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Abstract 

Restoration of woodland and savanna ecosystems has become a common management 

strategy in the Central Hardwoods region. Over the past two decades forest managers have 

implemented woodland and savanna restoration at the landscape level (≥10,000 ha), especially 

using early growing season prescribed fire. The implementation of the restoration strategy has 

coincided with declines of Eastern Wild Turkey (Meleagris gallopavo silvestris) in many treated 

areas causing concern that early growing season prescribed fire was impacting wild turkey. We 

initiated our study to examine the effect of woodland and savanna restoration on the ecology and 

habitat of wild turkey in the Ozark Highlands. We used 67 female wild turkey fitted with 110 g 

Global Positioning System (GPS) Platform Transmitting Terminals between 2012 and 2013 to 

document nest-site selection and survival, estimate annual and seasonal home ranges, examine 

pre-incubation habitat use, and assess the impacts of management practices on forest structure. 

Nest-sites had higher visual concealment, higher slope, and more woody ground cover than non-

nest-sites. We also found that wild turkey nest survival increased as the amount of visual 

concealment increased and survival decreased as the distance from a road increased. We 

documented wild turkey home ranges that were among the largest reported for the species and 

were larger than those documented before woodland and savanna restoration. We found wild 

turkey selected habitat during the pre-incubation period that was more diverse in canopy cover, 

in a transitional state and in small patches. Wild turkey subsequently selected habitat for nest-

sites that had similar characteristics but were in larger patches. We also found that landscape 

level early growing season prescribed fire had not created woodland or savanna conditions 

across the landscape and likely would require more time (≥25 years). In conclusion wild turkey 

populations have not benefited from current woodland and savanna restoration. However, if 

restoration were having the desired outcome the impact on wild turkey population may be 



 

 
 

different. We provide a description of all variables used (Appendix I), morphometric and 

handling data for all captured wild turkey (Appendix II), data sets for nest-site selection 

(Appendix III), nest survival (Appendix IV), pre-incubation habitat selection (Appendix V), and 

vegetation data collected throughout the study area from 2011 to 2013 (Appendix VI).  
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Preface 

 This dissertation was written in journal style and format and organized into three chapters 

intended for independent publication. Style and format may vary between chapters and some text 

may be repeated. These chapters are preceded by an introduction and conclusion chapter. 
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Introduction 

The Eastern Wild Turkey (Meleagris gallopavo silvestris) is one of the most sought after 

and economically important gallinaceous birds in eastern North America (Dickson 2001). The 

Eastern Wild Turkey is one of five recognized sub-species in North America, the Rio Grande (M. 

g. intermedia), the Mirriam’s (M. g. meriami), the Florida (M. g. Osceola), and the Gould’s (M. 

g. Mexicana). Populations of all sub-species were almost extirpated from the landscape after 

European settlement of North America. Extirpation was likely a result of changes in land use, 

deforestation and increased mortality as a result of market hunting causing wild turkey to reach 

their lowest number in the 1930’s (Mosby 1975). However wild turkey benefited from the great 

depression in the 1930’s when former agriculture land began to revert to early successional 

habitat. In the 1930’s and 1940’s wild turkey also benefited from  new conservation efforts and 

legislation, and after the Second World War many state and federal wildlife agencies began the 

process of restoring wild turkey to the former range. 

Initial restoration efforts consisted of releasing pen-raised wild turkey into areas without 

wild turkey populations. It was eventually realized that the release of pen-raised wild turkey was 

much less successful than the release of wild-captured birds from other stock populations 

(Kennamer et al. 1992). Wild turkey benefited most from the invention of the rocket-net in the 

1950’s (Kennamer et al. 1992). The rocket-net allowed wildlife agencies to capture and relocate 

wild-raise wild turkey more efficiently and establish new populations with greater success. After 

the invention of the rocket net, wildlife agencies began trap and transplant operations throughout 

the eastern wild turkey’s range including Arkansas. Arkansas was one of the first states to begin 

wild turkey conservation efforts by passing protective legislation as early as 1918 (Widner 

2007). Arkansas also initiated reintroduction projects as early as 1932 but made significant 
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restoration efforts from 1960 to 1990 increasing the states wild turkey population from 

approximately 7,000 wild turkey to over 100,000 by the end of the 20
th

 century (Widner 2007). 

After significant population expansion in Arkansas through the second half of the 20
th

 

century wild turkey populations as indicated by harvest have declined over the past 10 years. 

Wild turkey harvest decreased from their highest statewide totals, 19,647 in 2003, to 10,111 wild 

turkey harvested in 2010 at the initiation of this study. During this period wild turkey harvest 

declined across all physiographic regions of Arkansas but was most dramatic in the Ozark 

Highlands (Figure 1). It was realized most on White Rock wildlife management area located in 

the Boston Mountains portion of the Ozark Highlands and the focus of this study (Figure 2). 

Across the Ozark Highlands, especially the Boston Mountains, over the past 10 to 15 

years forest managers have initiated landscape level woodland and savanna restoration. 

Restoration efforts aim to revert closed canopy upland forest to historical woodland and savanna 

conditions mostly through the implementation of early growing season prescribed fire. 

Woodlands and savannas were once prevalent throughout the Central Hardwoods region 

including the Ozark Highlands and the Boston Mountains (Nuzzo 1985). They represented a 

transition zone between the tall grass prairie in the Central Plains and the closed canopy 

deciduous forests of eastern North America (Dyksterhuis 1957; Anderson 1983; Nuzzo 1985). 

Woodland and savanna ecosystems consisted of open canopies and diverse understories of 

grasses, forbs, and some woody shrubs, and were maintained by disturbance, typically fire. 

(McPherson 1997; Taft 1997; Anderson et al. 1999). After the fire suppression movement and 

land use changes of the 19
th

 and 20
th

 centuries woodlands and savanna ecosystems were reduced 

to approximately 1% of their original extent (Nuzzo 1985). 
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In the Ozark Highlands the loss of woodland and savanna ecosystems and the fire 

regimes that maintained them coincided with increased populations of European settlers (Cutter 

and Guyette 1994). Foti (2004) approximated that 47% of the Boston Mountains in the Ozark 

Highlands region were once woodland ecosystems and another 15% were in herbaceous prairie. 

These ecosystems supported a variety of diverse plant and wildlife species that were dependent 

on the transitional nature of these ecosystems. Until recently, only a small amount of these 

ecosystems were still present on the landscape and the fire regimes that maintained them were 

totally absent. 

Restoration of woodland and savanna ecosystems was initiated approximately 10 to 15 

years ago throughout the Ozark Highlands by federal and state management agencies. In the 

Boston Mountains the United States Department of Agriculture, Forest Service selected an area, 

the White Rock Ecosystem Restoration Area (WRERA), to implement woodland and savanna 

restoration in 2002. Wild turkey harvest began to decline shortly after the implementation of 

restoration through landscape scale early growing season prescribed fire (Figure 2). As 

restoration has progressed up to the initiation of this study so has the decline in wild turkey 

harvest leading to concern that landscape scale early growing season prescribed fire were 

negatively affecting wild turkey populations. 

Wild turkey have previously been studied in Arkansas and on the WRERA. Badyaev 

(1994) examined the ecology of female wild turkey on the WRERA before its establishment and 

before woodland and savanna restoration. This study documents habitat requirements, 

productivity, survival rates, and home ranges and contributed significantly to our understanding 

of eastern wild turkey ecology in Arkansas and throughout its range. Moore (1995) and 

Thogmartin (1998) both studied eastern wild turkey in the Ouachita Mountains of Arkansas. 
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Moore (1995) focused on the nest-site selection process of eastern wild turkey in the Ouachita 

Mountains. Thogmartin (1998) examined space use, survival, and habitat selection of female 

eastern wild turkey. All of these previous research efforts have provided essential background 

information used in our study. 

We initiated our study on the WRERA in 2011 basing much of our study design and 

many of our hypotheses on the previous efforts of Badyaev (1994), Moore (1995), and 

Thogmartin (1998) while developing new designs and hypotheses to address the current aspects 

of woodland and savanna restoration. Our study was intended to address five main objectives: 1.) 

examine habitat selection, especially nest-site selection, of female wild turkeys at multiple spatial 

scales with respect to landscape scale early growing season prescribed fire, 2.) document pre-

nesting movements of female wild turkey and relate those movements to productivity, 3.) 

estimate period and annual female wild turkey survival and productivity, 4.) compare research 

results of Badyaev (1994) to those from the previous study on later established WRERA, and 5.) 

develop management recommendations to enhance nesting habitat availability, female survival, 

and recruitment in the Central Hardwoods Region. This dissertation was intended to serve as the 

final report of research findings for the study and was written with the intent of publishing each 

chapter separately. Chapter 1 was written in the journal format of Forest Ecology and 

Management for submission with David G. Krementz as coauthor. Chapter 2 was written in the 

journal format of Landscape Ecology for submission with David G. Krementz as coauthor. 

Chapter 3 was written in the journal format of Ecological Applications for submission with 

David G. Krementz as coauthor. 
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Figure 1. Eastern Wild Turkey harvest in the Ozark Highlands physiographic region by year 

from 1975 to 2010. 
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Figure 2. Eastern Wild Turkey harvest on White Rock wildlife management area in the Ozark 

Highlands physiographic region by year from 1975 to 2010. 
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Abstract 

Landscape level woodland and savanna restoration is becoming an increasingly common 

management strategy in the Central Hardwoods region and has been implemented on the White 

Rock Ecosystem Restoration Area (WRERA) of the Ozark-St. Francis National Forest in 

Arkansas since 2002. Management has primarily consisted of landscape scale (500-2,500 ha) 

early growing season prescribed fire and has coincided with declines in eastern wild turkey 

(Meleagris gallopavo silvestris). We initiated this study to assess how management has impacted 

the quality and/or quantity of wild turkey nesting habitat on the WRERA. We marked 67 wild 

turkey hens with 110 g Global Positioning System Platform Transmitting Terminals in 2012 and 

2013 on the WRERA to examine nest-site selection and estimate nest survival. We used mixed-

effect logistic regression to determine what habitat characteristics hens selected. We found that 

hens selected initial nest-sites with higher visual concealment (0-1 m in height), percent slope, 

and woody ground cover. We also found that as time since prescribed fire increased so did visual 

concealment (0-1 m) at initial nest-sites. Renest-sites were best characterized by higher visual 

concealment (0-1 m) and fewer small shrubs. Our best approximating nest survival model 

indicated that as visual concealment (0-1 m) increased so did nest survival, but as distance from 

road increased nest survival decreased. We found hen success for adult wild turkey on WRERA 

was 23.5%, among the lowest reported. Overall, nest-sites had some woodland and savanna 

characteristics but low nest survival and hen success suggested that the quality of nesting habitat 

at WRERA may still be a limiting population factor.  
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1. Introduction 

 Prescribed fire has only recently been returned to upland hardwood ecosystems after the 

fire suppression movement of the twentieth century. During fire suppression many upland 

hardwood ecosystems transitioned from open woodlands and savannas to closed canopy forests 

(Batek et al. 1999; Dey et al. 2005). Over the past decade efforts to reintroduce fire and restore 

historical woodland and savanna conditions to upland hardwood ecosystems have increased, 

especially in the Ozark Highlands. This practice has been termed “restoration,” as its intent is to 

restore historical conditions from when fire was present and frequent on the landscape 

(Greenberg et al. 2013). “Restoration” in the Ozark Highlands typically consists of the use of 

early growing season prescribed fire over large spatial extents to create heterogeneity in 

understory and canopy vegetation. Early growing season prescribed fire occurs usually in March 

and April in the Ozark Highlands of Arkansas. The effects of prescribed fire on vegetation 

responses have been documented in several upland hardwood ecosystems, but more information 

on severity and vegetation responses over large extents and varying topography is needed to fully 

understand the effects of prescribed fire on wildlife.  

 Prescribed fire can be a useful tool for the recruitment and retention of early successional 

bird species in eastern upland hardwood ecosystems (Lanham et al. 2006; Greenberg et al. 2007; 

Greenberg et al. 2013). However, these findings have often been in conjunction with mechanical 

habitat management and do not address the current conditions of landscape scale restoration. 

Since the implementation of prescribed fire and restoration bird responses are much less 

understood in the Ozarks and Central Hardwood region (Thompson et al. 2012). Reidy et al. 

(2014) found that woodland generalist and early successional specialist have benefited from 

restoration prescribed fire in the Missouri Ozarks while ground nesting species such as worm 
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eating warbler (Helmitheros vermivorus) have higher densities in forest sites with less influence 

from restoration efforts and prescribed fire (Reidy et al. 2014). These studies have also noted 

potential risks of prescribed fire to ground-nesting species like destruction of nests and 

alterations of important habitat structure. Current research also does not examine the effect of 

restoration and prescribed fire on habitat characteristics critical to nesting of ground nesting 

species in the Ozarks and Central Hardwoods region.  

 Reproductive performance is an important factor in the maintenance of wildlife 

populations especially in ground-nesting birds like the wild turkey (Martin 1993; Thogmartin 

1998). Nesting habitat selection and subsequent nest survival are critical aspects of the 

reproductive performance of Eastern wild turkeys (Meleagris gallopavo silvestris). These aspects 

of wild turkey life history have been well documented with respect to prescribed fire and other 

management practices, but predominately in Coastal Plain pine (Pinus sp) or mixed 

pine/hardwood ecosystems (Day et al. 1991; Moore et al. 2010; Williams 2012). Prescribed fire 

has been studied in South Carolina Coastal Plain pine ecosystems and been found to increase 

potential nesting habitat for wild turkeys (Moore et al. 2010). More specifically early growing 

season prescribed fire has been studied in Georgia Coastal Plain pine ecosystems and found to 

have minimal negative impacts since wild turkey had high renesting rates and nest survival 

(Williams 2012). However few other studies have examined nest-site selection and nest survival 

in upland hardwood ecosystems of the Central Hardwoods region (Vangilder et al. 1987; 

Badyeav 1994; Vangilder et al. 1995). Most importantly, to our knowledge, nesting habitat 

selection and nest survival have not been examined in relation to woodland and savanna 

restoration currently being implemented in the Central Hardwoods region.  
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1.1 Objectives 

Our research stemmed from this lack of knowledge about the overall response of ground 

nesting birds to early growing season prescribed fire used for woodland and savanna restoration 

in the Central Hardwoods region. Also, declining productivity and harvest of wild turkey in the 

Ozark Highlands that coincided with the implementation of woodland and savanna restoration 

has motivated efforts to better understand the role of woodland and savanna restoration in the 

nest habitat selection process and subsequent nest survival of ground nesting birds like the wild 

turkey. Since the implementation of woodland and savanna restoration, wild turkey harvest 

decreased 60% in the Ozark highlands and 84% in our study area (K. Lynch, Arkansas Game and 

Fish Commission, unpubl. data).  Our research consists of two objectives: 1) examine nest-site 

selection of wild turkey at multiple spatial scales and its relationship to prescribed fire and 2) 

examine nest survival and its relationship to habitat and/or management practices.  

1.2 Study area 

The WRERA consists of 16,380 ha of upland hardwood and pine ecosystems in 

northwest Arkansas, United States of America (USA; Fig 1). It is part of the larger main division 

of the Boston Mountain Ranger District (41,400 ha) on the Ozark-St. Francis National Forest. 

The WRERA is a high priority woodland and savanna restoration area for the United States 

Department of Agriculture (USDA) Forest Service. Historically the WRERA was dominated by 

woodlands and savannas maintained by frequent disturbances by fire (Chapman et al. 2006; 

Guyette et al. 2006; Foti 2004). After fire suppression during the 20
th

 century, the WRERA 

became dominated by closed canopy hardwood forests of various oak (Quercus sp.) and hickory 

(Carya sp.) species. Understories consisted of canopy species regeneration, black gum (Nyssa 

sylvatica), flowering dogwood (Cornus florida), Carolina buckthorne (Rhamnus caroliniana), 
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blackberry (Rubus spp.) and devil’s walking stick (Aralia spinosa) (USDA, NRCS 2014). Pine 

ecosystem canopies were dominated by short leaf pine (Pinus echinata) while understories 

consisted of hardwood and pine regeneration. Since 2002, the WRERA has been intensively 

managed with large scale early growing season prescribed fire to restore historic woodland and 

savanna conditions. Management prescription for WRERA describes woodlands as having “open 

canopies, sparse mid-stories and well-developed understories typically dominated by grasses and 

forbs, but also may become shrubby between fires and have a significant woody component” 

with 40-60% canopy closure (ONF Forest Plan). The prescription also describes the management 

techniques to achieve these objectives including mechanical canopy removal, herbicide, and fire 

treatments. However, mechanical and herbicide treatments have been implemented on ≤ 5% of 

the restoration area since 2002. The WRERA is divided into 16 prescribed burn units ranging 

from 467 to 1,670 ha in size. Early growing season prescribed fire has been implemented on a 3 

to 5 year rotation in 15 of the 16 prescribed burn units, and all units have received 1 to 4 

prescribe fire treatments since 2002. 

2. Methods 

2.1 Nest monitoring and habitat measurement 

 We trapped wild turkey in and around the WRERA using rocket nets in late winter from 

2011-2013. We marked all captured wild turkeys with an aluminum leg band and hens were 

fitted with 110 gram Platform Transmitting Terminal (PTT) with Global Positioning System 

(GPS) capabilities and Very High Frequency (VHF) radio transmitter (North Star Science and 

Technology LLC, King George, Virginia) attached using a back-pack-type harness (Kurzejeski 

et al. 1987). The PTTs recorded GPS locations four times per day during the 2011 and 2012 

nesting seasons and eight times per day during the 2013 nesting season. We estimated GPS 
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location accuracy to approximately 15 m. Our PTTs transmitted GPS locations via the ARGOS 

satellite system (CLS America) every 120 hrs during 2011 and 2012 and every 48 hrs during 

2013. We determined nest-sites when >3 consecutive GPS locations were <20 m of each other 

during the nesting season (April-July). We approximately located nest-sites to within 50 m on 

the ground using the VHF transmitters. We monitored nests using daily GPS and VHF locations 

until the nest was abandoned or hatched. Then we recorded vegetation measurements within 48 

hrs at nest-sites that were definitively located.  

 We recorded 8 ground collected habitat variables and 9 habitat variables derived from a 

Geographic Information System (GIS). We collected vegetation measurements using a 10 m 

radius circular plot centered at bird locations before nest initiation, random locations 50-100 m 

from pre-nest initiation bird locations, nest-sites, 40 m from nest-sites in a random direction, and 

300 m from nest-sites in a random direction (Badyeav 1994). We recorded visual concealment in 

classes from 0 to 2 m in height (Nudds 1977), percent ground cover type (Daubenmire 1959), 

counts of live stems in diameter at breast height (dbh) classes, understory height (m), canopy 

cover (Lemmon 1956), slope (%), slope position (% from bottom), and aspect. Counts of live 

trees were made for size classes 0-15 cm, 16- 30 cm and >30 cm dbh and shrubs were counted 

for size classes ≤5 cm and >5 cm ground diameter. Our GIS based habitat variables consisted of 

time since prescribed fire (yrs), elevation (m), distance (m) to nearest road, distance (m) to 

nearest stream, and mechanical forest treatment, nearest treatment type, USDA Forest Service 

cover type, stand age (yrs), and site index.  

2.2 Nest-site selection 

 We modelled nest-site selection at micro-habitat (<10 m) and management scales (i.e. 

stand, burn unit, etc.) with each scale being represented by different habitat variables. Models 
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were analyzed with generalized linear mixed-effects models from the binomial family (function 

“glmer”, family = binomial, link = “logit”; R Core Development Team, 2010). All models were 

of the same form with a binomial response (nest-site vs. non-nest-site, n=49 and n=521) and 

some suite of habitat predictor variables. Initial nest attempts (n=49) and renest attempts (n=16) 

were modeled separately. We also modeled selection at distances of 40 m and 300 m from nest-

sites to examine selection patch size. We developed a micro-habitat candidate model set (n=17) 

based on previous findings of Badyaev et al. (1996), Thogmartin (1999), and Byrne and 

Chamberlain (2013). We also developed a management scale candidate model set (n=9) based on 

previous findings of Badyaev et al. (1996), Thogmartin (1999), and Byrne and Chamberlain 

(2013) Micro-habitat models were developed to understand the type and quantity of nesting 

habitat (Martin 1993). Management scale models were developed to determine if management 

practices were most influential in developing quality nesting habitat, indicated by the selection of 

certain management treatments as nesting habitat. The full candidate model sets are available 

from the authors upon request. A random effect for individual was included in each model to 

account for unequal sampling and variability amongst individuals (Gillies et al. 2006). We 

evaluated models using Akaike’s Information Criterion (AICc) corrected for finite sample sizes 

(Burnham and Anderson 2002). Model fit was assessed using the Lemeshow-Hosmer goodness-

of-fit test statistic (Lemeshow and Hosmer 1982). Models with ΔAICc <4 were model averaged 

and all non-zero parameters were reported. Non-zero parameter estimates are those where the 

95% confidence intervals (CI) do not overlap zero. We used model averaging to account for any 

model selection uncertainty among top models. 
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2.3 Nest survival  

 Nests were monitored on a daily basis using a combination of GPS and VHF locations of 

incubating hens. We estimated nest daily survival rates (DSR) and nest success rate (NSR) in 

Program MARK (Dinsmore et al. 2002; Rotella et al. 2004) using both ground collected and GIS 

derived habitat variables. DSR was the probability that a nest would survive from one day to the 

next. NSR was the probability that a nest would survive the full 28 day incubation period.  We 

developed a candidate model set (n=16) based on the results of previous research by Badyaev et 

al. (1996), Thogmartin (1999), and Byrne and Chamberlain (2013). Our full candidate model set 

included models based on physiological condition, behavioral status, individual characteristics, 

and habitat characteristics. Physiological models included variables describing age, behavior, 

and physiological condition represented by winter mass (kg).  Age was defined as adults, 

individuals having experienced 2 or more breeding seasons, and juveniles, individuals in their 

first breeding season. Models including behavioral variables tested the hypothesis that greater 

dispersal distances from the winter range by females correlated with higher nest success 

(Badyaev 1994).  Habitat based models included variables for percent visual concealment, 

ground cover, stem counts, distance to roads, time since prescribed fire and management types.  

Models were compared using AICc (Burnham and Anderson 2002; Appendix B). 

3. Results 

3.1 Nest-site selection 

 Initial nest attempts were best differentiated from non-use-sites by two top models all of 

which included percent visual concealment (0-1 m), distance to roads, time since fire, percent 

woody ground cover, and an interaction term for percent visual concealment (0-1 m) and time 

since fire (Table 1; sum of model weights ∑wi=0.78). Based on model averaged parameter 
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estimates, we found that nest-sites were positively associated with percent visual concealment 0 

to 1 m above ground level (β=4.24, SE=1.00), percent woody ground cover (β =1.36, SE=0.58), 

and percent slope (β =1.85, SE=0.62; Table 2; Fig 2). We found that as time since fire increased 

(β =3.77, SE=1.78) the percent visual concealment (0-1 m) increased in a curvilinear fashion 

until it approached 100% (Fig 3). When we examined nest patch size, we found nest-sites had 

higher visual concealment (0-1 m) than at locations sampled at 40 and 300 m from the nest-sites 

indicating small nest patches of higher visual concealment (0-1 m).  

 Renest attempts were best differentiated from non-use-sites by six top models all of 

which included percent visual concealment (0-1 m) and distance to roads (Table 3). Other 

variables included in top models were time since fire, counts of small shrubs and medium trees 

and an interaction term of counts of small shrubs and time since fire. Model averaging resulted in 

only two non-zero parameter estimates, visual concealment (0-1 m) (β=2.12, SE=0.96) and count 

of small shrubs (β=-3.48, SE=1.57) which suggested that renesting hens were locating nests at 

sites with more visual concealment (Table 2). In initial nest attempt and renest attempt 

management based models did not perform better than the intercept only models indicating those 

models did not differentiate between nest-sites and available sites.  

3.2 Nest survival 

 We identified one best approximating model of nest survival that included a temporal 

trend term and variables for percent visual concealment (0-1 m) and distance from road (m) 

(Table 4). We removed age models from the model set after GLM results confirmed there was no 

difference in nest habitat between adults and juveniles. We also removed age models because 

there were no successful nests and a small sample size in the juvenile age class that caused 

models to over fit the data based on the difference between age classes. In our top model all 
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parameter estimates were significantly different than zero. The temporal trend (β = -0.07, 95% 

CI [-0.12,-0.03]) indicated that nest survival decreased over the 28 day incubation period. 

Parameter estimates also indicated that nest survival increased (β = 1.78, 95% CI [0.38, 3.19]) 

with increased visual concealment (0-1 m) and nest survival decreased with increased distance 

from a road (β = -0.005, 95% CI [-0.009, -0.0009]). However, the parameter estimate for 

distance to roads suggested very little influence on nest survival. Our top model estimated nest 

success as 0.19 (95% CI [0.11, 0.31]) and daily nest survival ranged from 0.98 (95% CI [0.96, 

0.99]) on day 1 of incubation to 0.88 (95% CI [0.80, 0.93]) on day 28 of incubation. 

4. Discussion 

We found that visual concealment, a micro-habitat characteristic, was the most critical 

aspect of nest-site selection by hens in our study area. We also found that in years after a 

prescribed fire event, the degree of visual concealment increased and plateaued several years 

after a fire event. Since hens selected nest-sites with more visual concealment than non-use-sites, 

this relationship could play an important role in optimizing fire regimes to benefit wild turkey 

and other ground nesting birds. We determined for the hens that renested (22.5%) visual 

concealment was an important variable in selecting a nest-site. We also found hens selected 

initial nest-sites with higher levels of woody stemmed vegetation. Woody stemmed vegetation 

was comprised of woody vines and canopy seedlings approximately 1-2 year old. Selection of 

this type of woody stemmed vegetation could be a result of hens selecting a nest-site before 

green up in the spring. Persistence of woody vine structure and young seedlings from the 

previous growing season into the spring may be an indicator hens use in selecting a nest-site 

early in the reproductive period. Renesting hens selected nest-sites with lower counts of small 

shrubs that were <4 cm in diameter at ground level, and typically consisted of 2-4 year old 
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saplings and other woody free standing vegetation. Lower counts of small shrubs at renest-sites 

suggest hens were able to satisfy their need for high visual concealment with other vegetation 

types that may be more available later in the season. Renest-site selection occurs during the 

growing season and provides hens the opportunity to select a site based on current conditions as 

opposed to the likely future condition of initial nest-sites. We also found hens selected initial 

nest-sites that had higher percent slope which could be a factor in the behavior and intensity of 

prescribed fire implementations (Rothermel 1983).  

Our analysis of patch size indicated that hens were selecting nest-sites based on visual 

concealment patches less than 80 m in diameter or on transition zones between different habitat 

patches. These findings suggest that habitat heterogeneity is a potentially important component 

of ideal nesting habitat and selection of that habitat. Hens could potentially find these patches as 

a result of prescribed fire, tree fall, insect damage, and/or other forest disturbances. In our study 

area large scale prescribed fires over differing topography could potentially produce this patch 

heterogeneity. However, more information is needed on vegetation responses in the study area to 

determine if this is the case. Also, most studies of prescribed fire impacts on wildlife are at small 

scales and/or experimental in design, subsequently little research on prescribed fires at the 

landscape scale (≥500 ha) exists to draw information about patch heterogeneity (Greenberg et al. 

2007, 2013; Thompson et al. 2012; Reidy et al. 2014). Our study is the only study we are aware 

of that has examined prescribed fire impacts on wildlife and vegetation dynamics at such a large 

scale, and our findings are more likely to represent wild turkey responses to prescribed fire under 

current management prescriptions and scales for woodland and savanna restoration.  

Wild turkey nesting ecology has previously been examined in Arkansas three times 

including once previously on the WRERA. All three of these studies were conducted before the 
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reintroduction of early season prescribed fire in those systems. In the early 1990’s WRERA was 

managed under even-aged timber management strategy and prescribed fire was absent from the 

landscape. At that time and under those management conditions hens selected nest-sites with 

high visual concealment (0-1 m), and greater counts of small shrubs and medium trees (Badyeav 

1994). We observed the same selection of nest-sites with high visual concealment (0-1 m), but 

did not observe the selection of sites based on small shrubs and medium trees. The absence of 

small shrubs and medium trees from our top models could be a result of the reintroduction of 

prescribed fire changing the availability of these characteristics on the landscape to provide 

visual concealment (0-1 m). Small shrubs and medium trees may have been important under fire 

suppression when hens likely relied on the early succession habitat created by mechanical timber 

harvest and the increased light conditions created by road sides to satisfy the requirement of high 

visual concealment for a nest-site. Badyaev (1994) also observed hens selected nest-sites that 

were closer to roads, had greater over-story density, and were in habitat patches approximately 

80 m in diameter. We did not find that hens were selecting nest-sites that were closer to roads or 

had greater over-story density than available sites. However, we did observe hens selecting 

similar sized patches of nesting habitat suggesting patches of approximately 80 m in diameter are 

optimal nest patches or the availability of different size nest patches has not changes since the 

implementation of early growing season prescribed fire.  

Working in the nearby Ouachita Mountains of Arkansas, Moore (1995) and Thogmartin 

(1999) found that hen nest-sites were located close to roads and had strong selection for short-

leaf pine (Pinus echinata). We found that neither distance to roads nor cover type were important 

in the selection of nest-sites. However, the lack of selection by cover type and no apparent 

selection of short-leaf pine on the WRERA was possibly because the community composition in 
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Ozark Highlands differs from the community composition in the Ouachita Mountains. In the 

Ouachita Mountains, hens were also observed to select patches of nesting habitat much larger 

than those observed in the Ozark Highlands (Thogmartin 1999). This patch size difference could 

be a difference related to management practices or ecosystem characteristics. Forest management 

in the Ouachita Mountains is focused toward forest products in pine ecosystems. This consists of 

more mechanical disturbance with a small interval (~ 10 years) between disturbances. 

Mechanical disturbance tends to be applied at the stand scale and are assumed uniform across the 

area of application.   

Numerous other studies have examined hen nest-site selection in a wide variety of 

ecosystems and under a various management regimes. In bottomland hardwood ecosystems of 

south-central Louisiana, hens selected nest-sites in relation to forest canopy gaps and the 

resulting under-story growth similar to conditions observed in our study (Byrne and Chamberlain 

2013). However, in this bottomland hardwood system, nest-site selection was heavily driven by 

an area’s propensity to flooding. Nest-site selection in northeastern South Dakota, where both 

Rio Grande (Meleagris gallopavo intermedia) and Eastern subspecies were studied, was 

associated with higher numbers of trees and shrubs near the nest dissimilar to the Ozark 

Highlands (Leham et al. 2002). However, in more open landscapes these associations are likely 

driven by the low availability of vertical cover compared to the oak-hickory forests of the Ozark 

Highlands. Selection in Rio Grande hens along the South Platte River in northeastern Colorado 

was based on greater visual concealment, greater canopy cover, greater shrub cover, and lower 

grass cover (Schmutz et al. 1989). Merriam’s hens (Meleagris gallopavo merriami) in a 

Douglas-fir (Pseudotsuga menziesii) ecosystem in Oregon selected nest-sites based on visual 

concealment and shrub densities, similar to the nest habitat selected by hens in our study (Lutz 
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and Crawford 1987). Overall hens throughout North America select nest-sites based on a few 

common characteristics like visual concealment in an effort to maximize the probability that 

nest-site will be successful. 

Ultimately, hens select nesting habitat to increase the probability of nest success. Many 

studies have found different factors that influence nest survival and success such as weather, 

habitat, and management practices (Badyeav 1994; Miller et al. 1998; Roberts et al. 1998; 

Thogmartin 1999; Moore et al. 2010; Ludwig 2012; Fuller et al. 2013). Our results, like many 

others, indicated that the greatest influence on nest survival was visual concealment (0-1 m) 

(Badyaev 1995; Moore et al. 2010; Fuller et al. 2013). Similar to Moore (1995) and Thogmartin 

(1999), we found that roads were an important part of the nesting process. However, we found 

nest-sites that were located closer to roads survived longer, unlike Thogmartin (1999) whom 

found wild turkey avoided nesting near roads. We also observed a linear trend that best explained 

nest survival in combination with visual concealment and distance to a road. This trend allowed 

for nest survival to decrease over the 28 day incubation period. Decreased survival over the 

incubation period could be a result of the buildup olfactory and visual predator ques. Thogmartin 

(2001) suggested that habitat quality reduces the effect of visual and olfactory cues to predators, 

and our results support this claim since higher levels of visual concealment and the location of 

nest-sites close to roads increase nest survival. Increase survival of nest-sites that are close to 

roads could be a result of habitat conditions created by increased light levels that reach the forest 

floor due to the canopy gaps created by roads. Roads could also provide better access for hens to 

and from their nests, resulting in the creation of few visual and olfactory predator cues. Also 

traffic along roads potentially creates olfactory and auditory disturbances that could mask any 

predatory cues that hens may create during incubation.  
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Our top model estimated nest success at 19% (SE = 5%) which is amongst the lowest 

reported across the wild turkey range. Our nest success rate was similar to that estimated by 

Badyaev (1995; 20% SE = 5%) before woodland and savanna restoration. Badyaev’s (1995) and 

our estimates were lower than those reported elsewhere (Vangilder et al. 1987; Miller et al. 1998; 

Paisley et al. 1998) but not as low as reported by Paisley et al. (1998; 16%). Hen success is 

another metric used as an index of productivity for wild turkey. Hen success ranges from 0.0 to 

100% with most falling between 30 and 70% (Vangilder 1992). Our adult hen success rate on 

WRERA (24.5%) was amongst the lowest reported for eastern wild turkey (19.5% reported by 

Thogmartin and Johnson 1999 – 82.2% reported by Vangilder 1992). Our hen success rate is 

lower than the recommended 40% for a high density wild turkey population (Kurzejeski et al. 

1987).   

Renesting rates have been found to be important factors in the maintenance of wild 

turkey populations, and were limited to only 21% in 2012 and 26% in 2013 on the WRERA 

(23.5% Mean; Vangilder 1992; Roberts and Porter 1996). Our renesting rate was lower than the 

44% reported in Missouri by Vangilder et al. (1987) and the 38% reported by Badyaev (1994) on 

the WRERA. These estimates were documented in a similar region and in similar habitat to our 

study except for the presence of early growing season prescribed fire. Renesting has been 

suggested as an important component of wild turkey population dynamics that mitigate most 

potential negative impacts that early growing season prescribed fire might have on initial nest 

success (Williams 2012). Our observed decrease in renesting rate since the implementation of 

early growing season prescribed fire is cause for concern about the impacts of early growing 

season prescribed fire on the habitat resources necessary for renesting individuals. Since we 

observed no major differences in habitat characteristic and survival of renest-sites compared to 
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initial nest-sites the renesting rate is likely tied to habitat conditions and available resources for 

hens to produce a second clutch. Currently insufficient information exits on the energetics of 

renesting in wild turkey and how those energetics are related to habitat quality especially in 

habitat managed with early growing season prescribed fire. 

5 Conclusions 

 Our results show that hens selected nest-sites with high visual concealment, high percent 

slope, and more woody ground cover. Our findings currently do not clearly establish a 

relationship between early growing season prescribed fire for restoration and nest-site selection. 

However, as time since fire increases so does visual concealment (0-1 m), a critical factor in 

nest-site selection and linked to nest survival and success. This relationship being the case, we 

can conclude that the response of vegetation to prescribed fire does increase certain 

characteristics important in the selection of wild turkey nesting habitat. Nest success and hen 

success are both below recommended levels for high density populations. These estimates do not 

substantially differ from estimates collected before woodland and savanna restoration. In terms 

of productivity the similarity of estimates suggest the implementation of landscape scale 

prescribed fire for woodland and savanna restoration has not benefited wild turkeys on the 

WRERA. Our renesting rate has also decreased since the implementation of early growing since 

fire, and has not been related to an increase in initial nest success that would be expected in a 

population with a decreased renesting effort.  
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Table 1. Model selection results for nest-site selection of eastern wild turkey from 2012 to 2013 

in the Ozark Highlands, Arkansas, USA. k represents the number of estimated parameters in each 

model. AICc represents the corrected Akaike’s Information Criterion for finite sample sizes. 

ΔAICc represents the relative difference in AICc to the top model. wi represents the Akaike 

model weights. Models with ΔAICc <4 were retained along with the global and intercept models.  

Candidate Models k AICc ΔAICc wi 

% Visual Concealment + Time Since Fire (yrs) + % Slope 

+ % Woody Stem Ground Cover (GC) + % Visual 

Concealment*Time Since Fire (yrs) 

7 204.5 0.00 0.60 

% Visual Concealment + Distance to Roads (m) + Time 

Since Fire (yrs) + % Slope + % Woody Stem Ground 

Cover (GC) + % Grass GC + %Canopy Cover + % Visual 

Concealment*Time Since Fire (yrs)  

10 206.6 2.09 0.20 

Global 23 209.4 4.95 0.05 

Intercept 2 297.49 93.01 0.00 
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Table 2. Model averaged parameter estimates, standard errors and lower and upper 95% 

confidence intervals for nest-site selection of initial nest attempts and renest attempts by wild 

turkey during 2011-2013 breeding seasons in the Ozark Highlands, Arkansas, USA. 

Covariate β SE 95% CI Lower 95% CI Upper 

Initial Nest Attempts 

% Visual Concealment (0-1m) 4.24 1.00 2.26 6.2 

%Visual Concealment (0-1m)*Time 

Since Fire (yrs) 
3.81 1.71 0.46 7.17 

% Slope 1.85 0.62 0.63 3.07 

% Woody Stem Ground Cover 1.36 0.58 0.23 2.51 

Renest Attempts 

% Visual Concealment (0-1m) 2.12 0.96 0.23 4.01 

Count of Small Shrubs -3.48 1.57 -6.55 -0.39 
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Table 3. Model selection results for renest-site selection of eastern wild turkey from 2012 to 

2013 in the Ozark Highlands, Arkansas, USA. k represents the number of estimated parameters 

in each model. AICc represents the corrected Akaike’s Information Criterion for finite sample 

sizes. ΔAICc represents the relative difference in AICc to the top model. wi represents the Akaike 

model weights. Models with ΔAICc <4 were retained along with the global and intercept models. 

Model k AICc ΔAICc wi 

% Visual Concealment (0-1m) + Distance to Road (m) 

+ Count of Medium Trees + Count of Small Shrubs 
6 55.03 0.00 0.34 

% Visual Concealment (0-1m) + Distance to Road (m) 

+ Count of Medium Trees + Count of Small Shrubs + 

Time Since Fire (yrs) 

7 55.72 0.69 0.24 

% Visual Concealment (0-1m) + Distance to Road (m) 

+ Count of Medium Trees + Count of Medium 

Trees*Time Since Fire (yrs) + Count of Small Shrubs 

7 57.33 2.31 0.11 

% Visual Concealment (0-1m) + Distance to Road (m) 

+ Count of Medium Trees + Count of Small Shrubs + 

Count of Small Shrubs*Time Since Fire (yrs) 

7 57.58 2.55 0.09 

% Visual Concealment (0-1m)  3 57.84 2.81 0.07 

% Visual Concealment (0-1m) + Distance to Road (m)  5 58.59 3.56 0.06 

Intercept 2 59.59 4.56 0.03 

Global 23 94.96 39.93 0.00 
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Table 4. Model selection results for daily nest survival analysis of eastern wild turkey from 2012 

to 2013 in the Ozark Highlands, Arkansas, USA. k represents the number of estimated 

parameters in each model. AICc represents the corrected Akaike’s Information Criterion for finite 

sample sizes. ΔAICc represents the relative difference in AICc to the top model. wi represents the 

Akaike model weights. 

Model k AICc ΔAICc wi 

S(T + Percent Visual Concealment 

(0-1m) + Distance from Road (m)) 
3 397.0 0.00 0.65 

S(null model) 1 409.6 12.7 0.00 
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Fig 1. White Rock Ecosystem Restoration Area, Boston Mountain Ranger District, and the Ozark 

National Forest. 
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Fig 2. Logistic regression curves for model averaged non-zero variables with frequency 

distributions of variable values for unused (Bottom) and nest (Top) sites of wild turkey from 

2011 to 2013 in the Ozark Highlands, Arkansas, USA.  
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Fig 3. Interaction relationship between percent visual concealment (0-1m) and time since fire for 

initial nest attempts and unused locations from 2011 to 2013 in the Ozark Highlands, Arkansas, 

USA.  
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Appendix A. Full model selection results for initial nest-site selection analysis of eastern wild turkey in the Ozark Highlands, 

Arkansas, USA. k represents the number of estimated parameters in each model. AICc represents the corrected Akaike’s Information 

Criterion for finite sample sizes. ΔAICc represents the relative difference in AICc to the top model. wi represents the Akaike model 

weights. 

Model k AICc ΔAICc wi 

% Visual Concealment + Time Since Fire (yrs) + % Slope + % Woody Stem 

Ground Cover (GC) + % Visual Concealment*Time Since Fire (yrs) 
7 204.48 0.00 0.58 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + % Slope 

+ % Woody Stem Ground Cover (GC) + % Grass GC + % Canopy Cover + % 

Visual Concealment*Time Since Fire (yrs) 

10 206.57 2.09 0.20 

Global (% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + 

% Slope + % Woody Stem Ground Cover (GC) + % Grass GC + %Canopy Cover + 

Count of Medium Trees + Count of Small Shrubs + Slope Position + Aspect + % 

Visual Concealment*Time Since Fire (yrs) + % Woody Stem Ground Cover*Time 

Since Fire (yrs) + % Woody Stem Ground Cover:Time Since Fire (yrs) + Count of 

Medium Trees:Time Since Fire (yrs)) 

23 209.422 5.03 0.05 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + Count of 

Medium Trees + Count of Small Shrubs  + Count of Small Shrubs*Time Since 

Fire(yrs) 

7 209.5 5.02 0.05 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + % 

Woody Stem GC + % Slope + % Woody Stem GC*Time Since Fire (yrs) 
8 209.58 5.11 0.05 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + % 

Woody Stem GC + % Slope + % Grass GC + % Canopy Cover 
9 209.98 5.51 0.04 

% Visual Concealment + Distance to Roads (m) + Count of Medium Trees + Count 

of Small Shrubs 
6 212.56 8.08 0.01 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + Count of 

Medium Trees + Count of Small Shrubs 
7 212.7 8.22 0.01 
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Appendix A Cont.     

Model k AICc ΔAICc wi 

% Visual Concealment + Distance to Roads (m) + % Woody Stem GC + % Grass 

GC + % Canopy Cover 
7 213.67 9.2 0.01 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + % Slope 

+ Slope Position 
8 214.11 9.64 0.00 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + Count of 

Medium Trees + Count of Small Shrubs  + Count of Medium Trees*Time Since 

Fire(yrs) 

7 214.47 10.0 0.00 

% Visual Concealment + Distance to Roads (m)  4 216.04 11.56 0.00 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) 5 216.91 12.43 0.00 

% Visual Concealment 3 218.16 13.69 0.00 

Distance to Roads (m) + Time Since Fire (yrs) + % Woody Stem GC + % Grass GC 

+ % Canopy Cover + Count of Medium Trees + Count of Small Shrubs  
9 261.87 57.39 0.00 

Distance to Roads (m) + Time Since Fire (yrs) + % Woody Stem GC + % Grass GC 

+ Count of Medium Trees + Count of Small Shrubs 
8 262.74 58.27 0.00 

Intercept 2 297.49 93.01 0.00 

Near Treatment Type 4 299.1 91.09* 0.00(0.35*) 

Time Since Fire (yrs) + Stand Age + Stand Type 7 299.4 1.87* 0.16* 

Stand type + Distance to Treatment (m) + Stand Age (yrs)  7 299.7 2.22* 0.14* 

Stand type + Distance to Treatment (m) + Stand Age (yrs) + Treatment Age (yrs)   8 300.2 2.72* 0.12* 
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Appendix A Cont.     

Model k AICc ΔAICc wi 

Time Since Fire (yrs) + Stand type + Distance to Treatment (m) + Stand Age (yrs) 8 301.3 3.84* 0.05* 

Stand type + Stand Age (yrs) + Near Treatment Type + Treatment Age (yrs) + 

Treatment Area 
10 301.4 3.96* 0.05* 

Near Treatment Type + Treatment Age (yrs) + Treatment Area + Distance to 

Treatment (m) 
7 302.8 5.34* 0.02* 

Stand type + Stand Age (yrs) + Near Treatment Type + Treatment Age (yrs) + 

Treatment Area + Distance to Treatment (m) 
77 303.1 5.58* 0.02* 

*Management candidate model compared to the intercept only model     
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Appendix B. Full model selection results for daily nest survival analysis of eastern wild turkey in the Ozark Highlands, Arkansas, 

USA. k represents the number of estimated parameters in each model. AICc represents the corrected Akaike’s Information Criterion 

for finite sample sizes. ΔAICc represents the relative difference in AICc to the top model. wi represents the Akaike model weights. 

Model k AICc ΔAICc 

S(Temporal Trend+% Visual Concealment + Distance from Road) 396.9 0.0 0.57 

S(Temporal Trend+% Visual Concealment) 399.3 2.4 0.17 

S(Temporal Trend+% Visual Concealment + Time Since Fire) 401.3 4.4 0.06 

S(Temporal Trend + Dispersal Status) 402.0 5.1 0.05 

S(Temporal Trend + Nest Attempt) 402.0 5.1 0.05 

S(Temporal Trend) 402.8 5.9 0.03 

S(Temporal Trend + Year) 402.8 5.9 0.03 

S(Temporal Trend+% Visual Concealment+% Woody Ground Cover + No. of Medium 

Trees+% Slope) 
403.2 6.3 0.02 

S(Temporal Trend + Canopy Cover + Understory Height + No. of Small shrubs) 405.1 8.2 0.01 

S(% Visual Concealment + Distance from Road) 407.2 10.4 0.00 

S(% Visual Concealment) 408.0 11.1 0.00 

S(Distance from Road) 408.9 12.0 0.00 

S(null) 409.6 12.7 0.00 

S(Dispersal Status) 409.6 12.7 0.00 

S(Nest Attempt) 409.7 12.8 0.00 

S(Year) 410.2 13.3 0.00 

S(t) 419.5 22.6 0.00 
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Appendix C. Model selection results from the pre-nesting discrete choice habitat selections analysis. Also included in italics are 

specific hypotheses that the models represent. Interpretability was not advisable since model fit was not sufficient for all models.  

Model k AICc ΔAICc wi 

Global 27 317.10 29.16 0.00 

     Nest-Site Selection 
    

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + Count of 

Medium Trees + Count of Small Shrubs  
5 294.45 6.51 0.02 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + % Slope 

+ % Woody Stem GC + % Grass GC + % Canopy Cover 
7 296.32 8.38 0.01 

% Visual Concealment + Distance to Roads (m) + Time Since Fire (yrs) + % Slope 

+ Slope Position + Aspect 
12 300.67 12.73 0.00 

     Predator Avoidance 
    

Count of Large Trees + Count of Small Trees + Understory Height (cm) + % Slope 

+ Slope Position  
5 291.58 3.64 0.08 

Count of Large Trees + Understory Height (cm) + % Litter GC + % Canopy Cover 4 289.71 1.77 0.20 

Count of Large Trees + Time Since Fire (yrs) + Understory Height (cm) + Slope 

Position + Aspect 
11 299.25 11.31 0.00 

Basal Area Hardwoods + Basal Area Conifers + Understory Height (cm) 3 293.34 5.40 0.03 

     Travel Corridors 
    

Distance to Roads (m) + Slope Position 2 291.33 3.39 0.09 

 
    

Nutrients and Energy 
    

Distance to Treatment (m) + Nearest Treatment Age + % Grass GC + % Litter GC 4 295.49 7.55 0.01 

Distance to Roads (m) +  % Grass GC + % Litter GC + % Canopy Cover 4 294.09 6.15 0.02 

Time Since Fire (yrs) + % Grass GC + % Canopy Cover 3 292.62 4.68 0.05 

Stand Age (yrs) + Site Index 2 287.94 0.00 0.49 
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Abstract 

Landscape level woodland and savanna restoration is becoming an increasingly common 

management strategy in the Central Hardwoods region. The implementation of the restoration 

strategy has coincided with declines of Eastern Wild Turkey in many treated areas, especially on 

the White Rock Ecosystem Restoration Area (WRERA). Previous studies have documented that 

habitat quality is related to individual movement and can limit a population. We fitted 67 female 

wild turkey with 110 g Global Positioning System (GPS) Platform Transmitting Terminals in 

2012 and 2013 on the WRERA to estimate annual and seasonal home ranges and examine pre-

incubation habitat use at multiple spatial scales. We estimated mean 95% home ranges for adults 

as 2,703 ha (SE=283.4) in 2012 and 4,750.4 ha (SE=946.2) in 2013 and for sub-adults as 1,999.6 

ha (SE=440.5) in 2012 and 4,169.5 ha (SE=751.7) in 2013. We estimated mean 50% core use 

areas of adults as 387.7 ha (SE=29.4) in 2012 and 373.3 ha (SE=38.2) in 2013 and for sub-adults 

as 355.2 ha (SE=74.5) in 2012 and 358.2 ha (SE=92) in 2013. Compared to before restoration, 

pre-incubation ranges were similar for adults but were larger for sub-adults and home ranges for 

all hens were larger after restoration. Our habitat selection analyses for the pre-incubation period 

indicated that hens visited habitats with more structural diversity and in smaller patch sizes than 

available habitat, but that hens eventually selected nesting habitat that had greater structural 

diversity in larger patches.  
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Introduction 

Landscape level woodland and savanna ecosystem restoration is a prominent forest 

management strategy implemented across the Central Hardwoods region of North America. The 

aim of woodland and savanna restoration management is to return closed canopy upland forests 

to their historical structure and functions. Historical conditions on the western edge of the 

Central Hardwoods region consisted of woodlands and savannas that represented a transition 

zone between tall grass prairie in the Central Plains and closed canopy deciduous forest in 

eastern North America (Nuzzo 1986). Woodland and savanna ecosystems consisted of open 

canopies with diverse understories of grasses, forbs, and some woody vegetation and were 

maintained through disturbance, typically fire (McPherson 1997; Taft 1997; Anderson et al. 

1999). Swan (1970) reported these woodlands were more stable, had better oak regeneration and 

maintained more herbaceous vegetation. On the western edge of the Central Hardwoods, 

restoration is implemented through prescribed fire and mechanical reductions in canopy cover 

across large areas resulting in woodland or savanna conditions.  

Woodland and savanna restoration techniques, especially prescribed fire, have been 

examined for their impacts and effectiveness on forest structure at multiple spatial scales 

(Hutchinson et al. 2005; Albrecht and McCarthy 2006; Brose et al. 1999). Various 

implementation techniques and impacts of prescribed fire on forest structure have been studied 

including the reintroduction, season, intensity, and effectiveness as a system maintaining 

disturbance (Sparks et al. 1998; Peterson and Reich 2001; Hutchinson et al. 2005; Franklin et al. 

2003). Prescribed fire has also been examined and found most effective for woodland and 

savanna restoration when implemented in combination with mechanical canopy reductions and 

herbicide treatments (Hutchinson et al. 2005; Albrecht and McCarthy 2006; Brose et al. 1999; 
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Jackson and Buckley 2004). Research has also focused on the effects that woodland and savanna 

restoration techniques have on wildlife (Brawn et al. 2001; Davis et al. 2000; Teidemann et al. 

2000; Reidy et al. 2014). However, to our knowledge, no study has examined the impacts of 

prescribed fire alone as a woodland and savanna restoration tool at the landscape scale (≥10,000 

ha) at which it is currently implemented has on wildlife.   

In 2002, woodland and savanna restoration was initiated in the Ozark Highlands of 

Arkansas, USA on a landscape scale (≥10,000 ha) in an effort to return closed canopy forest to 

historic woodland and savanna conditions. Harvest of eastern wild turkey (Meleagris gallopavo 

silvestris) in the Ozark Highlands reached an all-time highest level in 2003, but harvest has since 

declined to the lowest levels since 1991 when newly introduced wild turkey populations were 

still small (K. Lynch, Arkansas Game and Fish Commission, unpub. data). Wild turkey harvest is 

often used to index population status and these declines led to concerns that changes in forest 

management were affecting hen productivity. Space use and habitat relationships of hens have 

been well documented during the critical reproductive period under numerous forest 

management scenarios (Lazarus and Porter 1985; Badyaev 1994; Thogmartin 2001; Miller and 

Conner 2007). Although hens use a variety of habitats during this demographically important 

reproductive period, they require specific habitat characteristics during nesting related to forest 

structure such as visual concealment (Badyaev 1994; Thogmartin 2001; Byrne and Chamberlain 

2013). Thogmartin (1999) hypothesized that the availability of suitable nest-sites may be a factor 

limiting population size. Hens also expend large amounts of energy in the search of nesting 

habitat which can ultimately impact reproductive fitness (Badyaev 1996; Thogmartin 2001; 

Miller and Conner 2005). Recognizing the relationships between wild turkey nest ecology and 
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woodland restoration techniques led to concerns that current woodland and savanna restoration 

efforts were adversely affecting wild turkey populations. 

Badyaev (1996) first suggested that pre-incubation movements of hens were related to the 

selection of nest-sites and the success of those nests. Other researchers have also found that the 

pre-incubation period was critical in nest-site selection and nest success (Thogmartin 2001; 

Chamberlain and Leopold 2000; Miller and Conner 2005). Thogmartin (2001) suggested that 

hens would even trade optimal foraging habitat in search of ideal nesting habitat, indicating the 

importance of habitat sampling in the nest-site selection process. Other research has also 

connected pre-incubation home range size to the quantity and availability of quality nesting 

habitat suggesting search area and intensity should decrease as landscape habitat quality 

increases (Stephens and Krebs 1986; Orain and Wittenberger 1991; Chamberlain and Leopold 

2000). Miller and Conner (2007) examined pre-incubation habitat selection, but their assessment 

only described habitat of hens’ pre-incubation home ranges, and not the sequential habitat 

selection process a hen undergoes while moving through the landscape in search of quality 

nesting habitat. 

We initiated this study to better understand the effects of woodland and savanna 

restoration on hen reproductive ecology. Our objectives were to: 1) document home ranges and 

pre-incubation ranges for hens under landscape level woodland and savanna restoration 

conditions, 2) investigate potential difference between these ranges and ranges documented 

before the implementation of restoration, 3) determine how current pre-incubation ranges relate 

to productivity, 4) examine pre-incubation habitat sampling at multiple spatial scales, and 5) 

examine how habitat sampling during the pre-incubation period relates to eventual habitat 

selected for nest-sites. Through this study we hope to better understand how hens use the 
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landscape during the pre-incubation period and to understand what impacts landscape level forest 

management may have on hen reproductive ecology. 

Methods 

Study area 

The White Rock Ecosystem Restoration Area (WRERA) consists of 16,380 ha of upland 

hardwood and pine ecosystems in Northwest Arkansas, United States of America (USA; Figure 

1). It is part of the larger main division of the Boston Mountain Ranger District (41,400 ha) on 

the Ozark-St. Francis National Forest. The WRERA is a high priority woodland and savanna 

restoration area for the United States Department of Agriculture (USDA) Forest Service. 

Historically the WRERA was dominated by woodlands and savannas maintained by frequent 

disturbances by fire (Cutter and Guyette 1994; Batek et al. 1999; Foti 2004; Chapman et al. 

2006; Guyette et al. 2006; Stambaugh and Guyette 2006). After fire suppression during the 20th 

century, the WRERA became dominated by closed canopy hardwood forests of various oak 

(Quercus sp.) and hickory (Carya sp.) species. Understories consisted of canopy species 

regeneration, black gum (Nyssa sylvatica), flowering dogwood (Cornus florida), Carolina 

buckthorn (Frangula caroliniana), black berry (Rubus spp.) and devil’s walking stick (Aralia 

spinosa) (USDA, NRCS 2014). Pine ecosystem canopies were dominated by short leaf pine 

(Pinus echinata) while understories consisted of hardwood and pine regeneration. Since 2002 the 

WRERA has been intensively managed with large scale early growing season prescribed fire to 

restore historic woodland and savanna conditions. The management prescription for WRERA 

describes woodlands as having “open canopies, sparse mid-stories and well-developed 

understories that are typically dominated by grasses and forbs, but also may become shrubby 
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between fires and have a significant woody component” with 40 to 60% canopy closure (Ozark 

NF Plan 2005: pp. F-7). The prescription also describes the management techniques to achieve 

these objectives including mechanical canopy removal, herbicide, and fire treatments. However, 

mechanical and herbicide treatments have been mostly absent in the restoration area since 2002. 

The WRERA is divided into 16 prescribed fire units ranging from 467 to 1,670 ha in size. Early 

growing season prescribed fire has been implemented on a 3 to 5 year rotation in 15 of the 16 

prescribed fire units, and all units received 1 to 4 prescribed fire treatments since 2002. 

Capture and GPS telemetry 

We trapped hens in and around the WRERA using rocket nets in late winter from 2012-

2013 (IACUC #11012). All hens were fitted with a 110 gram Platform Transmitting Terminal 

(PTT) with Global Positioning System (GPS) capabilities and Very High Frequency (VHF) radio 

transmitter (North Star Science and Technology LLC, King George, Virginia) attached using a 

back-pack-type harness (Kurzejeski et al. 1987). The PTTs recorded GPS locations four times 

per day during the 2012 nesting seasons and eight times per day during the 2013 nesting season. 

We estimated GPS location accuracy to approximately 15 m. Our PTTs transmitted GPS 

locations via the ARGOS satellite system (CLS America) every 120 hrs during 2012 and every 

48 hrs during 2013.  

Home range estimation 

We estimated home and seasonal ranges from GPS coordinates using three techniques, 

dynamic Brownian Bridge Movement Models (dBBMM) (Kranstauber et al. 2012,2013; R 

package=”move”), fixed kernels (kernel), and minimum convex polygons (MCP) (Calenge 2006; 

R package=”adehabitat”). We used estimates derived from the dBBMM, but we report estimates 
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from all three methods in figures, and we report appropriate method estimates for range 

comparisons (Laver and Kelly 2008). We made range comparisons through visual observation of 

plots of means, box and whisker plots, standard errors and 95% confidence intervals (95% CI). 

We defined an individual’s home range as a continuous period of locations ranging from 10 to 12 

months that incorporated at least 50% of all seasonal behaviors, pre-incubation, nesting, brood 

rearing, summer-fall, and winter. We defined the pre-incubation period separately for every 

individual since individuals did not leave their winter flocks at the same time. The pre-incubation 

period began when a bird appeared to separate from others in its winter flock and ended two 

weeks before the beginning of nest incubation. We defined the nest incubation as the point when 

at least four consecutive GPS locations were within 25 m of each other. The pre-incubation 

period ranged from early March to early April in 2012 and from mid-March to late April in 2013.  

Habitat selection 

We estimated habitat selection for hens during the pre-incubation period using the 

discrete choice model outlined by Cooper and Millspaugh (1999). We estimated the discrete 

choice model (Croissant 2011; R package=”mlogit”) at multiple spatial scales, point, 100 m, 200 

m and 400 m scales, since hens have been documented to select habitat in a hierarchical fashion 

(Lazarus and Porter 1985; Byrne and Chamerlain 2013). We also estimated nest-site selection 

using the discrete choice model to compare eventual nesting habitat selected to habitat sampled 

during the pre-incubation period. We used Akaike’s Information Criterion corrected for finite 

sample size (AICc) to rank candidate models (Burnham and Anderson 2002). We only report 

model selection results for spatial scales that produced at least one candidate model with 

ΔAICc>2 of full model. We performed all statistical modeling and analyses using R statistical 

language (R Core Development Team, 2014).   
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We used dBBMM segment 95% contours (Collier 2013; R package=”moveud”) to define 

unique choice sets for every choice of each hen to better understand the selection process of a 

hen as it moves across the landscape and samples available habitat. We then generated a set of 10 

available random point locations within each segment 95% contour to use as alternatives in the 

choice set. We combined the 10 available alternatives with the second location from the pair that 

composed the segment resulting in choice sets of 11 alternatives. The second location from the 

pair that composed the segment was used as the chosen alternative since the individual was 

known to be at that location. Our choice sets were based on the premise that an individual can 

choose among available locations, including its current location, depending on which maximize 

the utility to that individual. 

We extracted data from multiple continuous landscape level data sets for every 

alternative at each scale including our nest-site selection locations. At the point scale, we used 

2010 LANDFIRE vegetation datasets (Rollins 2009) for canopy cover and vegetation height and 

2011 National Land Cover Datasets (NLCD) for forest cover type (Rollins 2009; Homer et al. 

2007; Jin et al 2013). We used the raster calculator and focal statistics tools (ESRI 2013) to 

develop datasets for percent change in canopy cover from 2001 to 2010, canopy cover 

heterogeneity in 2010, change in vegetation height from 2001 to 2010, vegetation height 

heterogeneity in 2010, and NLCD cover type heterogeneity for 2011. At larger scales we 

generated buffers of 100, 200, and 400 m, around the point locations and calculated the mean of 

each vegetation variable within that area, except for NLCD cover type. For NLCD cover type at 

each scale, we estimated the percentage of the area of each buffer composed of the four most 

dominant cover types in the study area, evergreen forest, deciduous forest, grassland/herbaceous, 

and pasture/hay. We then z-score standardized all of the variables at all scales, except NLCD 
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cover type at the point scale since it was categorical. We developed our candidate model sets 

separately for all scales and analyses. Our candidate models were based on findings of Badyaev 

(1994), Thogmartin (1999), Miller and Conner (2005), and Byrne and Chamberlain (2013). Our 

hypotheses about disturbance and forest management practices are available upon request.  

Results 

Home range estimation 

We estimated home ranges for 38 hens from 2012 and 2013 on WRERA. We observed 

large mean 95% home ranges for adults, 2,703 ha (SE=283.4) in 2012 and 4,750.4 ha 

(SE=946.2) in 2013. Sub-adult 95% home ranges were 1,999.6 ha (SE=440.5) in 2012 and 

4,169.5 ha (SE=751.7) in 2013. These home range estimates were considerably larger than mean 

home range estimates previously documented in Arkansas (Table 1). We estimated mean 50% 

core use areas for adults, 387.7 ha (SE=29.4) and 373.3 ha (SE=38.2) in 2012 and 2013 

respectively, and for sub-adults, 355.2 ha (SE=74.5) and 358.2 ha (SE=92) in 2012 and 2013 

respectively. We found a positive relationship between nest success and pre-incubation range 

size in 2013 when dBBMM pre-incubation ranges on average were larger for successfully 

nesting hens than those that were unsuccessful and the reversed in 2013 (Figure 2). However 

95% confidence intervals overlapped between successful and unsuccessful hens and between 

years. We also examined this relationship across fixed kernel and MCP estimates of pre-

incubation ranges and found there was too much overlap in the distributions of pre-incubation 

ranges to suggest any differences (Figure 3). We found no relationship between dBBMM 

estimates of 95% home ranges and 50% core use areas for successful and unsuccessful hens.  
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Due to the variation between methods observed for successful and unsuccessful hens we 

used all methods for examination of year and age effects on range sizes. We found dBBMM 

estimates were most similar to fixed kernel and MCP methods when comparing 95% home 

ranges and 50% core use areas for adults (Figure 4). However when adult pre-incubation range 

and sub-adults range estimates were compared, considerable variation existed between methods. 

This being the case, dBBMM estimates were most conservative and best accounted for outliers 

that may have resulted from variation in individual behavior (Figure 4). dBBMM estimates also 

indicated adult and sub-adult 95% home range and 50% core use area sizes were similar, but 

sub-adult pre-incubation range sizes were considerably larger than that of adults. When we 

compared estimation methods for year affects dBBMM estimates were most conservative and 

accounted for outliers the best in 95% home range and 50% core use area estimates. dBBMM 

estimates also suggested that no difference between years exist for 95% home ranges since a 

majority of their range distributions overlapped (Figure 5). Comparison of estimation method for 

pre-incubation ranges between years suggested that MCP estimates were most conservative, but 

in all estimates we observed considerable overlap of the range distributions suggesting no 

difference between years (Figure 5). 

Habitat selection 

Between 2011 and 2013, hens during the pre-incubation period were making habitat 

selection choices that were best differentiated from available alternatives at the point and 200 m 

scales. At the point scale, the top models selected were based on the use of early successional 

habitat and habitat structure diversity that would result in understory variation and still provide 

vertical cover. At the point scale, hens selected habitat with increasing canopy cover from 2001 

to 2010 (∑wi=0.34), increasing vegetation height from 2001 to 2010 (∑wi=0.34), higher values 
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of canopy cover (∑wi=0.48), and high canopy cover heterogeneity (∑wi=0.33; Table 2). At the 

200 m scale hens selected habitat with higher values of canopy cover (∑wi=0.89) indicating the 

selection of habitat with vertical cover.  Habitat selected for the eventual nest-site was best 

differentiated from available alternatives at the point, 100 m, and 200 m scales. At the point scale 

hens selected nest-sites that were best characterized by high canopy cover heterogeneity 

(∑wi=0.57) and lower canopy cover (∑wi=0.39; Table 3). At the 100 m and 200 m scales hen 

nest-sites were best differentiated from alternative sites by higher mean canopy cover 

heterogeneity (Table 3). When we compared these results between pre-incubation and nest-site 

selection, we found high canopy cover heterogeneity at the point scale for both selection periods. 

Among all scales, we found that canopy cover, change in canopy cover and vegetation height 

from 2001 to 2010, and canopy cover heterogeneity were all involved in the habitat sampling and 

selection process. 

Discussion 

Space use has been previously used as an indicator of habitat quality suggesting that 

increased space use is a result of a lack of quality habitat (Stephens and Krebs 1986; Cobb and 

Doerr 1997; Chamberlain and Leopold 2000; Wilson et al. 2005). Because we observed >100% 

increase in mean 95% home range size compared to the estimates before woodland and savanna 

restoration (Badyaev et al. 1996), our 95% home range estimates suggest that habitat quality has 

declined in the study area since the implementation of woodland and savanna restoration. Our 

estimates of home range size are also larger than others reported for eastern wild turkey (Everett 

et al. 1979; Badyaev et al. 1996; Thogmartin 2001; Miller and Conner 2005; Wilson et al. 2005). 

The large size of home ranges compared to other populations in other ecosystems and under 
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different forest management conditions suggest a lack of quality habitat for hens on the WRERA 

compared to areas under different forest management scenarios.  

Our estimates of pre-incubation range sizes also suggest a lack of quality habitat in the 

WRERA since the pre-incubation range of a hen in our study represents on average 46% of its 

total home range area. We also observed larger mean pre-incubation ranges in sub-adults than in 

adults which possibly suggest that dominant adults were selecting quality nesting habitat on 

WRERA forcing sub-adults to search for quality nesting habitat across a larger area. Badyaev et 

al. (1996) suggested a similar relationship but did not observe as large of a difference between 

the pre-incubation ranges of adults and sub-adults. Our results also suggest a difference in pre-

incubation ranges between 2012 and 2013 that could potentially be due to environmental factors 

such as the effects of climate on habitat quality. Vegetation data collected over this period in the 

WRERA suggest that nesting habitat conditions may have been poor in 2013 because decreases 

in small shrubs and woody ground cover observed in 2013 could have been a result of severe 

drought in the summer of 2012. However, overlap of the distribution of all range estimates 

across all methods and susceptibility of mean ranges to outliers suggest caution when inferring 

differences between groups. The high variability within groups and methods also raises questions 

of the magnitude of trends and differences in other studies of hen home range estimates. In either 

event, large pre-incubation ranges that represent a major proportion of the largest documented 

annual home ranges for the sub-species suggest a lack of quality nesting habitat. A lack of 

quality nesting habitat, supported by the 19% nest success rate documented during this study, 

could be limiting the wild turkey population on WRERA (Thogmartin 2001). 

Our pre-incubation habitat selection results suggest that hens are using more diverse 

habitats that may be in a transitional state (i.e. increasing canopy cover and vegetation height 
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from 2001 to 2010). Hens use more diverse habitat and interspersion of habitat with differing 

structures during nest-site selection (Speake et al. 1975; Brown 1980; Miller and Conner 2005). 

Miller and Conner (2007) found the pre-incubation period was a time when hens transition 

between structurally different habitats that provided habitat characteristic for the reproductive 

and non-reproductive seasons. We also believe that during this period hens are searching for 

structurally diverse habitats because they often provide open canopy habitats interspersed with 

opportunities for visual concealment. The occurrence of structural variables such as canopy 

cover heterogeneity and change in canopy cover and vegetation height support this hypothesis. 

However, the occurrence of these variables at the point scale and absence of them at the 200 m 

scale suggests that hens are finding these structurally diverse habitats in relatively small patches. 

Being smaller in size, we believe that the habitats may be gaps created by disturbances such as 

fire, wind or insects. The eventual nest-sites that hens select suggest they are ultimately looking 

for structural diversity. Structural diversity is indicated by the occurrence of canopy cover 

heterogeneity in top models at the point and 100 m scales of our nest-site selection analysis, 

similar to the results of the pre-incubation habitat selection analysis. However, the occurrence of 

higher mean canopy cover heterogeneity at the 100 m scale and a reduction in vegetation height 

since 2001 at the 200 m scale suggest hens ultimately select nest-sites in larger patches with 

structural diversity. At the 100 m and 200 m scales these patches are likely created by large 

disturbances such as large insect infestations or severe weather events. Disturbances like these 

are limited in the WRERA, occurring on ≤5% of the 16,380 ha. Badyaev (1994) and Thogmartin 

(1999) both found that hens selected large nesting patches similar to what we observed. Byrne 

and Chamberlain (2013) also found selection of nest-site patches at the same 200 m scale, but 

found that at larger scales habitat diversity was negatively related to nest-site selection.  
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In summary, our results suggest that a lack of quality habitat is the cause of the large 

home and seasonal ranges of hens on WRERA. Our results indicated that this more specifically 

was due to a lack of quality nesting habitat causing increased habitat sampling during the pre-

incubation period especially in sub-adults. We found that woodland and savanna restoration 

specifically landscape level prescribed fire has not increased the amount of quality nesting 

habitat. Our habitat selection results indicate that hens are looking for structurally diverse 

habitats. Hens on the WRERA are eventually selecting large patches of structurally diverse 

habitat likely created by larger more severe canopy disturbances.  
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Table 1 Mean [SE] Home range estimates for hens in 2012 and 2013 on the White Rock 

Ecosystem Restoration Area (WRERA), Boston Mountain Ranger District of the Ozark-St. 

Francis National Forest, Arkansas, USA and estimates from Thogmartin (1999) in the 

Ouachita Highlands of Arkansas from 1993 to 1996 and Badyaev and Faust (1996) on the 

WRERA from 1992 to 1993 before woodland and savanna restoration 

Adults 50% Kernels 95% Kernels 

2012 387.7 [29.4] 2703 [283.4] 

2013 373.3 [38.2] 4750.4 [946.2] 

Badyaev and Faust 1996 - 1414.3
A
 

Thogmartin 2001 - 1630
B
 

      

Sub-adults     

2012 355.2 [74.5] 1999.6 [440.5] 

2013 358.2 [92] 4169.5 [751.7] 

Badyaev and Faust 1996 - 3929.2
A
 

Thogmartin 2001 - 3200
B
 

A
90% Minimum Convex Polygon Home Range Estimate 

B
95% Fixed Kernel Home Range Estimate 
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Table 2 Discrete choice model selection results during the pre-incubation period for hens 

from 2012 and 2013 on the White Rock Ecosystem Restoration Area, Boston Mountain 

Ranger District of the Ozark-St. Francis National Forest, Arkansas, USA. k represents the 

number of estimated parameters in each model. AICc represents the corrected Akaike’s 

Information Criterion for finite sample sizes. ΔAICc represents the relative difference in AICc 

to the top model. wi represents the Akaike model weights. Models with ΔAICc <2 were 

retained along with the full model. (+) Denotes a positive variable relationship to selection 

probability, (-) denotes a negative relationship, and (.) denotes no significant relationship. 

Point Scale 

Model k AICc ΔAICc wi 

Change in Canopy Cover(+) + Change in Vegetation 

Height(+) 
2 7032.75 0.00 0.34 

Canopy Cover(+) + Canopy Cover Heterogeneity(+) 
2 7032.79 0.04 0.33 

Canopy Cover(+) + Land Cover Type(.) 
10 7034.40 1.66 0.15 

Global Model 43 7054.72 21.97 0.00 

     200 M Scale 

Model k AICc ΔAICc wi 

Canopy Cover(+) 
1 7025.03 0.00 0.51 

Canopy cover(+) + Canopy Cover Heterogeneity(.) 
2 7027.02 1.99 0.19 

Canopy Cover(+) + Vegetation Height(.) 
2 7027.03 2.00 0.19 

Global Model 11 7029.64 4.61 0.05 
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Table 3 Discrete choice model selection results for nest-site selection by hens from 2012 and 

2013 on the White Rock Ecosystem Restoration Area, Boston Mountain Ranger District of the 

Ozark-St. Francis National Forest, Arkansas, USA. k represents the number of estimated 

parameters in each model. AICc represents the corrected Akaike’s Information Criterion for 

finite sample sizes. ΔAICc represents the relative difference in AICc to the top model. wi 

represents the Akaike model weights. Models with ΔAICc <2 were retained along with the full 

model. (+) Denotes a positive variable relationship to selection probability, (-) denotes a 

negative relationship, and (.) denotes no significant relationship. 

Point Scale 

Model  k AICc ΔAICc wi 

Canopy Cover Heterogeneity(+) 
1 104.9 0.00 0.33 

Canopy Cover(.) + Canopy Cover Heterogeneity(+) 2 105.6 0.66 0.24 

Canopy Cover(-) + NLCD Cover Type(.) 
5 106.5 1.56 0.15 

Global Model 
13 117.9 13.0 0.00 

     100 M Scale 

Model  k AICc ΔAICc wi 

Mean Canopy Cover Heterogeneity(+) + % Area Evergreen 

Forest(.) + % Area Deciduous Forest(.)  
3 100.23 0.00 0.54 

Global Model 11 120.26 20.03 0.00 

     200 M Scale 

Model  k AICc ΔAICc wi 

Change in Canopy Cover(.) + Change in Vegetation Height(-) 3 102.90 0.00 0.47 

Global Model 11 120.07 17.18 0.00 
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Figure 1. White Rock Ecosystem Restoration Area, Boston Mountain Ranger District of the 

Ozark-St. Francis National Forest, Arkansas, USA. 
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Figure 2. Mean and 95% confidence interval of prenesting ranges (ha) for successful and 

unsuccessful nesting hens from 2012 and 2013 on the White Rock Ecosystem Restoration Area, 

Boston Mountain Ranger District of the Ozark-St. Francis National Forest, Arkansas, USA. (A) 

Represents adult hens and (B) represents juvenile hens. 
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Figure 3. Box and whisker plots of (A) 95% Home Range Kernel, (B) 50% home range core use area, and (C) 95% prenesting range 

estimates by year for hens from 2012 and 2013 on the White Rock Ecosystem Restoration Area, Boston Mountain Ranger District of 

the Ozark-St. Francis National Forest, Arkansas, USA. Method used to estimate the home range is annotated in the figure: (dBBMM) 

dynamic Brownian Bridge Movement Model estimate, (Kernel) kernel density estimate, and (MCP) minimum convex polygon. Black 

squares (▪) denote the mean range estimates. The mean kernel 95% home range (A) estimate for successful hens is not shown since it 

was beyond the extent of the figure. 
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Figure 4. Box and whisker plots of (A) 95% Home Range Kernel, (B) 50% home range core use area, and (C) 95% prenesting range 

estimates by age class for hens from 2012 and 2013 on the White Rock Ecosystem Restoration Area, Boston Mountain Ranger District 

of the Ozark-St. Francis National Forest, Arkansas, USA. Method used to estimate the home range is annotated within the figure: 

(dBBMM) dynamic Brownian Bridge Movement Model estimate, (Kernel) kernel density estimate, and (MCP) minimum convex 

polygon. Adults have nested at least once while sub-adults have never nested. Black squares (▪) denote the mean range estimates. The 

mean kernel 95% home range (A) and mean kernel pre-incubation estimate for sub-adults is not shown since it was beyond the extent 

of the figure.
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Figure 5. Box and whisker plots of (A) 95% Home Range Kernel, (B) 50% home range core use area, and (C) 95% prenesting range 

estimates by nest fate for hens from 2012 and 2013 on the White Rock Ecosystem Restoration Area, Boston Mountain Ranger District 

of the Ozark-St. Francis National Forest, Arkansas, USA. Method used to estimate the home range is annotated within the figure: 

(dBBMM) dynamic Brownian Bridge Movement Model estimate, (Kernel) kernel density estimate, and (MCP) minimum convex 

polygon. Black squares (▪) denote the mean range estimates. The mean kernel 95% home range (A) and mean kernel pre-incubation 

estimate for 2013 is not shown since it was beyond the extent of the figure. 
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Appendix A. Discrete choice model selection for the candidate model sets during the pre-incubation period for hens from 

2012 and 2013 on the White Rock Ecosystem Restoration Area, Boston Mountain Ranger District of the Ozark-St. Francis 

National Forest, Arkansas, USA. k represents the number of estimated parameters in each model. AICc represents the 

corrected Akaike’s Information Criterion for finite sample sizes. ΔAICc represents the relative difference in AICc to the 

top model. wi represents the Akaike model weights.  

Model k AICc ΔAICc wi 

VHC + CCC  2 7032.7 0.00 0.34 

CC + CCH 2 7032.8 0.04 0.33 

CC + LC 10 7034.4 1.66 0.15 

LC 9 7035.2 2.49 0.10 

CC 1 7036.4 3.70 0.05 

CC + VH 2 7038.4 5.70 0.02 

VHC + CCC + LC + VHC*LC + CCC*LC 29 7041.7 8.94 0.00 

CCH + LC 19 7043.5 10.79 0.00 

CCH 1 7045.4 12.63 0.00 

LCH 1 7046.2 13.48 0.00 

Canopy Cover(CC) + Vegetation Height(VH) + Canopy Cover Heterogeneity(CCH) + 

Vegetation Height Heterogeneity(VHH) + Canopy Cover Change(CCC) + Vegetation Height 

Change(VHC) + Land Cover Type(LC) + Land Cover Heterogeneity(LCH) + VHC*LC + 

CCC*LC  43 7054.7 21.97 0.00 

          

100 m scale 

CC + VH + CCH + VHH + CCC + VHC + LCH + % Evergreen Forest (%EF) + % 

Deciduous Forest(%DF) + % Pasture/Hay(%PH) + % Grassland/Herbaceous(%GH) 10 7012.9 0.00 0.97 

CC + CCH 2 7020.6 7.71 0.02 
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Appendix A Cont.     

Model k AICc ΔAICc wi 

CC 1 7023.4 10.51 0.01 

CC + VH   2 7024.7 11.77 0.00 

VHC + CCC 2 7025.6 12.70 0.00 

%DF  1 7029.8 16.89 0.00 

%EF + %DF + %PH + %GH 4 7030.5 17.58 0.00 

%EF + %DF 2 7031.2 18.30 0.00 

CCH + %EF + %DF 3 7033.1 20.25 0.00 

%EF + %GH 2 7036.6 23.75 0.00 

%PH + %GH 2 7041.1 28.16 0.00 

LCH 1 7046.8 33.93 0.00 

CCH 1 7046.8 33.95 0.00 

     200 m scale 

CC 1 7025.0 0.00 0.51 

CC + CCH 2 7027.0 1.99 0.19 

CC + VH   2 7027.0 2.00 0.19 

VHC + CCC 2 7029.1 4.11 0.07 

CC + VH + CCH + VHH + CCC + VHC + LCH + %EF + %DF + %PH + %GH 10 7029.6 4.61 0.05 

%DF  1 7038.7 13.65 0.00 
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Appendix A Cont.     

Model k AICc ΔAICc wi 

CCH + %EF + %DF 3 7039.7 14.72 0.00 

%EF + %DF 2 7040.6 15.56 0.00 

%EF + %DF + %PH + %GH 4 7042.0 16.97 0.00 

CCH 1 7042.4 17.33 0.00 

%EF + %GH 2 7043.6 18.53 0.00 

%PH + %GH 2 7044.2 19.21 0.00 

LCH 1 7047.0 21.93 0.00 
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Appendix B. Discrete choice model selection for full model sets for nest-site selection by hens from 2012 to 2013 on the 

White Rock Ecosystem Restoration Area, Boston Mountain Ranger District of the Ozark-St. Francis National Forest, 

Arkansas, USA. k represents the number of estimated parameters in each model. AICc represents the corrected Akaike’s 

Information Criterion for finite sample sizes. ΔAICc represents the relative difference in AICc to the top model. wi 

represents the Akaike model weights.  

Model k AICc ΔAICc wi 

CCH 1 104.9 0.00 0.33 

CC + CCH 2 105.6 0.66 0.24 

CC + LC 5 106.5 1.56 0.15 

CC 1 107.3 2.37 0.10 

LC 4 108.2 3.27 0.06 

LCH 1 108.7 3.75 0.05 

CC + VH 2 109.3 4.39 0.04 

CCC + VHC 2 110.2 5.34 0.02 

Canopy Cover(CC) + Vegetation Height(VH) + Canopy Cover Heterogeneity(CCH) + 

Canopy Cover Change(CCC) + Vegetation Height Change(VHC) + Land Cover Type(LC) + 

Land Cover Heterogeneity(LCH) 10 116.6 11.68 0.00 

     100 m scale 

CCH + %EF + %DF 3 100.23 0.00 0.54 

CCH 1 102.98 2.75 0.14 

%DF 1 103.91 3.69 0.09 

%EF + %GH 2 104.42 4.20 0.07 
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Appendix B Cont.     

Model k AICc ΔAICc wi 

CCC + VHC 2 104.93 4.70 0.05 

CC + CCH 2 105.14 4.92 0.05 

%EF + %DF 2 105.17 4.94 0.05 

%EF + %DF + %PH + %GH 4 108.33 8.11 0.01 

CC 1 109.03 8.80 0.01 

LCH 1 109.68 9.45 0.00 

%PH + %GH 2 109.90 9.68 0.00 

CC + VH   2 111.20 10.97 0.00 

CC + VH + CCH + CCC + VHC + LCH + % Evergreen Forest (%EF) + % Deciduous 

Forest(%DF) + % Pasture/Hay(%PH) + % Grassland/Herbaceous(%GH) 9 115.53 15.31 0.00 

     200 m scale 

CCC + VHC 2 102.9 0.00 0.46 

CCH + %EF + %DF 3 105.0 2.15 0.16 

CCH 1 105.9 3.01 0.10 

%EF + %GH 2 106.6 3.72 0.07 

%DF 1 106.8 3.90 0.07 

CC + CCH 2 108.1 5.19 0.03 

%EF + %DF 2 108.2 5.28 0.03 
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Appendix B Cont.     

Model k AICc ΔAICc wi 

LCH 1 108.6 5.75 0.03 

CC 1 109.4 6.53 0.02 

%PH + %GH 2 110.3 7.40 0.01 

%EF + %DF + %PH + %GH 4 111.1 8.24 0.01 

CC + VH   2 111.6 8.69 0.01 

CC + VH + CCH + CCC + VHC + LCH + %EF + %DF + %PH + %GH 9 115.4 12.53 0.00 
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Appendix C. Variable names and definitions 

Variable Definition 

Canopy Cover(CC)  Percent canopy cover (0-100%) 

Vegetation Height(VH) Vegetation height in meters 

Canopy Cover Heterogeneity(CCH)  Value representing the number of different values of canopy cover surrounding the 

point 

Vegetation Height 

Heterogeneity(VHH)  

Value representing the number of different values of vegetation height surrounding 

the point 

Canopy Cover Change(CCC)   Change in percent canopy cover from 2001 to 2010 (%) 

Vegetation Height Change(VHC)  Change in vegetation height from 2001 to 2010 (m) 

Land Cover Type(LC)   National Land Cover Dataset (NLCD) cover type at that point 

Land Cover Heterogeneity(LCH)  Value representing the number of different NLCD cover types surrounding the point 

% Evergreen Forest (%EF)  Percent evergreen forest - area dominated by trees generally greater than 5 meters 

tall, and greater than 20% of total vegetation cover. More than 75% of the tree 

species maintain their leaves all year. Canopy is never without green foliage (Homer 

et al 2007). 

% Deciduous Forest(%DF)  Percent deciduous forest - area dominated by trees generally greater than 5 meters 

tall, and greater than 20% of total vegetation cover. More than 75% of the tree 

species shed foliage simultaneously in response to seasonal change (Homer et al 

2007). 

% Pasture/Hay(%PH)  Percent pasture/hay – area of grasses, legumes, or grass-legume mixtures planted for 

livestock grazing or the production of seed or hay crops, typically on a perennial 

cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation 

(Homer et al 2007). 

% Grassland/Herbaceous(%GH) Percent grassland/herbaceous - area dominated by graminoid or herbaceous 

vegetation, generally greater than 80% of total vegetation. These areas are not 

subject to intensive management such as tilling, but can be utilized for grazing 

(Homer et al 2007). 
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Abstract 

The loss of woodland and savanna ecosystems in the Central Hardwoods region has caused 

managers to begin managing forests to restore woodland and savanna characteristics to their 

historical ranges. Over the past two decades forest managers have implemented woodland and 

savanna restoration at the landscape level (≥10,000 ha) in the Central Hardwoods, specifically 

early growing season prescribed fire. We initiated our study to examine the impact and efficacy 

of early growing season prescribed fire as restoration tool on vegetation characteristics. We 

collected vegetation measurements at 70 locations within and around the White Rock Ecosystem 

Restoration Area (WRERA), Ozark-St. Francis National Forest, Arkansas, USA. We used 

generalized linear models to understand how different management scenarios impacted 

vegetation structure and composition. We found the number of large shrubs was negatively 

related and small shrubs were positively related to prescribed fire severity. We also found that 

visual concealment from ground level to 1 m in height was positively related to time since 

prescribed fire and woody ground cover was negatively related to the number of prescribed fire 

treatments. We also used LANDFIRE datasets to summarize and assess the efficacy of the use of 

prescribed fire only for restoration on a landscape scale. We found that since the initiation of 

early growing season prescribed fire canopy cover had been reduced but not to levels 

characteristic of woodlands and savannas. As a management practice early growing season 

prescribed fire alone was not effective at restoring woodland and savanna conditions after 8 

years on the WRERA. 
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Introduction 

Oak woodlands and savannas historically covered large extents of central North America, 

creating a transition zone between closed canopy deciduous forest in the east and tall grass 

prairie in the Central Plains (Dyksterhuis 1957; Anderson 1983; Nuzzo 1985). Woodland and 

savanna ecosystems consisted of open canopies and diverse understories of grasses, forbs, and 

some woody shrubs (McPherson 1997; Taft 1997; Anderson et al. 1999). These ecosystems were 

maintained by disturbance, typically fire that prevented canopy closure, reduced shrub 

competition, and promoted the presence and persistence of fire adapted species. After European 

settlement, conversion to agriculture and fire suppression significantly reduced the extent of oak 

woodlands and savannas. Nuzzo (1985) estimated that less than 1% of oak woodland and 

savanna ecosystems still exist in their historical conditions. 

During the past 30 years managers realized that the loss of woodland and savanna 

ecosystems affected plant and animal species that require the early successional and transitional 

characteristics of these systems. Managers are attempting to restore former woodland and 

savanna sites to their historic structure and composition to create wildlife habitat, protect fire 

adapted species, increase advance oak regeneration, and eliminate oak competitors (Sparks et al. 

1998; Peterson and Reich 2001; Hutchinson et al. 2005). Restoration has mostly targeted sites 

currently in closed canopy forest with one or some combination of mechanical canopy removals, 

herbicide treatments, and prescribed fire (Jackson and Buckley 2004). In combination with 

restoration efforts numerous research studies have attempted to better understand the role 

disturbance has in these systems and the efficacy of restoration techniques.   
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Research has examined the techniques, timing, and results of restoration in many upland 

hardwood ecosystems in North America. Many of these studies have addressed the 

reintroduction of fire, season of fire, intensity of fire and the effectiveness of fire as a system 

maintaining disturbance (Sparks et al. 1998; Peterson and Reich 2001; Hutchinson et al. 2005; 

Franklin et al. 2003). Prescribed fire has been studied in combination with both mechanical 

treatments and herbicide treatments (Albrecht and McCarthy 2006; Brose et al. 1999; Jackson 

and Buckley 2004). A majority of prescribed fire and restoration research in upland hardwood 

ecosystems has focused on its ability to reduce competition by weedy species and increase 

advanced oak regeneration (Blankenship and Arthur 2006; Hutchinson et al. 2005; Iverson et al. 

2008). Some studies have also addressed the conversion of closed canopy hardwood forest back 

to woodland and savanna conditions using various techniques in combination with prescribed 

fire (Hutchinson et al. 2005; Albrecht and McCarthy 2006; Brose et al. 1999). Researchers have 

also studied the impacts of restoration on wildlife and its creation or maintenance of habitat 

many wildlife species require (Brawn et al. 2001; Davis et al. 2000; Teidemann et al. 2000; 

Reidy et al. 2014). Nuzzo et al. (1996), Sparks et al. (1998), and others have examined the 

understory vegetation responses to prescribed fire and oak woodland and savanna management. 

However, many of these research studies have addressed restoration and it components in 

experimental settings and at relatively small scales (≤500 ha) compared to current landscape 

level implementation.  

In this study we will examine restoration management on a landscape level (≥10,000 ha) 

as it is currently implemented. We plan to (1) describe vegetation structural changes over 

multiple spatial and temporal scales as a result of restoration treatments and (2) describe the 

efficacy of current restoration techniques at a landscape level. We will describe vegetation 
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characteristics that will have meaning for wildlife habitat and forest production. We plan to use 

both ground collected micro-vegetation scale data in combination with landscape scale 

vegetation data derived from various ground collected and remotely sensed sources. Our analysis 

will cover immediate vegetation responses (≤6yrs) to restoration treatments and long term 

responses (>6 yrs) to repeated treatments. Our research will be essential in shaping future 

management decision about scale and technique throughout the Central Hardwoods region. Our 

work will also provide knowledge on upland hardwood management for wildlife and forest 

product managers that can be applied in the Central Hardwoods region and other upland 

hardwood ecosystems in North America.  

Methods 

Study Area 

The White Rock Ecosystem Restoration Area (WRERA) consists of 16,380 ha of upland 

hardwood and pine ecosystems in Northwest Arkansas, United States of America (USA; Fig 1). 

It is part of the larger main division of the Boston Mountain Ranger District (41,400 ha) on the 

Ozark-St. Francis National Forest. The WRERA is a high priority woodland and savanna 

restoration area for the United States Department of Agriculture (USDA) Forest Service. 

Historically, the WRERA was dominated by woodlands and savannas maintained by frequent 

fire disturbances (Cutter and Guyette 1994; Batek et al. 1999; Chapman et al. 2006; Guyette et 

al. 2006; Foti 2004; Stambaugh and Guyette 2006). After fire suppression during the 20
th

 

century, the WRERA became dominated by closed canopy hardwood forests of various oak 

(Quercus sp.) and hickory (Carya sp.) species. Understories consisted of canopy species 

regeneration, Marshall black gum (Nyssa sylvatica), flowering dogwood (Cornus florida), 



 

89 
 

Carolina buckthorn (Frangula caroliniana), black berry (Rubus spp.) and devil’s walking-stick 

(Aralia spinosa; USDA, NRCS 2014). Pine ecosystem canopies were dominated by short leaf 

pine (Pinus echinata) while understories consisted of hardwood and pine regeneration. Since 

2002, the WRERA has been intensively managed with large scale early growing season 

prescribed fire to restore historic woodland and savanna conditions. Management prescription for 

WRERA describes woodlands as having “open canopies, sparse mid-stories and well-developed 

understories that are typically dominated by grasses and forbs, but also may become shrubby 

between fires and have a significant woody component” with 40-60% canopy closure (Ozark NF 

Plan 2005). The prescription also describes management techniques available to achieve these 

objectives including mechanical canopy removal, herbicide, and fire treatments. However, 

mechanical and herbicide treatments have been mostly absent in the restoration area since 2002. 

The WRERA is divided into 16 prescribed fire units ranging from 467 to 1,670 ha in size. Early 

growing season prescribed fire has been implemented on a three to five yr rotation in 15 of the 

16 prescribed fire units, and units received one to four prescribe fire treatments since 2002. 

Vegetation Data Collection 

We collected vegetation measurements at 70 locations during June and July from 2011 to 2013. 

We stratified locations by time since prescribed fire and cover type, and sampled each location 

once a year. We also collected vegetation measurements at reference sites with no history of fire 

according to the impact/reference design of van Mantgem (2001). Vegetation measurements 

included visual concealment from zero to one meter in height (Nudds 1977), percent ground 

cover type (Daubenmire 1959), tree counts (diameter classes at breast height (dbh)), shrub counts 

(diameter classes at ground level), understory height (m), canopy cover (Lemmon 1956), and a 

fire severity index (Cocking et al. 2014). The small shrub size category included advanced oak 
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regeneration, a common measurement collected in studies examining the response of upland 

hardwood ecosystems to prescribed fire.  

In landscape scale analyses, we used 2001 and 2010 LANDFIRE vegetation datasets 

(Rollins 2009) for canopy cover and vegetation height and 2001 and 2011 National Land Cover 

Datasets (NLCD) for forest cover type (Homer et al. 2007; Jin et al 2013). We used the raster 

calculator and focal statistics tools in ArcGIS to develop datasets for percent change in canopy 

cover from 2001 to 2010, canopy cover heterogeneity for 2001 and 2010, vegetation height 

heterogeneity for 2001 and 2010, and NLCD cover type heterogeneity for 2001 and 2011 (ESRI 

2013). We incorporated all datasets into a geographic information system (GIS) with existing 

USDA Forest Service GIS data. 

Data Analysis 

We used means and 95% confidence intervals for each ground collected vegetation 

variable to determine if any trends existed or year effects consistent with the impact/reference 

design (van Mangtem 2001). We fitted generalized linear models (GLM) to each vegetation 

variable to determine what management factors influenced vegetation trends. Model responses 

were vegetation variables and predictors were variables related to year, fire severity, and 

management practices. All GLMs were fitted using a normal distribution. Each model set 

consisted of 11 candidate models of predictors including time since prescribed fire (yrs), year the 

sample was collected (2011-2013), a plot fire severity index (0-1), and the number of prescribed 

fire treatments (1-3). We also included terms for plot fire severity and time since prescribed fire 

interactions with the year the sample was collected. We used Akaike’s Information Criterion 

corrected for finite sample size (AICc) to rank candidate models and model averaged parameter 
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estimates of the top model (ΔAICc≤2) to account for any model selection uncertainty (Burnham 

and Anderson 2002). We only report model averaged parameter estimates for vegetation variable 

model sets that produced one or more candidate model with ΔAICc≥2 of the best performing 

intercept only or the global model. We performed all statistical modeling and analyses using R 

statistical language (R Core Development Team, 2014).  

We summarized all 14 derived vegetation datasets for each of the 16 prescribed burn 

units. Using these summaries we calculated the proportional area of each burn unit over the 

range of possible variable value. We plotted these proportional areas for all prescribed burn units 

in bar plots to compare the distributions of area based on the number of prescribed fire 

treatments (package “ggplot2”; R Core Development Team, 2014). We visually examined these 

plots for shift in distributions explained by the number of prescribed fire treatments. 

Results 

Micro Vegetation Scale 

Our results show the most vegetation variability occurred the same year units were 

burned. We found the greatest annual mean fluctuations occurred 1 to 3 and 4 to 6 years after 

treatment. Mean variable values indicated that prescribed fire units treated 1-6 years before 

sampling had higher visual concealment (0-1m), understory vegetation height, and number of 

small shrubs than unburned units (Table 1). Confidence intervals indicated that prescribed fire 

units treated 1-6 years before sampling had more annual variability in understory height and the 

number of small shrubs. We found woody vegetation dominated ground cover in all time since 

fire categories and years. We observed units untreated or treated within the past year had higher 

percent woody ground cover in 2011, but dropped sharply in 2012 and did not recover (Table 1). 
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We also observed overall low levels of grass and forb cover in all time since fire categories and 

years. Forb cover decreased in 4-6 yrs since fire and untreated units in 2012. Forb cover was also 

highly variable in all time since fire categories and years. We did not observe an expected 

increase in grass and forb cover immediately following prescribed fire in 0 yrs since fire units.  

Model averaged parameter estimates from generalized linear models indicated visual 

concealment, understory height, and the number of small shrubs increased as fire severity 

increased (Table 2). We observed a negative relationship between fire severity and the number of 

medium trees, large trees, and large shrubs. We found a positive year effect on severity existed 

for 2013 for large shrubs and a negative year effect on severity for small shrubs in 2012. We also 

found a negative year effect on time since fire in 2013 on visual concealment (0-1 m), a positive 

year effect on time since fire for the number of medium trees and a negative effect of the number 

of prescribed fire treatments on woody ground cover. 

Landscape scale 

We examined the distributions of percent change in canopy cover for 16 prescribed fire 

units and found in all units treated with prescribed fire that there was a negative percent change 

in canopy cover from 2001 to 2010 (Fig 2) There was a positive percent change in canopy cover 

from 2001 to 2010 in the untreated unit (Fig 2). We found the percent change in canopy cover 

from 2001 to 2010 in units treated with prescribed fire was negative and it only reduced the 

majority of the units’ areas to 75% canopy cover (Fig 3). We found in the 15 units treated with 

fire, approximately 5% (~1,000 ha) were less than or equal to the 60% canopy cover criteria 

listed in management prescriptions for woodlands. Before woodland restoration treatments, we 

observed canopy cover heterogeneity scores for all units centered near a score of 2 (Fig 4). After 
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application of prescribed fire treatments we observed a shift in the heterogeneity distributions of 

all units towards one, more homogeneous habitat (Fig 5). We observed no major differences in 

canopy cover response after one, two, or three prescribed fire treatments to levels consistent with 

woodlands and savannas. 

Discussion 

We found that both percent visual concealment (0-1 m), and understory height was 

greater in units treated with prescribed fire compared to untreated units. However, levels 

immediately following prescribed fire did not increase beyond untreated levels, indicating the 

response of understory vegetation to prescribed fire may not be realized until 1 to 3 years after a 

fire treatment. Increased levels of vegetation variables following fire persisted 4 to 6 years after 

prescribed fire treatment. We observed higher levels of forb ground cover in treated units 

compared to untreated units, but did not observe the same delayed response after fire. The 

delayed response in forest structure variables, but not in composition variables, suggest the 

response of forest structure following fire treatment required more time and multiple growing 

seasons to replace the above ground biomass lost during prescribed fire treatments. Hmielowski 

(2013) observed short-term fire effects in hardwood ecosystems and found the response and 

magnitude of response in vegetation is influenced by the size of root reserves of plants at the 

time of top-kill. We observed delayed increases in the number of small shrubs consistent with 

Hmielowski’s observations. These small shrubs contribute significantly to forest structure and 

mostly result from sprouting root reserves of top-killed species. The short term response of forest 

structure to prescribed fire is an important ecosystem characteristic, because it may affect 

wildlife species that require certain forest structure characteristics (Reidy 2014; Badyaev 1994).      
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We found that vegetation structure was influenced by fire severity. The presence of the 

fire severity variable in our top models suggested that structural responses were influenced by 

the intensity of fire consistent with other prescribed fire studies (Arthur et al. 1998; Elliott and 

Vose 2005; Brose et al. 1999; Hutchinson et al. 2005; Peterson and Reich 2001). Fire severity 

negatively impacted woody ground cover, large shrubs, and medium trees similar to the 

reduction of mid-story species found by others (Nuzzo et al. 1996; Arthur et al. 1998). We 

observed positive effects of fire severity on structural variables and small shrubs. This positive 

relationship suggest more intense prescribed fires have increased advanced oak regeneration in 

these upland hardwood ecosystems, similar to results found in studies of management focused on 

forest products (Arthur et al. 1998; Brose et al. 1998; Albrect and McCarthy 2005; Iverson et al. 

2007). The increase in advance oak regeneration in these stands will benefit forest health by 

eventually replacing declining canopy trees, a management concern in the Central Hardwoods 

region. However, with increased advanced oak regeneration and limited canopy opening, 

woodland and savanna structure and composition will be difficult to achieve.  

Rapid changes of forest composition in response to prescribed fire treatments have been 

documented in hardwood ecosystems in the Central Hardwoods region. We did not find the same 

magnitude of responses in herbaceous, grass and forb, ground cover (10-15%) that has been 

observed in other woodland and savanna ecosystems (approximately 30%; Hartman and 

Heumann 2003; Hutchinson et al. 2005; Nuzzo et al. 1996; Taft 2003). We also did not observe 

increases in grass ground cover immediately following prescribe fire, and in subsequent years as 

have other studies of woodland and savanna vegetation responses to prescribed fire (Hutchinson 

et al. 2005; Sparks et al. 1998). Franklin et al. (2003) found that vegetation responses after 

prescribed fire treatments were dependent on the extant forest composition. Since there was an 
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absence of a significant herbaceous component in the under story at our study site, due to fire 

suppression, Franklin et al.’s (2003) conclusion could be one explanation for the limited 

response of herbaceous ground cover. Another potential explanation could be that prescribed fire 

treatments alone do not allow enough sunlight to the forest floor to initiate a response by grasses. 

Other studies have found that more severe disturbances, such as mechanical canopy removals or 

more frequent fire, are necessary to obtain significant responses and changes in the understory 

compositions (Franklin et al. 2003; Peterson and Reich 2001; Elliott and Vose 2005; Hutchinson 

et al. 2005). Our observation of increased small shrub counts and no major changes in canopy 

cover at the landscape level support the idea that light reaching the understory is limiting 

herbaceous vegetation responses. 

In 2012, we observed a decrease in percent visual concealment, woody, and herbaceous 

ground cover which may have resulted from an extreme drought that occurred that year (index – 

D4 out of 5, U.S. Drought Monitor 2014). Other studies have suggested that vegetation response 

differs over a moisture gradient but few have documented the impact of severe drought on the 

vegetation response to prescribed fire treatments (Harmon et al. 1984; Hollingsworth et al. 2013; 

Anning et al. 2014). We observed the most severe drought effects immediately following 

prescribed fire treatments and in unburned units compared to units treated one to six years before 

sampling, where the effects of drought were less severe. Drought effects were also indicated by 

our model parameter estimates where year predicted multiple vegetation responses (Table 2). 

Our model results indicated a delayed effect of drought resulting from increased fire severity that 

reduced medium trees and large shrubs. Large shrubs and medium trees do not contain the 

amount of root reserves as large canopy trees and likely entered the 2013 prescribed fire season 

in a drought stressed state as opposed to other years. These observed drought effects are one 
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possible explanation for the site-specific nature and high variability among prescribed fire 

studies. 

We also examined the large spatial and temporal scales of woodland and savanna 

restoration, specifically the effects of the use of prescribed fire. Our results suggest prescribed 

fire only is not restoring woodlands and savannas on a landscape scale after 8 yrs. If prescribed 

fire alone had been effective, we would expect to see changes in canopy cover similar to those 

created by mechanical canopy reductions or natural reductions in canopy like insect or ice 

damage (Fig 6). Our finding of no change in canopy cover were consistent with other restoration 

studies that found the combination of mechanical canopy removals and frequent fire were 

necessary to produce conditions most similar to woodlands and savannas (Franklin et al. 2003; 

Hutchinson et al. 2005; Elliott and Vose 2005; Dey and Hartman 2005). Although fire alone over 

the past 8 years has proven  less effective at restoring and maintaining woodlands and savannas 

on the WRERA, that treatment may be effective over a longer temporal scale, potentially 50 to 

100 years (Baker 1994; Hartman and Heumann 2003).   

Our analysis of canopy cover heterogeneity for WRERA indicated that the landscape had 

become more homogenous since the implementation of restoration. If prescribed fire alone were 

having the desired restoration effects, we would have expected the opposite of the observed 

outcome. The decrease in heterogeneity is likely due to a lack of canopy reductions from 

mechanical efforts and low intensity prescribed fires. Prescribed fires are implemented on the 

WRERA using aerial ignition, a method that has been found to be less intense than a typical head 

fire or a natural fire and results in few if any canopy openings (Johansen 1987; Price et al. 2007). 

However, the effects of aerial ignition techniques on landscape patch dynamics are under studied 

and likely site specific.  
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Our findings of only limited changes in forest structure after 8 years of periodic 

prescribed fire (~3 to 5 year rotation) were consistent with the hypothesized (20+ years) duration 

of prescribed fire treatment by Hartman and Heumann (2003) in Missouri Ozarks necessary to 

restore woodlands and savannas. We can also expect the needed application of periodic 

prescribed fire to be even longer, possibly 75 to 150 years. Baker (1994) in a simulation study of 

the restoration of forest structure after fire suppression in northern Minnesota indicated that 

landscape structure could be restored under a natural fire regime after 50 to 75 years. However, 

simulations using the LANDIS model in the Missouri Ozarks to determine the future impact of 

mechanical disturbance on the landscape characteristics, suggests that even under the most 

intensive mechanical harvest regime likely to be implemented on public lands, changes in forest 

structure could take 75 to 120 years to achieve (Shifley et al. 2006). The WRERA with only the 

use of early growing season prescribed fire is likely most similar to the moderate mechanical 

management scenarios simulated by Shifley et al. (2006) that required greater than 100 years to 

produce overall shifts in forest structure. Admittedly these simulations were based on timber 

harvest, but an periodic early growing season prescribed fire regime and its impact on tree 

mortality could be considered analogous to moderate or low intensity uneven-aged harvest 

scenarios. Changes to forest structure in the Ozarks could also be slowed even further by 

variations in characteristics of sites being managed for woodland and savanna restoration.  

According to Foti (2004) high variability in vegetation responses should be expected due to the 

underlying geological substrate in the Boston Mountains and the Ozark Highlands. Taking into 

account all of these factors restoration of the woodland and savanna structure to the WRERA is 

likely to take from 25 years on ideal sites to upwards of 100 years on sites less suitable for 

restoration.  
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Conclusions 

We found the use of prescribed fire only for landscape level restoration of woodlands and 

savannas in the WRERA has not achieved woodland and savanna characteristics over large 

areas. Our findings indicate that prescribe fire has changed vegetation structure and composition, 

but in some instances those changes have not been in the intended direction or to the intended 

magnitude. Prescribed fire has increased advanced oak regeneration, one of the management 

objectives of the USDA Forest Service. However, without significant canopy reduction advanced 

regeneration will be limited in success, and woodland and savanna conditions will not be 

achieved in the foreseeable future or to the extent desired. Continued monitoring of forest 

conditions will be necessary to determine if management activities begin to create woodland and 

savanna conditions.  
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Table 1. Mean variable values and 95% confidence intervals for time since prescribe fire from 

2011 to 2013. 

  

Year 

Variable Time Since Prescribed Fire 2011 2012 2013 

Percent visual 

concealment (0-

1m) 

0 yrs Since Burn 
57.27 52.35 58.33 

(40.54,74.01) (35.17,69.54) (32.82,83.85) 

1-3 yrs Since Burn 
71.46 63.45 75.25 

(61.63,81.30) (50.50,76.40) (66.10,84.40) 

4-6 yrs Since Burn 
63.85 71.76 51.58 

(50.80,76.89) (58.61,84.92) (39.29,63.87) 

No Burn Record 
60.00 40.00 28.00 

(46.76,73.24) (19.76,60.24) (-1.33,57.33) 

 
    

Understory height 

(m) 
0 yrs Since Burn 

0.85 0.68 0.85 

(0.59,1.12) (0.41,0.94) (0.52,1.18) 

1-3 yrs Since Burn 
1.17 1.10 1.27 

(0.98,1.36) (0.85,1.36) (1.08,1.46) 

4-6 yrs Since Burn 
1.08 1.31 0.80 

(0.82,1.33) (1.03,1.58) (0.60,1.00) 

No Burn Record 
0.87 0.58 0.68 

(0.63,1.11) (0.24,0.93) (0.12,1.24) 

 
    

No. small shrubs 

(≤4 cm) 
0 yrs Since Burn 

13 11 10 

(6,19) (5,17) (1,18) 

1-3 yrs Since Burn 
30 23 31 

(22,38) (18,29) (23,39) 

4-6 yrs Since Burn 
25 31 13 

(18,32) (22,41) (9,17) 

No Burn Record 
18 18 15 

(12,24) (8,28) (4,25) 

 
    

Percent woody 

ground cover 
0 yrs Since Burn 

40.45 7.94 6.67 

(23.25,57.66) (0.19,15.69) (-4.55,17.89) 

1-3 yrs Since Burn 
13.90 17.41 14.25 

(6.99,20.82) (7.59,27.23) (6.30,22.20) 

4-6 yrs Since Burn 
4.23 7.06 14.47 

(-0.96,9.42) (-2.23,16.34) (3.85,25.10) 

No Burn Record 
27.89 3.33 8.00 

(15.13,40.66) (-1.51,8.18) (-1.09,17.09) 

 
    

     

     



 

105 
 

 

  

Table 1 Cont.   Year  

Variable Time Since Prescribed Fire 2011 2012 2013 

Percent grass 

ground cover 
0 yrs Since Burn 

0 0 0 

(0,0) (0,1) (0,0) 

1-3 yrs Since Burn 2 4 4 

 (0,4) (-1,8) (1,7) 

4-6 yrs Since Burn 
9 0 3 

(1,17) (0,0) (0,7) 

No Burn Record 
2 2 0 

(0,3) (0,4) (0,0) 

 
 

   

Percent forb 

ground cover 0 yrs Since Burn 
11.48 9.64 17.08 

(1.17,21.79) (2.06,17.22) (0.23,33.94) 

1-3 yrs Since Burn 
12.78 11.56 13.60 

(6.39,19.17) (2.62,20.49) (6.23,20.96) 

4-6 yrs Since Burn 
12.31 7.65 2.63 

(2.71,21.91) (0.31,14.99) (0.31,4.96) 

No Burn Record 
4.34 0.42 0.00 

(-4.17,12.85) (-0.40,1.23) (0.00,0.00) 
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Table 2. List of model averaged parameter estimates (≤ 2 ΔAIC) from generalized linear 

models for each vegetation structure variable. 

  
β Lower 95% CI 

Upper 95% 

CI 

Visual concealment (0-1 m) 

Fire Severity 0.369 0.244 0.494 

Time Since Fire:Year 2013 -0.161 -0.315 -0.008 

Understory Height  

Fire Severity 0.369 0.243 0.495 

Canopy Cover 

Fire Severity:Year2012 22.76 14.56 30.96 

Woody Stem 

Number of Prescribed Fires -0.141 -0.275 -0.008 

Year 2012 -0.149 -0.297 -0.002 

Medium Trees 

Fire Severity -0.244 -0.375 -0.114 

Time Since Fire:Year 2013 0.237 0.077 0.397 

Large Trees 

Fire Severity -0.38 -0.551 -0.209 

Small Shrubs 

Fire Severity 0.415 0.161 0.669 

Fire Severity:Year 2012 -0.223 -0.394 -0.051 

Large Shrubs 

Year2013 -0.294 -0.469 -0.12 

Fire Severity 0.233 0.004 0.462 

Fire Severity:Year2013 0.502 0.237 0.767 
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Fig 1. White Rock Ecosystem Restoration Area, Boston Mountain Ranger District, and the Ozark 

National Forest. 
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Fig 2. Change in percent canopy cover (from 2001 to 2010) on 15 prescribed fire units on the White Rock Ecosystem Restoration 

Area, Arkansas, USA. Units are divided based on the number of prescribed fire treatments received (0 treatments, n=1; 1 treatment, 

n=3; 2 treatments, n=7; 3 treatments, n=5). 
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Fig 3. Percent canopy cover in 2010 on 15 prescribed fire units on the White Rock Ecosystem Restoration Area, Arkansas, USA. 

Units are divided based on the number of prescribed fire treatments received (0 treatments, n=1; 1 treatment, n=3; 2 treatments, n=7; 3 

treatments, n=5). 
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Fig 4. Canopy cover heterogeneity score in 2001 on 15 prescribed fire units on the White Rock Ecosystem Restoration Area, 

Arkansas, USA. U Although units are divided based on the number of prescribed fire treatments received (0 treatments, n=1; 1 

treatment, n=3; 2 treatments, n=7; 3 treatments, n=5) no treatments had occurred in 2001. 
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Fig 5. Canopy cover heterogeneity score in 2010 prescribed fire units on the White Rock Ecosystem Restoration Area, Arkansas, 

USA. Units are divided based on the number of prescribed fire treatments received (0 treatments, n=1; 1 treatment, n=3; 2 treatments, 

n=7; 3 treatments, n=5).
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Fig 6. Change in canopy cover (from 2001 to 2010) for four prescribed burn units on the White 

Rock Ecosystem Restoration Area, Arkansas, USA under varying condition and treatments. Grey 

areas represent ≥ 25% reduction in canopy cover and white indicates a ≤ 25% reduction in 

canopy cover. Unit A (1403 ha) shows the signature of an area treated by a mechanical canopy 

reduction (dashed outline). Unit B (1665 ha) shows the signature of a natural canopy reduction 

(i.e. Insect damage, ice damage, etc.). Unit C (483 ha) shows no mechanical or prescribed burn 

treatments. Unit D (1012 ha) shows only 3 prescribed burn treatments. Individual pixels 

represent a 30 x 30 m area. 
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Conclusion 

 Landscape level woodland and savanna restoration is becoming an increasingly common 

management strategy in the Central Hardwoods region and has been implemented on the White 

Rock Ecosystem Restoration Area (WRERA) of the Ozark-St. Francis National Forest in 

Arkansas since 2002. Management has primarily consisted of landscape scale (500-2500 ha) 

early growing season prescribed fire and has correlated with declines in eastern wild turkey 

(Meleagris gallopavo silvestris). We initiated this study since it is believed restoration has 

impacted the quality and/or quantity of wild turkey nesting habitat on the WRERA. Habitat 

quality and quantity has been suggested as factors limiting wild turkey populations (Thogmartin 

1998). We captured and fitted 67 female wild turkey with 110 g Global Positioning System 

(GPS) Platform Transmitting Terminals between 2012 and 2013 on the WRERA to examine 

nesting and movement ecology in response to woodland and savanna restoration. 

 We used habitat data collected from 49 initial nest attempts and 16 renest attempts from 

2012 to 2013, to determine habitat characteristics that discriminated nest-sites from 521 available 

unused nest-sites. We found that hens selected initial nest-sites with higher visual concealment 

(0-1 m in height), percent slope, and woody ground cover. We also found as time since 

prescribed fire increased so did visual concealment in a curvilinear fashion at initial nest-sites. 

Renest-sites were best characterized by higher visual concealment (0-1 m) and fewer small 

shrubs. Nest sites were placed in patches smaller than 40 m based on visual concealment (0-1 m). 

Hens also selected habitat in a hierarchical fashion. They selected habitat with higher canopy 

cover diversity and habitat that was in a transitional state, increasing canopy cover and 

vegetation height, within 100 m of their nest-sites.  
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 We used 65 wild turkey nests from 2012 to 2013 to estimate productivity on WRERA. 

We estimated a nest success rate of 0.19 (95% CI [0.11, 0.31]) similar to estimates of Badyaev 

(1994), but among the lowest reported across the sub-species range. We also found that nest 

survival increased as percent visual concealment (0-1 m) increased, and nest survival decreased 

as the distance from a road increased. It is likely that both of these variables influence predator 

cues or the accumulation of those cues which affect nest survival. Thus hens selected nest-sites 

to maximize or minimize these criteria. 

  We examined habitat selection during the pre-incubation period using 1,469 unique 

choice sets from hens during the pre-incubation period at multiple spatial scales from 2012 to 

2013. We examined pre-incubation habitat selection because increased amounts of pre-

incubation habitat sampling have been positively correlated with productivity (Badyaev 1994). 

We found at the point scale hens selected habitat with increasing canopy cover and vegetation 

height from 2001 to 2010, higher values of canopy cover, and high canopy cover heterogeneity 

surrounding the point. At the 200 m and 400 m scales, hens selected habitat with higher values of 

canopy cover indicating the selection of habitat with vertical cover. Over all scales we found 

canopy cover, change in canopy cover and vegetation height from 2001 to 2010, and canopy 

cover heterogeneity were variables involved in the habitat sampling process. Our findings 

indicate that hens are sampling structurally diverse habitat during their search for quality nesting 

habitat. 

 We used 51,015 GPS locations of hens to estimate annual and seasonal home ranges from 

2012 to 2013, to better understand hen movement ecology and habitat quality. We estimated 

mean 95% home ranges for adults, 2,703 ha (SE = 283.4) in 2012 and 4,750.4 ha (SE = 946.2) in 

2013. Sub-adult 95% home ranges were 1,999.6 ha (SE = 440.5) in 2012 and 4,169.5 ha (SE = 
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751.7) in 2013. Home range estimates on average were over 100% larger than mean home range 

estimates previously documented in Arkansas (Badyaev 1994; Thogmartin 1998). We also 

estimated mean 50% core use areas of adults, 387.7 ha (SE = 29.4) and 373.3 ha (SE = 38.2) in 

2012 and 2013 respectively, and sub-adults, 355.2 ha (SE = 74.5) and 358.2 ha (SE = 92) in 2012 

and 2013 respectively. Core use areas were similar in size to those previously documented.  

We examined the hypothesis that increased pre-incubation ranges are a characteristic of 

successfully nesting hens. Our results indicate this relationship holds in 2012 where pre-

incubation ranges on average were larger for successfully nesting hens than those that were 

unsuccessful. However, in 2013 this relationship was opposite suggesting that other factors such 

as winter severity or variations in annual habitat quality, quantity or its spatial distribution could 

be influencing both pre-incubation ranges and nest success. Our results suggest that a lack of 

quality habitat is the cause of the large home and seasonal ranges of hens on WRERA. Our 

results also indicate that this is more specifically due to a lack of quality nesting habitat, causing 

increased habitat sampling during the pre-incubation period especially in sub-adults, since pre-

incubation ranges were on average 46% of the annual home range area for hens on WRERA. 

These results suggest that landscape level early growing season prescribed fire for woodland and 

savanna restoration has not increased the amount of quality nesting habitat. 

 We used vegetation data collected at 70 locations within and around WRERA to examine 

the response of vegetation to early growing season prescribed fire as currently used for woodland 

and savanna restoration. We found the number of large shrubs was negatively related and small 

shrubs were positively related to prescribed fire severity. We also found that visual concealment 

from ground level to one meter in height was positively related to time since prescribed fire and 

woody ground cover was negatively related to the number of prescribed fire treatments. We also 
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observed an effect of drought on visual concealment in units not treated with prescribed fire and 

those burned that year. We found that units treated with prescribed fire had higher forb and grass 

ground cover but not to levels characteristic of woodlands and savannas. Overall, we found that 

early growing season prescribed fire did change vegetation characteristics in years following 

treatment but did not achieve woodland and savanna characteristics.  

We used LANDFIRE datasets from 2001 and 2010 to assess and quantify the efficacy of 

woodland and savanna restoration on WRERA since its implementation in 2002. We 

documented that after 8 years of woodland and savanna restoration with early growing season 

prescribed fire less than 5% (~1,000 ha) of the total area had achieved canopy cover consistent 

with woodlands or savannas. Overall canopy cover had been reduced but not enough to achieve 

woodland and savanna condition. Even after four prescribed fire treatments in some units canopy 

cover had not been reduced to woodland or savanna conditions. We also found that overall 

canopy cover heterogeneity decreased in units treated with prescribed fire. Across the WRERA 

early growing season prescribed fire intended for woodland and savanna restoration has not 

increased landscape diversity nor achieved woodland and savanna conditions as currently 

implemented after 8 years. To achieve significant changes in forest structure through the use of 

only early growing season prescribed fire management durations will range from 25 years on the 

most ideal sites to greater than 100 years on sites less suitable for woodland and savanna 

restoration. 

In conclusion hens selected nest-sites with high amounts of visual concealment. However 

since woodland and savanna restoration began they have had to increase their space use in search 

of quality nesting habitat and in turn likely decrease their reproductive fitness. Increased space 

use and nest-site searching are reflected in productivity levels well below those of other wild 
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turkey populations. We also observed that hens are attempting fewer renests after the failure of 

their initial nest attempt since woodland and savanna restoration began.  In general our findings 

suggest that early growing season prescribed fire for woodland and savanna restoration has not 

increased the quality or quantity of habitat required by hens nor has it had the desired restoration 

outcomes. We also can conclude base on the increased energy expenditure associated with 

increase home range sizes and decreased renesting rates compared to before woodland and 

savanna restoration that overall productivity has decreased in the wild turkey population.  
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