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Abstract 

In plants, reactive oxygen species (ROS) are generated as a byproduct of normal metabolism, as 

well as in response to adverse conditions such as light stress, extreme temperatures, and exposure 

to pests and pathogens. Singlet oxygen (1O2) is a ROS that is formed during photosynthesis in 

photosystem II (PSII) of the chloroplasts.  Levels of 1O2 and other ROS are tightly controlled in 

healthy plants, but some studies suggest that levels of fatty acid desaturase (FAD) activity in 

Arabidopsis thaliana can influence constitutive and/or stress-responsive ROS accumulation.  In 

this study, a luciferase-based reporter gene that is selectively stimulated by 1O2 (AAA-ATPase: 

Luc) was used to compare 1O2 levels in wild-type Arabidopsis plants (Col-0) and a mutant line 

with impaired fatty acid desaturation (fad7-1). The goals of this study were to establish a suitable 

method for measuring luminescence generated by the 1O2 –responsive reporter gene, and to use 

this method to see if alterations in fatty acid desaturation have an impact on ROS accumulation 

in the chloroplast. The AAA-ATPase: Luc reporter gene was successfully introduced into the two 

genetic backgrounds, Col-0 and fad7-1, and reporter gene activity was measured using a 

luminometer-based assay of leaf extracts, a plate reader-based assay of intact leaf discs or 

extracts, and a camera-based system for imaging intact rosettes (a Lumina XR).  Our results 

suggested that the luminometer-based assay had greater sensitivity than the other two 

approaches. We also found that, in both genetic backgrounds, activity of the reporter gene 

increased in response to high light and rose bengal (a chemical elicitor of 1O2), but not in 

response to aphid infestation. Although fad7-Luc and Col-Luc were similar in their response to 

these three treatments, our data suggested that constitutive levels of reporter gene activity were 

higher in the fad7-1 background than in Col-Luc.  Potentially, decreased fatty acid desaturation 

in fad7-1 may promote higher constitutive levels of 1O2.  
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Introduction  

Plants are exposed to many different environmental stresses such as drought, extreme 

temperatures, and insect attacks. To respond to these adverse conditions, plants have developed 

many physiological mechanisms to adapt to stress (Arimura et al., 2005). Previous research has 

shown that plants accumulate reactive oxygen species (ROS) in response to stress, and that tight 

regulation of stress-responsive ROS levels can contribute to stress adaptation (Laloi et al., 2007; 

Dat et al., 2000). In addition, different stresses, including drought, cold, and salt stress, alter 

expression levels of fatty acid desaturases, and this too can influence levels of stress resistance in 

plants (Upchurch, 2008). Here, we will discuss ROS generation and fatty acid desaturation, the 

impacts of these processes on stress adaptation, and the potential linkages between fatty acid 

desaturation and ROS accumulation in plants. 

Reactive Oxygen Species  

ROS are highly reactive molecules that are generated during the cellular metabolism of 

oxygen, and include such molecules as singlet oxygen (1O2), the superoxide anion (O2 –), 

hydrogen peroxide (H2O2), and the hydroxyl radical (HO•) (D'Autréaux & Toledano, 2007). 

ROS, which are also called reactive oxygen intermediates (ROI) or active oxygen species (AOS), 

can be actively generated in response to stress by enzymes such as NADPH oxidases and cell 

wall peroxidases (O’Brien et al. 2012); they can also be formed in chloroplasts and peroxisomes 

as toxic byproducts of photosynthesis or photorespiration (Foyer & Noctor, 2003; Laloi, 

Przybyla, & Apel, 2006). During photorespiration, the enzyme Rubisco uses O2 to oxygenate 

ribulose-1,5 bisphosphate and form glycolate; then, glycolate moves to peroxisomes from the 

chloroplast and is oxidized by glycolate oxidase, generating H2O2 (Wingler, Lea, Quick, & 

Leegood, 2000).  
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Although ROS are highly toxic, they also play many roles in cellular signaling in a 

diverse array of organisms including plants, animals and insects (Mittler et al., 2011). The 

chloroplast redox status and chloroplast electron transport are crucial sources for redox signals 

(Baier & Dietz 2005). ROS work as biological signals in stress adaptation by affecting the 

expression of several genes (Laloi, Apel, & Danon, 2004). When the concentration of the ROS is 

increased, and ROS specifically interact with the target molecules, this information will be 

translated via changes in the gene expression. These changes in the gene expression may be due 

to the oxidation of transcription factors that are redox-sensitive, or to the oxidation of other 

components that are involved in signaling pathways, resulting in the activation of transcription 

factors (Laloi et al., 2004). It has been demonstrated that ROS have effects on nuclear gene 

expression through discrete signaling pathways in a few photosynthetic organisms, and these 

pathways may cooperate with each other and do not always function independently (Kim, 

Meskauskiene, Apel, & Laloi, 2008). The interaction between ROS can be seen in Arabidopsis 

mutant plants that overexpress ascorbate peroxidase, an antioxidant enzyme that scavenges 

H2O2 (Murgia et al, 2004). The overexpression of ascorbate peroxidase improved the intensity of 

singlet oxygen -mediated responses in the florescent (flu) mutant in Arabidopsis plants, which 

gives an indication that singlet oxygen -mediated signaling is influenced by H2O2  either directly 

or indirectly (Laloi et al., 2007).  

 Under standard physiological circumstances, the creation and degradation of ROS is 

tightly regulated. Cells have a sturdy scavenging system to maintain the balance of ROS, which 

are constantly produced. This scavenging system consists of both enzymatic and non-enzymatic 

antioxidants that detoxify ROS. The controlled balance of ROS can be disturbed by a number of 

conditions such as light stress, high temperature, pathogen invasion, drought, wounding and 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373375/#b34
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other mechanical stresses, which can lead to oxidative stress by increasing ROS production 

and/or decreasing ROS scavenging (Hernandez-Barrera et al., 2013).  

ROS and Plant Stress  

ROS play a crucial role in improving plant resistance against environmental stresses. 

According to many studies, the production of ROS such as H2O2 and O2
- is one of the primary 

actions in plant defense responses to pathogen attack (Bolwell & Wojtaszek, 1997; Davies, 

Bindschedler, Strickland, & Bolwell, 2006; Lamb & Dixon, 1997). 

Under abiotic stresses, the production of ROS increases rapidly. However, the type of 

ROS produced differs depending on the type of environmental stress and on the species of the 

plants (Laloi et al., 2007). For example, plants under moderate light stresses produce 1O2, O·
2, 

and H2O2 (Fryer, Oxborough, Mullineaux, & Baker, 2002; Laloi et al., 2007). However, high 

light intensities favor 1O2 production ( Hideg, Kálai, Hideg, & Vass, 1998; E. Hideg, Spetea, & 

Vass, 1994; Laloi et al., 2007). Knowing the type of ROS is very important because ROS differ 

from each other in the specificity of their signaling; for example, different ROS trigger differing 

transcriptional responses in plants (Laloi et al. 204; Kim et al., 2008). Additionally, ROS have 

different biological properties such as half-life, chemical reactivity, and lipid solubility. For 

instance, HO• is not selective in its reactivity towards biological molecules (D'Autréaux & 

Toledano, 2007). However, singlet oxygen is likely to trigger a stress-response program 

modified to lessen the negative impact of environmental conditions (Fryer et al., 2002; Laloi et 

al., 2007). 

ROS accretion in plant cells is involved in a number of processes such as hypersensitive 

response to pathogen invasion, growth and development, stress response and hormonal 

recognition (Mittler & Berkowitz, 2001). During pathogenesis, ROS play several essential roles. 



4 
 

First, they have the ability to limit the growth of the pathogen infection by reinforcement plant 

cell walls or by killing directly the pathogens. Second, in local and systemic acquired resistance, 

they act as signaling molecules. Finally, they are involved in the hypersensitive response in the 

incompatible interactions between plant and pathogen (Dat, et al., 2000). Kariola and coauthors 

have shown that Chlorophyllase1 is rapidly induced in Arabidopsis thaliana after tissue damage 

that caused by necrotrophic bacteria Erwinia carotovora or the necrotrophic fungus Alternaria 

brassicicola (2005). This will lead to increasing the production of ROS from thylakoid 

membranes of chloroplasts by the photosynthetic electron transport chain (Foyer, Lelandais, & 

Kunert, 1994).  

Singlet Oxygen 

Singlet oxygen (1O2) is an inevitable side-product of photosynthesis. 1O2 is very reactive 

and react rapidly with wide range of molecules, particularly molecules that have double bonds 

(Laloi & Havaux, 2015; Triantaphylidès & Havaux, 2009). The high levels of 1O2 can cause 

damage to proteins and lipids in the surrounding areas of PSII, causing an inhibition in 

photosynthetic productivity and a reduction of plant growth. Also, it has been reported that the 

overproduction of 1O2 can damage the β-carotene particles in the PSII reaction center. The β-

carotene oxidation products act as stress signals that arbitrate the responses of the genes to 1O2 

(Gutierrez et al., 2014; Ramel, Sulmon, Serra, Gouesbet, & Couee, 2012). Many scavenging 

systems have evolved in plants to defend against the side effects of 1O2. Plastoquinones, 

tocopherols, and carotenoids that are located in the thylakoid membranes have a significant 

effect in quenching 1O2 (Laloi & Havaux, 2015; Triantaphylidès & Havaux, 2009). Glutathione, 

ascorbate, and ubiquinol, may also play a role in quenching 1O2 (Laloi & Havaux, 2015). 
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The role of 1O2 as a signal molecule has been studied in the conditional fluorescence (flu) 

mutant of Arabidopsis. The flu mutant accumulates protochlorophyllide (Pchlide) in the dark. In 

light conditions, Pchlide acts as a photosensitizer and produces 1O2 (Baruah, Šimková, Apel, & 

Laloi, 2009; Flors et al., 2006; É Hideg, Kálai, Kós, Asada, & Hideg, 2006). Directly after the 

1O2 is generated in the plastids, a signal will be transferred rapidly to the nucleus (op den Camp 

et al., 2003). 1O2 is very reactive and not likely to move out of the plastid; however, it causes the 

generation of a stable second messenger (the plastid protein EXECUTER) that is found to be 

involved in signal transduction from plastids to nucleus (Wagner et al., 2004; Baruah et al., 

2009). In this research, a 1O2-responsive reporter gene will be used to monitor the levels of 1O2 in 

Arabidopsis plants during biotic and abiotic stresses.  

 

Measurement of ROS   

It is very crucial to study the redox status in plants that are under stress conditions that we 

can draw a picture on how a particular stress affect plants and how plants recover from this 

stress. Moreover, the changes in the redox status occur in different parts of the cell. Therefore, 

knowing the intracellular location in which the redox status has changed will assist the scientists 

in understanding how ROS will react with the neighbored molecules, and the possible 

mechanisms that can regulate the levels of ROS. On the other hand, the studying of the 

effectiveness of ROS is very challenging because of their short lifespan, high reactivity (Shulaev 

& Oliver, 2006) and their low concentration at normal conditions. Therefore, they are very hard 

to be detected in complex biological tissues. As well, site-specific detection methods are required 

to specifically identify ROS in their subcellular localization, because ROS are frequently created 

and/or detoxified in subcellular parts (Shulaev & Oliver, 2006).  
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There are several distinct techniques that have been used to measure ROS. In one 

method, researchers measure ROS according to their ability to cause damage to lipids, DNA and 

proteins. Therefore, they use DNA, lipids, and proteins as an indicator to oxidative stress. 

Nevertheless, this technique provides indirect measurement of ROS (Fryer et al., 2002). In 

addition, electron paramagnetic resonance (EPR) has been used with some success in the 

detection of oxygen free radicals and organic radicals from their semi‐stable adduct (Fryer et al., 

2002; Van Doorslaer, Dedonder, de Blocks, & Callens, 1999). However, the precise locations of 

ROS construction in tissues cannot be detected by using EPR method (Fryer et al., 2002). The 

third technique is cell fractionation that has been used to determine the locations of ROS 

generation and the site of ROS detoxification systems (Doulis, Debian, Kingston-Smith, & 

Foyer, 1997; Fryer et al., 2002; Kingston‐Smith, Harbinson, & Foyer, 1999).  However, this 

technique involves massive tissue damage which can lead to the production of ROS. 

Subsequently, the data that produced by using this damaging technique does not usually produce 

a precise image of the sites for ROS production and the location of ROS detoxification system 

(Fryer et al., 2002).  

Additionally, imaging of ROS in vivo has been accomplished by using different 

fluorescent dyes (Halliwell & Whiteman, 2004; Van Breusegem, Bailey-Serres, & Mittler, 

2008). Because singlet oxygen accumulation usually occurs in mesophyll tissues, digital imaging 

with high resolution is used to define the location of the accelerated singlet oxygen in 

Arabidopsis leaves (Fryer et al., 2002). Fryer and other researchers used tracer dyes that are 

specific to ROS in combination with using high resolution imaging. This method can be used to 

determine the location of ROS and their accumulation in the tissues (2002). The most 

widespread dye is H2DCF-DA that can be used to detect the ROS in chloroplast and 

http://jxb.oxfordjournals.org/content/53/372/1249.full
http://jxb.oxfordjournals.org/content/53/372/1249.full
http://jxb.oxfordjournals.org/content/53/372/1249.full
http://jxb.oxfordjournals.org/content/53/372/1249.full
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mitochondria (Gao, Xing, Li, & Zhang, 2008; Zhang, Li, Xing, & Gao, 2009). However, these 

kinds of methods suffer from different drawbacks (Halliwell & Whiteman, 2004). These probes 

are affected by many chemical interactions. For example, they can interact with different 

antioxidant molecules, O−
2 and O2, which will have an impact on the signals (Winterbourn, 

2014). 

Recently, many techniques have been developed in detecting redox status in vivo by 

engineering the redox sensors to be more specific in measuring the levels of the ROS. For 

example, the reduction–oxidation sensitive green fluorescent protein (roGFP) was targeted by 

either mitochondrial targeted sequence mt-roGFP or cytosolic targeted sequence c- roGFP in 

Arabidopsis plants to sense the oxidation and reduction status in the mitochondria and the 

cytosol (Jiang et al., 2006). Additionally, Jiang and his collaborators state that the roGFP is 

sensitive to the redox status in plants and can be used to monitor the modifications in redox 

status in real time in vivo (2006). Another example is a specific detection of H2O2 by a yellow 

fluorescent protein (YFP) that introduced into the regulatory domain of the H2O2-binding protein 

in Escherichia coli. YEP is a H2O2- specific probe and can be used for quantitative measurement 

of H2O2 in animal and plant cells (Hernández-Barrera et al., 2015). In addition, 1O2-responsive 

promoter that direct the expression of the reporter gene luciferase was developed in Arabidopsis 

fluorescent in blue light (flu) mutants to detect the specifically the levels of the 1O2 in plants  

(Baruah et al., 2009).   

Luciferase as a Reporter for Singlet Oxygen   

Bioluminescence is a reaction that occurs at least between two molecules which are 

formed under usual physiological environments within an organism. The substrate molecule that 

produces light in this reaction is called luciferin. Luciferin is produced by luciferases which is an 
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enzyme catalyzes the oxidation of luciferins creating oxyluciferins and photons of light (Greer & 

Szaly, 2002). The luciferin- luciferase reaction is described in the following equation (Crouch, 

Kozlowski, Slater, & Fletcher, 1993):  

 

ATP1 + D-Luciferin+ O2                                 Oxyluciferin + AMP2 + PPi3 + Light 

 

A reporter gene that is selectively stimulated only by 1O2 and is not stimulated by 

hydrogen peroxide or superoxide was developed to detect 1O2   in Arabidopsis plants. This 

reporter gene consists of the promoter of an AAA-ATPase gene (At3g28580) and the luciferase 

open reading frame (Baruah et al., 2009). The luminescence emitted by transgenic plants acts as 

an indicator to the levels of the 1O2   in the transgenic plants.  

The 1O2-responsive promoter gene was introduced into Arabidopsis plants that have an 

impaired activity of the fatty acid desaturase 7 to see if the loss of function of this enzyme will 

have an impact on the levels of the 1O2 in response to different stresses.    

Fatty Acid Desaturases  

Fatty acid desaturases (FADs) are enzymes that are widely distributed among all 

organisms except some types of bacteria such as Escherichia coli (Los & Murata, 1998). FADs 

produce a double bond between two carbon atoms in a fatty acyl chain. The desaturation of fatty 

acids is crucial for the functioning of biological membranes. For example, at normal 

temperatures, saturated fatty acids cannot form the bilayer structure which is essential for 

appropriate working of the biological membrane. Producing a proper number of unsaturated 

                                                                 
1 Adenosine triphosphate  
2 Adenosine monophosphate  
3 Pyrophosphate 

Luciferase 
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bonds in the fatty acyl chains allows for the proper fluidity of the membrane (Los & Murata, 

1998). In turn, changing membrane fluidity will affect the function of certain membrane-

embedded proteins (Thompson Jr, 1989). Plants can adjust different types of stresses by having 

the ability to modify their membrane lipid fluidity (Upchurch, 2008).  

The ω-3 fatty acid desaturases (ω-3 FADs) are membrane-embedded enzymes that 

catalyze the alteration of linoleic acid to linolenic acid (Kodama, Akagi, Kusumi, Fujimura, & 

Iba, 1997). Fatty acid desaturse7 (FAD7) is one of the ω-3 FADs that converts linoleic acid 18:2 

to linolenic acid 18:3 (Avila et al., 2012; Liu, Yang, Li, Yang, & Meng, 2006) by producing a 

double bond between the third and fourth carbon atoms at the end of the fatty acyl chain. 

Therefore, there are more dienoic fatty acids (the fatty acids that contain 2 double bonds) than 

trienoic fatty acids (the fatty acids that contain 3 double bonds) in FAD7 disrupted plants than 

their wild types. The most abundant fatty acid in the aerial tissues of most plants is linolenic acid 

and it is the most ample fatty acid on earth. Linolenic acid can ascend to 54 % of the total leaf 

fatty acids in Arabidopsis thaliana (Mene-Saffrane, et al., 2009). It has been found that the 

transgenic tobacco lines that contain high levels of hexadecatrienoic (16:3) and linolenic (18:3) 

acids  and low levels of their precursors hexadecadienoic and linoleic acids showed more 

resistance to cold stress than the wild types (Kodama, Hamada, Horiguchi, Nishimura, & Iba, 

1994). Also, the presence of FAD7 can enhance plant resistance to certain conditions such as 

cold temperature. Similarly, when FAD7 is overexpressed, it positively affects tomatoes growth 

in cold temperature. To illustrate, it has been demonstrated that the presence of FAD7 

significantly increases a tomato’s tolerance to cold stress. The FAD7 that is located in the 

endoplasmic reticulum acts as insulation to the cell handling the normal response of the cell 

preventing its death, which enhanced tomato plants tolerance to cold temperature (Yu et al., 
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2009). In addition, the fad3 fad7 fad8 triple mutants were more susceptible to pathogens and 

insects (Mene-Saffrane et al., 2009; Vijayan, Shockey, Levesque, Cook, & Browse, 1998), and 

they were more vulnerable to environmental stresses than the wild-type plants (Mene-Saffrane et 

al., 2009; Routaboul, Fischer, & Browse, 2000). 

On the other hand, it has been established that the rice (Oryza sativa) plants have shown 

more resistance to the rice blast fungus (Magnaporthe grisea) by the suppression of the OsFAD7 

and OsFAD8 genes in rice (Avila et al., 2012; Yaeno, Matsuda, & Iba, 2004; Yara et al., 2007). 

Sohn and Back (2007) stated that the transgenic rice plants in which the total linolenic acid 

amount decreased by 7-32% and the total amount of linoleic acid was increased by the 

suppression of FAD7 were more resistant to high temperatures than untransformed rice plants. 

Additionally, tomato plants that have spr2 mutant, in which the FAD7 function has been 

disrupted, demonstrated better resistance to potato aphids (Macrosiphum euphorbiae) than the 

wild-type tomato (Avila et al., 2012). Also, two mutants in Arabidopsis thaliana (Atfsad7-2 and 

Atfad7-1fad8) exhibited more resistance to the green peach aphids (Myzus persicae) than their 

wild types. The number of aphids on these two mutants was around 42% less than the wild types. 

Furthermore, the accumulation of salicylic acid, which is a hydroxy-benzoic acid that is 

contributed to improving plants’ immune systems against many pathogens, has been increased 

by FAD7 suppression. The interruption of the function of different types of FADs in different 

plants (soybeans, rice, Arabidopsis, and tomato) accounts for increasing salicylic acid 

accumulation. The accumulation of salicylic acid has been correlated with enhancing plant 

resistance against aphids (Avila, et al., 2012).  

 

 

http://click.thesaurus.com/click/nn1ov4?clkpage=the&clksite=thes&clkld=0&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Finterruption
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ROS and fad7 Plants 

It has been reported that the loss of function of fatty acid desaturases (ω-3 FADs) in 

plants contributes to the salicylic acid (SA) accumulation which could induce ROS production 

(O’Brien, Daudi, Butt, & Bolwell, 2012). Furthermore, O’Brien and other researchers 

demonstrated that H2O2 has been displayed to be accumulated after the application SA, which 

suggests SA might need other pathway components such as ROS for a robust defense reaction. 

Also, the accumulation of SA led to a decrease in ROS-scavenging enzymes which in turn leads 

to higher levels of ROS in response to pathogen attacks. Therefore, plant improving resistance 

could be related to ROS and their reaction with salicylic acid, which accumulated in the absence 

of FAD7. Hence, ROS may stimulate the accumulation of SA which plays a crucial rule in 

enhancing plant defense mechanism. Also, higher levels of ROS have been shown to increase the 

accumulation of pathogenesis-related (PR) proteins like PR1 and PR2 (Chen et al., 1995; Kariola 

et al., 2005; Maleck & Dietrich, 1999; Uknes et al., 1992; Van Loon & Van Strien, 1999).  

It has been shown that lipid profiling in Arabidopsis triple mutants fad3fad7fad8 and spr2 

tomato foliage accrue higher levels of FA-hydroperoxides and that this increase acts as an 

indicator for oxidative stresses than the wild-type plants (Muller & Goggin, unpublished data). 

Therefore, we hypothesize that there are higher levels of 1O2 in FADs disrupted plants than non-

disrupted plants. In order to prove our hypothesis, we will measure the 1O2 produced in fad7 

Arabidopsis plants by using abiotic biotic stresses, and compare it with the wild-type plants. 

The effect of green peach aphid’s infestation on the levels of 1O2 will be studied in fad7 

Arabidopsis plants. Green peach aphids are insects that belong to the family Aphididae. Aphids 

attack a wide variety of crops, and feed on the phloem sap of their host crops (Louis, Leung, 

Pegadaraju, Reese, & Shah, 2010; Tjallingii & Esch, 1993). The phloem sap contains sugars and 



12 
 

carbohydrates as products of photosynthesis. These products are essential for plant nutrition. As 

a result, sucking the phloem sap from the plants causes aphid-plant interactions, and can cause 

damaging effects on the plants. Additionally, the damaging effect of aphids comes from their 

high reproductive ability, their capacity to breed asexually and the ability of some aphids to 

vector viruses to plants (Kennedy, Day, & Eastop, 1962; Louis et al., 2010). Therefore, they can 

cause severe damage to their hosts.  

In this research, the effect of the FAD7 gene on 1O2 accumulation will be studied in 

Arabidopsis plants by measuring the luminescence in the transgenic plants with the AAA-

ATPase-Luc reporter gene. The luminescence will be measured in response to treatments of rose 

bengal (a chemical elicitor of 1O2), high light stress, and aphid’s infestation; using different 

devices such as the LuninaXR, Plate Reader, and Glomax 20/20 luminometer, and all these 

techniques will be discussed in details in the materials and methods section.     

 

 

 

 

 

 

 

 

 



13 
 

Objectives 

In this research, we studied the levels of the 1O2 as one of the ROS that is produced 

during photosynthesis, and that can also accumulate to higher levels in response to certain 

stresses. The levels of the 1O2 were measured in Arabidopsis plants by using a luciferase- based 

reporter system (AAA-ATPase-Luc) that is selectively stimulated by 1O2 but not by other ROS. 

The levels of the 1O2 were measured through measuring the luminescence in the plants with the 

1O2 –responsive reporter gene. The 1O2-responsive promoter gene was introduced into 

Arabidopsis plants that have an impaired activity of fatty acid desaturase 7 (fad7-1) and into 

wild-type plants (Col-0). The purposes of this research were (1) to optimize a suitable method for 

measuring the luminescence in the 1O2 –responsive reporter gene containing plants in response to 

different stresses by using different approaches, and (2) to see if the alterations in fatty acid 

desaturation have an impact on ROS accumulation in the chloroplast. This was achieved by 

comparing the levels of the 1O2 produced in response to biotic and abiotic stresses between fad7-

1 and Col-0 wild-type Arabidopsis plants through measuring the luminescence in the 1O2 –

responsive reporter gene containing plants.  
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Materials and Methods 

Plant Materials 

Experiments were performed by using Arabidopsis thaliana wild-type plants, fad7-1 

genotype, and flu mutants that express the AAA-ATPase: Luciferase reporter gene containing the 

promoter AAA-ATPase (At3g28580) that is only responsive to singlet oxygen and the luciferase 

open reading frame (Baruah, et al., 2009). The seeds for the flu: AAA-ATPase: Luc mutant were 

provided by Klaus Apel Boyce Thompson Institute. The generation of fad7-1 and Col-0 plants 

with the AAA-ATPase: Luc reporter gene was done in the laboratory by crossing Arabidopsis flu 

AAA-ATPase: Luc plants (when they start flowering) as a pollen donor with 20 fad7-1 mutants as 

maternal parents that lack the trichome differentiation protein GL1. Trichome differentiation 

protein GL1 is a protein which is expressed in, stems, flowers, and leaves (Kirik et al., 2001).  

Since the gl1 mutation is recessive, presence one allele of the gene will cause the expression of 

the GL1 protein. Therefore the crossing was confirmed depending on the presence of the 

trichromes in the F1 generation.  

Surface Sterilization of Seeds and Growth Conditions  

All seeds for all genotypes were surface sterilized prior to every experiment by rinsing 

the seeds with 70% ethanol for five minutes, and eliminating the ethanol after centrifugation for 

10-15 minutes. Then, the seeds were washed with 50% bleach solution (commercial bleach) with 

0.05% Tween 20 for 10 minutes. The bleach solution was discarded after the centrifugation for 

15-20 seconds, and the seeds were rinsed 6-7 times with autoclaved distilled water until the smell 

of the bleach was disappeared. Around 50-70 seeds were plated on Murashige and Skoog (MS) 

media (Murashige & Skoog,1962) and vernalized at 4ºC for 3 days. MS Medium contains 6 g of 

agarose, 3.22g of MS and 22.5g of sucrose in 750 ml with PH (adjusted by KOH) between 5.5-

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354779/#R44
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5.9. After autoclaving, the MS medium was poured into plates and ready to be used for seeds 

germination. The vernalized seeds were later moved to the growth chamber (23.0 ºC, 16 hours 

/dark 8 hours photoperiod; ~135 µmol m-2 s-1 light intensity; 65% humidity). After 12-15 days the 

plantlets were transplanted into potted soil consisting of peat moss, vermiculite, perlite with the 

ratio 4:3:2.  

The flu:AAA-ATPase: Luc plants were grown under continuous light conditions because 

flu mutants accrue free protochlorophyllide in the dark. Protochlorophyllide acts as a strong 

photosensitizer which produces 1O2 in plastids during light. Therefore, instantly after the release 

of 1O2, the growth amount of mature plants declines, whereas seedlings bleach and die (Kim,et 

al., 2008; Laloi, et al., 2006).  

 

DNA Extraction for F2 (flu AAA-ATPase: Luc X fad7/gl1) Generation 

DNA extraction protocol developed from (Kasajima, et al., 2004 and Edwards, et al., 

1991with some modifications). The DNA extraction buffer was prepared by adding 1 volume of 

Edward’s Solution (200 mM Tris-HCl (pH 7.5), 25 mM EDTA, and 250 mM NaCl) to 9 

volumes of TE buffer (10 mM Tris (pH 8.0), 1mM   EDTA). Later, 200 µl of DNA extraction 

buffer were added to 3-5 mg of Arabidopsis leaf tissues with three glass beads (3 mm). After 

homogenizing for 30 seconds to 1 minute by the Geno Grinder 2010/Spex Sample Prep., the 

solution turned to light green and was ready for PCR experiments, and it is stable under -20 ºC 

for several months. 

 

http://en.wikipedia.org/wiki/Tris
http://en.wikipedia.org/wiki/EDTA
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Screening for fad 7-Luc and Col-Luc Plants 

PCR analyses were performed on 115 plants of F2 plants that were grown at (16 h L: 8 h 

D) condition. Therefore, the plants that were homozygotes for the flu (flu/flu) mutants were not 

able to grow, and the plants that were screened were either heterozygote for the flu (flu/FLU) 

mutant or homozygotes for the Flu wild-type (FLU/FLU). After the seeds were surface 

sterilized, they were grown in growth chamber for DNA extraction. 2 µl of DNA samples were 

used for a 25µl PCR reaction prepared by adding 2.5 of MgCl2 (25mM), 5 µl of 5x buffers, 1 µl 

of each forward and reverse primers, 0.5 µl of dNTPs, 0.2 µl of Tag polymerase, 12.8 µl of 

ddH2O, and 2µl of the DNA samples.  

To detect luciferase positive plants, the forward primer 5’-TTACACGAAATTGC 

TTCTGGTG-3’ and the reverse primer 5’- CCTCGGGTGTAATCAGAATAGC-3’ were used 

according to Baruah and others (2009). The annealing temperature was 51 ºC, and the product 

size was 139 base pair for the luciferase primers.  

The luciferase-positive plants were tested for the presence of FAD7 wild-type gene by 

using the forward specific primer for fad7  5’–TTTCAGTGGGCTCTCGAAGACT-3’, the 

forward primer for FAD7 wild-type 5’-TTTCAGTGGGCTCGAAGTCC-3’, and the shared 

reverse primer 5’-ATCTGCGGGAAAAGATGATG–3’. The size of the amplicon was 582 base 

pair for both the FAD7 wild type and the fad7 mutant primers. The FAD7 primers designed 

accordingly to Avila & Goggin (unpublished data). 

 Both fad7 mutant and FAD7 wild-type samples were screened for the presence of the flu 

mutant gene using the forward primer (5’-CCAAGGGAAGTATAGG GAAGT-3’) and the 

reverse primer for the FLU gene (5’-TGCGGAAGGATCAGTCAGTC-3’). The annealing 
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temperature was 58 ºC, and the product size was 179 base pair for the flu mutation’s primers. 

The process of screening for fad7-Luc and Col-Luc plants is explained in the figure below 

(Figure 1). 

The GloMax 20/20 Luminometer Analysis  

 First, we tested the variations between the readings of the luminometer to optimize a 

method with accurate luminescence measures (Supplemental Figure 1). The GloMax 20/20 

luminometer analysis was performed by using the Luciferase Assay System protocol (Promega). 

After grinding the leave samples by liquid nitrogen, the weight for every sample was recorded 

and 1ml µl of 1X lysis reagent was added to the tissue samples. After homogenization by using 

the Geno/Grinder 2010 for 1 minute, the debris was removed by brief centrifugation and the 

supernatant was transferred to a new tube. Later, 5µl of cell lysate was mixed with 20µl of 

Luciferase Assay Reagent. The luminescence was measured by using the GloMax 20/20 

luminometer.  

The Synergy HT Multi-Mode Microplate Reader Analysis 

 The plate reader analysis was performed by spraying the leaves with the luciferin before 

30 minutes of the experiment. Later, the seventh leaf of the Arabidopsis rosette leaves (Farmer, 

et al., 2013) was placed directly on a 24 well plate, and 400 µl ddH2O were added to each well. 

The luminescence were measured by using Bio-tek Synergy HT Multi-Mode Microplate Reader 

by choosing the settings that allow us to collect all of the photons that are emitted from the 

samples through blocking all the excitation light and selecting "Hole" setting in the plate reader 

to capture all the emission light.  
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Figure 1: The schematic diagram of the screening process for fad7-Luc and Col-Luc Plants.   
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Figure 2: The primer design for FAD7 gene and FLU gene. Highlighted areas represent the 

mutation sights in FAD7and FLU genes. 

 

In addition, the Luciferase Assay System protocol (Promega) as mentioned previously was also 

used to measure the luminescence by the plate reader. 

 

The Lumina XR Analysis 

 After the treatment, the intact rosette leaves were collected and imaged by Lumina XR 

system to visualize the luminescence for the rosette leaves. Then, the leaves were rapidly fresh-

frozen by liquid nitrogen and stored under -80 ºC to be processed for the GloMax 20/20 data. We 

got the results from the Lumina XR by selecting the region of interest (ROI) covering the rosette 
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Arabidopsis leaves. Then, the luminescence was calculated by taking the radiance unit 

(photons/sec/cm 2 /sr) that represent the number of photons per second that depart a cm2 of tissue 

and emit into a solid angle of one steradian (sr) (Living Image Software User’s Manual).  

Statistical Analysis  

 Both the one way and two way analysis of variance (ANOVA), and means separation by 

student’s t test were performed by using the JMP® Genomics 7.0 software (SAS institute Inc.).   
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Results  

Confirmation of Luciferase Activity in the Transgenic Line flu:AAA-ATPase-Luc  

 To confirm that the 1O2 –responsive reporter gene AAA-ATPase-Luc was active in 

flu:AAA-ATPase-Luc (obtained from Dr. Klaus Appel, Boyce Thomson Institute), luciferase 

activity was compared in this line with untransformed wild-type plants (Col-0).  Because the 

conditional flu mutant in which this transgenic line was generated accumulates high levels of 1O2 

in plastids in response to a shift from dark to light (Meskauskiene et al., 2009), we compared 

luminescence in plants grown under continuous light with plants that were shifted to dark for 8 

hours before the experiment. To optimize a suitable method for measuring the luminescence 

generated by the luciferase reporter, we compared measures of luminescence in the same plants 

using foliar extracts between two different methods: microplate analysis of luminescence (Figure 

3A), and luminometer-based measurement of luminescence (Figure 3B). For both the microplate 

measurements and luminometer measurements, luminescence was significantly higher in AAA-

ATPase-Luc than in untransformed controls, confirming that the transgene was active in the 

transgenic line.   

In addition, the luminometer-based and plate reader-based measurements of the same 

samples were highly correlated with one another (r2=0.78), indicating good agreement between 

the two methods.  However, whereas the microplate measures of luminescence were 9-fold 

higher in transgenic plants than in untransformed controls, luminometer-based measurements 

indicated a 950-fold difference in luminescence between the two treatment groups.  This 

difference suggests that the luminometer-based assay is more sensitive than the plate reader 

assay.  
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Both microplate and luminometer-based measures of luminescence were numerically 

higher for plants that experienced a dark/light transition than for plants grown under continuous 

light; however, this difference was not statistically significant, and there was no significant 

interaction between genotype and light treatment (Figures 3A and 3B).  The plants were 

harvested for analysis only 10 minutes after they were transferred from the dark to the light, and 

this exposure period may not have been long enough for the dark-exposed flu mutants to 

accumulate significantly higher levels of 1O2 than the flu plants grown under continuous light.  

   

Introduction of the AAA-ATPase-Luc Reporter Gene into fad 7-1 and Col-0 Backgrounds 

To obtain fad7-1 and Col-0 plants with the AAA-ATPase-Luc reporter gene, the fad7-1 gl-

1 mutant (which is in a Col-0 background) was crossed to the flu:AAA-ATPase-Luc transgenic 

line (also originally developed in a Col-0 background). Plants from the F1 generation were 

allowed to self-pollinate, and the F2 generation was screened to select for the reporter gene, 

select against the flu and gl-1 mutations, and track segregation of the fad7-1 mutation (Figure 4). 

To aid in selecting against the flu mutation, the F2 generation was grown under a normal 

photoperiod (16 h L: 8 h D), which would cause all plants that were homozygous for flu to die.  

Whereas the maternal parent (fad7-1 gl-1) for this cross was glabrous due to the gl-1 mutation, 

the F1 plants all had trichomes, demonstrating that they were the product of cross-fertilization 

rather than self-pollination. PCR with primers specific to the flu:AAA-ATPase-Luc reporter gene 

identified 28 F2 plants that carried the reporter gene. After initial testing of 115 F2 plants, PCR 

was repeated once on the 28 putative positive plants to confirm that they were positive for the 

reporter gene (Figure 5A). Then, these 28 plants were tested with primers specific to the wild-

type and mutant alleles of the FAD7gene, and 8 homozygous fad7-1 mutants were identified, 
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Figure 3. Reporter gene activity in flu:AAA-ATPase-Luc, as measured by luminescence . 

The flu:AAA-ATPase-Luc transgenic line and untransformed controls (Col-0) were either 

grown in continuous light throughout their growth period (Light), or were grown under 

continuous light, then exposed to 8 h of darkness, followed by ~10 min of light before 

collection  (Dark/Light). This dark/light transition was previously reported to induce 1O2 

production in the flu mutant. The luminescence was measured in using tissue extracts in the 

same plants using two different methods: a Synergy HT Multi-Mode Microplate Reader (A) 

or a GloMax 20/20 Luminometer (B) (n=8).   
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as well as 2 plants that were homozygous for the wild-type FAD7 allele (Figure 5B).  Plants that 

were heterozygous at the FAD7 locus were discarded, and the remaining 10 plants were tested by 

PCR with primers specific for the wild-type and mutant alleles of the FLU gene to select against 

any plants that might carry the recessive flu mutation. This process identified 4 plants that were 

homozygous for the wild-type FLU allele (Figure 5C), including 1 that was homozygous for the 

fad7-1 mutation (hereafter referred to as fad7-Luc), and 3 that were homozygous for the wild-

type FAD7 allele (hereafter referred to as Col-Luc) (Figure 4 and Figure 5). All four plants had 

trichomes, indicating that all of them possessed a wild-type copy of the Gl-1 gene.   

Screening for fad7-Luc and Col-Luc Plants  

The screening for the luciferase-positive plants in the F2 generation indicated that 28 out 

of 115 plants (24%) were positive for the luciferase reporter gene (Figures 4 and 5), which was 

not consistent with our expected ratio 75%. The Chi Square analysis indicated that there is 

significant difference between the observed ratio 24% and the expected ratio 75% (p=<0.0001). 

Potentially, the crude DNA extraction method, which does not remove potential PCR inhibitors 

from the sample and does not allow accurate quantification of DNA content, may have 

contributed to some false negatives.  

32% of the luciferase-positive plants were homozygous for the FAD7 wild type allele, 

and 7% were homozygous for the fad7 mutation (Figures 4 and 5). 

 28% of the FAD7 wild type plants were homozygous for the FLU wild type allele, and 

50% of the fad7 plants were homozygous for the FLU wild type allele. Wild-type FLU plants 

were expected to represent 33% of the F2 generation that survived long enough to be tested, 

because the plants were grown under a photoperiod that would kill all homozygous flu mutants.    

The Chi Square analysis indicated that there is no significant difference between the observed 
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ratio and the expected ratio (p=<2.216). The overall percentage of homozygous FLU plants 

(40%) was slightly more than the expected segregation ratio, potentially due to the low number 

of replicates (Figures 4 and 5).  

After identifying F2 plants that were homozygous for the fad7 mutation and positive for 

the reporter gene, F3 seeds were collected. Most of the subsequent experiments were performed 

with F3 plants. Luminescence levels in each tested plant were at least 30 standard deviations   

greater than the mean for the control plants that lacked the reporter gene. The fact that tested 

plants uniformly had high luminescence strongly suggest that the F2 parents had 2 copies of the 

transgene so that all F3 also carried the reporter.  

Confirmation of Reporter Gene Activity in fad7-Luc Plants 

 The luminometer-based assay was used to compare levels of luminescence produced by 

fad7-Luc (F3 generation) at normal growth conditions (16 L: 8 D, ~135 µmol m-2 s-1 light 

intensity) to confirm the activity of the reporter gene. The levels of the luminescence for the 

fad7-Luc line, which carries the1O2-responsive-reporter gene, were 250-fold higher than the 

levels observed in fad7-1 mutants without the transgene, confirming that the transgene is active 

in the fad7-Luc line (Figure 6).  

Confirmation of Reporter Gene Responsiveness to Rose Bengal 

  

 The purpose of these experiments was to confirm the responsiveness of the reporter gene 

in F3 generation plants in two genetic backgrounds (Col-0 and fad7-1) to rose bengal, a chemical 

treatment know to generate 1O2 . One experiment was conducted with a plate reader-based assay 

using intact leaves (Figures 7A and 7 B), and a second was conducted with a luminometer with 

leaf extracts (Figure 8), using 500 µM rose bengal. In the first assay, which was conducted with  
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Figure 4. Selection of fad 7-Luc and Col-Luc mutants.  Out of 115 F2 plants that originated from 

crossing flu:AAA-ATPase-Luc and  fad7-1/gl1, screening identified 1 fad7-Luc plant (homozygous for 

the fad7-1 mutation and the wild-type FLU allele, and positive for the  AAA-ATPase-Luc reporter 

gene and the wild-type Gl-1 allele), and 3 Col-Luc plants (homozygous for the wild-type FAD7 and 

FLU alleles, and positive for the  AAA-ATPase-Luc reporter gene and the wild-type Gl-1 allele 
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Figure 5: PCR screening of (fad7-1/gl1 X flu:AAA-ATPase-Luc F2 plants). A) Based on prior 

screening of 115 F2 plants (data not shown), 28 plants were selected for further analysis, and 
were tested with primers specific to the luciferase reporter gene to confirm the presence of the 
flu:AAA-ATPase-Luc transgene.  B) The 28 luciferase-positive plants were screened for the 

presence of the wild –type (top) and/or mutant (bottom) alleles of the FAD7 gene. The results 
identified 8 plants homozygous for the wild-type FAD7 allele (highlighted in red) 2 plants 

homozygous for the fad7 mutation (green), and 18 heterozygotes (white). C. All homozygotes 
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identified in B were screened for the presence of the mutant allele of the FLU gene, which was 
absent in 3 of the FAD7 wild-type plants (samples 11, 14, and 20), and 1 of the fad7 mutants 

(sample 9). An Invitrogen 1 kb Plus DNA ladder was used to confirm amplicon size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a plate reader, we also included control groups that did not receive any luciferin, the necessary 

substrate for luciferase, in order to verify that the luciferin reacts with the luciferase in our 

reporter gene system. In this assay, the highest levels of luminescence were observed in plants 

that carried the reporter gene and that were treated with both rose bengal and luciferin; the 

reporter gene, the enzyme substrate, and the ROS inducer were all required in combination to 

generate luminescence levels that significantly exceeded the background values for 

Figure 6. Reporter gene activity in fad7-Luc, as measured by luminescence. The levels of 
luminescence emitted by the fad7-Luc (F3generation) and the fad7-1 mutants at normal light 

conditions was measured after luciferin treatment using the GloMax 20/20 luminometer 
(n=15). The error bars represent the standard error of the mean (SEM). The Y axis is abridged 
in order to be able to portray transformed and untransformed plants in the same graph. 

 

One way ANOVA Df=7, F=35.3006, P= <0.0001 

fad7-luc  fad7-1 
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untransformed controls (Figures 7A and 7 B).  The luminometer assay also confirmed that the 

reporter gene in both genetic backgrounds was responsive to rose bengal (Figure 8).  In both 

assays, the levels of luminescence were numerically higher in fad7-1-Luc than in Col-0-Luc, but 

this difference was not statistically significant (Figures 7 and 8).   

 In the process of choosing a concentration of rose bengal for these experiments, we also 

tested the effects of 1 mM rose bengal on luminescence (Supplemental Figure 2, Appendix II), 

and compared symptom development in wild-type plants treated with water, 500 µM, or 1 mM 

rose bengal.  Surprisingly, 1mM rose bengal did not have a statistically significant effect on 

luminescence (Supplemental Figure 2, Appendix II), even though the lower concentration of 500 

µM induced significant increases in light production (Figures 7 and 8).  When plants treated with 

1 mM rose bengal were observed 48h after treatment, all of the plants displayed extensive 

necrosis and chlorosis.  All of the plants treated with 500 µM of rose bengal also showed signs of 

chlorosis, but damage was less extensive than in the 1 mM treatment group(Supplemental Figure 

3, Appendix II),.  Potentially, in response to 1 mM rose bengal treatment, plants may produce    

high levels of 1O2 that can cause damage to our reporter system; therefore, we chose to conduct 

our experiments (Figures 7 and 8) with 500 µM rose bengal.     

 Reporter Gene Activity in Response to Abiotic and biotic stress in the fad7-luc and Wild-

Type Genetic Backgrounds 

 The goal of these experiments was to investigate whether 1O2 generation in response to 

abiotic (high light) or biotic (aphid infestation) stresses differed between genotypes with normal 

(Col-0) or impaired (fad7-1) fatty acid desaturation.   
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Reporter gene activity in response to high light stress: High light stress is known to induce 

1O2 generation in plants (Krieger-Liszkay, 2005), and so reporter gene activity in fad7-Luc and 
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Figure 7. Testing the responsiveness of the reporter gene to rose bengal and luciferin by 

using intact leaves (n=5). A) Luminescence was compared in fad7-luc and untransformed fad7-

1 plants with and without rose bengal (RB) and luciferin (Luc), the necessary substrate for 
luciferase, at 2h after rose bengal treatment. B) Reporter gene activity was also compared 
between fad7-luc and Col-luc plants in response to luciferin and rose bengal application. 

Luminsecence was measured (in F3generation in) leaf discs by a plate reader assay. All error 
bars represent the standard error of the mean (SEM).  

 

Genotype                                         p=0.5713 
Treatment                                        p=0.0278 

Genotype*Treatment                      p=0.5643 
 



31 
 

 

Figure 8. Testing the responsiveness of the reporter gene to rose bengal application 

(500µM) (n=21). Reporter gene activity was compared between fad7-luc and Col-luc plants in 
response to rose bengal, at 2h after rose bengal treatment. Luminsecence was measured (in F3 
generation) using a luminometer-based assay. The error bars represent the standard error of the 

mean (SEM).  
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µmol m-2 s-1, both of which should cause high light stress in Arabidopsis. Control plants were 

maintained under the same light conditions at which all the plants were grown (~135 µmol m-2 s-

1). Luminescence was measured with a luminometer-based assay.  At both time periods (1 and 

2h) and at both levels of high light exposure (400 and 1000 µmol m-2 s-1), plants exposed to high 

light had significantly higher reporter gene activity than controls maintained at moderate light 

levels (Figures 9A and 9 B). There was no significant difference in reporter gene activity 
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(Figures 9A and 9 B).  In both groups of plants (those exposed for 1h and those exposed for 2h), 

luminescence was numerically higher in fad7-Luc than in Col-Luc, and this difference was 

statistically significant in the 2h group. There was no significant interaction between light 

intensity and genotype, though, which suggests that the consecutive levels of the luminescence 

were higher in fad7-Luc plants were higher than the Col-Luc plants.        

 An additional experiment was performed to test whether a camera-based luminescence 

detection system, the Lumina XR, could be used to visualize the response to high light stress in 

intact rosettes. fad7-Luc (F4 generation) and Col-Luc (F3 generation) plants were exposed to 2h 

at 400 µmol m-2 s-1, since this exposure produced the greatest reporter gene activity in the 

previous experiment. Unlike the luminometer, this system did not detect a significant change in 

reporter gene activity in response to high light; although it suggested that luminscence levels 

were higher in fad7-Luc than in Col-Luc (Figure 10 A). The same rosettes that were visualized 

with the Lumina XR were also extracted to measure with the luminometer, to compare the two 

methods.  Similar to the results with the Lumina XR, the luminometer detected numerically 

higher levels of luminescence in fad7-Luc than in Col-Luc, although this difference fell short of 

statistical significance at α= 0.05 (Figure 10 A; P=0.0623). In contrast to the Lumina XR, 

though, the luminometer-based assay also detected a significant increase in response to high light 

exposure (Figure 10 B).  Also, the correlation between the Lumina XR and the luminometer 

measurements from the same plants was low (r2=0.46). When we measured background 

luminescence in wild-type (Col-0) plants that lacked the luciferase reporter gene, levels of 

luminescence were, as expected, very low (48.6± 10.2 luminescence units for the plants under 

high light stress, and 40.2 ±4.5 luminescence units for the plants under 16 h L: 8 h D 

photoperiod). In contrast, the Lumina XR yielded fairly high levels of background fluorescence 
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in untransformed plants (4,978,100± 559,474 p/s/cm²/sr for the plants under high light stress, and 

5,332,700 ±583,291 p/s/cm²/sr for the plants under 16 h L: 8 h D photoperiod). According to the 

Lumina XR measurements,  luminescence from  fad7-Luc transformed plants was  3-5-fold 

higher than the luminescence from the untransformed plants, and the values for Col-Luc plants 

were 2-3-fold higher than the values for the untransformed plants. In contrast, the luminometer 

results showed that the luminescence from fad7-Luc transformed plants were 800-900-fold 

higher than in untransformed plants, and the Col-Luc plants produced 100-700-fold higher 

luminescence than the untransformed plants. These observations suggest that the luminometer is 

more sensitive than the Lumina XR, with greater differences between signal from the reporter 

and background levels in controls.    

Reporter gene activity in response to aphid infestation: We compared the response of fad7-

Luc (F4 generation) and Col-Luc (F3 generation) to aphid infestation because previous research 

indicated that alteration in fatty acid desaturation could induce ROS production. After a 48h 

exposure period to aphids, rosettes were harvested, imaged with the Lumina XR, and then 

processed for analysis with the luminometer. The luminometer-based assay indicated that aphids 

did not significantly impact reporter gene activity, and that reporter gene activity was 

significantly higher in fad7-Luc than in Col-Luc mutants, regardless of the presence or absence 

of aphids.  In contrast, although the Lumina XR measurements were taken on the same plants, 

this imaging approach yielded very different results, and suggested that the luminescence for the 

Col-Luc plants were significantly higher than the luminescence for fad7-Luc plants in response 

to aphid’s infestation (Figures 11A and 11 B).   

 The results for the untransformed controls by the luminometer were 1549.013 
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± 1481.953 luminescence units for the wild-type plants that are inoculated with aphidsand 

19.000± 1.954173 luminescence units for the controls. The fad7-Luc transformed plants were 9-

727-fold higher untransformed plants, and the Col-Luc plants were 5-571-fold higher than the 

untransformed plants. In contrast, the results for the untransformed controls by the Lumina XR 

were 13730000± 711777.8 (p/s/cm²/sr) for the plants inoculated with aphids, and 14729000± 

1597621.5 (p/s/cm²/sr) for the controls. The fad7-Luc transformed plants were 1.1-1.2-fold 

higher than the untransformed plants, and the Col-Luc plants were 1.1-1.4-fold higher than the 

untransformed plants. This is consistent with our previous experiments that proof the high 

sensitivity of the luminometer.  
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Figure 9. Reporter gene activity in fad7-Luc and Col-Luc (F3 generation) in response to 

high light stress (n=9). Plants were exposed to either a 1h (A) or 2h (B) light exposure period, 
and luminescence was measured using a luminometer. The error bars represent the standard error 

of the mean (SEM).  
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Figure 10. Testing the sensitivity of the Lumina XR and the luminometer to the 

luminescence of the reporter gene in response to the light stress (n=20). fad7-Luc (F4 

generation) and Col-Luc (F3 generation) plants were exposed for 2h to either a 400 µmol m-2 sec-

1 or ~135 µmol m-2 sec-1 light intensity. Luminsecence was measured using the Lumina XR (A) 
and the luminometer (B). All error bars represent the standard error of the mean (SEM).  
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Figure 11. Reporter gene activity in fad7-Luc and Col-Luc in response to aphid infestation 

(n=20). fad7-Luc (F4 generation) and Col-Luc (F3 generation) plants were inoculated with 10 
adult aphids, and the luminescence was compared between fad-Luc and Col-Luc plants after 48 h 
by using the Lumina XR (A) the luminometer(B). The error bars represent the standard error of 

the mean (SEM). 
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Figure 12. Samples for the images taken by the Lumina XR. These images are taken by the 
Lumina XR system after 48 h of aphid’s inoculation. Later, the leaves were fresh-frozen by 

liquid nitrogen to be processed later for the luminometer assay.   

D       fad7-Luc with aphids 

B             Col-0 with aphids A                   Col-0 

F         Col-Luc with aphids E                  Col-Luc 

C                  fad7-Luc 
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Discussion 

Establishing a Suitable Method for Luminescence Measures   

 To optimize a method for measuring the luminescence for the Arabidopsis plants, the 

luminescence was measured by using a luminometer , a plate reader, and  the Lumina XR. Our 

preliminary experiments with the plate reader were done with leaf discs to allow less destructive 

methods, but that the difference between the luminescence for transformed plants and 

untransformed plants was low, so our next experiments were done with tissue extracts.  

 To compare the luminometer and the plate reader, we used the two systems to measure 

different aliquots of the exact same samples (Figures 3A and 3B). In both measurements, we 

used a tissue-destructive method by using the Luciferase Assay Kit (Promega) to eliminate any 

differences that originated with the sample type. The results for both the luminometer and the 

plate reader showed numerically higher luminescence for the flu mutants that were under the 

dark for 8 hours period than the untransformed controls. Although the statistical analysis showed 

that there is a strong relationship between the results for the plate reader and the luminometer 

with correlation coefficient r2=0.78 (Figures 3A and 3B), the luminometer results showed higher 

sensitivity to the luminescence than the plate reader. The differences in luminescence 

measurements between the transformed plants and untransformed controls were higher for the 

luminometer than the plate reader. This is consistent with the manufacturers' specifications for 

the luminometer. According to Promega, the GloMax 20/20 luminometer can detect 

concentrations of luciferase as low as 1 x 10-21 moles, which making it one of the best 

luminometers available with high sensitivity (Promega Corporation, 2015).  
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 To confirm the responsiveness of the reporter gene to1O2, and to test the sensitivity of the 

lunimometer and the plate reader to the rose bengal application, we measured the fold change in 

response to the rose bengal application (Figures 7 B and 8). The plate reader’s results showed 

that the rose bengal treated plants were 1.3-2 fold higher than the controls for the fad7-Luc and 

Col-Luc plants, whereas the luminometer’s data analysis showed that the rose bengal treated 

plants were 2.5-2.6 fold higher than the controls for the fad7-Luc and Col-Luc plants. The results 

suggested that the luminometer is more sensitive than the plate reader in measuring the 

luminescence. 

  In addition, the comparison between the Lumina XR system and the luminometer 

revealed that the luminescence measures for the same plants were different with low correlation 

between the two methods (r2=0.46). That may be because the Lumina XR system is used for in 

vivo imaging, whereas the luminometer requires a tissue-distructive method. Bioluminescence 

images are surface-based, meaning that the tissues that are closer to the surface appear brighter 

than the deeper tissue. Also, light production by luciferase requires the enzyme to react with the 

substrate (luciferin). If the luciferin is applied to the surface of intact tissues, it might not 

penetrate the tissue deeply enough to provide a correct picture of the luciferase activity (Sadikot 

& Blackwell, 2005).  In contrast, adding the luciferin to plant extracts ensures that the luciferin 

will be thoroughly homogenized throughout the sample. Therefore, the luminometer assay may 

provide a more accurate, quantitative measure of the luciferase activity than imaged-based 

techniques like the Lumina XR.   

 In short, the luminometer- based assay seems to be more sensitive than both the plate 

reader-based assay and the image-based assay. 
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Confirmation the Activity of the 1O2-Responsive Reporter Gene  

 Since The flu:AAA-ATPase:Luc mutants accumulate free protochlorophyllide in the dark, 

and produce 1O2  instantly when they are exposed to the light (Kim,et al., 2008; Laloi, et al., 

2006), we used this feature of the flu:AAA-ATPase: Luc mutants to confirm the expression of the 

reporter gene in the parental generation. We tested the levels of the luminescence in flu:AAA-

ATPase:Luc plants and Col-0 wild type plants in response to the dark/light shift by using both 

the plate reader and the luminometer (Figures 3A and 3 B). As expected, both devices showed 

higher levels of luminescence in the flu:AAA-ATPase: Luc mutants than the wild-type plants. 

Also, flu:AAA-ATPase:Luc mutants that were exposed to the dark for 8 hours accumulate higher 

levels of 1O2 than the mutants that were growing under continues light conditions. However, 

there was no significant difference between the two treatments (Figures 3A and 3 B). Having a 

low number of the replicates (n = 8) could have contributed to the lack of significant differences 

between the light treatments. Also, the time that the plants were transferred to the light for tissue 

collection could affect the levels of the 1O2. The tissues were harvested within 10 minutes after 

they were transferred to the light whereas in other studies the tissues were harvested 30 minutes 

after re-exposing the plants to the light (Meskauskiene, et al., 2009; Meskauskiene, et al., 2001). 

Possibly, a longer exposure to light was needed to induce significantly higher levels of 1O2.   

 

The Reporter Gene Activity in Respose to Biotic and Abiotic Stresses  

 After confirmation the activity of the reporter gene in the crossed generations, we tested 

the activity of the reporter gene in both genetic backgrounds (fad7-Luc and Col-Luc) in response 
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to rose bengal and high light stress (known elicitors of 1O2), as well as aphid infestation.  The 

levels of luminescence were compared between fad7-Luc and Col-Luc to see if the alteration in 

fatty acid desaturation would have an effect on the 1O2 accumulation.  

 Firstly, the plants were treated with 500 µM rose bengal, and the luminescence was 

measured with the plate reader and the GloMax 20/20 luminometer. In both experiments we 

observed numerically higher levels of reporter gene activity for fad7-Luc and Col-Luc plants in 

response to rose bengal treatment compared to water-treated controls. In both experiments, the 

luminescence produced by fad7-Luc were higher (but not significantly) than the luminescence in 

Col-Luc (Figures 7 B and 8).  Unlike the results for the application of 500 µM rose bengal, there 

was no statistically significant effect of 1mM rose bengal treatment on reporter gene activity 

(Appendix II, Supplemental Figure 1). Furthermore, in this assay, Col-Luc  showed higher 

luminescence than fad7-Luc. Hideg stated that moderate concentrations of rose bengal should be 

used because high concentrations of rose bengal can cause can cause inhibition of photosynthesis 

in tobacco plants (2008). We suggest that the 1mM concentration of the rose bengal caused 

inhibition of photosynthesis in Arabidopsis plants. That was supported by our finding that the 

application of the 1 mM of rose bengal causes extensive cell death on the rosette leaves after 48 

hours of application (Appendix II, Supplemental Figure 2).  

 Similar to 500 µM rose bengal treatment, high light stress also increased reporter gene 

activity in both fad7-Luc and Col-Luc plants, and luminescence levels were higher in fad7-Luc 

than the Col-Luc plants in response to the high light stress (Figures 9 and 10). 

 

 Unlike the abiotic stresses, aphid infestation appeared to have no effect on reporter gene 

activity, at least at the time point observed in this study (after 24h of infestation). However, 
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similar to previous experiments with high light and 500 µM rose bengal, we saw higher levels of 

luminescence in fad7-Luc plants than Col-Luc (Figure 11).  

 In most of the luminometer experiments, the levels of luminescence were higher for the 

fad7-Luc plants than the Col-Luc plants. We compared the luminescence between fad7-Luc and 

Col-Luc plants in 6 luminometer assays in response to rose bengal, light stress, and aphid 

infestation (Table 1). Luminescence levels were numerically higher in fad7-Luc in 5 of these 

assays, and this difference was statistically significant in 2 assays and marginally higher 

(P=0.06) in one assay. This suggests that the reduced levels of desaturation in fad7-1 could 

promote the constitutive accumulation of 1O2.  

 The loss of function of fatty acid desaturase 7, a chloroplast- localized enzyme, modifies 

the desaturation level of the chloroplast membrane, which also influences membrane fluidity (Iba 

et al., 1993). This modification may affect the proteins, pigments, and other molecules involved 

in photosynthesis in chloroplast. The chloroplast membrane is the site where the light-dependent 

reactions of photosynthesis occur. Therefore, electron transport and other photosynthetic 

processes may be influenced by the fluidity of the lipid-matrix of chloroplast thylakoids (Vigh, 

Joó, Droppa, Horváth, & Horváth, 1985; Millner & Barber, 1984), and may in turn influence the 

constitutive levels of 1O2 to be increased in fad7-1 plants that are generated during 

photosynthesis.   

 1O2 may play an important role in plant defense against pathogen attack. It has been 

demonstrated that the phytoalexins, compounds synthesized upon infection, use light energy to 

synthesize 1O2, and this leads to increasing plants defense (Lazzaro et al., 2004; Flors & Nonell, 

2006).  
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 The working model that we suggest is that the loss of function of fatty acid desaturase 7 

in fad7-1 plants leads to alteration in the chloroplast membrane that increases constitutive levels 

of 1O2, which in turn could lead to increased plant defenses against aphid infestation. 
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Table 1: Comparing the levels of the luminescence between fad7-Luc and Col-Luc plants in 

luminometer assays.  

 

Figure # Luminescence  levels status  for fad7-luc  

and Col-Luc plants  

Treatment  

Figure 8  Numerically higher luminescence for fad7-

luc than Col-Luc plants.  

Rose bengal 500 µM 

Figure 9 A  Numerically higher luminescence for fad7-

luc than Col-Luc plants. 

1 h of  (1000, and 400 µmol 

m-2 s-1) light stress 

Figure 9 B Numerically higher luminescence for fad7-

luc than Col-Luc plants with significant 

difference between the two genotypes.  

2 h of  (1000, and 400 µmol 

m-2 s-1) light stress 

Figure 10 B Numerically higher luminescence for fad7-

luc than Col-Luc plants with marginally 

higher P value (P=0.06) 

2 h of 400 µmol m-2 s-1 light 

stress  

Figure 11 A Numerically higher luminescence for fad7-

luc than Col-Luc plants with significant 

difference between the two genotypes.  

48 h of  aphid’s infestation  

Supplemental 

Figure 2 

Numerically higher luminescence for Col-

Luc than fad7-Luc plants with significant 

difference between the two genotypes. 

Rose bengal 1 mM 
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Appedix I. Testing the Variations between Readings of the Luminometer 

Testing the repeatability of the GloMax 20/20 luminometer 

This experiment was performed to test potential sources of technical variation in the 

luminometer-based assay, to inform our choice of subsampling methods. To see if luminometer 

performance might vary from one reading to the next, we took 4 consecutive measures of the 

same 2 sample vials. The results indicated that there was less than 5% variation among different 

readings for the same sample when the readings are taken sequentially (Supplemental Figure 

1A). We also took measurements from multiple aliquots of the same plant extract to determine if 

there is variation among subsamples, and found 16-28% variation in values for the same extract 

(Supplemental Figure 1B). These results suggest that the luminometer itself is not a major source 

of random variation, but that random differences in the composition of different aliquots of the 

same sample can introduce some noise into the data. Based on these observations, we measured 

at least 2 subsamples per plant extract in all experiments. 
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 Supplemental Figure 1. Testing reading variations of the luminometer assay. (A) The 
variations between the sequential readings for the two flu:AAA-ATPase-Luc plants (B) The 

variations between the sub-samples for the two flu:AAA-ATPase-Luc plants.  
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Appendix II. Comparison of Plant Responses to 1mM and 500 µM Rose Bengal. 

 

 

 

 Supplemental Figure 2. Reporter gene activity in response to 1mM rose bengal application 

(n=20). All plants were treated with luciferin, and luminescence was measured using a 

luminometer.  The error bars represent the standard error of the mean (SEM).  
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Supplemental Figure 3. Visualization the plant symptom development in response to rose 

bengal application (500 µM and 1 mM) on Col-0 Arabidopsis rosette leaves.  Foliage of 
four-week old plants were sprayed with water or rose bengal (n= 9). Plants were observed 48 
hours after application for necrosis (solid arrow) or chlorosis (dashed arrow).  All plants treated 

with either concentration of rose bengal showed signs of chlorosis, but plants treated with 1 mM 
displayed more extensive and advanced symptom development. 
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Appendix III. Lipid Content of the fad7-Luc and Col-Luc Using Gas Chromatography 

Mass Spectrometry (GC-MS) analysis 

The purpose of this experiment was to test the lipid content of the fad7-Luc and Col-Luc 

mutants to verify our PCR results for the fad7 mutation. The FAD7 is responsible for 

conformation the linoleic (18:2) acid to the linolenic acid (18:3). Therefore, the ratio between 

linoleic acid to the linolenic acid changes toward linoleic acid in the plants that have an impaired 

activity of FAD7.  

6 plants of fad7-Luc, Col-Luc, fad7, and Col-0 were used. First, the plants were grinded 

by the liquid nitrogen, and 1 ml of the 1.5% sodium methoxide was added to every sample. 

Then, 200 µl of toluene were added to every sample to solubilize the oil. In addition, 100 µl of 

the pentadecanoic acid (1µg/ul) were added to every sample as an internal standard. The samples 

were incubated at 70 °C for 45 minutes. After cooling the samples 1ml of heptane and sterile 

water were added to every sample and the samples were placed in the centrifuge at 1500 rpm for 

2 minutes. After the top layers were transferred to new tubes, and the samples were dried by 

using the evaporating system. Later, 100 µl of hexane were added and the solution was 

transferred to new vials that are used in the GC-MS system.   

The results showed that the wild type Col-0 and Col-Luc plants having higher levels of 

linolenic acid than linoleic acid, which is consistent with our expectations. However, we did not 

observe noticeable shift toward linoleic acid in the fad7-1 plants and the fad7-Luc plants 

(Supplemental Figure 4 and Table 2). That may be because our internal standard did not show 

any peak for the known fatty acid (hexadecanoic acid) in the GC-MS analysis, so we could not 

compare our results to known standard volume. Therefore, it is very necessary to make sure that 
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our internal standard working probably, which could be done by optimizing a suitable volume 

and concentration of the internal standard that can show known peaks in all the tested samples.        

 

Supplemental Figure 4. The percentages of the linoleic (18:2) acid and linolenic (18:3) of 

the total fatty acids for the fad7-Luc, Col-Luc, fad7-1, and Col-0 genotypes. 200 mg of the 
leaves of four-week old plants were grinded and processed for the GC-MS analysis (n= 6).  

 

 

 

 

 

Table 2: Sample of the percentages of the main fatty acids in the fad7-Luc, Col-Luc, fad7-1, 

and Col-0 genotypes by the GC-MS analysis. 

Genotype  C16:0 C18:1 C18:2 % C18:3 % 

fad7-luc  11.666% 4.497% 35.445% 41.872% 

fad7-1 11.901% 3.918% 35.175% 38.961% 

Col-Luc  20.072% 3.565% 25.535% 46.860% 

Col-0 12.531% 1.642% 17.950% 56.706% 
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