptoms are likely infected by 

nonpathogenic strains of E. histolytica or E. dispar (Ali et al. 2007; Ximenez et al. 2010; 

Guzman-Silva et al. 2013; Jaiswal et al. 2014).  Others may involve strains that are only 

symptomatic under certain conditions.  For example, the virulence of E. histolytica in hamsters 

was increased when the culture was mixed with bacteria prior to inoculation (Wittner and 

Rosenbaum 1970).  In another experiment, E. histolytica was intracecally inoculated in germfree 

guinea pigs, some of which were then fed various bacterial monocultures (Phillips and Gorstein 
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1966).  At least some guinea pigs in each bacterially inoculated sample developed amebic lesions 

using an Entamoeba concentration that did not produce lesions in the control group.  Infection 

rates also varied by bacterial species (Phillips and Gorstein 1966).  Spector (1935) similarly 

found increased pathogenesis when E. histolytica was intrarectally injected into kittens in 

combination with various bacteria.  In this case also, infection patterns varied by bacterial 

species.  This emphasizes the need for a holistic approach when analyzing gut microbiota and 

their influence on the host.  It may be useful to study microbes that are unknown to play a 

significant role in gut ecology or host health, as they may influence these things in ways that are 

yet undiscovered.

Entamoeba thomsoni was discovered in cockroaches in 1927 (Lucas) and later reported in 

cockroaches by Kidder (1937), Meglitsch (1940), and Hoyte (1961).  In this study, I used 

molecular methods to screen eight cockroach species for Entamoeba and to assess the phylogeny 

of these Entamoeba.  Many Entamoeba variants were detected from the three cockroach species 

previously known to harbor E. thomsoni, as well as from five cockroach species previously 

unknown to harbor Entamoeba.  We do not have the data required to relate the SSU rDNA 

sequences to particular morphologies, so we do not know how these variants relate to E. 

thomsoni.  Suggesting species delineation for the new sequences would be premature, as the only 

data we have are sequences and hosts.  The lack of host specificity for most clusters in my 

phylogenetic tree makes it difficult to define groups based on host species.  Replicating the 

prudently cautious nomenclature of other scientists for similar types of data, I recommend that 
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the taxa associated with the new sequences be described as "variants" or "ribosomal lineages" 

until more is known.  Though these data are insufficient for species delineation, they provide 

strong evidence for high genetic diversity of Entamoeba in cockroaches.      
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Fig. 1.  From CDC (2010).  “Cysts and trophozoites are passed in feces (1). Cysts are typically 
found in formed stool, whereas trophozoites are typically found in diarrheal stool. Infection by 
Entamoeba histolytica occurs by ingestion. of mature cysts (2) in fecally contaminated food, 
water, or hands. Excystation (3) occurs in the small intestine and trophozoites (4) are released, 
which migrate to the large intestine. The trophozoites multiply by binary fission and produce 
cysts (5), and both stages are passed in the feces (1). Because of the protection conferred by their 
walls, the cysts can survive days to weeks in the external environment and are responsible for 
transmission. Trophozoites passed in the stool are rapidly destroyed once outside the body, and if 
ingested would not survive exposure to the gastric environment. In many cases, the trophozoites 
remain confined to the intestinal lumen (A: noninvasive infection) of individuals who are 
asymptomatic carriers, passing cysts in their stool. In some patients the trophozoites invade the 
intestinal mucosa (B: intestinal disease), or, through the bloodstream, extraintestinal sites such as 
the liver, brain, and lungs (C: extraintestinal disease), with resultant pathologic manifestations.”
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Fig. 2.  From Silberman et al. (1999).  "An unrooted phylogenetic reconstruction based on 16S-
like rDNA exploring the relationships among Entamoeba species. A maximum-likelihood tree 
derived under a GTR model employing estimates of the proportion of invariant sites (PINVAR) 
and rate heterogeneity among sites (a value) is shown. Bootstrap numbers from 100 replicates of 
maximum likelihood, minimum evolution, and parsimony, respectively, are shown above the 
nodes.  Nodes with significant bootstrap support are shown, and asterisks indicate bootstrap 
values less than 50. The scale bar represents the evolutionary distance for the number of changes 
per site. PINVAR 5 0.478, a 5 0.966."
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Fig. 3.  From Stensvold et al. (2011).  "Phylogenetic relationships among SSU rRNA gene 
sequences of Entamoeba species. The tree shown is the one inferred using the Neighbor-Joining 
method. The evolutionary distances were computed using the Maximum Composite Likelihood 
method with rate variation among sites modelled using a gamma distribution (shape parameter = 
0.5). The percentage of trees clustered together in the bootstrap test (1,000 replicates) and the 
posterior probabilities (expressed as a percentage) are shown next to the branch nodes in the 
order PhyML/MrBayes/Neighbor-Joining.  An asterisk indicates a value of less than 50% and if 
two or three analyses gave a value of lower than 50% no values are shown for that node. 
Accession numbers for the sequences generated in this study and reference sequences are listed 
parentheses with the Latin name of the host. n/a = not available. 
Bar = estimated number of substitutions per site."

38



Fig. 4.  From Inward et al. (2007).  "Topology of Bayesian majority rules consensus tree of 2501 
trees. Red branch indicates position of Cryptocercus, blue branches indicate termite lineage. 
Numbers under the branches indicate posterior probabilities (i.e. the proportion of the 2501 
sampled trees that contain the node) for key nodes. Names of major clades (e.g. superfamilies) 
are provisional."
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Chapter 2: Analysis of Entamoeba in Cockroaches using SSU rDNA

2.1  Abstract

The aim of this study was to explore the evolution, diversity, and occurrence of 

Entamoeba in cockroaches by analyzing SSU rDNA.  The process was enabled by primers 

designed in our lab that are specific for Entamoeba SSU rDNA.  This provided us a sensitive 

method for detecting Entamoeba, as well as a method for collecting data on a large number of 

characters- close to 1600 for each sequence recovered.  Sixty cockroaches across eight species 

were screeened, and Entamoeba were detected in 56 of them.  All species had at least one 

infected representative.  Sequences were collected from 28 of these specimens.  Most of the 

sequences were from the hindgut.  Some were also recovered from non-hindgut regions, though 

these were predicted to be the result of contamination due to the decreased occurrence of non-gut 

detection as dissecting experience increased.  Sequences were used to construct maximum-

likelihood trees.  Most new sequences formed a clade sister to the one predominated by 

vertebrate-inhabiting Entamoeba.  The clade was highly diverse and composed of at least nine 

distinct sub-clades.  The few sequences that did not belong to the novel clade grouped with E. 

moshkovskii, an Entamoeba previously reported in anaerobic sediments and humans, in which it 

is potentially pathogenic.  Overall, these data have doubled the known genetic diversity of 

Entamoeba and show that infection may be widespread among cockroaches.  While the genetic 

diversity may indicate diversity in other taxonomically significant areas, it is premature to 

delineate species within the novel clade until additional biological features are attributed to 

particular taxa or sub-clades.  
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2.2  Introduction

While human-infecting lineages are the most well-studied of Entamoeba, they represent 

only a small portion of the group's biodiversity.  Molecular-based analyses of Entamoeba from 

humans and other vertebrates such as mice, deer, cows, and snakes revealed that Entamoeba is a 

genetically diverse genus (Clark and Diamond 1997; Silberman et al. 1999; Stensvold et al. 

2011).  Still, Entamoeba from the most populous host species have been largely ignored in 

phylogenetic studies.  There has been little molecular data on non-vertebrate-inhabiting 

Entamoeba (NVIE) prior to this study (Chang 2010).  If non-vertebrates are more abundant than 

vertebrates and have a high infection rate, then the most prevalent Entamoeba are not currently 

represented in phylogenetic reconstructions.

Entamoeba were often studied with regards to their pathogenicity on primates (especially 

humans) (Boettner et al. 2008; Tachibana et al. 2009) and reptiles (Donaldson et al. 1975; Hill 

and Neal 1954).  However, only three Entamoeba species are confirmed pathogens.  Studies on 

the pathogens are a good contribution to medical science, but to better understand the group's 

evolution, studying all members of the genus is crucial.  Such studies would allow for mapping 

character-state transitions of virulence factors, in addition to other phylogenetically informative 

features.  Both evolutionary and medical sciences would be well-served by such research.

The few reports of Entamoeba from invertebrates are based solely on morphology.  Aside 

from studying the role of invertebrates in vectoring Entamoeba, no work has been published on 

Entamoeba in these hosts since Hoyte (1961).  Little is known regarding the behavior, ecology, 

and phylogeny of invertebrate-infecting Entamoeba.  Morphology by itself is insufficient for 

understanding the diversity of Entamoeba because many phylogenetically informative 
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differences are not superficially apparent.  Nuclei per cyst is a prime example.  This character 

was traditionally considered an important taxonomic character for identification and phylogeny 

of Entamoeba, and in early molecular-based studies it consistently correlated with groupings 

suggested by SSU gene analysis (Clark and Diamond 1997; Silberman et al. 1999).  However, 

later studies revealed exceptions to this rule (Stensvold et al. 2010; Stensvold et al. 2011).

It would be phylogenetically informative to study the differences and similarities in 

species' habits, as it might provide a basis for distinguishing species and understanding 

biodiversity.  However, such experiments are difficult when different species are 

indistinguishable by standard methods, as has often been the case for Entamoeba with light 

microscopy (Clark and Diamond 1991a; Diamond and Clark 1993; Stensvold et al. 2010).  

Molecular methods can help, as they can discern between lineages less ambiguously.  Molecular 

data is especially important for species delineation within Entamoeba because of the paucity of 

morphological differences and the possibility of evolutionary convergence.  Still, it is important 

to remember that though molecular data can help distinguish lineages, it is not generally 

sufficient for species delineation.  Most scientists would consider molecular data with other, non-

molecular aspects of the lineage before delineating species (Clark and Diamond 1997; Verweij et 

al. 2001; Stensvold et al. 2011).  

 Most Entamoeba form desiccation-resistant cysts that aid transmission.  A cyst can have 

8, 4, or 1 nucleus or nuclei.  This number is consistent within a genetic lineage over a short 

period of time, but is not always consistent in broader phylogenetic groups (Stensvold et al. 

2010; Stensvold et al. 2011).  Therefore, nuclei per cyst does not necessarily indicate 

phylogenetic position, and is not used as the sole criterion for such positioning.  At a minimum, 
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host identity is used in conjunction with nuclei per cyst for species characterization.  

Unfortunately, this can result in two names for a single genetic strain if it infects multiple host 

species.  In such cases, molecular analysis can help delineate species.  For example, Entamoeba 

polecki from pig and Entamoeba struthionis (Gordo et al. 2004) from ostrich were once 

described as separate species, but a high similarity in SSU rRNA gene sequences led Clark et al. 

(2006) to reclassify them as E. polecki subtypes rather than separate species.  Conversely, 

molecular data can be used to distinguish between multiple Entamoeba lineages in the same host 

species, especially if they are suspected of having a different morphology or life history.  For 

example, molecular data can be used to distinguish between morphologically identical E. 

histolytica, E. dispar, and E. moshkovskii, all of which vary in suspected pathogenicity (Clark 

and Diamond 1991a,b; Diamond and Clark 1993; Shimokawa et al. 2012).  As these examples 

demonstrate, data on more than one variable are ideal for judging whether genetically distinct 

lineages are separate species or multiple variants of a single genetically diverse species.  Data for 

many of these variables are missing for non-vertebrate-inhabiting Entamoeba (NVIE), so I will 

use "variant" instead of "species" for denoting the genetically defined lineages uncovered here.

Entamoeba histolytica, E. dispar, and E. invadens sometimes invade non-gut organs- 

most commonly, the liver (Hill and Neal 1954; Ximenez et al. 2010).  NVIE have only been 

reported from guts, though non-gut organs of invertebrates have not been sufficiently screened.  

They have certainly not been screened for Entamoeba using molecular methods, which may have 

a stronger detection sensitivity than direct count by microscopy.  In this study, non-gut organs of 

some cockroach specimens were screened for Entamoeba to see if migration to non-gut organs 

occurs in cockroaches.  
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Microbes are thought to have played a major role in the evolutionary trajectory and 

success of insects in the monophyletic order Blattodea (Nalepa et al. 2001).  Periplaneta 

americana is a gregarious and abundant Blattodean that often lives in close association with 

humans.  Such a lifestyle is likely to provide many opportunities for Entamoeba to travel 

between conspecifics or between cockroach and human.  Determining the genetic lineages 

present in cockroaches will make it easier to study transmission, both on the time scale of a 

single genetic lineage as well as that of evolutionary significant transfer events.  Studying 

Entamoeba phylogeny in the context of P. americana's evolutionary history will improve our 

understanding of phylogeny in both groups and the relationship between host and microbe over 

time. 

   Prior to this study, it was difficult to estimate the contribution of NVIE to total 

Entamoeba diversity because there was no molecular data for them.  We have used genus-

specific primers to gather Entamoeba SSU rDNA sequences from eight cockroach species.

2.3  Methods

2.3.1  Roach Collection and Dissection

Of the eight cockroach species studied, P. americana was the most heavily sampled 

(Tables 1 and 2).  Sixteen P. americana cockroaches were obtained from Carolina Biological 

Supply Company (Burlington, North Carolina) and 18 from the University of Arkansas, 

Fayetteville campus.  Cockroaches from Carolina were processed at various times, some as late 

as 18 months after purchase.  They were housed at room temperature in 26x15x15 cm plastic 
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cages containing 5-20 adult cockroaches and a variable number of sub-adults.  They were fed dry 

cat food, oatmeal, and occasional fruit (approximately once a week to once a month).  Wild 

cockroaches were hand-caught within or in close proximity to buildings.  Some were temporarily 

housed together, while others were housed individually for up to 24 hours (P. americana 10 

through 31) to collect specimen-specific feces.  They were given oatmeal and water as needed 

(approximately once a week).  Each cockroach was prepared for evisceration by carbon dioxide 

or ethyl acetate-induced knockout, followed by severance of the head.  For both methods, the 

cockroach was first placed in a 50 mL plastic tube.  For the carbon dioxide method, a tube 

connected to a gas tank was inserted between the partially-open lid and 50 mL plastic tube, and 

gas was released until the cockroach was still.  Within a few minutes of knockout, the head was 

severed by cutting the neck with an ethanol-wiped razor blade.  With this method, the legs, 

mouthparts, and antennae would often begin moving after a few minutes, even after decapitation. 

For the ethyl acetate method, a Kimwipe (Kimberly-Clark, Irving, Texas) was crumpled and 

insterted into the 50 mL tube after the cockroach, and 3-6 drops of ethyl acetate was added to the 

Kimwipe.  The tube was then sealed, and reopened in a few minutes after the cockroach stopped 

moving.  I switched from the carbon dioxide method to the ethyl acetate method because the 

latter appeared to cause complete cessation of movement.  This method seemed more humane 

and also facilitated dissection because I no longer had to deal with moving parts.  After 

decapitation, the body was pinned ventral side up on a silicone-filled dish.  Iris scissors (1 cm 

cutting edge, Bioquip, Rancho Dominguez, California) and forceps (Bioquip) were used to 

remove abdominal sternites and fat to expose the digestive organs, which were then carefully 

excised using forceps and scissors.  Dissection tools were periodically flame-sterilized to avoid 
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contamination.  Hindgut, defined as the colon and rectum, was stored for each specimen 

separately at -80°C.

Specimens of the other seven cockroach species were obtained from various sources in 

living condition unless otherwise noted and eviscerated in the same manner as P. americana.  

Five living Gromphadorhina portentosa were obtained from a colony maintained by Dr. Donald 

Steinkraus (University of Arkansas, Entomology Department).  Four Blattella germanica were 

obtained from apartments in Fayetteville, Arkansas.  Three Blatta orientalis were obtained in 

close proximity to each other and to a building on the University of Arkansas campus.  Four 

Blaberus giganteus were obtained from Carolina Biological Supply Company.  Three 

Parcoblatta pennsylvanica were found in honeybee traps at the University of Arkansas Research 

Farm in Fayetteville set by Amber Tripodi (University of Arkansas, Entomology Department).  

The other two were collected from inside houses in Fayetteville.  Three Cryptocercus 

punctulatus were collected from forest in Gatlinburg, Tennessee, and mailed to the lab two days 

after collection.  They arrived in living condition and were frozen at -80°C until dissection.  One 

Periplaneta fuliginosa was collected from inside a Fayetteville house near a doorway.  It likely 

entered the house close to the time of capture and was not a long-term inhabitant of the house.  

2.3.2  DNA extraction and Amplification

Genomic DNA was isolated from frozen organs using ZR soil microbe DNA isolation kit 

(Zymo Research, Irvine, California), PowerSoil Tissue & Cell Kit (MO BIO, Carlsbad, 

California), or UltraClean Tissue & Cells DNA Isolation Kit (MO BIO) according to 

manufacturer's protocol and stored at -20°C.  The isolate was likely a mixture of DNA from 
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cockroach tissue, ingested food, and various microbial inhabitants.  Small-subunit ribosomal 

RNA DNA (SSU rDNA) of Entamoeba was amplified using two consecutive polymerase chain 

reactions (PCRs).  The first reaction was a mixture of 1.5 µl isolated DNA, 10 µl GoTaq Green 

Master Mix (Promega, Fitchburg, Wisconsin), 2 µl each of eukaryotic SSU rDNA primers 5'F 

and 3'R (10 ng/uL, 5'-AACCTGGTTGATCCTGCCAGT- 3', 5'-

TGATCCTTCTGCAGGTTCACCTAC-3', Medlin et al. 1988), and 6 µl sterile, double-distilled 

water (ddH20).  Reaction conditions in the thermal cycler (Tgradient, Biometra, Gottingen, 

Germany) were 94°C 30 s, 30-35 cycles of 94°C 22 s, 42°C 1 min, and 72°C 3 min, and a final 

step of 72°C 5 min.  After thermocycling, 7-12 µl of the product was electrophoresed on a 1% 

agarose gel  (agarose (Agarose I, Amresco, Framingham, Massachusetts), TA (4.84 g Trizma 

Base (Sigma-Aldrich, St. Louis, MO) and 1.14 g glacial acetic acid up to 1 L with ddH20) or 

TAE buffer (TA buffer with 0.37 g EDTA), and 0.34 µg/mL ethidium bromide) and viewed and 

photographed with a 302 nm transilluminator (BioDoc-It Imaging System, UVP, Upland, 

California) to verify amplification.  Entamoeba SSU rDNA-specific primers, 1F and 1700 R (5'- 

TGGTTGATCCTGCCAGTATTA-3', 5'-CATCTTGGGCYGCACGC-3'), were designed in our 

lab by Dr. Jeffrey Silberman.  For the second reaction, 0.5-1.0 µl of product from the first 

reaction was added to 10 µl GoTaq Green Master Mix (Promega), 2 µl of each of 1F and 1700R 

(3.5 pmol/µl), and 6 µl sterile ddH20.  The mixture was thermocycled at 94°C 30 s, 30-35 cycles 

94°C 22 s, 52°C 1 min, and 72°C 2 min, and finally 72°C 5 min.  Seven to 12 µl of the reaction 

product was run on 1% agarose gel to visualize amplified DNA using a UV transilluminator as 

described above.  Non-hindgut organs were retrieved from some P. americana, B. germanica, 

and B. giganteus specimens to determine whether Entamoeba travel outside of the hindgut 
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analagous to the behavior of the human pathogen E. histolytica.  These non-hindgut organs 

included: ventriculus, caeca, proventriculus, crop with esophagus, malpighean tubules, fat, 

ovary, testis, head, leg muscle, whole leg (unwashed), cuticle (unwashed), and egg case (washed 

and crushed).  The expected band size for Entamoeba using primers 1F and 1700R was 1600 

base pairs (bp).  All cockroaches listed as infected had positive bands.  Some cockroach 

specimens with this band were processed further to recover sequences: Six P. americana from 

Carolina Supply, 5 P. americana from the wild, 1 B. germanica, 1 B. giganteus, 3 B. orientalis, 1 

C. punctulatus, 5 G. portentosa, 5 P. pennsylvanica, and 1 P. fuliginosa.  For these 28 

specimens, bands of the expected product size were excised and placed in an aerosol barrier tip 

(Sorenson BioScience, Salt Lake City, Utah) cut to fit a 1.5 mL microfuge tube .  This was spun 

at 20,800 xg for 5 minutes to elute the DNA + buffer solution from the agarose.

2.3.4  Separation of Variable Sequences

The gel-purified DNA potentially contained a mixture of SSU rDNA from multiple 

genetic variants of Entamoeba.  These variable sequences were separated by inserting them into 

plasmids which were then inserted into E. coli.  

Half a microliter, or 1 µl for faint bands, of gel-purified DNA was ligated into pCR4-

TOPO plasmids (Invitrogen, Life Technologies, Carlsbad, California) by combining the 

following in the order listed: sterile ddH20 to total volume of 3 µl, 0.5 µl salt solution (1.2 M 

NaCl, .06 M MgCl2), 0.5-1 µl gel-purified DNA, and 0.5 µl pCR4-TOPO (10 ng/µl plasmid 

DNA).  This mixture was incubated at room temperature for 15 minutes.  Twenty-five 

microliters of Mach1 chemically competent Escherichia coli (Invitrogen) was added to the 
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mixture, which was then gently stirred and incubated on ice for one hour.  Plasmid uptake was 

induced by heat shock in a water bath at 42°C for 30 s, followed by placing the tube in ice for 1 

min.  Two-hundred fifty microliters of SOC Medium (Invitrogen) was added before the mixture 

was rotated on a rotisserie for one hour at 37°C.  To avoid excessive liquid on the plates, cells 

were concentrated prior to spreading on LB/antibiotic/XGAL agar plates.  

To make LB/antibiotic/XGAL agar plates, 1 L of distilled water was added to 20 g LB 

(Luria-Bertani Broth, Sigma-Aldrich) and 15 g agar (agar-agar, EMD Millipore, Merck KGaA, 

Darmstadt, Germany).  The mixture was autoclaved, poured into 15 mm (depth) Petri plates, and 

allowed to cool overnight before storage at 4°C.  In some cases, the antibiotic was added to the 

agar mixture when it had cooled enough to prevent denaturation of the antibiotic, but was still 

liquid enough for pouring.  In other cases, it was spread onto the solidified agar approximately 

one to three hours before E. coli inoculation.  The final concentration of kanamycin or ampicillin 

was always 50-100 µg/ml.  XGAL was spread onto the agar approximately one to three hours 

before E. coli inoculation.  Cell concentration involved centrifugation at 8000 rpm for 1 min., 

discarding 150 µl supernatant, and resuspending the pellet in the remaining supernatant.  pCR4-

TOPO plasmids contain an ampicillin and kanamycin resistance gene, so only cells that contain 

the plasmid are expected to survive plating.  The XGAL is a sugar that is processed into blue 

pigment when the LacZ gene is intact.  The insertion site for ligated DNA is within this gene and 

insertion of foreign DNA interrupts its function.  Cells will appear white if foreign DNA was 

inserted into this site.  The plates were incubated at 37°C for 12 to 16 hours and up to 30 white 

colonies were selected for each cockroach.  Each colony was touched with a pipette tip to pick 

up cells, followed by dipping the tip into a mixture of 10 µl GoTaq Green Master Mix 
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(Promega), 2 µl of each of 1F and 1700R primers (3.5 pmol/µl), and 6 µl sterile, double-distilled 

water.  The PCR was thermocycled at the same parameters as the nested PCR earlier. Seven to 

10 µl of the completed reaction was gel electrophoresed to confirm presence of DNA in the 

plasmids that corresponds with the expected size of Entamoeba SSU rDNA. 

To select colonies with unique sequences for further processing, RFLPs were assessed.  

For positive colonies, 10 µl of the remaining PCR reaction was digested with 0.2 µl Taq1 

endonuclease (10x, Promega) combined with 0.5 µl bovine serum albumin, 2 µl Buffer E 

(Promega) or NEBuffer 4 (New England Biolabs, Ipswich, Massachusetts), and 7.3 µl water.  

The mixture was incubated at 65°C for 10-16 hours.  Seven to 12 µl of the product was 

electrophoresed on 3.5 %, Nusieve GTG: agarose (3:1 + TA or TAE buffer).  E. coli from 

colonies with unique restriction fragment length polymorphism (RFLP) patterns, as well as up to 

5 for duplicates of some patterns in each host, were cultured overnight in liquid LB + ampicillin 

(100µg/ml).  In early experiments, cells were grown in 4 mL, and 2 mL of the cell mixture was 

concentrated to 600 µl after 12-16 hours of rotating at 37°C.  In later experiments, cells were 

grown in 600 µl of medium with rotation or agitation and no concentration procedure.  Later, it 

was discovered that rotation or agitation could be omitted without negatively affecting sequence 

recovery.  Plasmids were extracted from the cultured E. coli using Zyppy Plasmid Miniprep Kit 

(Zymo Research) following manufacturer's protocol and eluted in 50 µl EB buffer (10 mM Tris-

Cl, pH 8.5, Qiagen, Venlo, Netherlands).  
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2.3.5  Sequencing and Phylogenetic analysis

Primers were added to plasmids and sent to the University of Arkansas DNA Resource 

Center for Sanger sequencing by a 3130xl Genetic Analyzer (Applied Biosystems, Life 

Technologies).  Sequencing primers T3 (5'-ATTAACCCTCACTAAAGGGA-3', Invitrogen), T7 

(5'-TAATACGACTCACTATAGGG-3', Invitrogen), and 514F (5'-

GGTGCCAGCAGCCCGCGGTAA-3', Dr. Jeffrey Silberman) were used for sequencing a 1.5 kb 

contig.  Chromatograms were visually reviewed for accuracy and contigs assembled with 

Sequencher 4.0 (Gene Codes).  Duplicates were identified by searching for 100% sequence 

match in Jalview (Waterhouse et al. 2009).  Unique sequences were manually aligned in 

SeaView (Guoy et al. 2010) to account for indel-induced frameshifts of sequences relative to one 

another.  Aligned sequences were screened for chimeras (an artifact of PCR) using the web-

based program Bellerephon (Huber et al. 2004).  This program constructs a distance matrix for 

sequence fragments on both sides of a breakpoint.   It determines the influence of each sequence 

on dissimilarity between the two sides by removing each sequence and recalculating the 

dissimilarity.  Sequences that have the biggest contribution to dissimilarity (quantified as a 

"preference score") are reported as possible chimeras.  Huber-Hugenholtz correction was 

selected as a parameter for the distance calculations.  This function is designed to increase the 

weight of calculations for similar homolog pairs compared to more different ones, as chimeric 

sequences are more likely to arise among similar amplicons.  Another parameter that can be 

selected is window size, which determines the number of nucleotides analyzed on each side of 

the breakpoint.  The program was run with all window sizes available: 400 bp, 300 bp, and 200 

bp.  Potential chimeras were reported along with preference scores and percentage identity to 
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parent strands.  Chimeras with identity of 100 or 99 to a parent strand were regarded as highly 

likely chimeras, and those with lower identities (81.9 was the lowest) were regarded as possible, 

though less likely, chimeras.

One alignment was constructed using all unique Entamoeba sequences, which included 

those generated in our lab of NVIE and from other scientists via Genbank of VIE.  This 

alignment was built on one given to me from Dr. Jeffrey Silberman in September 2010.  

Sequences were added as they were recovered in our lab or became available on Genbank.  

Another alignment was built on one passed on from Dr. Lora Shadwick (University of Arkansas, 

February 2011), which included 141 taxa of non-Amoebozoa, Amoebozoa, and Archamoebae.  

An additional 47 Entamoeba, non-Entamoeba Archamoeba, and non-Archamoeba Amoebozoa 

were added.

Among 140 sequences from P. americana, two groups of duplicates were detected, with 

two sequences in one group and four in the other.  After four duplicates were removed, 136 

unique sequences remained.  An alignment of these 136 sequences and 40 of VIE from Genbank 

was screened for chimeras as described above.  Thirteen P. americana sequences were identified 

as highly likely to be chimeras, and 12 additional sequences were identified as possible, though 

less likely, chimeras.  All 25 putative chimeras were removed to avoid overestimation of 

diversity.  

Among 53 sequences from non-P. americana cockroches, no duplicates were found.  To 

find chimeras in this subset, an alignment with all unique Entamoeba sequences (258 taxa) of 

sufficient length was tested.  Entamoeba bangladeshi was excluded because its sequences were 

too short.  Among taxa from non-P. americana cockroach hosts, 10 putative chimeras were 
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detected and removed from further analysis.  Seven of these were from hindgut and three were 

from non-hindgut regions.  

  Maximum likelihood trees were constructed using the RaxML algorithm on CIPRES 

Science Gateway (Stamatakis 2014; Miller et al. 2010).  Identity of long-branched taxa as 

Entamoeba was confirmed by the similarity of these taxa to other Entamoeba using NCBI's 

BLAST.  

Eighty-one sequences from P. americana hindgut were aligned with 39 Entamoeba 

sequences from Genbank.  To assess the monophyly and rooting of Archamoeba, 7 Entamoeba  

from P. americana, 24 VIE from Genbank, and 17 other archamoebae were aligned with 110 

Amoebozoan and 30 non-Amoebozoan taxa.  A tree was constructed using 184 taxa and 1,052 

unambiguously aligned characters (Fig. 1, Table 3).  A subset of 73 taxa was used to construct a 

smaller tree that still preserved the branching of Entamoeba (Fig. 2).  This tree included 7 

Entamoeba from P. americana, 7 Entamoeba from vertebrates, 1 E. moshkovskii, 11 non-

Entamoeba Archamoeba, 37 non-Archamoeba Amoebozoa, and 10 non-Amoebozoan outgroup 

taxa.  The basal branches of Archamoeba from the larger tree were used as the basal branches in 

an Archamoeba-only tree, consisting of Entamoeba, mastigamoebids (Mastigameoba, 

Iodamoeba, Endolimax), pelobionts, and Rhizomastix.  This tree consisted of 45 taxa and was 

calculated from 1,119 unambiguously aligned characters (Fig. 3). The basal branches of 

Entamoeba in this tree were used as the basal branches in Entamoeba-only trees.

Non-hindgut sequences were initially excluded from the analysis because it was unclear 

whether they were contaminants from the hindgut or true inhabitants of non-hindgut tissue.  

Contamination was suspected because Entamoeba was detected in non-hindgut regions in early 

65



dissections but not in later ones.  My dissecting skill improved over time and likely reduced the 

likelihood of contamination between regions.  For the purposes of the current study, even if  

sequences from non-hindgut regions indicate contaminants, the contaminant probably originated 

from the same cockroach, so can still be included to study Entamoeba diversity and to compare 

Entamoeba from different host specimens.  The distinction between sequences from hindgut and 

non-hindgut regions is not necessary for analysis of phylogeny and diversity at the level of host 

specimen, but a distinction is made here to reduce ambiguity or confusion in interpretation of 

results.  Future studies may or may not corroborate a hypothesis of infection in non-hindgut 

regions of the cockroach.

Four Entamoeba-only trees were constructed from taxon subsets and 1,272 

unambiguously aligned characters (Figs. 4, 5, 8, 9, 10, and 11).  The first of these contained 110 

P. americana sequences and 39 Entamoeba sequences from Genbank.  A version of this tree 

with a reduced selection of P. americana sequences is shown in Fig. 4.  The basal branches of 

this tree were used as the basal branches for the second tree, which consisted of the 105 P. 

americana sequences that formed a clade sister to the 39 vertebrate-inhabiting Entamoeba 

sequences in the earlier tree (Fig. 5).  The other five P. americana sequences branched near E. 

moshkovskii within the clade predominated by vertebrate-inhabiting Entamoeba (Fig. 11), and 

were excluded from this tree.  The purpose of this dataset was to study patterns within P. 

americana, the most extensively sampled host species.  Taxa of particular host categories were 

highlighted to observe patterns, such as phylogenetic distribution of Carolina Supply vs. wild 

cockroaches, host specimens, and male vs. female (Figs. 5, 6, and 7).
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The third Entamoeba-only tree contained all vertebrate-inhabiting Entamoeba sequences, 

all P. americana sequences, and 43 Entamoeba sequences from the 7 non-P. americana species 

(Fig. 11).  The fourth tree was similar to the third but without vertebrate-inhabiting Entamoeba 

sequences.  Characters were mapped onto this tree to study phylogenetic distribution as it relates 

to host species, host specimen, and location in the host (Figs. 8, 9, and 10).  

2.4  Results

2.4.1  Sequences Collected

Duplicate sequences (100% match) were retrieved from each of two host specimens (2 

from Pa4 and 4 from Pa24), and no duplicates were retrieved across multiple host specimens.  

Two to 15 unique Entamoeba sequences were found per P. americana specimen (Table 2).    

One sequence was common to all four monoinfected G. portentosa specimens.

2.4.2  Monophyly and Relationships of Entamoeba and Other Archamoebae

In a tree of 32 non-Amoebozoan outgroup taxa, 106 non-archamoebid Amoebozoa, and 

46 archamoebids constructed from 1,052 unambiguously aligned characters, Archamoebae 

comprised a monophyletic group with a bootstrap support of 80 (Fig. 1).  Within Archamoeba, 

the following three clades are well-supported as monophyletic groups: Entamoeba, 

bootstrap=100; a clade consisting of Mastigamoeba, Endolimax, and Iodamoeba, bootstrap=100; 

and Pelomyxa, bootstrap=100.  Rhizomastix libera is sister to Entamoeba in a weakly supported 

clade (bootstrap=59).  Rhizomastix libera and Entamoeba are sister to mastigamoebids.  
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Pelomyxids form a group sister to the rest of Archamoeba.  The relative positions of Pelomyxa 

and Mastigamoeba switched when a 73 taxa subset was used instead of the 184 taxa dataset (Fig. 

2).  The basal branches in the 184 taxa tree were used for displaying an Archamoeba-only tree 

(Fig. 3). 

 

2.4.3  Deepest Nodes in Entamoeba

Prior to adding cockroach-derived taxa, when vertebrate-inhabiting Entamoeba (VIE) 

were incorporated in trees with other Archamoebae, E. polecki was sister to all other Entamoeba. 

Generally, this was still the case after cockroach-derived taxa were added.  This E. polecki 

position was recovered in the Amoebozoa + outgroups tree (Fig. 2), but not in an Archamoeba-

only tree with 45 taxa (Fig. 3).

2.4.4  Occurrence

Entamoeba SSU sequences were detected by PCR and electrophoresis in all 34 P. 

americana specimens, the most heavily sampled species (Table 1).  Sampling ranged from one to 

five specimens for each of the other seven species.  Entamoeba were detected in at least one 

specimen of every host species.  Entamoeba did not occur in two individuals of C. punctulatus 

and two of B. germanica (Table 2).  
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2.4.5  Relation of New Sequences to Sequences of Other Entamoeba

 One hundred and five of the 110 sequences analyzed from P. americana belonged to a 

novel clade sister to the one predominated by vertebrate-inhabiting Entamoeba (Fig. 4).  The 

novel clade was highly supported with a bootstrap of 100.  The five P. americana sequences that 

did not belong to this clade grouped closely with E. moshkovskii (Fig. 11), an Entamoeba known 

previously from humans and anaerobic sediments (Tshalaia 1941; Scaglia 1983; Clark and 

Diamond 1991a; Ali et al. 2003).  These sequences originated from two of the 11 P. americana 

individuals.

2.4.6  Clades and Patterns in New Entamoeba from All Sampled Cockroach Species

When Entamoeba sequences from all eight cockroach species were included in analyses, 

11 distinct clades were observed, and three sequences (Cryptocercus punctulatus 1, G. 

portentosa 2-5, and G. portentosa 2-8) did not belong to any of these clades (Figs. 8 and 9).  All 

11 clades had at least two taxa and bootstrap support of at least 85.  Some or all host specimens 

of G. portentosa, B. germanica, B. orientalis, and P. pennsylvanica contained multiple variants 

of Entamoeba (Table 2).  No host specimens of B. giganteus, P. fuliginosa, and C. punctulatus 

had multiple variants.  Sequences were retrieved from one to five individual hosts for each non-

P. americana species.  Host sampling was too low to make generalizations regarding the 

prevalence of monoinfection vs. mixed infection for these species, as well as generalizations 

regarding the diversity of Entamoeba in each host species.  Of the 28 host specimens assessed, 

each host specimen has variants in one to six of the 11 clades (Fig. 9, Table 4).  Each clade has 
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variants from one to fifteen host specimens and one to five host species (Figs. 8 and 9, Table 4).  

Each non-P. americana host species has variants in one to six clades.  Two clades are 

exclusively non-P. americana, eight contain variants from P. americana and non-P. americana, 

and one is exclusively P. americana.

2.4.7  Clades in New Entamoeba and Patterns: P. americana only

When Entamoeba sequences from only P. americana were included, nine distinct clades 

were observed, and one sequence did not belong to any of these clades (Fig. 5).  Sequences were 

highlighted according to host population (Fig. 5).  Eight clades contained sequences from both 

the Carolina (laboratory) colony and wild population.  The remaining clade contained sequences 

from only the wild population, though only a single host individual is represented in this clade.  

All clades had more than two taxa and bootstrap support of at least 90.  Most host 

specimens had variants in one to six of the nine clades (Fig. 6).  Each clade had variants from 

one to six of the 11 P. americana host specimens.    

Sexual identity was recorded for four host specimens (two males and two females) from 

which sequences were recovered.  Sex was not associated with the number of clades represented 

(Fig. 7).  It is clear that males and females can carry Entamoeba variants that belong to the same 

clade.  Though sex-based differences in genetic diversity or phylogenetic patterns are not 

apparent, more sampling would be needed to assert that such differences do not exist.  
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2.4.8  Monophyly and Relationships of Entamoeba and other Archamoebae

We recovered Archamoeba as a highly supported monophyletic group in Amoebozoa, as 

did Ptackova et al. (2013), Stensvold et al. (2012), Fahrni et al. (2003), and Milyutina et al. 

(2001) in their molecular-based analyses.  In my study, Entamoeba were recovered with 

maximum support both before and after addition of novel sequences. 

The traditionally recognized families Mastigamoebidae, Pelomyxidae, and Entamoebidae 

were recovered as highly supported monophyletic clades (Figs. 2 and 3).  Pelomyxids were a 

long branch sister to all other archamoebids.  The group containing non-pelomyxid Archamoeba 

is weakly supported (bootstrap=34), and the grouping of Rhizomastix with Entamoeba is also 

weakly supported (bootstrap=68).  Though the branching pattern here differs from that in 

Ptackova et al. (2013), the bootstrap values for those branches here are low and do not provide 

much additional support for the relative position of pelomyxids or Rhizomastix within 

Archamoeba.   

2.4.9 Nodes in Entamoeba

Silberman et al. (1999) and Ptackova et al. (2013) recovered Entamoeba coli as sister to 

all other Entamoeba species.  Prior to the addition of NVIE, a tree was constructed with 24 

vertebrate-inhabiting Entamoeba, 17 non-Entamoeba Archamoeba, 110 non-archamoebid 

Amoebozoa, and 30 non-Amoebozoa.  The E. polecki group was recovered as sister to the rest of 

Entamoeba.  This position for E. polecki may have not been recovered in Silberman et al. (1999) 

because VIE sequences, primarily those discovered by Stensvold et al. (2011), were not available 

at the time.  Other Archamoeba sequences such as Rhizomastix libera, Pelomyxa sp., and several 
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mastigamoebids were also not available then.  The relationships within Entamoeba were not a 

major focus in Ptackova et al. (2013) and a high number of Entamoeba taxa were not included, 

possibly contributing to the position of Entamoeba coli as sister to the other Entamoeba.  After 

addition of NVIE to a tree of VIE, non-Entamoeba Archamoeba, and non-Archamoeba taxa, E. 

polecki was still recovered as sister to all other Entamoeba (Fig. 2).  No single group stood out as 

sister to the rest when trees were constructed with only Archamoeba (Fig. 3).  This highlights the 

importance of conducting analyses with high taxon sampling when determining basal groups, 

and the caution with which taxa must be removed if a tree is being trimmed.

2.5  Discussion

2.5.1  Part 1

2.5.1.1  Occurrence

The infection rate was 100% in the two P. americana populations studied here, one 

which was wild and the other lab-reared (Table 1).  At least one representative of the other seven 

host species tested were also infected, though too few specimens of these species were sampled 

to accurately estimate the infection rate within each species.  Two of the cockroach species 

studied- P. americana and B. orientalis- have been previously reported to harbor Entamoeba 

(Hoyte 1961; Kidder 1937; Lucas 1927; Meglitsch 1940).  These reports included descriptions of 

trophozoites, indicating that the Entamoeba were true inhabitants, rather than passive cysts.  

Entamoeba have also been reported from B. germanica, but these were reported as vectors of 

human-inhabiting E. histolytica, E. dispar, or Entamoeba coli, rather than hosts to true 

inhabitants (Fotedar et al. 1991; Kinfu and Erko 2008; Pai et al. 2003).  It would be premature to 
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suggest that these scientists observed Entamoeba from the novel clade.  Considering that only 

cysts were observed, it cannot be asserted that the observed Entamoeba exhibit active behavior 

in the cockroach.  At the same time, identification using cyst morphology alone can easily result 

in failure to detect the full breadth of diversity- variants with similar cysts but different 

trophozoites or genotypes would be missed.  This is a similar situation to uninucleate-encysters 

in humans, for which molecular data have revealed genetic diversity that was undetected in 

morphological identifications (Verweij et al. 2001).  

Five of the cockroach species I screened are newly discovered hosts.  These were G. 

portentosa, B. giganteus, P. pennsylvanica, C. punctulatus, and P. fuliginosa.  The occurrence of 

Entamoeba in all eight species screened suggests they are likely to occur in many cockroaches 

that have not yet been screened.  The sampled species are from four of the six traditional 

cockroach families (Blattidae, Blattellidae, Blaberidae, and Cryptocercidae), demonstrating that 

Entamoeba are found among multiple phylogenetic cockroach groups.

2.5.1.2  Relation of New Sequences to Sequences of Other Entamoeba

The major finding of this study is that the vast majority of cockroach-inhabitant 

sequences constitute a novel, highly supported clade that is sister to one predominated by VIE.  

Sequences for NVIE from the following hosts have also been retrieved in our lab (unpublished 

data): honeybee (Apis mellifera), green june beetle (larva, Cotinis nitida), Japanese beetle (larva, 

Popillia japonica), tipulid (larva, Tipula sp.), and giant water bug (Belostoma sp.).  All belong to 

the novel clade except for those sequences from the giant water bug.  For perspective of NVIE 

73



diversity and to delineate groups, the novel clade was divided into sub-clades based on 

phylogenetic distance, high bootstrap support, and a minimum of two taxa per clade.

2.5.1.3  Clades and Patterns in New Entamoeba from All Sampled Cockroach Species

When only Entamoeba from P. americana were analyzed, they formed nine clades within 

the novel clade.  When Entamoeba from the other seven cockroach species were added, many of 

them belonged to the nine clades and some of them formed an additional two clades.  Looking at 

patterns of Entamoeba from P. americana first- before considering those from other cockroach 

hosts- was useful because it was the most extensively sampled host species and eliminated the 

variable of species.  This allowed for comparison of variant diversity across host specimens and 

host populations (Figs. 5 and 6).

2.5.1.4  Monoinfection and Multiple Infection

Multiple Entamoeba variants were found in every P. americana specimen.  For some 

specimens, these were distributed widely throughout the novel clade, in up to six clades, 

demonstrating that genetically diverse Entamoeba variants often inhabit a single individual of P. 

americana (Fig. 6, Table 4).

Rates of monoinfection and mixed infection varied across non-P.americana species.  

Sampling for these species was low, so it is inconclusive whether species that were only found to 

be monoinfected have the potential for mixed infection, or conversely, whether species that were 

only found to be mixed infected have monoinfected representatives in some situations.  
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2.5.1.5  Diversity

Based on branch lengths, number of distinct taxa, and number of sub-clades, Entamoeba 

from P. americana are about as genetically diverse as all previously known Entamoeba 

combined.  This is the highest genetic diversity reported for Entamoeba from a single host 

species.  

2.5.2  Discussion Part 2: Additional Discussion

2.5.2.1  Diversity

Many of the taxa from non-P. americana cockroaches belonged to clades containing 

Entamoeba from P. americana, while others constituted two new sub-clades.  This relatively low 

number of additional sub-clades must be interpreted cautiously.  As stated earlier, due to low 

sampling it would be premature to make statements regarding relative Entamoeba diversity per 

host species.  If the same relative diversities hold at greater sample sizes, it would indicate that 

P. americana has a high genetic diversity of Entamoeba compared to other cockroach species.  

This does not seem unlikely, considering that P. americana is one of the most widespread 

cockroach species (Rueger and Olson 1969), inhabits a wide range of habitats, easily cohabits 

with other organisms (especially humans), and is highly aggregative (Roth 1973).  These features 

could facilitate transmission of Entamoeba among conspecifics as well as between host species.  

2.5.2.2  Occurrence

Originating in Africa, P. americana has spread to almost every human-inhabiting region 

of the world (Bell and Adiyodi 1981).  The close human association allows them to live in 
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seemingly unsuitable places such as Alaska, where they would otherwise not survive away from 

the warmth and nourishment of human shelter (Rueger and Olson 1969).  If the infection rate is 

high among other populations, as it is for those in our study, then cockroach-inhabiting 

Entamoeba may be the most widespread and common of all Entamoeba.  

Insect guts have the potential to contain genetic material from food organisms, and cysts 

of organisms that are not active in cockroach guts might be found there.  Detection of vectored 

microbes in cockroaches is one example of this (Fotedar et al. 1991; Kinfu and Erko 2008).  

Anytime sequences are retrieved without verification of the target organism by microscopy, the 

possibility exists that sequences are amplified from microbes that are not active inhabitants of the 

host.  The Entamoeba in the novel clade recovered here are predicted to originate from true 

inhabitants because these sequences have not been found outside of insects, and because they 

were found among multiple cockroaches in multiple populations.

Determining whether reports of E. moshkovskii indicate passive or active inhabitants is 

difficult to determine.  Entamoeba moshkovskii were detected in two P. americana in the present 

study, and were cultured in our lab from P. americana and B. orientalis.  No other taxa we 

detected grouped among human-inhabiting species.  Altogether, this suggests two possibilities: 

E. moshkovskii are human-inhabitants that are carried by cockroaches more frequently than other 

human-inhabitants, or E. moshkovskii are true cockroach-inhabitants.  As far as I know, E. 

moshkovskii have never been unambiguously identified in cockroaches, even as a vectored 

microbe, prior to work in our lab.  The lack of observed E. moshkovskii trophozoites in vector 

studies is not consistent with the second hypothesis.  The status of E. moshkovskii as a true-

inhabitant remains to be clarified, though I feel that such a status is likely, considering the 
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evidence from our lab and the wide range of temperature and osmotolerance that E. moshkovskii 

has been demonstrated to tolerate (Clark and Diamond 1997; Dreyer 1961; Richards et al. 1966).

2.5.2.3  Species

All 11 P. americana specimens from which sequences were collected had mixed 

infection, in that each housed multiple genetic variants of Entamoeba.  Rates of mono and mixed 

infection varied across the other seven cockroach species.  While mixed infection has been 

commonly reported in some vertebrates (Mukhopadhyay et al. 2002; Levecke et al. 2010), it has 

not been reported in non-vertebrates, largely because molecular work has not been conducted for 

them.  There is wide sequence diversity in Entamoeba in a single cockroach specimen or species, 

but only one species of Entamoeba has been reported (in active, trophozoite form) in 

cockroaches (Lucas 1927).  That all morphologically recognized Entamoeba in cockroaches have 

previously been classified as a single species is not surprising, as there are not a large number of 

easily visible morphological features for differentiation, and it can be difficult to determine 

whether observed Entamoeba are morphological variants within a single genetic lineage or 

among multiple genetic lineages.  The frequent occurrence of mixed infection in cockroaches 

could mean that one lineage has not outcompeted another within the gut environment.  This hints 

at the possibility of different genetic lineages fitting different ecological niches, and that the 

lineages are different in a biologically significant way (rather than simply genetically different).  

Non-morphological differences observed between VIE lineages include growth rate (Pysova et 

al. 2009), feeding behavior (Trissl et al. 1978), pathogenicity (Diamond and Clark 1993; Jaiswal 

et al. 2014), and social behavior (Espinosa and Paz-Y-Mino-C 2012).
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Species of VIE have been distinguished based on isoenzyme analysis (Sargeaunt et al. 

1982), RFLPs (Clark and Diamond 1991a,b), nuclei/cyst, pathogenicity, SSU rDNA, and host 

(Stensvold et al. 2010).  Typically, a combination of these must be used for a convincing 

delineation of species (Clark and Diamond 1997; Verweij et al. 2001; Stensvold et al. 2011).  In 

the current study, we only have SSU rDNA and host species, and have not observed sufficiently 

strong patterns of host specificity to suggest species.  The data do not suggest host specificity for 

most variants.  For the few variants that host specificity might be implicated, such as those in G. 

portentosa, host sampling was too low to confirm it.  Some vertebrate species are host to 

multiple variants described as a single species, such as E. bovis in cows (Stensvold 2010; 

Stensvold et al. 2011) or Entamoeba coli in humans (Clark and Diamond 1997).  These may be 

cases of genetically diverse species.  These species definitions may be temporary, as variants 

may be described as multiple species after additional distinguishing characteristics are identified.

Producing monoeukaryotic cultures of the variants would help in characterizing them and 

in delineating species.  The cultures can be used to study morphology, behavior, and preferred 

environmental conditions.  These characters could be linked to each genetic variant.  

Fluorescence in situ hybridization (FISH) could also be used for visualizing variants.  In this 

method, fluorescent probes would be designed based on the SSU rDNA sequence of each variant 

and exposed to gut tissue.  A fluorescence microscope would then be used to view the 

Entamoeba.

Currently, we do not have enough information to delineate species in the novel clade.  

Most of the clades contain Entamoeba from multiple host species, so defining each clade as a 

species based on host is not possible.  The comparably high genetic diversity of the novel clade 
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relative to VIE species in the other clade suggests it is unlikely that the entire novel clade is a 

single species.  If every variant in the clade is a new species, then there are 148 new species.  

While it would be extreme to claim that there are 148 new species, it is likely that each sub-clade 

consists of at least one new species, so there are probably at least 11 new species.  The species 

taxonomy of Entamoeba will continue to change as more information, such as additional gene 

sampling and behavior, is gained and integrated into species characterization.  The purpose of 

estimating possible species number at this point is to allow for some perspective of diversity of 

Entamoeba relative to other organisms. The morphology of E. thomsoni in cockroaches was 

described  by Catherine Lucas in 1927.  Most cysts she observed were 11-16 micrometers across, 

but some were eight micrometers.  These cysts of different sizes could belong to various distinct 

lineages, and what would possibly be considered multiple species.  The common occurrence of 

mixed infection in my study supports the likelihood that previously reported E. thomsoni 

consisted of multiple genetic variants.  Although E. thomsoni may consist of multiple genetic 

variants, we do not have the necessary evidence to claim that E. thomsoni should be split into 

multiple species, because to do so would be based solely on molecular data, as these sequences 

have not yet been linked to particular morphologies.

2.5.2.4  Entamoeba moshkovskii

The discovery of E. moshkovskii in cockroaches has implications for species 

characterization and the possible role of cockroaches as vectors of this putative pathogen.  

Entamoeba moshkovskii has a broader host range than previously known.  Entamoeba 

moshkovskii sequences from cockroaches were not exact duplicates as those retreived from 

79



Genbank, so it is possible that they are unique lineages with slight differences in SSU rDNA, not 

unlike E. histolytica and E. dispar.  Or perhaps, E. moshkovskii are not biologically unique, but 

instead have the ability to switch environments.  If E. moshkovskii in cockroaches can infect 

humans, and E. moshkovskii is pathogenic in humans, then cockroaches may be potential carriers 

of pathogenic Entamoeba, in a different way then they are for E. histolytica, which is not a true 

cockroach inhabitant.  Entamoeba moshkovskii was found in two of 11 P. americana, and 

represents only five of the 85 unique, non-chimeric sequences collected from P. americana.  In 

addition to being only occasionally detected in P. americana, it was also not detected in any of 

the other seven cockroach species screened.  In our lab, E. moshkovskii has been cultured from 

P. americana and B. orientalis (Dr. Jeffrey Silberman, unpublished data).  It is interesting that E. 

moshkovskii has grown in culture but that members of the new clade have not.  Possible 

explanations for this observation include: 1) E. moshkovskii may have an advantage over other 

Entamoeba variants in the culture conditions, 2) E. moshkovskii is at relatively high numbers 

already compared to Entamoeba of the new clade, and 3) E. moshkovskii occurs in more 

cockroaches than is detected by PCR due to a molecular-level bias that favors amplification of 

particular variants.  These possibilities are not mutually exclusive.  Option 1 is difficult to 

address because we know so little about the habits of Entamoeba in the new clade.  Option 2 is 

difficult to address because we do not have information about the number of each variant in 

Entamoeba.  And option 3 is difficult to address without conducting experiments to determine 

these biases and/or collecting data using non-PCR methods for comparison.
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2.5.2.5  Comparison of Populations

The two P. americana sources, Carolina Biological Supply Company and the University 

of Arkansas campus, differ in factors that could potentially effect transmission and maintenance 

of Entamoeba: Wild cockroaches are exposed to a greater variety of organisms than those raised 

in relatively non-biodiverse lab conditions.  This could allow for transmission of Entamoeba 

from other host species.  Wild cockroaches are also likely to have a different diet than what is 

provided in the lab, and diet has been shown to effect the microbial composition of the 

cockroach gut (Kane and Breznak 1991; Zurek and Keddie 1998; Bertino-Grimaldi et al. 2013).  

Transmission among conspecifics might also be effected by habitat type.  The cockroaches from 

Carolina Supply were raised in limited enclosures at the company and in our lab, while those 

from the wild had virtually unlimited space.  Captivity could have caused greater direct and fecal 

contact among conspecifics than would occur in the wild.  On the other hand, P. americana still 

tend to aggregate in the wild, and may even aggregate more in response to extreme 

environmental conditions (Dambach and Goehlen 1999).  It is likely that beyond a threshold 

level of exposure to conspecifics, additional exposure would not affect the genetic population 

structure of Entamoeba in cockroaches within a given population.  My results so far support this 

hypothesis, as infection rates were equal between the populations, and both populations showed 

a similar spread of Entamoeba throughout the novel clade.

In this study, captivity did not seem to affect infection rate, which was 100% for both 

host populations.  Overall, there was little difference in the number of clades to which 

Entamoeba from each population belonged, and most clades (eight of nine) contained variants 

from both host populations (Fig. 5).  If more hosts were sampled from both populations, it is 
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possible that even the clade with only a single population represented would contain 

representatives from both populations.  The representation of both host populations in most 

clades suggests that transmission may occur easily, and Entamoeba from different clades and 

host populations are not geographically isolated.  Generally, the host species P. americana does 

not show much geographical isolation.  Since beginning to spread from Africa 400 years ago, P. 

americana now occur as globally as the species (humans) they cohabit with (Bell and Adiyodi 

1981).  Molecular studies of human-associated cockroaches show high genetic variability and the 

existence of sub-populations, but with moderate to high gene flow between them.  Pechal et al. 

(2008) assessed gene flow among P. americana populations by comparison of ITS1 (internal 

transcribed spacer 1), a region of DNA found between rRNA coding-regions and having a higher 

rate of change.  The majority of samples were collected from a single college campus in Texas, 

but a few were from cities 8 to 462 km away.  The data revealed that populations were not 

isolated and that interbreeding was common.   Cloarec et al. (1999) assessed genetic variability 

of B. germanica within and between populations by comparisons of eight gene loci.  

Cockroaches from two French cities 900 km apart were sampled.  Populations within each city 

were highly genetically differentiated, but the total populations of the two cities were not.  These 

studies on cockroach population structure are consistent with the notion that Entamoeba are 

transmitted between populations frequently enough that geographic isolation of these Entamoeba 

would not be detected by analysis of SSU rDNA, because the rate of change of SSU rDNA is 

likely lower than the frequency of host migration between populations.  The lack of geographical 

isolation supports my finding that cockroaches from two populations frequently have Entamoeba 

that belong to the same clade.
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Housing did not appear to effect sequence diversity in cockroaches.  It may be that P. 

americana were already sharing Entamoeba so frequently in the wild that placing them in more 

crowded conditions did not further increase transmission.  The encystment capability of 

Entamoeba may make this hypothesis more likely for Entamoeba than for non-encysting 

microbes. 

2.5.2.6  Host-Entamoeba Relationship over Evolutionary Time

Most cockroach-inhabiting Entamoeba sequences belong in a clade distinct from the 

primarily vertebrate-inhabitant clade, suggesting that the common ancestor of all cockroach-

inhabiting Entamoeba was an inhabitant of the LCA of cockroaches.  The less parsimonious 

scenario would involve transfer to multiple cockroach lineages after host divergence from an 

LCA.

Comparison of host phylogeny and symbiont phylogeny can be used to show vertical 

transmission of a microbe through multiple lineages.  A close match would suggest that the 

microbe was present in the LCA of the extant hosts, with little to no horizontal transfer between 

host lineages following the LCA.  This type of tight cospeciation has been found for 

Blattabacterium and cockroaches across multiple host families, and between Blattabacterium 

and the cockroach Cryptocercus at the level of host species and host strain (Lo et al. 2003; Clark 

et al. 2001).  Blattabacterium inhabits the cockroach's fat bodies and is transmitted transovarially 

(Donnellan and Kilby 1967; Wren et al. 1989).  Horizontal transfer is expected to be less likely 

for an intracellular symbiont such as Blattabacterium than for a gut-inhabitant, which could be 

more exposed to the outside environment.  In our study, most of the sub-clades of Entamoeba 
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from cockroaches were not exclusively associated with specific host species, suggesting that 

many of these Entamoeba variants were transferred between host lineages at points throughout 

their evolutionary history.

Phylogeny in relation to host has been studied for Nyctotherus and Blattabacterium in 

non-Cryptocercid cockroaches too (Van Hoek et al. 1998; Clark et al. 2001;  Lo et al. 2003).  

These provide interesting studies for comparison.  The lack of evidence for cospeciation for 

Entamoeba in cockroaches shows more similarity to host-microbe phylogeny in Nyctotherus 

than in Blattabacterium.  The tight cospeciation in Blattabacterium is likely due to its vertical 

mode of transmission, while a gut microbe such as Nyctotherus is in an environment more 

confluent with the outside environment, potentially permitting less discriminate host transfer.  

Both Nyctotherus and Entamoeba encyst.  However, the patterns of infection for Entamoeba 

differ from those of Nyctotherus in significant ways.  Van Hoek et al. (1998) did not find mixed 

infection for Nyctotherus in individual cockroach specimens, or even within a strain (only one 

ribotype/strain).  One ribotype was found in 2 Blaberus sp. and 1 P. americana strain (Van Hoek 

et al. 1998).  For Entamoeba in cockroaches, there are clades that contain Entamoeba from both 

Blaberus and P. americana, as well as Entamoeba from other host species.  This suggests that 

there may be greater host switching and/or less host specificity among cockroach-inhabiting 

Entamoeba compared to Nyctotherus.  Many clades also contain both wild and Carolina strains.  

Altogether, this suggests that host transfer has occurred among multiple cockroach strains and 

species, but has not occurred between cockroach and vertebrates.  The one exception to this 

pattern is E. moshkovskii, which can inhabit both humans and P. americana.   
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2.5.2.7  Host-Cockroach Relationship and Vector Potential

The nature of the relationship between Entamoeba and cockroaches is mostly unknown, 

though some clues can be gleaned from current knowledge.  It is likely that Entamoeba in the 

novel clade require invertebrate hosts, as Entamoeba in the novel clade have only been found in 

invertebrates.  It is likely that they are true inhabitants rather than passers-through because these 

sequences have never been found outside of cockroaches.  If these sequences had been found in 

many kinds of hosts, it would be unclear which organism was the true host, and would also allow 

the possibility that they might be commonly vectored through non-host organisms.  However, the 

finding of such a high infection rate in P. americana with novel Entamoeba sequences suggests 

the opposite.

Entamoeba moshkovskii was found in two cockroach specimens.  This species is a 

putative pathogen in humans (Shimokawa et al. 2012).  Whether it has a pathogenic lifestyle in 

cockroaches remains to be studied.  Pathogenicity is currently unknown for NVIE, though it has 

not been specifically studied.

The detection of Entamoeba in all 34 P. americana specimens, and the survival of our lab 

colony through multiple generations indicates that at least some variants, if not all of them, are 

not lethally pathogenic.  It is likely that at least some of these probably feed on bacteria or 

partially digested food rather than directly on cockroach tissue.  A symbiotic relationship can 

also not be ruled out.  In other studies, administration of metronidazole to cockroaches resulted 

in elimination of Nyctotherus ovalis and methanogenesis (Bracke et al. 1978; Gijzen et al. 1991). 

Metronidazole is commonly used as a medical treatment for Entamoeba, and would probably 

have eliminated Entamoeba from cockroaches as well in these experiments.  It is possible that 
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some of the inhibition of methanogenesis resulted from elimination of methanogen-housing 

Entamoeba.  These methanogens might provide nutritious compounds to cockroaches (Kane and 

Breznak 1991), so if these Entamoeba house methanogens, their presence may benefit the host 

and add selective pressure on the cockroach to maintain Entamoeba.  It is also possible that by 

effecting bacterial populations and diversity in the gut, presumably by grazing, these Entamoeba 

indirectly influence cockroach health.  Multiple studies support the premises of this assertion.  

He et al. (2012) found that hindgut microbial diversity in rabbits changed significantly upon E. 

histolytica infection.  Effects of the gut microbiota on insect health have also been demonstrated. 

For example, administration of lactic acid bacteria to bees resulted in increased infection 

resistance and decreased mortality (Vasquez et al. 2012).  The importance of Entamoeba to 

cockroach health could be measured by procuring Entamoeba-free cockroaches and then re-

introducing Entamoeba.  To get Entamoeba-free cockroaches, cleaned eggs could be raised in an 

Entamoeba-free environment, or the drug metronidazole could be administered to adults to 

eliminate anaerobes (including Entamoeba) from the gut.  Reintroduction could be achieved by 

feeding the cockroaches Entamoeba in monoeukaryotic culture or cysts separated from the feces 

using floatation methods.  The reintroduction step would be important for distinguishing the 

health effects of just Entamoeba from those of other gut microbes.

Entamoeba in cockroaches have been overlooked, even though they may constitute a 

large portion of biodiversity in the genus.  The high genetic diversity of these Entamoeba 

suggests that there are probably multiple species of Entamoeba in cockroaches, even though 
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these species may currently appear "cryptic" due to a lack of information on other biologically 

relevant aspects such as morphology and behavior.  The prevalence of infection in P. americana, 

as well as across eight species of cockroaches that span much of Blattodean phylogeny, 

highlights the widespread occurrence of Entamoeba that have been absent from current 

ecological and phylogenetic inventories.
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Table 1.  Summary of Host Sampling.  "Specimens with Entamoeba" specifies the number of 
cockroaches with 1600 bp bands in electrophoresis following PCR with Entamoeba-specific 
primers.   "Specimens with Sequences" specifies the number of cockroaches from which SSU 
rDNA sequences were recovered for phylogenetic analysis.
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Species Species Specimens Specimens Specimens with
(Scientific Name) (Common Name) Screened Sequences

P. americana American cockroach 34 34 11

B .germanica German cockroach 5 3 1

B. giganteus Giant cockroach 4 4 1

B. orientalis Oriental cockroach 3 3 3

C. punctulatus Wood-eating cockroach 3 1 1

G. portentosa Madagascar hissing cockroach 5 5 5

P. pennsylvanica Pennsylvania wood cockroach 5 5 5

P. fuliginosa Smokybrown cockroach 1 1 1

Total 60 56 28

with Entamoeba



Species Source Colonies Collected # of  unique RFLPs

P. americana NPA Carolina 2010 2 2 1 0 10+ Unknown Unknown

P. americana Pa1 Carolina 2010 Pa1 14 14 8 0 10+ Unknown Unknown

P. americana Pa2 Carolina 2010 Pa2 8 8 8 0 10+ Unknown Unknown

P. americana Peri 1 Carolina 08/30/10 Pa1-#or 18 18 12 6 94 62 8

P. americana Peri 3 Outside by  Bell Engineering 10/04/10 Pa3-#or 36 36 10 23

P. americana Peri 4 Carolina 11/22/10 0 0 0 0 0 0 0

P. americana Peri 5 12/24/10 Pa5 10 10 10 0 30+ 32 10

P. americana Peri 6 Carolina 01/19/11 Pa4 20 20 19 0 30+ 37 20

P. americana Peri 7 Outside by  Bell Engineering 06/09/11 0 0 0 0 30+ 0 0

P. americana Peri 8 Outside by  Bell Engineering 06/09/11 Pa7 8 8 8 0 0 14 5

P. americana Peri 9 Outside by  Bell Engineering 06/11/11 Pa8 8 8 8 0 0 13 7

P. americana Peri 10 Carolina 08/03/11 0 0 0 0 0 0 0

P. americana Peri 11 Carolina 08/03/11 0 0 0 0 0 0 0

P. americana Peri 12 Outside by  Bell Engineering 08/04/11 0 0 0 0 0 0 0

P. americana Peri 13 Carolina 08/04/11 0 0 0 0 0 0 0

P. americana Peri 14 Carolina 08/04/11 0 0 0 0 0 0 0

P. americana Peri 15 Outside by  Bell Engineering 08/05/11 0 0 0 0 0 0 0

P. americana Peri 16 Outside by  Bell Engineering 08/05/11 0 0 0 0 0 0 0

P. americana Peri 17 Carolina 08/05/11 0 0 0 0 0 0 0

P. americana Peri 18 Carolina 08/06/11 0 0 0 0 0 0 0

P. americana Peri 19 Carolina 08/07/11 0 0 0 0 0 0 0

P. americana Peri 20 Carolina 08/08/11 0 0 0 0 0 0 0

P. americana Peri 21 Carolina 08/09/11 0 0 0 0 0 0 0

P. americana Peri 22 Carolina 08/09/11 0 0 0 0 0 0 0

P. americana Peri 23 Outside by  Bell Engineering 08/10/11 0 0 0 0 0 0 0

P. americana Peri 24 Outside by  Bell Engineering 08/10/11 Pa24 12 12 11 0 40 39 5

P. americana Peri 25 Outside by  Bell Engineering 08/11/12 0 0 0 0 0 0 0

Specimen 
Name

Dissection 
Date

Mono inf ection (grey -
white), 

mixed inf ection (grey -
grey ),

 or N/a or unknown 
(white)

Entamoeba 
SSU band 
detected 
(grey ) or 
not (white)

Abbrev iation
 if  sequenced

Sequences 
Collected

Sequnces in 
alignment

Non-chimeric 
unique 
hindgut

Non-chimeric 
unique 

non-hindgut

Colonies positive 
f or Entamoeba 

based on 1F1700R

NPA21, 
NPA 22

101 f rom rectum, 
colon, v entriculus, 
and prov entriculus. 

 98 f rom caeca, 
crop, f at, and 

head.

91 f rom rectum, 
colon, v entriculus, 
and prov entriculus. 

 86 f rom caeca, 
crop, f at, and 

head.  

13 f rom rectum, 
colon, ventriculus, 
and proventriculus. 

 11 f rom caeca, 
crop, f at, and 

head.  (13 and 11 
not compared to 
each other, so 

may  be overlap)

University  Recreation Center 
(HPER), Men's Locker room
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        Table 2. Details of dissected cockroaches and Entamoeba sequences.



Species Source Colonies Collected # of  unique RFLPs

P. americana Peri 26 Outside by  Bell Engineering 08/13/11 0 0 0 0 0 0 0

P. americana Peri 27 Outside by  Bell Engineering 08/15/11 0 0 0 0 0 0 0

P. americana Peri 28 Outside by  Bell Engineering 08/15/11 0 0 0 0 0 0 0

P. americana Peri 29 Outside by  Bell Engineering 08/17/11 0 0 0 0 0 0 0

P. americana Peri 30 Outside by  Bell Engineering 08/18/11 0 0 0 0 0 0 0

P. americana Peri 31 Outside by  Bell Engineering 08/18/11 0 0 0 0 0 0 0

P. americana Peri 32 Ferritor Lab Building, Men's urinal 10/07/11 Pa32 4 4 2 0 20 16 7

B. germanica Blat 2 632 W. Putman., Fay ettev ille, AR 11/22/10 Bge2 13 13 7 2 69 61 10

B. germanica Blat 3 Carolina 03/02/11 0 0 0 0 0 0 0

B. germanica Blat 4 Courtney  C.'s Apt., Fay ettev ille, AR 05/01/11 0 0 0 0 0 0 0

B. germanica Blat 5 Courtney  C.'s Apt., Fay ettev ill, AR 05/09/11 0 0 0 0 0 0 0

B. germanica Blat 6 Courtney  C.'s Apt., Fay ettev ille, AR 05/09/11 0 0 0 0 0 0 0

B. giganteus Blab 1 Carolina 02/04/11 Bgi1 9 9 2 6 109 35 8

B. giganteus Blab 2 Carolina 02/22/11 0 0 0 0 0 0 0

B. giganteus Blab 3 Carolina 04/21/11 0 0 0 0 0 0 0

B. giganteus Blab 4 Carolina 04/23/11 0 0 0 0 0 0 0

G. portentosa Grom 1 Steinkraus 11/23/11 Gp1 1 1 1 0 0 0

G. portentosa Grom 2 Steinkraus 11/29/11 Gp2 5 5 3 0 23 20 8

G. portentosa Grom 3 Steinkraus 11/29/11 Gp1 1 same as Gp1 0 0 0 0

G. portentosa Grom 4 Steinkraus 11/29/11 Gp1 1 same as Gp1 0 0 0 0

G. portentosa Grom 5 Steinkraus 11/29/11 Gp1 1 same as Gp1 0 0 0 0

B. orientalis Ori 1 Outside by  Bell Engineering 06/15/11 Bo1 1 1 1 0 0 0

B. orientalis Ori 2 Outside by  Bell Engineering 06/15/11 Bo2 2 2 1 0 7 7 3

B. orientalis Ori 3 Outside by  Bell Engineering 06/15/11 Bo3 7 7 5 0 23 23 7

C. punctulatus Cry p 1 Gatlinburg, TN, Smokey  Mtns 07/20/11 Cp1 1 1 1 0 0 0

C. punctulatus Cry p 2 Gatlinburg, TN, Smokey  Mtns 07/20/11 0 0 0 0 0 0 0

C. punctulatus Cry p 3 Gatlinburg, TN, Smokey  Mtns 07/20/11 0 0 0 0 0 0 0

P. fuliginosa Ful 1 05/08/12 Pf 1 1 1 1 0 0 0

P. pennsylvanica Parc 1 House in Woods, windowsill 06/07/11 Pp1 1 1 1 0 30 30 3

P. pennsylvanica Parc 12 UA Farm 05/04/12 Pp12 2 2 2 0 30 30 2

P. pennsylvanica Parc 16 UA Farm 05/04/12 Pp16 2 2 2 0 30 30 3

P. pennsylvanica Parc 17 UA Farm 05/06/12 Pp17 3 3 3 0 30 27 7

P. pennsylvanica Parc 22 05/08/12 Pp22 5 5 5 0 24 23 4

Specimen 
Name

Dissection 
Date

Mono inf ection (grey -
white), 

mixed inf ection (grey -
grey ),

 or N/a or unknown 
(white)

Entamoeba 
SSU band 
detected 
(grey ) or 
not (white)

Abbrev iation
 if  sequenced

Sequences 
Collected

Sequnces in 
alignment

Non-chimeric 
unique 
hindgut

Non-chimeric 
unique 

non-hindgut

Colonies positiv e 
f or Entamoeba 

based on 1F1700R

Only  one v ariant. 
no cloning

Only  one v ariant. 
no cloning

Only  one v ariant. 
no cloning

Only  one v ariant. 
no cloning

Only  one v ariant. 
no cloning

Only  one v ariant. 
no cloning

2200 W. Holly , Fay ettev ille, AR,
indoor, by  door

Only  one v ariant. 
no cloning

2200 W Holly  Fay ettev ille, AR,
indoor, by  door
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          Table 2.  Continued.



Fig. 1.  Phylogeny with selected Entamoeba, Amoebozoa, and non-Amoebozoan outgroups.  
Maximum-likelihood with GTR+GAMMA was used to assess relationships between 184 taxa 
using 1,052 aligned characters.  Bootstrap supports of 80 and above within Archamoeba are 
indicated. 
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Table 3.  List of taxa used in tree provided in Figure 1.
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Non-Amoebozoa

Candida maltosa
Phytophthora palmivora
Toxoplasma gondii
Eimeria tenella
Mallomonas rasilis
Oryza sativa
Chlamydomonas reinhardtii
Cyanophora paradoxa
Goniomonas truncata
Guillardia theta
Cafeteria roenbergensis
Porphyra yezoensis
Phaeocystis globosa
Emiliania huxleyi
Glaucocystis nostochinearum
Cyanidium caldarium
Galeidinium rugatum
Gymnodinium microreticulatum
Jakoba libera
Reclinomonas americana
Platyreta germanica
Cercomonas longicauda
Apusomonas proboscidea
Ancyromonas sigmoides strain
Mnemiopsis leidyi
Dermocystidium salmonis

Non-Archamoeba Amoebozoa

Athelia bombacina
Hartmannella cantabrigiensis
Hartmannella vermiformis
Echinamoeba exundans
Paraflabellula hoguae
Heleopera sphagni
Centropyxis laevigata
Leptomyxa reticulata



Table 3.  Continued.
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Non-Archamoeba Amoebozoa (continued)
Saccamoeba limax
Glaeseria mira
Chaos nobile
Chaos carolinense
Balamuthia mandrillaris (isolate V039)
Balamuthia mandrillaris
Protosteliales sp. LHI05
Protacanthamoeba bohemica
Acanthamoeba astronyxis
Acanthamoeba pearcei
Acanthamoeba castellanii
Acanthamoeba tubiashi
Sappinia diploidea
Sappinia pedata
Nematostelium ovatum
Schizoplasmodium cavostelioides
Ceratiomyxella tahitiensis isolate
Thecamoeba similis
Thecamoeba quadrilineata
Platyamoeba stenopodia
Endostelium zonatum
Dermamoeba algensis
Mayorella sp. JJP-2003
Multicilia marina
Phalansterium solitarium
Gephyramoeba sp. ATCC50654
Soil amoeba AND16
Lobosea sp. Borok
uncultured eukaryote clone RT5iin44
Filamoeba sinensis
Filamoeba nolandi
Planoprotostelium aurantium
Protostelium okumukumu
Protostelium nocturnum
Tychosporium acutostipes strain KE11AL
Tychosporium acutostipes strain NZ05-15a
Schizoplasmodiopsis pseudoendospora
Soliformovum irregulare
Soliformovum expulsum
Schizoplasmodiopsis amoeboidea strain BG7A-12B



Table 3.  Continued.
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Non-Archamoeba Amoebozoa (continued)

Cavostelium apophysatum
Dictyostelium discoideum
Dictyostelium purpureum

Dictyostelium minutum
Actyostelium ellipticum
Polysphondylium pallidum
Dictyostelium deminutivum
Dictyostelium bifurcatum
Arcyria denudata
Trichia persimilis
Trichia decipiens
Lindbladia tubulina
Symphytocarpus impexus
Stemonitis flavogenita
Physarum polycephalum
Protophysarum phloiogenum
Didymium nigripes
Clastostelium recurvatum
Protosporangium articulatum
Vannella anglica

Platyamoeba placida

Lingulamoeba leei

Korotnevella hemistylolepis
Vexillifera armata
Neoparamoeba pemaquidensis

Neoparamoeba branchiphila

Schizoplasmodiopsis amoeboidea culture-collection ATCC:46943

Dictyostelium sp. menorah

Vannella sp. strain ISO13/I
Platyamoeba contorta isolate W51C#4

Protosteliopsis fimicola culture-collection CCAP:1569/I clone 3
Vannella sp. strain 4362V/II
Platyamoeba plurinucleolus strain ATCC 50745
Vannella sp. strain RSL/I

Vannella sp. strain CAZ6/I
Vannella sp. strain W181G/I
Clydonella sp. ATCC 50884
Clydonella sp. ATCC 50816

Neoparamoeba aestuarina isolate SL200



Table 3.  Continued.
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Non-Archamoeba Amoebozoa (continued)
Korotnevella stella
Paramoeba eilhardi
Labyrinthulid quahog parasite QPX
Diaphanoeca grandis
Euglypha rotunda

Archamoeba

Entamoeba histolytica

Mastigamoeba guttula

Mastigamoeba errans

Mastigella commutans
Phreatamoeba balamuthi

Mastigamoeba simplex
Endolimax nana

Entamoeba struthionis
Entamoeba equi
Entamoeba gingivalis
Entamoeba suis
Entamoeba muris
Entamoeba ranarum
Entamoeba invadens
Entamoeba terrapinae

Entamoeba histolytica
Entamoeba dispar

Protosteliopsis fimicola strain Ken-A
Protosteliopsis fimicola strain OM05-6218-1
Protosteliopsis fimicola culture-collection CCAP:1569/I clone 4
Protosteliales sp. LHI05

Entamoeba coli strain HU-1:CDC

Iodamoeba sp. RL2 isolate EM080 clone I
Iodamoeba sp. RL1 isolate 1074
Mastigamomeba sp. ATCC50617

Mastigamoeba abducta isolate CHOM1 clone 1_1

Mastigamoeba lenta isolate VIT1AN

Rhizomastix libera isolate IND8MA clone 1_8

Entamoeba sp. NIH:1091:1
Entamoeba coli strain HU-1:CDC

Entamoeba sp. CS-2010



Table 3.  Continued.
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Archamoeba (continued)

Entamoeba bovis
Entamoeba coli
Entamoeba polecki
Entamoeba hartmanni
Entamoeba insolita
Entamoeba chattoni

Entamoeba moshkovskii
Pa2-8
Pa7-40
Pa1-9co
Pa1-5
Pa5-23
Pa3-3re
Pa4-13

Entamoeba sp. RL3 partial 18S rRNA gene, isolate 09/1247

Entamoeba sp. RL2 partial



Fig. 2.  An unrooted phylogeny of Archamoeba, non-Archamoeba Amoebozoa, and non-
Amoebozoa.  Maximum-likelihood with GTR+GAMMA was used to assess relationships 
between 73 taxa using 1,052 aligned characters.  Bootstrap values are indicated for Archamoeba 
and for clades within it when above 90.  
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Fig. 3.  An unrooted phylogeny of Archamoeba.  Maximum-likelihood with GTR+GAMMA was 
used to assess relationships of 45 taxa using 1,119 aligned characters.  Bootstrap values are 
indicated when above 90.
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Fig. 4.  An unrooted phylogeny of Entamoeba from P. americana hindgut and vertebrates.  
Unlabelled tips indicate taxa from P. americana hindgut.  Maximum-likelihood with 
GTR+GAMMA was used to assess relationships between 120 taxa using 1,272 aligned 
characters.  
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Fig. 5.  An unrooted phylogeny of Entamoeba SSU rDNA from P. americana.  Major sub-clades 
are numbered.  Branch tips with circles indicate taxa from the Carolina (lab) host population.  
Branch tips without circles indicate taxa from the wild host population.  Bootstrap values are 
indicated for the major sub-clades.  Maximum-likelihood with GTR+GAMMA was used to 
assess relationships between 105 taxa using 1,272 aligned characters.
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Fig. 6.  An unrooted phylogeny of Entamoeba SSU rDNA from P. americana.  Major sub-clades 
are numbered.  Host specimens with Entamoeba in the sub-clade are indicated.Maximum-
likelihood with GTR+GAMMA was used to assess relationships between 105 taxa using 1,272 
aligned characters.
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Fig. 7.  An unrooted phylogeny of Entamoeba SSU rDNA from P. americana. Major sub-clades 
are numbered.  Two host males and 2 host females are indicated when they have Entamoeba in 
sub-clades.  Male 1= Peri 8, Male 2= Peri 24, Female 1= Peri 6, Female 2= Peri 32.  Maximum-
likelihood with GTR+GAMMA was used to assess relationships between 105 taxa using 1,272 
aligned characters.
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Fig. 8.  An unrooted phylogeny of Entamoeba SSU rDNA from eight cockroach species: 
Periplaneta americana, Blattella germanica, Blaberus giganteus, Gromphadorhina portentosa, 
Blatta orientalis, Cryptocercus punctulatus, Periplaneta fuliginosa, and Parcoblatta 
pennsylvanica.  Major sub-clades are numbered.  Host species with Entamoeba in each sub-clade 
are indicated.  Maximum-likelihood with GTR+GAMMA was used to assess relationships 
between 148 taxa using 1,272 aligned characters.
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Fig. 9.  An unrooted phylogeny of Entamoeba SSU rDNA from 28 cockroaches across eight 
cockroach species.  Major sub-clades are numbered.  Host specimens with Entamoeba in each 
sub-clade are indicated.  Maximum-likelihood with GTR+GAMMA was used to assess 
relationships between 148 taxa using 1,272 aligned characters.
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Table 4.  Numbered columns indicate clades from Figures 12-14, and E. moshkovskii column 
indicates E. moshkovskii clade.  Shaded cells indicate that members of the clade were found 
within the host specimen.
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Species 1 2 3 4 5 6 7 8 9 10 11 E. moshkovskii

P. americana NPA

P. americana Pa1 Pa1

P. americana Pa2 Pa2

P. americana Peri 1 Pa1-#or

P. americana Peri 3 Pa3-#or

P. americana Peri 5 Pa5

P. americana Peri 6 Pa4

P. americana Peri 8 Pa7

P. americana Peri 9 Pa8

P. americana Peri 24 Pa24

P. americana Peri 32 Pa32

B. germanica Blat 2 Bge2

B. giganteus Blab 1 Bgi1

G. portentosa Grom 1 Gp1

G. portentosa Grom 2 Gp2

G. portentosa Grom 3 Gp1

G. portentosa Grom 4 Gp1

G. portentosa Grom 5 Gp1

B. orientalis Ori 1 Bo1

B. orientalis Ori 2 Bo2

B. orientalis Ori 3 Bo3

C. punctulatus Cryp 1 Cp1

P. fuliginosa Ful 1 Pf 1

P. pennsylvanica Parc 1 Pp1

P. pennsylvanica Parc 12 Pp12

P. pennsylvanica Parc 16 Pp16

P. pennsylvanica Parc 17 Pp17

P. pennsylvanica Parc 22 Pp22

Specimen 
Name

Abbrev iation
 if  sequenced

NPA21, 
NPA 22



Fig. 10.  An unrooted phylogeny of Entamoeba SSU rDNA from eight cockroach species.  Major 
sub-clades are numbered.  Taxa from non-hindgut regions are indicated with circles.  Maximum-
likelihood with GTR+GAMMA was used to assess relationships between 148 taxa using 1,272 
aligned characters.
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Fig. 11.  An unrooted phylogeny of 110 Entamoeba SSU rDNA sequences from P. americana, 
43 from non-P. americana cockroaches, and 39 from vertebrates.  Major sub-clades are 
numbered.  Maximum-likelihood with GTR+GAMMA was used to assess relationships between 
192 taxa using 1,272 aligned characters.
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Summary

Molecular evidence supports Entamoeba as a well-supported clade in the Archamoeba, a 

group of amitochondriates within the Amoebozoa.  Molecular phylogenetic representations 

currently contain Entamoeba from vertebrates, while ignoring those from non-vertebrates due to 

a lack of molecular data.  Entamoeba from non-vertebrates have been characterized only by 

morphology and a few other non-molecular characters such as host.  The taxonomy of 

vertebrate-inhabiting Entamoeba has changed over time, as isolates have been repeatedly lumped 

and split as new data is collected.  SSU rDNA  of vertebrate-inhabiting Entamoeba has often 

provided support to pre-existing species delineations, but has also frequently thrown doubt as to 

whether previously named "species" deserve the distinction.  Similarly, SSU rDNA of 

Entamoeba from non-vertebrates could reveal great genetic diversity and be used to test 

hypotheses of species distinctions.

Cockroaches were chosen as hosts in this study because an initial screening revealed 

diversity of their Entamoeba, they are ecologically important and widespread organisms, and 

they were a convenient non-vertebrate host to collect.  Entamoeba SSU rDNA was amplified 

with the aid of primers designed in our lab to specifically bind to these sequences.  A total of 60 

cockroaches across eight species was sampled.  Thirty-four of these were Periplaneta 

americana.  The remaining were Blattella germanica, Blaberus giganteus, Blatta orientalis, 

Cryptocercus punctulatus, Gromphadorhina portentosa, Parcoblatta pennsylvanica, and 

Periplaneta fuliginosa.  This set of species spans 4 of the 6 cockroach families.  Entamoeba were 

detected in at least one representative of each host species, showing that Entamoeba are found 
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among phylogenetically distant members of Blattodea, and are likely to be found in additional 

members of Blattodea.  They were detected in all 34 P. americana specimens, indicating a high 

infection rate in the two populations studied- one from captivity, and the other a wild, local one.  

If all P. americana populations have a high infection rate, then cockroach-inhabiting Entamoeba 

could be the most globally common members of the genus!

Sequences were generated from 28 of the 56 cockroaches that tested positive, including at 

least one cockroach from each species.  Multiple variants were found in a single cockroach for 

many species and for all P. americana assessed.  Most taxa formed a clade sister to the one 

predominated by vertebrate-inhabiting Entamoeba.  This clade contains at least 11 distinct sub-

clades.  While this indicates great phylogenetic diversity among Entamoeba in cockroaches, 

information on other biologically relevant differences between the clades would be needed 

before designating new species. 
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Appendix: Comparison of Stains for Identifying Entamoeba in Cockroach Gut

A.1  Introduction

Entamoeba are members of the Amoebozoa that inhabit the guts of many mammals, 

birds, reptiles, and insects.  Morphological studies have focused primarily on Entamoeba that are 

pathogenic in humans and snakes.  The morphology and phylogeny of other vertebrate-infecting 

Entamoeba is also being elucidated with the help of molecular techniques (Stensvold et al. 

2011).  Comparatively little work has been done on insect-infecting Entamoeba since their 

discovery in 1927 (Lucas).  Molecular work in our lab has revealed genetic diversity in 

cockroach-inhabiting Entamoeba comparable to that of all other Entamoeba combined.  

However, we still know very little about the morphology of the organisms we are presumably 

detecting.  Some of the difficulties in seeing and identifying Entamoeba are: 1) like many 

colorless amoebae, their outlines are usually invisible under bright field microscopy, 2) darker 

debris draws more attention than slow moving and transparent amoebae, and 3) distinguishing 

them from other amoebae can be difficult.  Phase contrast is commonly used to overcome the 

first problem, but it does not add much color to the amoebae, so to the untrained observer they 

may still may be less noticeable than debris.  

The nucleus is a prime diagnostic feature for distinguishing Entamoeba from other 

protists.  The nucleolar material forms a unique pattern of a central mass surrounded by a 

peripheral ring.  This “bull's eye” pattern is only sometimes visible using phase contrast.  If this 

pattern could be highlighted consistently, it would help in locating Entamoeba among debris and 

distinguishing them from other amoebae.  Many stains that bind to nucleolar material also imbue 
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some coloration to the cytoplasm or cell membrane, so cell shape may also become more visible 

in the process.

Multiple stains were tested on cultured Entamoeba and compared for their ability to 

highlight nucleolar material.  The most optimal stains were then used in roach gut contents to 

locate Entamoeba.  Among fluorescent stains, DAPI and Sybr Safe (Invitrogen) were tested.  

DAPI is often used to visualize nuclei and chromosomes, so it was expected to resolve nuclear 

details.  Sybr Safe is marketed as a stain for nucleic acid in gel electrophoresis, though Biotium 

(2011) found that it also has the ability to cross cell membranes and stain nuclear DNA.   The 

following non-fluorescent stains were also tested: Wheatley's trichrome, methyl green, Mayer's 

hematoxylin, iodine, eosin Y, and phloxine B.  Wheatley's trichrome and iodine are the most 

commonly used stains for Entamoeba.  Eosin Y with phloxine B was used by Tan et al. (2010) 

with good results for identification.  Swierczynski and Milanesi (2010) had good staining of 

nuclear chromatin in Entamoeba coli using Mayer's hematoxylin.  There is no record of methyl 

green being used to stain Entamoeba, though it is known to stain nuclei of animal and plant cells 

dark purple.      

    

A.2  Methods

A.2.1 DAPI and Sybr Safe

A drop of DAPI was added to a drop of PC2, a culture containing Entamoeba 

moshkovskii and bacteria.  It was immediately viewed with a Zeiss Axioskop 2 Plus attached to a 

light source (Zeiss FluoArc) and DAPI filter.  
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Sybr Safe was mixed with fresh culture in a microfuge tube.  After 30 minutes, a drop of 

the mixture was viewed with a setup similar to above, but with a EGFP filter instead of a DAPI 

filter.  The same protocol was repeated with SAF (sodium acetate formalin)-preserved culture.

A.2.2  Wheatley's Trichrome

The protocol was adapted from Meridian Bioscience.  A smear of SAF-preserved culture 

was dried at room temperature for one to two hours.  The slide was placed in 70% ethanol for 10 

minutes, a separate jar of 70% ethanol for 5 min., and then another for 5 minutes.  It was then 

placed in trichrome for 8 min., dipped in acid ethanol (100 mL 90% ethanol, .5 mL glacial acetic 

acid) for 5-10 seconds, dipped twice in 95% ethanol, placed in 95% ethanol for 5 min., a separate 

jar of 95% ethanol for 5 min., and 100% ethanol for 3 minutes.  The slide was removed and 

viewed when dry.  

The following are some of the modifications applied to subsequent trials: xylene for three 

min. at the end, removal of two 70% ethanol washes, decrease in time of destaining (acid 

ethanol) dips, increase and decrease of time in trichrome, and fixing with Schaudin's fixative or 

PVA (polyvinyl alcohol) instead of SAF.

A.2.3  Methyl green

A drop of methyl green was added to a drop of fresh culture and viewed after 5-10 

minutes.  The stain was diluted to 1:4 and tested with fresh and SAF-preserved culture.  To see if 

incubation time plays a role, fresh culture was mixed with diluted methyl green and mixed in a 

microfuge tube.  A drop was viewed after five minutes, and another after 90.
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A.2.4  Mayer's hematoxylin

A drop of Mayer's hematoxylin (2.5 g alum, 0.05 g hematoxylin, 0.01 g sodium iodate, 

0.05 g citric acid, 50 mL distilled water) was added to a drop of fresh culture and viewed after 

five minutes.  In the next trial, a drop of culture was smeared on a Poly L lysine-coated slide to 

encourage retention of cells.  It was placed in Schaudin's fixative for 90 minutes, iodine alcohol 

for 10 minutes, 70% ethanol for 6 minutes, and Mayer's hematoxylin for 5 minutes.  The slide 

was rinsed in running tap water for 10 seconds, distilled water for 10 seconds, placed in xylene 

for 3 minutes, and viewed when dry.

In the next trial, a weak base (ammonia) was added to make the hematoxylin more 

apparent.  A drop of Mayer's hematoxylin was added to a drop of SAF-preserved culture, and a 

drop of diluted ammonia was added five minutes later.  This was repeated with fresh culture.

A.2.5  Iodine

A drop of freshly made 2% Lugol's iodine (0.2 g potassium iodide, 0.1 g iodine, 10 mL 

distilled water) was added to a drop of fresh culture and viewed after five minutes.  This was 

repeated with SAF-preserved culture.

A.2.6  Eosin Y, Phloxine B, and Iodine in Various Combinations

A drop of eosin Y + phloxine B (10mg eosin Y, 1mg phloxine B, 7.4 mL ethanol, 390 

mL distilled water, 40 mL glacial acetic acid) was added in separate trials to a drop of SAF-
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preserved, PVA-preserved, and fresh culture.  A drop of ½ x (eosin Y + phloxine B) was added 

to a drop of SAF-preserved culture.

Eosin Y and phloxine B were then tested individually to determine the contribution of 

each dye to the staining results, to help in finding the optimal ratio for combining the two.  SAF-

preserved culture was tested separately with 1/8 x eosin Y and ½ x phloxine B.  After testing 

each stain individually, the following ratios of eosin Y: phloxine B were mixed from stock 

solutions (eosin Y stock: 0.1 g eosin Y, 10 mL distilled water; phloxine B stock: 0.1 g phloxine 

B, 10 mL distilled water) and tested on fresh culture: 4:1, 3:2, 2:3, and 1:4.

Eosin Y + phloxine B was mixed with iodine to see if this would increase the contrast 

between cellular components.  Ratios of 9:1 and 8:2 of (eosin Y + phloxine B): iodine were 

tested.  

A.2.7  Roach Gut

The gut of a juvenile giant cockroach (Blaberus giganteus), raised from adults from 

Carolina Biological Supply Company, was used for in situ examination.  The roach was 

euthanized by exposure to ethyl acetate in a sealed container, followed by evisceration.  Portions 

of the hindgut were placed in various buffers and mixed with a pipette.  A drop of this solution 

was viewed on a slide with no stain, eosin Y + phloxine B (3:2), or iodine + eosin Y + phloxine 

B.
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A.3  Results

A.3.1  DAPI and Sybr Safe

After DAPI was added to fresh culture, nuclei were visible and could be counted in some 

cysts (Fig. 1 b-d).  However, intra-nuclear details could not be resolved.

Bacteria glowed green after Sybr Safe was added to fresh culture, but Entamoeba cells 

did not fluoresce.   Trophozoites were still active 30 minutes after adding the stain.  When Sybr 

Safe was added to SAF-preserved culture and incubated for 30 minutes, nuclei could be seen and 

counted in some cysts.  However, in many cases the nuclei were so bright that they could not be 

resolved from each other (Fig. 2).

A.3.2  Wheatley's Trichrome

In the first trial, cysts were blurry and unstained.  Cysts were colored in later trials, but 

often rugged on the surface and stained homogeneously, rendering internal details indiscernible.  

Nuclei were sometimes visibly stained in PVA- and SAF-fixed samples, but their details were 

not discernible.

A.3.3  Methyl Green

Adding undiluted stain to fresh culture resulted in an intensely darkened field.  When it 

was added to SAF-preserved culture, internal details of cysts appeared distorted.  Addition of 

diluted stain to fresh culture stained approximately one of every 40 cysts.  A bullseye nucleus 

was visible in stained cysts (Fig. 3).  Some trophozoites may have also been stained.  Adding 
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diluted stain to SAF-preserved culture stained some cysts slightly, but nuclei were not 

discernible.  Incubation of diluted stain with fresh culture for 5-90 minutes did not result in 

nuclear staining.

A.3.4  Mayer's Hematoxylin

Adding Mayer's hematoxylin to fresh culture did not stain cells, and adding ammonia 

water did not improve results.  Adding Mayer's hematoxylin to SAF-preserved culture, followed 

by ammonia water, did not stain cells.  Fixing in Schaudin's and running in tap water resulted in 

a few cysts becoming dark brown, but no internal structures were discernible.    

A.3.5  Iodine

Adding iodine to fresh culture imbued an amber color to the cytoplasm of all cysts and 

trophozoites.  Nuclei and nuclear structure were visible in some cells.  Iodine reacted when 

added to SAF-preserved culture, and cells were no longer identifiable.

A.3.6  Eosin Y, Phloxine B, and Iodine in Various Combinations

Adding eosin Y + phloxine B to SAF-preserved culture increased the visibility of 

trophozoite morphology and nuclear detail.  Cysts were also stained, but their nuclei were not 

discernible.  Adding the stain to PVA-preserved culture also increased visibility of cyst and 

trophozoites, though the trophozoites appeared slightly rugged.  Nuclei were sometimes visible 

in trophozoites, though not as often or as clearly as in SAF-preserved stained specimens.  Nuclei 

were sometimes very slightly visible in cysts.  Adding eosin Y + phloxine B to fresh culture 
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stained some cysts, but many remained unstained, even after 30 minutes on the slide.  

Trophozoite nuclei were sometimes slightly stained, but not as much as in SAF-preserved stained 

specimens.

Adding 1/8 x eosin Y to SAF-preserved culture resulted in light pink cells.  In 

trophozoites, nuclei became slightly more visible.  For cysts, internal details and nuclei were 

sometimes slightly more discernible than in unstained culture.  Adding ½ x phloxine B to SAF-

preserved culture made nuclei more visible in trophozoites.  Two nuclei were observed in some 

cells, but it was unclear whether these were rounded pre-mitotic trophozoites or cysts.  Iodine + 

eosin Y + phloxine B differentiated cysts from trophozoites when added to fresh culture.  

Trophozoites were orange-brown to pink, and cysts were yellow.  Trophozoite nuclei and nuclear 

structure were visible in all cells, and cyst nuclei were slightly visible in a few cases.

Different ratios of eosin Y to phloxine B were tested to find the optimal ratio.   A ratio of 

4:1 added to fresh culture resulted in some cells staining only faintly, with nuclei visible in some 

trophozoites.  With the 3:2 stain, nuclei were visible in many trophozoites, and could even be 

counted in some cysts.  With the 2:3 stain, cells were very dark purple.  Though trophozoite 

nuclei were still visible, the cells were too dark to see interior details as clearly as with 4:1 or 3:2 

stains.  The 1:4 stain increased visibility of cyst nuclei.  Of the ratios, 3:2 gave the most optimal 

results, so the 3:2 stain was also tested on PVA-preserved culture.  The stain and culture reacted 

when combined.  The field appeared dull pink and cells did not stain differently from the 

background.

Eosin Y and phloxine B were added to iodine in different ratios to see if contrast between 

cellular components could be improved.  Using a 9:1 ratio of eosin Y + phloxine B to iodine 
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resulted in little difference compared to only eosin Y + phloxine B.  An 8:2 ratio resulted in 

differentiation between cysts and trophozoites, as cysts appeared yellow and trophozoites pink.  

Some pink cells were round, but these were believed to be rounded trophozoites rather than 

cysts.

A.3.7  Roach Gut

A variety of amoebae were visible in both unstained and stained culture.  Several 

spherical, cyst-like objects were seen with faintly visible spheres inside (Fig. 4).  Visibility of 

these internal spheres was significantly enhanced by both stains tested on roach gut (eosin Y + 

phloxine B (3:2) and iodine + eosin Y + phloxine B).  These stains darkened the edges and center 

of the spheres to reveal a bullseye pattern.  When the stain mixture that contained iodine was 

used, some debris was stained yellow, but no yellow-stained cysts were visible as in trials on the 

cultured cells.

Many amoebae were stained, with morphology and internal structures visible.  Several 

spheres were seen with 1, 2, or 3 bullseye structures inside.  Bullseye structures were not visible 

in any highly amoeboid-shaped cells.    

A.4  Discussion

Eight stains and stain combinations were compared for their ability to stain Entamoeba 

nuclei, and the two best were chosen for examination of cockroach gut: eosin Y + phloxine B 

(3:2), and iodine + eosin Y + phloxine B.  Both can be used with fresh and SAF-preserved 

culture.
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The fluorescent stain DAPI caused nuclei to fluoresce, but nuclear details were not 

visible.  The inability of Sybr Safe to stain nuclei in fresh culture is likely due to lack of 

penetration of live cells.  Wheatley's trichrome was the first non-fluorescent stain tested because 

it was expected to give the best results.  This staining procedure is widely used in the medical 

field for detecting Entamoeba histolytica in fecal specimens.  Of the stains tested, the greatest 

time and effort was spent troubleshooting Wheatley's trichrome because of its good reputation.  

However, the cells became distorted and/or unstained in every trial with this stain.  Methyl green 

produced beautiful looking cysts with good contrast between nuclei and cytoplasm.  However, it 

only stained a small portion (1/40) of cysts and no trophozoites, so is not ideal for identifying 

Entamoeba in situ where the population may be low.  Mayer's hematoxylin has been used by 

others to darken the “bullseye” of Entamoeba (Swierczynski Milanesi 2010), but here it did not 

appear to penetrate cells.  Staining with iodine was quick and easy, and sufficiently improved the 

visibility of nuclei in some cells.  Eosin Y + phloxine B stained cytoplasm and nuclei of 

trophozoites and cysts.  The ratio of the two dyes was adjusted to provide optimal nucleus-to-

cytoplasm contrast. 

Iodine is commonly used to visualize internal details of Entamoeba, though Tan et al. 

(2010) found it inferior to Wheatley's trichrome and eosin Y + phloxine B.  Our results confirm 

that eosin Y + phloxine B was more effective than iodine.  Eosin Y + phloxine B seems to be a 

very practical stain for Entamoeba detection, as it is much easier and faster to use than 

Wheatley's, and more effective than iodine. 

Adding iodine to eosin Y + phloxine B allowed for differentiation of cysts and 

trophozoites, as well as greater contrast between debris.  This may be particularly helpful for 
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discriminating between rounded-up trophozoites and cysts, which are both spherical in shape.  

This is the first described use of iodine + eosin Y + phloxine B as a stain for Entamoeba, and 

possibly for any cell.  

Eosin Y + phloxine B (3:2) and iodine + eosin Y + phloxine B were used for staining 

squashed gut from juvenile B. giganteus.  They both stained amoebae and increased the visibility 

of interior structures.  The iodine did not provide any benefit in situ, and made the field appear 

slightly darker.  Therefore, eosin Y + phloxine B (3:2) appears to be the optimal stain for in situ 

use.  Cysts (Fig.4 c,d) and rounded-up amoebae (Fig.4 b) containing bullseye nuclei were 

observed.  The next major goal is to further confirm the identity of these potential Entamoeba 

and link genetic variants to particular morphologies.  Continued sampling with the staining 

methods refined here, as well as application of new techniques such as fluorescence in situ 

hybridization, could prove invaluable in moving towards this goal.
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                a                           b                         c                         d         

Fig. 1.  Entamoeba cyst from culture PC2 a) unstained, 400x magnification. b-d) with DAPI, 
400x mag.  Four nuclei visible when viewing through specimen.

                                  a                                                b

Fig. 2.  Entamoeba cyst from culture PC2 a) unstained, 400x mag. b) after 30 minute incubation 
with Sybr Safe, 400x mag.

Fig. 3.  Entamoeba cyst from culture PC2, incubated with methyl green for 10 minutes. 

127



                                            a                                                    b

                                 c                                                     d

Fig. 4.  Cysts and trophozoites from B. giganteus gut, possibly Entamoeba. a) cyst, unstained, 
400x mag.  b) rounded trophozoite with bullseye nucleus, eosin Y + phloxine B (3:2), 400x mag. 
c) cyst with at least 2 nuclei, eosin Y + phloxine B (3:2), 400x mag. d) cyst or rounded 
trophozoite with bullseye nucleus, eosin Y + phloxine B (3:2), 1000x mag.
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