
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

MIR-237 is Likely a Developmental Timing Gene
that Regulates the L2-to-L3 Transition in C.
Elegans
Xi Li
Marquette University

Recommended Citation
Li, Xi, "MIR-237 is Likely a Developmental Timing Gene that Regulates the L2-to-L3 Transition in C. Elegans" (2010). Master's Theses
(2009 -). Paper 65.
http://epublications.marquette.edu/theses_open/65

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses


MIR-237 IS LIKELY A DEVELOPMENTAL TIMING GENE THAT REGULATES 
THE L2-TO-L3 TRANSITION IN C. ELEGANS  

 
 
 
 
 
 
 
 
 

by 
 

Xi Li, B.S. 
 
 
 
 
 
 
 
 
 

A Thesis submitted to the Faculty of the Graduate School, 
Marquette University, 

In Partial Fulfillment of the Requirements for the Degree of Master of Science 
 
 
 
 
 
 
 
 
 

Milwaukee, Wisconsin 
 

August 2010 
 
 
 
 

 
 



 
 
 

ABSTRACT 
MIR-237 IS LIKELY A DEVELOPMENTAL TIMING GENE THAT REGULATES 

THE L2-TO-L3 TRANSITION IN C. ELEGANS  
 
 

Xi Li, B.S. 
 

Marquette University, 2010 
 
 

            Development is regulated in both the spatial and temporal dimensions. The 
developmental timing pathway in C. elegans is the most extensively studied timing 
mechanism. Many components of the pathway are conserved across phyla. 
Postembryonic development of C. elegans is comprised of four larval stages (L1 to L4). 
The lin-4 microRNA regulates development from the L1 to L3 stages by repressing the 
expression of key developmental timing genes: lin-14 and lin-28. Another microRNA, 
mir-237, shares sequence similarity with lin-4 and they are grouped into one microRNA 
family. mir-237 and lin-4 display closely overlapped temporal expression in the 
hypodermis. I hypothesize that mir-237 may function in the same developmental timing 
pathway as lin-4. I used a genetic approach to analyze the relationship between mir-237 
and other important developmental timing genes that regulate development at early 
stages. Data from genetic analysis suggests that mir-237 likely functions downstream of 
lin-14 and lin-28, and in parallel with lin-46 to control L2-to-L3 transition.  
             mir-237 expression requires lin-4 activity. In lin-4(0) mutants, mir-237 
expression is reduced. I used quantitative Real-Time PCR and a transcriptional GFP 
reporter transgene to analyze the mechanism for the regulation of mir-237 in lin-4(0) 
mutants. My data suggest that this regulation of mir-237 is largely transcriptional. lin-14 
likely mediates this regulation.  
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I. INTRODUCTION 
 
 
A brief introduction to developmental timing in C. elegans 
 
 

Animal development from a single cell requires precise coordination of developmental 

events such as cell division, differentiation and morphogenesis. In addition to genes that regulate 

spatial development, there are also genes that control development in the temporal dimensions: 

Developmental events must be executed in the correct sequence and at the appropriate times. 

These genes are called developmental timing, or heterchronic genes (Abbott, 2003; Moss, 2007). 

Developmental timing genes have been identified in a variety of animals as well as plants, and are 

most intensely studied in C. elegans due to its relatively simple and invariant cell lineages 

(Sulston and Horvitz, 1977). Many important developmental timing genes in the timing pathway 

of C. elegans are conserved across phyla, and their developmental expression patterns also 

implies conserved function in timing (Rougvie, 2001).  

Postembryonic development of C. elegans is comprised of four larval stages (L1 to L4) 

distinguished morphologically by molts and the subsequent formation of the reproductive adult 

worm. At each stage, worms execute essentially invariant developmental programs that are 

regulated by developmental timing genes (Abbott, 2003; Ambros and Horvitz, 1984; Ambros and 

Horvitz, 1987).  Misexpression of developmental timing genes can lead to either omission or 

reiteration of stage-specific developmental programs in multiple tissues, resulting in either 

precocious or retarded development of those tissues relative to other unaffected tissues. For 

example, lin-14 activity is critical to proper execution of the L1 stage program. In lin-14 loss of 

function mutants, the L1 stage program is skipped in many cell lineages relative to other normally 

developed tissues such as the gonad (Ambros and Horvitz, 1984; Ambros and Horvitz, 1987). As 

a result, certain developmental events that usually occur at the L2 stage, such as L2 stage specific 

cell division and differentiation pattern, dauer formation, and synaptic rewiring, will occur 

precociously at the L1 stage in mutant worms (Ambros, 2000). Whereas lin-14 gain of function or 
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lin-4(0) worms keep reiterating the L1 stage developmental program in those tissues relative to 

the normally developing gonad (Ambros and Horvitz, 1984; Ambros and Horvitz, 1987).  

 

Hypodermal cell division and differentiation are regulated by the developmental timing pathway. 

Many of the developmental timing genes are studied by analyzing the effects of their 

mutations in the development of hypodermal tissue, especially a type of hypodermal cells called 

seam cells. The transparent cuticle of C. elegans allows us to keep track of seam cell lineages 

during development. Seam cells are located along the lateral side of the worm body (Sulston and 

Horvitz, 1977). The seam cell division and differentiation pattern is precisely regulated at each 

stage. Seam cells belong to three different cell lineages. Several V-lineage seam cells divide in a 

stem-cell-like manner with one daughter cell differentiating and the other daughter cell self-

renewing (Figure 1). At the L2 stage, the self-renewing daughter cell divides twice. Due to the 

“L2 proliferative division”, we can analyze the progression of developmental programs at the 

early stages by examining the number of seam cells. At the L4 stage, the self-renewing daughter 

cells will also terminally differentiate and generate an adult specific cuticle structure during L4 

molt called “alae”. Alae formation is used as an adult-specific marker to monitor the larva to 

adult transition.  
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microRNAs are critical regulators of developmental timing.  

Some important heterochronic genes encode microRNAs. For example, the first two 

identified microRNAs, lin-4 and let-7, are key players in the regulation of development at early 

and late stages, respectively (Lee et al., 1993; Reinhart et al., 2000). Studies on the developmental 

timing pathway also provide the opportunity for improving our understanding about microRNA 

functions during development.  

         microRNAs are short (20-23 nucleotide), endogenous, single-stranded RNA molecules. To 

briefly summarize microRNA biogenesis: 1) microRNA genes are transcribed by RNA 

polymerase II or RNA polymerase III into pri-microRNA, 2) The pri-microRNA is next 

endonucleolytically cleaved by Drosha to generate a shorter stem loop, the microRNA precursor 

(pre-microRNA), 3) The pre-microRNA is exported out of the nucleus, processed by the RNase 

Dicer. 4) The mature microRNA is then loaded into RNA-induced silencing complex (RISC) 

where it silences target mRNAs (Winter et al., 2009) (Figure 2).  

             miRNAs can silence target mRNAs through multiple mechanisms, including degradation 

of the target mRNA, inhibition of translation initiation, inhibition of translation elongation 

(Figure 7). 

Figure 1. The number 
of hypodermal seam 
cells and alae 
formation are markers 
for temporal 
patterning. The cell 
lineage pattern is 
shown for the 
hypodermal seam cells 
V1 – V4 and V6.  

Total Number 
seam cells:  
 
 
          
          

10 

16 

16 

16 
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In most cases, the recognition of a microRNA and its target mRNAs is mediated by the 

complementary binding sites in the 3’ UTR of the target mRNAs. One microRNA can regulate 

multiple target genes. For example, lin-4 microRNA represses expression of both lin-14 and lin-

28 through binding to the complementary sites in their 3’ UTR (Wightman et al., 1993; Moss et 

al., 1997). An average microRNA is predicted to bind approximately 100 target sites (Brennecke 

et al., 2005). 

 

 

 

       Figure 2. Biogenesis of miRNAs and formation of RISC complex. 
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Figure 3. Possible mechanisms of microRNA mediated silencing. (miRNP : microRNAs  function 
in the form of ribonucleoprotein complexes) 

(A) Inhibition of translation initiation. (miRNP prevents the formation of translation 
initiation complex) 

(B) Inhibition of translation elongation. (Such mechanisms include slowed or stalled 
elongation, ribosome drop-off/ premature termination, and cotranslational degradation of 
the nascent polypeptide.) 

(C) Deadenylation of target mRNAs followed by mRNA degradation. 
 

 

 

 

 

(C) 
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The 2-8 nucleotides sequence from the 5’ region of the microRNAs are termed the “seed” 

region. microRNAs are grouped into families based on sharing a seed region (Bushati and Cohen, 

2007). The microRNA-target recognition largely depends on the complementary binding between 

the microRNA 5’ seed region and the target mRNA (Brennecke et al., 2005). In vitro studies 

suggest that the seed region interacts extensively with the PIWI domain of the argonaute protein, 

which is the central catalytic component of RISC. This interaction results in correct geometry to 

position the target strand within the catalytic site, which likely mediates the target strand 

degradation or translational repression (Bartel, 2009; van den Berg et al., 2008; Parker et al., 

2006; Doench et al., 2003) (Figure 8).  In vivo studies also confirmed that microRNA family 

members could function together in one common biological process and their function could be 

overlapping or redundant (Abbott et al., 2005).  

 

 

 

Figure 4. A schematic diagram showing the role of the “seed” region in microRNA-target 
recognition and microRNA mediated silencing. 
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            However, the mechanism of microRNA mediated silencing is not fully understood. It is 

found that for some microRNAs, the 3’ ends are determinants of target specificity within 

microRNA families (Brennecke et al., 2005). Possibilities remain that sequences other than the 

seed region are also responsible for the repression by a microRNA. Therefore, microRNA family 

members may have distinct targets and function. Whether microRNA family members are 

functionally equivalent needs further investigation.  

 

A brief overview of the early developmental timing pathway in C. elegans 

          A simplified model of the heterochronic gene pathway in early developmental transitions 

from the L1 stage to the L3 stage is shown in Figure 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        lin-14 is the major regulator of the L1 stage development. lin-4 microRNA accumulates at 

early stages, which causes down-regulation of lin-14 (Feinbaum and Ambros, 1999). Reduction 

of LIN-14 levels trigger the L1 to L2 transition (Ambros and Horvitz, 1987; Holtz and 

Pasquinelli, 2009). lin-14, lin-28, lin-46, and the three let-7 family members mir-48/84/241 all 

function to regulate the L2 to L3 development (Ambros and Horvitz, 1987; Ambros and Horvitz, 

Figure 5. A 
simplified model 
of the 
heterochronic gene 
pathway in early 
developmental 
stages (L1 to L3) 
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1984; Pepper et al., 2004; Abbott et al., 2005). lin-14 and lin-28 positively regulate each other 

through a feedback loop (Seggerson et al., 2002). lin-28 positively regulates the downstream gene 

hbl-1. lin-46 and lin-28 have opposing activities and they may converge on hbl-1. (Pepper et al., 

2004). The three let-7 family members mir-48/84/241 function in parallel to lin-28 and lin-46 to 

regulate hbl-1 (Abbott et al., 2005). At the L2 stage, lin-4 expression is further up-regulated and 

LIN-14 level is further lowered. Due to the regulation by lin-4 and lin-14, LIN-28 level is 

reduced, and HBL-1 level is decreased, which triggers the L2 to L3 development (Abrahante et 

al., 2003; Moss et al., 1997)    

 

lin-4 regulates the L1 to L3 development by repressing lin-14 and lin-28. 

lin-4 microRNA down-regulates the expression of its targets lin-14 and lin-28 through 

their 3’UTR (Wightman et al., 1993; Moss et al., 1997). lin-14 mRNA 3’UTR contains seven 

complementary sites for lin-4 and its repression is closely associated with the increased 

expression of lin-4 (Wightman et al., 1993; Holtz and Pasquinelli, 2009). The expression of lin-4 

is not detected at hatching, increases during the L1 to L2 transition, and peaks at the mid L3 

stage (Feinbaum and Ambros, 1999). LIN-14 protein expression is highest after hatching, 

decreases during the L1 to L2 transition, and becomes almost undetectable by the early L2 stage 

(Feinbaum and Ambros, 1999; Ruvkun et al., 1989).  

lin-4 represses lin-28 through a single binding site in its 3’UTR (Moss et al., 1997), 

which may account for the difference in the temporal pattern of lin-14 and lin-28 down-

regulation. LIN-28 protein expression is abundant at L1, decreases during L2 to L3 transition, and 

becomes undetectable by L3 stage (Moss et al., 1997).  

The temporal expression patterns of lin-4, lin-14 and lin-28 are shown in Figure 6. 
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Figure 6. Temporal expression patterns of lin-4, lin-14 and lin-28. 

 

 

lin-4 independent mechanism to repress lin-28 

lin-28 is also indirectly regulated by lin-14, independently of lin-4. In lin-4(0); lin-14(ts) 

mutants, at the restrictive temperature of 20˚C, LIN-14 level is similar to that in the wild type 

worms, and LIN-28 level is down-regulated despite the absence of lin-4. The mechanism for this 

repression is not clear. The LIN-28 protein level decreases to a much bigger extent compared to 

the reduction of the lin-28 mRNA level (Bagga et al., 2005, Seggerson et al., 2002). The sucrose 

gradient profile of lin-28 mRNAs associated with polysome remains unchanged in lin-4(0); lin-

14(ts) mutants, suggesting that this repression of lin-28 by lin-14 may occur after translation 

initiation (Seggerson et al., 2002).  A GFP reporter transgene assay showed that the 3’UTR of lin-

28 is required for this lin-4 independent regulation by lin-14 (Seggerson et al., 2002). The above 

evidence leads to the hypothesis that a microRNA may be involved in the lin-4 independent 

repression of lin-28. 
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lin-14, lin-28, and hbl-1 are key regulators of the L1 to L3 development 

         lin-14 plays a crucial role in regulating the L1 stage development. It encodes a DNA 

binding protein that likely functions as a transcription factor (Hristova et al., 2005). High level of 

LIN-14 ensures the execution of the L1 stage program. There are three differentially spliced LIN-

14A and LIN-14B1/B2 protein isoforms. They show the same temporal expression pattern and 

function, but they are different in the amount of expression and activity (Reinhart and Ruvkun, 

2001). The overall level of LIN-14 protein is the critical determinant of temporal cell fate: at the 

L1 stage, the total amount of LIN-14A and LIN-14B activity is robust and this allows the 

execution of the L1 stage program. At the L2 stage, the level of LIN-14 goes down to a moderate 

level. And this level helps to maintain high level of lin-28 expression, which is required for 

execution of the L2 stage program. lin-28 encodes an RNA binding protein that could function to 

regulate translation or RNA processing (Winter et al., 2009). In lin-28(0) mutants, the L2 stage 

program is skipped and worms show adult characteristics precociously at the L4 stage (Ambros 

and Horvitz, 1984). In lin-28(gf) mutants, the L2 stage program is reiterated and worms display 

retarded development (Moss et al., 1997). 

hbl-1 is the most downstream key regulator of the L2 to L3 stage development. 

Knockdown of hbl-1 by RNAi causes the worms to display reduced number of seam cells, 

indicating a partial omission of the L2 stage program (Abrahante et al., 2003).    

 

The unknown: function of mir-237 in developmental timing 

mir-237 is a lin-4 microRNA family member in C. elegans. A study using transcriptional 

mir::gfp reporter showed that lin-4 and mir-237 display distinct but overlapping temporal and 

spatial expression patterns (Esquela-Kerscher et al., 2005).  

In hypodermal cells, lin-4 expression is first detected at the late L1 stage, and is up-

regulated at the early L2 stage with peak expression at the L3 stage. In contrast, mir-237 is first 
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detected at the early L2 stage, and is upregulated at the early L3 stage with peak expression at the 

L4 stage (Figure 7).  

 

 

       Figure 7. Temporal expression of lin-4 and mir-237 in the hypodermis. 

 

 

             The overlapping temporal and spatial expression patterns of the two lin-4 microRNA 

family members imply that they may have common targets and may function in the same 

pathway. The lin-4 microRNA is a key regulator in the early developmental timing pathway. It is 

unknown whether mir-237 also controls early developmental timing. Loss of mir-237 alone does 

not cause an observable mutant phenotype (Miska et al., 2007). Evidence is lacking so far that 

supports its role in regulating developmental timing at the early stages. Based on the temporal 

expression profile of mir-237, I hypothesized that mir-237 may regulate the L2 to L3 

transition. I used a genetic approach to analyze the genetic relationship between mir-237 and 

other developmental timing genes at the early stages. 

             In addition, northern blot showed that in lin-4(0) mutants, mature miR-237 level is 

significantly reduced. Other microRNAs such as the three let-7 family microRNAs mir-48/84/241 

are not affected as much, suggesting that the repression of mir-237 in lin-4(0) mutants is specific. 

But the underlying mechanism is not known yet. One microRNA affecting the activity of its own 
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family member hasn’t been investigated so far. It is unknown whether this mir-237 repression in 

lin-4(0) mutants is at the transcriptional level or post-transcriptional level. lin-14 and lin-28 are 

the targets identified for lin-4. Both LIN-14 and LIN-28 level are high in lin-4(0) mutants 

(Wightman et al., 1993; Moss et al., 1997). It is unknown whether either LIN-14 or LIN-28 

can regulate mir-237 levels. I used quantitative Real-Time PCR and a transcriptional GFP 

reporter transgene to address these questions.  

 

A brief summary of major findings 

My data indicate that mir-237 is likely a developmental timing gene in the early timing pathway 

to regulate the L2-to-L3 transition. In addition, the repression of mir-237 in lin-4(0) mutants is 

largely at transcriptional level.    
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II. MATERIALS AND METHODS: 
 
 
Nematode Strains 

C. elegans strains were grown under standard conditions as described (Wood,1988). 

Strains used are listed in Table 1. The wild type strain used was var. Bristol N2 (Brenner, 1974). 

Strains were grown at 20˚C, except where otherwise indicated. Double and triple mutant strains 

were built by standard genetic crossing. For genotyping mutant strains, mutant alleles were 

identified by performing PCR reactions that amplified the genomic region flanking the mutations. 

Then the amplified region was either sequenced (Functional Biosciences) or characterized by its 

size to confirm that it was the mutant allele. For the sequences of primers used, see Table 2.  

 

Phenotype Analysis 

1. L4 molt lethality: the number of L4m-stage worms that burst at the vulva were 

scored.  

2. Seam cell assays: larval stages were assessed by gonad morphology. Worms were 

anesthetized with 1mM levamisole and then mounted on agarose pads for viewing. 

The number of lateral hypodermal seam cells was counted at specific larval stages 

using fluorescence microscopy. Seam cells were identified by GFP expression from 

wIs78 IV, which contains the seam cell specific marker scm-1:gfp that marks seam 

cell nuclei (Terns et al., 1997). t-test is preformed to analyze the results of the seam 

cell assays. 

3. Alae formation assays: Adult lateral alae formation was scored using Nomarski DIC 

microscopy. Alae and seam cells were scored on one side of individual animals. Chi-

square is performed to analyze the results of the alae formation assays. 
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4. Transcriptional GFP reporter assays: To analyze transcriptional regulation of mir-

237, strains were built with a transgene that contained the 2kb promoter region for 

mir-237 fused to gfp (mals135, Pmir237::gfp) (Martinez et al., 2008a). Images of the 

mir-237 transcriptional GFP reporter in the hypodermal tissue for all strains were 

taken at the same exposure for each stage. 0.982, 0.39, 0.055 are the used exposure 

for L1, L3 and L4 stage, respectively. For hypodermal tissue of each worm, DIC and 

fluorescence images were taken at the same plane of focus.  

 

RNA isolation, reverse transcription and quantitative Real-Time PCR 

Total RNA was isolated from staged populations of worms as previously described (Lee 

and Ambros, 2001). Two sets of RNA samples were staged and collected independently. The 

integrity of the isolated RNA was examined by agarose gel electrophoresis. The concentration of 

the RNA was measured by NanoDrop spectrophotometer. Mature mir-237 level was measured by 

TaqMan MicroRNA Assays (Applied Biosystems) according to the manufacturer’s protocol. 1 to 

10 ng of total RNA was used in each 15 - µL RT reaction. To prepare the Real-Time PCR 

reaction, the cDNA product was diluted 1:15.  All reactions were run in triplicate. snoRNA 

(sn2429) was the endogenous control used to normalize the expression levels of mir-237. For 

both sets of RNA, Real-Time PCR assay was performed using both BioRad MyiQ Single-Color 

Real-Time PCR detection system and the Applied Biosystems StepOnePlus Real-Time PCR 

Systems. Real-Time PCR results were analyzed using the comparative CT  method (Thomas D 

Schmittgen & Kenneth J Livak, 2008).  
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Table 1. List of strains 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Strain   Genotype 
RG733 
RF168 
RF173 
RF167 
RF204 
RF205 
RF190 
RF191 
RF194 
RF195 
RF200 
RF201 
RF303 
RF304 
RF404 
RF405 
VT1113 
RF305 
RF306 
RF366 
RF446 

wIs78 IV   (It contains the seam cell specific marker scm-1::gfp) 
mir-237(n4296)X; wIs78 IV  
lin-14(ma135)X; wIs78 IV 
lin-14(ma135) mir-237(n4296)X; wIs78 IV 
lin-28(n719)Ι; wIs78 IV 
lin-28(n719)Ι; mir-237(n4296)X; wIs78 IV 
lin-28(n719)Ι 
lin-28(n719)Ι; mir-237(n4296)X 
mir-48 mir-241(nDf51)V 
mir-48 mir-241(nDf51)V; mir-237(n4296)X 
lin-46(ma164)V 
lin-46(ma164)V; mir-237(n4296)X 
lin-46(ma164)V; wIs78 IV  
lin-46(ma164)V; mir-237(n4296)X; wIs78 IV  
hbl-1(ve18)X 
hbl-1(ve18) mir-237(n4296)X 
Pmir-237::gfp 
lin-4(e912)Π;Pmir-237::gfp 
lin-4(e912)Π; lin-14(n179)X;Pmir-237::gfp 
lin-14(n179)X;Pmir-237::gfp 
lin-14(n536)X;Pmir-237::gfp 
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Table 2. List of sequences of primers used in genotyping the mutant alleles. 
 

Primer Name  mutant allele Primer Positiona Sequence 
AA415 
AA416 
AA417 
 
AA153 
AA154 
AA155 
 
AA167 
AA170 
AA169 
 
AA34 
AA35 
AA37 

mir-237(n4296) 
 
 
 
lin-46(ma164) 
 
 
 
hbl-1(ve18) 
 
 
 
lin-14(n536) 
 
 

F1 
R1 
R2 
 
F1 
R1 
S1 
 
F1 
R1 
S1 
 
F1 
R1 
R2 

5’ – gaatgtacaaaaagttaatgccgactc – 3’ 
5’ – aagatttaaaaatgagagatcacatgg – 3’ 
5’ – ccgtcgacgattatctaacacttacta – 3’ 
 
5’ – tcggaacaaagagagagatcg – 3’ 
5’ – cccttagaaacttcgcttcg – 3’ 
5’ – gtcgaaacggtgaagtttcc – 3’ 
 
5’- accacgagggagagtttgtg-3’ 
5; - tgaatcttttctccgggttg – 3’ 
5’- caacctctcctatttgcatgg-3’ 
 
5’- taactatatggatgccacgc-3’ 
5’- tgcttctgaatgaggtgaag-3’ 
5’- caatcctaagcaatagaggt-3’ 

 
a. For all deletion alleles, F1, R1, and R2 were used: F1 was the 5’ forward primer. R1 
was the 3’ reverse primer that localized outside of the deletion region. R2 was the 3’ 
reverse primer that localized inside the deletion region. For other alleles, F1 and R1 were 
used to amplify the region covering the mutation site, and S1 was used as the sequencing 
primer. 
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III. RESULTS 
 
 
Part I. Genetic evidence reveals that mir-237 is likely a developmental timing gene. 

Loss of mir-237 weakly suppresses lin-14(0) and lin-28(0) mutant phenotype 

I first tested whether mir-237 interacted genetically with lin-14. I proposed that if mir-

237 functions downstream of lin-14, then loss of mir-237 may partially suppress the precocious 

phenotype of lin-14(0) mutant worms.  

lin-14(0) worms showed complete alae formation at the L3 molt. In contrast, in lin-

14(0)mir-237(0) mutants, about 10% of worms showed incomplete alae formation at the L3 molt. 

Representative pictures of the incomplete alae in those double mutants are shown in Figure 8. The 

incomplete alae formation could result from defect in timing, or defect in seam cell differentiation 

or collagen generation. If complete alae formation is observed later at the L4 molt, then that 

indicates that the incomplete alae formation in the double mutants is a developmental timing 

defect. Future work is needed to show whether complete alae is formed in the double mutants at 

the L4 molt. The suppression of the precocious alae formation phenotype in lin-14(0)mir-237(0) 

double mutants suggests that mir-237 may function downstream of lin-14. 

lin-14(0) mutants have increased seam cell number at the L1 stage due to precocious 

execution of the L2 proliferation seam cell division program. I found that there was no difference 

in the number of seam cells between the single mutant and the double mutants (Table 3). It is 

possible that seam cell division is regulated by a more robust network of genes that can tolerate 

small fluctuations. Therefore, loss of mir-237 isn’t sufficient to cause changes in the seam cell 

division program in the lin-14(0) mutants, but is sufficient to cause small changes in alae 

formation.   
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I next tested whether mir-237 interacted genetically with lin-28. I proposed that mir-237 

functions downstream of lin-28. Thus, loss of mir-237 may partially suppress the precocious 

phenotype of lin-28(0) mutant worms.  

lin-28(0) worms showed complete alae formation at the L3 molt. In contrast, I found that 

in lin-28(0)mir-237(0) mutants, about 19% of worms displayed incomplete alae at the L3 molt 

(Table 3). Representative pictures of the incomplete alae in those double mutants are shown in 

Figure 9. Future work is needed to show whether the double mutants form complete alae at the L4 

molt. 

 The seam cell number in the lin-28(0) mutants is reduced due to omission of the L2 

proliferation program (Abbott et al., 2005). I found that there was no difference in the number of 

seam cells between the single mutant and the double mutants. Loss of mir-237 alone wasn’t 

sufficient to affect the seam cell division program in the lin-28(0) mutants (Table 3). 

Occasionally, branched alae was found in lin-14; mir-237 mutants. Branched alae 

formation is mostly due to defective collagen genes or defects in collagen secretion (Zugasti et 

al., 2005; Eschenlauer and Page, 2003; Kostrouchova et al., 1998). This suggests that lin-14 and 

mir-237 may regulate certain collagen genes or genes that regulate collagen secretion.  

My data indicate that lin-14(0) or lin-28(0) precocious phenotype is partially dependent 

on mir-237 activity, and that lin-14 and lin-28 may function upstream of mir-237. 
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                              Table 3. Phenotype Analysis  
 
 
 
Strain 

 
 
 
Genotype 

Alae Synthesis (% of 
worms)  
 @L3 molt 
none gapped complete  

Alae Synthesis (# of 
worms) 
 @L4 molt 
none  gapped complete   

 
Average Seam Cell Number 
(n): number of worms scored 
L1         L2         L3           L4 

RG733 
 
RF168 
 
 
RF173 
 
 
RF167 
 
 
 
RF190 
 
RF191 
 
 
 
RF204 
 
RF205 
 
 
 
 
 
RF194 
 
RF195 
 
 
 
 
 
RF200 
 
RF201 
 
 
 
 
RF303 
 
RF304 
 
 
 
 
 
 
RF404 
 
RF405 
 
 

wIs78 IV 
 
mir-237(n4296)X; 
wIs78 IV 
 
lin-14(ma135)X; 
wIs78 IV 
 
lin-14(ma135) mir-
237(n4296)X; wIs78 
IV 
 
lin-28(n719)Ι 
 
lin-28(n719)Ι; mir-
237(n4296)X 
 
lin-28(n719)Ι; 
wIs78 IV 
 
lin-28(n719)Ι; mir-
237(n4296)X; wIs78 
IV 
 
 
mir-48 mir-
241(nDf51)V 
 
mir-48 mir-
241(nDf51)V; mir-
237(n4296)X 
 
 
lin-46(ma164)V   
 @15˚C 
 
lin-46(ma164)V; 
mir-237(n4296)X @ 
15˚C 
 
lin-46(ma164)V; 
wIs78 IV@ 15˚C 
 
lin-46(ma164)V; 
mir-237(n4296)X; 
wIs78 IV 
 @ 15˚C 
 
 
hbl-1(ve18)X; wIs78 
IV 
 
hbl-1(ve18) mir-
237(n4296)X; wIs78 
IV 

wIs78 IV 
 
mir-237(0)X; wIs78 
IV 
 
lin-14(0)X; wIs78 IV 
 
 
lin-14(0) mir-
237(0)X; wIs78 IV 
 
 
lin-28(0)Ι 
 
lin-28(0)Ι; mir-
237(0)X 
 
 
lin-28(0)Ι; wIs78 IV 
 
lin-28(0)Ι; mir-
237(0)X; wIs78 IV 
 
 
 
mir-48 mir-241(0)V 
 
 
mir-48 mir-241(0)V; 
mir-237(0)X 
 
 
 
lin-46(0)V   
 @15˚C 
 
lin-46(0)V; mir-
237(0)X @ 15˚C 
 
 
lin-46(0)V; wIs78 
IV@ 15˚C 
 
lin-46(0)V; mir-
237(0)X; wIs78 IV 
 @ 15˚C 
 
 
 
hbl-1(rf)X; wIs78 IV 
 
 
hbl-1(rf) mir-
237(0)X; wIs78 IV 

100       0         0  
 
100       0         0  
 
 
0           0         100  
 
 
0          10        90  
 
 
 
0          0         100 
 
0         19        81  
 
 
 
 
  

0           0           100  
 
0           0           100  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0           86         14  
 
 
0           89         11  
 
 
 
 
0           89         11  
 
 
0           100        0          
 
 
 
 
 
 
 
 
 
 
 
 

10(7)   16(12)  16(10) 16(11)  
   
10(19) 16(20)  16(19) 16(19) 
 
 
16(20) 15(18)  16(20) 15(21) 
 
 
15(23) 16(15)  15(19) 16(19) 
 
 
 
 
 
 
 
 
 
10(19)  11(19) 12(21) 11(21) 
 
10(15)  11(21) 11(20) 11(19) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        18(21) 18(21) 
 
 
                        20(21) 21(21) 
 
 
 
 
                       
                        16(36) 23(19) 
 
 
                        16(37) 22(20) 
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Figure 8. (A) An example of complete alae. (B) Incomplete alae in lin-14(0)mir-
237(0);wls78 mutants at the L3 molt. (Black arrows point to the region where alae 
formed; white arrows point to the region where alae didn’t form) 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 
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alae A 
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Figure 9. (A) An example of complete alae. (B) Incomplete alae in lin-28(0)mir-237(0) 
mutants at the L3 molt. (Black arrows point to the region where alae formed; white 
arrows point to the region where alae didn’t form)  
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Loss of mir-237 enhances the L2 repetition phenotype of lin-46(0) mutants 

lin-46 regulates developmental timing at the L2 to L3 transition. It encodes a scaffolding 

protein that may function to potentiate the activity of a developmental timing complex (Pepper et 

al., 2004). The molecular function of the LIN-46 protein is not clear. The developmental timing 

phenotypes of lin-46(0) worms are cold sensitive. This cold sensitivity is not a property of the 

allele but rather the process regulated by the LIN-46 protein. At 20˚C, some lin-46(0) worms 

form incomplete alae at the L4 molt. At 15˚C, a greater percentage of the lin-46(0) worms display 

incomplete alae. In addition, although at 20˚C lin-46(0) worms have normal number of seam 

cells, at 15˚C they have increased number of seam cells.  

To determine whether mir-237 functions with lin-46 to regulate the L2 to L3 

development, I compared the alae formation at the L4 molt as well as the number of seam cells at 

L3 and L4 stages in lin-46(0) strain and in lin-46(0); mir-237(0) strain.  

At 15˚C, I found that 10% of lin-46(0) worms had complete alae at the L4 molt, whereas 

none of the double mutants formed complete alae (Table 3). And the gapped regions in the double 

mutant worms were mostly much bigger than that in the single mutants. This suggests that the 

retarded alae formation phenotype in lin-46(0) worms was enhanced in lin-46(0); mir-237(0) 

mutants.  

 At 15˚C, lin-46(0) worms had an average of 18 seam cells after L2 stage, whereas the 

double mutants displayed about 20 seam cells (Table 3). Statistical analysis of both the alae 

formation and the seam cell number indicated that the two strains were significantly different 

(p<0.001).  

These data suggest that mir-237 likely functions in parallel with lin-46 to regulate the L2-

to-L3 transition.  
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Loss of mir-237 enhances the bursting vulva phenotype of mir-48 mir-241(0) mutants, but not the 
retarded alae formation phenotype. 
 
 
             The let-7 family microRNAs mir-84, mir-48 and mir-241 regulate development from the 

L2 to the L3 stage (Abbott et al., 2005). Loss of mir-48 and mir-241 leads to partial reiteration of 

the L2 stage program. Thus, the mutant worms display incomplete alae formation at the L4 molt 

and an increased number of seam cells. mir-48 mir-241(0) mutants also have bursting vulva 

phenotype at adult stage. It is not exactly clear what can cause the vulva to burst. It can result 

from improper connection among vulva tissue and nearby tissue such as hypodermis and gonad, 

leading to vulva morphogenesis defects at L4 molt. Timing defects in the hypodermis can cause 

vulva to burst (Reinhart et al., 2000; Li et al., 2005). 

              To determine whether mir-237 functions together with mir-48 mir-241 to control early 

development, I compared developmental timing defects between mir-48 mir-241(0) mutants and 

mir-48 mir-241(0);mir-237(0) triple mutants. 

               About 89% of the triple mutants formed gapped alae at the L4 molt, compared to 86% in 

the mir-48 mir-241(0) worms (Table 3). No significant difference was found between the defects 

of those two strains, suggesting that loss of mir-237 activity does not enhance the retarded alae 

formation phenotype of mir-48 mir-241(0) mutants. Seam cells were not scored in these strains. 

               On the other hand, about 24% of mir-48 mir-241(0) mutants displayed the bursting 

vulva phenotype as young adults, whereas 43% of the triple mutant worms had bursting vulva. 

The enhancement of bursting vulva phenotype in the triple mutants suggests that mir-237 

functions together with mir-48 and mir-241 to regulate vulva formation. It is possible that mir-

237 functions together with mir-48 mir-241 to regulate the L2 to L3 development in the 

hypodermal tissue which ensures normal vulva morphogenesis later at the L4 molt. 
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Loss of mir-237 does not suppress the precocious alae phenotype of hbl-1(rf) mutant 

hbl-1 is also an important regulator of the L2 to L3 development. hbl-1(rf) reduction of 

function mutants form complete alae precociously at the L3 molt. The seam cells in these 

mutants, however, do not permanently exit from the division cycle at the L3 molt, and they divide 

again at the L4 stage, resulting in an increase in the number of seam cells. 

To determine whether there is a genetic interaction between hbl-1 and mir-237, I 

compared the number of seam cells in hbl-1(rf) strain and hbl-1(rf) mir-237(0) strain at the L3 

and L4 stages. At the L3 stage, both strains had about 16 seam cells. At the L4 stage, hbl-1(rf) 

mutants had an average of 22.5 seam cells and hbl-1(rf) mir-237(0) mutants had an average of 

22.4 seam cells (Table 3). Statistical analysis indicated that there was no significant difference 

between the two. These data are consistent with the model that mir-237 functions upstream of 

hbl-1.  

 

             The above genetic data suggest that mir-237 functions downstream of lin-14 and lin-28, 

in parallel to lin-46, and upstream of hbl-1 (Figure 10). Next, I investigated the mechanism of the 

repression of mir-237 expression in lin-4(0) mutants. Consistent with my genetic data, I proposed 

that lin-4 may regulate mir-237 through lin-14 or lin-28: lin-4 negatively regulates lin-14 or lin-

28 activity, and lin-14 or lin-28 negatively regulates mir-237 expression. First I analyzed whether 

this repression of mir-237 in lin-4(0) mutants is at transcriptional level or post-transcriptional 

level. Then I tested whether lin-14 or lin-28 is likely involved in this repression. 
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Figure 10. Model for the role of mir-237 in the early developmental timing pathway 
based on the above genetic analysis. Depicted are the regulatory relationships among 
those early developmental timing genes.  
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Part II. Repression of mir-237 in lin-4(0) worms is largely transcriptional, and LIN-14 is  
likely involved in this repression. 
 
 
Mature miR-237 level is greatly reduced in lin-4(0) worms by qRT-PCR microRNA Taqman 
assay. 
 
 

A previous study using northern blot analysis showed that mir-237 accumulation was 

significantly reduced in lin-4(0) worms in comparison to wild type worms (Esquela-Kerscher et 

al., 2005). To quantify mir-237 expression, I used quantitative Real-Time PCR to measure the 

mature miR-237 level at L3 and L4 stages in both strains. I found about 5 fold less miR-237 in 

lin-4(0) worms than wild-type worms at both L3 and L4 stage (Figure 11).  

 

 
Figure 11. lin-4(0) worms display a reduced level of miR-237 relative to wild type 
worms. The analysis was performed twice using two independently isolated RNA 
preparations. 
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Repression of mir-237 in lin-4(0) worms is largely transcriptional and is likely mediated by lin-14 
or lin-28.  
 
 

qRT-PCR measures the ~22 nucleotide mature miR-237. Reduced mature miR-237 could 

result from reduced transcription of the mir-237 primary transcript or from reduced Drosha or 

Dicer processing of the pri-microRNA or pre-microRNA. To differentiate between these two 

possibilities, I used an integrated transcriptional GFP reporter of mir-237 (Pmir-237::gfp) that 

was shown to closely mimic the transcription level of the endogenous mir-237 gene (Martinez et 

al., 2008a) to detect the level of mir-237 transcription in the lin-4(0) worms compared to that in 

the wild type worms. The expression of Pmir-237::gfp closely matches the temporal expression 

profile of endogenous mir-237 established by northern blot (Esquela-Kerscher et al., 2005). At 

the L3 stage, only 10% of lin-4(0) worms showed Pmir-237::gfp expression in the hypodermis, 

whereas 87%  of the wild type worms displayed Pmir-237::gfp expression in the hypodermis. At 

the L4 stage, 75% of lin-4(0) worms showed Pmir-237::gfp expression in the hypodermis, 

compared to 100% of wild type worms (Table 4). Representative micrographs of the L3 and L4 

stage worms are shown in Figure 12. For each stage, the same exposure was used for all strains 

(see Methods for details). The intensity of Pmir-237::gfp expression in lin-4(0) worms was 

significantly lower than in the wild type worms at L3 and L4 stages, although this has not been 

quantified. These data together with the quantitative Real-Time PCR data indicate that the 

repression of mir-237 in lin-4(0) worms is largely due to transcriptional control.  

The transcriptional repression of mir-237 in lin-4(0) worms could be mediated by LIN-14 

or LIN-28, as these proteins are both elevated in lin-4(0) worms (Wightman et al., 1993; Moss et 

al., 1997). To determine whether lin-14 or lin-28 is involved in this repression of mir-237 

observed in lin-4(0) worms, I used the above transcriptional reporter to monitor the transcription 

of mir-237 in the following strains: lin-4(0);lin-14(ts);Pmir-237::gfp, lin-14(ts);Pmir-237::gfp, 

and lin-14(gf);Pmir-237::gfp. 
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Pmir-237::gfp expression data and representative micrographs are shown in Table 4, 

Figure 12 and Figure 13. If Pmir-237::gfp mis-expression in lin-4(0) worms is due to elevated 

levels of LIN-14, then a similar pattern of expression is expected in lin-14(gf) gain of function 

mutants. Indeed, in lin-14(gf) worms, I observed repression of Pmir-237::gfp expression similar 

to what was observed in the lin-4(0) worms. At L1 and L2 stages, none of lin-14(gf) mutants 

showed Pmir-237::gfp expression in the hypodermis whereas 14% of wild type worms showed 

Pmir-237::gfp expression. At the L3 stage, 33% of lin-14(gf) worms had Pmir-237::gfp 

expression compared to 87% of the wild type worms. At the L4 stage, 89% of lin-14(gf) worms 

had Pmir-237::gfp expression compared to 100% of the wild type worms (Table 4). 

In addition, I observed no repression of Pmir-237::gfp expression in lin-14(ts) worms but 

rather up-regulation of Pmir-237::gfp expression at the  L1 to L3 stages. At the L1 and L2 stages, 

74% of lin-14(ts) mutants showed Pmir-237::gfp expression in the hypodermis compared to 14% 

of the wild type worms. At the L3 and L4 stages, 100% of lin-14(ts) worms displayed Pmir-

237::gfp expression compared to 87% at L3 and 100% at L4 in the wild type worms (Table 4). 

In lin-4(0); lin-14(ts) mutants, I did not observe the repression of Pmir-237::gfp 

expression that was observed in the lin-4(0) worms. At the L1 and L2 stages, none of lin-4(0) 

worms had any Pmir-237::gfp expression in the hypodermis, whereas about 68% of lin-4(0); lin-

14(ts) mutants displayed Pmir-237::gfp expression. At the L3 and L4 stage, 100% of lin-4(0); lin-

14(ts) worms showed Pmir-237::gfp expression compared to 10% at L3 stage and 75% at L4 

stage in the wild type worms (Table 4).   

These data indicate that LIN-14 or LIN-28, which are coordinately regulated in these 

strains, can directly or indirectly repress the transcription of mir-237.  
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Figure 12. Pmir-237::gfp expression is reduced in lin-4(0) worms and lin-14(gf) 
worms compared to wild type worms. 
(A)~(C): Pmir-237::gfp expression in wild type worms at L1, L3 and L4 stages. 
(D)~(F): Pmir-237::gfp expression in lin-4(0) worms at L1, L3 and L4 stages. 
(G)~(I): Pmir-237::gfp expression in lin-14(gf) worms at L1, L3 and L4 stages. 
Corresponding DIC images are also shown.  
In A, D, and E, no hypodermal GFP was observed in the worms, the fluorescence is 
from autofluorescent gut granules. In addition there is Pmir-237::gfp expression in 
the somatic gonad in every worm. 
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Figure 13. Pmir-237::gfp is precociously expressed in lin-4(0); lin-14(ts) worms and 
lin-14(ts) worms compared to wild type worms. 
(A)~(C): Pmir-237::gfp expression in wild type worms at L1, L3 and L4 stages. 
(D)~(F): Pmir-237::gfp expression in lin-4(0); lin-14(ts) worms at L1, L3 and L4                        
stages. 
(G)~(I): Pmir-237::gfp expression in lin-14(ts) worms at L1, L3 and L4 stages. 
Corresponding DIC images are also shown.  
In A and D, no hypodermal GFP was observed in the worms, the fluorescence is from 
autofluorescent gut granules. In addition there is Pmir-237::gfp expression in the 
somatic gonad in every worm. 
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Table 4. Pmir-237::gfp expression in the hypodermis 
Strain 
 

Genotype % of total worms that displayed GFP expression (n) 
L1 and early L2        L3                        L4     

VT1113 
 
RF305 
 

Pmir-237::gfp 
 
lin-4(0); Pmir-
237::gfp 
 

14 (36) 
 
0 (18) 

87 (15) 
 
10 (20) 

100 (20) 
 
75 (16) 
 
 

RF306 
 

lin-4(0); lin-
14(ts);Pmir-237::gfp 

68 (37) 100 (18) 100 (20) 

     
RF366 lin-14(ts);Pmir-

237::gfp 
74 (23) 100 (18) 100 (20) 

 
 

RF446 lin-14(gf);Pmir-
237::gfp. 

0 (18) 33 (18) 89 (18) 
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IV. DISCUSSION 
 
 
            Expression of developmental timing genes is strictly regulated spatially and temporally. 

Previous study using transcriptional mir::gfp reporters showed that lin-4 family microRNAs in C. 

elegans, lin-4 and mir-237, displayed overlapping but distinct temporal and spatial expression 

patterns. In the hypodermis, lin-4 expression is first detected at the L1 stage whereas mir-237 

expression is first detected at the L2 stage; at the L2 stage and beyond, both of them are 

expressed (Esquela-Kerscher et al., 2005). microRNA family members can function in the same 

pathway. mir-237 shares sequence similarity with lin-4, and also displays closely overlapping 

temporal and spatial expression pattern with lin-4. lin-4 is a key regulator of the developmental 

timing at early stages, from the L1 stage to the L3 stage. I investigated the possibility that mir-

237 also functions in the early developmental timing pathway. Previous work showed that loss of 

mir-237 alone does not lead to an observable developmental timing phenotype, suggesting that 

the role of mir-237 in the timing pathway, if any, is not essential, or that other genes function 

redundantly to mir-237. Here I used a genetic approach to analyze the relationship between mir-

237 and other early developmental timing genes. My data indicate that mir-237 is likely a 

developmental timing gene that can regulate stage-specific cell fate choices between the L2 stage 

and the L3 stage. 

            In addition, northern blot showed that mir-237 is repressed in lin-4(0) mutants. My data 

suggest that this repression is largely due to transcriptional control. 

 

mir-237 is likely a developmental timing gene that regulates the L2-to-L3 transition  

           Data from genetic analysis showed that loss of mir-237 weakly suppressed the precocious 

alae phenotype of both lin-14(0) and lin-28(0) mutants, suggesting that mir-237 may function 

downstream of lin-14 and lin-28 (Figure 8, Figure 9 and Table 3). Loss of mir-237 enhanced the 
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retarded alae phenotype as well as the abnormal seam cell division phenotype of lin-46(0) 

mutants, suggesting that it functions in parallel with lin-46 to control L2-to-L3 transition (Table 

3). Loss of mir-237 enhanced the bursting vulva phenotype of mir-48 mir-241(0) mutants, 

suggesting that it may function in parallel with mir-48 and mir-241 to control developmental 

timing in the hypodermis. Together these data provide the evidence that mir-237 functions in the 

developmental timing pathway, regulating the L2-to-L3 transition. 

           In the precocious mutants lin-14(0) and lin-28(0), genes that regulate the larva-to-adult 

switch, such as the most downstream developmental timing gene lin-29 (Rougvie and Ambros, 

1995), are precociously expressed. mir-237 weakly suppressed the precocious alae phenotype of 

both lin-14(0) and lin-28(0) mutants. This suggests that mir-237 affects the expression of those 

downstream genes. Future work is needed to show when, where, and how mir-237 activity 

influences the expression of the downstream genes, resulting in the observed effects on alae 

formation. 

            The key evidence that shows that mir-237 regulates the L2-to-L3 transition is that loss of 

mir-237 enhances the L2 repetition phenotype of lin-46(0) mutants, including both retarded alae 

formation and the extra number of seam cells. lin-46 was shown to likely function only once in 

the timing pathway during the L2-to-L3 transition. mir-237 may function in parallel with lin-46 to 

tip the balance of cell fate choices between the L2 stage and the L3 stage.  lin-46(0) mir-237(0) 

worms displayed about two more seam cells than lin-46(0) worms. Thus, not every seam cell is 

affected by the loss of mir-237. This is because the regulation of seam cell division is cell 

autonomous, and mir-237 may play a subtle role in regulating seam cell division. In most seam 

cells, the fluctuation caused by loss of mir-237 activity is not sufficient to overcome the robust 

regulation by other developmental timing genes that control the seam cell division, such as lin-4 

and the let-7 family microRNAs. 

            It is not exactly clear what can cause the bursting vulva phenotype. Previously it has been 

shown that timing defects in the let-7(0) mutants leads to the bursting vulva phenotype (Reinhart 
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et al., 2000). It has also been shown that the connections between hypodermal cells and vulva 

cells are important for the structural integrity during vulva morphogenesis (Newman et al., 2000). 

mir-237, mir-48, and mir-241 show overlapped temporal expression pattern in the hypodermis. It 

is possible that mir-237, mir-48, and mir-241 function in the early timing pathway in hypodermal 

tissue and indirectly influence vulva morphogenesis later. However, mir-237, mir-48, and mir-

241 are also expressed in the vulva precursor cells. Future work is needed to show whether 

division or differentiation of vulva precursor cells is defective in those mutants, which may also 

account for the bursting vulva phenotype. 

 

            The above genetic analysis suggests that mir-237 is likely a developmental timing gene 

that can regulate L2-to-L3 transition. Based on my data, I position mir-237 in the early 

developmental timing pathway downstream of lin-14 and lin-28, and in parallel with lin-46 

(Figure 10). lin-4 and mir-237 share the same seed sequence and have the potential ability to 

regulate common targets. 3’UTR of lin-14, lin-28 and hbl-1 all have complimentary sites to the 

lin-4 family seed sequence (Esquela-Kerscher et al., 2005). Future work is needed to identify the 

targets of mir-237, and to test whether lin-4 and mir-237 activity is functionally equivalent, or 

whether they have distinct roles in the pathway. Answering those questions will advance our 

understanding about the functions of microRNA family members in vivo. 

 

Repression of mir-237 in lin-4(0) mutants is largely transcriptional  

My data using quantitative Real-Time PCR is consistent with published northern blot 

data (Esquela-Kerscher et al., 2005). In lin-4(0) mutants, mature miR-237 level is highly reduced. 

The expression of Pmir-237::gfp in lin-4(0) mutants compared to wild type closely matches the 

temporal expression profile of endogenous mir-237 established by northern blot and my 

quantitative Real-Time PCR data (Table 4, Figure 11 and Figure 12), suggesting that the 
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repression of mir-237 in lin-4(0) mutants is largely transcriptional. In addition, my data showed 

that in lin-4(0); lin-14(ts) mutants, the repression of mir-237 transcription is released and mir-237 

transcription is at wild type levels. In lin-14(ts) mutants where lin-14 activity is reduced at 20˚C 

compared to wild type, I found mis-regulation of mir-237 transcription, with mir-237 expression 

observed one stage earlier than in wild type worms. Whereas in lin-14(gf) mutants where lin-14 

activity is increased, mir-237 transcription is reduced compared to wild type. These data suggest 

that lin-14 activity may regulate mir-237 transcription. However, since in lin-14(ts) or lin-14(gf) 

mutants the worms execute precocious or retarded developmental programs, many stage-

specifically expressed genes may also be mis-regulated. Future work is needed to show whether 

mis-regulation of mir-237 in lin-14(ts) or lin-14(gf) mutants is direct.  

            LIN-14 has been shown to contain a putative consensus DNA binding site, GAACRY 

(Hristova et al., 2005). Sequence analysis of the 2 kb mir-237 promoter region reveals two 

candidate LIN-14 binding sites. They are located at about 200 nucleotides upstream of the region 

encoding the ~70 nucleotide pre-miR-237 stem loop. One of these sites is conserved in the 

promoter of mir-237 in C. briggsae. Future work is needed to show whether LIN-14 indeed binds 

mir-237 promoter directly in vivo. If so, then this would provide an in vivo example of a positive 

feedback loop between microRNAs and transcription factors as discussed in Martinez et al 

(2008b).  

             If LIN-14 directly represses mir-237 expression in vivo, then it is likely that mir-237 

functions in the lin-4 independent feedback loop between lin-14 and lin-28 (Figure 14). The lin-

28 3’ UTR contains a binding site for the lin-4 family microRNAs and thus is a candidate target 

for miR-237. In addition, the temporal expression of mir-237 is consistent with the model that 

mir-237 functions in the lin-4 independent feedback loop between lin-14 and lin-28.  

             I propose whereby at the L1 stage, mir-237 is repressed by LIN-14, and the high levels of 

LIN-14 and LIN-28 promote the L1 stage program.  However, at the L2 stage, accumulation of 

lin-4 activity leads to down-regulation of LIN-14 and subsequent weak expression of mir-237. 
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mir-237 may then contribute to the down-regulation of lin-28 along with lin-4 and the let-7 

family microRNAs. Thus LIN-28 level is maintained relatively high due, in part, to the absence 

of mir-237 activity, which allows for execution of the L2 stage program.  

             mir-237 is up-regulated at the L2-to-L3 transition, and it may promote the development 

through the L2-to-L3 transition by down-regulating the key developmental timing regulators (lin-

14,  lin-28 and/or hbl-1). Loss of mir-237 does not cause observable defects in developmental 

timing, suggesting that mir-237 plays a cooperative role rather than an essential one in the 

pathway. This data indicates that other genes function redundantly to mir-237 in regulating the 

L2-to-L3 transition. I speculate that at the L2-to-L3 transition, a further up-regulation of lin-4 

causes LIN-14 level to fall below the threshold necessary for mir-237 repression, and then the 

system will switch to another state in which mir-237 and lin-4 together stably repress LIN-14 and 

LIN-28 to allow for proper execution of L3 stage program. In this way, mir-237 expression subtly 

affects the developmental decision between execution of the L2 stage program and the L3 stage 

program (Figure 14 and Figure 15).  

 

                                 

Figure 14. Model for mir-237 activity in the regulation of the L2-to-L3 transition. 

 



40 
 

 

Figure 15. Temporal expression profile of lin-4, lin-14, lin-28 and mir-237 in the 
hypodermis. 
 

In summary, the results presented here suggest a role for the lin-4 family microRNA mir-

237 in the developmental timing pathway to control the L2-to-L3 cell fate transitions in the 

hypodermis. lin-4 indirectly affects mir-237 expression largely at transcriptional level and 

possibly through regulation of lin-14. Future work is needed to show whether LIN-14 directly 

represses mir-237 transcription, and whether mir-237 is a component that acts in the lin-4 

independent genetic circuit between lin-14 and lin-28. 
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