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Abstract 

 The management of wintering waterfowl in North America requires flexibility because of 

constantly changing landscapes and conditions. Many mallards use the lower Mississippi 

Alluvial Valley (MAV) for wintering habitat, making this an area of emphasis for improving 

management strategies. In this study, I used mallard observation data from 2009-2014 aerial 

surveys collected in the Arkansas portion of the lower MAV to explain the abundance and 

distribution and of mallards. Using spatial hierarchical models and breaking covariate data to 2x2 

km grid cells, I analyzed how covariates relate to the changes of abundance and distributions 

within and among surveys. Mallard abundance and distributions responded positively to surface 

water along with the land cover habitat inundated by that water. Rice fields, wetlands, soybean 

fields, and fallow (uncultivated) fields were used most by mallards. My models also showed a 

strong spatial pattern of mallard abundance across the MAV suggesting that covariates other than 

the ones used here may be important in better explaining mallard distribution. Biologists in the 

lower MAV can use these results to better conserve and manage lands for mallards.  
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Introduction 

Understanding the ecological factors influencing the spatial distribution of a species is 

essential to proper wildlife management and planning (Pressey et al. 2007). The North American 

Waterfowl Management Plan (NAWMP) was developed to enhance waterfowl populations and 

habitat (U.S. Fish and Wildlife Service (USFWS) and Canadian Wildlife Service (CWS) 1986). 

Within this plan, the Joint Ventures (JV) were established to oversee the management and 

conservation of waterfowl and other migratory birds (USFWS and CWS 1986). The Mississippi 

Flyway (MF) is one of four major flyways for migratory birds in North America, and is the most 

heavily used flyway by waterfowl in the United States (Bellrose 1968, Lincoln et al. 1998). 

Within the flyway, the lower Mississippi Alluvial Valley (MAV) provides essential wetland 

habitat for overwintering waterfowl (USFWS et al. 2012, Reinecke et al. 1989). The mallard is 

the most abundant and most harvested waterfowl in North America, and the MAV is known for 

having high numbers of mallards (Anas platyrhyncos) throughout the winter months (Bellrose 

1976, Reinecke et al. 1989, Green and Krementz 2008). Therefore, waterfowl managers pay 

particular attention to mallard populations in developing management and conservation plans 

(USFWS and CWS 1986; Drilling et al. 2002).  

With two temporal scales: a single winter survey, and a single winter season, I used 

hierarchical Bayesian spatial models to investigate which covariates explained changes in 

mallard abundance and distribution within the Arkansas MAV. Collecting data in the field is 

time consuming and costly on a large spatial scale, however remotely sensed data allows 

information about land cover to be readily assessable and powerful in ecological applications 

(Kerr and Ostrovsky 2003). I focused on the covariates of land cover, weather, food and surface 

water availability across the entire MAV. Based on the importance of surface water (Heitmeyer 
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2006, Reinecke et al. 1989) and known habitat use (Allen 1987, Beatty et al. 2014, Delnecke and 

Reinecke 1986, Heitmeyer 2006, Reinecke et al. 1989, Reinecke and Loesch 1996, Wright 

1956), I developed models to better explain the distribution of mallard abundance in the 

Arkansas MAV.  

Due to changes in availability of resources and weather, the abundance and distribution 

of non-breeding mallards varies spatially and temporally throughout the winter, therefore 

understanding what affects within winter movements of mallards will improve waterfowl 

management (Baldassarre and Bolen 2006, Nichols et al. 1983, Reinecke et al. 1989, Heitmeyer 

2006, Hagy et al. 2014). Wintering waterfowl in the MAV often move long distances quickly to 

find available resources (Beatty et al. 2014, Ji and Jeske 2000). Further, migratory waterfowl use 

different habitats throughout the year in North America, making coordination amongst JVs and 

flyways essential for sustainable populations (USFWS et al. 2012). Studies have been done to 

analyze the relationship of covariates to mallard habitat use, but only at the local or non-

continuous scale (Link 2011, Beatty et al. 2014, Hagy and Kaminksi 2015). Hagy and Kaminski 

(2015) commented that a need exists for waterfowl management to have knowledge of large 

spatial and temporal habitat availability for waterfowl.  

The preferred habitat for waterfowl and the primary foraging habitat for mallards in the 

MAV consist of flooded agriculture fields, moist-soil wetlands, and bottomland hardwood 

forests (BHF) (Beatty et al. 2014, Reinecke et al. 1989, Reinecke and Loesch 1996). Seasonal 

flooding in the MAV has a direct role in the suitability of potential habitat preferred by 

waterfowl in the MAV (Allen 1987, Heitmeyer 2006, Reinecke et al. 1989). BHF in the MAV 

historically provided the majority of foraging habitat for mallards (Reinecke et al. 1989).  

However, since the loss of BHF in the MAV due to the expansion of agriculture, mallards altered 
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their diet during the winter to include seeds from moist-soil plants, acorns (Quercus sp.), aquatic 

vegetation, and adding agriculture foods such as rice (Oryza sp.), soybean (Glycine sp.) and corn 

(Zea sp.) (Delnecke and Reinecke 1986, Drilling et al. 2002; Allen 1987, Heitmeyer 1985), so it 

is imperative that important areas for current waterfowl use in the MAV are managed and 

conserved properly (Murdoch et al. 2000, Reinecke et al. 1989, Walther et al. 2002).  

I expected that as the preferred habitat of mallards in the Arkansas MAV became 

flooded, an increased abundance of mallards would occur and show why the distribution across 

the landscape is dynamic. These findings should improve the understanding of wintering 

waterfowl in the MAV, and should allow the JVs, land managers, and private stakeholders to 

make more informed decisions in planning and executing conservation plans within the Arkansas 

MAV, lower MAV and MF.  

Methods 

Study Area 

The MAV is the floodplain for the Mississippi River (Reincecke et al.1989) covering 10 

million ha, of which Arkansas encompasses 3.7 million ha. Topography is flat in the region, 

rarely exceeding 10 m (Reinecke et al.1989), and so the MAV is subject to winter flooding from 

winter precipitation and overflowing tributaries. However, hydrology in the MAV has been 

severely altered due to agriculture and damming of rivers. Bottomland hardwood forests were 

once abundant in the MAV, but agricultural development and flood control has substantially 

decreased total area of forests available for wildlife (Forsythe and Gard 1980, Reinecke et al. 

1986, Stewart et al. 1988). Reforestation efforts have taken place, but these efforts alone have 

not restored the forests to their historical range or function yet (King and Keeland 1999). The 

land covers thought to be most important for mallards in the MAV, and which I used for my 
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models, proportionally covered the MAV in the following percentages from the winter seasons 

of 2009-2014: soybean fields (31-34%), wetlands (BHF and herbaceous wetlands) (19%), rice 

fields (10-17%), corn fields (3-8%), fallow (uncultivated) fields (4-6%), and permanent water (5-

7%) (USDA-NASS 2009-13). Crowley’s Ridge lies within the region, but I did not include this 

area in my study (Figure 1).       

Survey Design 

The Arkansas Game and Fish Commission (AGFC) conduct annual winter aerial surveys 

in the Arkansas MAV. I used data collected from 19 AGFC winter waterfowl surveys from 

2009-2014. Four surveys were done each winter season in November, December, early-January 

and late-January. The January 2014 survey was not done due to lack of funding, totaling 19 

surveys for my analyses.  

During the 2009-10 and 2010-11 winter season, the MAV was divided into five strata 

based on expert opinion (Reinecke et al. 1992) and the major rivers in the region (L.W. Naylor, 

AGFC, pers. comm.). In the 2011-12 season, a stratified random design was implemented, 

dividing the MAV into eleven strata based on unit-level watershed boundaries (U.S. Geological 

Survey hydrologic unit code 8) (Seaber et al. 1987) in the region (S. Lehnen, USFWS, 

unpublished data) and were used for the remainder of the study. I did not include strata as a 

variable in my analyses, so the change in strata during the study is not an issue. Transects were 

randomly chosen within the strata. Surveyors recorded the date, number of individual mallards 

detected and UTM coordinates of observations (L.W. Naylor, AGFC, pers. comm.). Total length 

of combined transects for all surveys ranged from 3,700-5,600 km, which sampled ~20% of cells 

(see below) in the analysis.  

Covariates 
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I chose 13 covariates that were previously found to affect mallard habitat use in the 

winter months (Table 1). I used six land cover covariates: rice fields (Oryza sp.), soybean fields 

(Glycine sp.), corn fields (Zea sp.), wetlands (bottomland hardwood forests and herbaceous 

emergent wetlands) and permanent water (Allen 1987, Beatty et al. 2014, Nichols et al. 1983, 

Drilling 2002, Reinecke et al. 1989, Heitmeyer 1985). I also found that mallards were using 

fallow fields during the study by looking at where raw counts of mallards occurred on the 

landscape, and included this habitat type as a sixth land cover covariate. I obtained all land cover 

covariates, except surface water (see below) from the Cropland Data Layer (CDL) (USDA-

NASS 2009-2013). The CDL is a publicly available raster data set that annually updates land 

cover of agriculture fields and other land covers throughout the continental United States. The 

spatial resolution for the data I used was 56 x 56 m (2009) and 30 x 30m (2010-2013) (USDA 

2009-2013). Surface water affects waterfowl distribution in the winter (Reinecke et al.1989, 

Heitmeyer 2006), so I predicted that the abundance and distribution of mallards would be 

positively related to surface water. I used geoprocessing techniques (see below) to access 

historical surface water at the time of surveys for a covariate.  

Residual crops that remain in a field post-harvest (waste crop) can used as a food source 

for waterfowl, and can positively influence mallard habitat choices (Kross et al. 2007, 2008, 

Stafford et al. 2005, 2006, 2010, Havens et al. 2009). However, data for relative amounts of 

waste crop per ha were not available for the MAV. To gauge the amount of waste crop available 

to mallards, I used the annual harvest yield at the county level for rice, soybean, and corn. 

Harvest yields were obtained from the United States Department of Agriculture (USDA) annual 

crop data (USDA-NASS 2014). I assumed a higher crop yield at the county level related in a 

positive linear manner to a higher potential waste crop. Corn, rice, and soybean degrade at 
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different rates throughout the winter (Nelms and Twedt 1996). I used the crop yield value 

(USDA-NASS 2014) for the waste crop value in November surveys. I calculated waste crop for 

each survey thereafter by the degradation values outlined in Nelms and Twedt (1996). When grid 

cells (see below) overlapped two or more counties, the calculated yield was averaged for that 

cell.  

The severity of weather can affect winter mallard movement and habitat selection 

(Schumner et al. 2010). I included Schumner’s winter severity index (WSI) in the year models to 

see how WSI related to mallard abundance and distributions. S. Lehnen (USFWS, unpublished 

data) found a higher number of mallards occurred in the Arkansas MAV with increased severe 

winter weather in Missouri. I obtained weather data from the United States Historical 

Climatology Network (Menne et al. 2015) at 9 weather stations around the Arkansas MAV 

(Figure 2), and calculated the WSI values based on the methods of Schumner et al. (2010) for 

each survey day at the 9 weather stations. I averaged individual survey day WSI values among 

multiple survey days, and interpolated the averaged values among the weather stations, creating 

a smooth gradient of WSI values across the MAV.  

I included federal and state managed lands to evaluate if mallard distributions related to 

public managed lands, and combined national wildlife refuges (NWR), wildlife management 

areas (WMA), and waterfowl management units (WMU) into a single covariate (managed land). 

I used reclaimed wetlands from the Environmental Quality Incentives Program (EQIP) as a 

separate covariate to assess the potential effectiveness of the EQIP program.  

Geoprocessing   

Esri ArcGIS (ESRI 2014) was used for all Geographic Information System (GIS) 

analyses. I created Esri shapefiles for all covariates and the mallard observations. All data layers 
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(CDL, managed lands, Landsat imagery) extending outside the limits of the Arkansas MAV were 

deleted, leaving only data within the Arkansas MAV.  

Landsat (Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Operational 

Land Imager (OLI)) imagery (Path/Row, 23/35, 23/36, 23/37, 24/35, 24/36, 24/37) was used to 

obtain the flooded surface water at the time of each survey (USGS 2009-2014)(Table 2). Due to 

the temporal spacing of Landsat imagery and unusable images due to cloud cover, dates of 

images vary between survey date and +/- 14 days of a survey. Landsat 7 ETM+ has a well-

known error when the scan line corrector malfunctioned (SLC-Off), causing diagonal lines of 

missing data across an image (Markham 2004). Due to the difficulty in classifying Landsat 7 

ETM+ SLC-Off images (Markham 2004) and having many images with the SLC-Off error 

(43/126), I processed each image individually by conducting an unsupervised classification.  

The Normalized Water Diversity Index (NDWI) was used to delineate surface water in 

Landsat imagery (McFeeters 1996). Delineating water from Landsat imagery can be 

accomplished in multiple ways (Rokni et al. 2014). I used NDWI calculated with the green and 

near infrared (NIR) Landsat bands (green + NIR/ green – NIR) (McFeeters 1996). I found this 

method to visually have fewer errors with the Landsat images for this study. 

To identify any misidentification of water, I visually compared the NDWI to the Landsat 

NIR of the same scene. Water will absorb the NIR band, causing water to be darker in the image 

(McFeeters 1996), and I removed any misidentifications determined not to represent water in the 

NDWI layer. To remove permanent standing water from the classification leaving just flooded 

surface water, I obtained Landsat images from the summer months (July-September) 

corresponding with lowest amount of rainfall (Menne et al. 2015). Going through the above 
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process, I identified and deleted the permanent water from the NDWI layer, leaving only the 

surface water at the time of each survey.  

Statistical Analysis 

I completed all statistical analyses with R version 10.3 (R Core Team 2015). I used 

Markov chain Monte Carlo (MCMC) model fitting within the Bayesian framework to explain 

mallard abundance and distributions in the MAV (Chakraborty et al. 2010). All models had a 

response of mallard abundance corrected for a combination of covariates (Table 3). I developed 

an agriculture model to assess whether agriculture land in the form of rice, soy, corn and fallow 

fields along with waste crop explained mallard abundance. Land cover interactions with surface 

water models were developed by using land cover types explained to be important to mallards in 

previous studies and I added surface water as an interaction term or as a main effect. Finally, I 

modeled to see if water alone (surface water, permanent water) best explained mallard decisions 

with no other covariates. I added WSI to the land cover models only in the within-year models to 

see how weather affected mallards over time. Surface water changed as the winter season 

progressed, changing the availability of potential habitat for mallards. Instead of running the 

model for a single survey (see above), I combined all surveys within a year and ran the 

competing models. Combing surveys allowed to test for covariate importance throughout the 

year, and increased the temporal scale of the model. Additionally, I included a lag time 

component covariate to within-year models to see if conditions in the previous month influenced 

mallard abundance and distribution during the following month. The November surveys were the 

first step in the MCMC process, so November surveys did not have parameter estimate for time. 

I modeled at the grid cell level (Chakraborty et al. 2010) by dividing the MAV into grid 

cells of equal size (2 x 2 km), totaling approximately 10,500 4 km2 cells. I used a 2 km grid to 
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limit the number of grid cells, which reduced processing time in the MCMC. Additionally Beatty 

et al. (2014) found that local movements of radio-marked mallards ranged from a distance of 

0.25 to 30 km. I used a 2 x 2 km grid cell to have a fine resolution for spatial scale, stay analyze 

local movements as stated in Beatty et al. (2014), and to not impact the processing time of 

analysis. Dependent on the percentage of land cover, I assigned each cell covariate values 

ranging from 0 – 1.0. Correlation among covariates was tested and I excluded any covariate with 

a linear dependence with the calculation (Variance Inflation Factor (VIF) = 1/(1-r2). I excluded 

any covariate with a VIF  > ~ 4, in order to exclude any covariate with an r2 value of ~0.75.  I ran 

each model with a MCMC chain length of 20,000, a burn-in length of 5,000 and thinned at every 

fourth sample. All models had a prior distribution with a mean = 0 and deviance = 2.5.  

I placed mallard abundance per cell into four categories to reduce processing time, 

improve the model fitting (A. Chakraborty, Univ. Arkansas, pers. comm.). Detectability of 

mallard observations varied among habitat types, especially in closed canopy habitat (Smith et 

al. 1995). Using a categorical response value reduced the potential sampling bias in the aerial 

surveys (Chakraborty et al. 2010). The four groups were: 1) Group 0 - no observed mallards, 2) 

Group 1 - 1-15 mallards, 3) Group 2 -16-100 mallards, and 4) Group 3 - 100 + mallards. 

Categories were determined by examining the quantile breaks of cell observations for each 

survey and by observing waterfowl groups in the field (L.W. Naylor, AGFC, pers. comm.).  

I compared models using the Deviance Information Criterion (DIC) (Spiegelhalter et al. 

2002). Based on the top model selected by DIC score, I examined the posterior β estimates, 

potential abundance and distribution, and the posterior mean of spatial effects. When the 95% 

confidence interval of a covariate’s β estimate s did not overlap zero, I considered that covariate 
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associated with mallard abundance. I examined the relative importance of covariates within the 

top models by looking at the median/interquartile range (IQR) and mean/standard deviation.  

To account for spatial patterns from factors not represented by the covariates and how 

mallard abundance may be associated with the neighboring cells, I added a spatial random effect 

(θ) to each model (Chakraborty et al. 2010, Gelfand et al. 2006, Ver Hoef et al. 2001). Using θ in 

the model strengthens the predictive capability and interpretation of the model results. 

Additionally, θ allows for an explanation of the effect of covariates in cells that are not sampled 

(Gelfand et al. 2006). To visualize the spatial random effect (θ), a smoothed surface output of 

expected mallard abundance is applied to the MAV, showing the posterior mean of spatial 

effects (θ) by grid cells. If no spatial effect occurred, the maps of θ would show no patterns and 

the values of θ would be random throughout the MAV.  Cells with a value greater than zero 

represent areas with a larger than expected abundance suggesting the covariates over-predicted 

mallard abundance, and cells with a value lower than zero represent areas with a lower than 

expected abundance suggesting the covariates under-predicted mallard abundance.  As in 

Chakraborty et al. (2010)  I used a binary matrix with a threshold of 0.036 for θ to allow for 

approximately 9 nearest neighbor cells. A conditional auto-regressive model was used for θ  and 

was fitted into the model just as the other parameters.  

Additionally, as in Chakraborty et al. (2010), I predicted the likelihood of the mallard 

abundance categories to occur within a cell. The probability of mallards to occur within a cell 

was estimated in relation to the covariates, and then predicted the distribution of mallard 

abundance to occur within the MAV. These maps are useful in observing the change of mallard 

distributions across the MAV  and can be related to the covariates to see why the distributions of 

mallards are changing. 
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Results 

Single-survey Models 

I ran all models separately for each waterfowl survey from November 2009-January 2014 

(n=19). Across all models tested, I found that the global (n=7) and land cover + surface water 

(n=12) were the only models that ranked as top model based on DIC (Table 4). The December 

and early-January surveys were the only surveys to have the global model perform best by DIC. 

Land cover + surface water was a top model by DIC in all four surveys, but it occurred most in 

the November and late-January surveys (Table 4).  

Surface water was consistently positively associated with mallard abundance. As a main 

effect, surface water had a positive association with mallard abundance (n=4) and as an 

interaction with land cover covariates (n=21). Rice fields, wetlands, fallow fields, soy fields and 

permanent water all had parameter (β) estimates positively associated with mallard abundance. 

Comparing beta estimates by importance (mean/standard deviation), surface water was the most 

important covariate positively associated with mallard abundance in 11 out of 19 months (see 

supplemental data). Corn fields, EQIP land, and managed land did not influence mallard 

abundance.   

The posterior mean of spatial effects (θ) and predicted likelihood for the distribution of 

mallard categorical abundance were similar to the within-year models (see supplemental data). 

The maps of θ showed a spatial relationship for every survey. The θ maps consistently had a 

trend throughout the study occurred in that northern latitudes in every November survey had 

positive θ values and negative θ values in the southern latitudes. In the late-January survey, the 

relationship was the opposite with negative θ values in the northern latitudes and positive θ 

values in the southern latitudes. Only the late-January 2012 survey did not show this trend, and 
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the majority of the MAV had positive θ. Coincident with the patterns in theta over time within a 

year was the change in the predicted likelihood abundance maps within a year (see supplemental 

data). In all November surveys, predicted mallard abundance was greater  in the northern 

latitudes of the MAV. In all late-January surveys, predicted mallard abundance was greater in the 

southern latitudes of the MAV. Additionally, surface water, and surface water interactions with 

soy fields and wetlands had the most important posterior parameter estimates in 12 surveys (see 

supplemental data), and suggests areas with mallard abundance in categories 1-3 were associated 

with the presence of surface water. In 11 months, the posterior mean of spatial effects (θ) cells in 

the mid-latitudes of the MAV had θ values close to zero, and suggested the covariates explain 

mallard abundance well in those areas. 

Within-year Models 

Model performance within-year was similar to the within-month models. The land cover 

+ surface water model and the global model were again the best performing models. Land cover 

+ surface water was the top performing model in the 2009-10, 2010-11, and 2012-13 winter 

seasons. The global model was the top-performing model in the 2011-12 and 2013-14 winter 

seasons (Table 5).  

Surface water was consistently positively associated with mallard abundance. As a main 

effect, surface water had a positive association with mallard abundance (n=5) and as an 

interaction with land cover covariates (n=20). Rice fields, wetlands, fallow fields, soy fields and 

permanent water all had beta estimates positively associated with mallard abundance. WSI had 

beta estimates negatively associated with mallard abundance in 13 months (Table 8). Comparing 

beta estimates by importance (mean/standard deviation), surface water was the most important 

covariate positively associated with mallard abundance in 11 out of 19 months. WSI ranked 
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highest among covariates in 6 out of 19 months. The time component was positively associated 

with mallard abundance in 12 out of 14 possible months. (Table 7). 

As in the within-month top models, all November surveys had positive θ values in the 

northern latitudes and negative θ values in the southern latitudes, and a reverse relationship in all 

late-January models, with exception of the 2012 late-January survey (Figures 7-10, supplemental 

data). In 11 months, the posterior mean of spatial effects (θ) cells in the mid-latitudes of the 

MAV had θ values close to zero, and suggested the covariates explain mallard abundance well in 

the mid-latitudes. The most important posterior parameter estimates for the months with θ values 

close to zero in the mid-latitudes were surface water, WSI, soy*surface water, and wetlands. 

Again, coincident with the patterns in theta over time within a year was the change in the 

predicted likelihood abundance maps within a year (Figures 3-6, supplemental data). 

Additionally, surface water had the most important posterior parameter estimates in 10 surveys 

(see supplemental data), and suggests areas with mallard abundance in categories 1-3 were 

associated with the presence of surface water.  

During most surveys, WSI averaged a negative value across the MAV, meaning the 

temperature in the MAV was above freezing with low amounts of snow cover. WSI was 

negatively associated with mallard abundance in the MAV during the survey, which suggests 

that mallards were located in areas with warmer and dryer conditions. 

Discussion 

Winter flooding in the MAV increases foraging opportunities for mallards, causing the 

redistribution of mallard abundance (Heitmeyer 2006, Reinecke et al.1989). I found that surface 

water was the most important covariate for mallard abundance and distribution. I also found that 

surface water alone cannot explain habitat use, but requires land cover that has the ability to 
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provide additional resources needed (i.e. food and cover). Models without both land cover and 

surface water covariates never performed as top model in any survey. Although not novel 

information that mallards are using land with surface water (Heitmeyer 2006), applying mallard 

habitat use in relation to surface water availability over a large landscape provides needed 

information to waterfowl winter ecology (Hagy and Kaminski 2015).  

Wetlands, rice fields, and soybean fields are a preferred habitat for mallards in the MAV 

and provide adequate food resources during the winter months (Allen 1987, Dabbert 1991, 2000, 

Heitmeyer 2006, Wright 1956). Recent ecological models have not included surface water as a 

covariate (Beatty et al. 2014, Krementz et al. 2012). Beatty et al. (2014) found tagged individual 

female mallards in the MAV use agriculture fields, wetlands and open water, as well as other 

studies using tagged individual mallards to investigate habitat use (Davis et al. 2011, Krementz 

et al. 2012). The absence of surface water availability in habitat use models of individually 

tagged mallards leave gaps in waterfowl winter ecology. My results demonstrate that surface 

water needs to be included when modeling the habitat use of mallards.     

As historical surface water data becomes available (J. Jones, USGS, pers. comm), 

waterfowl ecologists can return to historical waterfowl data for comparison with minimal 

processing time of remotely sensed data. Pernollet et al. (2015) used satellite imagery to find 

timing of flooded rice fields in relation to habitat suitability for mallards. Additionally, the 

LMVJV has used satellite imagery to investigate historical flooding in the MAV (Edwards et al. 

2012). The LMVJV has also continued to research extracting water from satellite imagery 

(M.Mitchell, USFWS, pers. comm.). I showed that flooded wetlands are important habitats for 

mallards, which support current management suggestions in the literature (Foth et al. 2014, 

Kross et al. 2007, 2008, Leach et al. 2012) to properly manage the timing of flooding wetlands.   
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I found mallard abundances distribute to flooded rice fields in the MAV. Rice is known 

to be an important food source for mallards in the MAV and provides valuable nutrients needed 

in the winter (Allen 1987, Drilling et al. 2002, Loesch and Kaminski 1989). Rice was not the 

most abundant crop in the MAV, covering 10-17% of the land cover during the years of the 

study. Current rice field management practices have been a concern for the availability of waste 

rice to waterfowl (Stafford et al. 2005, 2006, 2010). My measure of waste crop did not explain 

mallard abundance well, however some measure of waste crop should be used in habitat use 

models.  My results support the need for managers to monitor and work with the rice industry to 

improve land management on rice fields (Kross et al. 2007, Manley et al. 2005, Stafford et al. 

2010). Similar to rice, corn provides mallards with nutrients and is an important part of mallard 

winter diet (Allen 1987). However, I did not find corn to be positively associated with mallard 

abundance. Corn was not widespread in the MAV during this study, covering only 3-8% of the 

total land cover. The difference between rice and corn being positively associated with mallard 

abundance was possibly due to habitat availability, or availability from surface water flooding 

rice fields more frequently.   

Mallards can choose a certain habitat for reasons other than food availability (Hagy and 

Kaminski 2015). I found soybean fields to have a greater than expected influence on mallard 

abundance, which is counterintuitive because soybeans provide fewer nutrients than rice and 

corn (Allen 1987), and degrade faster than rice and corn (Nelms and Twedt 1996). Because 

soybean fields represented a third of the total land cover in the MAV I hypothesize  that mallards 

may  use soybean fields in accordance to availability (Heitmeyer 1985). Fallow fields also 

influenced mallard abundance more than I expected considering that fallow fields  only 

represented 4-6% of the total land cover in the MAV. Other variables such as weed growth or 



	   16 

invertebrates not included in the models may also explain the strong association soybean and 

fallow fields had with mallard abundance. 

I used diurnal observations for the study, and flocking of high numbers of mallards 

occurred frequently at crepuscular periods (pers. observation). Mallards may possibly be using 

habitat that does not provide as much food such as soybean and fallow fields as diurnal 

sanctuaries to avoid hunting pressure. Sanctuaries may be vital for mallard abundance in the 

MAV and are used daily in the MAV (St. James et al. 2013). Hunting pressure can cause mallard 

distributions to disperse away from hunters (Dooley et al. 2010). The difficulty of having a 

reliable measure of hunting pressure is why I did not include hunting pressure in the models. If 

soybean and fallow fields are being used as sanctuaries, further research is warranted to explain 

mallard abundance on soybean and fallow fields.      

    Managed and EQIP land did not explain mallard abundance as much as I would have 

been expected. However, I believe that managed land and EQIP are important variables for 

mallard abundance. I observed high numbers of mallards in close proximity to managed lands 

even though managed land covered only 5% of the total MAV. I suspect that the low amount of 

managed land cover may be a reason that managed land was not related to mallard distributions. 

Weather conditions can affect the movement and location of mallards during winter in 

the MAV (Schumner et al. 2010, Nichols et al. 1983). Mallards make regional movements 

depending on the regional weather conditions and tend to be less abundant in the MAV under 

warmer and drier conditions and increase in abundance when conditions are colder and wetter 

(Nichols et al. 1983, Schumner et al.2010). Too, S. Lehnen (USFWS, unpublished data) saw an 

increase of mallards in the Arkansas portion of the MAV with higher WSI values in northern 
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latitudes of mid-Missouri. My results demonstrated the same patterns with one important  

difference being that I was just examining movements only within the MAV.   

The posterior mean of spatial effects (θ) demonstrated a spatial relationship occurred in 

the Arkansas MAV to mallard abundance. The trend of θ values latitudinal flipping in the MAV 

from November to late-January may suggest mallards moving to southern latitudes as the non-

breeding season progresses, and the top model is not fully explaining why that occurs. This may 

suggest that I did not include all important variables in my candidate models (Chakraborty et al. 

2010, Gelfand et al. 2006). Two examples of variables that might further explain spatial mallard 

patterns over time are hunting pressure and surface water depth. Another reason why the current 

covariates did not explain spatial patterns well was that the current modeling approach only 

includes linear patterns between covariates and mallard abundances and distributions. It may 

very well be the case that the covariates relate to mallard abundances and distributions in a non-

linear relationship (A. Chakraborty, Univ. Arkansas, pers. comm.).  

Information concerning the spatial patterns of mallard abundance over time is necessary 

to develop management plans and my research should help in addressing issues such as habitat 

connectivity (Twedt and Loesch 1999). Spatial patterns are important for conservation at 

different scales (Pressey et al. 2007), and my research has improved our understanding of spatial 

relationships for mallards at a large spatial scale (Hagy and Kaminski 2015).  

Management Implications 

Managers can use my results to make more informed decisions when managing for 

waterfowl in the MAV. I showed that soybean fields, rice fields and wetlands are important 

habitat for mallards in the MAV. Land in the MAV managed by state or federal agencies only 

covers ~5% of the total land in the MAV, meaning that a lot of waterfowl habitat is private land. 
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This research can be used to show private land owners the important role their land has to 

waterfowl over a large spatial scale. 

I found that availability of surface water can influence mallard abundance on a large 

spatial scale, and high abundance of mallards can be expected from covariates in the MAV and 

contribute to research needed for wetland landscape ecology (Haig et al. 1998). Surface water 

conditions will also be affected by a changing climate (Murdoch et al. 2000). Future conditions 

in the ecosystem due to changing climates need to be assessed at all levels (Walther et al. 2002, 

Murdoch et al. 2000) so managers can use the research in this study to assess management plans 

at the scale of the Arkansas MAV.  

Most states conduct yearly waterfowl surveys, which are used to conduct population 

estimates and establish hunting regulations. Those surveys can also be used to see what is 

attracting waterfowl to certain locations and improve waterfowl management. The remotely 

sensed data used for this study was obtained free of cost, which makes this type of analysis easily 

translatable across states and flyways. This study also shows that we can look at historical 

waterfowl data and determine the temporal history of waterfowl ecology, at a relatively low cost 

to the researcher.  

If state and federal wildlife agencies adopt a similar survey design to the AGFC, the 

continuity of survey design can be an effective tool for managing waterfowl in North America 

and reach the goals of NAWMP. Spatial data has been collected for many years for different 

species, such as the Christmas Bird Count. Attempts should be made to expand these techniques 

to other species of waterfowl, as well as other wildlife species. 
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Figure 1. Mississippi Alluvial Valley (MAV) highlighted in gray. Dark gray highlights Arkansas 
portion of the MAV. White region within the Arkansas MAV represents Crowley's Ridge, which 
was not included in the study (Credit: S. Lehnen unpublished data).
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Figure 2. Location and names of weather stations used for weather severity index (Schumner et 
al. 2010).  
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Figure 3. Predicted likelihood probabilities for the distribution of mallard abundance categories. 
Figure represents the November 2009 survey, from the top within-year model by DIC. 0 - no 
mallards, Group 1 - 1-15 mallards, Group 2 -16-100 mallards, Group 3 - 100 + mallards. 
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Figure 4. Predicted likelihood probabilities for the distribution of mallard abundance categories. 
Figure represents the December 2009 survey, from the top within-year model by DIC. 0 - no 
mallards, Group 1 - 1-15 mallards, Group 2 -16-100 mallards, Group 3 - 100 + mallards. 
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Figure 5. Predicted likelihood probabilities for the distribution of mallard abundance categories. 
Figure represents the early-January 2010 survey, from the top within-year model by DIC. 0 - no 
mallards, Group 1 - 1-15 mallards, Group 2 -16-100 mallards, Group 3 - 100 + mallards. 
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Figure 6. Predicted likelihood probabilities for the distribution of mallard abundance categories. 
Figure represents the late-January 2010 survey, from the top within-year model by DIC. 0 - no 
mallards, Group 1 - 1-15 mallards, Group 2 -16-100 mallards, Group 3 - 100 + mallards. 
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Figure 7. Posterior mean of spatial effects (θ) to account for spatial patterns from factors not 
represented by the covariates and how mallard abundance is associated with neighboring 
locations. Figure represents the November 2009 survey, from the top within-year model by DIC.  



	   32 

 
Figure 8. Posterior mean of spatial effects (θ) to account for spatial patterns from factors not 
represented by the covariates and how mallard abundance is associated with neighboring 
locations. Figure represents the December 2009 survey, from the top within-year model by DIC.  
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Figure 9. Posterior mean of spatial effects (θ) to account for spatial patterns from factors not 
represented by the covariates and how mallard abundance is associated with neighboring 
locations. Figure represents the early-January 2010 survey, from the top within-year model by 
DIC.  
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Figure 10. Posterior mean of spatial effects (θ) to account for spatial patterns from factors not 
represented by the covariates and how mallard abundance is associated with neighboring 
locations. Figure represents the late-January 2010 survey, from the top within-year model by 
DIC.  
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Table 1. Description of covariates used in all models. 

Covariate Description Data Source 
rice field planted rice in previous summer CDL1 

soybean field planted soybean in previous 
summer 

CDL1 

corn field planted corn in previous summer CDL1 
fallow field fallow/idle cropland CDL1 
wetland woody wetland and emergent 

herbaceous wetland 
CDL1 

open water permanent water and aquacultures CDL1 
surface water natural and managed winter 

flooding  
Landsat (TM, ETM+, OLI)2 

managed land national wildlife refuges (NWR), 
waterfowl management units 
(WMU), wildlife management 
areas (WMA) 

AGFC3 

wetland reserve program  AGFC3 

winter severity index Schumner et al. (2010) Climatological Historical 
Network 

rice production county level crop yield (kg/ha) USDA4  
soybean production county level crop yield (kg/ha) USDA4 

corn production county level crop yield (kg/ha) USDA4 

1Cropland Data Layer (CDL) obtained from United States Department of Agriculture (USDA) 
2Satellites from Landsat satellite program  
3Boundaries for managed land and Environmental Quality Incentives Program (EQIP) provided 
by Arkansas Game and Fish Commission 
4County harvest yield data obtained from USGA 
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Table 2. Dates and sensor for Landsat image used in surface water extraction. 

2009-2010 Nov 17-19 Dec 14-17 early-Jan 4-6 late-Jan 18-21 
Path/Row 24/35 3-Nov-2009 5-Dec-2009 None None 
Path/Row 24/36 19-Nov-2009 5-Dec-2009 29-Dec-2009B1 None 
Path/Row 23/35 12-Nov-2009 28-Nov-2009 none 31-Jan-2010 
Path/Row 23/36 12-Nov-2009 28-Nov-2009 none 15-Jan-2010 
Path/Row 23/37 12-Nov-2009 22-Dec-2009 none 31-Jan-2010 
Path/Row 24/37 19-Nov-2009 5-Dec-2009 29-Dec-2010 none 

     2010-2011 Nov 11-15 Dec 9-16 early-Jan 27-4 late-Jan 18-21 
Path/Row 24/35 14-Nov-2010B1 8-Dec-2010 none none 
Path/Row 24/36 14-Nov-2010 B1 8-Dec-2010 none 2-Feb-2011B1 

Path/Row 23/35 7-Nov-2010 B1 1-Dec-2010 2-Jan-2011 26-Jan-2011B1 

Path/Row 23/36 7-Nov-2010 B1 1-Dec-2010 2-Jan-2011 26-Jan-2011B1 

Path/Row 23/37 7-Nov-2010 B1 17-Dec-2010 2-Jan-2011 26-Jan-2011B1 

Path/Row 24/37 14-Nov-2010 B1 none 24-Dec-2011 2-Feb-2012 

     2011-2012 Nov 14-18 Dec 12-15 early-Jan 1-5 late-Jan16-19 
Path/Row 24/35 17-Nov-2011 B1 3-Dec-2011 4-Jan-2012 None 
Path/Row 24/36 17-Nov-2011 B1 none 4-Jan-2012 None 
Path/Row 23/35 10-Nov-2011 B1 none 28-Dec-2011 29-Jan-2012B1 

Path/Row 23/36 10-Nov-2011 B1 12-Dec-2011 28-Dec-2011 29-Jan-2012B1 

Path/Row 23/37 10-Nov-2011 B1 12-Dec-2011 28-Dec-2011 29-Jan-2012B1 

Path/Row 24/37 17-Nov-2011 B1 None 4-Jan-2012 None 

          
2012-2013 Nov 12-15 Dec 10-12 early-Jan 7-10 late-Jan 21-23 
Path/Row 24/35 3-Nov-2012 B1 13-Dec-2012A 6-Jan-2013B1 22-Jan-2013B1 

Path/Row 24/36 3-Nov-2012 B1 13-Dec-2012A 6-Jan-2013B1 22-Jan-2013B1 

Path/Row 23/35 12-Nov-2012 B1 28-Nov-2012B1 7-Jan-2013A 31-Jan-2013B1 

Path/Row 23/36 12-Nov-2012 B1 28-Nov-2012B1 7-Jan-2013A 31-Jan-2013B1 

Path/Row 23/37 12-Nov-2012 B1 28-Nov-2012B1 7-Jan-2013A 31-Jan-2013B1 

Path/Row 24/37 3-Nov-2012 B1 13-Dec-2012A 29-Dec-2012A None 

     2013-2014 Nov 18-20 Dec 16-19 early-Jan 6-8 
 Path/Row 24/35 14-Nov-2013C 24-Dec-2013 B1 1-Jan-2014 
 Path/Row 24/36 13-Nov-2013C 24-Dec-2013 B1 4-Jan-2014 
 Path/Row 23/35 7-Nov-2013C 17-Dec-2013 B1 25-Dec-2013 
 Path/Row 23/36 7-Nov-2013C 17-Dec-2013 B1 2-Jan-2014 B1 
 Path/Row 23/37 7-Nov-2013C 17-Dec-2013 B1 2-Jan-2014 B1 
 Path/Row 24/37 14-Nov-2013C 16-Dec-2013C 1-Jan-2014 
 A(TM), B(ETM+), C(OTM).  
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1 ETM+ image with scan-line correction (SLC) error (Markham et al. 2004). 
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Table 3. Candidate model set used to explain the abundance and distribution of mallards in the 
Arkansas portion of the Mississippi Alluvial Valley. 

Model Description 

Global  

rice field + soybean field + corn field + 
fallow field + waste rice + waste soybean 
+ waste corn 

Agriculture covariates 

rice field + soybean field + wetland + 
fallow field + permanent water + rice 
field*surface water + soybean 
field*surface water + wetland*surface 
water + fallow field* surface water + WSI 

Known land covers that 
is known preferred 
habitat of mallards and 
their interaction with 
surface water. 

wetland + EQIP + managed land + 
permanent water + wetland*surface water 
+ EQIP*surface water + managed 
land*surface water + WSI 

Land associated with 
managed land and how 
managed land interacts 
with surface water. 

surface water + rice field + wetland + 
permanent water + WSI 

Most important 
covariates for mallards 
explained in previous 
research. 

surface water + permanent water Water alone effect on 
mallard abundance. 

Winter Severity Index (WSI) explained in Schumner et al. 2010. WSI only used for within-year 
models.



	   39 

Table 4. Top model frequency for covariates affect on mallard abundance and 
distribution for within-month models from 2009-2014 in the Mississippi Alluvial 
Valley, Arkansas, USA. Top model indicated by Deviance Information Criterion 
(DIC), and number indicates the number of times the model ranked as top model in 
the four annual surveys (n=19). 

Candidate Models November December early-
January 

late-
January 

Total 

Global 0 3 4 
 
 

0 7 

Rice + Fallow + Corn+ Soy+ Rice 
Production+  

Soy Production + Corn Production 
 

0 0 0 0 0 

Rice + Soy + Wetland + Fallow + 
Open Water + Rice*Surface Water 

+ Soy*Surface Water + 
Wetland*Surface Water + 

Fallow*Surface Water 

 
5 

 
2 

 
1 
 

 
4 

 
12 

Wetland + EQIP + Managed Land + 
Open Water + Surface Water + 

Wetland*Surface Water + 
EQIP*Surface Water + Managed 

Land*Surface Water 

 
0 

 
0 

 
0 

 
0 

 
0 

Surface Water + Rice + Wetland + 
Open Water 

0 0 0 0 0 

Surface Water + Open Water 0 0 0 0 0 
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Table 5. Significant β estimates from top models for environmental covariates effect on 
mallard abundance and distribution during individual surveys from 2009-2014 in the 
Mississippi Alluvial Valley, Arkansas, USA. Models represented are global and land 
cover + surface water, which were the only top models for the within-year analysis. Total 
number represents how often the covariate was in the top model, and the combined 
number of times it had a significant β estimates.  

 β 
direction 

November December early-
January 

late-
January 

Total 

Rice Positive 4 3 4 3 14/19 

Soy Positive 1 1 2 2 6/19 

Wetland Positive 2 4 4 5 15/19 

Corn Positive 0 0 0 0 0/7 

Surface Water Positive 2 2 2 1 4/7 

Open Water Positive 1 4 1 5 11/19 

Fallow Positive 3 3 4 5 15/19 

Managed Land Positive 0 1 1 0 2/7 

EQIP Positive 0 1 1 0 2/7 
Negative 0 0 1 0 1/7 

 
Corn Production Positive 0 1 1 1 3/7 

Rice Production Positive 0 2 2 1 5/7 

Soy Production Positive 0 1 2 0 3/7 

Rice*Surface Water Positive 1 1 0 2 4/12 

Soy*Surface Water Positive 1 2 1 4 8/12 

Wetland*Surface 
Water 

Positive 4 1 1 1 7/12 

Fallow*Surface 
Water 

Positive 1 1 0 0 2/12 
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Table 6. Model ranking by DIC for within-year models, explaining mallard abundance within the 
Arkansas Mississippi Alluvial Valley. The top-performing model for each year is highlighted in 
gray. 

Year Global Agriculture Habitat+Water Managed+Water Important Water 
2009-2010 7457 7878 7448 7675 7515 7640 

2010-2011 8343 8726 8325 8535 8410 8651 

2011-2012 10056 10491 10072 10145 10169 10345 

2012-2013 11533 12031 11513 11722 11712 11876 

2013-2014 5706 6019 5752 5789 5801 5923 
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Table 7. β estimates from top models for covariates that are positively or negatively 
associated to mallard abundance and distribution during individual winter surveys from 
2009-2014 in the Mississippi Alluvial Valley, Arkansas, USA. Numbers represent the 
frequency an covariate had an association to mallard abundance in the 19 surveys. Models 
represented are global and land cover + surface water, which were the only top models for 
the within-year analysis. Total number represents how often the covariate was in the top 
model, and the combined number of times it had a significant β estimates. 

 β November December early-
January 

late-
January 

Total 

Rice Positive 4 3 3 4 14/19 

Soy Positive 1 1 1 3 6/19 

Wetland Positive 3 3 4 4 14/19 

Corn Positive 1 0 0 0 1/7 

Surface Water Positive 2 1 1 1 5/7 

Open Water Positive 2 0 2 2 6/19 

Fallow Positive 4 1 4 3 12/19 

Managed Land Positive 1 1 1 0 3/7 

EQIP Positive 0 1 0 0 1/7 

Corn Production Positive 1 1 1 0 3/7 
Negative 0 1 0 0 1/7 

 
Rice Production Positive 0 0 1 0 1/7 

Soy Production Positive 1 0 1 1 3/7 

Rice*Surface Water Positive 0 2 0 2 4/12 

Soy*Surface Water Positive 1 2 2 3 8/12 

Wetland*Surface 
Water 

Positive 3 1 2 2 8/12 

 
Fallow*Surface 

Water 
 

Positive 0 1 1 0 2/12 

WSI Positive 2 0 1 0 3/19 
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Negative 0 5 4 4 14/19 
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Table 8. β estimates for covariates in the within-year models, separated by survey. Only 
covariates that had beta estimates not overlapping zero influenced mallard abundance in a model, 
and are the only covariates reported in the table.  

      
November 2009 Posterior 

Mean 95% C.I. Standard 
Deviation Mean/SD 

Soy Field * 
Surface Water 3.14 1.85 4.47 0.67 4.72 

Wetland * 
Surface Water 2.88 0.56 5.26 1.21 2.39 

            
December 2009 Posterior 

Mean 95% C.I. Standard 
Deviation Mean/SD 

Time 0.27 0.072 0.49 0.1 2.57 
Rice Field 1.47 0.76 2.22 0.37 3.97 
Wetland 1.12 0.46 1.83 0.34 3.32 

WSI -0.22 -0.33 -0.14 0.05 4.61 
Rice Field * 

Surface Water 2.43 0.47 4.37 0.99 2.44 

Soy Field * 
Surface Water 6.5 4.31 8.55 1.09 5.98 

      
            

early-January 
2010 

Posterior 
Mean 95% C.I. Standard 

Deviation Mean/SD 

Time 0.51 0.39 0.65 0.07 7.56 
Rice Field 1.09 0.31 1.87 0.41 2.68 
Wetland 1.26 0.59 1.96 0.35 3.58 

Permanent 
Water 1.42 0.57 2.23 0.43 3.33 

Fallow Field 1.74 0.49 2.98 0.64 2.73 
WSI -0.11 -0.16 -0.06 0.03 4.07 

Soy Field * 
Surface Water 4.3 2.15 6.42 1.08 3.99 

Wetland * 
Surface Water 2.15 0.5 3.86 0.87 2.47 
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late-January 
2010 

Posterior 
Mean 95% C.I. Standard 

Deviation Mean/SD 

Time 0.25 0.15 0.36 0.054 4.58 
Rice Field 1.28 0.71 1.86 0.89 4.29 
Soy Field 1.26 0.68 1.87 0.3 4.15 
Wetland 1.12 0.53 1.71 0.3 3.66 

Permanent 
Water 0.75 0.04 1.44 0.36 2.11 

Fallow Field 1.62 0.59 2.66 0.52 3.09 
WSI -0.18 -0.33 -0.02 0.08 2.32 

Rice Field * 
Surface Water 2.49 0.43 4.47 0.103 2.41 

Soy Field * 
Surface Water 2.73 1.48 3.93 0.62 4.37 

 

      
November 2010 

Posterior 
Mean 95% C.I. 

Standard 
Deviation Mean/SD 

Rice Field 1.00 0.12 2.05 0.48 2.11 
Wetland 1.2 0.37 2.2 0.47 2.57 

Fallow Field 2.74 1.22 4.26 0.77 3.54 
WSI  0.3 0.21 0.41 0.05 6.07 

Wetland * 
Surface Water 20.98 8.0 34.46 6.77 3.1 

      
      
December 2010 

Posterior 
Mean 95% C.I. 

Standard 
Deviation Mean/SD 

Time 0.39 0.16 0.64 0.12 3.16 
Wetland 0.72 0.08 1.34 0.32 2.23 

WSI -0.16 -0.23 -0.09 0.04 4.35 
Soy Field * 

Surface Water 4.54 0.19 8.55 2.14 2.12 
Fallow Field * 
Surface Water 28.83 16.57 41.71 6.43 4.48 

      
      
      early-January 

2011 
Posterior 

Mean 95% C.I. 
Standard 
Deviation Mean/SD 

Time 0.32 0.19 0.47 4.58 4.58 
Fallow Field 1.15 0.25 2.04 2.52 2.52 
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WSI 4.64 3.37 5.86 7.38 7.38 

      
      late-January 

2011 
Posterior 

Mean 95% C.I. 
Standard 
Deviation Mean/SD 

Time 0.27 0.16 0.38 0.06 4.63 
Rice Field 1.93 1.4 2.5 0.28 6.8 
Soy Field 1.11 0.53 1.71 0.3 3.65 
Wetland 1.01 0.47 1.58 0.28 3.56 

Permanent 
Water 1.13 0.37 1.85 0.38 2.96 

Fallow Field 1.23 0.29 2.19 0.48 2.56 
WSI -0.05 -0.08 -0.02 0.02 3.33 

Soy Field * 
Surface Water 5.32 2.31 8.28 1.53 3.49 

Wetland * 
Surface Water 7.12 4.64 9.58 1.27 5.6 

 

      
November 2011 

Posterior 
Mean 95% C.I. 

Standard 
Deviation Mean/SD 

Rice Field 1.55 0.6 2.68 0.52 2.98 
Corn Field 1.81 0.19 3.41 0.83 2.2 

Surface Water 4.05 2.47 5.63 0.82 4.97 
Permanent 

Water 1.85 0.064 3.45 0.84 2.19 
Fallow Field 2.53 0.92 4.15 0.84 3.01 

Managed Land 7.46 0.093 1.37 0.32 2.32 
WSI 3.15 0.22 0.43 0.06 5.63 
Corn 

Production 6.23 0.0002 0.001 0.0002 2.78 

      
      
December 2011 

Posterior 
Mean 95% C.I. 

Standard 
Deviation Mean/SD 

Time 0.41 0.28 0.6 0.08 5.04 
Rice Field 0.87 0.14 1.52 0.35 2.47 
Soy Field 0.93 0.26 1.52 0.32 2.9 
Wetland 1.24 0.55 1.86 0.33 3.73 

EQIP Land 1.62 0.75 2.6 0.47 3.47 
WSI -0.56 -0.8 -0.4 0.11 5.09 
Corn 

Production -0.0004 -0.0007 -0.00006 0.0002 2.2 
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early-January 
2012 

Posterior 
Mean 95% C.I. 

Standard 
Deviation Mean/SD 

Time 0.25 0.15 0.36 0.052 4.92 
Rice Field 1.09 0.61 1.57 0.24 4.53 
Wetland 0.72 0.24 1.19 0.24 2.97 

Surface Water 2.13 1.6 2.65 0.27 8.0 
Managed Land 0.6 0.28 0.9 0.16 3.7 

WSI -0.2 -0.34 -0.051 0.075 2.65 
Rice Production 0.00004 0.00001 0.00006 0.000013 2.71 

      
      
      late-January 

2012 
Posterior 

Mean 95% C.I. 
Standard 
Deviation Mean/SD 

Time 0.24 0.15 0.34 0.05 4.96 
Rice Field 0.88 0.44 1.33 0.23 3.85 
Soy Field 0.47 0.052 0.89 0.21 2.23 
Wetland 0.64 0.21 1.08 0.22 2.86 

Surface Water 208.54 136.75 281.24 37.1 5.6 
WSI -0.15 -0.26 -0.041 0.057 2.69 

 

      
November 2012 Posterior 

Mean 95% C.I. Standard 
Deviation Mean/SD 

Rice Field 1.82 1.24 2.42 0.3 6.08 
Soy Field 1.13 0.54 1.75 0.31 3.66 
Wetland 1.17 0.67 1.69 0.26 4.46 

Permanent 
Water 1.38 0.59 2.19 0.42 3.32 

Fallow Field 1.81 0.78 2.58 0.45 3.69 
Wetland * 

Surface Water 7.71 0.73 2.88 0.56 3.28 

            
December 2012 Posterior 

Mean 95% C.I. Standard 
Deviation Mean/SD 

Rice Field 0.66 0.04 1.27 0.31 2.13 
Fallow Field 0.95 0.05 1.82 0.45 2.11 

WSI -0.23 -0.38 -0.1 0.07 3.23 
Rice Field * 

Surface Water 2.9 0.56 5.3 1.21 2.39 
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Wetland * 
Surface Water 5.44 3.73 7.19 0.87 6.23 

      
            

early-January 
2013 

Posterior 
Mean 95% C.I. Standard 

Deviation Mean/SD 

Time 0.25 0.13 0.37 0.06 4.3 
Rice Field 1.11 0.68 1.53 0.22 5.01 
Soy Field 0.52 0.08 0.97 0.22 2.37 
Wetland 0.91 0.56 1.27 0.18 5.03 

Fallow Field 1.73 1.07 2.39 0.33 5.17 
WSI -0.42 -0.54 -0.3 0.06 6.83 

Soy Field * 
Surface Water 8.0 4.88 11.18 1.6 5.0 

Wetland * 
Surface Water 3.38 0.29 6.45 1.56 2.16 

Fallow Field * 
Surface Water 15.1 7.13 23.31 4.11 3.68 

      
            

late-January 
2013 

Posterior 
Mean 95% C.I. Standard 

Deviation Mean/SD 

Rice Field 0.70 0.17 1.23 0.27 2.6 
Wetland 0.57 0.17 0.99 0.21 2.73 

Fallow Field 1.59 0.83 2.35 0.39 4.11 
WSI -0.19 -0.25 -0.14 0.03 6.87 

Rice Field * 
Surface Water 1.85 0.6 3.12 0.64 2.89 

Soy Field * 
Surface Water 5.18 3.94 6.41 0.63 8.28 

Wetland * 
Surface Water 0.68 0.02 1.29 0.32 2.09 

 

 
 

       
November 2013 

Posterior 
Mean 95% C.I. 

Standard 
Deviation Mean/SD 

Rice Field 0.92 0.12 1.73 0.4 2.31 
Wetland 1.23 0.48 2.0 0.39 3.14 

Surface Water* 4.93 2.98 6.91 1.0 4.92 
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Fallow Field 1.66 0.48 2.83 0.6 2.77 
Soy Production 0.000048 0.00002 0.00008 0.00002 3.03 

      
      
December 2013 

Posterior 
Mean 95% C.I. 

Standard 
Deviation Mean/SD 

Time 0.26 0.058 0.45 0.1 2.51 
Surface Water 2.39 1.94 2.83 0.23 10.3 
Managed Land 0.55 0.2 0.9 0.18 3.04 

WSI -0.33 -0.47 -0.2 0.07 4.76 
Corn 

Production 0.00032 0.0002 0.0005 0.00009 3.61 

      
      
      early-January 

2014 
Posterior 

Mean 95% C.I. 
Standard 
Deviation Mean/SD 

Time 0.34 0.2 0.48 0.069 4.89 
Wetland 1.88 1.21 2.58 0.35 5.43 

Permanent 
Water 2.01 1.13 2.97 0.46 1.06 

Fallow Field 1.24 0.21 2.25 0.52 2.39 
Soy Production 0.00004 0.000012 0.00007 0.000016 2.7 

 


