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ABSTRACT 

 

 Islet amyloid polypeptide (IAPP) also called amylin is an amyloid-forming protein; 

IAPP is a proteinaceous hormone that comprises 37 amino acid residues. It is secreted along with 

insulin from the pancreatic β-cells to help it regulate the uptake and removal of glucose in the 

bloodstream. IAPP has been observed in the amyloid deposits found in pancreatic β-cells of most 

patients suffering from type II diabetes mellitus. This research project aims at producing 

recombinant amylin peptide. To achieve this goal, we used the pBAD plasmid vector which we 

introduced into Escherichia coli to express the peptide. Although the vector was successfully 

introduced into E. coli, production of the amylin protein was not detected under a variety of 

different expression conditions. Examination of the RNA produced from the E coli showed 

expression of the amylin RNA which indicates that the protein is most likely degraded. The 

degradation may have resulted from the fact that the peptide in question is a small exogenous 

toxic peptide and as a result may have been degraded by cytoplasmic proteases to protect the 

cell. One way that this degradation could be overcome is to attach the protein to an endogenous 

fusion peptide, such as the maltose-binding protein, which could provide protection against 

proteases. 
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CHAPTER 1: INTRODUCING AMYLIN 

INTRODUCTION 

 

 Many aged-related diseases are caused by protein aggregation. These include Parkinson 

disease, Huntington disease, Creutzfeldt–Jakob disease, type II diabetes mellitus (T2DM), and 

Alzheimer's disease (AD) [1]. Each of these diseases is typified by a buildup of amyloid deposits 

sprung from a variety of other proteins [1]. Parkinson disease is typified by a buildup of alpha-

synuclein, Huntington disease by polyglutamine-containing aggregates, Creutzfeldt-Jakob 

disease by massive misfolded prion protein aggregates [1], AD by β-amyloid deposits, and 

T2DM by amylin aggregates [2]. These diseases are commonly characterized by amyloid 

deposits. These amyloid deposits are made up of misfolded and self-associated amyloid-forming 

peptides which are composed of cross-β-sheets [2]. Amylin, which is co-secreted with insulin, 

has been found in amyloid deposits in the pancreatic β-cells of most patients suffering from 

T2DM [2, 3]. Amylin was identified in 1987 [4]. It is mainly produced in the pancreatic β-cells, 

yet it is also synthesized in small amounts in various other organs such as the gastrointestinal 

tract, dorsal root ganglia, and in the kidney in the midst of development [4]. Studies revealed that 

huge aggregates of amylin have been identified in blood vessels and brain parenchyma [5]. Also, 

in the temporal lobe gray matter of patients suffering from diabetes, the presence of oligomeric 

amylin and plaques have been detected [5]. Interestingly, amylin has been found to deposit in 

blood vessels and brain parenchyma of patients who have AD without displaying any clinical 

symptoms associated with T2DM [5]. 

 



2 
 

 

 

1.2. PHYSIOLOGICAL AND PATHOLOGICAL EFFECTS OF AMYLIN ON THE 

PANCREAS AND OTHER ORGANS 

  

The role of amylin is not completely comprehended. Part of the problem is understanding 

the contrast between physiological (normal) and pathological (high) amounts of amylin in the 

body [6]. At physiological amount, amylin behaves like a growth factor which contributes to 

bone calcification [6], thereby preventing the resorptive activities of osteoclasts [7]. Amylin 

regulates nutrient uptake and metabolism. It does so by diminishing the amount of food 

absorbed, gastric acid released, and glucagon produced by pancreatic α-cells; amylin also 

accomplishes this function by repressing gastric unloading [8]. Overall, amylin is reported to 

accomplish a great deal of physiological functions; however their mechanisms are yet to be 

understood [6]. Amylin tends to aggregate when present in pathological (high) quantities, which 

has negative effects on cells [6]. Similar to other amyloid-forming proteins, soluble oligomers of 

amylin are believed to bring about cell death [9-11]. These soluble toxic oligomers interact with 

constituents of the membranes, phospholipids principally, and end up perforating the cell 

membrane (Figure 1) [9, 10]. This perforation alters the calcium ion equilibrium between the 

intracellular and extracellular contents as well as the cell lifespan [11-14]. Moreover, in its 

oligomeric form, amylin negatively impacts the cardiovascular system by provoking lipid 

degradation, augmenting the level of free fatty acid present in the plasma, turning on the renin-

angiotensin-aldosterone system, and producing inflammatory and oxidative stress [11, 15, 16]. 

Data gathered recently indicate that too much amylin results in toxicity in other organs such as 

heart [16] and kidney of patients who are obese and diabetic [13]. It has been reported that 

aggregates of amylin found in the failing heart of diabetics may bring about heart failure [12]. 
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Figure 1. The completely folded protein, for some unknown reason, becomes unfolded and 

shows hydrophobic patches on its surface thereby starting aggregating into soluble toxic 

oligomers. The oligomers react with constituents of the membrane and end up creating holes in it 

[6]. Used with permission of the publisher, The American Physiological Society; April 2, 2015. 

 

STRUCTURE OF AMYLIN 

 

Amylin, also known as islet or insulinoma amyloid polypeptide (IAPP), comprises 37 amino 

acid residues. It is part of the calcitonin superfamily; other members of this family include 

calcitonin (CT), calcitonin gene-related peptides (CGRP), and adrenomedullin [17]. Amylin has 

in common with the other members of the CT family a disulfide bond between cysteine residues 

2 and 7 and an amide group at the C-terminus (Figure 2); the amidated C-terminus and the 

disulfide bond are added posttranslationally and are crucial for biological functions [18, 19]. 

Amylin has been reported to have a random-coil conformation [20]. CD and NMR studies have 

demonstrated that amylin has a transitory amphipathic helix at the N-terminus region [21-24]. 

When placed in solution, the helix goes from residues 5 to 28 [22]. 
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The C-terminus of amylin lacks a defined structure [20]. It is believed that the helix-shaped 

region is crucial for receptor binding and may contribute a great deal to amylin aggregation. The 

secondary structure of human amylin has been determined using high-resolution NMR; its N-

terminal helix spans from cysteine 7 and to valine 17. There is another helix from asparagine 21 

to serine 28; in between these 2 helices there is a turn which spans from histidine 18 to serine 20. 

Near the C-terminus exists a short helical segment from glycine 33 to asparagine 35 (Figure 4) 

[21]. Human and rat amylins have basically the same quaternary structure. However, some 

differences between these two stem from the fact that rat amylin has three proline residues which 

the human version lacks (Figure 3); the differences result in a human amylin which is amyloid-

forming and a rat amylin which is not [6]. This amphipathic helix does not reach the very end of 

the N-terminus. Instead this terminal region has a rigid ring.   
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Figure 2. Comparison of primary structures between adrenomedullin, CGRP, amylin, and 

calcitonin. Notice that, being members of the same family, all these peptides have a disulfide 

bond between cysteine residues 2 and 7 and share a common amide group at the C-terminus [18]. 

Used with permission of the publisher, The Begell House; April 10, 2015.  
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Figure 3. Amino acid sequence similarity between human CGRP and some amylin homologs. 

Notice the presence of proline residues in rat amylin. This small difference results in a human 

amylin which aggregates and a rat amylin which does not [18]. Used with permission of the 

publisher, The Begell House; April 10, 2015.  
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Figure 4. Ribbon diagram of the NMR structure of human amylin determined in SDS 

micelles.  The first four residues in the structure form a hairpin loop by the disulfide bond. The 

last nine residues near the C-terminus are unfolded. The structure center is occupied by an α-

helix spanning approximately from residues 5 to 28.The N-terminal helix spans from cysteine 7 

and valine 17; another helix from asparagine 21 to serine 28; in between these 2 helices, a turn 

from histidine 18 to serine 20. Near the C-terminus, a short helical segment from glycine 33 to 

asparagine 35 [22]. Used with permission of the publisher, The American Society for 

Biochemistry and Molecular Biology; August 19, 2011. 

 

EXPRESSION, LOCATION, PROCESSING, AND RELEASE OF AMYLIN 

 

Similar to most peptide hormones, amylin is synthesized as a preprohormone in the β-

cells of the pancreas. This preproamylin, which comprises 89 amino acid residues, is made up of 

a signal sequence of 22 amino acid residues, two peptide segments at each extremity and the 

proamylin in between (Figure 5) [25, 26]. This 22-amino acid signal sequence targets amylin to 

the endoplasmic reticulum, a principal route of nearly all secretory proteins. There, the signal 

sequence gets cleaved off to yield proamylin which, in the late Golgi and the secretory vesicles, 

is converted into amylin before being released into the bloodstream to accomplish its functions 

as a completely active hormone [25, 27]. 
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The amylin gene is localized on the short arm of the chromosome 12 where it is 

expressed from a single allele of a gene [18]. Among the three exons which the preproamylin is 

translated from, only the last two code for the complete molecule [28]. It is important to note that 

it is a requirement that this C-terminal glycine stay for amylin to be completely active [6]. Both 

amylin and insulin genes are under the control of the transcription factor PDX-1 and they both 

have promoters that resemble each other [29]. The transcription factor PDX-1 controls the effects 

of glucose on both genes [30-33]. Although the promoters have a certain resemblance, 

researchers have found that amylin and insulin genes are not always expressed at the same time. 

This finding proves that the co-secretion of these proteins can be altered in certain circumstances 

[6]. 

 

 

 

 

 
 

Figure 5. Primary sequence of preproamylin with its 3 internal endoprotease sites. Remark how 

crucial the specificity of CPE is by leaving this glycine at the C-terminus of the peptide. This 

glycine is not part of the primary structure of amylin, yet contributes a great deal to its biological 

functions [6]. Used with permission of the publisher, The American Physiological Society; April 

2, 2015. 
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AMYLIN AND TYPE 2 DIABETES 

  

The factors contributing to the pathogenesis of T2DM have been rigorously investigated 

[34-36]. At present, two main factors are clearly involved [37, 38]. The first is that insulin 

becomes less effective, resulting in a higher need for the insulin peptide. The second important 

factor is the inadequacy of pancreatic beta-cells. Among other manifestations of this 

insufficiency, a drop in the beta- cells quantity and a reduction in their roles have been reported 

[38, 39]. 

In previously conducted research, islets taken from T2DM patients have been found to 

secrete less insulin and could not normalize the level of glucose in diabetic animals into which 

these islets were transplanted; however, it is important to note that the response obtained from 

the glucagon hormone which exerts a countereffect on glycemia was quite normal [40]. Islets 

obtained from patients with T2DM were at lower quantity compared to those from patients who 

were free from T2DM. Also, there was islet amyloid, albeit at very low amount, in samples taken 

from diabetics whereas the samples from non-diabetic patients did not have any [41, 42]. This 

could indicate that amyloids play a role in β-cell degradation. 

Aggregated amylin exists in non-diabetic patients although its impacts on the cells are 

less severe than they are in diabetic individuals [43, 44]. Through meticulous work, researchers 

found that, even though aggregated amylin is also present in patients with no T2DM, amylin 

aggregation is linked to a smaller islet volume because of the drop in the amount of cells [45, 

47]. Nevertheless, only the reduction in the islet volume cannot explain why the response from 

the insulin hormone is ineffective. Some researchers found that fibrils in the vicinity of the β-

cells perforate the cell membrane and reach the interior of the cell [48], therefore decreasing their 

viability. Recently, it has been shown that interactions between amyloid fibrils and the membrane 
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disturb the influx of Ca2+ which may seriously hamper the proper functions of the islets [49].  

One important aspect concerning the link between islet amyloid and T2DM is the sites 

where the fibrils form. Amylin aggregates are typically formed outside the cell [48]. However, 

there is evidence of amylin deposits that start occurring inside the cell. Studies done on human 

islets transplanted into mice or transgenic mice expressing human amylin showed that amylin 

start aggregating inside the cell [50-56]. O’Brien et al found that in β-cell tumors amylin also 

deposited intracellularly [57]. Studies done on diabetic baboons showed that amylin aggregated 

both inside and outside the cell [1].  
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WHY IS IT OF INTEREST TO STUDY AMYLIN? 

 

T2DM is one of the many age-associated diseases which include AD [1]. Up to 8.3% of 

the US inhabitants have diabetes and nearly 95% of adult American diabetics are diagnosed with 

T2DM [58]. Amylin in its pathological state evidently has its contribution whether in triggering 

the onset of T2DM or in worsening a pre-existing genetic predisposition to the disease. In either 

case, amylin deposits are considered to be a significant factor as they affect the proper function 

of the pancreatic β-cells. So, it is logical to think that any study related to T2DM should to a 

large extent consider the amylin peptide. Understanding amylin aggregation can aid in gaining 

better information about the onset of the disease and also in designing drugs to combat the 

disease. In this study, we aimed to express recombinant amylin in Escherichia coli. We hoped 

that by expressing and using our own recombinant amylin, we could have a peptide in its active 

state with a high purity.  While chemically synthesized peptide also has high purity, the presence 

of solvent residues can affect the aggregation kinetic.  Therefore, the recombinantly produced 

peptide should allow us to obtain more correct data about how amylin aggregates in vitro so that 

it can be used in further studies and to gain better insights about the early aggregation steps of 

amylin and its implications in T2DM.  
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CHAPTER 2: PREPARATION OF PLAMID VECTORS AND CONSTRUCTS 

2.1. INTRODUCTION 

 

At present, systems expressing amyloid-forming peptides in E. coli can do so in two 

manners: express the peptide directly or express the peptide with a solubilizing peptide or protein 

domain [59]. Fusion partners to express amyloid-forming peptides include maltose-binding 

protein [60, 61], glutathione S-transferase [62, 63], thioredoxin [64, 65], and poyly (NANP) [66]. 

Vectors designed to produce amylin and amylin variants were previously described by 

Yonemoto and co-workers. In their work, they took advantage of the fact that amyloid- forming 

proteins tend to aggregate naturally and accordingly designed their vector by fusing it to the 

BCL-Xl ½ fusion partner which directed the fusion peptide into inclusion bodies in E. coli 

(Figure 6). However, the amylin peptides obtained in their work were insoluble with no 

biological activity. This inactivity and insolubility stem from the fact that protein aggregates 

have the same biophysical properties as inclusion bodies [67, 68] which are made of misfolded 

proteins with hydrophobic patches exposed on their surface [69]. In our work, we were interested 

in producing our peptide in its biologically active form. Even though direct expression of peptide 

is not much reliable due to the fact such small peptides are susceptible to proteolysis, we decided 

to express our peptide with no solubilizing (fusion) peptide fragment. In order to enhance the 

formation of the disulfide bond between cyteines 2 and 7 of the amylin peptide which can be 

formed only in the periplasm in E. coli, the peptide was fused to the ompA leader sequence 

which directs proteins to the periplasm in bacteria [70].  

In order to clone the amylin gene, pBAD/Myc-His A Vector, bought from Invitrogen, 

was used for tight regulation of the gene expression. The insert, which includes the amylin DNA 
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(Table 1), was designed by us and made by Invitrogen (Table 1). Designing the insert included 

the creation of a multiple cloning site containing some of the restriction sites from the 

pBAD/Myc-His A Vector including NcoI and XhoI sites and the insertion of the OmpA 

nucleotide sequence (Figure 7) (Table 1) right before the start codon for translocation of the 

peptide into the periplasm to favor and enhance disulfide bond formation. NcoI and XhoI 

restriction enzymes were used to digest the construct containing the amylin nucleotide sequence 

attached to the OmpA nucleotide sequence and the pBAD/Myc-His A plasmid vector at their 

respective cutting sites. T4 DNA ligase was used to ligate the OmpA-amylin nucleotide sequence 

to the pBAD/Myc-His A plasmid vector.  

  

 

Figure 6. pBCA vector with the construct by Yonemoto which serves as a model for the 

construction of our construct [59 ]. Used with permission of the publisher, The Protein Science 

Society; April 2, 2015. 
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Figure 7. The construct on the left with AmpR, OmpA-Amylin, and restriction enzyme sites such 

as NcoI and XhoI which were used for digestion. On the right, pBAD/Myc-His A Vector in 

which we introduced our insert.  

http://tools.lifetechnologies.com/content/sfs/manuals/pbad_man.pdf 

 

 

Table 1. (A) Nucleotide sequence of ompA (39bp) (codon-optimized for E.coli); (B) nucleotide 

sequence of the human amylin (110bp) (codon-optimized for E.coli) 

 

 
 

 

 

 

 

 

 

 

 

 

http://tools.lifetechnologies.com/content/sfs/manuals/pbad_man.pdf
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2.2 MATERIALS AND METHODS 

2.2.1 PEPTIDE PRODUCTION IN LB 

 

The plasmid-containing OmpA-amylin DNA was introduced into TOP10 

electrocompetent cells. One fresh cell colony grew overnight in 5 mL of LB media with 0.15 

mg/mL of ampicillin. One mL of the cell sample was transferred into 100 mL of LB media with 

0.15 mg/mL of ampicillin. The cells were allowed to grow until they had OD600 values of 0.57 

and 0.75 at which points 2% arabinose was added. The incubation was performed at 37°C prior 

and after induction. After induction, samples were collected at 2h, 6h, 8h, and overnight. At each 

time point, samples were centrifuged, supernatant was disposed of, and pellet was frozen at -

20°C. The frozen cell samples were treated with buffer (50 mM Sodium Phosphate, 1 mM 

EDTA, 150 mM NaCl, pH 7.4) and were sonicated 4 times (30 seconds each time) before loading 

them onto a Tris-tricine-SDS-15% PAGE. Fifteen μL of protein sample and 10 μL of protein 

standard were applied to the gel. Gels were run at 200 Volts for 85 minutes. After running, the 

gels were silver stained. 

 

2.2.2 PEPTIDE PRODUCTION USING DIFFERENT AMOUNTS OF ARABINOSE IN M9 

 

Since arabinose induces the vector to produce the protein, its amount was varied to study 

its effect. One fresh cell colony grew overnight in 5 mL of LB media with 0.15 mg/mL of 

ampicillin. Two mL of cell sample were then incubated in 200 mL of minimal M9 media (1 mL 

of cells for 100 mL of media separately) with 0.15 mg/mL of ampicillin added to each medium. 

The cells grew until an OD600 of 0.75 was reached before the addition of 1% arabinose in one 

sample and 2% in the other. The incubation was performed at 37°C prior to and after induction. 
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After induction, samples were collected at 2h, 6h, 8h, and overnight. At each time point, samples 

were centrifuged, supernatant was disposed of, and pellet was frozen at -20°C. The frozen cell 

samples were treated with buffer (50 mM Sodium Phosphate, 1 mM EDTA, 150 mM NaCl, pH 

7.4) and were sonicated 4 times (30 seconds each time) before loading them onto a Tris-tricine-

SDS-15% PAGE. Fifteen μL of sample and 5 μL of loading dye were applied to the gel; 10 μL of 

protein standard was also loaded. Gels were run at 200 Volts for 85 minutes. Upon running, the 

gels were stained overnight with Coomassie brilliant blue and destained for approximately 3 

hours. 

 

2.2.3. PEPTIDE PRODUCTION AT 25°C, 16°C, AND 4°C IN LB 

 

Next we examined the influence of decreasing the temperature at which the cells were 

growing since this can among other decrease the proteolytic activities in the cytosol. In that 

endeavor, one fresh cell colony grew overnight in 5 mL of LB media 0.15 mg/mL of ampicillin. 

One mL of cell sample was incubated in 100 mL of LB media at room temperature with 0.15 

mg/mL of ampicillin added to the media. The cells grew until an OD600 value of 0.80 was 

reached before the addition of 2% arabinose. The incubation was performed at room temperature 

(~25°C) prior to and after induction. After induction, samples were collected at 4h and overnight. 

Another 1 mL of cell sample was incubated in 100 mL of LB at 37°C before induction and was 

switched to 16°C after induction with 2% arabinose. Samples were taken 6 h after  induction and 

overnight. At each time point, samples were centrifuged, supernatant was disposed of, and pellet 

was frozen at -20°C. The frozen cell samples were treated with buffer (50 mM Sodium 

Phosphate, 1 mM EDTA, 150 mM NaCl, pH 7.4) and were sonicated 4 times (30 seconds each 

time) before loading them onto a Tris-tricine-SDS-15% PAGE. Fifteen μL of sample and 5 μL of 
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loading dye were applied to the gel; 10 μL of protein standard were also loaded. The gels were 

run at 200 Volts for 85 minutes. After running, the gels were stained overnight with Coomassie 

brilliant blue and destained for approximately 3 hours. In the same intention of determining the 

effects of the temperature on the protein expression, one fresh cell colony grew overnight at 

37°C in 5 mL of LB media with 0.15 mg/mL of ampicillin. One mL of the cell sample was 

incubated in 100 mL of LB media at 37°C for 4 h with the same concentration of ampicillin used 

in the previous experiments. The cells grew until an OD600 of 0.57 was reached before the 

addition of 2% arabinose. After induction, the cells grew at 4°C. Samples were collected for 

analysis after 5h, 15h, and 24h. Another 1 mL of cell sample was incubated in 100 mL of 

minimal M9 media at 37°C for 9 h before induction with 2% arabinose and cells were left to 

continue growing at 37°C after induction for 48 h. Samples were taken for analysis after 24h and 

overnight. At each time point, samples were centrifuged, supernatant was disposed of, and pellet 

was frozen at -20°C. The frozen cell samples were treated with buffer (50 mM Sodium 

Phosphate, 1 mM EDTA, 150 mM NaCl, pH 7.4) and were sonicated 4 times (30 seconds each 

time) before loading them onto a Tris-tricine-SDS-15% PAGE. Five μL of sample diluted in 12.5 

μL of buffer and 15.7 μL of loading dye were applied to the gel; 7 μL of protein standard were 

also loaded. Gels were run at 100 Volts for 2 hours. After running, gels were silver stained 

according to a protocol provided by the silver staining kit supplier. 

 

2.2.4. PEPTIDE PRODUCTION AT 4°C IN LB 

 

One mL of cell sample was incubated in 100 mL of LB media at 37°C for 4 h with 0.15 

mg/mL of ampicillin added to the media. Cells grew until an OD600 value of 0.57 was reached 

before the addition of 2% arabinose. After induction, the cells were incubated at 4°C. Samples 
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were collected for analysis after 5 h, 10 h, and 19 h. The analysis was performed on a Tris-

tricine-SDS-15% PAGE. Fifteen μl of sample and 15 μl of loading dye were applied onto the gel; 

15 μl and 10 μl (left and right respectively) of protein standard were also loaded. Gels were run 

at 100 Volts for 2 hours. After running, gels were stained overnight with Coomassie brilliant blue 

and destained for approximately 3 hours for a better visualization of the protein of interest. 

 

2.2.5 PEPTIDE PRODUCTION FOR POSSIBLE SECRETION IN MINIMAL M9 

 

In order to check for possible secretion of the protein in the media, we took one fresh cell 

colony which grew overnight at 37°C in 5 mL of LB media with 0.15 mg/mL of ampicillin. One 

mL of cell sample was incubated in 100 mL of minimal M9 media at 37°C for 9 h until an 

OD600 value of 0.57 was reached; the protein expression was induced with 2% arabinose and 

cells were left to continue growing at 37°C for 48 h. Samples were taken for analysis after 24 h 

and overnight. At each time point, samples were centrifuged, supernatant was disposed of, and 

pellet was frozen at -20°C. The frozen cell samples were treated with buffer (50 mM Sodium 

Phosphate, 1 mM EDTA, pH 7.4) and were sonicated 4 times (30 seconds each time) before 

loading them onto a Tris-tricine-SDS-15% PAGE. Five μL of sample diluted in 12.5 μL of buffer 

and 15.7 μL of loading dye were applied to the gel; 7 μL of protein standard were also loaded.   
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Gels were run at 100 Volts for 2 hours. After running, gels were silver stained according 

to a protocol provided by the silver staining kit supplier. 

 

2.2.6 RESULTS 

  

The construct containing the ompA-amylin DNA and the pBAD/Myc-His A plasmid 

vector were separately introduced to the TOP10 cells chemically. After this chemical 

transformation, the plasmid DNA were extracted from the cells and were subject to digestion and 

ligation. The construct and the pBAD/Myc-His A plasmid vector were digested by NcoI and 

XhoI and ligated together by T4 DNA ligase. The success of the digestion-ligation reaction was 

confirmed by double digestion of plasmid clones analyzed on agarose gel electrophoresis using 

the LONZA FLASHGEL system. The ompA-amylin-pBAD/Myc-His A was introduced into 

TOP10 cells by electroporation. The ompA-amylin-pBAD/Myc-His A was then extracted and 

was then sent for sequencing to confirm the transformation success. The protein expression was 

induced by L-arabinose and samples were subject to Tris-tricine SDS-15% PAGE analysis for 

detection of the expected 4.3 KDa-peptide. Samples were collected at various times post-

induction and run on a Tris-tricine SDS-15% PAGE to confirm whether the protein was 

produced.  The protein produced should have corresponded to a band with a molecular weight of 

4.3 kDa. Although the gel is over-stained, it is clear in Figure 8 that there are no bands around 

the 4.3 kDa molecular weight for the initial set of conditions tested. Growth conditions such as 

media, temperature and amount of inducer may interfere with a successful protein production 

[60]. We started to probe the amount of arabinose assuming that too much of it may have 

resulted in overexpression of the peptide; this overexpression would likely have caused the 

peptide either to form inclusion bodies or to kill the cell because of its toxicity [61, 62]. 
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Therefore, we decided to reduce the amount of the inducer (arabinose). So, the same protocol 

was used for another protein production with the intention of probing whether or not a reduction 

of the amount of arabinose used to induce the peptide resulted in better protein expression 

(Figure 9). As it can be seen in Figure 9, no 4.3-kDa band appeared on the gel leading to the 

conclusion that decreasing the amount of inducer did not aid in the production of the protein.  

 

Since amylin is a small protein, it was possible that it was digested by proteases in the 

cytoplasm before reaching the periplasm. Therefore, the next step was to examine the use of 

lower temperatures which should diminish the speed of the metabolic reactions inside the cell 

and decrease the activity of the cytoplasmic proteases [63]. The lower speed of metabolism could 

lengthen the time for the cells to grow, which would allow a better formation of the disulfide 

bond in the peptide and give the protein more time for better folding. As a result, it could 

ultimately provide protection against proteases since high temperatures favor protein aggregation 

which in return can trigger proteolytic activities [63, 64]. Therefore, protein productions were 

undertaken and their inductions were performed at lower temperatures, specifically 25°C and 

16°C (Figure 10), and 4°C (Figure 11). Still no bands were seen at 4.3 kDa under any of these 

conditions.  

Another possibility for the problems with detecting the amylin protein was that it was 

secreted by the cell and therefore located in the growth media rather than the cell pellet itself. 

The secretion could have resulted from the fact that peptide was fused to a leader sequence and 

that bacteria ordinarily secrete a few proteins to the extracellular media [65, 66]. However, no 

amylin protein was detected in the growth media either. 
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Figure 8. Peptide production performed in LB. h= hour; control= no arabinose. Samples 

collected 2h, 6h, 8h after induction and overnight. A 4.3-kDa band was expected to appear which 

does not seem to be present on the gel. Gel was silver stained. 
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Figure 9. Peptide production using different amounts of arabinose in M9; O/N = overnight, 

h=hour, control=no arabinose, %= % of arabinose added. Cells grew in M9; Samples were 

collected 2h, 6h, 8h after induction and overnight. Gel was stained with Coomassie brilliant blue.   
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Figure 10. Peptide production at room temperature and 16 degree C in LB; RT= room 

temperature, o/n= overnight, control= no arabinose. Cells grew in LB; growth at room 

temperature and 16 degree C.  
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Figure 11. Peptide production at 4 degree C in LB; control= no arabinose. Cells grew in LB. 
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CHAPTER 3: RT-PCR TO TROUBLESHOOT THE CAUSE OF THE LIKELY FAILURE OF 

THIS PROTEIN PRODUCTION 

3.1. INTRODUCTION 

 

Since the amylin protein was unable to be detected by either varying the growth 

conditions or the media, it was possible that the issue was upstream of the protein production. In 

order for a protein to be produced, the mRNA must be transcribed from the DNA. The cytoplasm 

hosts the ribosomes, sites of protein synthesis. Ribosomes are the ultimate destinations of 

messenger RNA molecules which, in our case, carry the information that will be translated into 

amylin. Therefore, the messenger RNA can be of paramount importance in the troubleshooting 

work. One method that can be used to find out whether the messenger RNA was synthesized is 

RT-PCR. RT-PCR uses reverse transcriptase to convert RNA into cDNA, which is more robust 

for analysis. 

3.2 MATERIALS AND METHODS 

PRIMER DESIGN 

  

The amino acid sequence of human amylin was taken from a paper by Sunil J. 

Wimalawansa [25]. The amino acid sequence was then reverse-translated into the human amylin 

DNA and was codon-optimized for E. coli. Despite the fact the plasmid vector was designed in 

such a manner that the protein expression includes the leader sequence, the primers were 

designed for the amplification of only the amylin DNA (Table 2). The amylin primers were 

designed in our lab and were made by Integrated DNA technology (IDT). The primers for the 

16S rRNA [67, 68] were provided by Dr. Jernigan (University of Arkansas, department of 

chemical engineering).  
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Table 2 Primers used in the RT-PCR for the amylin and 16S DNA 
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CELL CULTURE AND INDUCTION 

   

TOP10 competent cells (From Life Technology; California, USA) were incubated 

overnight in a shaker at 37°C in 5 mL of LB media with 0.15 mg/mL of ampicillin. Two 1 mL- 

cell samples were then transferred to 150 mL of LB media (75 mL each) to which were added 

ampicillin ( same concentration previously used) (228 μL, 228 μL). Both samples, incubated in a 

shaker at 37°C, grew until an OD600 value of 0.45 was reached. At this point, the expression 

was induced with 2% arabinose; from this point, one sample grew until an OD600 value of 0.55 

(15 minutes after induction) and the other sample to an OD600 value of 0.75 (30 minutes after 

induction). Both samples were harvested at their respective ODs and were ready for RNA 

extraction. 

RNA EXTRACTION  

   

 The total cell RNA was extracted using UltraClean® Microbial RNA Isolation Kit from 

MO-BIO (cat #:15800-50). 1.8 ml of cell culture (TOP10 cells) were centrifuged at 11,000 rpm 

for 30 seconds. The supernatant was decanted and the tubes were spun one more time for 30 

seconds and the supernatant was completely removed. The cell pellet was resuspended in 300 μl 

of Solution MR1 (provided in the kit) and gently vortexed to mix. Resuspended cells were 

transferred to a MicroRNA bead tube where 15 μl of Solution MR2 (provided in the kit) were 

added to the MicroRNA Bead Tube and vortexed briefly to mix. The tubes were heated at 65°C 

for 10 minutes. The tubes were secured horizontally on a flat-bed vortex pad with tape and 

vortexed at maximum speed for 10 minutes. The supernatant was transferred to a clean collection 

tube. Five hundred μl of solution MR3 (Lysis buffer provided in the kit) were added to the 

supernatant and vortexed for 5 seconds. Two hundred-fifty μl of Solution MR4 (Lysis buffer 
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provided in the kit) were then added to the mixture; the mixture was incubated at 4°C for 5 

minutes. The tubes were centrifuged for 1 minute at 11,000 rpm. The entire volume of 

supernatant was transferred, while avoiding the pellet, to a collection tube. About 650 μl were 

loaded into a spin filter and centrifuged at 11,000 rpm for 30 seconds. The flow through was 

discarded and the remaining supernatant was added to the spin filter and centrifuged at 11,000 

rpm for 30 seconds. Three hundred μl of Solution MR5 (provided in the kit) were added and 

centrifuged for 30 seconds at 11,000 rpm. The flow through was discarded. The collection tubes 

were centrifuged again for 1 minute at 11,000 rpm. The spin filter basket was placed in a new 

collection tube. Fifty μl of RNase-free water were added to the center of the white filter 

membrane. The collection tubes were centrifuged for 30 seconds. The spin filter was discarded 

and RNA extract was stored at -80°C.  

 

REVERSE TRANSCRIPTION POLYMERASE (RT-PCR) 

 

The RT-PCR was performed as indicated in the protocol provided with GoTaq® Probe 2-

Step RT-qPCR System kit from Promega. RNA concentration was determined by analysis with a 

Nanodrop spectrometer.  RNA template and primers were combined on ice. Two µL of RNA 

template (15 min post-induction, 175ng/µl; 30 min post-induction, 190.8 ng/µl) were combined 

with 2 µL of oligo (dT) primers (provided in the kit), 2 µL random primers (1 µL, 1 µL) 

(provided in the kit), and 8 µL of nuclease-free water (provided in the kit) to a final volume of 7 

µL for each reaction. In addition, a control reaction was performed which contained no reverse 

transcriptase. Our RNA extract was assumed not to be contaminated with genomic DNA; 

therefore, no DNase treatment was performed. RNA and primers were denatured in a 

thermocycler at 70°C for 5 minutes and immediately cooled down on ice for 5 minutes then 
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centrifuged for 10 seconds. RNA and primers were kept on ice prior to adding the reverse 

transcription reaction mix. Three µl for each cDNA synthesis reaction to be performed were 

prepared and vortexed gently to mix. 4.9 µl of nuclease-free water GoScript™, 4 µl of 5X 

reaction buffer, 1.6 µl of MgCl2, 1 µl of PCR nucleotide mix, 0.5 µl of recombinant RNasin® 

ribonuclease inhibitor, and 1 µl of GoScript™ reverse transcriptase were combined to a total 

volume per reaction of 13 µl (all these reagents were provided in the kit). Five reactions were 

performed: 1 reaction for each of the cell growths (15 min post-induction and 30 min post-

induction), 1 positive control reaction with 16S rRNA, 1 negative control reaction with no cDNA 

template, and 1 more reaction to compensate pipetting errors. Thirteen µl of the reverse 

transcription mix were added to each RNA + primer tubes for a final reaction volume of 20 µl. 

The tubes were placed and incubated in a thermocycler at 25°C for 5 minutes to anneal, 42°C for 

45 minutes to extend, and at 70°C for 15 minutes to inactivate the reverse transcriptase. The 

cDNA samples were stored at –20°C. 

GoTaq® Probe qPCR master mix and nuclease-free water were thawed at 25°C. GoTaq® 

Probe qPCR Master Mix was vortexed for 5 seconds. Six reactions were prepared: 1 reaction for 

each of sample (one sample taken 15 minutes after induction, another one taken 30 minutes after 

induction), 1 negative control which contained no cDNA template, 1 positive control reaction 

(16S cDNA), 2 more reactions to compensate pipetting errors since the positive control was 

treated like a separate sample therefore could not be mixed with any other sample. Ten µl of 

GoTaq® Probe qPCR Master Mix (2X), 1 µl of forward primer (20X), 1 µl of reverse primer 

(20X) (primers for the amylin cDNA and the 16S cDNA were added in their respective tubes), 

and 4 µl of nuclease-free water were combined to a total volume of 17 µl. The reaction mix was 

made in one tube for 4 reactions including the negative control reaction and another reaction to 
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compensate pipetting errors. In another tube, 2 more reactions: one for the positive control and 

the other one for pipetting mistakes. After the combination of GoTaq® Probe qPCR Master Mix, 

PCR primers and nuclease-free water together, the 2 tubes were vortexed for complete mix. 

Seventeen µl of the reaction mix were added in 4 distinct tubes labeled according to their content 

(0.55cDNA, 0.75 cDNA, 16S cDNA, no-cDNA template control). Three µl of cDNA template or 

water (negative control) were added directly to the reaction mix. The tubes were briefly 

centrifuged and thermocycling was performed under standard conditions; the tubes were placed 

in a thermocycler and incubated at 95°C for 2 minutes to activate the GoTaq® polymerase (1 

cycle), 95°C for 15 seconds to denature the cDNAs (40 cycles), and at 60°C for 1 minute to 

anneal and extend the amplified products. 

AGAROSE GEL ELECTROPHORESIS 

 

In order to ascertain that we obtained the expected product which was the human amylin 

cDNA, a 2.2 % agarose gel electrophoresis was performed. TBE buffer (10X) was made by 

mixing in 1 L of deionized water 54 g of Tris base, 27.5 g of boric acid, and 2.92 g of EDTA. To 

make the 2.2% agarose gel, 1.4 g of agarose was put in 60 mL of 1X TBE. The solution was 

heated in microwave for two segments of 40 seconds in order to minimize the amount of bubbles 

and then allowed to cool down for 1 minute during which time 3 μL of GelRed dye were added 

for visualization under UV light. The gel was poured in the tray and allowed to solidify for 30 

minutes. The gel was run at 80 volts for 2h 30 minutes and was visualized under UV light.  

3.3. RESULTS 

 

As it can be seen in Figure 12, the well that has the negative control (no-cDNA template) 

has nothing in it except the primers which appear at the very bottom of the gel due to their low 

molecular weight (approximately 30 bp).   
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The two wells that contain the amylin amplicons (the 2 samples) show the expected 

product which is 111 bp. The well containing the positive control shows a product whose 

molecular weight is 204 bp which corresponds to the segment of the 16S rRNA that was 

amplified. 

3.4. DISCUSSION 

  

This project aimed at synthesizing human amylin using recombinant DNA techniques. 

We intended to do so by attaching the ompA amino acid sequence at the N-terminal of the human 

amylin amino acid sequence. The ompA peptide served solely as a signal sequence to favor 

translocation into the periplasm where it was more likely to form the disulfide bond; it was not 

designed to enhance the solubility of the peptide or to favor detection and purification of the 

peptide. Toward this goal, a Histag (6 histidine residues peptide) is part of the pBAD/Myc 

plasmid vector attached to the N-terminal segment of the signal sequence. We tried to express the 

peptide under many different experimental conditions. These changes consisted of dropping the 

temperature in order to decrease the rate at which metabolism occurs in the cell thereby creating 

time for the peptide to fold properly and protecting it against proteolysis, decreasing and 

increasing the inducing agent (L-arabinose) in order to avoid overexpression which would likely 

bring about inclusion bodies; we did not want our protein to form inclusion bodies due to the fact 

we wanted a product with full biological activity. However, as described in Ch.2 none of these 

changes produced the desired result.  Therefore, we decided to probe the possible cause of the 

failure to see the peptide production. One possibility was that the protein was secreted in the 

media rather than the periplasm. However, analysis of the growing media determined this was 

not the case.  Another possibility was that the problem may have occurred at the gene level 

instead of the protein level. Therefore, an RT-PCR was performed. Analysis of the 2.2% agarose 
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gel electrophoresis (Figure 12) indicates that the human amylin messenger RNA was 

synthesized. Since the mRNA was made, the problem seems to be more likely related to the 

lifetime of the small peptide in the cytosol. The most probable cause of our inability to detect the 

amylin protein seems to be proteolysis; the protein was most likely degraded by cytosolic 

proteases.  One way to overcome this issue might be to consider fusing the peptide to other more 

efficient protein expression tags such as the maltose-binding protein (MBP). MBP has been 

known to enhance the solubility of many proteins to which it has been fused and also to facilitate 

the translocation of the protein into the periplasm for disulfide bond formation since MBP is 

synthesized in the cytoplasm and must be translocated into the periplasm where it plays its 

transport function.  
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Figure 12.  2.2% argarose gel electrophoresis analysis of the RT-PCR products. The wells 

located at both extremities left and right contain DNA ladder. From right to left: the 16S rRNA 

(positive control) (204bp), human amylin cDNA (111bp), the no-cDNA template control 

(negative control). A no-reverse transcriptase control was not run on the gel; if need for 

reproduction of this experiment be, one may run a no-reverse transcriptase control as another 

negative control. 
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