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ABSTRACT 
 
Epi-Genetic Abnormalities in Infantile Hemangiomas: Regulation of the IGF2/H19 
Locus 
Brent Schultz, Ruth Halaban, Elaine Cheng, John Persing, and Deepak Narayan 
 
Purpose:  To investigate the epi-genetic regulation of Insulin Like Growth Factor 2 
(IGF2) and it’s reciprocally imprinted transcript H19 in infantile hemangiomas. 
Introduction: Infantile hemangiomas (IH) are the most common childhood tumor of the 
head and neck.  Despite their prevalence and potentially morbid sequelae, little is known 
regarding the pathogenesis of this disease.  However, a tumorigenic molecule, Insulin 
Like Growth Factor 2 (IGF2), has been implicated by microarray and confirmatory Real-
Time PCR studies. There is substantial documentation that methylation abnormalities within 
the IGF2 and neighboring H19 loci are related to the overproduction of IGF2 in many distinct 
tumor types.  An investigation of the methylation status, of this region, as well as the factors 
modifying methylation, may explain pathologic IGF2 overproduction in hemangiomas.  
Methods: Using bisulfite specific methylation sensitive PCR with quantitative 
pyrosequencing, confirmatory genomic southern analysis, and quantitative RT PCR the 
methylation status of multiple regions within the IGF2/H19 locus were correlated with 
two potential transcriptional consequences and/or causes of aberrant regulation. 
Results:  This study identifies IH as the first non-malignant neoplasm expressing ectopic 
BORIS, an oncogene with expression normally limited to adult testes..  The paradoxically 
benign nature of IH despite BORIS expression could be explained by a 13 fold increase 
in CTCF, BORIS’ only known antagonist, from proliferating to involuting IH.  
Interestingly, both proteins bind within IGF2 and H19.   In the IH samples, as CTCF 
levels rose compared to BORIS, the IGF2 transcript decreased 6 fold.  CTCF and BORIS 
likely regulate IGF2 by altering methylation of the region: The difference between CTCF 
and BORIS is most predictive of methylation levels at several imprinted sequences (R2 = 
.9.)  Throughout the 130 KB regulatory region controlling IGF2 and H19, BORIS favored 
methylation specific activation of IGF2 and repression of H19, while CTCF favored the 
converse.   The degree of these effects strongly correlated with a common C/T 
polymorphisn at the IGF2 imprinting control region.  Here the T allele was strikingly 
more sensitive to CTCF and BORIS than the C allele.   Hence, the C/T polymorphism 
may be an important disease modifier of IH. 
Conclusion:  Identifying the aberrant expression of a known oncogene, BORIS in IH, 
suggests one factor driving early proliferation.  Furthermore, the steady increase in the 
production of BORIS’ antagonist, CTCF, may support the involutionary process.  The 
interplay between these two proteins likely takes place at the level of DNA imprinting, as 
the difference between CTCF and BORIS was highly predictive of methylation levels 
within key regulatory regions of the IGF2/H19 locus, a region previously demonstrated to 
control the relative expression of both genes.   A potentially important disease modifier 
may be the C/T polymorphism within CTCF binding site six, which strongly affects 
methylation of the region relative to the CTCF – BORIS difference.  As 400,000 children 
are born each year in the US with IH, a clinical blood test resulting from this finding may 
be highly useful in predicting eventual tumor size and time to involution.   
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STATEMENT OF PURPOSE 

The purpose of this research project is to investigate the epi-genetic regulation of Insulin 

Like Growth Factor 2 (IGF2) and it’s reciprocally imprinted transcript H19 in infantile 

hemangiomas.  Through micro array studies and confirmatory RT PCR two independent 

labs have demonstrated that Insulin Like Growth Factor 2 (IGF2) levels decrease seven-

fold form proliferative to involuting hemangiomas. There is substantial documentation that 

methylation abnormalities within the IGF2 and neighboring H19 loci are related to the 

overproduction of IGF2 in many distinct tumor types.  Furthermore, Beckwith Wiedemann 

Syndrome (BWS) a disease of prenatal overgrowth--where visceral and coetaneous 

hemangiomas figure prominently--is caused by duplications or a loss of imprinting of the 

l1p15.5 locus, which contains IGF2.   An investigation of the methylation status of this 

region may explain pathologic IGF2 overproduction in hemangiomas.  

 

The Purpose of this thesis is to provide a potential mechanistic explanation of the disregulation 

of IGF2 in infantile hemangiomas via epi-genetic analysis of its imprinted locus.  Through RT 

PCR and analysis of micro RNA transcripts, the potential consequences and causes of epi-

genetic abnormalities found at IGF2/H19 specific to infantile hemangioma are explored. 

 

Lastly, the question of infantile hemangiomas is framed within the broader scope of human 

imprinting by suggesting that these lesions could be an excellent and until now untapped 

resource to study human imprinting in vivo.  

 

 

N BWS 23% 19%27% 21% 31% .57% .58% 
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INTRODUCTION 

Infantile hemangioma (IH) is the most common tumor of the pediatric age group, 

affecting up to 4% of newborns with 60% prevalence of the head or neck [1-3].  They are 

highly vascular lesions expressing markers most similar to that of placental tissue [1-7].  

IHs range from inconsequential blemishes, to highly aggressive tumors that can threaten 

airways, sensory-neural structures, and potentially even high output cardiac failure 

secondary to tumor demand.  However, belying this varied clinical picture is a consistent 

life history.   For the first year, hemangiomas are highly active demonstrating initially, a 

histologic picture and behavior suggestive of malignancy:  immature vascular channels, 

high mitotic indices, and strong positivity for proliferative markers such as Ki-67 in CD-

31 positive (endothelial specific) Glut-1 positive (hemangioma specific) cells [3, 6, 7].  

Despite these ominous beginnings, the most surprising aspect of IH is that they remain 

benign [2, 3].  Instead, the growth velocity slowly reverses leading to a “Quiescent 

Phase” of non growth (1 to 12 years) then transitioning into a regressive or “Involuting 

Phase” replacing once proliferative endothelium with now fibro-fatty residuum.  

 

Despite the high prevalence of IH, little is known regarding the pathogenesis of the disease.  

However, a tumorigenic molecule, Insulin Like Growth Factor 2 (IGF2), has been implicated 

by microarray and confirmatory Real-Time PCR studies [8, 9].   IGF2 levels decrease over 

seven fold from proliferative to involuting IH.  Furthermore, Beckwith-Wiedmann 

Syndrome (BWS) a disease of prenatal overgrowth--where visceral and cutaneous 

hemangiomas figure prominently--is caused by IGF2 overproduction via duplications or a 
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loss of imprinting of the l1p15.5 locus, which contains the IGF2 gene [10].  Furthermore, 

explant hemangioma cultures respond strongly to exogenous dosing of IGF2 [8]. 

 

Indeed, as suggested above, IGF2 itself is an imprinted gene.  By definition, genes under the 

control of imprinting are expressed exclusively from one parentally contributed chromosome 

[11, 12].  Loss of imprinting (LOI) refers to the state of biallelic expression from a normally 

imprinted gene.  Imprinted genes are discretely grouped within chromosomal structures and 

are often co-regulated, either positively or in a reciprocal fashion [13, 14].   Concerted inter-

genic and intra-genic regulation of an imprinted gene cluster is accomplished through 

multiple chemical alterations of DNA and histones, i.e. the addition of methyl carbons to 

cytosines preceding guanines (otherwise known as DNA methylation) and the 

acetylation/methylation of histones [15-17].  These so called epi-genetic marks modify the 

array of DNA binding proteins capable of interacting with local chromatin structures.  This in 

turn leads to changes in the three dimensional architecture of imprinted chromatin, granting 

differential access of promoters to enhancer elements [18, 19].  In addition, methylation alters 

the level of transcriptional factors bound to promoters [20].  The functional consequences of 

parental specific, epi-genetic marking is activation of a given parental allele with reciprocal 

silencing of the other allele [21]. 

 

In fact the IGF2/H19 locus now serves as a model of the phenomenon.   The human IGF2 

and H19 are adjacent genes approximately 130KB apart from one another and share common 

distal enhancers.  Flanked by these two genes are seven potential “Cytosine preceding 

Guanine” (CpG) islands that are differentially methylated, with the paternal allele being 

generally more methylated than the maternal [22-25].  Embedded within each one of these 
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seven potential imprinting control regions (ICR’s) is a binding site for the chromatin 

organizing protein CTCF (CCCTC-binding factor) [26]. CTCF binding to DNA is 

methylation sensitive [27-31]. Here CTCF binds only unmethylated chromatin—in this case 

maternally contributed DNA—and blocks access of IGF2 to its distal enhancers [17].  This 

so called insulator function eliminates IGF2 expression in favor of H19 upregulation on the 

unmethylated maternal chromosome.  Conversely, paternally contributed, i.e. methylated, 

DNA resists CTCF binding and IGF2 is exclusively upregulated by said distal enhancers 

[32].  (See background figure 1, immediately following the introduction section)  Although, 

any or all of these CTCF binding sites could potentially serve as an imprinting center, only 

CTCF binding site six (CTCF BS6) exhibits allele specific differential methylation making it 

the de facto imprinting control region (ICR) [33].   This imprinting control center not only 

regulates IGF2/H19 expression, but also maintains its imprinted status by protecting the 

region from inappropriate de novo methylation. [34-38].   Functional tests of these 

observations reveal that mutations within the ICR abrogate CTCF binding, allowing 

hypermethylation of the region and biallelic expression of IGF2 [19].  The importance of this 

region is also highlighted in common human diseases.  Derangement of allele specific 

methylation of the ICR leads to LOI in colon cancer [39, 40], bladder cancer [26] and Wilms 

Tumor [41].   Furthermore, it is the specific hypermethylation of this region that leads to 

Beckwith-Wiedmann Syndrome a syndrome of hemi-hypertrophy associated with IGF2 

overproduction [10]. On the contrary, hypomethylation of this region is associated with 

Russell-Silver Dwarfism: hemi-atrophy and IGF2 underproduction [42].  However, the 

strict 50% methylation rule of the H19 ICR was clearly established most strongly in the 

mouse [17]; most human studies have utilized either a Sma1 methylation sensitive 

polymorphism in the nearby region of the H19 promoter as a surrogate for ICR 
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methylation or semi quantitative methylation sensitive PCR of the region proper [10, 23, 

26, 39, 41].  Although these results did not dispute the mouse data, only recently has 

highly accurate methylation sensitive PCR with quantitative pyrosequencing been 

available for fully quantitative, high resolution, examination of CTCF binding site six 

[33].  Recent work demonstrates that there are actually three normal methylation states of 

the human ICR.  The so-called Low (30%,) medium (50%) and high (70%) states of 

methylation were transmitted, as examined by pedigree analysis, in a fashion consistent 

with a one gene and three allele hypothesis [33].  However, this gene/allele was not 

identified.  In addition, two groups have demonstrated a common C/T polymorphism at 

CpG number five in the core CTCF binding site of the ICR (CTCF BS 6) that blocks 

methylation at a specific cytosine [33, 43].  The functional consequences of these findings 

regarding IGF2 and H19 expression have yet to be determined.   

 

To further complicate matters, as previously alluded, the ICR is not the only imprinted 

region in H19/IGF2.  The H19 promoter, 40kb telomeric from the ICR is, a putative 

methylation sensitive repressor of H19, while regions within the IGF2 gene itself are 

hemi-methylated in a parental specific fashion [17, 39, 44].  Differentially methylated 

region zero or DMR0, in intron two of IGF2, is a maternally methylated inhibitor of IGF2 

expression; loss of methylation here leads to LOI of IGF2 regardless of ICR status[39].  

Also, multiple regions in exon 9 are paternally methylated and serve as methylation 

specific activators of IGF2 [17, 39, 44].   It was originally proposed that higher order 

chromatin conformations allow physical contact between these distant imprinted 

sequences, facilitating multi-regional coordination of IGF2 and H19 gene expression [15].  

As CTCF BS 6 is the master control switch between H19 and IGF2, fine regulation is 
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delegated to DMR0, Exon 9 and the H19 promoter [15, 17].  Recently, this hypothesis was 

validated for the maternal mouse chromosome demonstrating that CTCF binds both the 

ICR, Exon 9 and the mouse equivalent of DMR0 forcing physical contact between all 

three regions [17].  This contact was necessary and sufficient to form a chromatin loop 

that excluded IGF2 from its distal promoters.   

 

If allele specific methylation of imprinted genes composes a blueprint of differential gene 

regulation, the DNA binding protein CTCF has emerged from multiple lines of evidence 

as the reader of these blueprints.  CTCF is otherwise known as the Regulator of Imprinted 

Sites or “RIS” secondary to its unique ability to partition DNA into active and inactive 

regions by insulating genes from proximate enhancers [45, 46].  It is the first discovered 

multivalent DNA binding protein with a total of 11 zinc fingers [47, 48].  By 

combinatorial interaction of these fingers, this protein is capable of ubiquitously binding 

unrelated sequences throughout the genome [47, 48]. The variability of its consensus 

binding sequences can only be matched by its multitude of recognized functions.  Indeed, 

CTCF function is critical for normal cellular processes, as it is highly conserved from 

xenopus, to humans [49-52].  Furthermore, it’s demonstrated functions range from X 

inactivation to genome wide regulation [53, 54].  However, among the sundry functions of 

this versatile protein, imprinting maintenance appears to be the most consistent.   

Strikingly, all imprinted genes identified thus far contain insulating boundaries that bind 

CTCF [46, 48, 55, 56].  Ultimately, CTCF is a growth arresting gene: transfection of 

CTCF into a multiplicity of cell lines did not induce apoptosis, but rather profound growth 

arrest, freezing cells before the S phase [57].  Conversely, partial loss of function of CTCF 

is associated with malignancy: CTCF maps to the smallest region of overlap observed at 
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16q22 common to breast, prostate, and Wilms tumor [18, 19, 58].  Also, tumor specific 

missense mutations within the zinc finger binding domain of CTCF are reported in those 

same forms of cancer [19].  Interestingly, these mutations did not completely nullify 

CTCF binding to DNA, but rather selective binding to important growth regulating genes 

such as IGF2, c-Myc, BRCA 1, ARF, PLK and PIM1; however, other growth neutral 

genes containing CTCF sensitive insulator sites, such as the beta-globin gene and APP 

promoter, remained unaffected [19].  These data suggest that single mutations within the 

ZF domain of CTCF can dramatically change its DNA binding spectrum, thus altering the 

genome wide transcriptome at a fundamental level.    

 

Despite the apparently unique role for CTCF and its near singular structure, a protein that 

shares the same 11 zinc finger binding domains as CTCF was recently cloned [59].  

Presumably, this new protein can bind to the same DNA sequences as CTCF suggesting 

that they may compete for the same sites.  As CTCF’s moniker is the “Regulator of 

Imprinted Sites” (RIS,) this protein was dubbed the Brother of Regulator of Imprinted 

Sites or “BORIS.”  Indeed, if these two proteins are siblings, they represent the Cain and 

Abel of chromatin—similar but opposing functions.   As loss of heterozygosity of CTCF 

at 16q22 is strongly associated with a cadre of malignancies, amplification of the 

chromosomal region containing BORIS, 20q13, is commonly associated with the same 

grouping of cancers [60-65].   This led to the suggestion that 20q13 contains a common 

oncogene [47].  In terms of normal expression, CTCF is nearly ubiquitous, while BORIS 

is confined to the one tissue that CTCF is not expressed, adult testes [59].  Furthermore, 

testes specific expression of BORIS is confined to the subset of CTCF negative cells 

where methylation imprints are removed and paternally reestablished [59].  The function 
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of BORIS is so specialized that ectopic expression, that is transcription outside of the 

testes, is invariably associated with cancer [47, 59].  Given these data, the question still 

remained, what are the effects of BORIS on the H19/IGF2 locus specifically.  Recent 

work demonstrates that in xenopus oocytes, the co-injection of BORIS along with 

methylation cofactors (DNA methyl transferases 3a, b, or l, and the histone methylating 

enzyme PRMT7), is followed by increased methylation at IGF2/H19 ICR [66].  This is the 

first in vitro experiment directly testing the hypothesis that increased expression of BORIS 

leads to increased methylation at an important imprinting control center.   Mechanistically 

speaking, BORIS physically associates with PRMT7; this interaction was followed by 

histone methylation at the IGF2/H19 ICR, which was then followed by direct DNA 

methylation.  One explanation for these findings is that BORIS physically guides histone 

methylating enzymes to the ICR and histone methylation serves as a mark for the DNA 

methyl transferases to directly methylate DNA.  It is important to bear in mind that, 

although not directly tested in these experiments, increased levels of methylation at the 

IGF2/H19 ICR is associated with upregulation of the IGF2 transcript.  Moreover, 

upregulation of IGF2 by loss of imprinting is commonly associated with ectopic BORIS 

expression in cancer [67].  In short, BORIS may upregulate IGF2 while CTCF is known to 

represses it.   

 

Although chromatin architecture is pivotal to gene regulation--CTCF, if not also BORIS, 

is central to this process--it is important to keep in mind that only 4% of all transcribed 

genes are known to be translated [68-70].  The remaining 96% of the transcriptome 

remains as potentially functional RNA.  In fact, recent micro array studies using chips 

designed to detect transcripts from the whole gemone rather than just exons of known 
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proteins, found that almost 50% of the human genome is transcribed [70].   This topic is 

particularly germane to the IGF2/H19 region as H19 itself is a non translated RNA.  The 

precise functions of H19 remain to be elucidated; however, knockout and transfection 

experiments have offered clues.  Although H19-/- mice were viable, they were often 25% 

larger than their H19+/+ littermates [71, 72].   Several theories, ranging from the 

pedestrian to the exotic, have been evoked to explain this phenomenon.  An example of 

the former is that the knockouts themselves disrupted local chromatin structure, thus 

relaxing IGF2 imprinting [71, 72].  An example of the latter is that, H19 represses IGF2 

in a fashion similar to the functional RNA “xist” inactivating the X chromosome. [73-

75].  Although none of these theories are conclusive, there is some evidence that the H19 

transcript itself modulates IGF2.   In fact, H19 RNA was found to be associated with 

polysomes, possibly affecting IGF2 at the translational level [76].  Second, in vitro 

experiments showed that H19 RNA down regulated IGF2 transcription specifically from 

its third promoter [77].  Third, H19 associates with IGF2 MRNA binding protein 1 

(IMP1), a known upregulator of IGF2 translation [76].  Lastly, and perhaps most 

promisingly, recent work confirms that H19 is the parent transcript for the conserved 

microRNA-675 [78]. 

Micro RNAs are a class of small non-coding transcripts that, in their mature form, are 18-

25 base pairs long.  These genes are often arranged in tightly packed clusters under 

common promoters [79] (See background Figures 2A and 2B, immediately following the 

introduction section.)  Despite their size, these genes exert powerful influences on the 

transcriptome in a two stage process:  1)The micro-RNA binds to larger transcripts in a 

target specific manner via complimentarity (Usually in the 3’ UTR.)   2)This binding 

creates localized double stranded RNA which targets the mRNA for destruction or 
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interferes with translation [80-83] (See backgroung figure 2A.)  Micro RNA expression is 

often downregulated in cancer, and common chromosomal breakpoints associated with 

malignancy bisect micro-RNA clusters [79]. For example, lymphocytic lymphoma is 

strongly associated with a chromosome 13q14 deletion [79]. Given that the largest open 

reading frame (ORF) within this deletion, is too small to code for a protein, the most 

likely gene of interest is the micro RNA cluster mir-15a–16.  On the other hand, select 

micro RNAs are mapped to common sites of chromosomal amplifications in malignancy.  

The chromosome 13q31 amplification, commonly associated with both lymphomas and 

solid tumors, contains the microRNA-17-92 cluster [84].  Again, this gene has a very 

small ORF likely insufficient for translation.  Yet, elevated expression of the mature 

micro RNAs from this cluster, has been verified in primary lymphoma as well as a wide 

range of tumor-derived cell lines [85, 86].   Furthermore, enforced expression of the 17-

92 cluster in a mouse B-Cell Lymphoma model, significantly accelerated tumor 

development [85, 86].   Intriguingly, many of these micro-RNA clusters are arranged 

within imprinted genes that contain CTCF/BORIS binding sites [87].  Moreover, the 

micro RNA clusters in the imprinted DLK/RTL1 locus are also subject to imprinting, at 

least in the mouse [88].  This is the first direct evidence that micro RNAs are actually 

imprinted rather than just clustered within imprinting control centers.  Imprinted micro 

RNAs are of particular interest because, many of them could be regulated, at least 

partially, by CTCF and BORIS, providing another link between micro RNA expression, 

target gene regulation, and imprinting.  Moreover, through prediction algorithms, a set of 

two related micro-RNAs (mir23a and mir23b) that potentially target both CTCF and 

BORIS have been identified.  The implication being, not only can imprinting affect micro 

RNAs, but micro RNAs may also affect imprinting.  To date, mir-23a and 23b, are 
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differentially regulated in cardiac hypertrophy as well as leiomyoma generation[4, 89], 

one wonders if it may be through manipulation of imprinted genes via modulation of 

CTCF or BORIS. 

 

   

Summary of Findings 

This study confirmed that IGF2 RNA expression decreases six fold from proliferating to 

involuting IH.  Interestingly, hemangioma tissue expresses highly significant levels of 

BORIS, as the endothelial cell control lines were BORIS negative.  This places 

hemangiomas within the unique category of being a BORIS positive tumor that is non-

malignant.  This unusual finding may be explained by a concomitant 13 fold increase in 

CTCF from the proliferating to involuting samples.   Not surprisingly, the difference 

between CTCF and BORIS in a given tissue is highly predictive of IGF2 expression:  

Roughly equal levels of CTCF and BORIS are produced in proliferative lesions while 

CTCF is highly favored by the time of involution.  These two factors may modulate IGF2 

expression by interacting with this gene’s imprinted regions:  higher relative levels of 

BORIS were consistent with further methylation of both the IGF2/H19 ICR (CTCF BS 6) 

and Exon9, both methylation sensitive activators.  Conversely, higher levels of CTCF 

correlated strongly with hypermethylation of the methylation sensitive repressor DMR0.   

Within the core binding site of the IGF2/H19 ICR, methylation analysis identified a 

previously catalogued C/T polymorphism that appears to change the sensitivity of both 

IGF2 production and Exon 9 methylation to the relative amounts of CTCF and BORIS.  

This evidence 1) supports the conclusion that the IGF2/H19 ICR and Exon 9 interact, 
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despite the fact that they are approximately 80KB apart and 2) suggests a possible 

mechanism, modulated by a common polymorphism in a critical binding site, of the 

variable clinical behavior underlying these lesions.  CTCF and BORIS appear to strongly 

regulate IGF2 production, however, the mechanisms regulating CTCF and BORIS 

themselves remain unknown.   Through a search of the three major micro RNA target 

prediction programs available, one set of closely related micro RNA’s consistently 

targeted both CTCF and BORIS.  By correlating micro RNA 23a (mir-23a) and mir-23b to 

CTCF and BORIS levels in the IH samples tested, mir-23a correlated with CTCF and 

BORIS down regulation equally well, yet mir-23b only correlated with CTCF down 

regulation.  This finding was bolstered by the fact that mir23b could theoretically form an 

extra bond with CTCF over BORIS.  In addition, the difference between mir23a and 

mir23b strongly correlated with the difference between CTCF and BORIS.  Mir23b may 

be a potential anti-target of BORIS relative to CTCF:  thus increased mir23b compared to 

mir23a expression would effectively lead to increased levels of BORIS over CTCF.  

These data suggest a link between differential expression of two micro RNAs known to be 

disregulated in hypertrophic tissue (mir-23a and 23b), the relative levels of two opposing 

chromatin organizing proteins (CTCF and BORIS), and the regulation of an imprinted 

gene known to promote growth (IGF2.) 
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METHODS AND MATERIALS 

 

Specimen Collection  

(Performed by the Student) 

Twenty-one hemangioma samples subjected to methylation analysis, nine samples were 

found to have suitably intact RNA for quantitative RT PCR with 18s to 28s ratios equal or 

greater than 1.8, and eight samples were analyzed by Western blotting.  All samples were 

collected in accordance with an approved HIC protocol (#0507000430) as reviewed by the 

Yale University Medical School IRB.  As these samples were collected from children, fully 

informed parental, and childhood assent when age appropriate, was obtained prior to surgery.  

Only the tissue remaining--following collection of the pathological specimen--was used for 

this experiment.   Those specimens later confirmed to be hemangioma tissue, as assessed by 

Glut-1 positivity, were considered for this project.  Specimens for transcriptional analysis 

were separated into three categories: 1) Proliferative, 2) Quiescent, and 3) Involuting phases.  

These categories were determined on a clinical basis, as well as by age.  Proliferative 

hemangiomas:  Less than 1.5 years of age with interval growth between the last two clinic 

visits preceding surgery.  Quiescent hemangiomas:  Older than 1 year demonstrating no 

interval growth between the last two clinic visits preceding surgery.  Involuting 

hemangiomas:  At least two years old with interval regression by measurement between the 

last two clinic visits preceding surgery. 
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DNA Preservation and Extraction 

(Performed by the Student) 

Immediately following tissue resection, at least 100mg of tissue was frozen from each sample 

in a 10ml Falcon tube on dry ice for later processing.  DNA was isolated using the Qiagen 

DNeasy Tissue Mini Kit according to the manufacturer’s protocol with the following 

exceptions.  50mg of tissue were used if the tissue consisted of fibro-fatty components, 

otherwise the recommended 25mg of tissue was utilized.  Before tissue lysis, samples were 

liquefied using straight razor blades as opposed to Quiashredder columns for fibrous tissue as 

to decrease the possibility of DNA shearing.  Furthermore, all vortexing steps were 

minimized for the same purpose.  This is necessary to preserve DNA integrity for bisulfite 

conversion as this process destroys as much as 90% of the starting material [90].  Lastly, the 

tissue was subjected to lysis with buffer ATL and proteinase K digestion overnight as 

opposed to the recommended 1-3 hours.  Samples were eluted in buffer AE and QC tested 

via spectrophotometry, and gel electrophoresis on 2% agarose stained with ethidium 

bromide.  Only samples with an A260/A280 measurement of 1.8 or above that ran as a single 

band on the gel were further analyzed. 

 

RNA Preservation and Extraction 

(Performed by the Student) 

Immediately following tissue resection, 100-500mg of tissue was minced in 10ml of Quiagen 

RNA Later solution with straight razors into pieces no larger than 1mm in any dimension.  

Samples were stored in 50ml Falcon tubes with an additional 10ml of RNA later solution.  

Samples were then stored at -20 degrees C. overnight and then frozen at -80 degrees C until 
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such time as RNA Extraction could be completed.  RNA was extracted by first allowing the 

RNA later solution to thaw.  This was followed by straining of the sample and immediate 

liquid nitrogen powder homogenization in a mortar and pestle.   All implements were baked 

at 200 degrees C. overnight to eradicate RNAase enzymes.  Following homogenization, 

RNA was extracted using Invitrogen Trizol reagent according to manufacturer’s 

specifications with the following exceptions.   Once the initial phase separation was 

accomplished with the addition of phenol/chloroform, the samples were vigorously vortexed 

to shear genomic DNA.  This helps insure that the DNA will migrate completely into the 

organic phase instead of remaining at the inter-phase, which may contaminate the RNA 

sample.  Following the phenol/chloroform extraction, the supernatant  (aqueous RNA phase) 

was subjected again to a 1/24 Iso-amyl-alcohol/chloroform extraction to minimize potential 

phenol contamination, which could inhibit downstream enzymatic applications.  After the 

iso-propyl alcohol precipitation and ethanol washing steps, the pellets were allowed to dry for 

15 to 30 minutes and resuspended in nuclease free water and stored at -80 C.   To remove 

potential genomic contamination, 10 μg of total RNA from each sample was then treated 

with DNase Qiagen mini-elute columns according to manufacturer's specifications.  RNA 

integrity was then assessed using 1μl of sample on the Agilent bioanalyzer 2100 (provided as 

a service of the Keck Center at Yale University.)  Band intensities of 18s and 28s RNA were 

quantitated and samples with an 18s/28s ratio of 1.8 or greater were utilized for quantitative 

RT PCR.   Following QC each sample was converted into cDNA using the ABI 4368813 

cDNA archive kit.  All samples were then stored at -80 degrees C. 
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Endothelial Cell Purification and Culturing 

(Performed by the Student)  

This protocol was optimized at the Yale Skin Diseases Research Center, New Haven CT.  

Human dermal microvascular endothelial cells (HDMEC) were isolated from normal adult 

skin obtained as discarded tissue from Yale-New Haven Hospital, New Haven, CT, under an 

approved  HIC protocol.    Roughly 3cm by 10cm sections of skin are stretched flat and 

planed using a Webster skin graft knife set to .016 inch depth.  Planed skin is incubated at 

room temperature in dispase (Collaborative Biomedical Products.)  The epidermis can then 

be peeled away.  The remaining dermis is then minced into .5 cm2 pieces and passed through 

a 70μM metal mesh.  The dispase is then neutralized by the addition of two volumes of FBS.  

Suspended cells are then spun at 1000g for 5 minutes and the supernatant is removed.  Cells 

are then suspended in 5ml of fully supplemented defined EGM2 media and plated on a single 

well of a fibronectin (40μg/ml) coated plate.  The primary culture is allowed to incubate 

overnight at 37 degrees C in 5% C02.  The media is replaced on the following day, with 

replenishments every 2 days until the primary culture is confluent.  Cells are then trypsinized 

and subjected to endothelial cell selection using a mouse IGG anti-CD31 antibody (Dako) 

conjugated to MACSiMAG magnetic beads and passed through a micropore column placed 

in a magnetic field (miniMACS Separator, Myltenyi Biotech) according to the 

manufacturer’s protocol.  Purified endothelial cells are then plated on fibronectin coated 

plastic and grown to confluence, then expanded.  Cells at passage 3 are then subjected to 

FACS analysis, cultures that are 90% CD31 positive or greater were then DNA and RNA 

extracted.  Human Umbilical Vein Endothelial Cells (HUVEC) were isolated as a service of 

the Yale Skin Diseases Research Center and pooled from three separate donor cords, using a 

similar protocol.  Neonatal HDMEC cells, isolated from pooled foreskin (n=3), were 
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purchased from Cambrex and grown to confluence as noted above.  Cells were RNA/DNA 

extracted at P4.  

 

 

Quantitative PCR for CTCF, BORIS, H19 and IGF2 

(Performed as a service by the Keck Center at Yale University) 

9 hemangioma samples (3 proliferative, 3 quiescent, 3 involuting) and 5 endothelial cell 

control lines were RNA extracted as previously specified and subjected to fluorescent 

quantitative RT-PCR using ABI Taqman primers that were previously validated by the 

manufacturer.  All primers span intron exon boundaries, further eliminating the possibility of 

false signals due to genomic contamination.  The assays were:  IGF2--assay number  

Hs00171254_m1, H19—assay number Hs00399294_g1, CTCF—assay number 

Hs00198081_m1, and BORIS—assay number Hs00540744_m1.  Gene quantification was 

performed using the standard curve method:  For each gene, a pooled sample of cDNA 

(equal contributions from each sample) was used in successive two fold dilutions, beginning 

from 50 ng and ending with .39 ng, to correlate a CT value (cycle number required to reach 

the threshold detection of PCR product) with absolute quantity of RNA starting material. 

Each reaction was performed in duplicate with four empty wells as negative controls.  CT 

values from unknown samples can then be correlated with the absolute quantity of RNA in 

ng present in the reaction vessel.  This number is normalized to the absolute quantity of 

GAPDH control RNA present.  The standard curve method allows absolute quantities of 

RNA to be determined making it possible to compare one transcript directly to another.   50 

ng of  RNA were used for each unknown sample in 20μl reactions using 1μl of 20x target 

assay mix (Primers) and 10 μl of 2x Taqman PCR master mix on a 384 well plate with 
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optical plate cover.  All reactions were performed on the ABI 79005 thermocycler using 

default cycling conditions previously optimized for these assays. Reactions were performed 

in duplicate and average CT values, if they agreed within 0.4 cycles, were used to calculate 

absolute quantity.   

 

Western Analysis 

(Performed by the Student) 

 8 samples were subjected to Western analysis.  Briefly:  50 mg of each sample were 

mechanically homogenized with a rotary homogenizer in 200ml of RIPA lysis buffer.  The 

homogenates were spun at 15,000g for 10 minutes and protein concentrations of the 

supernatant were determined using the Bio-Rad Protein Assay with subsequent optical 

density testing according to manufacturers specifications.  Lysates were made using a 

standard beta-mercapto-ethanol with SDS buffer at a concentration of 4 μg per μl and heat 

treated at 95 degrees C for five minutes.  PAGE was performed with 36μg of protein per well 

in NuPage 10% Bis-Tris precast gels in MOPS buffer at 100 volts.  PAGE separated proteins 

were then transferred for two hours to a PVDF membrane (Bio-Rad) in a standard transfer 

buffer at 100mAmps.  The membrane was blocked in TBST with 5% cows milk for one hour 

and probed with anti BORIS antibody (Abcam #ab18337) 1/5000 dilution in TBST with 5% 

cows milk overnight.  Membranes were washed in TBST for one half of an hour and probed 

with anti-rabbit secondary antibody conjugated to horseradish peroxidase.  Membranes were 

washed for one half of an hour in TBST and then visualized with ECL and photographic 

film.  The membrane was then probed with anti CTCF antibody (Abcam #10571) overnight, 

washed and then visualized as noted above.  As anti-CTCF and anti-BORIS were both rabbit 

polyclonal antibodies they could be visualized simultaneously on the same film following 
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incubation with a sheep anti-rabbit secondary antibody conjugated to horseradish peroxidase 

(Chemicon AP304P) and ECL treatment.  Images were then scanned and adjusted for 

brightness and contrast in Adobe Photoshop.  

 

Bisulfite Methylation Analysis Using Conventional Sequencing 

(Performed by the Student) 

Bisulfite treatment efficiently converts unmethylated cytosines into uracils, while 5-methyl-

cytosines remain intact.   This conversion locks methylated and unmethylated cytosines into 

C/T polymorphisms respectively.  Following bisulfite specific PCR and sequencing, the 

relative contributions of cytosine to thymine signals at this newly created polymorphic site is 

proportionate to the level of methylated DNA at the nucleotide position in question (See 

methods Fig. 1, immediately following the methods and materials section.)  Conventional 

sequencing allows for a semi-quantitative visual comparison between samples. 

 

Bisulfite Conversion:  Briefly: 2μl of DNA suspended in 50μl of TE was first denatured 

by adding 5μl of freshly prepared NaOH (3 M, final concentration 0.3 M) and incubated 

at 37-42°C for 15-30 min. The denatured DNA was then combined with 1)510μl of freshly 

prepared 40.5% sodium bisulfite by weight, 2)30μl 10mM hydroquinone, and water up to a 

volume of 610μl.  The reactions were covered with mineral oil and placed in a 55° C 

water bath for 8-16 hours.  DNA was then purified using DNA binding resin with 

vacuum column filter binding (Promega, DNA Wizard Cleanup Kit) according to the 

manufacturer's specifications and eluted in 50μl of TE.   The samples were then 

denatured with NaOH as above and left to incubate at RT for 15 minutes.  The pH was 
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then neutralized by adding 3M ammonium acetate.   DNA was then ethanol precipitated 

using a glycogen carrier/visualizer and resuspended in 20μl of H20 and immediately 

stored at -40° C.  

  

PCR: The proximal region of IGF2 Exon 9 was amplified by a previously described primer 

pair specific for bisulfite converted DNA [44]. 

  

F: 5-GTAGGGGTTTGTTTGTTTTTTTG-3; R: 5- CTACTATACTTCCTCAACCC-3 

 

50μl reactions containing: 5μl 10x PCR buffer (Invitrogen: Platinum Taq), 1μl DNTP, 1.5μl  

50mm MgCl2  .5μl of combined forward and reverse 25pm primers, 41.8μl H2O, and .2μl 

Platinum Taq (Invitrogen). 

 

40 cycles of PCR were performed with the following conditions: 

95° - 4 minutes 

95° - 30 seconds 

48° - 30 seconds 

72° - 30 seconds 

72° - 5 minutes 
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DMR0 consists of three CpG’s in close proximity witin intron 2.  This region was amplified 

by a previously described bisulfite specific primer pair [44]. 

 

F: 5-GTTAAGGTAGTTTTTTTGGG-3; R: 5-AATTAACCCACCTTAAAAAATC-3 

 

50μl reactions containing: 5μl 10x PCR buffer (Invitrogen for Platinum Taq), 1μl DNTP, 

1.5μl  50mm MgCl2  .5μl of combined forward and reverse 25pm primers, 41.8μl H2O, and 

.2μl Platinum Taq (Invitrogen). 

 

35 cycles of PCR were performed with the following conditions: 

95° - 4 minutes 

95° - 30 seconds 

52° - 30 seconds 

72° - 30 seconds 

72° - 5 minutes 

 

PCR products were gel purified on 2% agarose, using a Qiagen Gel Extraction kit according 

to the manufacturer's specifications.  The forward primer was used to sequence the PCR 

products (Keck Center at Yale University) and visual comparisons between samples were 

performed using the Four Peaks version 1.7 sequence viewer (Mekentosj, Netherlands.)  
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Bisulfite Methylation Analysis Using Quantitative Pyrosequencing 

(Performed as a Service by Epi-Gen Dx) 

First described by DuPont et al [91], quantitative bisulfate pyrosequencing for CpG 

islands (Pyro Q-CpG) is a real-time sequencing-based DNA methylation analysis that 

quantifies methylation patterns of consecutive CpG sites individually.    

 

Briefly 1000 ng of sample DNA was bisulfate treated using the Zymo DNA Methylation 

Kit (Zymo research, Orange, CA) according to the manufacturers instructions. Bisulfate 

treated DNA is eluted in10 ul of nuclease free water, 1 ul of eluate is used for each PCR 

reaction. PCR was performed using 10X PCR buffer, 1.5 mM MgCl2, 200 μM of each 

dNTP, 0.2 µM each of forward and reverse primers, HotStar DNA polymerase (Qiagen 

Inc.) 1.25 U, and 100 ng of bisulfite treated DNA per 50 μl reaction.  PCR cycling 

conditions were: 94ºC for15 min; then 45 cycles at 94ºC 30 s; 58ºC 30 s; 72ºC 30 s; 72ºC 

5 min.  The products were than held at 4°C.  Each PCR was performed with one 

biotinylated primer, allowing sense and antisense strands to be separated.   Single-

stranded DNA templates were pyrosequenced according to the manufacture’s protocol 

(Biotage, Kungsgatan, Sweden).  The target CpG-islands and the primer sequences are 

shown in supporting text below. Pyrosequencing reactions are subject to bias:  1)bisulfite 

conversion can be incomplete and 2)Given PCR primers may preferentially amplify the 

methylated alleles.  These concerns were addressed by the following: 1)Amplicons were 

designed such that they contained at least 1 unmethylated cytosine, that is a cytosine that 

does not preceede a guanine.  Completed bisulfite reactions lead to the complete 

conversion of this cysosine into a thymidine.  Only those reactions that demonstrated 
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complete conversion were analyzed. 2)Primer bias was controlled for by establishing 

methylation curves of 100% methylated DNA titrated against known amounts of whole 

genome amplified PCR products that, by definition, are unmethylated.  These 

methylation curves allow experimental samples to be calibrated against known standards.    

 
H19 CTCF Binding Site 6: 
Primers: 

The reverse PCR primer is biotin labeled on the 5’ end 

SNP ID 
Type of 
primer Primer sequence 5'->3' Length 

DMR H19 
CTCF 
Binding 
Sites 

PCR F TGGGTATTTTTGGAGGTT
TTTTT  23 

DMR H19 
CTCF 
Binding 
Sites  

PCR R 
Biotin 

TCCCATAAATATCCTATT
CCCAAA  24 

DMR H19
CTCF 
Binding 
Sites #22 -
#27 

Seq F TTTATYGTTTGGATGG 16 

DMR H19 
CTCF 
Binding 
Sites #28 -
#33 

Seq F GTAGGTTTATATATTATA
G 19 

DMR H19 
CTCF 
Binding 
Sites #34 -
#37 

Seq F GTTTYGGGTTATTTAAGT
TA 20 

 
 

Original sequence  
TGGGTATTTCTGGAGGCTTCTCCTTCGGTCTCACCGCCTGGATGGCA
CGGAATTGGTTGTAGTTGTGGAATCGGAAGTGGCCGCGCGGCGGCAGT
GCAGGCTCACACATCACAGCCCGAGCCCGCCCCAACTGGGGTTCGCCC
GTGGAAACGTCCCGGGTCACCCAAGCCACGCGTCGCAGGGTTCACGG
GGGTCATCTGGGAATAGGACACTCATAGGA 
 

Bisulfite converted PCR amplicon sequence: 
TGGGTATTTTTGGAGGTTTTTTTTTYGGTTTTATYGTTTGGATGGTA
YGGAATTGGTTGTAGTTGTGGAATYGGAAGTGGTYGYGYGGYGGTAG
TGTAGGTTTATATATTATAGTTYGAGTTYGTTTTAATTGGGGTTYGTT
YGTGGAAAYGTTTYGGGTTATTTAAGTTAYGYGTYGTAGGGTTTAY
GGGGGTTATTTGGGAATAGGATATTTATAGGA 
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Note:  Letters in red are PCR primers.  Underlined bold are Pyrosequencing 

primers.  This PCR amplicon covers 16 CpG sites (from #22 to #37).  There is a 

mismatch A at the reverse PCR primer highlighted in blue.  The base highlighted 

in Orange was found to be polymorphic by Pyrosequencing.  Yellow is the core 

CTCF binding site. 

 
Human DMR IGF2 Intron 2: 
Primers: 
 

The reverse PCR primer is biotin labeled on the 5’ end. 

SNP ID 
Type of 
primer 

Primer sequence 5'-
>3' 

Leng
th 

DMR 
IGF2 
Intron 2 

PCR F GGGGGTTTATTTTT
TTAGGAAG  22 

DMR 
IGF2 
Intron 2 

PCR R 
Biotin 

AAAACCACTAAAC
ACACAACTCT  23 

DMR 
IGF2 
Intron 2 
#13 - #15 

Seq F TTTATTTTTTTAGG
AAGTAT  20 

 
 

Original sequence  
CCCAGGGTGGTGTCTGTGGGGAGGGGGTTCATTTCCCCAGGAAGCA
CAGCCACGCCGTCCCTCACTGGCCTCGTCAAGCAGAGCTGTGTGTCC
AGT 
 

Bisulfite converted PCR amplicon sequence : 
TTTAGGGTGGTGTTTGTGGGGAGGGGGTTTATTTTTTTAGGAAGTA
TAGTTAYGTYGTTTTTTATTGGTTTYGTTAAGTAGAGTTGTGTGTTTA
GT 
 
Note:  Letters in red are PCR primers.  Underlined bold are Pyrosequencing 

primers.  This PCR amplicon covers 3 CpG, yellow(from #13 to #15). 

  
Human DMR IGF2 Exon 9 
Primers: 
 

 
The reverse PCR primer is biotin labeled on the 5’ end 
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SNP ID 
Type of 
primer 

Primer 
sequence 5'->3' Length 

DMR IGF2 
Exon 9  PCR F GGGTTTTGGG

TGGGTAGAGT 20 

DMR IGF2 
Exon 9   PCR R Biotin CCAAAACAAC

TTCCCCAAAT 20 

DMR IGF2 
Exon 9 
CpG sites  

Seq F GTTTGGTTTTT
TTGAA 16 

 
Original reverse complimentary sequence: 

GGTCTTGGGTGGGTAGAGCAATCAGGGGACGGTGACGTTTGGCCTCCC
TGAACGCCTCGAGCTCCTTGGCGAGCACGTGACCCCGGCGGGCACGC
AGGAGGGCAGGCAGGCCCCTGCGCAGGCGCTGGGTGGACTGCTTCCA
GGTGTCATATTGGAAGAACTTGCCCACGGGGTATCTGGGGAAGTTGTC
CT 
 

Bisulfite converted PCR amplicon sequence: 
GGGTTTTGGGTGGGTAGAGTAATTAGGGGAYGGTGAYGTTTGGTTT
TTTTGAAYGTTTYGAGTTTTTTGGYGAGTAYGTGATTTYGGYGGGTAY
GTAGGAGGGTAGGTAGGTTTTTGYGTAGGYGTTGGGTGGATTGTTTTT
AGGTGTTATATTGGAAGAATTTGTTTAYGGGGTATTTGGGGAAGTTG
TTTTGG 
 
Note:  Letters in red are PCR primers.  Underlined bold are Pyrosequencing 
primers.  This PCR amplicon covers 12 CpG sites yellow. 
 

H19 Promoter 
Primers: 

  
 
 
 
  
 
 
 

Original Sequence: 
GGGAGGGCCCTGCTCTGATTGGCCGGCAGGGCAGGGGCGGGAAT
TCTGGGCGGGGCCACCCCAGTTAGAAAAAGCCCGGGCTAGGACC
GAGGAGCAGGGTGAGGGAGGGGGTGGGATGGGTGGGG 
 

Bisulfite Converted PCR Amplicon Sequence: 
GGGAGGGTTTTGTTTTGATTGGTYGGTAGGGTAGGGGYGGGAATT
TTGGGYGGGGTTATTTTAGTTAGAAAAAGTTYGGGTTAGGATYGA
GGAGTAGGGTGAGGGAGGGGGTGGGATGGGTGGGG 
 

H19Prom-FP2  

 
5’-GGGAGGGTTTTGTTTTGATTG-3’ 

 
H19Prom-RP Biotin 

 
5’-TTCCCCACTTCCCCAATTT-3’  

 
H19PromFS3  

 
5’-GTTATTTTAGTTAGAAAAAG-3’  
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Note:  Letters in red are PCR primers.  Underlined bold are Pyrosequencing 

primers. 2 CpG sites were quantified, yellow. 

Genomic Southern Analysis for H19 

(Performed as a Service by the Washington University Molecular Diagnostics Lab) 

Ten micrograms of DNA were digested at 25°C overnight with 40 U of SmaI.  This 

liberates a 1.8 KB fragment containing the H19 promoter region (corresponding to 

nucleotides 11803-13603 of the human H19 probe (See methods Fig. 2, immediately 

following the methods and materials section.)    The digestion was followed by an 

additional incubation at 37°C for 4 h with 40 U of PstI.   Pst1 is a methylation sensitive 

restriction enzyme that cuts the 1.8 KB fragment of interest into a .3 and 1.5 KB fragment 

only if the DNA is unmethylated at the specific CCCGGG site of interest (number 

806,386--genbank gi:51470970.).  The digested DNA was electrophoresed on a 1% 

agarose gel, transferred to Hybond-N+ (Amersham), and hybridized with the 1-kb PstI + 

SmaI fragment isolated from an H19 genomic clone that was previously radio-labeled 

with [32P]dATP. Signals were quantified using a PhosphorImager (Molecular Dynamics).  

Percent methylation is calculated by dividing the 1.8KB band intensity by the sum of the 

intensities of both bands.  Normal methylation was previously established by this lab as 

55% +/- 7 (N = 50.)  DNA derived from hemangioma samples (13) as well as patient 

matched control blood (13) were analyzed and compared. 

 

Micro RNA Microarray 

(Performed as a Service by LC Sciences)  

This experiment consisted of five hemangioma micro-RNA samples ages:  95, 420, 547, 

760 and 1520 days.  The ages of samples were calculated from birth to time of resection.  
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In addition, two normal endothelial cell control lines were analyzed at passage 4: 

1)HUVEC and HDMEC.   Each probe was included on the chip seven times and from 

these signals an average and standard deviation were calculated.  P-values of the t-test 

were calculated for any detected signal for one transcript between one sample and 

another, those with values less than 0.01 were considered significant and subjected to 

unbiased cluster analysis.   Regression analysis was performed on those transcripts that 

were predicted to target CTCF or BORIS as calculated by the three primary micro-RNA 

target prediction programs. 

 

The assay started with 2 to 5 µg of total RNA sample, which was size fractionated using 

a YM-100 Micro-con centrifugal filter (from Millipore.)  The small RNAs (< 300 nt) 

isolated were 3’-extended with a poly(A)tail using poly(A) polymerase.  An 

oligonucleotide tag was then ligated to the poly(A) tail for later fluorescent dye staining.  

Hybridization was performed overnight on a µParaflo microfluidic chip using a micro-

circulation pump (Atactic Technologies). On the microfluidic chip, each detection probe 

consisted of a chemically modified nucleotide coding segment complementary to a target 

micro RNA (from MirBase 4.0, http://microrna.sanger.ac.uk/sequences/) and a spacer 

segment of polyethylene glycol to extend the coding segment away from the substrate. 

The detection probes were made by in situ synthesis using PGR (photo-generated 

reagent) chemistry.  The hybridization melting temperatures were balanced by chemical 

modifications of the detection probes. 100 µL 6xSSPE buffer (0.90 M NaCl, 60 

mMNa2HPO4, 6 mM EDTA, pH 6.8) containing 25% formamide at 34 °C was used for 

hybridization.  Following hybridization, fluorescence labeling using tag-specific Cy3 dye 

followed.  Hybridization images were collected using a laser scanner (GenePix 4000B, 
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Molecular Device) and digitized using Array-Proimage analysis software (Media 

Cybernetics).  Data were analyzed by first subtracting the background and then 

normalizing the signals using a LOWESS filter (Locally-weighted Regression)10. 

 

Statistical Analysis 

(Performed by the Student) 

Unless specified, all categorical analysis was performed using Microsoft Excel two tailed t-

tests.  All data is reported as a mean with standard deviation (quantitative RT PCR data is 

presented as a unit-less ratio of transcript expression divided by GAPDH expression, both 

originally measured in nanograms.)  Correlation analysis utilized the least squares regression 

function of Microsoft Excel where the best fit curve and  R2  values are reported .  Statistical 

analysis of the micro RNA microarray data is reported in the microarray methods section.   

 

Summary of Methods: 

Performed by the Student Performed by Service Providers 
Specimen Collection Quantitative RT PCR 
DNA Preservation and Extraction Quantitative Pyrosequencing for Methylation Analysis 
RNA Preservation and Extraction Micro-RNA Microarray Analysis 
cDNA Synthesis Genomic Southern Analysis 
Endothelial Cell Culture Purification  
Endothelial Cell Culture Maintenance  
FACS analysis of Endothelial Cell Culture  
Western Analysis of CTCF and BORIS  
Bisulfite Specific PCR for Methylation Analysis  
Data and Statistical Analysis  
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RESULTS 

 
IGF2 decreases six fold in involuting hemangiomas 

By performing quantitative RT PCR on 9 hemangioma samples (3 proliferative, 3 

quiescent and 3 involuting) and comparing these results to 5 normal endothelial cell 

control lines, abnormal expression of IGF2 in infantile hemangiomas was confirmed (See 

results figure 1, immediately following the references section.)  All hemangioma tissues 

made IGF2 to varying degrees (Proliferative = 2.28 SD+/- 0.863, Quiescent = 3.866 

SD+/- 1.19, and Involuting = .384 SD+/- .005.) [quantitative RT PCR data is presented as a 

unit-less ratio of transcript expression divided by GAPDH expression, both originally 

measured in nanograms.]   The endothelial cell control lines, however, produced no IGF2.  

This indicates that IGF2 is not part of the normal transcriptome of endothelial cells as 

even neonatal endothelial cells (NHDMEC) and human umbilical vein endothelial cells 

(HUVEC), closest in age to hemangioma tissue, were IGF2 negative (P tissue vs. cell 

lines = <.00001.) Furthermore, these data confirm previous studies concluding that IGF2 

RNA expression significantly drops from proliferating to involuting hemangiomas, six 

fold in this study  p = .002 (See values listed above.)  Curiously, the “quiescent” 

hemangiomas made highly variable levels of IGF2.  To explain this variance,  RT PCR of 

of CTCF and BORIS, proteins capable of binding to known regulatory sites within the 

imprinting control regions of IGF2, was conducted.   

 

CTCF and BORIS are Co-expressed in IH at the Transcript and Protein Levels 
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IH of all categories produce both the BORIS transcript and protein (Figure 1B and 1D), 

while the transcript was undetectable in all five endothelial cell control lines (P = .038.)  

(EC = 0, proliferative = 1.01 SD+/- 0.56, quiescent = 8.5 SD+/- 3, involuting = 2.8 SD+/- 

0.17.)  Furthermore, the levels of BORIS are even more striking when compared to the 

respective expression of CTCF:  only the involuted hemangiomas produced relatively 

less BORIS than CTCF.  It is intriguing to note that IGF2 transcript expression appears to 

most closely follow BORIS RNA levels.  Namely, the quiescent tissues made high yet 

variable levels of both transcripts.  However, BORIS rises from proliferating to involuted 

hemangiomas (p = .05) while IGF2 drops precipitously.  This suggests that another 

factor, aside from BORIS, may be regulating IGF2 gene expression.  One explanation of 

the paradoxical fall in IGF2 levels, despite increasing levels of a factor that is associated 

with loss of imprinting of IGF2 [67], is the highly significant increase in CTCF (Figure 

1A).  From proliferating to involuting lesions, the CTCF transcript is upregulated 

approximately 13 fold (p = .0009.)  Furthermore, older lesions also produced 

significantly more CTCF protein as well (Figure 1D.)  In fact, the transcript difference 

between these two rival factors is most predictive of IGF2 RNA levels:  the CTCF to 

BORIS transcript difference mirrors IGF2 expression over all age ranges (Figure 2A) as 

higher relative levels of BORIS coincide with increased IGF2.  As lesions age, CTCF 

increases relative to BORIS and IGF2 levels decline (Figure 2A.)  By directly correlating 

the CTCF-BORIS difference and IGF2, the relationship is made explicit (Figure 2B.)  

With very high correlation (R2 = .976), IGF2 RNA is demonstrated to be inversely related 

to CTCF and positively correlated to BORIS.  Yet, on this graph there are two distinct 

CTCF-BORIS vs. IGF2 curves (Figure 2B.)   The first group of samples, marked by red 

triangles appears to demonstrate a far greater collective sensitivity to the relative levels of 
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CTCF and BORIS, with a slope that is approximately eight fold steeper than its less 

responsive counterpart marked by the blue squares (Y = -1.7x + 2.3288, R2 = .976  versus 

Y = -.2172x + 2.0493, R2 = .976.)  This change in sensitivity to the CTCF-BORIS 

difference correlates with a genetic polymorphism identified both in tissue and matched 

patient control blood (Figure 2C, 3A,B,C,D.)  A common C/T allele within CTCF BS6 

corresponds with two strikingly different methylation patterns, as well at the two distinct 

CTCF-BORIS vs. IGF2 curves.  Those lesions possessing the T allele, could not be 

methylated at position number 5 in CTCF BS6 because thymidine can not accept methyl 

carbons.  Concurrently, these were the samples that displayed increased sensitivity to the 

relative quantities of CTCF and BORIS RNA.  On the other hand, those samples with the 

C allele, could be methylated at position number 5 and were all part of the less responsive 

category.   This polymorphism has previously been catalogued, rs10732516, and the two 

distinct methylation patterns resulting from carrying one of these alleles has been 

documented [33].  However, this is the first report suggesting a possible functional 

consequence of this epi-genetic polymorphism.  Yet, as the quantitative methylation data 

demonstrate, the epigenetic variability of CTCFBS6 extends beyond a single 

polymorphism. 

 

Multiple epi-genetic phenotypes at CTCF BS6 

Hemangioma tissue, parallel to the patient matched control blood, displays six different 

epigenetic phenotypes (Figure 3 A,B,C,D.)  As previously stated, those carrying the “C” 

allele at CpG position 5 on the assay (CpG site four of the Core CTCF Binding Site 6) are 

methylated, while those carrying the T allele at this site can not be methylated, thus the 

precipitous drop in methylation is explained by a known polymorphism, rs10732516.  



  32 

Furthermore, regardless of CpG #5 status, the samples--be they tissue or patient matched 

control blood--can be grouped into three distinct methylation categories.  Using the four 

CpG’s flanking the polymorphic site in the control blood, methylation levels of each 

category were estimated to be:  Low- 35% SD+/-= 5.13, Medium 48% SD+/-= 6.5, and 

High 58= SD+/- 7.74.  The methylation of the hemangioma tissue did not significantly 

differ from the patient matched control blood: Low- 34% SD+/-= 3.11, Medium- 42% 

SD+/-= 3.5, High- 53.8 SD+/-= 8.  These six distinct epi-genotypes are in agreement with 

Tost et al[33], who first demonstrated the phenomena in normal placental, fetal and 

maternal lymphocyte samples.  Furthermore, Tost et al demonstrated that these categories 

reflect real biological differences rather than artificial divisions using the Monte-Carlo 

based permutation test.  However, a functional significance, if any, of these polymorphic 

methylation levels of CTCF BS6 are yet to be demonstrated.  Unfortunately, only nine 

samples were characterized with both transcriptional and matched methylation data.  Of 

these nine, two are highly methylated, two are of the intermediate phenotype, and five are 

in the lowest category.  Hence, the transcriptional consequences and or causes of CTCF 

BS6 methylation could only be investigated in the lowest methylated group. 

 

  
CTCF BS6 methylation strongly correlates with the CTCF-BORIS difference, and is 

consistent with being a methylation sensitive activator of IGF2 in IH. 

Plotting the CTCF - BORIS difference against CTCF BS6 methylation (Figure 4A) 

reveals that BORIS expression favors hypermethylation while CTCF favors normal 

imprints ( Y = -1.4123x + 31.492%, R2 = .8823, n = 5.)  In fact, higher relative levels of 

BORIS coincide with up to a 50% increase in methylation compared to control blood 
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samples, while in those tissues where CTCF predominates, methylation levels are within 

the 95% confidence interval of the control blood (34% +/- 2.5%.)  Assuming that CTCF 

BS6 is indeed a methylation sensitive activator of IGF2 production, these data may 

partially explain a mechanism by which increased BORIS levels coincide with IGF2 

upregulation.  Namely, as previously demonstrated [66], BORIS hypermethylates 

CTCFBS6 which may lead to a change in chromatin conformation facilitating IGF2 

expression.   This hypothesis is partially confirmed by looking at the relationship between 

CTCF BS6 methylation and IGF2 expression directly (Figure 4B.)  Here increased 

methylation at this site weakly to moderately correlates with increased IGF2 expression 

(Y = 0.1593x -3.1566, R2 = .5718.)  The methylation status two other imprinted regions 

in the IGF2 locus are now presented. 

 

DMR0 is hypermethylated in IH. 

Methylation levels at DMRO--corresponding to base pair numbers 956,653 to 956,893 of 

the genomic contig NT_009237.17--of 21 hemangiomas, 11 matched control bloods and 

the average of 5 endothelial cell lines were compared (Figure 5A and B.)  Cui et al[39] 

first established that DMR0 is maternally methylated and is necessary for the 

maintenance in IGF2 regulation.  Unlike CTCFBS6, where hypermethylation leads to 

upregulation of IGF2, it is hypomethylation of DMR0 that coincides with increased IGF2 

expression.  Curiously, DMR0 is on average 14%, and in the most extreme case 20%, 

more methylated in IH (n = 21) than both patient matched control blood(n = 11) and the 

EC control lines (n = 5) and CpG #3; P = 1x10-12. (Tissue = 66.7% SD+/- 4.3, Blood = 

52.8% SD+/- 3.6, EC = 52.0% SD+/- 1.98.)  Moreover, these findings were confirmed 

independently with semi quantitative standard sequencing methods, using different 



  34 

primers to amplify the same bisulfite treated region (Figure 23 B.)  From the fully 

quantitative pyrosequencing results, it was found that CTCF expression alone, rather than 

the CTCF to BORIS difference, correlated best with DMR0 methylation (Figure 6A.) 

Increasing CTCF expression was coincident with hypermethylation of the region: Y = 

4.2213ln(x) + 62.968, R2 = .6973. This is consistent with Kurucuti at el[17] who first 

demonstrated that CTCF makes physical contact with this region to repress IGF2 

expression.  Furthermore, through a CTCF consensus binding site search engine 

(http://www.essex.ac.uk/bs/molonc/spa.htm) a potential CTCF binding site 25 base pairs 

centromeric to DMR0 has been identified (Figure 6C.)  As CTCF is upregulated in IH 

compared to both the matched patient control blood samples and the EC lines, it is not 

surprising that DMR0 is hypermethylated in IH.  However, the functional significance of 

this epi-genetic difference is not clear:  the scatter plot of IGF2 versus DMR0 

methylation reveals no direct relationship (Figure 6B.) 

 

Exon 9 is focally demethylated in IH but sill serves as a potential methylation 

sensitive activator of IGF2. 

Methylation levels at DMRO--corresponding to base pair numbers 941,505 to 941,685 of 

the genomic contig NT_009237.17--of 21 hemangiomas, 11 matched control bloods and 

the average of 5 endothelial cell lines were compared.  The most striking difference 

between the tissue and control blood is at CpG #5 (Figure 7A).  The tissue is 

hypomethylated compared to its matched controls (Tissue= 39% SD+/- 7.396; Blood= 

56.7% SD+/-5.84; P= .00001)  Furthermore, these results were confirmed independently 

with unique bisulfite specific primers and conventional sequencing (Figure 23 A)  As 

exon 9 displays tissue specific methylation patterns, this difference was compared to the 
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average of four normal endothelial cell control lines to further confirm that these results 

are hemangioma specific rather than simply endothelial cell specific.  The only remaining 

CpG that was statistically significant when comparing hemangiomas to both control 

blood and control cell lines was CpG #5 (P Tissue vs. Blood = .00001; P tissue vs. EC = 

.005.)  Although the endothelial cell lines appear to be hypermethylated compared to 

control blood, this difference did not reach statistical significance (CpG #5: average of 

Cell lines 77% SD+/- 6.04, average of blood 56.7% SD+/-5.84; P = .09.)   In addition the 

focal demethylation of exon 9 was confirmed qualitatively using different bisulfite 

specific primers and conventional sequencing as well.  It is perhaps not a coincidence that 

CpG#5 is 10 base pairs centromeric to a potential CTCF binding site--identified by the 

search engine listed above--as methylation at CpG#5 strongly correlates with the CTCF-

BORIS difference (Figure 7C.)  However, two distinct methylation versus CTCF-BORIS 

curves are evident; and most intriguingly, the samples composing each curve can be 

differentiated by the C/T polymorphism at CTCF BS6 (Figure 9A.)  In both curves, 

higher relative levels of BORIS correspond with increased methylation, while increased 

levels of CTCF favor less methylation.  Yet, the “T” allele demonstrates far greater 

responsiveness to the CTCF- BORIS difference. These data indicate that the genotype of 

CTCF BS6 strongly affects the magnitude of the potential effects of CTCF and BORIS 

on Exon 9 (See Fig. 3A vs 3B and 9A.)  What is interesting about these results is that that 

CTCF BS6 is 80KB distal to Exon 9.  Although a physical interaction between Exon 9 

and CTCF BS6 was previously demonstrated in murine models[17] (Figure 12), the 

concordance in hemangioma tissue between two distinct Exon 9 methylation curves and a 

polymorphism 80 KB distal in CTCF BS6 is to date the most direct evidence that these 

two regions interact in human tissue.  Furthermore, this interaction likely plays a 
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significant role in regulating IGF2.  When plotting Exon 9 methylation against IGF2 

production, two very similar curves emerge (Figure 9B.)   However, in this case the “C” 

allele is the most dynamically regulated: an apparently subtle change in methylation from 

34% to 39% correlated with an 11 fold increase in IGF2.  The “T” allele demonstrated a 

similar increase in IGF2 but over of a much broader range of 25% to 52% methylation.  It 

is remarkable that both alleles, C or T, operate over different but complementary dynamic 

ranges.  For the T allele, exon 9 methylation significantly changes in response to CTCF 

and BORIS, but IGF2 production is far less responsive to these changes.  Conversely, the 

C allele operates under a far narrower dynamic range of exon 9 methylation, but IGF2 

production changes sharply given these relatively subtle alterations.  

 

Evidence of cooperativity between CTCF BS6, Exon9 and DMR0 in regulating IGF2 

Note:  Due to limited sample size, the following data is limited to samples that exhibited 

the “Low” methylation phenotype at CTCF BS6.  Current imprinting models implicate 

DMR0 as a methylation sensitive inhibitor of IGF2, while Exon 9 and CTCF BS6 are 

methylation activating (Figure 11.)  When examined independently in IH tissue, DMR0 

bore no correlation to IGF2 expression (Figure 10A.)  Furthermore, Exon 9 and the ICR 

only correlated moderately well, but with p values that did not reach significance: R2 = 

.7076, p = .0741 and R2 = .5718 p = .139177 respectively (Figures 10B and 10C.)  

Assuming that exon 9 activates IGF2 via increased methylation and DMR0 represses 

expression through the same process, taking the ratio (Exon9/DMR0) between the two 

methylation values greatly improves the correlation with a significant P value: R2 = 

.8794, p = .018 (Figure 13.)  Although DMR0 did not regulate IGF2 independently, these 

data suggest that in conjunction with Exon 9, it is indeed a methylation sensitive 
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repressor of IGF2 in IH.  Similarly, assuming that both Exon9 and the ICR are 

methylation sensitive activators of IGF2, taking their product results in similar 

improvements in the correlation and p value: R2 = .875, p =  .019.  Yet, the strongest 

correlation and most significant p values were obtained by taking all three regions into 

account by calculating the methylation product of exon9 and CTCF BS6 divided by 

DMR0:  R2 = .9005, p = .013 (Figure 13.)  This data supports the hypothesis that all three 

imprinted regions within the IGF2 gene cooperatively regulate its expression, not only in 

mouse, but also human tissue.  

 

Progressive Demethylation of the H19 Promoter Correlates to Transcript 

Upregulation in IH. 

Two CpG’s within the H19 promoter region immediately upstream to the transcription 

start site were analyzed for methylation status--base pair numbers 806,386 and 806,397--

genbank gi:51470970--Figure 14A and 14B)   Hemangioma samples (21) were 

significantly hypomethylated compared to 11 matched control blood samples as well as 4 

endothelial cell lines (Hemangioma: 27.1% SD+/- 5.26, Blood: 57.6% SD+/- 3.98. P = 

.0002; EC 52% SD+/- 7.2 P hemangioma vs. EC = .03.)  Furthermore, as the lesions age, 

regression analysis suggest that the H19 DMR progressively demethylates over time (Y = 

-3.4852lx(x) + 48.474, R2  = .7782.)  These findings were confirmed with a genomic 

Southern analysis of the same CpG site (Figure 21 and 22): Hemangioma 25.5% SD+/- 

4.2, Tissue 54% SD+/- 3, P = .00001; EC 49% SD+/- 5 (p tissue vs EC = .042;) with the 

progressive demethylation curve Y = -5.513lnx +52.92 R2 = .8257.   
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It is interesting to note that the same putative CTCF binding sequence “GGGAGGGG” 

found near DMR0 straddles the H19 transcription start site (Figure 14C.)  In addition, as 

CTCF alone correlates best with hypermethylation of DMR0 (Figure 6A), CTCF 

expression correlates most strongly with the demethylation of the H19 promoter (Figure 

15A) (Y = -5.6484ln(x) + 27.295, R2 = .914).  These data suggests that in IH, the 

GGGAGGGG site near both DMR0 and the H19 promoter may be under the sole 

influence of CTCF.   In turn, promoter methylation correlates inversely with H19 

expression (Y = -3.4206ln(x) + 13.396, R2 = .7935) (Figure 15B.)  One potential 

explanation for these data is that CTCF upregulates H19 expression not only by binding 

to CTCF BS6 but also by contributing to the demethylation of its promoter.  As H19 is a 

putative tumor suppressor, this would be congruent with the anti-tumorigenic function of 

CTCF. 

 

 

CTCF and BORIS may be regulated by similar Micro RNAs in IH 

To investigate the potential role of micro RNAs in the pathogenesis of IH, a pilot micro 

RNA array study was undertaken.  All human micro RNA sequences currently 

catalogued at the Sanger 4.0 database were probed. A list of statistically significant micro 

RNAs were compiled by investigating the micro RNA transcriptome from five 

hemangiomas across an age span of 95, 420, 547, 760 and 1520 days against two normal 

endothelial cell control lines, HUVEC and HDMEC.  Any one micro RNA that varied 

with a p value of less than .01 from one sample to any other was considered significant 

(Figure 16.)  This reduced the number of potentially important Micro RNAs from 470 to 

167.  Secondly, a search for micro RNAs that target CTCF or BORIS was performed by 
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using the three major target prediction programs:  PicTar, TargetScan, and Mirbase 

(http://www.pictar.bio.nyu.edu; http://www.targetscan.org; 

http://microrna.sanger.ac.uk/sequences).   As micro RNA target prediction is an emerging 

computational science, only those RNAs that were predicted to target CTCF or BORIS 

by at least two independent algorithms were examined (Note: BORIS target predictions 

were only available from MirBase and TargetScan.)  This further reduced the number of 

candidate micro RNAs from 167 to 15.  Lastly, only those micro RNA’s from this group 

that were statistically significant were considered regulatory candidates of CTCF and 

BORIS (Figure 17 .)  By regression, these six micro RNA’s were correlated to the CTCF 

or BORIS transcript level that they putatively target.  Intriguingly, two related Micro 

RNAs on different chromosomes—mir-23a on chromosome 19 and mir-23b on 

chromosome 9—targeted both CTCF and BORIS by the majority of prediction 

algorithms (Figure 17.)  Furthermore, these two highly similar micro RNAs correlated 

strongly with the downregulation of both CTCF and BORIS (Figure 18 and 19.)  

Nonetheless, despite the structural similarities between these two RNAs, there was one 

significant A/U variation at position 18 near the 5’ phosphate with potential functional 

consequences (Figure 19.)  The effects of this variation were negligible regarding CTCF 

expression (Figure 18), as each correlated with the downregulation of CTCF equally well 

(Mir-23a:  Y = -.0003x + 2.533, R2 = .6317; Mir-23b:  Y = -.0003x + 2.525, R2 = .5546.)   

However, as the U in 23b formed an extra bond with CTCF compared to 23a (Figure 19), 

23b strongly correlated with the downregulation of CTCF while BORIS appeared 

unaffected: (Mir-23a vs. BORIS Y = -12.02ln(x) + 106.3, R2 = .7047; Mir-23b vs. 

BORIS Y = -10.282ln(x) + 90.693, R2 = .3385.)  When comparing the data first by micro 

RNA rather than CTCF or BORIS, another potential pattern emerges. Mir23a appears to 
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correlate with BORIS downregulation more strongly than CTCF (R2 = .6317 versus R2 = 

.7047,) while mir23b appears to correlate with CTCF downregulation more strongly than 

BORIS (R2 = .5546 versus R2 = .3385.)   From this data, it appears that both of these 

micro RNAs may downregulate CTCF and BORIS, yet the extent by which they do so 

could vary.   It may be that mir23a expression favors higher levels of CTCF relative to 

BORIS while mir23b expression favors the opposite.  Thus, the relative amounts of 23a 

and 23b may contribute to determining the relative levels of CTCF and BORIS.  This 

hypothesis was further tested by plotting the difference between mir-23a and 23b against 

the difference of CTCF and BORIS (Figure 20.)  These results strongly indicate that 

increases in mir-23a favor CTCF, while increases in 23b favor BORIS: Y = .0067x - 

5.5377,  R2 = .9299 (Figure XB.)  This is the first data suggesting that not only are micro 

RNAs imprinted[88], but micro RNAs may also affect imprinting itself by moderating 

the relative levels of chromatin organizing proteins.  
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Summary of Results: 

• Identified a Strongly Oncogenic Transcript BORIS in IH 
o Likely proliferative factor 
o First non-malignant neoplasm identified expressing ectopic BORIS 
 

• 13 Fold Increase in CTCF from Proliferating to Involuting IH 
o CTCF is a growth suppressive factor and BORIS antagonist 
o Likely involuting factor 

 
• Confirmed the Presence of BORIS and CTCF at the Protein Level 

o Significant increase in CTCF from youngest to older samples 
o BORIS is expressed throughout the age range but appears higher in younger 

samples 
 
• CTCF – BORIS is highly predictive of IGF2 Transcript levels 

o First to quantitate CTCF and BORIS precisely enough to correlate with IGF2 
o Likely mechanism is altered DNA methylation of IGF2/H19 imprinted 

regions 
 

• First Identified Genetic Abnormalities Associated with Non-
Familial IH 

o Progressive Hypomethylation of the H19 DMR 
 Strongly associated with CTCF transcript levels alone 
 Progressive: 

o Hypermethylation of DMR0 
 Strongly associated with CTCF transctipt levels alone 

 
• First Data Suggesting that CTCF-BS 6, Exon 9 and DMR0 

Cooperate to Regulate IGF2 in Humans (Previously Demonstrated 
in the Mouse) 

 
• Identified Potential Functional Significance of a Common C/T 

polymorphism in CTCF BS 6 
o T allele more sensitive to chromatin modifying effects of CTCF – BORIS 
o C allele more resistant 
o May explain clinical variability of the lesion 
o Polymorphism also identifiable in patient blood allowing for easy clinical 

testing  
 

• Identified a Pair of Micro-RNAs Targeting Both CTCF and BORIS 
o Mir23a favors CTCF while Mir23b favors BORIS 
o First data suggesting that Micro RNAs affect imprinting 

 Suggests a possible clinical therapy for BORIS positive tumors via 
exogenous dosing of anti-MIR23b siRNA or MIR23a facsimiles  
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DISCUSSION 
 
Hemangiomas are unique within the spectrum of human tumorigenesis.  Unlike most 

highly proliferative lesions, hemangiomas eventually regress in lieu of malignant 

transformation[2, 3, 7].  The benign nature of IH is particularly surprising in light of the 

fact that hemangiomas are BORIS positive.  Until now, BORIS expression outside the 

testes is invariably associated with malignancy--80% of lymphomas, breast, osteosarcoma 

and melanoma, among others [47, 59, 92].   This places hemangiomas in yet another 

highly unusual category--the first benign tumor that is BORIS positive.  In view of these 

facts, perhaps the most germane question to this discussion is not how hemangiomas 

begin, but rather why they end. 

 

Given that CTCF is a proven tumor suppressor [57], the thirteen-fold increase observed 

from proliferative to involuting lesions, suggests one potential explanation.  To date, a 

change in transcript level of this magnitude is the most significant yet identified in IH.  

Furthermore, CTCF’s pivotal role in maintaining the imprinted regulation of IGF2 and 

H19 is supported by a decade of research [16, 17, 19, 24, 29, 31, 40, 45, 47, 56, 67].  

Elevations in CTCF may explain the reciprocal decline of IGF2 (mitogenic factor) and rise 

in H19 (tumor suppressor.)  Although the exact role of H19 is yet to be defined, the fact 

that mir-675 stems from H19 suggests new roles for this functional RNA [78].  Levels of 

H19 increase two fold in IH while its promoter is progressively demethylated; the role of 

H19 in the pathogenesis of IH could be germane to the topic of involution.  A quantitative 
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RT PCR specifically for mir-675 is currently underway.  This is in conjunction with mir-

675 transfection studies in hemangioma enriched EC cultures documenting any potential 

effects of this newly discovered micro RNA. 

 

Thus far, CTCF and BORIS have been addressed individually.  However, it is important to 

note that in IH they are co-expressed and both at abnormally high levels compared to EC 

controls.  To further complicate matters, experimental evidence suggests that CTCF and 

BORIS oppose one another functionally:  the IGF2/H19 is a classic example of their 

potential rivalry. As CTCF is binding is necessary to stabilize methylation levels at CTCF 

BS6 [19, 35, 38], ectopic BORIS likely methylates those same regions [66].   Taken one 

step further, CTCF and BORIS are likely competitive regulators IGF2.  In abnormal 

tissues expressing both transcripts, IGF2 transcript levels should reflect a function of both 

CTCF and BORIS.   The transcriptional results support this notion in IH.  Although the 

ratio between CTCF and BORIS was predictive of IGF2 production (data not shown), it 

was the difference between these two rival siblings that correlated best with IGF2.  

Moreover, the CTCF – BORIS difference also revealed another interesting phenomenon.  

A polymorphic site within the critical CTCF BS6 separated the samples into two distinct 

groups.  The “T” allele conferred a far greater sensitivity of IGF2 production to relative 

levels of CTCF and BORIS.  On the other hand, the “C” allele was far less responsive to 

alterations in the CTCF – BORIS difference.  As the relative difference between these two 

transcripts is dynamic in IH, this polymorphism may be of clinical importance.  The 

implication being, that the “T” and “C” alleles may consistently produce different levels of 

IGF2 in IH.  Moreover, IGF2 overproduction is a major factor determining resistance to 

apoptosis and aggressiveness in multiple tumor models and clinical settings [93-95].  
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Specifically to IH, the potential allelic difference may impact such clinical variables as 

tumor size, aggressiveness, or time to involution.  A prospective clinical investigation to 

explore the potential genotypic effects of the C/T polymorphism is nearing completion.  

Furthermore, the results of which could potentially be extrapolated beyond IH to other 

BORIS positive tumors with deranged IGF2 axes: melanoma, breast, osteosarcoma, and 

80% of leukemia [67, 96, 97].  Most conveniently, regardless of tumor type, testing a 

person’s carrier status could be performed with a simple blood test.    

 

 

It is important to note that all hemamngioma samples—be they proliferative or 

otherwise—demonstrate epi-genetic characteristics of IGF2 repression. DMR0 (a 

methylation sensitive repressor) was hypermethylated above the expected 50% as the 

matched control blood and endothelial cell control lines were normal.  Moreover, Exon 9 

(a methylation sensitive activator) focally demethylated below the expected 50% level of 

methylation; in addition, both the EC controls and matched blood controls were 

methylated slightly above the expected values.  Taken alone, these epi-genetic alterations 

would suggest repression of IGF2.  Yet, clearly this is not the case.  From these facts, two 

questions arise:  1) What factors are responsible for the changes in methylation and 2) 

How can IGF2 levels in IH be so dramatically elevated despite the predominance of this 

repressive methylation.   

 

1) Factors that may be responsible for repressive methylation at IGF2:  A potential answer 

stems from appreciating that both BORIS and CTCF are upregulated in IH.  Not only did 

CTCF increase 13 fold from proliferative to involuted lesions, but it also began at a level 5 
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fold higher than EC control lines.  The potential effects of increased CTCF on DNA 

methylation is suggested by correlating the two.  Hypermethylation at DMR0 correlated 

strongly with the level of CTCF transcript alone; complementary to this data, only CTCF 

levels, independent of BORIS, correlated with demethylation of the H19 promoter.  

Perhaps it is not coincidence that these two imprinted regions are adjacent to the identical 

“GGGAGGGG” sequences that can bind CTCF.   Though the 11 zinc fingers  shared 

between CTCF and BORIS are identical, the intercalating amino acid sequences are not 

[59].  These differences may confer subtly dissimilar binding spectrums for CTCF and 

BORIS.  Possibly, GGGAGGG sites favor CTCF binding over BORIS.   This hypothesis 

is being tested using chromatin immuno-precipitation techniques that will 1) confirm, or 

refute, that these native sequences bind CTCF or BORIS and 2) quantitate the relative 

abundance of CTCF and or BORIS binding.  As for the focal demethylation at Exon 9, a 

preponderance of CTCF in early samples may be responsible.  A parallel example of the 

H19 promoter may demonstrate this point.  In the samples tested, the H19 promoter 

demethylates steadily over the course of time.  Although the earliest time point available 

for study is three months, the projection of this curve back to time point zero, indicates 

that children are born with normally methylated DNA.  If ultimately true, this fact would 

suggest that abnormal methylation patterns in IH are acquired after birth.  Furthermore, as 

CTCF was the only factor found to correlate with demethylation of the H19 promoter, 

these findings may be generalizable to other regions of H19/IGF2.  Currently, samples 

from younger patients to confirm this projection at H19 are being sought.  Moreover, these 

younger samples may potentially reveal progressive chromatin changes at Exon 9 and 

DMR0 that may take place more proximate to birth.       
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2)IGF2 upregulation in IH despite the predominance of repressive methylation:  Kurukuti 

et al [17] demonstrated in murine models, as the IH data supports in the human, that IGF2 

activation and repression are not functions of any single imprinted region.  Rather, Exon 9, 

DMR0 and CTCF BS6 form a cooperative network of gene regulation.  In the tissue 

tested, although methylation at Exon 9 and DMR0 would indicate repression of IGF2, 

CTCF BS6 (perhaps the most important methylation sensitive activator) was not 

hypomethylated compared to matched patient blood controls.  In fact, samples making a 

predominance of BORIS were as much as 50% more methylated than their CTCF rich 

counterparts.  Exon 9 responded in kind to elevated levels of BORIS with up to a 100% 

increases in methylation compared to those samples transcribing more CTCF.   In this 

way, BORIS may potentially upregulate IGF2 by working around areas of focal 

repression, taking advantage of the cooperativity between locally imprinted regions.  

Furthermore, recent evidence indicates that BORIS also works as a transcription factor by 

recruiting Sp1 to promoter sites, a capability that CTCF lacks [98].  Interestingly, software 

analysis (matinspector v2.2, www.geomatix.de) indicates numerous Sp1 binding sites 

within Exon 9 and DMR0 of IGF2.  Thus, it is possible that heightened levels of IGF2 in 

IH, are caused by the expression of BORIS, working either through chromatin remodeling, 

transcription factor recruiting, or both.  Currently, this line of research is being 

investigated by in vitro transfection experiments of hemangioma derived EC cultures with 

CTCF and BORIS.  Furthermore, chromatin immuno-precipitation analysis will confirm 

the level of respective CTCF and BORIS binding at the sites of interest.  However when 

plotting IGF2 expression against the difference between CTCF and BORIS, this study 

offers persuasive correlational evidence suggesting that more than 97% (R2 = .976,) of the 

variation in IGF2 can be explained by the difference in CTCF to BORIS.  This makes 
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BORIS a potentially attractive therapeutic target in IH.  Loukinov et al [92], demonstrated 

prolonged survival in a BORIS positive murine tumor model following administration of a 

“BORIS tumor vaccine.”  Such BORIS vaccines may be feasible in female patients 

suffering from IH, as BORIS to date is not transcribed in normal female tissue [59].  

However, an anti BORIS vaccine may disrupt fertility in males.  Yet, the testes are an 

immune privileged site and may be unaffected by such therapies. 

 

As the potential consequences of CTCF and BORIS co-expression in IH have been 

investigated, the question remains:  What may be causing the inappropriate expression of 

CTCF and BORIS to begin with?   Normal transcription of BORIS is strictly limited both 

spatially and temporally to primary spermatocytes,  soon to become silenced upon 

reactivation of CTCF in postmeiotic germ-line cells [59].  The mutually exclusive 

expression profile of CTCF and BORIS in normal tissue begs the question: how are these 

two respective chromatin organizing proteins reciprocally regulated in the first place?  

Several potential regulators of CTCF have been proposed including poly-ADP-

ribosylation and phosphorylation [51, 99-101].  However, no candidate genes regulating 

BORIS are yet identified.  A novel approach to this question was to, for the first time, 

investigate the micro RNA transcriptome of IH.  This analysis was further informed by 

consulting the three primary micro RNA target prediction programs available to the 

public.  Quite amazingly, one set of related micro RNAs, mir-23a and mir-23b, was 

predicted to target both CTCF and BORIS.  Furthermore, these two micro RNAs were 

differentially regulated from proliferative to involuting hemangiomas.  The preliminary 

data comparing two EC control cell lines against five hemangioma samples indicates that 

both mir-23a and 23b are downregulated by 66% compared to normal ECs.  
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Concordantly, both CTCF and BORIS were strongly upregulated in matched samples.  If 

further testing confirms this finding, then downregulation of micro RNA 23a and 23b 

collectively could be central to the upregulation of CTCF and BORIS, which may figure 

largely in pathogenesis of IH.  However, collective downregulation does not address the 

relative levels of CTCF and BORIS in a given tissue sample.  Upon closer inspection, it 

was found that mir-23a preferentially inhibited BORIS while mir-23b preferentially 

inhibited CTCF in IH.  Furthermore, the difference between mir-23a and 23b correlated 

strongly with the difference between CTCF and BORIS:  Higher relative levels of mir-

23a favored CTCF while higher relative levels of 23b favored BORIS.  By regression, the 

difference between 23a and 23b, with an R2 = .9299, explained over 90% of the variation 

in the CTCF – BORIS difference.  This microarray study is expanding to include ten 

more samples with quantitative RT PCR for mir-23a and mir-23b to validate the results.  

The next step will be to confirm the effects of mir-23a and 23b in BORIS positive 

hemangioma cell cultures.  By explaining CTCF and BORIS disregulation by a 

mechanism of micro RNA, a number of small molecule therapies may be available.  As 

proof of principle, Krutzfeldt et al [102] stably knocked down mir-122 in mouse livers 

using a liver specific targeting system and chemically stabilized antisense 

ribonucleotides, essentially using an exogenous micro RNA against an endogenous one.  

They demonstrated long lasting downregulation of mir-122 with stable upregulation of 

most of the computed targets of mir-122.  Furthermore, inhibition of mir-122 produced 

the expected phenotype of impaired cholesterol biosynthesis.  It is likely that CTCF and 

BORIS are central to the pathogenesis of IH (not to mention sundry malignancies).  If 

indeed they are regulated by mir-23a and 23b, then targeting mir-23b in endothelial cells 

may establish a CTCF to BORIS difference favoring involution.  This would offer 
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unparalleled gene specificity as well as tumor specificity if such a therapy were 

encapsulated in target specific vectors using hemangioma selective markers such as Glut-

1, CD 34 or the Lewis Y antigen [6]. 

 

 

Within the gamut of human tumors, hemangiomas are unique.  Studying the pathogenesis 

of IH is an opportunity to compare dynamic molecular processes against an equally 

dynamic but predictable disease course.  Central to these findings is that IH pathology is 

epi-genetically related to IGF2 and H19.  However, this is one imprinted locus among 

many.  It will be important to quantify the potential effects of CTCF and BORIS 

coexpression on other potentially sensitive regions.  Fortuitously, the original micro-array 

paper implicating IGF2 as an important factor in IH, also offers a glimpse into this new 

potential line of research [8].  Although not specifically addressed by the authors, the 

supporting micro array data indicates that DLK, another imprinted gene, is 

downregulated four fold from proliferative to involuting lesions.  Furthermore, like IGF2, 

DLK is paternally transcribed with growth promoting potential of its own.  Moreover, as 

DLK is a potent inhibitor of adipogenesis, the fact that hemangiomas involute into fatty 

tissue as DLK is downregulated merits further investigation.   

 

Another important challenge facing human epi-genetics is to identify the regulatory 

networks controlling CTCF and BORIS themselves.  Here, IH offers important clues as 

well.  CTCF and BORIS may be partially regulated by micro RNAs.  Mir23a and 23b 

appear to correlate not only with the total level of CTCF and BORIS but also the 

difference between them.  Recently, it has been demonstrated that certain micro RNAs 
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within the DLK locus, are also imprinted [88]; one of them, mir-299, is computed to 

target CTCF.  The possibility that these micro RNAs are regulated by and are potentially 

regulators of CTCF and BORIS is currently being investigated.  These data offer a new 

and yet to be verified conceptual model of imprinting and growth, implicating feedback 

networks between chromatin modifying proteins, imprinted genes and the micro RNA 

transcriptome.  As such, IH offers a singular opportunity to study human epi-genetics as 

the disease course itself, from proliferation to involution, titrates potential epi-genetic 

modifiers in a predictable fashion.  In this way, IH can be thought of as a natural 

experiment in chromatin remodeling just beginning to be explored. 

 

 

Summary of Future Directions 

Experiment  Status 

Loss of imprinting studies using allele specific RT PCR of 
polymorphic exons in H19 and IGF2:  This will confirm 
biallelic versus monoallelic expression of IGF2 and/or H19 

Assays designed and DNA 
Genotyped: hetrozygotes 
identified, will perform 
analysis of cDNA forthwith  

Loss of Function Experiments:  Knockdown of CTCF and 
BORIS in hemangioma derived Endothelial cell cultures 
with siRNA--Followed by FACS analysis for hemangioma 
specific markers, proliferation assays, DNA methylation 
analysis transcriptional quantitation and protein analysis. 

In progress: Collaborating 
with the labs of Dr. Jordan 
Pober and Dr. Ruth 
Halaban  

Gain of Function Experiments:  BORIS Transfection of 
Normal HDMEC cells--Followed by FACS analysis for 
hemangioma specific markers, proliferation assays, DNA 
methylation analysis transcriptional quantitation and 
protein analysis. 

In progress: Collaborating 
with the labs of Dr. Jordan 
Pober and Dr. Ruth 
Halaban  

Retrospective Study of the C/T polymorphism effect on 
Hemangioma growth using 21 previously epi-genotyped 
samples 

Nearing completion 
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Prospective Clinical Study Evaluating the effectiveness of 
the C/T polymorphism as a clinical test predicting time to 
involution and tumor size in IH 

Planned to begin April, 
2007: in Cooperation with 
Dr. Milton Waner of the 
Vascular Birthmarks 
Foundation of New York 

Expansion of all IH tissue experiments including the 
micro RNA array studies with 10 more samples:  IGF2 
ELIZA and further quantitative RT PCR for Mir-675, Mir-
23a, Mir-23b and IGF1 and 2 receptors.  

Sample Collection ongoing: 
Expected date of 
completion, April, 2007  

Transfection of BORIS positive melanoma cell lines with 
Mir 23a, Mir23b and their respective antagomers 
followed by quantitative RT PCR for micro RNAs, CTCF, 
BORIS and IGF2, with FACS phenotyping 

Planned to begin May, 
2007:  In cooperation with 
the lab of Dr. Ruth Halaban 

Animal Trial of IGF2 signal modulation using injectable 
poly-L-lactide carriers impregnated with Rapamycin, an 
IGF2 signal transduction antagonist. 
 

In cooperation with the Dr. 
Mark Saltzman Lab (Yale 
department of Biomedical 
Engineering.)  
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